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Abstract

The fast pace that optically levitated platforms have experienced over the past decade
has opened new ways to investigate a plethora of nonlinear stochastic mechanical effects.
Amongst them, noise-to-signal transitions, peculiar and interesting processes in physics,
are the focus of this thesis. They allow to transform the environmental noise to useful
mechanical effects.

This thesis investigates the paradigm of stochastic highly nonlinear dynamics of a levi-
tated nanosphere in the classical, overdamped and underdamped regime. With main focus
on the dynamical noise-to-signal transitions in the optical cubic potential V (z) = ka3 /3,
where its inherent instabilities were positively exploited as a thermally driven source to
autonomously transform noise into useful coherent mechanical displacement.

Such transformation can be performed because the nonlinearity, one of the essential in-
gredients together with instabilities, brings the mechanical system out of its thermal
equilibrium, thus allowing energy from the fluctuating environment to be used as a source
of coherent mechanical displacement and oscillations.

The first part of the thesis opens with a general overview of stochastic processes in linear
oscillators, stable and unstable, in the high and low friction regime. General nomenclature
and analytical methods are introduced.

The second part discusses stability and noise-to-signal transitions for a particle in cu-
bic potential in the overdamped regime followed by the investigation of maximum of
position distribution as a new methodology to characterise the dynamics of highly non-
linear systems. Moreover, the underdamped dynamics of a particle in cubic potential

is discussed, introducing new unexplored nonlinear ballistic effects appearing in the in-
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stantaneous speed and acceleration, obtained for parameters of current underdamped
experiments.

Last, but not least, the numerical methodology to compute dynamics in highly unstable
systems, subjected to rapid diverging trajectories, is discussed; with focus on accuracy of

computation within and beyond the characteristic time of divergence.

Keywords— Nonlinear Dynamics, Optical Trapping and Manipulation, Brownian Motion,

Transient Stochastic Effects, Non-equilibrium Statistical Mechanics
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Introduction

Since 1619, the knowledge of observable mechanical motion induced by radiation pressure from
the light was known and reported in De Cometis by Kepler [3], who suggested that the deflection
of comet tails is a result of radiation pressure from the Sun. It can be considered as foundation
of modern optomechanics.

Centuries after, in 1901, the landmark experiments of Nichols and Lebedev have proved that light
carries momentum, unambiguously demonstrating the radiation pressure predicted by Maxwell
[4H6]. These studies have then paved the way to the development of optical trapping, and ma-
nipulation of neutral atoms with light, pioneered by Arthur Ashkin in 1970 [7, [§].

Since Ashkin’s seminal work, optomechanics has witnessed a significant increase in interest and
effort, showing great promise in the development of quantum technologies and force sensing [9].
However, optomechanical devices like cantilever [I0HI5], and membranes [I6HIS], are limited
by unavoidable mechanical dissipation deriving from (i) clamping losses generated by radiation
of elastic waves from the support of the oscillator to the substrate [19-22] (ii) thermo-elastic
and -refractive noise generated by temperature dependent properties of the mechanics [23H27],
and (iii) viscous damping generated by interactions with gas molecules [28431]. Moreover,
these tethered systems suffer the thermal loading, such as the case for nanoelectromechani-
cal systems (NEMS) [32, B3]. As a result, these technologies are bounded to be working in
cryogenic environments. Levitating the micro- or nano-sized mechanical object using optical,
magnetic or electric field, allows for minimisation of such mechanical dissipation, leaving only
(i) viscous damping given by interaction with the surrounding gas molecules, minimisable by
working in vacuum [I]], (ii) noises in the optical field [34H37], and (iii) photon recoil due to the

discrete nature of the optical radiation [38] as the relevant heating sources of levitated systems.
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Figure 1: Scaling of mechanical quality factor with

more oscillations are visible. As can oscillator volume [1J].

The red area, representing the range at which levitated op-

tomechanical platform are predicted to operate, goes be-

are well above the cube root scaling yond the general scaling of optomechanical experiments
(black line), allowing higher quality factor for smaller res-

(black line) typical of the optome- onator’s volume. Black points represent the state-of-the-

art tethered optomechanics experiments: (a) [39], (b)

[0, (¢) 1)

be seen in Figl[l] levitated systems

chanical resonators, with a predicted
Q of over 10! for nanoparticles sus-
pended in vacuum (red shaded area), showing how well decoupled the optically levitated systems
are from the environment. The comparison with the state of the art tethered optomechanical
exeriments is presented (black dots) [39H4T].

The thriving young field of levitated optomechanics has then served as a versatile platform to test
light matter interactions [42H45], probe the limits of force sensing [36] 37, 46-55], and test the
fundamental theories in physics [56H59]. Furthermore, due to the advantages given by coupling
the levitated system to an optical cavity, the regime of room-temperature quantum optomechan-
ics has been investigated [60H62], and owing to the recent milestone of quantum ground state
cooling [63], the exploration of macro-quantum physics [60, [61], [64], with application to quantum
sensing [65], [66] and non-classical state engineering [64], 67, 68] has been opened. Moreover, the
freedom from the mechanical vibration of the environment has pushed levitated optomechanics

to investigate fundamental theorem of thermodynamics [69-72], nonlinear dynamics [73H94],
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and synchronization [95H98].

At the core of the most widespread nonlinear stochastic phenomena in biology and chemistry, such
as protein folding dynamics and chemical kinetics [99-104], lies the dynamics at the saddle node
bifurcation. Examples include optical bistability in lasers [I05HI07], firing of neurons [10SHIIO],
Brownian ratchets [ITTTHIT4], nonlinear maps [I15], and decays from metastable states [116], [117].
The understanding of thermally activated escapes has been widely known since the 1940, when
Kramers calculated escape rates both in the high and low damping regimes [I18]. Other analyt-
ical techniques have since been developed, leading to a deeper understanding of such problems
giving indirect information about particle position, or asymptotic approximations for different
regimes. They can roughly be summarised in (i) first passage times [84], TO6HI09] 115, [TT8H127],
(ii) nonlinear relaxation times (an extension of the previous taking multiple passages into ac-
count) [128, 129], and (iii) time evolution of PDF in a symmetric inverted parabolic potential
[130HI36]. These regimes have been experimentally observed for a particle trapped in optical
tweezers [137], even in the low pressure regime [83] [[38-141], where for high mechanical factor
oscillators the nonlinearity generated by the laser beam, typically exhibiting a soft Duffing term,
has been observed [48] [75].

Many platforms have been exploited to observe underdamped nonlinear equilibrium properties
and anharmonic oscillations. Amongst them nano- and micro- electromechanical systems have
shown phase stochastic resonance [96], 98], anomalous phase diffusion [I42], and coherent energy
transfer [82] generated by nonlinear dynamics. Moreover, a high cubic nonlinear response has
been observed for macroscopic mechanical systems by exploring the anharmonicity in the chem-
ical bonding interactions [81].

To venture in the realm of nonequilibrium physics, and harness the nonlinear features for applica-
tion ranging from nanosensing to thermodynamical engines, a new approach based on a broader
class of transient effects in nonlinear stochastic dynamics has been examined [93]. Nonlinearity
brings the mechanical system out of its thermal equilibrium in a different way than coherent
driving, hence allowing energy from the fluctuating environment to be used as a primary source
of coherent mechanical displacement and oscillations [I43]. It has been shown that instability
and nonlinearity are the essential ingredients necessary to convert thermal noise to a directed

motion, and their dynamics has been characterised by both passage times statistics [127] [144],
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and short time statistics of particle position [143] allowing access to unexplored local dynamics
[2, 87] that cleared the role of thermal noise in nonlinear stochastic systems.

This complementary direction, main topic of this thesis, is primarily focused on dynamical noise-
to-signal transitions, in the cubic potential that has been feasibly prepared by two counter-
propagating beams [84] [87], where its inherent instabilities were positively employed as a ther-
mally driven source to autonomously transform noise into useful coherent mechanical displace-
ment [143]. While a feedback control can be used to manipulate the optical potential to achieve
models beyond the double-well potential, its main disadvantage lies in its idea to use the output
of the dynamical system (measurement) to influence the interaction with the system itself. This
operation results in a non autonomous process that hinders the control at the quantum level, as
unitary quantum dynamics cannot be reached. A different, yet complementary, way of controlling
the mechanical motion can be achieved by nonlinear transient stochastic effects, achievable by
the recent progress in fast and accurate preparation, and potential control in levitated systems
[69] 137, [145] [146], allowing to explore these dynamical noise-to-signal transitions. They are
direct and conclusive evidences of nonlinearity in the system. In these cases, the measurement
is used as a verification protocol of the dynamics rather than an active player throughout the
protocol, and the nonlinearity comes directly as a modification of the optical trapping potential,
that allows access to quantum control. The choice of the cubic nonlinearity, which features will
be laid down in details in Chapter [3| of this thesis, is inspired by the highly nonlinear Hamil-
tonians that can implement analog quantum simulations with mechanical objects, essential in
quantum information protocols [147HI50].

In such way, when levitating optomechanics achieves the quantum level, the effects from stochas-
tic nonlinear dynamics can be compared with unexplored area of quantum highly nonlinear
effects [I5IHIH6]. Such systems are investigated in parallel in the superconducting circuits [I57-

159]



Chapter 1

Principles of Optical Tweezers and

Levitation

In 1970, Arthur Ashkin pioneered the field of optical trapping by demonstrating that optical
forces could be used to displace, accelerate, and levitate micron-sized dielectric objects both in
water and air [7) [160]. What Ashkin et al. [8] [161] observed was a stable trapping of dielectric
particles with the gradient force of a strongly focused laser beam. His seminal work led to the
development of a single beam gradient force optical trap, the optical tweezer. This technique has
since been widely used to manipulate viruses and bacteria [162], and subsequently in trapping
and cooling of atoms [163] [164].

An optical trap consists of a tightly focused laser beam with high numerical aperture (NA). The
optical forces exerted on a dielectric object are due to transfer of momentum from the scattering
of the impinging photons. Such forces can be decomposed in two components (i) the gradient
force pointing towards the region of highest laser intensity, allowing for stable trapping in the
focus of a laser beam, and (i) scattering force pointing towards beam propagation thus pushing
the particle out of the trap. To achieve stable trapping it is imperative to eliminate the scattering

force, or have the gradient force overcome the scattering [160, 165} [166].

5



Principles of Optical Tweezers and Levitation 6

1.1 Forces in an Optical Tweezer

The most general ansatz to compute forces of an electromagnetic field on a dielectric object is
given by Maxwell’s equations. By integrating the stress tensor over the surface of the dielectric

particle one obtains the mechanical force acting on the object [6l [167]

(Fy = jgvm i, (1.1)

where OV is the surface of the object, 7 is the unit vector perpendicular to the surface, and
T is the Maxwell stress tensor containing the incident fields impinging on and scattered off the
dielectric object. As a consequence of energy and momentum conservation of the incident and
scattered fields, the forces acting on the dielectric particle arise, requiring to solve the scattering
problem of the field and the object in order to compute the optical forces. The most general
solution for a spherical particle illuminated by Gaussian beams is provided by the Lorentz-Mie
theory as explained in detail by Gousbet and Gréhan [I68]. The special case of a sub-wavelength
particle » < X results in the application of the Rayleigh approximation which provides closed

formulas to compute the optical forces.

1.2 Dipole Approximation

The dipole (or Rayleigh) approximation describes the particle as a point dipole interacting with
an electromagnetic field. A dielectric particle illuminated by laser can absorb, scatter, or transmit
the impinging photons. Consider a particle of radius r, with a refractive index n, being illumi-
nated by a Gaussian beam (T'EMyg) of power P propagating along the z axis. The intensity

distribution of the Gaussian beam is

(@242

I(z,y) = loe &7, (1.2)
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with Iy = 2P/7w(z)? the intensity, w(z) = wor/1 + (2/20)? the beam radius, and zy is the

Rayleigh length. The optical forces F(r) comprise of two terms
F(I‘) = Fgrad(r) + Fscatt(r)- (1.3)

The first term, Fg,qq(r) = %/VI (r) is the gradient force, while the second term, Fg.ou(r) =
%NI (r)Vo(r) is the scattering force. The terms a’,a” are respectively the real and imaginary
part of the polarisability « calculated with the Clausius-Mossotti relation [6l 167, [169]. The
phase ¢(r) = k-r shows that the scattering force results from momentum transfer from the
radiation field to the particle.

Momentum transfer can occur via absorption (p = h/)\) or scattering (p = 2h/\) of photons.
As a result the scattering net force is along the beam propagation and pushes the particle away
from the focus thus hindering the trapping.

Similarly, an impinging photon can be diffracted by the particle, and due to the momentum
conservation, the particle gets pushed towards the focus of the laser, thus trapping it [170].
The mass of the object becomes then pivotal to achieve stable trapping. For smaller particles
thermal excitations have higher probability to kick the particle out of the trap, while bigger

particles undergo strong scattering force hence pushing them out of the trap.

1.3 Harmonic Approximation

Optically levitated particles are subjected to thermal noise via collisions with the surrounding
gas molecules. When the particle gets displaced by a collision, the gradient force counteracts the
momentum transfer by acting in the opposite direction. For small displacement, compared to

the local intensity maximum, the scattering force can be approximated by

"

. o o
Fscatt =~ ?Ioez + O(zz) (14)
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The gradient force can be approximated by the linear Hooke’s law

- o’ odly (T .
Fgrad(r) = ZVI(T) ~ 20 (Eem + L%q,) . (15)
x )

The optical force along the radial directions (x,y) is conservative and can therefore be written

as a gradient of the optical potential ﬁgmd = —VVypt. The resulting equations of motion unfold
mi 4+ myi + mQ2ix = Fy, (1.6)
mij+m71)~|—mﬂ§y = Fyp, (1.7)
mz"l’m'yz“l’mﬂzz = Fth—'I_Fscatt, (18)

as a thermally driven and damped harmonic oscillator with m~y# a Stokes friction force due to the
interactions with the surrounding gas particles, Fi; a Brownian force noise at room temperature,

and Fy.q to be an offset introduced by the scattering force, constant for small displacement.

1.4 Nonlinear Potential

To obtain a cubic potential in Eq.(1.6|), another pair of identical counter-propagating Gaussian
beams, displaced in the z-axis, are added [I71]. Assuming the waists and phases of the beams

remain the same, the resulting optical intensity becomes [171]

w2, 242 _(azzg)? _(azeg)? 2
Is(z,y,2) =4"Be =3 Iste “3 4+ \/Ize 3 cos(kz)?, (1.9)
w
3

where x;; denotes the position of the Gaussian beam waist.
The above can be further simplified by assuming that the particle moves in the vicinity of the
waist positions y = z = 0 and the beam is wide enough to preserve the width (w3 = wp3) in the

region of the particle’s dynamics. Moreover, xss = 0 can be further assumed, leading to [I71]

_(z—= 1)2 _12 2
Ig(:n,y,z):4{ Is31€ “3 + v/ I32e Eg} . (1.10)
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From Eq.(1.3) and Fgqq(r) = %VI(T) the optical potential V3(z) o I3(z) exhibits a cubic
profile around the point = = x,. [171]

O ]' O
Valw) = Vi (o) + 5" (o — )’ (111)

with the depth of the potential V;* t(:nc), and the coefficient of cubic nonlinearity u3" ‘ being
function of the beam parameters. This method was employed in [84] 87| to observe the noise-

to-signal transitions discussed in this thesis.

1.5 Optical measurement techniques

After having realised a stable trap, one must be able to measure and track the position of the
particle. The following sections provides a general overview of optical techniques for measure-

ment.

1.5.1 CCD and Quadrant Detectors

In [84] [87], to measure the particle position of a particle evolving in the optical cubic potential, a
charge coupled device (CCD) was used, which provides a direct method to measure the position
evolution in an optical trap.

Its basic structure comprises of a shift register, essentially an array of closely spaced potential
well capacitors, and a thin layer of silicon dioxide grown on a silicon substrate with a transparent
electrode (pixel gate) deposited on it [172]. Upon absorption of incident photons, a pair electron-
hole is created through the photoelectric effect. By positively biasing discrete areas of the surface,
the electrons thereby created are gathered and then counted [I72].

The number of electrons (photons) per pixel, gives the intensity profile of the field, thus allowing
to record the particle position directly, without measuring any time variation enabling direct
particle velocity measurement [172].

When a higher time resolution is needed, for instance in force measurements, a quadrant detector
(QD) is used [I73]. The QD is a position sensitive device which is composed of four identical

p-n junction photodiodes, separated by very small gaps [174]. Its main advantage lies in higher
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resolutions with lower inherent noise, useful for micro- and nano- meter displacement [173] [1'74].
Venturing towards the quantum regime, where smaller changes in position need to be detected,
both the CCD and QD fail to provide the necessary precision, and a different measurement

technique, based on phase detection, has been developed.

1.5.2 Homodyne and Heterodyne Detection

The derivation of this section is inspired by [I75] [176].
We consider an incident Gaussian beam Eyy with intensity I as per Eq.(|1.2), polarised along x.
The dipole induced by the incident field, via u(rg,) = aEgo(rgp,), radiates an electric field via

the dyadic Green’s function G(r,rgp)

Edipole(ra I‘dp) = WQMMOG(Ta 7'0), (112)

where w and pg are the optical frequency and the vacuum permeability respectively.
In the paraxial approximation (z &~ f, with f distance from the focus) the far field of the dipole

becomes a spherical wave

Edipole(ra I'dp) = Edipoleei(kf+¢dip0le)nma (113)
with amplitude Egpoe and phase ¢gipore position dependent. The scattered light that arrives at
the detector is then transformed into a plane wave by a lens of focal length f, thus characterised

by the following amplitude and phase

2
QW= o p2. 2
Edipole = EOT}Lepd”’Ole/wO, (114)
k—1
¢dipole =k- Ydipole 1 7zdipolea (115)

with p and wg the radial position and beam waist respectively.
From Eq.(1.15) it can be seen that the particle motion is primarily imprinted into the phase of
the scattered light and hence a phase sensitive measurement is required. Moreover, the total

scattered light intensity and signal are rather weak, and require a reference beam field E,.f to
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interfere with the scattered light to amplify the signal and read out the phase. The intensity

distribution at the detector then become

I(I‘, I‘dp) X |Edipole + Eref|2 (116)

= Eﬁipole + 2EdipoleEref COS(¢dipole(ra I'dp) + ¢ref) + Efefa (117)

with ¢, being the relative phase between the scattered light and the reference field.

If the scattered light interferes with the reference beam at the same optical frequency, a homodyne
measurement can be performed. Assuming that the intensity of the scattered light is weaker
compared to the intensity of the reference th-p e < E2 s> and that the intensity of the reference

Eze 7 can be eliminated by balanced detection, the first and last term of Eq.([1.16]) can be dropped,

T

leading to

2EdipoleEref COS(¢dipole(ra I‘dp) + ¢ref)' (118)

Moreover, since to first approximation the particle motion is harmonic, i.e. @gipote = go cos(£o),
we obtain that the spectrum of the detected signal from Eq. consists of harmonics of the
particle oscillation frequency 2.

For the homodyne signal of Eq. to be linear in particle displacement, a relative phase
¢ref = —m/2 is required.

Oppositely, when the reference beam and the scattering light have different optical frequency, a

heterodyne measurement can be performed. The detector signal is given by

EdipoleEref COS(¢dipole (I‘, rdp) + ¢ref + AWt)a (119)

where Aw is the difference in the optical frequencies, meaning that the spectrum of the detection
signal is shifted to Aw and has sidebands at Aw 4 .
Typically Aw < € is chosen to measure both quadratures and extract the phase ¢gipoie + @rer,

which then has to be high-pass filtered to obtain ¢g;poie-
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Chapter 2

Theory of Stochastic Linear Dynamics

Levitating spherical particles, moving in one-dimensional approximation, can be sufficiently de-

scribed by the following Langevin equation

&=—yi— am%(:r) + v/2Dupé (1), (2.1)

where 7 = I'/m is the damping coefficient, V' (z) is a time independent potential in one spatial
dimension, Dyp = kT~ /m represents the diffusion coefficient in the underdamped regime,
with kp is the Boltzmann constant and 7" the effective environment temperature, satisfying the
fluctuation dissipation theorem [I77) I78], and £(t) is the standard Gaussian white Markovian
noise. Historically, it was representing collisions of fluid molecules with the Brownian particle.
However, for levitating particles this simplified description is effective as other noises, i.e. photon
shot noise and recoil, are more relevant in deeply underdamped regime.

The integral W (t) = fg £(t)dt’ is the standard Wiener process with continuous trajectories. For

2
1 = /2t

Nor , we obtain zero mean (W (t)) = 0 and

the probability density function p(z,t) =
a second moment evolving linear in time (W?2(t)) = t [I78]. Moreover, the Wiener process has
independent increments, and the two-time correlation function is given by (W (£)W (t')) = |t/ —t|.

For simplicity we will always assume unitary mass m = 1, unless differently specified, or relevant

for the discussed effect.

13
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2.1 Free Particle Motion
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Figure 2.1: Time scales comparison of position variance o2, and nonezxistence of

instantaneous velocity for overdamped dynamics.

The figure shows the full evolution of position variance (red dots), corroborated by the analytical
result of Eq.([2-8) (red line), for initial condition drawn from a Gaussian distribution with (zg) =
(29) =0, and standard deviations U%O =0, U?EO = kT, where kg = 1 has been taken to simplify
visualisation. For times t < 1/v the dynamics is dominated only by inertia, resulting in an
evolution of position variance o2 < t2 (left panel, black dashed line). Contrarily, for t > 1/,
the dynamics is diffusive, and the position variance evolves as o2 < t (right panel, blue dashed
line). The latter is the result for the overdamped dynamics, which cannot predict the evolution at
ballistic timescales. For this reason, and because o2 o t is not root mean squared differentiable,
the instantaneous velocity for the overdamped dynamics (non inertia approximation) does not
exist. The linear ballistic effect, o2 o t? evolution, was for the first time demonstrated and
measured, for a particle optically trapped in liquid in a harmonic optical potential [179-181).
Environmental temperature T = 1 has been used to generate nt = 10* trajectories with a sample
size N = 5000, and timestep dt = 1074,

When no potential is confining the particle free motion, such as the case for the short time
scale of a particle trapped in both a liquid or gas, the dynamics can be described by the following

Langevin equation

& = —yi& + +/2Dyp&(t). (2.2)

For a particle starting at a definite phase point (xg,vg), the position difference Az(t) = x(t) — xq
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and velocity @(t) = v(t) dynamics of Eq.(2.2) unfolds [178]

Yo — 2Dyp ! —~(t—t") N
Ax(t)_7(1—evt)+—V7/O(l—evtt)g(t)dt (2.3)
t
v(t) = i(t) = voe " + /2Dyp / e = eat (2.4)
0
t
#(t) = —yvoe " — v/ 2DUD/ e edt + /2Dupé(t). (2.5)
0

From Eq.(2.3) the mean square displacement ((Az(t))?) can be calculated as [178]

<(A$(t))2> _ < (2]> ( e—yt 2 2DUD // —7(t ) (1 o e—v(t—t”))<£(t/)£(t//)>dt/dt//’

2

_ )
=3 (1 7)+2

Dypt D
2+ 202 (—3 44t — 7). (2.7)
5

If one considers a Boltzmann distribution of initial velocities, i.e. (v3) = kT /m, and substitutes
the value of Dyp = kgTy/m, the resulting mean square displacement of Eq.(2.6)) becomes

[178, 181]
2kpTt 2kpT
+ 2
ym v2m

((Az(t)?) = (e 1), (2.8)

k