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Abstract 

The fast pace that optically levitated platforms have experienced over the past decade 

has opened new ways to investigate a plethora of nonlinear stochastic mechanical effects. 

Amongst them, noise-to-signal transitions, peculiar and interesting processes in physics, 

are the focus of this thesis. They allow to transform the environmental noise to useful 

mechanical effects. 

This thesis investigates the paradigm of stochastic highly nonlinear dynamics of a levi­

tated nanosphere in the classical, overdamped and underdamped regime. W i t h main focus 

on the dynamical noise-to-signal transitions in the optical cubic potential V(x) = kx3/3, 

where its inherent instabilities were positively exploited as a thermally driven source to 

autonomously transform noise into useful coherent mechanical displacement. 

Such transformation can be performed because the nonlinearity, one of the essential in­

gredients together wi th instabilities, brings the mechanical system out of its thermal 

equilibrium, thus allowing energy from the fluctuating environment to be used as a source 

of coherent mechanical displacement and oscillations. 

The first part of the thesis opens with a general overview of stochastic processes i n linear 

oscillators, stable and unstable, in the high and low friction regime. General nomenclature 

and analytical methods are introduced. 

The second part discusses stability and noise-to-signal transitions for a particle in cu­

bic potential in the overdamped regime followed by the investigation of maximum of 

position distribution as a new methodology to characterise the dynamics of highly non­

linear systems. Moreover, the underdamped dynamics of a particle in cubic potential 

is discussed, introducing new unexplored nonlinear ballistic effects appearing in the in-

v 
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stantaneous speed and acceleration, obtained for parameters of current underdamped 

experiments. 

Last, but not least, the numerical methodology to compute dynamics in highly unstable 

systems, subjected to rapid diverging trajectories, is discussed; wi th focus on accuracy of 

computation wi th in and beyond the characteristic time of divergence. 

Keywords— Nonlinear Dynamics, Optical Trapping and Manipulation, Brownian Motion, 

Transient Stochastic Effects, Non-equilibrium Statistical Mechanics 
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Introduction 

Since 1619, the knowledge of observable mechanical motion induced by radiation pressure from 

the light was known and reported in De Cometis by Kepler [3], who suggested that the deflection 

of comet tails is a result of radiation pressure from the Sun. It can be considered as foundation 

of modern optomechanics. 

Centuries after, in 1901, the landmark experiments of Nichols and Lebedev have proved that light 

carries momentum, unambiguously demonstrating the radiation pressure predicted by Maxwell 

PHE|. These studies have then paved the way to the development of optical trapping, and ma­

nipulation of neutral atoms with light, pioneered by Arthur Ashkin in 1970 [7, 8j. 

Since Ashkin's seminal work, optomechanics has witnessed a significant increase in interest and 

effort, showing great promise in the development of quantum technologies and force sensing [9]. 

However, optomechanical devices like cantilever [HJHIEJ, and membranes fTRTTTT̂ . are limited 

by unavoidable mechanical dissipation deriving from (i) clamping losses generated by radiation 

of elastic waves from the support of the oscillator to the substrate |1T9T-E2] (ii) thermo-elastic 

and -refractive noise generated by temperature dependent properties of the mechanics IJ23H2ZI], 

and (iii) viscous damping generated by interactions with gas molecules |E8T-CTTj. Moreover, 

these tethered systems suffer the thermal loading, such as the case for nanoelectromechani-

cal systems (NEMS) pT21 As a result, these technologies are bounded to be working in 

cryogenic environments. Levitating the micro- or nano-sized mechanical object using optical, 

magnetic or electric field, allows for minimisation of such mechanical dissipation, leaving only 

(i) viscous damping given by interaction with the surrounding gas molecules, minimisable by 

working in vacuum ft], (ii) noises in the optical field [34-37], and (iii) photon recoil due to the 

discrete nature of the optical radiation [38] as the relevant heating sources of levitated systems. 
1 
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To evaluate how well decoupled is 

a system from its surrounding, the 

mechanical quality factor has been 

used. Defined as the ratio of en­

ergy initially stored to the energy 

lost in one radian of oscillation cy­

cle, Q = f2m/7 bears the informa­

tion of how often a particle oscil­

lates flm before energy is dissipated 

7 The higher the quality fac­

tor, the more decoupled the system 

is from the environment, and hence 

more oscillations are visible. As can 

be seen in Figjl| levitated systems 

are well above the cube root scaling 

(black line) typical of the optome­

chanical resonators, with a predicted 

Q of over 10 1 1 for nanoparticles sus­

pended in vacuum (red shaded area), showing how well decoupled the optically levitated systems 

are from the environment. The comparison with the state of the art tethered optomechanical 

exeriments is presented (black dots) J3"9"l-I41l|. 

The thriving young field of levitated optomechanics has then served as a versatile platform to test 

light matter interactions [121-BEJ, probe the limits of force sensing j3"6"l l3"7l SBH5SJ, and test the 

fundamental theories in physics |5BH5S|. Furthermore, due to the advantages given by coupling 

the levitated system to an optical cavity, the regime of room-temperature quantum optomechan­

ics has been investigated IEDHS2], and owing to the recent milestone of quantum ground state 

cooling [63], the exploration of macro-quantum physics [60, 61, 64], with application to quantum 

sensing [65, 66] and non-classical state engineering j6*41 IBTl EBJ has been opened. Moreover, the 

freedom from the mechanical vibration of the environment has pushed levitated optomechanics 

to investigate fundamental theorem of thermodynamics [69-72], nonlinear dynamics [73-94], 

Levitated 
Optomechanics 

Figure 1: Scaling of mechanical quality factor with 
oscillator volume /2j/-
The red area, representing the range at which levitated op­
tomechanical platform are predicted to operate, goes be­
yond the general scaling of optomechanical experiments 
(black line), allowing higher quality factor for smaller res­
onator's volume. Black points represent the state-of-the-
art tethered optomechanics experiments: (a) [39], (b) 
m (?) m 
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and synchronization [95-98]. 

At the core of the most widespread nonlinear stochastic phenomena in biology and chemistry, such 

as protein folding dynamics and chemical kinetics [99-104], lies the dynamics at the saddle node 

bifurcation. Examples include optical bistability in lasers [105-107], firing of neurons [108-11 Kij . 

Brownian ratchets [11"T1-I114l|, nonlinear maps [115], and decays from metastable states [llfiL IllTj. 

The understanding of thermally activated escapes has been widely known since the 1940, when 

Kramers calculated escape rates both in the high and low damping regimes [I118J. Other analyt­

ical techniques have since been developed, leading to a deeper understanding of such problems 

giving indirect information about particle position, or asymptotic approximations for different 

regimes. They can roughly be summarised in (i) first passage times (EH, I106H109LI115LI118H127I], 

(ii) nonlinear relaxation times (an extension of the previous taking multiple passages into ac­

count) [128L 11291]. and (iii) time evolution of P D F in a symmetric inverted parabolic potential 

P3DH136]. These regimes have been experimentally observed for a particle trapped in optical 

tweezers [137]], even in the low pressure regime [8"3I Q38HHI]], where for high mechanical factor 

oscillators the nonlinearity generated by the laser beam, typically exhibiting a soft Duffing term, 

has been observed [4"%l I75l|. 

Many platforms have been exploited to observe underdamped nonlinear equilibrium properties 

and anharmonic oscillations. Amongst them nano- and micro- electromechanical systems have 

shown phase stochastic resonance [96, 98], anomalous phase diffusion [142], and coherent energy 

transfer [82] generated by nonlinear dynamics. Moreover, a high cubic nonlinear response has 

been observed for macroscopic mechanical systems by exploring the anharmonicity in the chem­

ical bonding interactions [8~T]. 

To venture in the realm of nonequilibrium physics, and harness the nonlinear features for applica­

tion ranging from nanosensing to thermodynamical engines, a new approach based on a broader 

class of transient effects in nonlinear stochastic dynamics has been examined [93]. Nonlinearity 

brings the mechanical system out of its thermal equilibrium in a different way than coherent 

driving, hence allowing energy from the fluctuating environment to be used as a primary source 

of coherent mechanical displacement and oscillations [143]. It has been shown that instability 

and nonlinearity are the essential ingredients necessary to convert thermal noise to a directed 

motion, and their dynamics has been characterised by both passage times statistics [I127L11441]. 
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and short time statistics of particle position [143] allowing access to unexplored local dynamics 

P, EZ| that cleared the role of thermal noise in nonlinear stochastic systems. 

This complementary direction, main topic of this thesis, is primarily focused on dynamical noise-

to-signal transitions, in the cubic potential that has been feasibly prepared by two counter-

propagating beams IH7j. where its inherent instabilities were positively employed as a ther­

mally driven source to autonomously transform noise into useful coherent mechanical displace­

ment [11431]. While a feedback control can be used to manipulate the optical potential to achieve 

models beyond the double-well potential, its main disadvantage lies in its idea to use the output 

of the dynamical system (measurement) to influence the interaction with the system itself. This 

operation results in a non autonomous process that hinders the control at the quantum level, as 

unitary quantum dynamics cannot be reached. A different, yet complementary, way of controlling 

the mechanical motion can be achieved by nonlinear transient stochastic effects, achievable by 

the recent progress in fast and accurate preparation, and potential control in levitated systems 

[69, 137, 145, 146], allowing to explore these dynamical noise-to-signal transitions. They are 

direct and conclusive evidences of nonlinearity in the system. In these cases, the measurement 

is used as a verification protocol of the dynamics rather than an active player throughout the 

protocol, and the nonlinearity comes directly as a modification of the optical trapping potential, 

that allows access to quantum control. The choice of the cubic nonlinearity, which features will 

be laid down in details in Chapter [3] of this thesis, is inspired by the highly nonlinear Hamil-

tonians that can implement analog quantum simulations with mechanical objects, essential in 

quantum information protocols [11471-1150]. 

In such way, when levitating optomechanics achieves the quantum level, the effects from stochas­

tic nonlinear dynamics can be compared with unexplored area of quantum highly nonlinear 

effects [1151 HI 56|. Such systems are investigated in parallel in the superconducting circuits [1571-

IT591 



Chapter 1 

Principles of Optical Tweezers and 

Levitation 

In 1970, Arthur Ashkin pioneered the field of optical trapping by demonstrating that optical 

forces could be used to displace, accelerate, and levitate micron-sized dielectric objects both in 

water and air [7J, 160]. What Ashkin et al. (EH, 11 fill] observed was a stable trapping of dielectric 

particles with the gradient force of a strongly focused laser beam. His seminal work led to the 

development of a single beam gradient force optical trap, the optical tweezer. This technique has 

since been widely used to manipulate viruses and bacteria [162J, and subsequently in trapping 

and cooling of atoms [163, 164]. 

A n optical trap consists of a tightly focused laser beam with high numerical aperture (NA). The 

optical forces exerted on a dielectric object are due to transfer of momentum from the scattering 

of the impinging photons. Such forces can be decomposed in two components (i) the gradient 

force pointing towards the region of highest laser intensity, allowing for stable trapping in the 

focus of a laser beam, and (ii) scattering force pointing towards beam propagation thus pushing 

the particle out of the trap. To achieve stable trapping it is imperative to eliminate the scattering 

force, or have the gradient force overcome the scattering |160L1165L1166lj. 

5 
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1.1 Forces i n a n O p t i c a l Tweezer 

The most general ansatz to compute forces of an electromagnetic field on a dielectric object is 

given by Maxwell's equations. By integrating the stress tensor over the surface of the dielectric 

particle one obtains the mechanical force acting on the object P, 11 671] 

where dV is the surface of the object, ft is the unit vector perpendicular to the surface, and 

T is the Maxwell stress tensor containing the incident fields impinging on and scattered off the 

dielectric object. As a consequence of energy and momentum conservation of the incident and 

scattered fields, the forces acting on the dielectric particle arise, requiring to solve the scattering 

problem of the field and the object in order to compute the optical forces. The most general 

solution for a spherical particle illuminated by Gaussian beams is provided by the Lorentz-Mie 

theory as explained in detail by Gousbet and Grehan [168]. The special case of a sub-wavelength 

particle r <C A results in the application of the Rayleigh approximation which provides closed 

formulas to compute the optical forces. 

The dipole (or Rayleigh) approximation describes the particle as a point dipole interacting with 

an electromagnetic field. A dielectric particle illuminated by laser can absorb, scatter, or transmit 

the impinging photons. Consider a particle of radius r, with a refractive index nv being illumi­

nated by a Gaussian beam (TEMQQ) of power P propagating along the z axis. The intensity 

distribution of the Gaussian beam is 

(1.1) 

1.2 D i p o l e A p p r o x i m a t i o n 

I(x,y) = I0e (1.2) 
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with IQ = 2P/TTLO(Z)2 the intensity, cv(z) = + (Z/ZQ)2 the beam radius, and ZQ is the 

Rayleigh length. The optical forces F(r) comprise of two terms 

F(r) = F f l r o d ( r )+F a c a t t ( r ) . (1.3) 

The first term, Fgra(i(r) = ^-V-T(r) is the gradient force, while the second term, F s c a i t (r) = 

^-/(r)V0(r) is the scattering force. The terms a', a" are respectively the real and imaginary 

part of the polarisability a calculated with the Clausius-Mossotti relation [6], 11H7L 11 . The 

phase (f>(r) = k • r shows that the scattering force results from momentum transfer from the 

radiation field to the particle. 

Momentum transfer can occur via absorption {p = h/X) or scattering {p = 2h/\) of photons. 

As a result the scattering net force is along the beam propagation and pushes the particle away 

from the focus thus hindering the trapping. 

Similarly, an impinging photon can be diffracted by the particle, and due to the momentum 

conservation, the particle gets pushed towards the focus of the laser, thus trapping it [170]. 

The mass of the object becomes then pivotal to achieve stable trapping. For smaller particles 

thermal excitations have higher probability to kick the particle out of the trap, while bigger 

particles undergo strong scattering force hence pushing them out of the trap. 

1.3 H a r m o n i c A p p r o x i m a t i o n 

Optically levitated particles are subjected to thermal noise via collisions with the surrounding 

gas molecules. When the particle gets displaced by a collision, the gradient force counteracts the 

momentum transfer by acting in the opposite direction. For small displacement, compared to 

the local intensity maximum, the scattering force can be approximated by 

Fscatt- ^-I0ez + O{z2). (1.4) 



Principles of Optical Tweezers and Levitation 8 

The gradient force can be approximated by the linear Hooke's law 

F9rUr) = j V / ( r ) « ^ Q|ex + ^ . (1.5) 

The optical force along the radial directions (x, y) is conservative and can therefore be written 

as a gradient of the optical potential Fgrad = —Wopt- The resulting equations of motion unfold 

mx + mjx + m£lxx = Fth, (1-6) 

my + 77172/ + rnti^y = Fth, (1.7) 

m'z + 777,72 + mQ2
zz = Fth + Fscatt, (1.8) 

as a thermally driven and damped harmonic oscillator with 77772; a Stokes friction force due to the 

interactions with the surrounding gas particles, Fth a Brownian force noise at room temperature, 

and Fscatt to be an offset introduced by the scattering force, constant for small displacement. 

1.4 N o n l i n e a r P o t e n t i a l 

To obtain a cubic potential in Eq,(|l,6[), another pair of identical counter-propagating Gaussian 

beams, displaced in the x-axis, are added |171lj. Assuming the waists and phases of the beams 

remain the same, the resulting optical intensity becomes [171] 

2 _ 2 i t l f ( x - x 3 1 ) 2 (x-xw)2 1 2 

/ 3 (x ,y ,z) = 4 ^ e -U^hle "I + Vh^e " i }cos(kz)2, (1.9) 
, ,2 

3 I J 

where Xjj denotes the position of the Gaussian beam waist. 

The above can be further simplified by assuming that the particle moves in the vicinity of the 

waist positions y = z = 0 and the beam is wide enough to preserve the width (0*3 = W03) in the 

region of the particle's dynamics. Moreover, £ 3 2 = 0 can be further assumed, leading to |I171| 

h{x,y,z) = ±l^hle "3 +^li2e ^ } . (1.10) 
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From Eq.flOl) and Fgrad(r) ^j-V-T(r) the optical potential V%(x) oc H(x) exhibits a cubic 

profile around the point x = xc |ll7lj 

V3(x)*V°pt(xc) + ^f (x-xc)3 (1.11) 

with the depth of the potential (xc), and the coefficient of cubic nonlinearity being 

function of the beam parameters. This method was employed in |l8"4"l I8"7| to observe the noise-

to-signal transitions discussed in this thesis. 

After having realised a stable trap, one must be able to measure and track the position of the 

particle. The following sections provides a general overview of optical techniques for measure­

ment. 

1.5.1 C C D and Quadrant Detectors 

In (BH, EH], to measure the particle position of a particle evolving in the optical cubic potential, a 

charge coupled device (CCD) was used, which provides a direct method to measure the position 

evolution in an optical trap. 

Its basic structure comprises of a shift register, essentially an array of closely spaced potential 

well capacitors, and a thin layer of silicon dioxide grown on a silicon substrate with a transparent 

electrode (pixel gate) deposited on it [1172). Upon absorption of incident photons, a pair electron-

hole is created through the photoelectric effect. By positively biasing discrete areas of the surface, 

the electrons thereby created are gathered and then counted [172]. 

The number of electrons (photons) per pixel, gives the intensity profile of the field, thus allowing 

to record the particle position directly, without measuring any time variation enabling direct 

particle velocity measurement [11721]. 

When a higher time resolution is needed, for instance in force measurements, a quadrant detector 

(QD) is used [TZ3|. The QD is a position sensitive device which is composed of four identical 

p-n junction photodiodes, separated by very small gaps [11741]. Its main advantage lies in higher 

1.5 O p t i c a l measurement techniques 
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resolutions with lower inherent noise, useful for micro- and nano- meter displacement [117HL11741]. 

Venturing towards the quantum regime, where smaller changes in position need to be detected, 

both the C C D and QD fail to provide the necessary precision, and a different measurement 

technique, based on phase detection, has been developed. 

1.5.2 Homodyne and Heterodyne Detection 

The derivation of this section is inspired by [175, 176]. 

We consider an incident Gaussian beam EQQ with intensity / as per Eq.(|1.2[), polarised along x. 

The dipole induced by the incident field, via p{?dp) = a-Ebo(rdp)> radiates an electric field via 

the dyadic Green's function G(r, r p̂) 

Edipoie(r,rdP) = w 2/i/JoG(r,r 0), (1.12) 

where UJ and HQ are the optical frequency and the vacuum permeability respectively. 

In the paraxial approximation {z ~ /, with / distance from the focus) the far field of the dipole 

becomes a spherical wave 

VdipoUr, rdp) = E d i v o l J ^ ^ o i e ) ^ ( L 1 3 ) 

with amplitude Edipoie and phase 4> dipole position dependent. The scattered light that arrives at 

the detector is then transformed into a plane wave by a lens of focal length /, thus characterised 

by the following amplitude and phase 

E D I P O L E = E0^p^e^J<j (1.14) 
471"/ 

k — 1 
(pdipole — k • TCdipole Zdipolei (I'l^) 

with p and WQ the radial position and beam waist respectively. 

From Eq.(1.15) it can be seen that the particle motion is primarily imprinted into the phase of 

the scattered light and hence a phase sensitive measurement is required. Moreover, the total 

scattered light intensity and signal are rather weak, and require a reference beam field E r e j to 
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interfere with the scattered light to amplify the signal and read out the phase. The intensity 

distribution at the detector then become 

i>) oc \Edipole + Eref\ (1.16) 

= EdiPoie + 2EdipoieEref cos(4>dipoie(r, vdp) + (f>ref) + E^ef, (1.17) 

with (pref being the relative phase between the scattered light and the reference field. 

If the scattered light interferes with the reference beam at the same optical frequency, a homodyne 

measurement can be performed. Assuming that the intensity of the scattered light is weaker 

compared to the intensity of the reference E^ipole <C ^Ve/' a n d that the intensity of the reference 

£>e/ can be eliminated by balanced detection, the first and last term of Eq.(1.16) can be dropped, 

leading to 

2EdipoieEref cos(4>dipoie(r, rdp) + (f>ref). (1-18) 

Moreover, since to first approximation the particle motion is harmonic, i.e. <fidipoie ~ <7ocos(f2o). 
we obtain that the spectrum of the detected signal from Eq.(1.18) consists of harmonics of the 

particle oscillation frequency S\>-

For the homodyne signal of Eq.(1.18) to be linear in particle displacement, a relative phase 

4>ref = —vr/2 is required. 

Oppositely, when the reference beam and the scattering light have different optical frequency, a 

heterodyne measurement can be performed. The detector signal is given by 

EdipoleEref COs(4>dipole(r, Ydp) + (j)ref + Awt), (!-19) 

where Aa; is the difference in the optical frequencies, meaning that the spectrum of the detection 

signal is shifted to Aa; and has sidebands at Aa; ± . 

Typically Aa; <C JTio is chosen to measure both quadratures and extract the phase 4>dipoie + 4>ref-, 

which then has to be high-pass filtered to obtain 4>dipoie. 
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Chapter 2 

Theory of Stochastic Linear Dynamics 

Levitating spherical particles, moving in one-dimensional approximation, can be sufficiently de­

scribed by the following Langevin equation 

where 7 = T/m is the damping coefficient, V{x) is a time independent potential in one spatial 

dimension, Z?UD = ksT^f/m represents the diffusion coefficient in the underdamped regime, 

with ks is the Boltzmann constant and T the effective environment temperature, satisfying the 

fluctuation dissipation theorem [I177L11781], and is the standard Gaussian white Markovian 

noise. Historically, it was representing collisions of fluid molecules with the Brownian particle. 

However, for levitating particles this simplified description is effective as other noises, i.e. photon 

shot noise and recoil, are more relevant in deeply underdamped regime. 

The integral W(t) = J0* ̂ (t')dt' is the standard Wiener process with continuous trajectories. For 

the probability density function p(x,t) = i — e - x 2 / 2 t ^ w e g^ain zero mean (W(t)} = 0 and 

a second moment evolving linear in time (W2(t)} = t |I178). Moreover, the Wiener process has 

independent increments, and the two-time correlation function is given by {W(t)W(t')) = \t' —1\. 

For simplicity we will always assume unitary mass m = 1, unless differently specified, or relevant 

for the discussed effect. 

m 
(2.1) 

13 
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2.1 Free Par t i c l e M o t i o n 

Figure 2.1: Time scales comparison of position variance a2, and nonexistence of 
instantaneous velocity for overdamped dynamics. 
The figure shows the full evolution of position variance (red dots), corroborated by the analytical 
result of Eg.(|2~8|) (red line), for initial condition drawn from a Gaussian distribution with (xo) = 
{xo) = 0, and standard deviations a2

Q = 0, a2
Q = ksT, where ks = 1 has been taken to simplify 

visualisation. For times f < 1/7 the dynamics is dominated only by inertia, resulting in an 
evolution of position variance a2 oc t2 (left panel, black dashed line). Contrarily, for t » I/7, 
the dynamics is diffusive, and the position variance evolves as a2 oc t (right panel, blue dashed 
line). The latter is the result for the overdamped dynamics, which cannot predict the evolution at 
ballistic timescales. For this reason, and because a2 oc t is not root mean squared differentiable, 
the instantaneous velocity for the overdamped dynamics (non inertia approximation) does not 
exist. The linear ballistic effect, a2 oc t2 evolution, was for the first time demonstrated and 
measured, for a particle optically trapped in liquid in a harmonic optical potential [17fJH1Hl\l. 
Environmental temperature T = 1 has been used to generate nt = 10 4 trajectories with a sample 
size N = 5000, and timestep dt = 10~ 4. 

When no potential is confining the particle free motion, such as the case for the short time 

scale of a particle trapped in both a liquid or gas, the dynamics can be described by the following 

Langevin equation 

x = - 7 x + v / 2 Z ) U D £ ( t ) . (2.2) 

For a particle starting at a definite phase point (XQ, VQ), the position difference Ax(t) = x(t) — XQ 
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and velocity x(t) = v(t) dynamics of Eq.(2.2) unfolds [178] 

Ax(t) = ^ (1 - e-^) + f (i _ e-7(*-*')) ^ ) c t f ( 2 .3) 

= £(*) = V o e - ^ + ^ 2 ^ / e-^- ' ' )^* ' )^ ' , (2.4) 
./o 

x(t) = - 7 U O E - T ' - 7 v / 2 Z ? U D / e -^ ' - ' '^^ ' )^ ' + v / 2 A ^ e ( * ) - (2.5) 
./o 

From Eq.(2.3) the mean square displacement ((Ax(t)) ) can be calculated as [178] 

t 
,,2 <(A*(t))2> = M ( i _ e - 7 * ) 2 + ^ /"/•(!_ e-7(*-*'))(i _ e - 7 ( * - * " ) ) ( e ( i ' ) e ( ^ ) ) ^ ^ ; 

^y2 V / ry2 

(2.6) 

= M> (1 - e " * ) 2 + 2 ^ + ^ (-3 + 4e"^ - e" 2^) . (2.7) 

If one considers a Boltzmann distribution of initial velocities, i.e. (VQ) = ksT'/m, and substitutes 
the value of Z?UD = kBTj/m, the resulting mean square displacement of E q ^ ^ ) becomes 

pusmsn 

<(A*(t))2> = ^ + ^f- (e~^ - 1) , (2.8) 

known as the Ornstein-Fiirth formula [178]. 
For long times i > I/7 the first term of Eq.(|2.8[) is the relevant one, resulting in a mean square 

displacement ((Ax(t))2} = 2KBTt/mr) (diffusive) (Fig,2.1 blue line), result of Langevin and 

Einstein [178], that is not root mean square differentiable at t = 0. This means that in the 

non-intertial approximation the velocity v(t) = x(t) does not exist, but rather only v = Ax/At 

does. Contrarily, for the short time dynamics f < I/7 the exponential can be expanded in series, 

revealing the term ((Ax(t))2) = 2KBTt2/m to be relevant in Eq.(2.8). Note that the ballistic 

Brownian motion is independent of 7 , and the 1/m dependency suggests that massive objects 

make for harder observation of the ballistic regime. The latter, result of the ballistic dynamics as 

observed in Figj2.1| (black line), is root mean square differentiable at t = 0, thus demonstrating 

the existence of velocity when inertia is taken into consideration. 

Another way to obtain the result of Eq.(2.8) is by means of the velocity autocorrelation function 
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((Ax(t))2) = 2 f*(t - u)(v(0)v(u))du, where the correlation (v(ti)v(t2)) = /csTe - 7 1 ' 1 - ' 2 1 /m can 

be calculated from Eq.(|2.4[) [178]. Simultaneously the variances for velocity x and acceleration 

x approach [178] 

((Ax(t))2) = < e - ^ + k-^(l-e-^), (2.9) 
m 

<(A*(t))2> = 7 2 < e - 2 ^ + ^ (1 - e " 2 * ) + ^ 2 . (2.10) 

If one considers a Boltzmann distribution of initial velocities, i.e. (v 2) = hsT/m, both variance of 

velocity and acceleration remain constant to ((Ax(t)) 2) = kBT/m, and ((Ax(t)) 2) = kBT^(2 + 

j)/m respectively. For the above reason, in the free particle motion there is no distinction 

between ballistics and diffusive regime for velocity and acceleration. 

2.2 Par t i c l e i n Q u a d r a t i c Potent ia l 

When the parabolic potential V(x) = /car/2 is used as a trap for a particle, Eq.(2.1) describes the 

damped motion of a Brownian particle subjected to the action of a linear restoring force [178]: 

x = -7£ - ulx + v /2 J D U D e( i ) , (2.11) 

where UJQ = \Jkjm is the natural frequency of the oscillator. For low friction, namely CJQ > 7/2, 

the system described by Eq.(2.11) can exhibit oscillating solution in (x(t)} with exponentially 

damped amplitude [178]. By gradually increasing the damping in the system, the oscillation's 

period and frequency starts to be affected, as damping opposes by slowing periodic motion. 

Transiting in the large friction limit, namely COQ < 7/2, the oscillations cease to exist and the 

system relaxes to equilibrium. The special case of critically damped motion, is defined by the 

condition (u>o = 7/2) for which the damping of the oscillation results in a fast return to equilib­

rium positions, overshooting it only once [178]. 

file:///Jkjm
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2.2.1 Low Friction Limit 

For u>o > 7/2, solutions of Eq.(2.11) describe an oscillatory motion for stochastic displacement. 

x(t), instantaneous stochastic velocity x(t), and instantaneous stochastic acceleration x(t) [1781 

182],which ensemble averages evolve as 

(x(t)) 

<*(*)) 

(x(t)) 

e 2 

_ 2 * 

e 2 
_ 2 * 

-e 2 

(xQ) cos(cvdt) + SHO sin(cvdt) 

(x0) cos(ujdt) - S'HO sin(udt) 

CHo cos(udt) + SHO sin(w di) 

(2.12) 

(2.13) 

(2.14) 

where 2ujd = \f\^2 — 4CJQ | is the damped angular frequency. Note how the central frequency of 

oscillation is modified by the damping 7 . For clarity we used 

SHO 
2(x0)+^(x0) 

wd 

S'F HO 
7 (2 (x 0 ) + (x 0 ) 7 ) + (x0)ujj 

2ujd 

CHO = 7(4(xo) + (xo)l) + (xo)ud 

ÖHO 
7 2 ( 2 ( i 0 ) + ( x 0 ) 7 ) + (-2<i 0) + {xohH 

2ivd 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The moments of Eqs.(2.12)-(|2.14) can be rewritten to better visualise oscillation amplitude A 

e 72 J(XQ)2 + 4(xo) 2 /^ and phase shift 4> in the following form 

(x(t))Ho = A{t) cos(ujdt + 0), arctan 
SHO 

(XQ) ' 

HO 
A{t)xH2+oj2 

cos(uidt + 4>') 

(x(t))Ho = Ait)^2 + u2
d) cos(ujdt + 0"), 

p = arctan ~ , 
(xo) 
S" 

f>" = arctan H O . 
CHO 

(2.19) 

(2.20) 

(2.21) 

The maximum amplitude of the oscillations are therefore given by x max,t=0 A., x 1 Xmax,t=0 

A J j2 +UJJ/2, and x n,ax,t=0 = M l 2 +Ud). 

In the short time regime, the mean position of Eq.2.19 evolves linearly in time (x(t)} ~ (x 0) + 

(4(XQ) + l(xo))t/2. Note how its evolution does not depend on ojd. Similarly, the mean velocity 
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of Eq.2.20, (x) « (x0) - (3 (x 0 )7 + ( x 0 ) ( 7 2 + u2
d))t/2, and mean acceleration of Eq.2.21, (x) « 

— 7 ( ^ 0 ) — ( x o ) ( 7 2 + <̂ J) + ((^o)(7 2 + W J ) + 7 ( x o ) ( 7 2 evolve linearly in time with the slope 

determined by the initial conditions (xo), (xo) and the damped angular frequency uid. 

To witness the oscillations from the dynamics of a damped particle in a quadratic potential, it 

is sufficient to let the particle swing from nonzero initial position, or to give it a nonzero initial 

velocity. 

To externally induce a sustainable coherent shift of the particles initially sitting at the potential 

minimum, (XQ) = (XQ) = 0, a constant driving force is required to drive the system out of its 

equilibrium, resulting in a non-autonomous oscillatory motion. Such process can be described 

by the Langevin equation of the form 

x = - 7 * - LO2X + F06(t) + y/2DUD£(t), (2.22) 

where FQ9{€) describes a step-function driving force of strength FQ that pushes the system out 

of its equilibrium. The solutions to Eq.(2.22) are oscillating trajectories with expected values 

[rive ) 1 
FQ 7̂  

A(x(t)) = —2 - 4FoAdrivee~^ cos (udt + 

"ft 0 0 

A (£(£)) = e~^2FoAdriveuj0ujdsm(ujdt), 

A(x(t)} = e~~?F0A2
driveulud(-i2 + o>J) cos(o>dt 

(f>drive = arctan f — ) , 

•A-drive — ^ ; 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

where A(...) = (...) — (...)HO, with {...)HO being the moments of the damped harmonic oscillator 

from Eqs.(2.19)-(2.21). Notice that the quantities in Eqs.(2.23)-(2.25) are independent of the 

initial conditions (XQ), (XQ), and they display only the dynamics generated by the driving force 

F09(t). 

In the short time regime, the mean position A(x(t)} ~ — Fo'yt/2L02
I from Eq.(2.23), evolves linearly 

in time, decreasing with a slope proportional to the driving force FQ and the natural frequency 

of the oscillator COQ, oppositely to the short time dynamics of Eq.(2.19). Simultaneously, the 
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Figure 2.2: Comparison of SNR of particle position (black), velocity (blue) and accel­
eration (red) between the damped (left) and driven (right) oscillator, which dynamics 
is described by i?qs.(|2.ir|),(|2.22[) respectively. 
On the left panel, the evolution of the SNR is displayed as a function of initial particle position 
\{xo)\, with (xo) = 0, and initial standard deviations a2

Q = 1, and cr|o = T/k. 
The main effect of the dynamics is visible in velocity (blue) with a fastly increasing SNR^ com­
pared to that of position (black) and acceleration (red). 
On the right panel, the evolution of the SNR as a function of driving strength FQ for initial con­
ditions drawn from a Gaussian distribution with (xo) = (xo) = 0, and a2

0 = 1, cr?Q = T/k. 
The S N R Z of position (black), quantity that is primarily driven by F(t) = F^Oit), increases much 
faster than its not driven counterpart (left), whereas the remaining quantities, i.e. velocity (blue) 
and acceleration (red), display the same SNR evolution. 
A quality factor Q = u>o/7 of Q = 10 has been used, indicating that the dynamics is in the low 
friction regime. The environmental temperature T = 1, together with a time step of dt = 1 0 - 5 

have been used to generate nt = 10 4 trajectories with a sample size of N = 5000 evolving for 
t = 5. 

mean velocity A{x(t)) « — FQ^/2LOQ + -Fo,f(7, u;d)t increases linearly in time, with a negative 

value —FO7/2O;Q at t = 0, contrastingly to that of Eq.(|2.20). Lastly, the mean acceleration 

A(x(t)) « ^ 0 / ( 7 , 0 ; ^ ) + f("f,ujd)t Eq.fl2.25), increases linearly in time, with an initial value at 

t = 0 much larger FQ(3J2 + 4LO(I)/4:U}Q. Amongst the three quantities, the velocity increases faster 

than the remaining two. 

As the result is involving, for clarity we used f(j,u)d) indicating a general function of damping 

7 and damped angular frequency uid- Regardless of the driving, the noise term in position 

x^(t) = ^/2DujjW(t), arising from E q ^ ^ ) is the important term to be computed to further 

http://Eq.fl2.25
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understand the role of the noise in the dynamics [182] 

4(t) 
2DUD -i(t-t'-t") s[n(Ud(t - t')) sm(ud(t - t"))£(t')£(t")dt'dt", (2.28) 

from which the mean square displacement can be calculated as 

{{Ax^f 
D UD 

7^o 
+ e -27* DUD 7 cos(2a;rft) • sin(2a;rft) — U)Q (2.29) 

The saturating second moment converges faster as the trap stiffness k = ui2 increases, leading 

to a stationary value (Ax(t))2} = DUD/^OJ2) mass-independent (the mass only determines the 

relaxation time [182]). 

In the short time limit, the variance of position generated by the noise Eq.(2.29), decreases in 

time, ((Ax^(t))2) « Durj{f{r),ojd) — 7 / ( 7 , Wd)t — f('y,ujd)t2). Thus, the variance of position, at 

vanishing a2
0, for the damped and driven oscillator increases quadratically in time. The same 

scaling was introduced in Eq.(2.8) for a free particle motion. Differently than the aforementioned, 

the ballistic Brownian motion for a particle trapped in an optical quadratic potential depends 

on the damping 7 and the damped angular frequency ud. 

Note that as the dynamics is linear, the variance of position for the damped and driven oscillator 

is the same, as it does not depend on driving force FQ. 

Similarly the mean square velocity deviation ((Axg(i)) 2) evolves as [1182| 

<(A^(t)) s 
DUD -2^F>UD 

7 1<4 
l^d . , „ ., 7 • 2 / 0 »\ 2 
— sm(2ujdt) - — sin (2ujdt) - ujd 

(2.30) 

which value at the stationary state is given by ((Ax(t))2) = DUD/I, independent of the potential 

stiffness k. 

In the short time dynamics, the variance of velocity Eq.p^0|) evolves as {{Ax^t))2) » DUD(2jt-

77 2t 2/2). As a result, the variance of velocity {(Ax(t))2) « DUD(4 - 67* + (77 2 - 8uid)t2/2) 

increases quadratically in time, contrarily to the free motion of Eq.fl2.9[) which remains constant 

at kBT. 
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Lastly, the mean square acceleration ((Ax^(t)) 2) evolves as 

<(A* c(t))2> = DUD 1 
2 + I+ 7 e-,.pM±^ + J _ . 4 _ ^ B 

2ojz
d 2uod 7 

A = (cos(2uodt) - 7 3 sin(2a;di)), 

B = (sin(2a;dt) - 7 2 sin(2a;di)). 

(2.31) 

(2.32) 

(2.33) 

In the limit of t —>• oo the variance of acceleration converges to ((Ax(t))^ fcBr(27 + 

7 ojQj/rn. Notice how its stationary value depends on the damping 7 , and in the limit of strong 

damping, the variance of acceleration reaches large values, while its mean vanishes. In the short 

time evolution, the variance of acceleration increases linearly in time, approaching ((Ax(t)) 2) ~ 

kBT(f(1,uo) + f(7,u0)t)/m. 

A good quantifier of the quality of the oscillator undergoing noise disturbance is the SNR, defined 

as the ratio between the coherent and incoherent (noise) part of the quantities S N R Z = \ {x)\/ax-

and S N R i = \{x)\/a± [11831]. A comparison of the SNR between the damped (left) and driven 

(right) oscillator, as shown in Fig.2.2, exhibits a comparable evolution of the SNR of velocity 

(blue) and acceleration (red), while the position SNR (black) increases much faster in the driven 

oscillator (right) becoming comparable with the evolution of the velocity SNR. 

2.2.2 High Friction Approximation 

The regime of strong damping, i.e. when OJQ < 7/2 is satisfied, comprises of two main timescales 

of interest. For ballistic short time scales, i.e. t <^ (^B = k/j), the dynamics is only dominated 

by inertia where the particle is discretely kicked, even without any external forces, for instance 

by the surrounding fluid molecules, exhibiting a variance evolution cr2\t->o oc t2 |1781] as shown 

in FigJ2.1| for the free particle evolution. 

For longer times scales, t 3> ts, the overdamped diffusive motion appears, displaying a linear 

increase of variance in time, c r 2 oc t [11781]. For times larger than THT = j/k the harmonic potential 

sets in and confines the particle diffusion [178). The strong damping regime of Eq.(2.1l|) can be 
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o ° o ° «P 

a o ° 
o o o ° ° 

Figure 2.3: Comparison of SNR of particle position (black) and average velocity v 
(blue) between the damped (left) and driven (right) oscillator in the high friction 
limit, which dynamics is described by i?qs.(|2.1l|),(|2.22[) respectively. 
The lines represent the analytical results obtained from the overdamped approximation of that 
limit using Eqs.(2.34),(2.37). 
On the left panel, the evolution of the SNR is displayed as a function of initial particle position 
\{XQ)\, with (xo) = 0, and initial standard deviations a2

Q = 1, and cr|o = T/k. 
The main effect of the dynamics is visible in position (black) with a fastly increasing SNR^ 
compared to that of average velocity (blue). 
On the right panel, the evolution of the SNR as a function of driving strength FQ for initial 
conditions drawn from a Gaussian distribution with (XQ) = (XQ) 0. and aXQ ha T/k. 
The S N R Z of position (black), is still more pronounced than the average velocity (blue) but, when 
compared to the damped oscillator (left), its position S N R Z is slower, while the average velocity 
S N R Z remains the same (blue). 
A quality factor Q = u>o/7 of Q = 0.1 has been used, indicating that the dynamics is in the high 
friction regime. The environmental temperature T = 1, together with a time step of dt = 1 0 - 5 

have been used to generate nt = 10 4 trajectories with a sample size of N = 5000 evolving for 
t = 5. 

approximated by the following overdamped equation of motion 

h 
x = —x + V2D^(t), (2.34) 

7 

where 7 , k are respectively the friction constant, and the potential stiffness, whereas D = ksT/'j 

denotes the diffusion coefficient. For the optically trapped particles, in the over-damped approx­

imation, only the mean velocity (v) = (Ax/At) = —(k/j){x) survives. The resulting dynamics 
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of the over-damped motion is described by an exponentially vanishing mean displacement and 

saturating second moment 

—-t 
(x(t)) = (x0)e i 

°x = o-xoe 7 + _ ( i _ e 7 ) 

For the driven system, the overdamped equation of motion reads 

± = --x + —6(t) + V2D£(t). 
7 7 

(2.35) 

(2.36) 

(2.37) 

Its solution comprises of a saturating first (x)st = F$/k, and second a x s t = ksT/k moment 

evolving as follows 

£>7 

e T 

2 2 -2*t (1 
-2*U 

(2.38) 

(2.39) 

For the long time evolution, the mean position (x(t)) of Eqs.(2.35),(2.19) vanish, while the mean 

position of Eqs.(|2.38"),(2.23[) converge to Fo/k. In the short time, the mean position of Eq.(2.35) 

evolves as (x(t)) ~ (XQ)(1 — kt'j). Notice how in the overdamped regime, the short time dynamics 

exhibits a clear dependence on the potential stiffness k, whereas the full solution of Eq.(2.19) 

does not. 

The mean position of Eq.(2.38), in the short time dynamics, increases linearly in time (x(t)) ~ 

(xo) + (FQ — (xo)k/j)t. When compared to the short time evolution of Eq.(2.23), one notices 

how the latter decreases linearly in time, as opposed to the former. Moreover, the former does 

not depend on the potential stiffness k. 

Simultaneously, the second moments equilibrate to T/k. In the short time, the variances of 

Eqs.(2.36),(2.39) evolve linearly in time o~x ~ 2TY/7, as opposed to the ballistic regime of the 

previous section. 

A comparison of the SNR between the strongly damped oscillator (left) and the driven (right), 

shown in FigJ2.3|, exhibits a negative effect of the driving force in the strong damping regime, 
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ultimately producing a slower SNR for position (black). The average velocity v is not modified by 

the driving force, similar to how the instantaneous velocity and acceleration were not influenced 

in the low friction limit Figj2.2|, 

2.3 Inverted Quadra t i c Potent ia l 

2.3.1 High Friction Approximation 

The dynamics of a particle in an in­

verted quadratic potential, appear­

ing for instance at the centre of a 

symmetrical optical double well po­

tential, is the simplest theoretical 

model to introduce instability. Being 

a linear model it allows for full an­

alytical control while exploring the 

role of instabilities, i.e. low noise lin­

ear amplification [184], 1185j. 

Such dynamics can be described by 

the following time-invariant dynam­

ical system 

1 X 

k 

1 
-x, 

Figure 2.4: Sketch of the vector field of Eg. fl2~40|). 
The figure shows the unstable point at xe = 0 (open cir­
cle), with the flow (arrows) diverging from it. The further 
away trajectories are from the the fixed point, the larger 

(2.40) the flow is, indicating exponentially diverging trajectories 
as described by Eq.^lAl). 

characterised by a fixed point at xe = 0. The sketch of the vector field (see Fig.2.4) exhibits the 

flow (arrows) diverging from the unstable fixed point (open circle), growing larger the further 

away they are from it. This indicates that trajectories x(t) are prone to divergence. 

The solution of Eq.(2.40J) displays exponentially diverging trajectories 

-t 
x(t) = xoe~t . 

(2.41) 
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If instead of sharp initial conditions we use a normal random variable with distribution centered 

at (XQ) = xe, with non-zero variance c r 2
0 , we can see if and how a change in the uncertainty of 

the initial state realises dynamics of the signal (x). 

A glimpse to this can be observed in the illustration of Figj2.5|, where trajectories with initial 

conditions drawn from a Gaussian distribution are displayed, showing how an increase in the 

uncertainty of the initial state does not modify the dynamics of mean position, but only increases 

its variance. 

The computation of the moments of position for a particle evolving in the inverted quadratic 

potential demonstrate that no dynamics is induced by the change of the uncertainty of the initial 

state c r 2
0 

(x(t)) = (x0)e^, (2.42) 

o-l(t) = ol/-^. (2.43) 

Its SNR = (xo)/aXQ does not change in time, as it only depends on the initial conditions. 

When noise is included, the dynamics of Eq.(2.40) can be described by the following 

x = -x + y/2D£(t). (2.44) 
7 

The above Brownian motion has a formal solution 

x(t) = xoe^ + VWe^ J e £(t')dt', (2.45) 
o 

leading to an exponentially growing first and second moment 

(x(t)) = (x0)e^, (2.46) 

2/jA 2 2-t . - ^ 7 J.-i -i , 0 , - \ 

Vxit) = °x0
e 7 + -y e T - 1 . (2.47) 

2 * t 

While it can be seen that noise does not modify the statistics of the first moment (x(t)), it 

does so for the variance of Eq.(|2.47|), ultimately leading to a decreasing SNR with increasing D. 

saturating at (XQ) {^fThffk + a%0) 1 . In the short time dynamics, the mean position evolves as 
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Figure 2.5: The uncertainty of the initial state in the unstable inverted quadratic 
potential in the deterministic dynamics. 
It shows the exponentially diverging trajectories, as demonstrated in Eg.(\2.41). The symmetrical 
shape of the potential, unbounded on both sides, results in no displacement of mean position (x(t)) 
induced by uncertainty of the initial state a2

Q, as showed in Eg. Q2.42). 

{x(t)) « (xo)(l + kt/j, where the potential stiffness k leads to faster diverging trajectories for 

larger values. Simultaneously, the second moment increases linearly in time a2. ~ a2
0 + (2T/7 + 

2ka2.0/7), leading to a decreasing SNR from its initial value at t = 0 of \(xo)\/axo. 

file:///2.41
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2.3.2 Low Friction Limit 

In the limit of low friction, the equation of motion can be described by 

x = — 72 s/2DUD£(t), (2.48) 

which deterministic solutions are exponentially diverging position x, velocity x and acceleration 

x(t) = ar+ + & r _ , 

i ( t ) = 0 ( ^ r + - ^ r -

x(t) = a ( - 7 + ^ ) 2 r + + 6 ( 7 + ^ ) 2 r - , . 

f o / 1 + J L \ + f o 
2 V 2wW w d 

•£0 

2 
1 7 \ ^0 

2 u W a;d 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

where = e( _ 7 ± a ; d )*/ 2 describes the amplification gain r + , and attenuation loss T~ . For initial 

conditions drawn from a Gaussian distribution centered at (XQ), (XQ) with non-zero variances 

&2
0,a2

0 the correspondent first moments evolve as 

<*(*)> = <a>r++ <&>r-

( 6 ) ( 7 + " r f ) r - , 

(x(t)) = ( a ) ( " 7 + a J d ) 2 r + + ( 6 > ^ ± ^ 2 r -

(o) 

<6> 

(XQ) 
2 

fco) 

1 + J7_ 
+ 

1 - ^ 

fco) 

fco)  
Ud 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

In the short time dynamics, where r + , r are comparable, the mean position of Eq.(2.54), 

evolves quadratically in time (x(t)) « (XQ) + (xo)t + (—4(XQ)7 + fco)(—72 + u;J))t2. Contrast­

ingly, velocity and acceleration Eqs.Q2.55),(|2.56), display a linear time-evolution, respectively 

(x{t)) » (£ 0 ) + (-4(x 0>7 + fco)("72 + w 2))t, and (x(t)) » (-4(x 0>7 + fco)("72 + + 
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((xo)(372 + ^ ) - ( x 0 ) 7 ( - 7 2 + a;J))t. 

Comparing the short time evolution above with that of the overdamped approximation of Eq.(2.46). 

one notices that the former exhibits a dependency on the geometry of the potential at the second 

order in time. 

In the long time evolution, T+ 3> T~, and the dynamics of Eqs.(2.54)-(|2.56[) can be further 

simplified by dropping the negative exponential T~. Furthermore, the term ( (±7 + uod)/2)n can 

be approximated to « u/J-

Simultaneously the variances approach 

<r2(t) = Var[a]r+ 2 + Var[6]r- 2 - e- 7 <Var[2a6] + ( (Ax c ( t ) ) 2 

Var[o] 

Var[6] 

Var[2a6] 

(2.59) 

a2(t) = Var[a] ( 7 + a ^ r + 2 - Var[6] ( 7 + ^ T ~ 2 - 7 e- 7 < Var[2a6] + ((Ax^t))2), (2.60) 

of (t) = Var[a ( " 7 + a ; r f ) 2 r + 2
 + V a r [ 6 ] ^ ± ^ • r " 2 + 7 2e- 7 'Var[2a6] + ( (Ax c ( t ) ) 2 ) , 

a. £0 
4 

27 Y 
1 + — + 

(7 
4 1 

27 
+ 1 

UJd ^ d 

4 < + < ( 7 2 + ^ : 
2uj 

o 
+ 

+ 
(7 
Co' 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

The noise terms ((Ax^t))2}, ( (Ax ? ( t ) ) 2 ) , and ((Ax ? ( t ) ) 2 ) are obtained from Eqs.(|2~29|)-(|2~3ll) 

with hyperbolic sine and cosine functions [186]. 

In the short time evolution, the variances of position and velocity increase quadratically in time, 

respectively o 2 « Tt2 and a2 « T + (—972 + wJ)T£ 2/4 (for vanishing o 2
0 ) . In the overdamped 

regime, the short time dynamics produces a linear time evolution of Eq.(|2.47j). 

The variance of acceleration, contrarily, exhibits an initial decrease linear in time, followed by a 

quadratic increase in time of « 7
2 T - (47 2 + uj)^Tt/2 + ( I 7 7 4 + 14 7

2u;J + o;J)Tt2/16. 

The SNR for position, velocity and acceleration initially increase from \{xo)\/o~xo and subse­

quently saturates to asymptotic SNR^^oo (2(x0> + <so)(7 + ud))/^o2

o + o 2
0 ( 7 + ojdy. A 

comparison of SNR, see Fig.2.6, exhibits for the low friction regime (left panel) a larger SNR 

for all quantities compared to that of the damped oscillator of Figj2.2| (left panel), where the 
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Figure 2.6: SNR as a function of initial position \(XQ)\ in the inverted quadratic 
potential. 
Left panel: evolution of SNR in the low friction limit, as per Eq.(2A8) with a quality factor 
Q = W0/7 of Q = 10, for particle position (black), instantaneous velocity (blue) and acceleration 
(red). The main effect is not anymore primarily on velocity (as in Fig\2.4 left panel), but position 
and acceleration SNRs are enhanced by the instability of the inverted quadratic potential. 
Right panel: evolution of SNR in the high friction limit, as per Eq.(2A8) with a quality factor 
Q = W0/7 of Q = 0.1, for particle position (black), and average velocity v (blue). The instability 
of the inverted quadratic potential enhanced the motion of position, leading to a larger SNR than 
that of Figtfni 
The environmental temperature T = 1, together with a time step of dt = 10~5 have been used to 
generate nt = 10 4 trajectories with a sample size of N = 5000 evolving for t = 5. The initial 
conditions were drawn from a Gaussian distribution with a2. = 1, o\ = ksT, and (XQ) = 0. 

position S N R Z (black) and acceleration SNR^ (red) signal to noise ratios are less pronounced. 

Similarly, for the high friction limit (right panel), the position SNR (black) increases faster for 

larger displacement \(XQ)\ than that of Figj2.3| (left panel). 

2.4 Conclusions 

Throughout this chapter, the quadratic optical potential has been considered, and its dynamics 

in the low and high friction regime has been unveiled. 

The free particle motion showed, through FigJ2.1|, the difference between the ballistic timescale 

(t <C 7) in which variance of position evolves a2 oct2, and the diffusive(t 3> 7) in which a2 oc t. 

For the reason above, the non-inertia approximation (overdamped regime), which lacks of the 
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term a2 oc t2 at short time scale, does not have instantaneous velocity x and acceleration x, but 

only the average quantities (v) and (a) survive. 

Once the trap geometry has been taken into consideration, specifically V(x) oc x2, the focus 

shifted onto realising the regime under which the SNR could increase, comparing the damped 

harmonic potential Eq.(2.11) with the driven system Eq.(2.22). Both high and low friction 

regimes were discussed, exhibiting a primary effect on instantaneous velocity (faster SNR) for 

the low friction regime, which is then realised also in position for the driven oscillator FigJ2.2[ 

In the strong damping regime, the main effect is displayed by mean position ( x ) (larger SNR), 

not ameliorated by the driving Figj2.3| (black). Although instantaneous velocity x disappears in 

the regime of strong damping, the mean average velocity (v) (blue) still exhibits a shift induced 

by initial position (left) and by driving force strength FQ (right), although less pronounced. 

Lastly, the dynamics in the inverted quadratic potential has been introduced and discussed with 

the focus on the role of instability, which generates exponentially diverging dynamics FigJ2.4[ 

The instability, together with the symmetry of the potential (being unbound from both sides), 

proved to be pivotal in the increase of the particle's standard deviation for increased uncertainty 

of the initial state, without creating mean displacement, FigJ2.5[ 

To quantify the dynamics the SNR has been employed, showing the role of the instability which 

enhanced the dynamics of both position (x) and acceleration (x) in the low friction regime 

(Figj2l| left panel). 

Still, the unstable dynamics of the inverted quadratic potential amplifying the position or speed 

is linear, and hence noise-induced displacement phenomena are not possible The natural question 

arises as to what new noise-induced effects can come from the unstable nonlinear potentials, and 

whether the performances of the noise-driven oscillator can be reached. A paradigmatic example 

is when the particle is initially placed at equilibrium in a quadratic potential without any external 

drive, and the potential is suddenly swapped to a cubic profile without any linear or quadratic 

terms. The particle becomes out-of-equilibrium at initial moment, similarly as the external force 

or inverted quadratic potential, but now the dynamics is highly nonlinear. 

In the next chapter such questions are explored, by means of noise-driven features typical of 

nonlinear systems. 



Chapter 3 

Theory of Stochastic Dynamics in 

Cubic Potential 

3.1 O v e r d a m p e d Regime 

3.1.1 Stability and Divergence 

Nonlinear stochastic dynamics is qualitatively different with new opportunities. 

To begin, let us consider a nonlinear time-invariant dynamical system, such as 

x = —KX2, (3-1) 

where K = is the normalised cubic potential stiffness. Without solving the equation of 

motion, one can retrieve information about the dynamics of the system by looking for stability 

of fixed points [187]. To do so, it is required to look at the vanishing conditions of the right 

hand side of the equation of motion, which for Eq.(3.1) results in an fixed point at xe = 0. Its 

properties are assessed by investigating the behavior introduced by a small perturbation e in 

the initial conditions around the fixed point xe = 0 to the dynamics. When the perturbation 

keeps the system close to the fixed point \x(i) — xe\ < e, Vt > 0, it can be labelled as a stable 

point [I187J. condition that is met only for positive positions in Eq.(3.1). Contrarily, for negative 

x(t), the dynamics is quickly met by divergent trajectories, labelling the fixed point as unstable 

31 
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from the left. This difference in stability is illustrated in Fig.3.1 by the half full (black)/ half 

empty (white) circle at xe = 0. 

Despite the unidirectional flow to the left, there exist trajectories which survive the strong diver­

gence of the cubic potential. To further characterise this peculiar stability, a convergence condi­

tion i.e., l im \x(t) Xg I — Xg CcLIl be investigated showing that a deterministic trajectory of a par-
t—>oo 

ticle in cubic potential, starting from the right of the fixed point xe = 0, asymptotically converges 

to the fixed point xe 

A complementary method, not al­

ways feasible in nonlinear systems, 

that leads to the same conclusion 

drawn in FigJ3.1| requires the ana­

lytical solution of the equation of 

0 therefore avoiding the divergence. 

X 

motion, which for Eq.(3.1) leads to 

[143] Unstable 

x(t) XQ 

1 + KX0(t - t0) ' 
(3.2) 

For positive initial conditions XQ. 

E q ^ ^ ) is asymptotically stable, 

converging to xe for longer time, as 

lim x(t)\xo>o = xe, while for nega-

1 X 

t—¥CO 
tive XQ, l im x(t)\Xo<0 

t—too 

Figure 3.1: Sketch of the vector field of Eq.Q3.1[). 
Used as an investigative tool of the stability of the fixed 
point xe = 0, it shows how the dynamics is dominated by 
the fixed point, visible from the flow on a line illustrated by 

oo it di- the arrows. The half white half black circle indicates that 
the fixed point is of the half-stable kind, allowing asymptot-

6 ' ically stable solution on the x > 0 region, while diverging 
A new information that arises from 0 7 1 the x < 0 one, rendering the point xe = 0", unstable, 

and xe = 0 + stable. 

Eq.(3.2) is the time scale at which 

the divergence appears. In fact, a characteristic time Td = l/(«|a;(to)|)j limiting the determinis­

tic dynamics of a particle in cubic potential, exists [I143IJ. In other words, the dynamics can run 

only for time shorter than Td [143], 11S7I]. 

Imagine now that the initial condition to Eq.(3.1) is a normal random variable with distribution 

centered at (x(to)) = xe, with non-zero variance aXQ, hence x(to) can be positive or negative. As 
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Figure 3.2: The uncertainty of the initial state in the unstable cubic potential. 
It defines, in the deterministic dynamics, the important role of the instability, showing first 
hand the non-linear effect of the noise-induced displacement, due to the symmetrical shape of the 
potential being bounded on one side (purple region) and unbounded on the other (orange region). 
The effect is further described in -Eg.d3.2D, and subsequently in Eg.(3.11). 

illustrated in Figj3.2|, the uncertainty of the initial state enhances the role of the instability, in­

troducing the noise-induced displacement effect (discussed thoroughly in Sec.3.1.2), and showing 

the fragile evolution against the instability resulting in fast divergence, requiring a short time 

approach to discuss its features. The divergence encountered in the cubic potential is so strong 

that, if any trajectory approaches it, the whole ensemble is influenced by it [1144lj. A better point 

file:///bllli'
http://-Eg.d3.2D
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of view for the above statement can be viewed by accessing the P D F , solving the Fokker-Planck 

equation complementary to Eq.(3.1) 

dtP(x,t) =Kdx[x2P(x,t)}, (3.3) 

which solution is [143] 

1 — KX (t — tQ ) 
-<*(*o)>l2 

P(x,t) = . (3.4) 
^aJ0{l-Kx{t-t0)Y 

The above P D F develops heavy tails as time increases, due to the divergent trajectories dragging 

the mean of particle position to infinity [143]. 

Ideally the P D F presented in Eq.(3.4) is only valid for times shorter than the divergence time 

Td, after which no moments of particle position can be defined P , 1144j. 

More precisely, to keep the divergence probability P^ = 1 — J^°° %(! + nxt)P(x, t)dx sufficiently 

small, the maximal time interval can be bounded by TXZ ~ l/(naXo) [T43]. Introducing the noise 

term into Eq^SJ) , i.e., 

x =-KX2+ V2D£(t), (3.5) 

changes the stability of the system. The noise acts as a forcing term, tilting the cubic potential 

depending on the sign of £(t). In other words, the Langevin noise introduces bifurcations in the 

saddle node [187]. Rewriting E q ^ ^ ) a s i = — x2 + r, where r = V2D^(t) denotes the Langevin 

force, shows how the sign of r can create or annihilate the fixed point xe = 0. When r < 0, the 

inverted parabola shown in Figj3.3| (bottom right) moves down, eliminating the fixed point and 

rendering the whole dynamics unstable. When r > 0, the inverted parabola of Figj3.3| (bottom 

left) moves up splitting the fixed point into two; a stable one (black circle) for positive positions, 

and an unstable one (white circle) for negative ones. 

3.1.2 Noise-Induced Displacement 

Operating at short time scales, t — to < the evolution of moments of the stochastic particle 

position can be calculated directly by numerical integration of the P D F in Eq.(3.4) by (x 

xnP(x, t)dx. Neglecting the diffusion, the short time evolution of moments of particle 
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r = 0 

r > 0 r < 0 

Figure 3.3: Sketch of the vector field for Eq.(\3.5\), illustrating the bifurcation induced 
by the Langevin noise. 
For negative values of the Langevin force, r < 0 (right panel) the dynamics shows divergent 
inclinations Vx as the downward movement of the inverted parabola annihilates the fixed point. 
Simultaneously, for r > 0 (left panel) the inverted parabola moves upwards, creating new fixed 
points preserving instability (white circle) for negative positions, and generating a stable point 
(black circle) for positive positions, revealing non trivial dynamics around the plateau area, thor­
oughly discussed in Sect. 3.1.4 

position can be approximated by expanding Eq.(3.4) in time, obtaining [143] 

(x(t)) 

0~:r 

(x0) - n(t -tQ)(aln + (x0)2) 

°~L -4/t( t - fo)(a ;o)f fL 

(3.6) 

(3.7) 

From E q ^ ^ ) it can be noticed that, even at (xo) = 0, the mean of particle position undergoes 

an initial noise-induced drift, while the standard deviation o~x of Eq.(3.7) remains unchanged for 

the short time dynamics. The latter well demonstrates the noise-induced displacement effect in 

the dynamics of a particle in cubic potential [143]. 
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The first witness of noise-to-signal transition embedded in Eq.(3.6) can be quantified by the 

signal to noise ratio [1431 H71IJ. The SNR can be defined as a ratio between the useful average 

signal in the motion and its uncertainty 

SNR (3.8) 

where the numerator represent the coherent part of the displacement, while the denominator 

consists of the incoherent part of the displacement, illustrating the noise disturbing the motion 

The SNR quantifies the quality 

of the noise-to-signal process and if 

it grows, the coherent displacement 

increases faster than the incoherent 

one, viceversa, when the dynamics 

is taken over by the noise, the SNR 

starts to decrease, irrespective of the 

increasing mean value (x(t)) [143]. 

The turning point of the SNR in­

troduces a new upper-bound to the 

noise-to-signal transitions, limiting 

1.5 
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o 
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o o 
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O OOq 

turning point 
SNR 

000 

0 0 o 0 ° 0 ° ° 0 0 ° ° ° o V o O ° o 0 0 o ° l o ° o o o 0 « 

0.5 1.5 
a 

the maximum interval of time more Figure 3.4: Upper bound to the characteristic time 
of divergence of a particle in cubic potential. 
The figure shows how the turning point of the SNR intro­
duces a stricter limitation to the characteristic time of di­
vergence of a particle evolving in the cubic potential. When 

of increasing initial thermal noise, the SNR drops, the second moments increases faster the 
the signal (x), and no information is bared by the mo­
ments. The black curve is obtained fully numerically, and 

strictly than TXZ = l/{kaxo) |1431]. 

as shown in Figj3.4| as a function 

Different initial positions, and their 

signs, induce a time-dependent evo- for zero initial variance a2
Q = 0 the particle, placed at 

(XQ) = 0 does not move from the saddle point and the di-
lution upon the variance of particle vergence time should go to r oo. N = 5000, dt = 10~5 

and nt = 1000 were used. 

position, without introducing differ­

ent dynamics on the mean displace­

ment, as shown in FigJ3.5|, For positive initial conditions, towards the increasing branch of the 
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Figure 3.5: Evolution of SNR (left) and moments (x),ax (right) for different initial 
positions. 
The figure illustrates the differences between the dynamics in different regions of the cubic poten­
tial expressed in terms of relative positions Ax(t) = x(t) — XQ. The blue and black dashed line in 
the left panel are solutions obtained from Eqs.ftS.ty,(3.7) 
When the particle is initially positioned left of the plateau (xo) = — 1 (red), the absolute mean dis­
placement | (Ax) | (red solid) increases much faster than when initially positioned at the plateau 
{xo) = 0 (black). Similarly its standard deviation (red dashed) increases much faster, leading 
to a decreasing SNR (red dots). Higher order nonlinear terms, beyond the approximation of 
Eqs.(|3.6[),(3.7), dominate the dynamics left the inflection point. 
A particle initially positioned right of the plateau (xo) = 1 (blue), however, exhibits a growing 
SNR (blue dots) for the short time dynamics (while trajectories are far away from the diver­
gence). Its correspondent mean |(Ax)| (blue solid) and standard deviation a^x (blue dashed), 
although increasing faster than a particle initially positioned at the plateau (black), evolve quicker 
in the mean displacement, hence generating a growing SNR. At later times t > 0.2, when the 
divergence becomes relevant, it too starts to decrease, as the standard deviation grows faster than 
the mean. For this figure, Eq.{35) has been simulated, using aXQ = 1,D = 0,dt = 10~5, k 
and nt = 1000 trajectories were used 

1. 

cubic potential, the variance decreases in time as the particle moves towards the plateau (blue 

line), after which it starts to feel the divergence and the variance starts to increase, resulting in 

a drop of the SNR. Simultaneously, for negative initial conditions (black line), the particle is 

located at the slide of the cubic potential, where the divergence is strongly felt, and the variance 

increases in time, faster than the the mean displacement, resulting in a faster drop of the SNR. 

To investigate the role of the environmental noise in the noise-to-signal process, one can consider 

D ^ 0 in Eq.(|3.5[). The stochastic dynamics generated, can still be discussed in the short time 

regime (t — to < TfL)> a n d compared to the previous case. We assume that the initial conditions 
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Figure 3.6: Comparison of first (black) and second (blue) order solution of mean 
position fi?q. fl3.6[),(|3.10[)) for short time dynamics (inset) and longer time dynamics 
simulation (red dots) of mean position (left panel) and SNR fi?qs. (|3~T2"1),(|3.13|)) (right 
panel) in the regime of small diffusion. 
On the left panel it is shown how for a regime of small diffusion, D = 0.1 the first (black) and 
second order (blue) match well together and fit nicely with the short time dynamics (red dots in 
inset). Simultaneously, on the right panel the SNR for short time (inset) shows how impactless 
the Langevin force is upon the standard deviation ax, demarcating a SNR powered by the initial 
position noise, as described by -Eg.fl3.12p, 
Note how the second order solution (blue), while it does not overestimate the SNR for short time 
dynamics, it is still not able to predict its drop. 

"5 and 1000 For this figure, Eq.(3J5) has been simulated, using k 
trajectories were generated 

3,L> 0.1, < l,dt = 10" 

will be drawn from a Gaussian distribution with mean and standard deviation defined, and we 

integrate E q ^ ^ ) , obtaining [I143l| 

x(tn) = x(t0) - K I x ( t n _ i ) 2 d t „ _ i + V2D / £(t n _i)dt„_i , (3. 
to to 

for the nth order in time; and subsequently take the ensemble average, to obtain 

(x(t)} = (x(t0)) - K(<J2
X0 + (x0)2)(t - t 0) - KD(t - t 0 ) 2 , 

^ = \ K o + 2F>(t - t 0) + 8^2(t - t 0 ) 2 < , 

(3.10) 

(3.11) 

http://-Eg.fl3.12p
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Figure 3.7: Comparison of first (black) and second (blue) order solution of mean 
position ^gg.(|3~6D,(|3~T0|); (left panel) and SNR (Eqs.^A^j,^A^j) (right panel) and 
numerical simulations (red), in the regime of dominant diffusion. 
On the left panel, it is shown the divergence between the two order solutions for the case of D = 10 
(large diffusion), showing on the right panel how impactful the role of the environmental noise is 
for the standard deviation ax, leading to a SNR increasing quadratically in time as discussed in 
Eg. (13.131), clearly demarcating a SNR powered by environmental noise. 
For this figure £̂ g.(|3.5[) has been simulated, using k = 3, D = 10, a2

0 = 0.1, dt = 10~ 5, and 
nt = 1000 trajectories were generated 

at the second order approximation in time [143]. 

At the first order approximation, Eq.(3.10J) shows a first moment evolving linearly in time, 

where the initial second moment gets transformed to mean displacement, and the Langevin 

noise does not affect the motion. The latter describes the deterministic motion presented in 

Eq.(3.6). Simultaneously, the second moment of position does not feel the cubic nonlinearity, 

as it is independent of the stiffness k, and it evolves analogously to pure diffusion of a free 

particle. At the second order approximation, necessary for negligible initial thermal noise, the 

thermal noise introduces a quadratic term in time that transforms environmental noise into 

displacement. Simultaneously the variance evolves with free diffusion when the initial thermal 

noise is neglected, as the term linear in time is the only leading term. The environmental 

noise can dominate the dynamics if [143] D{t — to) 3> o~Xo. The above inequality introduces 

a new characteristic time [11431]. TD = a2
0/D, which can be used to define the regime where 

the dynamics becomes dominated by diffusion. To further justify the noise-to-signal transitions 
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observed from Eq.(3.10), it is instructive to examine the SNR in the regime of weak diffusion. 

presented in Figj3.6|, and for the strong diffusion regime, Figj3.7[ 

For the weak diffusion regime, defined by t — to ^ TD, the environmental noise is negligible, and 

the SNR reaches JH3J 

SNR(t) oc K<jX0(t - t0), (3.12) 

where it can be seen that it evolves linearly in time, and it is powered by the initial thermal 

noise, as shown in Figj3.8|(left), quantifying the noise supplying the transitions. Simultaneously, 

for the strong diffusion regime, t — to 3> to, the SNR reaches [I143I] 

/2 
SNR(i) oc ^-Ky/D(t - t0)3/2, (3.13) 

which increases faster in time, for large t, than the SNR in Eq.(3.12), as the system is continuously 

supplied with energy due by the Brownian noise, and it is as well powered by the environmental 

noise, as shown in Fig.3.8 (right). In a real experimental environment the SNR can be powered 

by both initial thermal noise, and Brownian environmental noise [14HLI171J. 

3.1.3 Average Velocity 

A further insight on the dynamics of a particle in the cubic potential can be obtained by exploring 

the noise-induced effect of the average velocity. From the equation of motion x = —KX2 + 

y/2D£(t), one can calculate the average velocity as (v) = Ax/At. For the short time dynamics, 

i.e. while Eq.(3.6) is still valid, it comprises of constant evolution in time, and an initial position 

noise dependence as follows 

SNR^ = M i « 1 , (3.16) 

at « V 2 k 2 < + 2 Z 3< ( 3- 1 5) 

a * ^ 2 (1 + D K - ^ 2 ) 

When the evolution time is beyond the short time approximation, the convergence of v is lost 

and the above result is not valid any longer (see Figj3.9|, blue dots). 
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Figure 3.8: Noise-to-signal transitions powered by initial noise (left), and environ­
mental noise (right) of a particle in cubic potential, and mean displacement evolution 
in both regimes (inset). 
Comparing the evolution of SNR from the left and right panel demonstrates that the latter can be 
powered by both quantities, and being the environmental noise-driven SNR continuously supplied 
with energy (right panel) for short time dynamics it increases slower than the SNR powered by 
initial position noise (left panel). For this figure, Eq.(3.h) has been simulated, using, for the left 
picture, t = 0.1, D = 0, dt = 10 5 , k = 3, and for the right one, a2

0 = 0, t = 0.1, dt = 10 5 , k = 3. 
5000 trajectories were generated 
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Figure 3.9: Noise-induced average velocity statistics for short time (red), and long 
time (blue) evolution. The red line corresponds to the analytical result of Eqs.lfi.lty-

It is shown that even at short time dynamics (red), the average velocity is driven by initial position 
noise. For this figure, Eg.(3.5) has been simulated, using D = 1 0 _ 3

; dt = 1 0 _ 5
; k = 0.1. nt = 104 

trajectories were generated. The At chosen to compute the average velocity v is At = 200dt. 

However, for the short time dynamics (Figj3.9[, red dots), the simulation fits well with the ap­

proximation of Eqs.(3.14)-(3.16P (red). From the above equation for SNR^ it can be seen that 
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for D <C K2o~xQ the environmental temperature plays a negligible role, resulting in a constant 

signal-to-noise ratio of l/\/2. Although the main noise-induced effect lies in the statistics of 

particle position, the knowledge of average velocity paves the way towards the underdamped 

regime, where instantaneous velocity becomes the principal quantity, together with instanta­

neous acceleration, to feel the noise-induced effect, and the instability. We will then show how 

in the high friction regime of the underdamped evolution one retrieves the same results as of 

Eqs.(|3.14])-(|3.16D (see Figj3.16[, green dots). 

3.1.4 Dynamics of Most Probable Trajectory 

From the previous discussion and results, there are two take home messages. In the cubic poten­

tial, there is a noise-induced displacement effects that uses environmental fluctuations to generate 

useful mechanical work |0,1143IJ. Moreover, another essential ingredient to witness the effect is 

hidden in the instability, a resource that can be positively exploited but that can be dangerous 

for the system as it leads to divergences and renders description of dynamics by global statistical 

moments useless [2, 144]. Fig.3.10 summarises the main features investigated in the cubic poten­

tial, showing not only the generation of heavy tails towards the divergence, dominating the flow 

of (x), and o~x dynamics, culprit of the drop of SNR, but also the experimentally not observable 

light tails generated by the cubic wall. To go beyond the divergence limitation of particle dynam­

ics, one has to find a different, yet measurable, quantity, as shown in the illustration |3.10| by the 

atypical dynamics in the plateau region (green lines). The experimentally motivated choice [1871], 

falls on the characterisation of the most probable particle position described by the maximum of 

P(x, t), to substitute the mean value, exploiting the dynamics of the particle around the plateau 

region, subjected to an uncertainty characterised by the curvature around [11881]. 

The method grants a coherent picture near the instability for particle positions that have little 

or no information about the diverging trajectory in the system [2]. The quantification of the dy­

namics is still done by the signal to noise ratio, written now for the maximum of the distribution 

Xmax, and the curvature around it o ^ ^ , 

x2 (t) 
SNR(t) = ™ a x , (3.17) 

^max V') 
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Figure 3.10: Characteristics of the unstable dynamics of a Brownian particle in 
cubic potential [2]. 
The most prominent feature of such dynamics lies in the heavy tail (for negative positions) gen­
erated by diverging trajectories. Such characteristic has rendered impossible to fully define the 
dynamics past the point of divergence, and hence the maximum xmax and curvature o-Xmax of the 
PDF is introduced ((3.18), (3.19J)). Their dynamics consists of a unique property of atypical mo­
tion against the potential force (green) that survives the divergence, opposite to the mean position 
(red). 

where x m a x is calculated by looking at the zero point of the derivative of the P D F , dxP(x, t) = 0, 

leading for deterministic dynamics, to |2) 

, l + ( a r o W - y / ( l + (a;oW) 2 + 8ag 0 (« tP 
x m a x { t ) - K t + Aal(Ktf ' [ 6 8 j 
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and the local curvature at the maximum is defined as [2] 

P(.Xmax (t)) i) 
<Jr, 

To better understand the origin of 

the most probable particle position, 

one can imagine a trajectory starting 

from XQ that follows the determinis­

tic dynamics x(t) = xo/(l + xoni). 

A trajectory initially starting on the 

right of the inflection point, con­

verges to the origin as x(t) « 1/nt 

[2], while a trajectory starting on the 

left diverges. The trade-off between 

the two evolution leads to a plethora 

of behaviors of local characteristics 

that strongly depend on the initial 

distribution [2|. For non-vanishing 

xo, at short times, the evolution of 

maximum and curvature of position 

distribution can be approximated by 

\6%P{x max 
(3.19) 
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Figure 3.11: Atypical shift of maximum powered 
by initial thermal noise (inset, black) and envi­
ronmental noise (red) [2]. 
The solid lines are analytical results from Eq.(3.22) (red) 
and Eq.(3.18) (black, inset). 
The figure demonstrates the noise-to-signal transition for 
the most likely trajectory, with the atypical shift against 
the potential force. Eq.(3Jä) has been simulated using 

7 = l , ( X o ) = o,dt = 2 x 1(T3, al0 = 0 (D = 0 for 
the inset), and nt = 3 x 10 5 trajectories where generated. 

[2] 

Xmax{t) « (X0) + (2of 0 - (x0)2)/«t, (3.20) 

(3.21) 

Notice how the maximum xmax(t) in Eq.(|3.20[) evolves opposite to the mean position of Eq.(3.6) 

(namely (x(t)) « (x(to)) — ^ ( c 2
0 + (a?o)2))> and hence its motion against the potential force 

can be regarded as atypical. The sufficient condition to observe such atypical shift in Eq.Q3.20'). 

against the potential force — dxV(x) is given by the inequality 0 < (XQ)/V2 < axo, while the 

narrowing of the curvature in Eq.Q3.2l|) requires only (XQ) > 0 |2|. For XQ = 0 the maximum 

http://Eq.Q3.20'
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Figure 3.12: Time evolution of maximum xmax(t) (top) and curvature a^ax (bottom) 
of position distribution, evolving deterministically in a cubic potential at different 
initial positions. 
For (xo) = 1 (red), the maximum shifts alongside the potential force, converging to the saddle 
point but never crossing it, while the curvature becomes narrower and narrower as the maximum 
approaches zero. For (xo) = 0 (blue), the maximum moves atypically against the potential force 
only to converge, in longer time, back to zero and never crossing it. Simultaneously the curvature 
slowly decreases as the maximum becomes more localised to the inflection point. At (XQ) = — 1 
(black), the maximum initially feels the divergence by moving alongside the potential force, but at 
t ~ 0.4 the maximum begins to move atypically climbing the potential towards the inflection point 
(never passing to the positive values). Simultaneously the curvature feels an initial broadening, 
followed by a sharp narrowing when the maximum climbs the potential. 
x = —(kf'y)x2 has been simulated using 7 = l , c 2

0 = 0.2, dt = 10~5, and nt = 10 4 trajectories 
where generated. 

always evolves atypically, and the curvature always decreases, albeit for (XQ) = ±1 the maximum 

decreases for short time, and the curvature increases for negative initial position as shown in 

Fig.3.12. In the case of weak diffusion, imposing o~2
0 = 0, the only source of randomness is 

the weak thermal noise. Initiating the trajectory at (xo)> the noise at short time is negligible 

compared to the deterministic drift. To calculate the local characteristics one must substitute 

the initial conditions (XQ) —>• (x(t)), o~2
0 —>• a2 with global moments from short time dynamics 

Eq.(|330|)([3~TT|), obtaining |2J 

1 + 7Dn2t3 - V l + UDKH3 + D2KH6 

Xmax{t) ~ 8DKH4 ' (3.22) 
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0.16 

Figure 3.13: Fast divergence of the global description using averages is demonstrated 
by a swift drop of the SNR (red line). 
The local description using the maximum of the PDF, and the curvature around it, maintains its 
information value for all times (green line). D = 0.1, k = 1, dt = 2 • 1 0 _ 3

; XQ = 0, and 4 • 105 

trajectories where used. 

The noise to signal transition for the maximum of particle position is shown in FigJ3.11| showing 

the atypical shift powered by noise in the limit of negligible environmental noise, and weak 

diffusion. The SNR for local characteristics, is a parameter that determines how well the most 

likely position can be observed experimentally [2]. In turn it is required to have a non-negligible 

SNR to be able to detect the shift of the maximum of particle position. In contrast to the SNR 

for global characteristics, it does not show a drop as time grows, remaining nonzero for any t, 

as both maximum and curvature converge to a positive value [2j. As shown in Fig.3.13, while 

the drop of the ratio for averages shows that the signal in the position is negligible compared 

to the noise, the SNR for the most likely trajectory exhibits the maximum of particle position 

maintaining its information values for all times. 
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3.2 U n d e r d a m p e d Regime 

3.2.1 Stability and Divergence 

Let us now consider a two dimensional nonlinear dynamical system, such as 

x = - K X
2 , (3.23) 

where K = k/m is the normalised cubic potential stiffness. The motion in the phase space plane 

is determined via a vector field obtained from Eq.(|3.23). The state of the system is characterised 

now by its current position x, and its velocity x. Knowing both values uniquely determines the 

future states of the system. We therefore write Eq.(3.23) in terms of the two quantities x, v 

x = v, (3.24) 

v = - K X 2 . (3.25) 

In Eq.(3.24) the definition of velocity is simply applied, and Eq.(|3.25|) contains the differential 

equation under study. The above system assigns a vector (x,v) = (v, —KX2) at each pair (x,v) 

and thus represents a vector field in the phase space plane [11 N7I]. 

The phase portraits shown in Figj3.14| offer a plethora of dynamical behaviors that were not 

possible in the overdamped regime Fig.3.3. For the deterministic motion of Eq.(3.23|) (middle 

panel, r = 0 in Fig.3.14) the dynamics possesses an unstable fixed point at xe = 0. As shown 

by the streamlines, any pair ( x , v) is subjected to a leftward flow that ultimately brings the 

trajectories to a divergence. 

There are however a trajectories (red line) that divide the phase space in two regions, comprising 

of distinctly different behaviours. Such trajectories are called separatrix [187] and they allow, 

for instance in the middle panel of FigJ3.14|, to cross the inflection point to the positive position 

x > 0 even for unstable initial conditions (i.e., particle initially placed to large negative values 

and with large initial velocity). Similarly in the right panel of Fig.3.14 the separatrix (red line) 

displays closed orbits around fixed stable point (black circle), and the cubic dynamics of the 

r = 0 case. On the left panel, the cubic potential is linearly tilted to destroy the plateau region, 
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r > 0 

Figure 3.14-' Sketch of the vector field for Eq.(\3.2(ty, illustrating the stability regions, 
and how the Langevin noise affects them. 
For r < 0 (left) every pair (x, x) generates unstable and divergent dynamics, as the fixed point 
gets annihilated, while for r > 0 (right) a new stable point with closed orbits in proximity gets 
created (black circle). At r = 0 (middle) the dynamics comprises of a single fixed point at (0, 0) 
of the unstable kind. It can be seen, from the streamlines becoming more negative in v than in x, 
how the instability has turned to velocity 

and the separatrix (red line) shows how to overcome the instability, for instance at XQ = 0, and 

large XQ. 

Differently from the phase portrait of Fig.3.3(middle panel r = 0) in the overdamped regime, 

the divergence is mostly but not uniquely felt by the velocity trajectory (as can be noticed by 

the streamlines becoming negative in velocity v quicker than in position x). 

When introducing the noise term, Eq.(3.23) becomes 

x = - r a
2 - 7 x + J^h^l^t), (3.26) 

V m 

where 7 = T/m is the medium damping with drag coefficient V of the medium (i.e. air at low 

pressure), T is the absolute temperature, and kß is the Boltzmann constant. The environmental 

noise acts like a forcing term, and at low pressure the second term —72; remains negligible, 

allowing to write Eq.(|3.26) as x = —KX2 + r where r = \ 2kBT'y£(t). For r < 0, as shown 

in Fig.3.14| (left panel), the fixed point is annihilated, rending every pair (x,v) unstable and 
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subjected to divergence. Different is the case for r > 0 (Figj3.14 right panel), where two new 

fixed point xe = ± r are created for v = 0. It is instructive in this case to look particularly at the 

arrangements of trajectories near the fixed points, and their behavior, as for positive positions 

there exists closed orbits suggesting the possible existence of motion against the potential force 

(atypical) in position. 

3.2.2 Noise-Induced Instantaneous Speed and Acceleration 

In the limit of low friction, the dynamics is that of Eq.(3.26), where the characterisation of the 

statistics of instantaneous speed x and acceleration 'x unfold without changing initial position XQ. 

While these quantities are well defined in the underdamped regime, they exist only on average 

in the high friction limit v = Ax/At, and a = Av/At. 

To better explore the main feature of the nonlinear ballistic regime, we consider the dynamics to 

be deterministic 7 = 0 and characterised by a Gaussian initial distribution with (XQ) = o~±0 = 0. 

The nonlinear ballistic dynamics is therefore using only initial position uncertainty in the initial 

position as a thermal energy resource. The short time scale of the transient regime is defined 

by a particle, which on average does not move (x(t)) ~ 0 and the nonlinear effect is explored by 

the instantaneous quantities x,'x. From Eq.(3.26|) the quantitative description of the moments 

of instantaneous acceleration can be calculated as 

(3.27) 

(3.28) 

SNRX = 1^1 « (3.29) 
<J± V2 

A shift of instantaneous acceleration powered by initial position noise is the first experimental 

verification to distinguish the nonlinear ballistics, as shown by the comparison of the high (left, 

a V2KCJ2
X0 

K*>| . 1 

0~x 

green arrow) and low (right, black arrow) friction limit in Fig.3.15| (bottom panel). Notice how 

the mean instantaneous acceleration (x) and its standard deviation are equally powered by o1 

to produce a constant S N R J ; as shown in Fig.3.16 (bottom panel). The second main feature 

of the nonlinear ballistic can be obtained by formally integrating Eq.(3.26|), namely x(t) 
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Initial noise-induced statistics of position, velocity and acceleration of a levitated particle in cubic potential 

High-pressure regime: p = 10-2mbar{7 = 10Hz) Low-pressure regime: p — 10—5mbar(7 — 10 2Hz) 
Q T 

i.rV2 
in 

• i - V 

0, while axo triggers 

Figure 3.15: Noise-induced position, velocity and acceleration statistics of a levi­
tated particle in cubic potential for the high pressure limit (left column) and for the 
low pressure limit (right column). 
The initial Gaussian distribution for particle position comprises of (xo] 
the nonlinear dynamics. In all cases, the Gaussian distribution of particle instantaneous speed 
has (xo) = 0 and cr| = 0. The initial position and speed are statistically independent. Top panel: 
the mean of particle position (x) (green, black) remains unchanged for the short time dynamics, 
while its standard deviation (green-blue halo) increases as initial noise increases. Similarly, the 
maximum of position distribution x m a x (red) does not develop at such short time scale. Middle 
panel: the mean of average velocity (v) (left column, green arrow) produces a smaller noise-
induced shift compared to the mean of instantaneous velocity (x) (right column, black arrow), 
while simultaneously their standard deviation are significantly reduced in the low pressure regime 
(right column, green-blue halo). The respective maxima of velocity distributions (red arrow) in­
creases alongside the potential force, showing again a significant reduction in the curvature for 
the low pressure regime (right column, yellow halo). Bottom panel: the mean of average accel­
eration (a) (left column, green arrow) does not display any indication of a noise-induced effect, 
while the mean instantaneous acceleration (x) (right column, black arrow) exhibits a substantial 
noise-induced shift as its standard deviation (green-blue halo) increases too with initial noise a 

xo • 
The respective maxima of acceleration distributions (red) display for the high pressure regime (left 
column) a complete independence on initial noise, surrounded by a large curvature (yellow halo), 
while in the low pressure regime (right column) the noise-induced shift is visible and alongside the 
potential force, presenting a reduced curvature (yellow halo). To generate all the density plots, 
Eq. (3.26) has been simulated using K = 6kßTfj,m~3Kg-1 ,T = 300 K, t = 0.1 ms, dt = 2 x 10 
ms. nt = 10 4 trajectories where generated with 5000 samples each. To calculate the instantaneous 
quantities, x = dx/dt, 'x = dx/dt, the time interval used is given by the time-step dt = 2 x 10~5 

ms, whereas for the average quantities v = Ax/At, ä = Av/At, the time interval, multiple of 
the time-step, has been used At = 10 x dt. 
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XQ — K J0'™ x2(t'n_1)dt'n_1, unravelling the short time evolution of the moments of instantaneous 

velocity. At the lowest order, and with (XQ) = 0, the latter becomes 

<£(*)> ~ (3.30) 

ax(t) « V2Ka2
Xot, (3.31) 

SNR,(t) = M £ ! « - L . (3.32) 

The mean of instantaneous velocity (x) evolves qualitatively similar to the mean instantaneous 

acceleration (x) of Eq.(3.27), growing linearly with initial position uncertainty aXQ and ultimately 

producing a constant SNR^ ~ l/\/2 as observable in Fig.3.16 (middle panel). A comparison 

with the high friction counterpart (v) (left, green arrow) in FigJ3.15Kmiddle panel), prominently 

dominated by noise (green-azure halo), reveals the second verification to distinguish the nonlinear 

ballistic effect characterised by a prominent noise-induced shift of mean instantaneous velocity 

(x) (right, black arrow) accompanied by a reduced uncertainty (green-azure halo). 

Further integration of Eq.(|3~26|), x(t) w x0 + j j " x f t n - i ) ^ - ! - f*n J 0 ' " KX2(t'^dt'^dt'^, 

allows access to the position evolution, which first two moments, and corresponding SNR are 

given by 

<*(*)> ~ -^olf, (3.33) 

^ ( t ) ~ ^ < + ^ 2 t 4 < , (3.34) 

SXE,.(f) = I M i « 1 • (3.35) 
2 (1 + 2k-2ax:2t-4) 

For the long time transient dynamics, but before the divergence, the mean position of Eq.(3.33) 

evolves quadratically in time. Its instantaneous values can be enriched by increasing the initial 

position uncertainty aXQ. Simultaneously, the standard deviation depends on two terms, the first 

of which becomes negligible at long time scales, t > 0.9 ms (for the parameters used to produce 

Fig.3.16), leaving a standard deviation that grows comparably to mean position and realising 

a constant S N R Z ~ \j\f2. For short time scale (t < 0.1 for the parameters used to produce 

Fig.3.16) the position does not move on average, while the standard deviation of Eq.(3.34) is 

file:///j/f2
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Figure 3.16: Noise-induced effect for initially steady particle in position x (top), 
instantaneous velocity x (middle), and acceleration x, (bottom), driven by variance 
ax of initial position. 
All simulations (dots) have been performed based on Eq. (3.26). Top panel: the mean position 
(x) (left) does not develop with increasing initial noise aXQ at the short time scale in neither of 
the damping values explored, spacing from low pressure regime (black) to high pressure regime 
(green). Because of the vanishing mean position, and the large noise spread dominating the po­
sition dynamics, the SNRX (right) vanishes too. Middle panel: the mean instantaneous velocity 
{x) (left) displays a noise-induced shift that reaches the deterministic limit (black line) for both 
r = 1 0 - 2 (black dots), and T = 1 (purple dots), while it retrieves the overdamped approxima­
tion of Eq.(|3~T4[) for F = 10 (purple dots). The respective SNRX (right) shows how sensitive is 
the standard deviation of velocity to environmental temperature T, at different pressures, keep­
ing the low pressure closer to deterministic approximation (black), while leading to a converging 
SNRX for the higher pressure regime (green), retrieving once again the results from the over-
damped regime, namely Eq.(3.16). Bottom panel: the mean of instantaneous acceleration (x) 
(left) clearly shows the main difference between the two limits (low pressure, black line, and high 
pressure green line), demonstrating the noise-induced feature for instantaneous acceleration close 
to the deterministic approximation (black) for F = 1 0 - 2 (black) and F = 1 (purple), while van­
ishing for larger damping (green). The role of environmental temperature can be observed for 
SNRX (left) where an increase in pressure (purple) leads to a larger standard deviation and to 
a converging SNRX. Eq. (3.26) has been simulated using K = 6ksTfMn~3Kg-1 ,T = 300 K (am­
bient temperature), (xo) = 0, (xo) = 0, aXQ = 0, t = 0.1 ms, dt = 2 x 10~5 ms. 10 4 trajectories 
where generated with 5000 samples each. To compute the average quantities, v, a, the multiple 
time-step has been used, dt = 10 x dt. 

dominated by the first term ax (t) « aXQ. The resulting dynamics produces a vanishing S N R Z . 

This quick overview of the deterministic motion proves that the noise-induced effect is promi­

nently visible in the moments of instantaneous quantities x,x Eqs.(3.27),(3.30D respectively 
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and vanishes for position x as can be seen in FigJ3.16| for the short time dynamics. The 

curves in FigJ3.16|, have been simulated using real experimental parameters of the current se­

tups [93], showing that at values of T = 1 0 _ 2 H z (black dots) the zero-damping approximation 

of Eqs.(|3.27)to(3.35|) (black line) is reached. Moreover, it shows that at larger damping values 

r = 10Hz (green dots), the results from the high friction limit (green line) are obtained for 

position (top panel) and average velocity (middle panel), and the vanishing of acceleration is 

observed (bottom panel). 

Nonvanishing initial velocity and position 

Thus far we have considered only an initially steady particle with (XQ) = 0, but as the vector 

field in Fig 3.14| (middle panel, r = 0) shows we have a plethora of particles evolving at the 

plateau (xo) = 0 with nonzero initial velocity. Let us now discuss the noise-induced dynamics 

for particles with nonvanishing mean initial velocity. To fully visualise how moving particles 

affect the moments of instantaneous acceleration x, we refer to Eqs.(3.24),(3.25) and substitute 

the short time solution of position x « XQ + xot, to the dynamical equation for v, obtaining 

x(t) « — K(XQ + 2xoXot + X g t 2 ) . Furthermore, we introduce the quantity A x = x(t) + nx\t2 

to describe the effect of c r 2
0 on the instantaneous acceleration for particles with nonzero initial 

velocity (xo) ^ 0, cr| o = 0, initially positioned at the plateau (xo) = 0 

(3.36) 

a Ax ~ V2nal0, (3.37) 

S N R A Z = ~ 4=- ( 3- 3 8) 
o~Ax V2 

As can be seen in Figj3.17|(bottom panel), the results of Eqs.(3.36|),(|3.38) hold true for slowly 

moving particles (blue dots), where the S N R ^ (right panel) fastly approaches l/y/2. 

For particles with higher initial speed (red dots) the mean instantaneous acceleration (x) (left 

column) is dominated by higher terms that deviates from that of Eq.(3.36) obtaining less negative 

average acceleration for smaller c r 2
0 , while the S N R J ; (right column) initially decreases and slowly 

converges to \ j\p2 after the turning point. To retrieve the results of Eqs.(|3.36)-(3.38) for such 

initially fast particles, and bring the red dots closer to the black line, the computed timescale 

file:///
file://j/p2
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Figure 3.17: Noise-induced effects for initially moving particle in position statis­
tics (top), instantaneous velocity statistics (middle), and instantaneous acceleration 
statistics (bottom). 
All simulations (dots) have been performed based on Eq. (3.26) using cr|o = 0. Top panel: the 
mean particle position difference (Ax) (left) displays no deviation from that of Eq. (3742|) (black 
line) independent of the chosen initial velocity (XQ), leaving the SNR^x (right) small. Middle 
panel: the mean instantaneous velocity difference (Ax) (left) shows deviation from the approxima­
tion of Eq.(33% (black line) for initially fastly moving particles (green and red), as higher order 
nonlinear term dominates the evolution. For initially slowly moving particles (blue), stochastic 
speeding (for (xo) > 0) and stochastic breaking (for (xo) < 0) is witnessed at (Ax) = —0.5 
(blue dashed line) The resulting SNR^x (right) display a slower convergence to the black line 
as the initial velocity becomes larger in magnitude. Bottom panel: the mean instantaneous ac­
celeration (Ax) (left) displays a higher robustness against initial moving particles, compared to 
the instantaneous velocity, as only very fast initial moving particles (red) deviate substantially 
from the approximation of Eq.(3.3Q) (black line) The SNR^ on the other hand tell a different 
story, as a slowly moving particle (blue) remains consistent with the approximation (black line), 
but faster moving particles (green, red) are slowly converging, even displaying an initial decrease 
for extremely fast (red) particles. Eq. (|3.26) has been simulated using K = 6/CBT)j,m~ sKg~x, 

x 1 0 - 5 ms. 10 4 trajectories where generated with T = 300 K, r = 10 
5000 samples each. 

Hz, t = 0.1 ms, dt 

has to be decreased tenfold t = 0.01ms (for the parameters used to produce Fig,3.17). 

Similarly, for instantaneous velocity x Eq.(|3.30) can be manipulated to introduce the velocity 
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difference A x = x(t) — XQ, leading to the following statistical evaluation 

(3.39) 

(3.40) 

S N R A X = ' ' » -==. (3.41) 

(Ax) P 

CA± -s V2~K<j2
Xot 

|(Ax)| ^ 1 
CA± 

Looking at Fig.3.17|(middle panel), the mean velocity difference A x (left column) holds true even 

for slowly moving particles (blue dots), however for higher initial speed (green and red dots) the 

above approximation of Eqs.(|3.39"|)-(|3.4ip fails to describe the motion which is dominated fully 

by higher nonlinear terms that produce more negative average velocity for smaller a2
Q. The 

correspondent S N R ^ (right column) converges more slowly the higher initial speed the particle 

possesses. 

Lastly, for particle position, Eq.(3.33) can be used to introduce the position difference A x 

x(t) — xot which moments evolve as follows 

(Ax) « (3.42) 

k2tAaA 

a A x ~ y < + ^ ^ , (3.43) 
A r l 1 

S N R A ; c = l- [ ~ . • (3.44) 
a ^ J2(l + 2k-2ax:2t-A) 

From Figj3.17 (top panel), the position difference (left column) does not change on average even 

for initially quickly moving particles. The correspondent S N R Z (right column) remains small, and 

the approximation of Eqs.(|3.42|)-(3.44[) holds true for all the considered initial velocities. Not only 

Figj3.17| demonstrates that the noise-induced effect of instantaneous velocity and acceleration, 

enhanced by initial position noise a2
0, can be observed for both deterministic and slowly moving 

particles (black, blue and green dots), but even more stochastic breaking and speeding can be 

argued. 

For positive initial speed, (xo) > 0 the particle can break at average (x) = 0 for large initial 

position noise a2
0, whereas for negative initial speed, (XQ) < 0 the particle gains velocity by 

increasing the initial position noise. To better observe such events, in Fig.3.17| (middle panel left 
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Figure 3.18: Noise-induced effects for non vanishing initial position (XQ) for posi­
tion statistics (top), instantaneous velocity statistics (middle), and instantaneous 
acceleration statistics (bottom). 
All simulations (dots) have been performed based on Eq. (3.26Q using a\ = 0, and (xo) = 0. 
Positioning the particle in different parts of the plateau region (blue dots), and on the poten­
tial slope (red), reveals no introduction of higher order term of the time series for neither po­
sition, velocity, nor acceleration. Their dynamics is well described by Eqs. (3.47). A differ­
ent case is when the particle is positioned in a highly nonlinear region of the potential (green), 
i.e., down the slope of the cubic potential (negative values), or on the cubic wall (positive val­
ues). Such positions highly affect the dynamics, introducing new terms of the time series, where 
the approximate equations are no longer valid. Common to these initial highly nonlinear po­
sitions (green) is a smaller noise-induced effect accompanied by a larger standard deviation 
that results in a slowly converging signal to noise ratio. Eq. (3.26) has been simulated using 
K = 6kBT/mi~3Kg~1 ,T = 300K, a2

±o = 0, ( i 0 ) = 0, dt = 2 x 10"" 
generated with 5000 samples each. 

ms. 10 4 trajectories where 

column) the blue dashed line has been plotted, indicating the above effect for (XQ) = ±0.5. To 

generalise the detection of stochastic breaking or speeding, the mean velocity difference displays 

a sign flip (Axo) = — \XQ\. 

The complementary case of non vanishing initial position (XQ) ^ 0 is explored, for (XQ) = cr|o = 

0, to realise how it affects the noise induced effects so far described. To further understand the 

behavior of different initial positions, one has to refer to the equation of motion for position x, 
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speed x, and acceleration 'x and rewrite their moments as follows 

(Ax(t)) = -KO-2
X0, (3.45) 

(Ax(t)) = -Ka2
Xot, (3.46) 

(Ax(t)) = (3.47) 

where the differences for acceleration (Ax(t)} = (x(t)} + K(XO}2, velocity (Ax(t)} = (x(t)} + 

n(xo)2t, and position (Ax(t)) = (x(t)) + n(xo)2t2/2 — (xo), have been introduced. 

As can be seen in Fig]3~T8l(left column) the mean position difference (top panel), velocity dif­

ference (middle panel), and acceleration difference (bottom panel) are still performing within 

the approximation of Eqs.(3.45) to (3.47[), where their respective SNR (right column) show no 

appreciable deviation from the constant l/\/2. For large initial position (xo) = ±5 (green dots), 

the above equations do not anymore describe the dynamics, and their evolution is modified by 

higher order nonlinear terms. It can be noticed in Fig. 3.18 (right column) that the S N R Z (top 

panel) converges slowly to its constant value, whereas for both velocity (middle panel) and accel­

eration (bottom panel) their respective SNR undergo an initial decrease for small a2
Q, followed 

by a subsequent convergence (slower for the case of acceleration). 

Role of environmental temperature T and initial velocity noise a2 

.en 

The initial noise-induced effects can be affected by the temperature T of the environment. To 

allow for such effect to be taken into consideration, we rewrite the deterministic equation of 

motion of Eq.(3.23) as 

•X = - 1 X - kx2 + J ^ l ^ t ) , <£(*)> = 0, <£(*)£(0> = S(t - t'). (3.48) 
V m 
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For zero initial position (XQ) = 0, and (x) = a2
Q = 0 the role of environmental noise unfolds as 

an extension of the approximate formulae obtained in the previous section 

(X(t)) R 1 2 . 2 
2Kax0

l ! o-x(t) 

<*(*)> R i —KO~x0t, o-±(t) 

<*(*)> R i —KO~x0, ax(t) f 

< + 3m 

2K
2aXot2 + 2 ^ X , 

2 « 2 < + 2 

(3.49) 

(3.50) 

(3.51) 

with their respective SNR evolving as 

SNR s ( t ) = ^ 

I A* 

SNR-j(t) 

SNR £ ( t ) 

o n 2 f c B T 7 , 2 

1 

211 + r M ^ 
0 

2(1 + - ^ -

(3.52) 

(3.53) 

(3.54) 

It is clear from the above equations Eqs.(3.49) to (3.51), that the environmental noise does not 

modify the means, but rather the standard deviations. For position statistics, Eq.(3.49), the 

standard deviation is affected at slower time scales (t 3 dependance), resulting in a vanishing 

S N R Z as shown in Fig.3.16| (top panel, right column) for the range of F used for the short time 

scale. Longer time scales allows the environmental noise to compete against the noise-induced 

effect for T > 3mn2ta^ /(4kBl) (T » 800a 4 K , for T = 10" 2 Hz), realising a slowly converging 

S N R Z ->• l/y/2, as described by Eq.(|3~52|) (see Figj3.16[). 

For particle velocity, Eq.(3.50) the standard deviation shows a stronger and more visible envi­

ronmental effect at the short time scales. The temperature T affects the standard deviation, and 

S N R i (|3~53|) when T > mK2aXot/kBl (T » 125 x 1 0 2 a 4
0 for T = 10" 2 Hz, and T » 140a 4

0 , for 

r = 1Hz). As shown in Fig.3.16 (middle panel), even at low damping T = 1 0 _ 2 H z the room 

temperature is enough to modify the statistics of the SNR^, for small aXQ where the convergence 

to \j\/2 is fast (black dots). A n increase in damping (purple dots) shows the relevant modifi­

cation the environmental temperature T applies to the convergence of the SNR^. For particle 
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acceleration, Eq.(3.51), the condition on environmental temperature T are much stricter, as no 

time dependence appears in the moments of instantaneous acceleration Eq.(3.51), and S N R . 

Eq.(3.54). As a result, at small damping F = 1 0 _ 2 H z (black dots in Fig.3.16 bottom panel) 

the environmental noise is negligible at the short time scale, whereas for larger damping (purple 

dots) the condition softens T « 144 x 10 2 cr 4
0 K, allowing a reduction of S N R J ; for small cr 2

Q. 

Another source of noise that competes with the initial position noise-induced effect resides with 
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Figure 3.19: Robustness of initial noise-induced effect to initial velocity noise a 
.en 

for position statistics (top), instantaneous velocity statistics (middle), and instan­
taneous acceleration (bottom). All simulations (dots) have been performed based on 
Eq. (|3.26[) using (XQ) = (XQ) = 0. 
Top panel: mean position (left), together with its S N R Z (right), are unaffected by increasing ini­
tial velocity noise cr|0. 
Middle panel: the mean instantaneous velocity (left) maintains its noise-induced shift visible even 
at large initial velocity noise (orange dots). Its SNR^ (right) still displays the noise-induced ef­
fects, although increasing initial velocity noise shows a disruptive tendency (purple and orange 
dots). 
Bottom panel: Mean instantaneous acceleration (left) shows only positive effects for increasing 

(orange) enhancing its shift beyond the zero-damping approximation (black dashed line). x0 

Its S N R i (right) remains unaffected even at large a\ . Eq. (3.26) has been simulated using 
K = QkBTum-^Kg-1, T = 300 K, V = 10" 2 Hz, t = 0.1 ms, dt = 2 x 10" 5 ms. nt = 104 

trajectories where generated with N = 5000 samples each. 

the initial velocity noise . Assuming deterministic dynamics 7 = 0 in Eq.(|3.23), the effect 

of initial velocity fluctuations can be observed in the following moments for strictly zero initial 



Theory of Stochastic Dynamics in Cubic Potential 60 

velocity (xo) = 0, and (xo) = 0 

n<j2t2 

(x(t)) » XO 

2 ' 

<*(*)> » —KaX(jt, 0~x 

(x(t)> « 0~x 

(3.55) 

(3.56) 

(3.57) 

with their respective SNR evolving as 

S N R T 

SNR,. 

- /2<r!n+2<T? t 2 

+ 1 

S N R , 

(3.58) 

(3.59) 

(3.60) 

At short time scales, the mean position of Eq.j3.55) remains unaffected by increasing initial 

left column, top panel), resulting in a vanishing SNRX also indepen-velocity noise cr|o (Fig 3.19 

dent of cr|0 (right column, top panel). For larger times, when the nonlinear term (last term in 

ax Eq.(3.55|)) becomes prominent, the initial velocity noise modifies the standard deviation, and 

hence the SNR, if a\Q > na2
X0t2/V2 (a2 w l^~2a2

X0, at t = 0.3 ms, F = 10" 2 Hz). 

Similarly, the mean instantaneous velocity of Eq.(3.56) results unaffected by increasing velocity 

noise at short time scales. Standard deviation ax and SNR^ are however subjected to it (right 

column, middle panel), and for values of cr|Q > 2K2t2aXQ « 4 x 10 2a2
0 (at t = 0.1 ms, T = 10 2 

Hz), the statistics of SNRX slowly converges the constant 1/V2 (purple and orange dots) and it 

is described by Eq.(3.59). 

Mean instantaneous acceleration, as shown directly in Eq.(3.57), bears the ability to be driven 

both by initial, velocity noise o~x2, dominating in the long time scale, and initial position noise 

(left column, bottom cr^, dominating in the short time scale. However, as shown in Fig. 3.19 

panel), at the short time scale (t = 0.1 ms) increasing values of initial velocity noise can enhance 

the shift of mean acceleration (orange dots) beyond the zero-damping approximation (black 

http://Eq.j3.55
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dashed), still resulting in a constant SNRX = 1/V2 (right column, bottom panel). 

3.2.3 Dynamics of Most Probable Trajectories 

To fully characterise the dynamics of a levitated particle in cubic potential, the maxima of 

position xmax, velocity xmax, and acceleration x m a x distributions need to be analysed. A com­

prehensive analytical treatment of the problem at hand is not available, because the complexity 

of the equation of motion does not allow to derive an exact expression for the probability density 

function from which the maximum and curvature could be obtained. Therefore, the results pre­

sented in this section are obtained by numerical simulations of Eq.(3.48). In principle, both mean 

and maximum of the instantaneous quantities should increase coherently (motion in the same 

direction) with a constant signal-to-noise ratio, and as the noise-induced evolution is unveiled 

(Figj3.20[), we recall the result of the over-damped regime for maximum of position (Figj3.11 in­

set, and Fig.3.20| top panel, left column) moving atypically against the potential force (Figj3.20 

top panel, right column). 

The new feature of coherent motion of maximum velocity and acceleration appears at low fric­

tions, where the latter shift alongside the potential force (qualitatively visible in Fig.3.15| middle 

and bottom panel, right column, red arrow). A quantitative analysis of the shift of the most-likely 

velocity and acceleration can be based on the results shown in FigJ3.20|, where the sharp shape 

of the acceleration distribution (bottom panel, right column, inset) leaves room for a visible shift 

of its maximum, which is larger compared to the shift of the maximum of velocity distribution 

(bottom, panel, left column). 

Similarly to the mean instantaneous velocity (x) Fig.3.19| (left column, middle panel), the max­

imum x m a x Fig.3.21 (left column, middle panel) is unaffected by increasing crj . However, the 

local curvature is more sensitive to increasing initial velocity noise, resulting in a slowly converg­

ing SNR (right column, middle panel) even at small cr|0 (red dots). 
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Figure 3.20: Initial noise-induced shift of maximum of position x m a x (top), for 
high (left) and low (right) pressure limit, maximum of instantaneous velocity x m a x 

(bottom left), and acceleration x m a x (bottom right). 
All simulations (dots) have been performed based on Eq. (3.26) using (xo) = (xo) = 0, and cr|0 = 
1. Top panel: The atypical motion of maxima of position is highlighted (red), following in the high 
friction limit (left) the results obtained in the overdamped regime, namely Eq.(3.22) fB, The 
same atypical evolution is yet encountered at low pressures (right, red), where the red line indicates 
the zero damping limit evolution of the maxima. To make the shift in maximum more visible, 
Eq. (3.26) has been simulated with t = 0.3 ms. Bottom panel: The maximum of instantaneous 
velocity at the low pressure limit (left) comprises of a coherent shift (red) alongside the mean 
instantaneous velocity (black). A similar behavior is noticeable for statistics of acceleration (right) 
with its maxima (red) shifting faster at higher initial noise than that of velocity. All the insets 
show a snapshot of the probability distribution at different aXQ highlighting the instability (heavy 
tails on the left), and showing once again a clear shift of the maximum alongside the potential 
force. To produce the figure on the bottom panel, Eq. Q3.26) has been simulated with t = 0.1 ms. 
The other parameters used to produce this graph from Eq. (3.26|) are K = QkBTiim-^Kg-1^ = 
300K, dt = 2 x 10~5 ms. nt = 10 4 trajectories where generated with N = 5000 samples each. 

3.3 Conc lus ion 

We have analysed and predicted interesting noise-to-signal transitions for an overdamped Brow-

nian particle evolving in the cubic potential. We showed that the mean position is linearly 

powered both by initial position noise o~XQ and environmental temperature T. We characterised 

the quality of the noise-to-signal transitions by means of the SNR, also linearly powered by initial 

position noise and environmental temperature. 
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Figure 3.21: Noise-induced effect in the maxima of distribution for position (top), 
instantaneous velocity (middle) and acceleration (bottom) to the uncertainty of the 
initial velocity state, o? . 
Top panel: the evolution of the maximum of position distribution (left) is not modified by in­

creasing initial uncertainty of the velocity state, cr|0, resulting in a vanishing SNRXmax (right). 
Middle panel: the evolution of maximum of velocity distribution (left) displays no sensitivity to 
changes in initial velocity noise, whereas its SNR±max (right) slowly converges to l/s/2 (black) 
with a reduced convergence for higher initial velocity noise. Bottom panel: The evolution of the 
maximum of instantaneous acceleration (left) is not modified by increasing initial velocity noise, 
and while its SNRX (right) requires a higher ensemble to calculate, it too is not affected by initial 
velocity noise throughout its convergence to the black line. Eq. (3.26) has been simulated using 
K = 6kBT/j,m­3Kg­l,T = 300K, (x0) = 0, ( i 0 ) = 0 , i = 0.1ms,dt = 2 x 10" 6 ms. nt = 106 

trajectories where generated with N = 5000 samples each. 

These observations pave the way for nonlinear stochastic effects that can autonomously trans­

form noise into useful mechanical effects, allowing to do autonomous mechanical work at the 

micro­ and nano­ meter scales. 

Furthermore, the high instability and nonlinearity of our model, sources of fast divergent tra­

jectories, proved to be a limiting factor for these transitions, which in turn required a different 

statistical description. Thus we proposed an experimentally accessible description which focuses 

on the maximum of position distribution, as opposed to mean position, and local curvature at 

the maximum, instead of the variance. Those quantities are well defined even at large time scales 

[2, 144]. We showed that such approach leads to atypical evolution (against the potential force) 

of the maximum, and a curvature that does not grow faster than the shift (increasing SNR). 
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Such results are general for unstable potentials comprising of an inflection point and proved to 

be easily observable through position detection, such as the case for these experiments (EH, IH7|. 

Instabilities are powerful resources naturally exploited by engines to perform useful work, or by 

amplifiers to magnify small mechanical signals for practical applications. Their characterisations 

are therefore an important building block towards the understanding of highly nonlinear quan­

tum dynamics, required for quantum information processing with complex systems. 

While the experimental platform of stochastic levitating optomechanics in vacuum is quickly 

expanding, with a unique potential to test and exploit strong nonlinear motional effects without 

any friction, their low pressures also allow for a direct observation of stochastic underdamped 

mechanical phenomena, i.e. instantaneous speed and acceleration. They therefore become new 

transient quantities to be first explored and later exploited for applications. Stimulated by 

this knowledge we focused on the development of the first transient nonlinear ballistic effects 

of noise-induced shift of instantaneous velocity and acceleration for parameters of the levitated 

nanoparticles optically trapped in high vacuum. Our results pave the way to explore quan­

tum mechanical analysis deeply underdamped and highly cooled particles in unstable potentials, 

initially close to the mechanical ground state. 



Methods 4 

Numerical Simulation of Stochastic 

Dynamics in Cubic Potential 

Only a few problems in statistical mechanics are exactly solvable. In non-linear dynamics this 

is typically not the case [187, 189]. While not being exactly solvable, these problems cease to 

analysis based on approximations schemes. Computer simulations, therefore, provide insights 

and results for problems that otherwise will not be fully tractable [1189l|. Moreover, computer 

simulations proved to be a useful tool for comparability with experimental results, and they can 

offer insights on new features of the problem at hand, due to their high versatility [189, 11901], 

One can say that computer simulations are nothing but a bridge between theoretical models and 

experimental results. 

4.1 O v e r d a m p e d Regime 

In this section, we will focus on the tricks of the trade used in the computation of highly nonlinear 

systems in the overdamped regime, using the cubic potential as the toy model. We will focus 

on the computation of the maximum of the distribution, and how to compute it beyond the 

characteristic time. 

65 



Numerical Simulation of Stochastic Dynamics in Cubic Potential 66 

4.1 .1 Stochastic Simulation and Time-Steps 

A stochastic differential equation (SDE) is an object of the form 

x = h(x,t) + g(x,t)r)(t), (4.1) 

where h(x,t), g(x,t) describe respectively, the drift and diffusion term. The solution of Eq.(4.1) 

is a stochastic process x(i) that satisfies 

x(t)=x0+ I h(x,t')dt'+ I g(x,t')dW, (4.2) 
Jo Jo 

where dW = rj(t')dt' is a Wiener process [178]. The first step to compute the Langevin equation 

(4.1) lies in the discretisation of time, by dividing it into N small finite steps of a length dt, such 

that 

tn = Tn, n = 1 , 2 , N . (4.3) 

The primary problem in stochastic processes is the computation of the stochastic integral 

ft N 

/ g(x,t)dWt^Y,9^^n)(Wtn+i-Wtn), (4.4) 
J0 n=0 

which can be approximated by the sum in the limit of dt —> 0 |19()l]. 

To simulate the stochastic integral in Eq.(|4.4|), there are different algorithms that one can 

use. The one used in this thesis, is the Euler-Maruyama scheme [1191 )L 1191). The algorithm 

uses the Markov chain approximation to compute the true solution of Eq.(|4.1[) (ref). More­

over, one can explore the convergences of this scheme, by varying the step size, to define a 

strongly convergent scheme, when lim i^Ha^ — xdt\\ = 0, and a weakly convergent scheme when 
dt->0 

J im l-Eja^] — | = 0. where xt is the exact solution, and xff is the result of the simulation 

with the step dt. The convergences are not unconditional, therefore the following conditions need 

to be valid [191] 

1. The functions h(x,t), and g(x,t) are four time continuously differentiable and their first 

derivatives are bounded. 
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2. The functions do not grow too fast with parameters. 

The above conditions are the basic building blocks to the concept of the convergence order 

E[\xt-x?\]<K?(dt) (4.5) 

E[xt]-E[af]\<K?(dt), (4.6) 

where the constant K^(dt) depends on the time, t, of the considered stochastic equation, with the 

order 7. The meaning behind this convergence order is simply that if the scheme is convergent 

with order 7, and we make a step k times smaller, the approximation error will decrease by a 

factor of k1 [191]. This give us the idea of the time-step of the problem we are computing. 

The Euler-Maruyama scheme is weakly convergent with order 1, and strongly convergent with 

order 1/2 |191 )L 191]. Of course there exists a limitation to the dimension of the time-step, 

because if it is too small then computational errors caused by the use of finite precision numbers 

might arise. 

4.1.2 Simulating within the Characteristic Time 

In the specific case of a Brownian particle in cubic potential 

± = -kx2 + J 2—r)(t), (4.7) 

the dynamics is subjected to a divergence for finite time P, 11431]. The reason behind this is due 

to the fact that the particle dynamics is considerably different for \x(t)\ < (3fc/3T/£;)1//3, where 

the particle diffuses freely with a weak drag to the unbounded region, and \x(t)\ > (SksT/k)1^3, 

where the drag force rapidly increases as x(t) leaves the plateau P, 11441]. For the above reasons, 

one needs to be extremely careful in exploring the convergent schemes for the Euler-Maruyama 

method. Specifically, referring to the convergence conditions, the cubic potential is four times 

continuously differentiable with bounded first derivative, but the divergence can violate the sec­

ond point, given that in certain regions of parameters, the function grows quickly towards the 

divergence. Notwithstanding, for short time dynamics defined by the characteristic time, one 

can safely assume that both conditions 1, and 2 for the convergence are obeyed. 
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Figure J^.l: Evolution of mean position (left), and standard deviation (right) in time, 
for different ensemble size. 
The convergence of position moments, for the short time dynamics, is reached for a fairly small 
number of trajectories , nt ~ 4000 (green), allowing high accuracy at a small cost of computation 
time. For this figure, Eq.(3.h) has been simulated, using CTQ = 0, D = 0.1, dt = 1 0 - 5 , k = 1 

The diverging trajectories generate heavy tails in the P D F P{x,t), which shows the increase of 

moments, first and second, that are responsible for the drop of the SNR in FigJ3.13|. Although 

in simulation it is easy to witness the aforementioned heavy tails, and the drop of the SNR, the 

dynamics is bounded by a divergence time (see Sec. 3.1.1) that requires a certain control over the 

time-step to be able to follow the fast divergent dynamics. Once the divergence dominates the 

dynamics, the convergence conditions cease to be valid, rendering moot the numerical method 

in use. For time smaller than the characteristic time, estimable from the divergence time intro­

duce in chapter [3] (see Figj3.4|), the accuracy of the simulation is conditioned by the ensemble 

size (number of trajectories). For the global moments calculation, the ensemble requirement 

are rather frivolous, as can be seen in Figj4.1|, where good accuracy can be obtained even for 

4000 trajectories, translatable in small time computation. For local moments computation, the 

simulation requires a larger ensemble size, as shown in FigJ4.2|, where convergence is slow and 

with small accuracy. 

Both Figj4.1|, and FigJ4.2| depict a scenario in which a time evolution is plotted, with arbitrarily 

small environmental noise and no initial thermal noise. Although FigsJ4.1|J4.2| show qualitative 

ensemble size requirements, it is important to keep in mind that the more noise acts on the 

system, the higher the ensemble size is. 
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Figure Time evolution of maximum of distribution (left), and curvature (right) 
for different ensemble size. 
The convergence of moments for the most likely trajectory, for the short time dynamics, is slow, 
requiring at least nt « 10 5 (green). The accuracy of the simulation therefore requires a higher 
computation time, of the order of 30 minutes. For this figure, Eq.§3.5\) has been simulated, using 
a0 = 0,D = 0.1, dt = 10" 5 , k = 1 

4.1.3 Simulating beyond the Characteristic Time 

Passed the point of characteristic time, dictated by the bounds discussed in Sec. |3.1.1|, the global 

moments of particle position bare no information. For this reason the computation of local 

moments has been introduced in Section |3.1.4[ Beyond this point, the convergence rule is no 

longer valid, as the drift force in the Langevin equation grows fast with the growing distance from 

the origin of coordinates. Diverging trajectories are dominating the dynamics, and heavy tails are 

hiding the maximum of the distributions. A n alternative method to reach higher accuracy, rather 

than brute forcing with increasing ensemble size, is required. To better explain the problem, and 

understand the root of the solution, it is good to introduce the concept used as "accuracy". 

Accuracy can be defined as a measure of closeness between the simulated value and the real 

value |191L11921]. A good measure of accuracy, numerically, is the mean absolute error ( M A E ) , 

which is calculated as 

MAE = Y l V i ~ X i l , 
f-f n 

(4.8) 

where yi is the prediction, and Xi is the true value. Looking at Figj4.3|, one can see the 

accuracy for mean and maximum as a function of the ensemble size (number of trajectories) 
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Figure 4-3: Mean Absolute Error for mean position (left) and maximum of the 
distribution (right), as a function of ensemble size. 
The computed MAE is obtained by comparing the analytical results (subscript A), Eg.(3.10) (left), 
and Eg. (3.22\) (right), with the simulated one (subscript S). The MAE of mean position, for small 
ensemble size nt ~ 4000 converges to a small error MAE ~ 5 x 1 0 - 3 , whereas for the maximum 
of the distribution, at the same ensemble size, the MAE reaches a value an order of magnitude 
higher MAE 2 x 10 2, which as depicted in Fig\4-2 
this figure Eg.(3.5) has been simulated, using k = 1,D 

is of the order of the value of x m a x . 
= 0.1, a0 = 0.0, t = 0.2, dt = 10" 5 

For 

in the unstable cubic potential (4.7), with diverging trajectories. It can be seen that all of the 

M A E curves saturate, showing, not surprisingly, that the ensemble size makes for great accuracy. 

Comparing the top and bottom panels of Figj4.3|, it can be seen that while the global moments 

can be calculated with high accuracy, limited by the precision given by the standard deviation, 

the maximum of the distribution is computed with a smaller accuracy, 1 order of magnitude 

compared to the global moments. Moreover, the convergence of M A E is slower in the maximum, 

than the first moment of particle position. It has been shown in the previous section that for 

times shorter than the characteristic times, a mere increasing of the ensemble size could be 

enough to obtain accurate numerical results. The natural arising question is whether the latter 

is true if we are simulating for times larger than the characteristic times, while looking at local 

moments only. 

To answer the question, it could be interesting to compare the SNR, that shows time scales of 

the problem, to the evolution of the maximum of P D F of particle position. As shown in FigJ4.4|. 

for time smaller than the characteristic time, the accuracy obtained on the xmax can be increased 

by increasing the ensemble size; more importantly whilst approaching the characteristic time, 

after which the divergence dominates the dynamics, the accuracy obtained in the computation 

of 
Xmax decreases vertiginous. To push the simulation further, and ultimately being able to 
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compute features of the cubic potential beyond the characteristic time, a deeper investigation on 

the system is required. As presented more in detail in P , I144J. the P D F vanishes at \x\ —> oo. 

whereas the probability current does not. As a result, one can approximate the singular point 

x = —oo by an absorbing boundary [11271 [193] at a finite position, a. 

The way the absorbing boundary 
0.3 

0.25 

works is simply catching the parti­

cles when the point x = a gets hit for 

the first time. The condition limit­

ing the absorbing boundary is given 

by a < — (3kBT/k) 3, where no prop- £ | 0 1 5 
CO 

erties on the plateau, for the slow 

stochastic motion, will be affected 

Characteristic 0 

time 
= M l 

- E q . 3 . 2 2 
° Xmax, Simulation 

0.05 [2]-

The absorbing boundary method, is 

aimed to analyse those trajectories 

that survive at the plateau. To 
Figure 4-4-' Computation of xr 

achieve such scenario, one has to characteristic time. 

compared to 

The graph can be split into two main parts; the first is 
for time smaller than the characteristic time, defined in 
this graph as the maximum of the SNR calculated from 
global dynamics, where the x m a x can be computed accu-

the rule: " Whenever the trajectory rately by mere increase of ensemble size. Secondly ap­
proaching the characteristic time, the error performed on 
the computation of resulting in a poor ac-

first time, reject the entire trajec- c u r a t e computation for time largerthan the the turning 
point o/SNR. For this figure Eq.(35) has been simulated, 

tory" [144). Visually, what happens using k = 1,D = 0.1, ao = 0.0, dt = 10~ 5. An ensemble 
size of 3 x 10 5 has been used to generate this graph. 

implement a rejection scheme upon 

the evolving trajectory, following 

hits the absorbing boundary for the 

to the trajectory is shown in FigJ4.5|, 

where on the left it is shown how an 

ensemble of trajectories evolves in the cubic potential, dictated by a dominating divergence for 

time larger than the characteristic time defined by the parameter of the problem, and it can be 

seen that while trajectories are rapidly diverging, there are few that survives the plateau. 

Those trajectories are the ones that characterise the dynamics of the maximum of the P D F . 

Imagining now to draw an imaginary line on the trajectory of Figj4.5| (left) following the rules 
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Figure 4-5: Comparison of the trajectory evolution, and the role of absorbing bound­
ary. 
On the left, the evolution without absorbing boundary is presented, where diverging trajectories 
are driving the dynamics. On the right, the evolution of trajectories when the absorbing boundary 
is used. To produce this graphs, Eq.(3.5) has been simulated, using the following parameters: 
XQ = 0, do = 0, T = 0.1, k = 1, dt = 1 0 _ 3

; and 10 3 trajectories were generated. The number of 
absorbed trajectories, for the above parameters, is ~ 60%. 

dictated by a previously defined, and continuously monitoring during the simulation if a trajec­

tory hits the point on the line. If it does, we just eliminate the trajectory and only keep the 

ones which survive for the time interval of the simulation. The survived trajectories will contain 

the information of the local moments even beyond the characteristic time of divergence, FigJ4.5| 

(right). After having applied the absorbing boundary, even for short times, the global moments 

are strongly influenced by the position of the boundary, as they are biased by the presence of the 

absorbing boundary, as soon as even a trajectory gets rejected by the scheme. Having eliminated 

all the diverging trajectories, the resulting P D F will have a narrower width than the full cubic 

evolution if the boundary is placed inside the plateau region. 

As a result, the precision upon the numerical estimation of the maximum of particle position, 

increases as the uncertainty is smaller, Fig.4.6 (right) (blue line), when diverging trajectories are 

rejected. The resulting estimation is presented in FigJ4.7|, showing an improvement upon the 

computation of x m a x compared to FigJ4.4|, approaching and surpassing the characteristic time 

of divergence for a particle in cubic potential. Moreover, in Fig.4.7 (right), the M A E about the 

new rejection scheme is shown as a function of ensemble size, illustrating the improvement on 
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Figure 4.6: Comparison of the rejection (blue) and no rejection (red) methods of 
computing the maximum of position distribution. 
On the left, a comparison of PDFs generated via the two methods is presented, showing not 
only how can one increase the accuracy of the estimation, but also how to reduce the error, 
and consequentially increase the precision. On the right, the suppression of the error for the 
estimation of x m a x is presented. To produce this graphs, the following parameters were used: 
XQ = 0, 0 0 = 0, T = 0.1, k = 1, dt = 1 0 - 4 , t = 1.0, and 210 4 trajectories were generated. 

the accuracy computation of the local moments of particle position. 

4.2 U n d e r d a m p e d Regime 

In this section we will focus on discussing the strategies and precautions used to compute averaged 

v, a and instantaneous x, x, quantities for highly nonlinear systems, such as the case of a particle 

in the cubic potential. In the underdamped regime, the SDE assumes the following general form 

x(t) = ^ , (4.9) 
771 

v(t) = - 7 « M - kx2 + J^^lrj(t). (4.10) 
V 777. 

The above equation allows the computation of instantaneous velocity x, and acceleration 'x. 

quantities that vanish in the high friction limit (Eq.Q4.l|)), leaving space to average quantities 

v = Ax/At, and a = Av/At. It is of the utmost importance to understand how to properly 

compute the two quantities numerically. 
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Figure J^.l: Computation of x m a x compared to characteristic time, extension with 
rejection scheme. 
Left: The black dots for time t < 1 remains unchanged with respect to Fig\4.4i whereas the blue 
dots show the improvement upon the calculation of x m a x for time approaching the characteristic 
time defined by the max of the SNR for global dynamics, and beyond. The accuracy obtained by 
applying the rejection scheme is much higher than in the computation of x m a x in Fig\4-4\, for the 
same ensemble size. 
Right: The Mean Absolute Error referring to the blue circles of the left plot, where it can be seen 
the improvement upon the MAE compared to Fig.4^5. For this figure Eq.(3J3) has been simulated, 
using k = 1, D = 0.1, o~o = 0.0, dt = 10~ 5. An ensemble size of 3 x 10 5 has been used to generate 
this graph. 

4.2.1 Average vs Instantaneous Quantities 

Given a position trajectory evolving in time x(t), one can compute the average velocity simply 

as the ratio between the distance travelled and the elapsed time v = Ax/At. By taking its 

limit as the elapsed time A t approaches zero x = ^lim Ax/At = dx/dt allows to calculate the 

instantaneous velocity, telling us how fast the particle is moving anywhere along its path. In the 

underdamped regime, the instantaneous velocity x is naturally introduced in the equation of mo­

tion Q4.9D and in the low friction limit, where the damping time is long, the computation always 

outputs the instantaneous quantity with accuracy varying with the sample size (see Fig. |4.8| top 

panel). As the friction becomes larger, the damping time shortens resulting in a time evolution 

of velocity comprising both ballistic (t <C T) and diffusive dynamics (t >̂ T). The behavior can 

be observed in Fig. |4.8| (bottom panel, red dots), where for short time the velocity fits with the 
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Figure J^.8: Computation of average and instantaneous velocity (left column) and 
acceleration (right column) for different timesteps dt, for low pressure regime (top) 
and high pressure regime (bottom). 
To obtain the dots, 4 . 9 ) has been simulated. Top panel: The instantaneous velocity x (left) is 
naturally introduced in the equation of motion Eg.(4.9), and its mean (x) can be easily computed 
even at larger timesteps (black). Instantaneous acceleration x, (right) requires the numerical 
differentiation algorithm to be calculated, and hence its mean (x) is more prone to error for 
increasing timesteps (blue, black). Bottom panel: in the high friction limit, by accessing the 
velocity output from e g . d 4 . 9 D , one registers both ballistics and diffusive timescales (red dots). By 
making use of the differentiation algorithm x(n + m) —x(n)/mdt one can see a quick convergence 
of the average velocity (left) and acceleration (right) for small values of m (green) to the analytical 
results for overdamped dynamics (black). The Red lines correspond to analytical predictions at 
low pressure, whereas black lines correspond to analytical prediction at high pressure. 

theoretical approximation of Eg.(3.30]) (red dashed line), whereas for larger time the simulated 

curve converges to the result of average velocity of Eq.(|3.14|))(solid black line). Tweaking the 

spacing between the position difference A x = x(n + m) — x(n) and time A t = mdt, or simply 

running simulations for larger timesteps dt, allows to calculate more efficiently the average veloc­

ity v = Ax/At. The above results is computationally inexpensive and quickly converges (green 

and purple dots) to the theoretical results of Eq.(3.14) for the overdamped dynamics. A similar 

logic applies for the computation of both instantaneous 'x = dx/dt and average a = Av/At 

acceleration. In the low friction regime, within the short time approximation, there exist a sec­

ond way of computing acceleration statistics without using differentiation techniques. For this, 

one needs to rewrite Eq.(4.9) as 'x = —kx2, describing the deterministic dynamics of a damped 

http://eg.d4.9D
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particle in cubic potential, and realise that any statistics of acceleration can be obtained directly 

by the statistics of position determined by the geometry of the potential. This method does not 

decrease the ensemble size requirements, nor improve the accuracy of the result, but it allows 

for a faster computation of the statistical quantities of instantaneous acceleration (x), o~x, SNRx 

(red dots). 

4.2.2 Correlations and Crosschecks of the Dynamics 

To double check the results of the simulations, we employ a correlation-based method, which 

consists of a normalised measurement of the covariance pxy = cov(xy)/axay, where cov(xy) = 

(xy) — (x)(y) is the covariance matrix of the pair, with values bounded between —1 and 1. This 

quantity gives information about the absolute value and the direction of the correlation. Such 

method is often referred in literature as Pearson's correlation method |1921]. and for a particle 

in cubic potential the simulated pairs present for short time dynamics t = 0.1, and negligible 7, 

the following correlation 

(4.11) 
x0 1 1 

PxAx = , (4.12) 

PAxx = °, ==• (4.13) 

The above equation, together with Fig.4.9, demonstrate that low damping, F = 1 0 - 2 Hz (middle 

column), does non modify the correlations neither in time (top panel), nor in initial noise (bottom 

panel) allowing for a first initial check of the dynamics as for cr|0 = 0 the correlations in Eq.(4.1lj) 

all output unity. Moreover, when external inputs are applied, such as nonvanishing initial velocity 

noise a\ (rightmost column), the correlations containing velocity (red and blue dots) are affected 

the most, showing their convergence to unity as initial position noise increases. 
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Figure 4-9: Pearson correlation coefficients, in time (top), and initial position noise 
(bottom) for the pairs pxx, PxAx, PAxx-
From left to right the pure deterministic dynamics for (XQ) = (XQ) = 0, and noiseless initial 
velocity (left), followed by the small pressure regime (middle), and finally the noisy initial velocity 
(right). Left column: in the pure deterministic scenario, F = 0 crj = 0, all the pairs are fully 
correlated with each other Middle column: A slight change in damping F = 10 , aXQ = 0, shows 
little to no modifications as the pairs quickly converge to full correlation. Right column: a change 
in initial velocity noise F = 0, cr|0 = 1 disrupts the correlation, leaving all the pairs slowly 
converging to full correlation p = 1, aside for PAxx (black), which remains fully correlated as the 
initial position noise increases. Eq. (3.26D has been simulated using K = 6ksF'pm~3Kg~x,T = 
300K, (xQ) = 0, (£ 0 ) = 0, dt = 2 x 10" 5 ms. 10 4 trajectories were generated with 5000 samples 
each. 

4.3 Conc lus ion 

We have shown the numerical approach to compute the transient features analysed and discussed 

in Chapter |3[ We began by analysing the computation of the stochastic integral of Eq.(4.4), which 

introduced the Euler-Maruyama algorithm used throughout this thesis, followed by the analysis 

of its convergent scheme allowing to understand the importance of the choice of the timestep 

used in the computation. 

We then proceeded by analysing the convergence scheme upon the computation of a particle in 

the cubic potential within the characteristic time, i.e., before the divergence kills the trajecto­

ries, where the scheme is still applicable for the short time dynamics. We showed, by virtue 

of Figs. |4.1|-14.2|, that the accuracy of the simulation is conditioned only by the ensemble size, 
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proving to be frivolous for the computation of the global moments (x), o~x, while demanding for 

the local ones xmax, o~max. 

Furthermore, we showed that the convergence scheme cease to be valid when computing beyond 

the characteristic time, where the drift force of Eq.(4.7) grows fast with the growing distance 

from the origin, generating diverging trajectories. 

Such scenario required an alternative method of computation, based on a rejection scheme, which 

has been introduced and analysed by means of of the mean absolute error. 

This rejection scheme allowed us to characterise and compute the properties of the surviving tra­

jectories, even in the long time limit, with an increase accuracy of the computation, as showed 

by Figs. g 3 

When simulating the underdamped motion of a particle in cubic potential it is of the utmost 

importance to realise how to compute average v, a and instantaneous x, x, quantities. The last 

section of this chapter analyses the methods and techniques used to compute such quantities, 

see Fig. |4.8[ 

Lastly, we introduced a method, based on the Pearson correlation coefficient, as a crosscheck of 

the computed dynamics, see Fig. |4.9|. 

Such methodologies, broadly applicable to any highly unstable potential, allow for versatile sim­

ulations. In addition to that, they simultaneously unveil the increasing computational demands 

in terms of time of simulation and hardware requirements, because of the increasing complexity 

of the system. 



Conclusion and Outlooks 

In this work, we investigated noise-to-signal transitions for a Brownian particle evolving in the 

unstable cubic potential. We studied two essential regimes with high experimental relevance in 

the actual scientific scope, comprising of overdamped and underdamped regime. 

Chapter [2] was devoted to an overview of linear potentials and the evolution of their moments. 

Specifically, the absence of a potential (free particle) was introduced to demonstrate ballistic 

dynamics at short time scale in the limit of strong damping, not predicted by Einstein theory of 

diffusion. The linear ballistic effects for a particle trapped in an optical harmonic potential in 

liquid has been observed in 2010 [179HTHI| • 

Furthermore, the damped and driven dynamics of a particle in a linear quadratic potential was 

presented to explore how the coherent motion can be induced by both initial conditions (ther­

mal equilibrium at initial time without a driving force, or out of equilibrium at initial time), 

or by external forces. The signal to noise ratio SNR was then introduced, showing the relevant 

important dynamical quantities for the respective regime (i.e. position x in high friction limit, 

and instantaneous velocity x in the low friction regime). It dictates the upperbound of the linear 

potentials, to later be compared with the nonlinear system. 

The inverted quadratic potential, which naturally appears at the centre of a symmetrical double 

well potential, is a very interesting system because although it is still linear, it allows to introduce 

and discuss the role of instability, which can be used to realise low noise linear amplification. 

Although there is a plethora of experimental realisations of stochastic dynamics in the optical 

double well potential [11941-1197|. no analysis of fast transient effects, at the heart of low noise 

linear amplification, starting from unstable positions are available. 

The fast pace at which the stochastic levitated optomechanics field is evolving, manipulation 

79 



Conclusions and Outlooks 80 

of optical potentials and fast optical measurements, allowed to test and exploit nonlinear me­

chanical effects. Chapter [3] delves into the description of the mechanical dynamics of a particle 

trapped in the optical cubic potential. The main result, at the heart of the unstable nonlinear 

systems, lies in the noise induced mechanical mean displacement (x) (in the high friction limit) 

Fig.3.13| (red line) |I143I|. A consequence of the unstable dynamics sees the P D F of the particle 

position developing heavy tail, while its moments cease to exist. Motivated by the limitation 

imposed by the rapid diverging trajectories, resulting in variance of position growing faster than 

its mean, we proposed and analyzed local directly measurable characteristics xmaxj o~x,maxi over­

coming such limitation |2|. A key result in this framework shows the peculiar behavior of the 

most probable position, which moves opposite to the acting force; both in time and temperature. 

Those results have been experimentally observed |I8"41 IR7|. showing the time evolution of both 

mean and maximum of position distribution in short and long times dynamics. 

Motivated by the already reached underdamped regime for levitated experiments J3"%1 l4"%l 11401.  

11 SOIj. which allow to probe the fundamentals of nonlinear stochastic dynamics in the limit of weak 

friction, we proposed and demonstrated the first nonlinear ballistic effect for levitated nanopar-

ticles optically trapped in high vacuum, consisting of the noise-induced instantaneous speed and 

acceleration of in the highly unstable cubic potential. The key result, shown in FigJ3.15|, demon­

strates that the noise-induced effect turns to instantaneous velocity and acceleration. Moreover, 

we observed the coherent motion, alongside the potential force, of the mean and maxima of 

instantaneous speed and acceleration distributions, FigJ3.20[ 

Such results, obtained for parameters of the current underdamped experiments, motivate an 

experimental verification with further investigation on the robustness of the effect against par­

ticle with initial nonzero velocity |3.17|. While cryogenic cooling is not necessary to observe the 

transient effect, a reduction of initial velocity noise seems required for a reliable experimental 

observation (Fig.3.19[), either via cooling or post-selection. 

In the last chapter, |I| we discuss the numerical methodologies to simulate the dynamics of a 

particle in unstable potentials. Although we focus on a particle in cubic potential, our method­

ologies are broadly applicable to any highly unstable potential. 

The key result of this chapter is contained within the rejection scheme that not only allowed 

to compute the maximum of the distribution beyond the characteristic time, but it also proved 
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useful to minimise the demanding ensemble size requirement for its computation. 

Although out of the scope of this work, it has been emphasised the increasing computational 

demands in terms of time of simulation and hardware requirements. Such demands are due to 

the increasing complexity of the systems, unavoidable when analysing nonlinear systems. 

To better visualise the experimental path that followed the theoretical results presented in this 

thesis work, and to understand the corners of interesting effects yet to observe, we present the 

following table 

Table J^.l: Experimental Tests 

Effect Measured Not measured 
Eqs.(3.1C 
evolution 
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' pos 
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cubic potential wall. Larger T makes for harder detection of this effect. Cooling is required. 
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Out look 

Following from this work, we envision these three natural future steps to be of relevance. 

Classical Nonlinear Squeezing: With classical nanomechanical systems being the centerpiece of 

sensing and manipulation in modern technologies, their application rely on reduced noise for 

efficient functioning. In linear systems, thermal squeezing helps to arbitrarily reduce noise in 

a linear combination of position and momentum [198], but they cannot do so with nonlinear 

variables. To further reduce such noise, nonlinear squeezing provided by nonlinear dynamics is 

required as a pre-step to its quantum version |I151L11521]. 

Microscopic machines: The naturally arising quasistationary state obtained by overdamped dy­

namics in the cubic potential, has higher energetic content than the equilibrium one jBTj. This 

stimulates the development of new designs of thermal machines based on unstable dynamics. In 

this direction, one could think of a thermal source transducing energy harnessed from a hot bath, 

which is then used to drive the working medium and generate motion on it. 

Such systems require the engineering of the interaction between the thermal source and the 

working medium. Their applications range from understanding the heat transfer and effective 

fluctuation-induced forces in small mesoscopic systems strongly coupled to their surroundings, 

to quantum-to-classical transitions between quantum modes of light and mechanical nonlinear 

oscillator pCES, lOTi] 

Towards the quantum domain: In recent years, the progress in cooling of nanoparticles in optical 

traps has brought us to the quantum regime j6"3l 1151L1154], Being our approach directly trans­

latable to unitary dynamics in the quantum regime, we envision a quantum mechanical analysis 

of deeply underdamped and highly cooled particles in the unstable cubic potential, initially close 

to the mechanical ground state, as a necessary step to further delve into the quantum realm 

[153, 156]. 
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T h e trajectories o f an overdamped particle i n a highly unstable potential diverge so rapidly, that the variance of 

position grows m u c h faster than its mean. A description o f the dynamics by moments is therefore not informative. 

Instead, we propose and analyze local directly measurable characteristics, which overcome this limitation. W e 

discuss the most probable particle position (position of the m a x i m u m of the probability density) and the local 

uncertainty in an unstable cubic potential, V(x) ~ x 3 , both in the transient regime and in the long-time limit. 

T h e m a x i m u m shifts against the acting force as a function of time and temperature. Simultaneously, the local 

uncertainty does not increase faster than the observable shift. In the long-time limit, the probability density 

naturally attains a quasistationary form. W e interpret this process as a stabilization via the measurement-feedback 

mechanism, the M a x w e l l demon, which works as an entropy pump. T h e rules for measurement and feedback 

naturally arise from the basic properties of the unstable dynamics. A l l reported effects are inherent in any unstable 

system. Their detailed understanding will stimulate the development of stochastic engines and amplifiers and, 

later, their quantum counterparts. 

D O I : 10.1103/PhysRevE.97.032127 

I. INTRODUCTION 

Various engines and amplifiers exploit a natural instability 
in their parts to perform useful work or required manipulations. 
Instability is therefore a resource, although it is simultaneously 
dangerous for the system. It can, in fact, prevent the machine 
from working or, in a drastic case, it can completely damage 
it. Unstable systems, when left to evolve freely, have a strong 
tendency to diverge during quite a short period of time. 
Their variables can reach unwanted extremely large values 
for finite time intervals. Statistically speaking, not only do all 
their statistical moments diverge, but, even more destructively, 
standard deviations can diverge faster than mean values. At 
this moment, the moments cannot inform about the unstable 
stochastic dynamics, and a different approach is required. An 
illustrative example of such instability is the unbounded cubic 
potential, 

V(x)=±kx3, (1) 

which exhibits all these aspects even in an overdamped regime. 
Recently, the investigation of unstable systems got a large 

stimulus from experimental developments. Beyond the over­
damped regime, the cubic nonlinear potential is experimentally 
accessible in the developing field of optomechanics with both 
nanoparticles [1­4] and solid­state objects [5,6]. In quantum 
optomechanics, cubic nonlinearity is principally required to 
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construct highly nonlinear Hamiltonians and potentially im­
plement analog quantum simulations with mechanical objects 
[7­9]. The investigation of unstable systems is also important 
for the development of quantum mechanical engines beyond 
simple double­well models [10,11], which is necessary for 
the further development of quantum thermodynamics. All 
these investigations also require both comparisons with and 
an understanding of the overdamped case. 

In the present paper, we thus discuss the dynamics of an 
overdamped Brownian particle diffusing in an unstable cubic 
potential (1). Even though we focus on the particular case of 
a cubic potential, our approach can be easily generalized to 
other unstable potentials with an inflection point. We assume 
that the position of the particle x(t) evolves in time according 
to the Langevin equation 

— = x\t) + >/2DI;{t), (2) 
at y 

where %(t) is the standard Gaussian white noise [(£(*)) = 
0, (KOK'O) = s(t ~ t% y stands for the friction, and the 
diffusion coefficient satisfies the fluctuation­dissipation theo­
rem, D = kftT/y. Although all derivations are carried out for 
arbitrary y, in the illustrations we will always assume y = 1. 

Brownian dynamics as described by Eq. (2) occurs as a basic 
element of several nonlinear stochastic models in chemistry, 
physics, and biology. Examples include the firing of noisy 
neurons [12,13], optical bistability in lasers [14­16], or, more 
generally, passage through a saddle­node bifurcation [17­19], 
where the simplicity of Eq. (2) allows one to describe a 
phenomenon of intermittency. Another broad class of systems 
where Eq. (2) occurs naturally is one­dimensional Brownian 
ratchets modeled as the diffusion in tilted­periodic potentials. 
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The transport properties of the latter at a critical tilt were 
derived in Refs. [20-22]. Other examples of transitions from 
metastable states in condensed matter models can be found in 
Refs. [23,24]. 

The analytical techniques developed to describe such prob­
lems (the decay of unstable states) can be roughly subdivided 
into three groups. The first deals with first-passage times [12-
15,17,18,25-35]. The second, a rather related one, focuses on 
a so-called nonlinear relaxation time (or a mean time spent by 
a particle in a given region) [36,37]. This approach differs from 
the first-passage approach by accounting for multiple passages 
(returns) of the particle and not only for the first one. Third, 
significant effort was made to analyze the time evolution of 
the probability density function (PDF) in a symmetric inverted 
parabolic potential (bounded by a quartic potential for large 
x) [38̂ -6]. Whereas the first two approaches provide only 
indirect information about the particle position, the third aims 
directly at the position PDF. It exploits the symmetry of the 
problem and/or properties of the inverted parabolic potential 
near x = 0 to derive asymptotic approximations in different 
regimes. 

In the present paper, we go beyond the aforementioned 
studies in the following ways. First, we argue that highly 
unstable dynamics (2) leads, already after a short time, to 
PDFs with heavy tails, which makes the description of x(t) 
in terms of statistical moments useless. Instead, we propose 
to characterize the particle position by a directly measurable 
maximum of the PDF and use a curvature of the PDF at the 
maximum to characterize uncertainty. Second, we derive and 
discuss the generic properties of the PDF including short-time 
dynamics, the development of the heavy tail, and long-time 
properties, which turn out to be universal and described by the 
theory of quasistationary distributions [47,48]. Quasistation-
ary distributions emerge in stochastic processes conditioned on 
"nonabsorption." Their study began with Yaglom's seminal 
paper on the Galton-Watson branching process [49]. Since 
then, the conditioned processes were successfully applied in 
mathematical biology [50], epidemiology [51], and demo­
graphic studies [52], where the absorption corresponds to 
the extinction of a modeled population. The conditioning 
on nonabsorption shifts focus on an ensemble of surviving 
individuals. In our context, nonabsorption roughly means that 
the particle remains on the potential plateau. The conditioning 
restricts our attention to trajectories which do not diverge up 
to a certain time. In addition, we relate the evolution of the 
PDF towards the quasistationary distribution to a mysterious 
creature known as Maxwell's demon [53,54], 

All these main ideas are motivated and explained on 
physical grounds in Sec. II, which outlines the main results 
of our approach. Sections III-V comprise all technical details 
concerning derivations and thorough discussions of particular 
points. 

II. PERTINENT DESCRIPTION OF RAPIDLY 
DIVERGING TRAJECTORIES 

In the cubic potential (1), the particle dynamics is con­
siderably different for \x{t)\ < (3kBT/k)l/3 and \x(t)\ > 
(3kBT/k)l/3 [34]. Near the inflection point (x = 0) on the 
potential plateau, the cubic potential is negligible compared 

0.5 

-1 -0.5 0 0.5 1 

^ X ^ 
(x(t)) a w ( t ) 

F I G . 1. Difference between the regular local and the divergent 

global statistical descriptions of Brownian motion i n an unstable cubic 

potential. A particle is initially placed at the inflection point (black 

circle). In the global description (mean position), depicted by the red 

lines i n the density plots, the mean is quickly dragged towards — oo 

due to the instability and hence it can be used for a very short time 

only. That behavior is also reflected i n the presence of the heavy tail 

of P(x,t) (upper panel). O n the other hand, the m a x i m u m of P(x,t) 

(green lines, the local description) moves atypically i n the direction 

opposite to the acting force. T h e instability at negative x does not 

invalidate the latter quantity even for long times. This gives one the 

possibility to go beyond statistical moments in the local description 

of unstable motion. T h e higher moments vs their local counterparts 

are discussed in F i g . 2. 

to the thermal noise. Hence, when \x(t)\ < (3kBT/k)1'5, the 
particle diffuses almost freely with only a weak drag to the 
left. On the other hand, the drag force rapidly increases 
in strength as x(t) departs from the plateau. Actually, for 
\x(t)\ > (3kBT/k)1^3, the potentialis so strong that the particle 
appearing at x(t) < (3kBT/k)l/3 reaches minus infinity in a 
finite time [34,55]. On the other hand, the particle at x(t) > 
(3kBT7&)1/3 is dragged extremely quickly to the plateau. 

The rapid divergence of trajectories implies the unique 
features of the PDF P(x,t). First of all, P(x,t) develops a 
heavy tail for negative x (as derived in Sec. III). This renders 
worthless the usual description of x(t) in terms of moments 
(x(t)),(x2(t)), . . . , even at relatively short times. The higher 
the moment, in fact, the faster is the divergence, which we illus­
trate in Fig. 2, where the ratio (x(f))2/Var[x(f)], Var[x(f)] = 
(x2(t)) — (x(t))2, is plotted by the blue line. Because of the 
divergence, the ratio quickly drops to zero [55]. Assuming 
(x(t)) as an average useful signal from the unstable dynamics, 
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this ratio can be interpreted as a signal-to-noise ratio (SNR). 
A drop in the SNR means that the signal in the position is 
negligible compared to the noise. 

It is therefore necessary to adopt a description of the present 
unstable system, which goes beyond the statistical moments. 
The main idea is to focus on the most probable particle position, 
i.e., on the position of the maximum of P (x, t), xmax (t) (instead 
of the mean value), and on the local curvature of P(x,t) 
(instead of the variance). This approach has already been used 
to define the local uncertainty for non-Gaussian distributions 
in quantum optics [56]. In the present model, this choice is 
experimentally motivated. It corresponds to a picture obtained 
from a detector linearly sensitive to the larger density of 
particles (or trajectories) above some minimum threshold, as 
depicted in Fig. 1. 

This measurement bears little information about diverging 
trajectories and provides a coherent picture of the most proba­
ble particle position near the instability. To quantify the relative 
fluctuations near the most probable position, we define the 
"signal-to-noise" ratio as 

SNR(f) = ,(0 (3) 

where we have introduced the normalized inverse curvature at 
the maximum [56], 

P(xmax(t),t) 
<(0 = 

d2
xxP{xmaAt),t)\ 

(4) 

Note that for a Gaussian distribution, the inverse curvature 
(4) is equal to the variance ô axW = Var[x(f)]. The inverse 
curvature can be experimentally reached [56] following a 
conditional version of the central limit theorem [57], We 
also note that an alternative regularized description based on 
quantiles (the median and quartiles) of the position distribution 
is possible. We leave a discussion of the advantages and 
disadvantages of this possibility to a further study. 

SNR (3) specifies how well the most likely position can 
be observed in an experiment. It is a crucial parameter for a 
possible experimental test of our results. As we discuss below, 
*max is shifted to the right from x = 0. This shift will be 
experimentally detectable only if the SNR is not negligible. 
SNR (3) is shown in Fig. 2. In contrast to the ratio of averages 
(x(t))11(x2(t)), it shows no drop as time grows. In fact, the 
SNR (3) remains nonzero for any t, because both the maximum 
and the local curvature converges to a positive value. In contrast 
to this, the average particle position always moves in the 
direction of the force (cf. Fig. 1). 

The second key feature of the PDF P(x,t), induced by 
the high instability of the potential (1), is that P(x,t) is not 
normalized to one on the real line x e (—oo, + oo). The 
normalization 

S(t) 
- r 

J — c 

dxP(x,t), (5) 

known as the survival probability [25], gives the weight of 
trajectories that have not reached x = — oo by time t. The 
survival probability decays with time exponentially when 
D > 0 (Sec. V). Thus, in an ensemble of trajectories, the total 
weight of those wandering on the potential plateau decreases 
as individual trajectories are quickly dragged towards minus 

0.16 

0.14 

0.12 

i SNR = X^/CT ,̂ (simulation) 
-SNR = x^„/(7^ox, (analytical) 
- S N R = (x(t))2/Var[x(t)], (simulation) 

t 

F I G . 2. Fast divergence o f the global description using averages 

is demonstrated by a swift drop of the S N R (red line). T h e local 

description using the m a x i m u m o f the P D F and the curvature at the 

m a x i m u m maintains its information value for all times (green line and 

o). In M o n t e Carlo simulations we have generated 4 x 10 5 trajectories 

with the time step At = 0.002 starting at the origin, x(0) = 0, and 

diffusing with D = 0.1 in the cubic potential with stiffness k = 1. 

T h e analytical result for the S N R (3) (green line) is derived in Sec. IV. 

T h e figure clearly demonstrates that with the local description o f the 

system we can go beyond the statistical moments description which 

is reflected in the growth of the S N R (3) (green line and o). 

infinity. This phenomenon can be well understood in the 
analytically tractable case of D = 0 discussed in Sec. III. 
Simultaneously, for D = 0, the instability causes P(x,t) to 
vanish forx > \/ict. 

The third intriguing feature of the present unstable system is 
that P(x,t) quickly attains a universal spatial shape, P(x,t) ~ 
Qst(x)e~x°', where \o > 0 determines the decay rate of the 
unstable state. The normalized PDF Qst(x) is the long-time 
limit of the ratio 

Q(x,t) 
P(x,t) 

s(t) • (6) 

For any given x, the PDF P(x,t) decays exponentially with 
time. Consequently, the survival probability S(t), Eq. (5), 
which is just the normalization of P(x,t), also decays to zero. 
However, their ratio (6) converges to the time-independent nor­
malized distribution <2stOO> which is known as the quasista-
tionary distribution [47,48]. The PDF Q(x,t) is the conditional 
distribution of particles which do not reach x = — oo before 
time t. Its long-time limit Qst(x) thus describes the statistics 
of long-living (living = not diverging) trajectories. Note that 
Q(x,t) and P(x,t) are proportional and thus the maximum and 
the curvature of both PDFs are the same. 

Hence, in the long-time limit, the quasistationary distri­
bution Qst(x) provides an analytical estimate of the local 
curvature of the generic PDF P(x,t) around its maximum. 
Its position xmax nontrivially depends on both the potential 
V(x) and the temperature T. Interestingly, the curvature at the 
maximum of Qst(x) (l/o^, derived in Sec. V) is determined 
by two qualitatively different factors, 

^ (̂ -max) 
D ' 

(7) 
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The first term on the right-hand side, V"(xmm)/kBT, is the 
(scaled) curvature of the potential. In our case it equals 
V"(xmaK)/kBT = 2kxmax/ksT. This first term alone deter­
mines the curvature of any PDF of the functional form 
piV/ksT) (such as the Gibbs equilibrium distribution). The 
second term, XQ/D, is always positive. Its magnitude is related 
to the degree of instability of the system quantified by the 
decay rate X0. Thus, the quasistationary distribution is always 
narrower near its maximum than any PDF p(V/k^T). The 
more unstable the system (large decay rate X0), the narrower 
the distribution Qst(x) becomes. 

The analytical result (7) has also two practical conse­
quences. First, Eq. (7) provides an independent scheme for 
measurement of the local curvature l/cr2

ax. This is important 
since a direct inference of l/er âx from the experimental 
data may depend on the fitting procedure used. Measuring 
curvature according to Eq. (7) avoids fitting of the PDF. 
Instead, it uses easily accessible first-passage properties, e.g., 
the survival probability, to determine the decay rate Xo, which 
can be reliably measured even for small samples of trajectories 
(see Ref. [35]). Second, the result (7) allows one to extract 
the scaling of the curvature with the intensity of thermal 
noise, xmax ~ (iBr) 1 / 3,<rL ~ (kBT)2'3 [cf.Eqs. (30)], which 
allows us to immediately find the SNR (3) to be temperature 
independent. 

Last, but not least, the quasistationary distribution can be 
interpreted as a steady-state PDF, which we will explain in 
Sec. V. Surprisingly, to accomplish this task we will need to 
introduce the feedback mechanism which we can interpret as 
the action of a Maxwell's demon. 

III. INSTABILITY YIELDS HEAVY TAILS AND DECAY 
OF NORMALIZATION OF P(x,t) 

The simplified situation with negligible thermal noise (D = 
0) is particularly useful, because it illustrates (i) the develop­
ment of the heavy tail of P (x, t) for negative x, (ii) the vanishing 
of P(x,t) for large x in a finite time, (iii) an atypical shift 
of the PDF maximum, and (iv) it elucidates properties of the 
survival probability (5). The PDF for the present deterministic 
dynamics becomes nontrivial if we require a suitable initial 
distribution. We choose P(x,0) to be Gaussian with the mean 
x0 and the variance CTQ , 

P(x,0) = (8) 

Then, at time t, t > 0, we get the PDF [55] 

P(x,t) = 0(1/Kt - x)-
2a} V 1 —XKt *o) 

27TCT„(1 - XKt)2 

(9) 

whereK = k/y and 6̂ 0 stands for the Heavisidetheta function. 
The derivation of Eq. (9) can be found in Ref. [55], where 
the fast divergence of averages (x(t)),(x2(t)) was thoroughly 
discussed. For large negative x, the distribution decreases as 
1 /x2 and hence its moments do not exist. Figure 3 illustrates 
the gradual increase of the left tail with time. 

F I G . 3. P D F (9) in three different times for D = 0. T h e P D F (9) 

develops a heavy left tail starting from the initial Gaussian distribution 

with mean x ( ) = 0 and variance (TQ = 0.2. For x > l/ict, P(x,t) 

is equal to zero ("no tails" for x > 0) due to the high speed of 

dynamics generated by the cubic potential. T h e m a x i m u m shifts in 

the opposite direction than the force acts and local uncertainty around 

the m a x i m u m decreases. Nonmonotonic behavior of the m a x i m u m , 

observed for longer times and different x ( ) , is further illustrated in 

F i g . 4. 

A strong instability of the cubic potential manifests itself 
also in another feature of the PDF (9). The Heaviside theta 
function in Eq. (9) implies that P(x,t) vanishes when x > 
\/ict even though the initial Gaussian distribution (8) has 
infinite support x e (—oo, + oo). Thus, at time t, there are no 
trajectories on the right from x = 1 /Kt. The cubic potential is 
so strong that all trajectories with x(0) > 0 quickly aggregate 
on the potential plateau on the right of x =0. This happens in 
a finite time, regardless of the initial position of the trajectory. 
In Fig. 3, we denote the depopulated region as "no tails," in 
contrast to the heavy tail for x —*• —oo. 

An analogous picture holds to the left of the inflection point. 
Any trajectory that starts on the negative half line is quickly 
dragged towards x = — oo. This can be seen from a decrease 
of the survival survival probability (5) with time. The survival 
probability, which is the probability of finding the particle on 
x € ( — 0 0 , 0 0 ) [norm of the PDF P(x,f)inEq. (9)], is given by 

Sit) = \ 1 + erf 
1 + X()Kt 

(10) 

and its long-time limit reads 

lim S(/) = - 1+erf (11) 

When the initial particle distribution is the delta function at XQ, 
i.e., for o"o = 0, the right-hand side of Eq. (11) depends solely 
on xo and reduces to a unit step function at XQ = 0. A nonzero 
width of the initial Gaussian PDF, CTQ > 0, broadens the step 
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F I G . 4. Evolution of the m a x i m u m and the inverse curvature o f the 

P D F (9) (D = 0) for three initial Gaussian distributions with different 

mean x0 and the same variance a0 = 0.2. For x0 = 1, the m a x i m u m 

decreases towards x = 0 and the inverse curvature quickly approaches 

zero. For x0 = 0, the m a x i m u m will first shift against the acting force 

and, after that, it wi l l decrease back to x = 0. T h e curvature behaves 

similarly as in theprevious case. W h e n x 0 = —1, the m a x i m u m climbs 

above x = 0 and converges back to x = 0 at later times. T h e inverse 

curvature possesses a m a x i m u m . In all three cases, the long-time limit 

of P(x,t) is the delta function at the origin with the weight given by 

the long-time survival probability (11). T h e P D F for the case x0 = 0 

is shown in F i g . 3. 

function because even for x$ < 0, the nonzero CSQ allows one 
to generate an initial position on the right of the origin. 

Moreover, the decay of the survival probability S(t) when 
D > 0 turns out to be exponential, as will be discussed in 
Sec. V. Differently from these asymptotic features, the local 
dynamics of the maximum and curvature of P(x,t), discussed 
in the following section, does not depend on the normalization 
of P(x,t). 

IV. TRANSIENT DYNAMICS OF MAXIMUM 
AND CURVATURE 

A. Diffusionless case (D = 0) 

It is rather instructive to study the maximum and curvature 
of the PDF (9). In contrast to the statistical moments, the two 
quantities describing the most probable particle position are 
not limited to short times. The position of the maximum of 
P(x,t) is given by 

1 
Kt 

1 + XQKt - J ( l + X{)Kt)2 + 8a0
2(Kf)2 

4a0
2(Kf)3 

(12) 
The inverse curvature er2

ax(f) is derived according to its 
definition (4). The result is, however, rather involved and hence 
we do not report it explicitly. 

The behavior of both quantities, illustrated in Fig. 4, 
should be understood based on the following consideration: 
A trajectory that starts from x(0) follows the deterministic 
equation x(t) = x(0)/[l + x(0)Kt]. If the particle is initially 
located on the left from the inflection point x = 0, it is quickly 

F I G . 5. A t y p i c a l shift of the m a x i m u m at a given time induced 

by increasing temperature (i.e., D) or the initial variance O"Q (inset). 

In simulations, we used k = 1, x0 = 0, the time step At = 0.002, 

<T0 = 0 (and D = 0 for the inset), and ; = 0.1; 3 x 10 5 trajectories 

were generated. T h e small D approximation used to plot the red 

line provides a satisfactory result also for D ~ 1. Both plotted 

dependencies are predicted by two approximate equations, E q . (13) 

(black line, inset) and E q . (16) (red line). Note that the S N R (3) grows 

linearly both with D and O"Q . 

dragged towards — oo. A particle located initially on the right 
of x = 0 converges towards the origin as x(t) « l/tct. The 
trade-off between the two kinds of trajectories in the statistical 
ensemble determines all properties of P (x, t). Surprisingly, this 
trade-off leads to a rich behavior of xmax(f) and o^Jt), which 
strongly depends on the parameters of the initial distribution. 

Further analytical insight for the case of nonvanishing xo 
can be gained for small times. For t —>• 0 we have 

XmaxO) * x0 + (2er0
2 - xl)ict, (13) 

°-max(0 % 00 " 4^X0Kt - 10£2CT0
4f2. (14) 

The inequality 0 < xo/V2 < CT0 is a sufficient condition to 
observe the atypical shift of xmax against the acting force 
— V'(x). To observe the narrowing of cr^, it is then sufficient 
to have xo > 0. The equations justify a qualitatively similar 
short-time decrease of x m a x (0 for xo = ±1 shown in Fig. 4, and 
also the initial increase of er2

ax(f) for xo = — 1 and its decrease 
for xo = 1. For xo = 0, xmax always evolves atypically and 
the inverse curvature in Eq. (13) always decreases. These two 
characteristics also demonstrate an interesting nonlinear effect, 
namely, the transformation of the initial variance (noise) into 
directed motion [notice the appearance of CTQ in Eq. (13)]; see 
Fig. 5 (inset). This effect is absent for the quadratic and the 
linear potential, where the corresponding Langevin equations 
are linear. 

In the long-time limit, the peak of the PDF P(x,t) slowly 
sharpens and moves towards the origin from the right because 
all trajectories, starting at x(0) > 0, are sliding towards x = 
0. The tendency is clearly visible in Fig. 3. Thus, xmax(f) « 
1 /Kt converges to zero and also er2

ax(f) ~ (1 /Kt)4 as the peak 
becomes sharper. In contrast to this, the mean and variance are 
not defined for such a long period of time. 
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t 

F I G . 6. E v o l u t i o n of the m a x i m u m in the small noise regime 

for different values o f the initial particle position x0. T h e depicted 

dependencies are qualitatively similar to their zero-noise (D = 0) 

analogs from F i g . 4. W h e n the initial position x0 is zero or positive, 

x = t (see main text). For negative x0, values of x are indicated in 

the graph by the corresponding color. In this graph we have used 

k = 1, D = 0.05, and simulated 3 x 10 5 trajectories with the time 

step At = 0.002. 

Therefore the SNR (3) calculated for the PDF (9) depends 
linearly on CTQ in the short-time approximation, and it behaves 
qualitatively similar to its D 0 counterpart depicted in Fig. 2. 
In the long-time limit this SNR grows as t2 (which guarantees 
the usefulness of the local description) as the span of the PDF 
on the positive half line x > 0 shrinks. 

B. Small diffusion case (D «: 1) 

For nonlinear potentials, the small noise expansion is not 
uniform in time [58]. Below, we present a trick for how to 
extend the validity of the approximation, which is necessary 
when the particle starts on the left from the inflection point, 
X{) < 0 (cf. Fig. 6). In the present section, we set the variance 
of the initial distribution to be equal to zero, CTQ = 0. Hence 
the only source of randomness is the (small) diffusion term in 
the Langevin equation (2). 

The particle starts from x() on the potential plateau and its 
motion is initiated by a small thermal noise. It is reasonable 
to assume that after a short initial period, the weak noise will 
play a negligible role as compared to the deterministic drift. 
The results from Ref. [55] for the short-time averages read 
(x(r)) « x() — KX\X — KDX2 and Var[x(r)] « 2Dr, where x 
will be treated as a small fitting parameter. In order to obtain 
the equation for the maximum in terms of the initial position 
and the time scale r, we substitute these moments into Eq. (9), 
x() (x(r)), CTQ Var[x(r)]. After that we find the position 
of maximum of the PDF, 

1 + DK2tTiT IDKHXXX + D2K4t2T4 

(15) 
for xo = 0, where x\ = St — x (for xo # 0 the result is rather 
lengthy). 

The approximation is compared with simulations in Fig. 6. 
Two qualitatively different regimes arise. The first occurs for 
XQ > 0, where we are able to predict the dynamics for longer 

times and we do not need the fitting parameter r, i.e., xt in this 
case. The second type of dynamics with a different atypical 
effect occurs for xo < 0. Here, we fit r to extend the validity 
of the small noise approximation. Even so, we are able to fit 
the data just before the turning point (the two lower curves in 
Fig. 6). 

To gain further insight into the role of the diffusion term, one 
can expand Eq. (15) in a series and notice that the maximum 
grows linearly with D, as shown in Fig. 5 , and quadratically 
with t, 

XmaxCO ^ KDt2. (16) 

Even more interestingly, Eq. (16) resembles the short-time 
limit of the first statistical moment, (x(t)) « —KDt2 [55], 
but with the opposite sign. As can be seen directly from 
Eq. (16), the bigger the diffusion parameter, the larger shift 
of the maximum is obtained. This behavior is shown in Fig. 5 
for both the weak diffusion and the diffusionless case. The 
latter presents the dependence on the initial variance, instead 
of D. Contrary to Eq. (16), the average would quickly diverge 
towards minus infinity, whereas the maximum, described by 
Eq. (15), shifts in an opposite direction and converges to a finite 
value described in the next section. Focusing on the maximum 
(the most probable particle position) instead of the average 
(x(t)) thus allows us to avoid the singular properties of unstable 
dynamics. 

The curvature (4), calculated along similar lines as Eq. (15), 
reads 

ff2(f) % 2Dt - \2D2K2t4, (17) 

where again a resemblance to the statistical moments can be 
seen in the first term, because we have Var[x(f)] « 2Dt [55]. 

Comparing Eqs. (15) and (17), one finds that the SNR (3) 
grows nonlinearly in time as depicted in Fig. 2 (green line) 
and for longer times it converges to a constant value. An 
experimental observation of this and other atypical transient 
effects may require a fast detection of particle position during 
the transient period. 

V. QUASISTATIONARY DISTRIBUTION IN 
THE LONG-TIME LIMIT 

The discussed zero- and small noise approximations are 
not capable of properly capturing the long-time nonlinear 
dynamics at the potential plateau (with non-negligible D). 
The reason is that even small noise significantly affects the 
long-time evolution, due to the high instability of the poten­
tial. A theoretical description, therefore, requires a different 
approach. 

A. Definition and computation of Qst(x) 

The cubic potential is highly unstable and hence one can 
hardly expect any nontrivial long-time behavior for the PDF 
P(x,t). However, after a relatively short time, the PDF P(x,t) 
attains a universal shape determined by the function <2st(x), 
which is multiplied by a simple exponential decay in time, 
P(x,t) ~ gs t(x)e~x°'. The normalized function gst(x), known 
as a quasistationary distribution [47,48] , is independent of time 
and initial conditions. It is determined solely by the form of the 
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potential. From a practical point of view, the quasistationary 
distribution can be used to characterize unstable systems when 
moments fail and transients are too fast. 

In Monte Carlo simulations of individual trajectories, the 
quasistationary distribution is merely the normalized PDF of 
particles that are still on a finite x at time t, t > Ao- Hence it 
should be understood as the long-time limit, 

gstO) = lim Q(x,t), 

t—>oo 

of the PDF conditioned on survival [cf. (6)], 
P(x,t) Q(x,t) 

S(t) 

(18) 

(19) 

where both the nominator and the denominator [the norm of 
P(x,t); cf. Eq. (5)] tend to zero. The ratio, however, converges 
towards a finite value for any x. The function Q(x,t) is the 
PDF of surviving trajectories (e.g., wandering on the potential 
plateau), which we described by the local measures in the 
previous sections. 

To derive an equation for Qst(x), we start from the Fokker-
Planck equation corresponding to Eq. (2), 

dt 
P(x,t) = CP(x,t), 

with the Fokker-Planck operator given by [58] 

C = D-
dx2 

1 9 

Y dx 
V'(x), 

(20) 

(21) 

where V'(x) stands for a derivative of V(x). We now introduce 
the ansatz P(x,t) ~ Qst(x)e~x°' into Eq. (20), together with 
the exponentially decaying survival probability (5), and after 
some algebra we obtain that Qst(x) is given by 

Gstto : 
/_oo dx Ýo(x) 

(22) 

where ifo(x), the normalized eigenvector of C corresponding 
to its largest eigenvalue — XQ, 

£i/f()(x) = -A0iAo(*)- (23) 

For a rigorous proof, we refer to Ref. [48]. The quasistationary 
distribution Qm(x) is shown in Fig. 7 for three different 
temperatures. 

The eigenvalue problem (23) should be supplemented by 
boundary conditions. Interestingly enough, for the cubic poten­
tial, natural boundary conditions yield a PDF which vanishes 
for \x | -> oo, but the probability current does not vanish in the 
limit x —»• —oo. Thus, we can approximate the singular point 
x = — oo by placing an absorbing boundary [25] at a finite 
position x = a, a < 0. The absorbing boundary is merely a trap 
which captures (absorbs) the particle when it hits x = a for the 
first time. In Fig. 1, the boundary is at x = —10. The weight of 
absorbed trajectories increases with time and eventually tends 
to one. 

The regularization is convenient for a numerical solution 
of (23) (see Appendix A), and is natural in Monte Carlo 
simulations. As long as a <§C — (3&B77k)1/3 is satisfied, this 
cutoff will not affect the properties of the slow stochastic 
motion on the plateau of the potential (1). Consequently, we 
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F I G . 7. Broadening o f the quasistationary P D F (22) with i n ­

creasing temperature. Sol id lines depict numerical solutions o f the 

eigenvalue problem (23) by the method explained i n Appendix A . 

Circles stand for the outcomes of M o n t e Carlo simulations using 

3 x 10 5 trajectories. In the simulations, the particle starts from the 

inflection point and evolves (if not absorbed) for t = 7 with the 

time step At = 0.002. T h e stiffness k of the cubic potential is set 

to one. Interesting effects due to the instability observed i n the 

transient dynamics have their analogs reflected in the shape of the 

quasistationary P D F . T h e quasistationary P D F therefore can be used 

to describe unstable systems when averages diverge and transients are 

fast. 

can require ^o(x) to satisfy the absorbing boundary condition 
TJ/Q(a) = 0 and the natural boundary condition at x = oo. 

Finally, notice that P(x,t) ~ Qsi(x)e~Xot determines just 
the main asymptotics of P(x,t), i.e., the only significant term 
in the eigenvector expansion when t —*• oo. A time-dependent 
correction which describes relaxation towards the quasistation­
ary distribution <2stOO decays exponentially fast, as e{Xa~Xi)t. 
This is why in simulations Qst(x) is readily observable for 
relatively short times. For counterexamples, where Q(x,t) does 
not converge to a time-independent limit, we refer, e.g., to 
Refs. [59,60]. 

B. Qst(x) as a steady-state distribution and Maxwell's demon 
Usually, the term "steady state" is related to a stationary 

long-time system state with time-independent currents [61,62]. 
In particular, the Gibbs canonical equilibrium is an example 
of an isothermal steady state where all currents vanish. In 
more general nonequilibrium steady states, the currents (in our 
case a probability current) converge to nonzero values which 
are closely related to the local properties of the steady-state 
PDF. At first glance, the quasistationary distribution Qst(x) is 
not related to such a scenario, because there is no nontrivial 
long-time state in the unstable cubic potential (the particle, 
once released, reaches x = —oo in a relatively short time). The 
quasistationary PDF results from the limit of the ratio (19) of 
two vanishing terms and not as the result of the balance of 
probability currents. 

The direct meaning of Qst(x), according to its definition 
(19), is that Qst(x) stands for the PDF of a particle which 
survives (or, equivalently, stays on the potential plateau) for 
a long time. However, it is rather the following steady-state 
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F I G . 8. Sketch o f the steady-state factory producing Qst(x) in an 

unstable cubic potential, where a standard stationary (equilibrium) 

distribution does not exist [64]. Instead o f tracking a single-particle 

trajectory as in previous figures, here we turn to the following 

experiment with many particles (sand). T h e demon (the measurement-

feedback mechanism) collects the sand which leaves the system at its 

left boundary and returns it back according to E q . (24), such that 

the long-time distribution of sand o n the belts is given by Qsl(x). 

A detailed description of the machine stemming from E q . (24) is 

presented in Sec. V B . 

interpretation which deepens our intuitive understanding of 
the model behavior and brings us straight to the results for 
the maximum and curvature of Qst(x). It can also inspire an 
experimental method capable of reaching a quasistationary 
PDF using an external control of the Brownian motion. To 
obtain the steady-state interpretation of the quasistationary 
distribution we first notice that the Fokker-Planck equation 
for Q(x,t) reads 

-Q(x,t) = £Q(x,t) - JQ(a,t)Q(x,t). (24) 
at 

Equation (24) follows from the Fokker-Planck equation (20) 
after inserting P(x,t) = Q(x,t)S(t) into Eq. (20) and dividing 
the resulting equation by S(t) (see Appendix B for more 
details). 

Above, — 7g(a,f) is the conditional probability current [63] 
flowing into the absorbing boundary, 

JQ(x,t) = -(D^- + ^X2^ Q(x,t). (25) 

The probability current /g(a,0 is negative due to the sign 
convention (the current is positive when probability flows to the 
right), hence the second term on the right-hand side of Eq. (24) 
represents the positive source of the probability. It ensures 
that the normalization of Q(x,t) remains constant in time, in 
contrast to the Fokker-Planck equation (20) for the generic PDF 
P(x,t), where such a source term is missing and hence P(x,t) 
is not normalized. The integral of this second term is exactly 
equal to the probability flow to the absorbing boundary. 

The physical interpretation of Eq. (24) requires one to 
describe a complex measurement and feedback mechanism 
restoring the normalization of Q(x,t). The mechanism uses 
an ensemble of particles, rather than just a single particle, 
which we explain in the following. It is depicted using a 
cartoon style in Fig. 8. In the cartoon, the diffusing particles are 
represented by orange sand grains. The three basic ingredients 
which drive the particles according to Eq. (24) and thus also 
the sand in the cartoon are as follows, (i) The cubic potential 
approximated by five conveyor belts: The velocities of the 

belts are proportional to the gradient of the cubic potential 
at their positions (arrows on the rotating wheels). The belts 
outside the plateau of the potential systematically transport the 
sand from right to left, and the belt at the plateau just collects 
the sand, (ii) The thermal noise represented by donkeys who 
randomly shake the conveyor holding the structure (the quake 
machine) as they stomp on its floor: At T = 0, the donkeys are 
unflappable—they do not stomp and the shaking (the thermal 
motion) stops. Nonzero temperature corresponds to nervous 
donkeys—they stomp vigorously on the floor and the whole 
structure vibrates. The noise (vibrations) thus affects globally 
the sand dynamics, but leaves intact the demon and feedback 
mechanism. Shaking causes sand grains to jump randomly 
from one belt to another, both to the left and to the right. 

Formally, the two ingredients (i) and (ii) are included in 
the Fokker-Planck operator C (21). The last part (iii) of the 
dynamics described by Eq. (24), i.e., the absorbing boundary 
and the source term —jQ(a,t)Q(x,t), are depicted by a black 
box with a Maxwell demon on the left from the conveyor 
belts. The demon acts both as a sink and as a source of 
the sand, namely, it continuously monitors the number of 
sand grains on individual belts, accepts the sand which falls 
into the absorbing boundary from the leftmost conveyor belt, 
and instantaneously redistributes the accepted sand back to 
the belts. For the redistribution, the demon utilizes measured 
information about the instantaneous distribution of sand on all 
the belts. The demon is therefore continuously watching the 
whole factory. The portions of sand which are delivered to 
individual belts are determined proportionally to the amount 
of sand presented on the belts at the time of redistribution. For 
example, the belt containing 10% of all sand at the time of 
redistribution is refilled by 10% of the redistributed sand at 
that time. This rule is a direct interpretation of the source term 
-JQ(a,t)Q(x,t) in Eq. (24). 

The total amount of sand in the system is fixed similarly 
as the norm of the PDF Q(x,t) governed by Eq. (24). After a 
relatively short time [determined by the inverse gap 1 /(k0 — 
ki), between the two largest eigenvalues of the Fokker-Planck 
operator (21)], the time-independent steady-state distribution 
of sand on the belts is established by balancing the sand 
(probability) currents caused by the three agents (i)-(iii) 
described above. The sand distribution then corresponds to 
the quasistationary PDF <2stOO> for which the left-hand side 
of Eq. (24) vanishes. 

Comparing the resulting stationary Fokker-Planck equation 
with Eq. (23), we get a noteworthy interpretation of the eigen­
value —k(). This inverse relaxation time is just the stationary 
conditional probability current flowing into the absorbing 
boundary, 

k0 = -JQM, (26) 
where /gst(a) = limbec JQ(a,t). In other words, k0 measures 
the amount of sand per unit time which falls from the leftmost 
belt into the box (in the steady state). 

Last, but not least, note that the above interpretation of 
Eq. (24) closely resembles stochastic processes with resetting, 
where particles are instantaneously returned to a certain po­
sition or region in space following a given protocol [65-76]. 
This suggests that results found for systems with resetting can 
be readily used both in our model and in all similar scenar-
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ios, where one considers a probability density of surviving 
particles. Here, we will evaluate the entropy flux extracted 
from the system by the Maxwell demon in order to sustain 
the quasistationary PDF Qst(x). 

We define the entropy of a surviving particle at time t 
as <S(r) = — kB f^dxQ(x,t)log Qfx,t). Taking the deriva­
tive with respect to time gives the entropy production 
Sft) = -kB f^dx dQfx,t)/dt log Qfx,t). Substituting for 
dQ(x,t)/dt from Eq. (24) into the last formula leads to the 
expression 

Sft) = SdiS(t) - Stuff), (27) 

where <Sdiff(0 = -kB f™^ dx[CQfx,t)] log Qfx,t), and 
<SMd(f) = — JQfa,t)Sft). The term <Sdiff(0 amounts for an 
entropy increase due to diffusion in the cubic potential. The 
term <SM<J(0 is the entropy flux out of the system due to the 
demon pushing the system towards the quasistationary PDF. 
After the system relaxes to the quasistationary state, i.e., for 
Qfx,t) = Qstfx), the left-hand side of Eq. (27) vanishes and 
thus the balance between the two entropy productions holds, 
<Sdifl = <SMd. The amount of entropy the demon takes out of 
the system per unit time in order to sustain the nonequilibrium 
quasistationary state is thus proportional to the stationary 
entropy of the system and the stationary probability flux out 
of the system, 

*$Md = ~~ JQa(a)Sst = h)Sst, (28) 

where <Sst = — kB f^dx gst(x)log Qst(x). Equation (28) il­
lustrates another important role of the relaxation rate X 0 . 

VI. QUASISTATIONARY VALUES OF 
MAXIMUM AND CURVATURE 

The maximum of Qst(x) and that of the generic PDF 
Pfx,t) (see Fig. 1) coincide after a relatively short time. Its 
exact position xmax, however, depends on the potential and 
temperature in a nontrivial way. On the other hand, for the 
curvature at the maximum, l/cr^x = 12st(*max)l/2st(*max), 
we obtain from the stationary version of the Fokker-Planck 
equation (24), 

kBT D ' 
(29) 

Namely, we obtain Eq. (29) from Eq. (24) after setting 
dQst/dt = 0, <2st(xmax) = 0, and using Eq. (26) in the second 
term on the right-hand side. 

The above equation provides us with an indirect and 
independent way of determining the local width of the generic 
PDF Pfx,t). It is enough to find the position of the maximum 
*max and measure the decay rate X0. The latter measurement 
would be analogous to our recent experiments [35], since it is 
enough to determine the decay rate of the survival probability 
Sft) « soe-1"'. Moreover, from the results of Ref. [35] it 
follows that the survival probability is easily measurable in 
highly unstable potentials. Such an independent measurement 
is needed because the direct determination of the local width 
is sensitive to the procedure used for fitting the PDF from 
experimental data. 

The result (29) is notable also for its physical content. 
Interestingly, the more unstable the system (large X0), the 

F I G . 9. T h e m a x i m u m and the inverse curvature (inset) of S s t M 

as functions of temperature. B o t h quantities follow exactly the scaling 

(30). Sol id lines depict numerical solutions o f the eigenvalue problem 

(23) (cf. Appendix A ) . Circles represent simulated data using 3 x 10 5 

trajectories. In simulations, the particle starts from the inflection point 

and evolves (if not absorbed) for 7 = 7 with the time step At = 0.002. 

T h e stiffness k o f the cubic potential is set to one. 

narrower is the PDF around the maximum. Instability of the 
system can be controlled both by the strength of the thermal 
noise D and by the amplitude k of the cubic potential. Strong 
cubic potentials (larger k for a given D) are more unstable 
and the plateau region bounded approximately to the interval 
[-f3kBT/k)1/3,f3kBT/k)1/3] is small in this case. The local 
width of the PDF for more unstable potentials decreases. 

The temperature dependence of the quasistationary PDF 
can be understood from scaling arguments [22,34]. When the 
absorbing boundary is far from the origin, a <§; — QkBT/k)1/3, 
there remain only two length scales in the problem: the width 
of the plateau and the thermal length dictated by D. The 
quasistationary PDF should depend on their ratio, and hence 
any length in the problem scales as fkBT /k)y/3. This is exactly 
what we observe for the maximum. A similar relation also 
holds for the local width of the PDF, 

a 2 ~D2'3. 
) "may 

(30) 

The maximum of the quasistationary PDF climbs up to higher 
values of the potential for higher temperatures and the local 
width at the maximum increases. Both dependencies are 
demonstrated in Fig. 9. The scaling implies that the SNR (3) 
remains temperature independent. 

VII. CONCLUDING REMARKS AND 
EXPERIMENTAL PERSPECTIVES 

Unstable systems are important for their potential appli­
cations. However, their description and characterization are 
challenging even in the simplest cases. In the present paper, 
we have developed a statistical description of the position of 
a Brownian particle diffusing in a cubic potential. The task 
was complicated due to the high instability and nonlinearity 
of the model. As a consequence, the PDF of the particle 
position develops a heavy tail and its moments cease to exist. 
In this paper, we have proposed an appropriate, experimentally 
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accessible description focusing on the most probable position 
of the particle (position of the maximum of the PDF) and 
on a local curvature of the PDF at the maximum (instead 
of the variance). In contrast to the standard approach, which 
uses the moments, the two quantities are well defined even 
though the lifetime of any initial state is very short. We have 
described both the short-time (Sec. IV) and the long-time 
(Sec. V) properties of the two quantities, both from analytical 
and numerical perspectives, with an emphasis on their time 
and temperature dependencies. Our results are general for 
unstable potentials with an inflection point and should be easily 
observable directly using position detectors in experiments 
similar to that reported in Ref. [35]. 

In particular, the most probable position shows a peculiar 
behavior. The maximum of PDF can move opposite to the 
acting force both as the function of time and temperature 
(Figs. 4, 6, and 9). The curvature of the PDF around the 
maximum is related to the stability of the system. For highly 
unstable systems the position PDFs become broader, as we 
see from Eq. (7). This equation can be exploited in two ways: 
Either it can be used to get the local curvature at maximum CT^ 
from the knowledge of the relaxation rate XQ, or it yields the 
relaxation rate from measurement of er̂ ax of an experimentally 
obtained PDF. The local curvature is therefore both measurable 
and an operational characteristic of the system. A recent 
experiment [35] already demonstrated Brownian motion in the 
cubic potential focusing on the first-passage properties of the 
particle [34]. Hence the methodology presented here is ready 
for an experimental test. 

Similar unstable systems should be further analyzed in an 
underdamped limit, where inertia starts to play an important 
role, leading, e.g., to nonlinear oscillations near the plateau. 
Such an extension is essential since experiments on the cooling 
of nanoparticles in high vacuum have already reached the 
underdamped regime [1,4,77,78]. Thus, there already exists 
an experimental platform for probing the fundamentals of 
nonlinear stochastic dynamics in the limit of weak friction. 

In recent years, the aforementioned progress in the cooling 
of nanoparticles in optical traps has brought us close to a quan­
tum regime [79,80], where quantum superposition states can 
be induced by cubic nonlinear dynamics [9,81,82]. Quantum 
nonlinear effects in an unstable cubic potential are not only 
interesting for a fundamental comparison to their stochastic 
analogs, but they also open doors to quantum simulations and 
computation with continuous systems [7,8,83]. 
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APPENDIX A: NUMERICAL CALCULATION OF Qst(x) 

The quasistationary distribution can be computed as the 
normalized eigenfunction corresponding to the largest 
eigenvalue of the Fokker-Planck operator £, subject to the 
absorbing boundary condition at x = a [cf. Eq. (23)]. We have 
calculated this eigenfunction using the discrete approximation 
of the generator similar to that used in recent work [84] for the 
steady state of a two-dimensional Brownian ratchet. 

The main idea is to approximate the exact stochastic process 
in a semi-infinite continuous state space (a,oo) by a suitable 
process on a finite discrete lattice. This is possible because of 
the strength of the cubic potential for large \x\, which allows 
us to limit the state space to the interval (a,b), with b 3> 
(3kBT/ky/3 and Qsl(b) <§C 1. This is equivalent to keeping the 
state space (a,oo) and redefining the cubic potential V(x) as 

V(x) = 9(b - x)V(x) + 6(x - b)oo. (Al) 

Let us now discretize the interval [a,b] on N + I slices 
of length A = (b — a)/N and to identify the individual slices 
with the individual sites of the discrete lattice. We assume that 
the (th site corresponds to the slice next to the point, 

x(i) = a + A(i - 1), i = 1, ,N + 1. (A2) 

The vector p(f) = [p[(t),p2(t),... ,pN+[(t)] of probabilities 
that the discrete system dwells at time t at site i fulfills the 
master equation 

d 

dt 
p(i) = Lp(i), (A3) 

with the transition rate matrix L, whose off-diagonal elements 
are given by 

D 

Ä 1 exp -D 
v(x(j))-v(X(i)y 

and the diagonal elements 

hi = —Qii-l + Ui+\)-

(A4) 

(A5) 

Note that for i = 1 we get rn = —(ho + In), but ho is not 
present elsewhere in the matrix L. This is how the absorbing 
boundary is implemented in the approximate discrete model. 
Due to this condition, the rate matrix no longer fulfills the 
condition J2j=[ hj = 0 and thus the probability in the master 
equation (A3) is not conserved, similarly as for the Fokker-
Planck equation (20). 

The distribution P(x,t) can be approximately calculated 
using the formulaP(x(«),0 = Pi(t)/A and the approximation 
becomes exact in the limit A -> 0. Having approximated the 
generator C by the rate matrix L, the approximate numerical 
calculation of the quasistationary distribution Qst(x) is a matter 
of one line of computer code. 

Let us note that the approximation of Qst(x) using this 
discretization can be very accurate because the matrix L is 
sparse and thus it is possible to choose very large N (very 
small A). For example, performing the calculation in MATLAB 
on a standard quad-core PC with 16 Gb ram using the command 
"sparse" for constructing the matrix L and the command "eigs" 
for determining the eigenfunction corresponding to the largest 
eigenvalue of L, it is no problem to choose N of the order 106. 
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APPENDIX B: DERIVATION OF EQ. (24) 

To derive dynamical equation (24) for the conditioned 
PDF Q(x,t), we first insert P(x,t) = Q(x,t)S(t) into the 
Fokker-Planck equation (20) for the unconditioned PDF 
P(x,t). After dividing the resulting equation by S(t), we obtain 

dt 
Q(x,t) 

Q(x,t)dS 

S(t) ~dt 
= CQ(x,t). (Bl) 

Equation (Bl) formally differs from Eq. (20) by the second 
term on the left-hand side. To justify Eq. (24) we need to 
identify the conditional probability current (25) in this second 
term, i.e., we need to show that 

1 dS 

~S(t)~dt 
= JQ(a,t). (B2) 

This is done in two steps. First, we relate the time derivative 
of the survival probability to the (unconditional) probability 
current into the absorbing boundary, dS/dt = J(a,t). Here, 

J(x,t) = -[D— + -X2) P(x,t) (B3) 
dx y 

is the probability current appearing in the generic Fokker-
Planck equation (20), when it is written as the continuity 
equation [63], dP/dt = —dJ/dx. Space integration of the 
continuity equation over the interval (a,oo) indeed yields 
dS/dt = J(a,t). Second, we divide the relation dS/dt = 
J(a,t) by the survival probability S(t) and identify Q(x,t) = 
P(x,t)/S(t) in the expression J(a,t)/S(t), which then is equal 
to the conditional probability current (25), J(a,t)/S(t) = 
jQ(a,t). This completes the derivation of Eq. (B2) and thus 
of the sought equation (24). 
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Stochastic m o t i o n o f particles i n a h i g h l y unstable potential generates a n u m b e r o f diverging trajectories 

leading to undefined statistical moments o f the particle position. T h i s makes experiments challenging and 

breaks d o w n a standard statistical analysis o f unstable m e c h a n i c a l processes and their applications. A newly 

p r o p o s e d approach takes advantage o f the l o c a l characteristics o f the most probable particle m o t i o n instead o f 

the divergent averages. W e experimentally verify its theoretical predictions for a B r o w n i a n particle m o v i n g 

near an inflection i n a h i g h l y unstable c u b i c optical potential. T h e most l ikely posit ion o f the particle 

atypically shifts against the force, despite the trajectories diverging i n the opposite direction. T h e local 

uncertainty around the most l ikely posit ion saturates even for strong diffusion and enables well-resolved 

posit ion detection. R e m a r k a b l y , the measured particle distribution q u i c k l y converges to a quasistationary one 

with the same atypical shift for different initial particle positions. T h e demonstrated experimental 

confirmation o f the theoretical predictions approves the utility o f l o c a l characteristics for h i g h l y unstable 

systems w h i c h c a n be exploited i n t h e r m o d y n a m i c processes to uncover energetics o f unstable systems. 

D O I : 10.1103/PhysRevLett. 121.230601 

Introduction.—Unstable stochastic dynamics of mechani­
cal objects is a common ingredient of processes inside 
mechanical machines. They use explosive fuel to move a 
piston or its microscopic equivalent, adenosine triphosphate, 
to perform individual strokes [1­4]. However, instability 
generates rapidly diverging trajectories which complicate 
the description of motion, its experimental observation, and 
applications. Such trajectories can make all statistical 
averages increase very fast or even diverge. The standard 
deviation of position can diverge faster than its mean; hence, 
the observed average motion quickly becomes uncertain. 
Moreover, the probability density of the position can develop 
a heavy tail and, therefore, all its moments will diverge [5,6]. 
All this limits the statistical description of transient effects in 
unstable potentials and makes experimental observations 
challenging. The detrimental effects appear even in a 
strongly overdamped regime, where a system intensively 
dissipates energy to the environment. The simplest example 
is an overdamped Brownian particle diffusing in the highly 
unstable cubic potential V(x) = px3/3. The Langevin equa­
tion for the particle position reads 

y^t = ­ n m + J w m , (i) 

where y is the friction coefficient, T is the ambient temper­
ature, kg the Boltzmann constant, and stands for 

the delta­correlated Gaussian white noise, (1(f)) = 0, 
(Z(tW)) = s(t­0­

Equation (1) with the cubic potential V(x) = px3/3 
models dynamics at the saddle­node bifurcation [7,8], 
which arises in several nonlinear stochastic models of 
physics, biology, and chemistry. Examples include optical 
bistability in lasers [9­11], firing of neurons [12,13], 
Brownian ratchets [14­17], and nonlinear maps [18]. 
Even though we primarily focus on the cubic nonlinearity 
with the inflection point, the described methodology is 
broadly applicable to any highly unstable potential. This we 
demonstrate in the Supplemental Material [19] on promi­
nent examples: the unstable potential with no stationary 
point and the unstable potential with a local minimum. The 
latter is frequently used to study decays from metastable 
states in condensed matter models [26,27]. 

The instability in the cubic potential has been theoreti­
cally analyzed by means of statistical moments for times 
shorter than the appearance of any diverging trajectory [5] 
and using first passage times for distances far away from 
the instability [7,9,10,12,13,18,28­36]. In both cases, 
dynamical effects have been found to be stimulated by 
the initial temperature of the particle and the temperature of 
the surroundings. Recently, both described regimes have 
been observed experimentally for a micron­sized particle 
trapped in optical tweezers [37]. However, the transient 
regime beyond short­time approximation remained without 
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P D F at t = 1 s 

H e a v y T a i l 

A t y p i c a l shift 

• I 

F I G . 1. T h e most l ikely m o t i o n o f a particle i n the h i g h l y 

unstable cubic potential. Upper-left axis: T h e potential V(x) 

recovered f r o m the experimental trajectories (blue points) fitted 

by the c u b i c dependence (black sol id line). U p p e r - r i g h t axis: T h e 

n o r m a l i z e d measured P D F for x(t) at t = 1 s (histogram). 

Central-right axis: A typical set o f nine measured trajectories 

starting at x = 0. T h e y e l l o w sphere illustrates the size o f the used 

c o l l o i d a l particles (diameter «1 fim). L o w e r panel : Individual 

stripes show a measured P D F at different times (the lower-right 

axis). T h e m e a n particle posit ion (the red curve) diverges around 

t = 0.3 s. In fact, all measured moments diverge at the same time. 

Contrary to this, the b l a c k curve demonstrates the regular 

evolution o f the most probable particle posit ion (the position 

o f the P D F m a x i m u m ) shifting to the right f r o m x = 0 against the 

direction o f acting force. 

any description and physical understanding. The lack of 
description and understanding undermines applications of 
unstable stochastic dynamics in nanotechnology and in 
quantum technology. 

Recently, a new methodology focused on the most likely 
position of the particle in unstable potential has been 
developed [6]. It uses directly measurable local features of 
the probability density of position instead of global diverging 
statistical moments. During the transient dynamics, this 
methodology evaluates a shift of the probability density 
maximum instead of the mean value and local curvature 
around the maximum instead of the standard deviation. 
Moreover, a transient decay of the probability density 
function (PDF) of particle position at late times follows 
P(x, f) ~ Qst(x)e-^'', where Q%t(x) is a time-independent 
normalized PDF independent of initial conditions, and A0 is a 
positive decay rate. The PDF Q%t (x) is the so-called quasista-
tionary distribution [38-44], and it predicts both the shift and 
local curvature of position PDF in the long-time limit. 

In this Letter, we experimentally demonstrate the appli­
cability of this local description focused on the most likely 

particle position in the unstable cubic potential illustrated in 
Fig. 1. The experimental data agree well with theory even 
for a small sample of measured trajectories, showing that 
the theory is robust and applicable even under severe 
experimental imperfections. We unambiguously distin­
guish the atypical shift of the most likely position for 
transients longer than the short-time limit and experimen­
tally verify a fast convergence of the position PDF to the 
quasistationary state. Finally, we derive and experimentally 
verify the quasistationary generalization of the equiparti-
tion theorem showing that the quasistationary state has high 
energetic content which can be utilized in a postselection 
process removing divergent trajectories. 

The experiments verify that the methodology proposed 
in Ref. [6] removes existing limitations in description and 
understanding of transients in highly unstable potentials. 
Experiments with other typical unstable potentials are 
included in the Supplemental Material [19]. They demon­
strate wide applicability of the approach beyond the cases 
discussed in Ref. [6]. Direct applications of such most 
likely motion in unstable systems are expected in Brownian 
motors. The methodology can be translated to the recently 
achieved underdamped regime [45-47] and developing 
experiments approaching the quantum regime [48-50]. 

Experiments.—The quasi-one-dimensional cubic poten­
tial profile V(x)=/xx3/3, /x = (4-07 ± 0.03) kBT/xm'3 

was created by two pairs of counterpropagating 
Gaussian laser beams in the configuration that ensures a 
conservative optical force [51,52]. We tracked the particle 
position with a CCD camera at 2000 fps. The frame rate is 
fast enough to analyze the transient unstable stochastic 
dynamics. Technical details of the setup and data process­
ing are described in the Supplemental Material [19]. 

Strong instability of the cubic potential limits the 
duration of the experiments. As Fig. 1 illustrates, the 
number of nondiverging trajectories decreases rapidly with 
time. Thus, also the size of the ensemble of measured 
particle positions rapidly decreases because the divergent 
trajectories are excluded from the statistics. For example, at 
t = 1 s we processed into PDFs of roughly 55% of the 
total number of recorder trajectories (starting at xQ = 0). 
At longer times, the number of nondiverging trajectories 
decays exponentially ~e~*°'. Therefore, due to the strength 
of instability, a sufficient statistics of particle position is 
practically unreachable at longer times. This behavior is 
generic for highly unstable potentials (see other examples 
in the Supplemental Material [19]). 

Furthermore, for such an unstable potential, the total 
number of trajectories recorded with a specific particle was 
rather limited. Typically, we performed «100 measurement 
cycles under the same experimental conditions. After that, a 
fine readjustment of the experimental system was needed to 
compensate for systematic changes like intrinsic mechani­
cal drifts. Consequently, the profile of the optical potential 
slightly varied from the previous one, and, thus, the new set 
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of trajectories could not be mixed with the previous one 
into a larger statistical ensemble of measured trajectories. 

Most likely position and its atypical shift.—A Brownian 
particle in the optical cubic potential and the results of a 
typical measurement are illustrated in Fig. 1. The histogram 
in the figure illustrates the measured PDF at time t = 1 s. 
The unstable cubic potential induces three crucial effects in 
the position PDF: (i) a heavy tail for x « : -(3kBT/j*)1/3, 
(ii) a light tail for x » (3&B77//)1/3, and (iii) a shift of the 
PDF maximum away from x = 0. Moreover, owing to the 
thermal noise, the PDF after a short time loses all 
information about the initial particle position and attains 
a time-independent (quasistationary) spatial shape. 

The weight of the heavy tail quickly increases with time 
because of a growing number of diverging trajectories 
(shown in the middle panel of Fig. 1). Several of them 
diverge in a short time; consequently, the averages (x(t)) 
(cf. red curve in the lower panels) and {x2(t)} computed 
over all measured trajectories quickly grow above all 
bounds. These average global characteristics are strongly 
influenced by the divergence and, hence, bare no meaning 
for the description of the particle position [37]. The heavy 
tail negatively influences all quantities based on averaging 
over all trajectories. 

Instead, as proposed in a recent theoretical work [6], it is 
beneficial to focus on the local characteristics. The first of 
them is the most likely particle position xmax(?) given by the 
maximum of the PDF Q(x, t); see the black curve in the 
lower panel of Fig. 1. The second one quantifies a local 
uncertainty around the most probable position. It is defined 
as the (inverse) normalized curvature at the PDF maximum, 

|öLß[*m«W.']r 
(2) 

Different from the diverging mean and variance, the local 
quantities xmax(t) and a(t) remain finite and attain finite 
constant values at long times (see Fig. 3 and the discussion 
below). The ratio xmax(f)/o-(f) specifies a local visibility of 
the most likely particle position. 

The measured time evolution of the local quantities is 
shown in Fig. 3 for different initial positions xQ, xQ = -1, 
-0.75, -0.5, -0.25, and 0 //m. For large negative x0, the 
maximum xmax(f) drifts first in the direction of the acting 
force, -fix2. Later, it passes through its minimal value and 
starts to shift back against the force. Eventually, xm a x 

becomes positive and independent of time and of the initial 
position. This is accompanied by non monotonie dynamics 
of the local standard deviation a(f). For large negative xQ, it 
passes through a pronounced maximum and later decreases 
[which corresponds to a sharper peak of Q(x, r)]. 

Quasistationary state in the unstable potential.—A 
remarkable fact demonstrated in Fig. 3 is that the two 
local characteristics quickly converge to constant values 
independent of initial conditions. The limiting values 
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F I G . 2. Convergence o f the posit ion P D F Q(x, t) towards the 

quasistationary state Qst(x). T h e experimentally measured P D F s 

(histograms) are i n a reasonable agreement with the numerical 

solutions o f the corresponding F o k k e r - P l a n c k equation (dashed 

lines). S o l i d lines i n the lower panels depict the quasistationary 

P D F <2stM calculated f r o m E q . (3). T h e atypical shift o f x m a x ( t ) 

right f r o m x = 0 is clearly observable. 

correspond to local properties of the quasistationary dis­
tribution, Q%t(x). The PDF Q%t(x) naturally arises in our 
experiment and is inherent in all highly unstable systems. 

The quasistationary distribution is defined as the long­
time limit of the normalized position PDF: Q%l(x) = 
\ixat^00P(x,t)/S(f), where P(x, t) satisfies the Fokker-
Planck equation for the discussed model, and S(t) = 
fl^ dx'P(x', t) is the survival probability [53], which 
gives the probability that the trajectory has not diverged 
by the time t. Because of the high instability of the 
potential, the number of nondiverging trajectories decreases 
exponentially 5(r) ~ e~^\ P{x, t) ~ 2 s t(x)e~v, and the 
normalized PDF Q(x, t) = P(x, t)/S(t) converges expo­
nentially fast to Q%t(x). Introducing the normalized PDF 
Q(x, t) into the Fokker-Planck equation corresponding 
to the Langevin equation (1) yields that Q%l(x) is given 
by the normalized eigenvector for the smallest AQ of the 
Fokker-Planck operator in question [6]: 

- [kBT02
xx + dxV'(x)]Qsl(x) = -A0Qst(x). (3) 

r 

Equation (3) is proven in the mathematical literature 
on quasistationary distributions [39] and explained on 
physical grounds in the Supplemental Material [19]. 
Figure 2 demonstrates fast convergence of the measured 
PDF in the highly unstable cubic potential V(x) = ^ix3/3 
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a, -0.5 

1 -1 

1.5 

2 

10 = 0 /im 
Xt) = -0.25 /mi 
xa = —0.5 /mi 
xq = —0.75 /im 

— x0 = —1 /im 

F I G . 3. A t y p i c a l shift o f the P D F m a x i m u m against the acting 

force. U p p e r panel : T h e posit ion o f the P D F m a x i m u m x m a x ( t ) 

for different initial positions xQ evaluated f r o m the experimental 

data (solid lines) and simulations (dashed lines). W h e n 

x0 < —0.5, a l l trajectories diverge extremely fast due to strong 

instability. T h e green and the purple curves stop at time t = 1 s 

because there are not e n o u g h data points to reconstruct the P D F s 

for t > 1 s. T h e lower panel shows a(t) evaluated for the same 

data. T h e transient d y n a m i c s q u i c k l y converges to the quasista-

tionary state [constant dotted lines calculated f r o m j 2 s t W defined 

by E q . (3)]. 

towards Qst(jc) calculated from Eq. (3) (with natural 
boundary conditions). The histogram of measured positions 
is well approximated by Qst(x) already for short times, 
t > 1 s. 

Figures 2 and 3 show that the quasistationary limit of 
*maxW> - W = lim ĉx,*max(0 is shifted right from the 
origin against the direction of the acting force. This reflects 
the tendency of long nondiverging trajectories (the trajec­
tories that have not diverged by the long time t, t -* co) to 
diffuse right from x = 0 for most of the time. Such long-
surviving trajectories tend to avoid negative values of x, 
because an excursion to negative x, where the strong force 
may cause their divergence, would almost surely be fatal 
for them. Thus, the long-surviving trajectories are most 
probably found on the plateau region slightly right from 
x = 0. 

In order to distinguish this quasistationary atypical shift 
in experimental data, the quasistationary value of a{i), a = 
]imt_t00a(t) should be reasonably small compared to x^. 
Large a corresponds to a broad distribution around the 
maximum, where it may be hard to measure xm a x with 
sufficient precision. The experimental results demonstrate 
saturation of the "shift-to-noise" ratio x m a x /o-=(0.5±0.2). 

The solution of Eq. (3) predicts that xmax/a « 0.67. These 
values are sufficiently large to clearly observe the atypical 
shift of xm a x from the origin. The atypical shift is a robust 
effect which can be observed even without cooling and for 
a strong nonlinearity. 

Rate of divergence.—The magnitude of the eigenvalue AQ 

gives a quantitative measure of stability of the studied 
system. It is equal to the slowest decay rate in the given 
potential [54], or in our case, the rate at which the 
trajectories diverge. Evaluating Eq. (3) at x = xmax and 
identifying the quasistationary inverse local curvature a2 

according to its definition (2), we obtain the relation 

^0 — ~ (-^2 "̂(xmax) )< 
7 V c 

(4) 

which allows us to determine AQ directly from stationary 
local quantities xm a x and a. Using \i = (4.07 ± 
0.03) kBT/;m~3 estimated from the experimental data, 
we calculate numerically Qst{x), * m a x , and a from 
Eq. (3), which yields AQ = (0.44 ± 0 . 0 1 ) s"1. The recip­
rocal magnitude l/AQ of the eigenvalue is the characteristic 
(longest) decay time. For our experiment, we get 
I/Aq = (2.27 ± 0.05) s. The decay time describes the 
asymptotic exponential decrease of the average number 
of nondivergent trajectories. Its magnitude of «2.3 s 
ensures that on average there are still enough trajectories 
around the time 1.5 s, where the quasistationary state 
emerges; see Figs. 2 and 3 to compare the timescales. 

Quasistationary equipartition theorem.—The counterin­
tuitive shift of xm a x from zero suggests an interesting 
quasistationary energetics of the unstable system. As a 
first step towards the development of such a theory, we 
have derived a generalized equipartition theorem for the 
quasistationary state. The basic idea behind the theorem is 
to keep only nondiverging trajectories by a proper post-
selection process (other trajectories are discarded). For odd 
unstable potentials V(x)~x", n — 3,5,the result 
reduces to the simple formula for the mean potential energy 
of the Brownian particle, 

(5) 

Here, the averages are taken over a sufficiently stable section 
of the system based on the positive half line x > 0. That 
is, over the conditional PDF Qst,+ {x) — 0(x)Qst(x)/ 
J0°° dx'Q%t(x'), which describes the quasistationary statistics 
of the stable region, where the most likely particle position is 
located. The result (5) is obtained directly from the quasista­
tionary Fokker-Planck equation (3) after multiplication of 
the equation by x2 and integration over x G (0, +oo). Its 
general form is derived in the Supplemental Material [19]. 

The average potential energy (V(x)}sl + is always higher 
than that obtained from the corresponding equilibrium 
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equipartition theorem (V(x))eq = kBT/n for the Gibbs 
state with the same support: Q&q(x) = 6(x) exp [-V(x)/ 
kBT]/Z, where an infinite potential barrier restricts the 
particle to x > 0 to protect it against divergence. The excess 
energy in the quasistationary state is given by the second term 
on the right-hand side of Eq. (5). This term is always posi­
tive. Its experimentally measured value (AQy/6)(x2}sl+ = 
(0.05 ± 0.02)kBT agrees with the theoretical prediction 
(0.051 ±0.00l)kBT computed using Eq. (3) for the 
measured p. 

In the conditional ensemble, we discard all diverging 
trajectories with low potential energies located at x < 0. 
The excess energy arises due to the heat accepted from the 
surroundings by nondiverging trajectories. The heat Q(t) 
accepted during (0, i) is Q(t) = V[x(t)] - V[x(0)] because 
V(x) is time independent [55]. Remarkably, the quasista­
tionary conditional strategy can perform better in harness­
ing potential energy compared to the equilibrium one. This 
opens possibilities for further thermodynamic investigation 
of work and heat extractable from quasistationary states 
and calls for extension of our method to time-dependent 
potentials V(x, f), where Q(t) will no longer be the simple 
difference of potential energies [55]. 

Summary and perspectives.—Our experimental tests 
successfully verified (i) utility of the approach based on 
the most likely motion of the unstable process, (ii) fast 
appearance of the quasistationary distribution for room-
temperature overdamped dynamics, and (iii) the generali­
zation of the equipartition theorem (5) for a regular part of 
the quasistationary PDF. All experimental results are in 
good agreement with the theory, even for a small number of 
trajectories. We showed that the naturally arising quasista­
tionary state has higher energetic content than the equilib­
rium one. After further themodynamic investigation, this 
finding may stimulate development of new approaches to 
exploit this advantage and design new thermal machines 
based on unstable dynamics. From a general perspective, 
our results suggest a high potential of unstable systems for 
future applications in microscopic machines. The next 
experimental challenge is an unstable underdamped regime 
[45-47], where novel phenomena connected to the most 
likely dynamics are expected owing to the fact that the 
underdamped-overdamped correspondence is frequently 
broken even for stable dynamics [56-58]. Advantage­
ously, the approach can be directly translated to almost 
unitary unstable dynamics in the quantum regime, where 
the experiments are currently entering [48-50]. 
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ABSTRACT 

Levitating nanoparticles trapped in optical potentials at low pressure open the experimental investigation of nonlinear ballistic 
phenomena. With engineered non4inear potentials and fast optical detection, the observation of autonomous transient 
mechanical effects, such as instantaneous speed and acceleration stimulated purely by initial position noise, are now 
achievable. By using parameters of current low pressure experiments, we simulate and analyse such noise-induced particle 
ballistics in a cubic optical potential demonstrating their evolution, faster than their standard deviations, justifying the feasibility 
of the experimental verification. We predict, the maxima of instantaneous speed and acceleration distributions shift alongside 
the potential force, while the maximum of position distribution moves opposite to it. We report that cryogenic cooling is 
not necessary in order to observe the transient effects, while a low noise in initial particle speed is required, via cooling or 
post-selection, to not mask the effects. These results stimulate the discussion for both attractive stochastic thermodynamics, 
and extension of recently explored quantum regime. 

Introduction 
Stochastic levitating optomechanics in vacuum is a dynamically expanding experimental platform with a unique potential to 
test and exploit strong nonlinear motional effects without any friction, and bring them close to the quantum domain. This 
uniqueness arises from the possibility to combine manipulation of the optical trapping potential by a spatial light modulator, 
inducing new unexplored nonlinearities, and fast optical measurement to verify rapid transient effects using modern optical 
detectors. At low pressure, it allows direct observation of stochastic underdamped mechanical phenomena1"7, which allow 
access to the instantaneous particle speed not measurable in the overdamped motion8,9. In the transient ballistic regime, 
the surrounding environment does not modify the statistics of the instantaneous velocity81011. Moreover, the initial noise 
of the levitating particle can be controlled, by postselection12, feedback cooling13-16 and ultimately, by coherent scattering 
to the mechanical ground states17"19. All these key ingredients encourage broader investigation of the fundamental aspects 
of statistical mechanics20'21 and accelerate development of applications in mechanical sensing522"24 and thermodynamical 
engines2526. Recently, the highly unstable motion of a levitating particle in the cubic potential has been analysed27'28 and 
experimentally verified29'30 in the overdamped regime. It was demonstrated that the mean particle position, induced by the 
initial position uncertainty, increases faster than that uncertainty. Atypically, the position distribution maximum shifts in the 
opposite direction to the mean. These investigations have already been stimulating experimentally verifiable thermodynamical 
consequences27. 
In the low pressure limit the particle is deep in the underdamped regime so that the instantaneous particle speed and acceleration 
become new transient quantities to be first explored and later exploited for applications. In this paper we simulate and analyse 
nonlinear ballistic effects for instantaneous velocity and acceleration induced by the initial position noise, and predict the 
experimental regime where such phenomena are visible using parameters for current setups in laboratories12'31"33. We observe 
that the only requirement for a reliable experimental observation is a reduction of initial velocity noise. Importantly, we indicate 
that both the velocity and acceleration distributions' maxima, stimulated by initial position noise, shifts normally in the same 
direction as the velocity and acceleration mean. It is a crucial step to further accumulate such noise-induced phenomena, and 
later use them in the aforementioned applications. 
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Results 
Underdamped, overdamped and deterministic nonlinear dynamics in cubic potential 
To understand the low-pressure nonlinear effects, we must distinguish them from the already measured high-pressure over-
damped limit27'30, and aim to achieve them close to the zero-damping deterministic limit. First, we describe the properties of the 
stochastic motion of an underdamped Brownian particle in the unstable cubic potential. Second, we explore the high pressure 
limit in comparison to the over-damped approximation27'30, and low pressure limit with comparison to the zero-damping 
deterministic approximation. The dynamics of the damped Brownian particle in the cubic potential V(x) = Kx3/3 is described 
by the following Langevin equation 

x + n + K X 2 = 2 ^ ^ t ) , m ) = ^ ^ { t m ' ) ) = 8 { t - t ' ) (i) 

V m 

where K = K/m is the normalised cubic potential stiffness, y = T/m is the medium damping with T the drag coefficient of the 
medium (e.g. air at low pressure), T is the absolute temperature, kB is the Boltzmann constant, and F f l u c t = y/lksTF^ (?) is 
the broadband Markov Langevin force, uncorrelated in time with zero mean and variance given by the fluctuation-dissipation 
theorem (Ffluct) = 0, (Ffluct(t)Ffluct(t1)) = ^2kBTy8(t -?')• We use Eq. (1) for all stochastic simulations, and also to 
present all the figures. The details of the simulation, comprising the re-scaling of Eq. (1) to allow usage of real experimental 
numbers, are described in the Methods. In the high pressure limit, the instantaneous velocity and acceleration require very 
fast measurement to be observed in the ballistic regime11, therefore we use the averaged velocity v = Ax/At, and averaged 

acceleration a = Av/At routinely measured in high pressure experiments. The time At has been adjusted to be tenfold the 
time-step dt to allow the computation of the averaged quantities. The details of the time scales, and convergence are presented 
in the Methods. Considering that v and a are still stochastic quantities, we further characterise their average motion by analysing 
their means, (v), and (a), and standard deviations, (7y, and Ga­
in the high pressure limit, Eq. (1) can be approximated by the over-damped equation of motion28, 

K 2 . L k s T 
Y x l + \j2^ri;{t), (2) 

comprising a change of mean position (x(t)) « — {KaXQt + 2KkBTt2F~l)/r, for initial Gaussian position distribution with 
(x0) = 0, evolving with standard deviation a x i t ) « y j a 2

a + %{K/T)2o4
Qt2+ 2kBTt/T, and generating a SNRX ta ( K 2 a 2

Q t 2 + 

K 2 k s T t 3 r ~ l ) / r 2 ^ . At the time scale of this experiment ? = 0.1 ms, 3 orders of magnitude shorter than the previous overdamped 
experiments t = Is29'30, the mean (x(t)) « 0 and standard deviation ax(t) « a X { ) of position do not change in time, resulting in 
a negligible SNRX as can be observed in Fig. 1 for the high pressure regime (a). However, the average velocity (v) already feels 
the initial noise evolving linearly with the latter as shown in Fig. 1 (c) by the green line. The statistics of the average velocity v, 
for short time At and Gaussian position and velocity distributions with (XQ) = 0 and (VQ) = 0, approaches 

/Ax\ K , / [ K \ 2 . 2kBT |(v)| 1 

\ At / r \ \ r / x° r ' " " " v r— - — 

For small environmental temperature, kBT <C K2/F, Eq. (3) generates a constant SNR„ ta 1/\[2. On the other hand, in the 
experiments at room temperature and T = 10 Hz 2 9 , 3 0 the second term in the standard deviation of average velocity (7y reduces 
the SNRy to that of Eq. (3). The latter can be qualitatively observed in Fig. 1 (c) by the non constant azure halo as a function of 
initial position noise. However, velocity uncertainty does not increase as quickly as in particle position, for the same short time 
scale. The statistics of the average acceleration a, as shown in Fig. 1(e), do not change neither for the mean (a) (green), nor for 
the standard deviation oa (blue-green halo) for the short time dynamics and range of parameters we are interested in, and their 
approximate characterisation is therefore omitted. By numerically simulating Eq. (1) for values of Y > 10 Hz, the position and 
average velocity statistics, obtained from Eq. (2) for the over-damped approximation, can be retrieved fully. A quantitative 
comparison is shown in Fig. 2 (a,c, green dots). 
The aim of the low-pressure regime is to (i) reach the statistics of instantaneous speed, as compared to average speed in 
Eq. (3), and (ii) obtain instantaneous acceleration statistics, both not achievable in the high pressure regime without very fast 
measurements. We consider such a short-time regime characterised by no change in initial particle position, as depicted in 
Fig.l. Such short transient regime when the particle does not move defines the time scale of such effect. 
The goal in this regime is to reach the ideal classical limit of the zero-pressure regime, approaching deterministic dynamics for 
r = 0, where Eq. (1) becomes 

X+KX2 = 0, (4) 
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Initial noise-induced statistics of position, velocity and acceleration of a levitated particle in cubic potential 

X 2] X j}},} mb "' 

Figure 1. Noise-induced position, velocity and acceleration statistics o f a levitated particle i n cubic potential, for high pressure limit, 

corresponding to a pressure o f p = 10~ 2 mbar, (left column) and low pressure limit, corresponding to a pressure of p = 10~ 5 mbar (right 

column). A t initial time t = 0 ms, the Gaussian distributions of particle position has (XQ) = 0, while <T2

0 triggers the nonlinear dynamics. In 

all cases, the Gaussian distribution of particle instantaneous speed has (XQ) = 0 and <T? = 0. T h e initial position and speed are statistically 

independent. In the top panel, for both high pressure limit (a), and low pressure limit (b), the mean of particle position (x) (green, black) does 

not develop at short time scales, with increasing initial position noise oXf), but its standard deviation a x increases with it (green-blue halo). 

The maximum of position distribution x m a x (red) does not develop either with increasing initial position uncertainty. In the middle panel, for 

the high pressure limit (c), the shift of the maximum of average velocity v = Ax/ At distribution (red) increases alongside the mean of average 

speed (v) (green). W h i l e the m a x i m u m of instantaneous velocity i = dx/dt distribution, in the low pressure regime (d) does not increase 

compared to its high pressure counterpart, the mean of instantaneous speed (x) (black), produces a larger noise-induced shift than in the high 

pressure regime (green). Simultaneously, the standard deviation a± (green-blue halo) and the uncertainty around the m a x i m u m <J±mla are 

significantly reduced (yellow area). T h e bottom panel shows the evolution of particle's acceleration statistics in both high pressure (e) and 

low pressure (f) limits. For the high pressure limit (e) neither the m a x i m u m o f average acceleration a = Ax/At distribution (red), nor the 

mean o f averaged acceleration (green), (a), display any noise-induced shift. O n the other hand, i n the low pressure limit (f), the statistics 

exhibits a substantial noise-induced shift in the m a x i m u m o f instantaneous acceleration x = dx/dt distribution (red) alongside the mean of 

instantaneous acceleration (x) (black). 

To generate all the density plots, E q . (1) has been simulated using K" = 6kBTnm~3Kg~l,T = 300 K , / = 0.1 ms, dt = 2 x 10~ 5 ms. Nt = 10 4 

trajectories where generated with 5000 samples each. To calculate the instantaneous quantities, i = dx/dt, x = dx/dt, the time interval 

used is given by the time-step dt = 2 x 10~ 5 ms, whereas for the average quantities v = Ax/At, a = Av/At, the time interval, multiple of the 

time-step, has been used At = 10 x dt. 

yielding deterministic trajectories from initial position and velocity statistics. In this nonlinear ballistic regime, the Gaussian 
initial distribution of particle speed has (xo) = 0 and a? = 0. The initial position and speed are statistically independent. 
In such regime, the initial position statistics is the only thermal energy resource that can be used in the nonlinear ballistics. 
For short time dynamics, from (xo) = 0, the quantitative description of the zero-damping approximation for instantaneous 
acceleration gives 

(±->«-KX2, OX*V2KOI, s / v - f l i = M 1 . ( 5 ) 

<7i V 2 

Notice that both mean and standard deviation are advantageously independent of initial speed statistics. This helps to distinguish 
the nonlinear ballistics in the experiment. The evolution of mean instantaneous acceleration (x), and its standard deviation Oj, 
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grow comparably with aX{) keeping a constant SNRX m 1/V2. In Fig.2 (e,f), Eq. (1) has been simulated (black dots), for damping 
r = 10~2 Hz, to generate (x), and SNRX. At such small pressure, the dominant dynamics observed can be already described by 
the zero-damping approximation introduced in Eq. (4), resulting in a linear evolution of (x) with at as showed in Eq. (5) (black 
line). Simultaneously, the SNRX (black dots) generated with Eq. (1), converges quickly to the zero-damping approximation 
depicted in Eq. (4), resulting in a constant SNRX as obtained in Eq. (5). By formally integrating Eq. (4) x(t) « xo — ic ^XQ{t')dt' 
with (xo) = 0, the short-time evolution of instantaneous velocity unfolds as 

(x(t))~-Kolt, ax(t)«VlKolt, SNRx(t) = « ( 6 ) 

considering the initial conditions (xo) = <J? = 0. The mean (x(t)) of instantaneous velocity evolves linearly with initial 
position variance O"2 growing comparably with its standard deviation ax(t), ultimately leading to the constant SNRX ta l/y/2 
shown in Eq. (6). Simultaneously, by second time formally integrating Eq. (4) with (xo) = 0, the position approaches 
x(t) « x0 + §QXo{t')dt' — Jo Jo Kx\{t")dt" dt', while its statistics for short time dynamics evolves as 

( x ( r ) ) « - ^ a 2 / , a x { t ) ^ J o l + l - K ^ o ^ SNRx(t) = ^ n 1 =• (7) 
2 V 2 ax ^2(l+2k-2ox-2t-4) 

For the large time scale, starting at t = 0.9 ms, the mean position evolves as in Eq. (7), while the standard deviation is dominated 
by the second term, ultimately leading to a constant SNRX ta 1 /\f l . At this scale, the dynamics already makes the particle 
moving farther by initial position noise. At the short time scale, t = 0.1 ms however, the position at average does not move, 
while its standard deviation remains equal to aXQ. The resulting noise-induced dynamics produces a SNRX ta 0. At such a short 
time scale, the result is similar to the over-damped regime described by (2). This behavior can be observed in Fig.l (b) by 
the black arrow for the mean position, and with the azure halo for the standard deviation. The behavior of the SNRX can be 
observed in Fig.2 (b, black line), holding true for small pressure (black dots), as well as for high pressure (green dots). 

Robustness of the noise-induced instantaneous speed and acceleration 
Role of environmental temperature T 
The instantaneous speed and acceleration stimulated by the initial position noise, can be affected by room temperature of 
external environment. Generalising the above results for non-zero damping y, and environmental temperature T, assuming 
initial Gaussian distribution both in x and x with (xo) = (xo) = 0, and vanishing variance O"? = 0, the role of environmental 
noise can be discussed using the approximate formulae obtained from Eq. (1) 

1 2 2 , n / 9 2kBTy , 1 , 4 4 r „ „ , , \{x)\ ( x ( f ) ) « - - K a 2 / , ^ l - f ^ ^ + ^ X ' ' SNRx(t) = ^ * (8) 
9 (\ _ l 2kBTr , 2 

( x ( t ) ) ~ - K 0 2 t , ( 7 i ( f ) « \ / 2 ' c 2 < f 2 + 2 ^ , SNRt{t) = ^ n . 1 (9) 
m ox 

2 1 + kBTy 

(x(f))«--c(7 2
; ( 7 i ( f ) « \ / 2 / c 2 ( 7 4 ) + 2 ^ , SNRX(J) = ^ * ; 1 (10) 

o~x 

2 1 + kBTy 

The main significant difference, noticeable from Eqs. (8) to (10), is the time scale at which the environmental temperature T 
becomes relevant. Notice how advantageously the SNRX of Eq. (10) is time independent, compared to Eqs. (8), and (9). In 
Eq. (8) for position statistics, T plays a negligible role for short time scales (up to t = 0.1 ms), as the SNRX m 0 is independent of 
the chosen T, as visible from Fig.2 (b) for the range of T from overdamped to zero-damping limit. For longer time scales (from 
t = 0.3 ms) the environmental temperature competes against the noise-induced effect when T > 3mK2taXo/(4&B/) (T m 800<JXQ 

K, for r = 10-2 Hz), realising a growing SNRX slowly converging to SNRX =1/\fl for the higher environmental temperature 
T. Given the high temperature requirement, such regime is not visible for the parameters of the experimental set-up we used12. 
In Eq. (9), the standard deviation of instantaneous velocity o~x(t) is not affected by ambient temperature T = 300 K at low 
pressure, as the required condition to reduce the SNRx(t) is T > mK2o4

Qt/ksY (T « 125 x l O 2 ^ for T = 10-2 Hz (black 
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Figure 2. Noise-induced effect for initially steady particle in position x (a,b), instantaneous velocity x (c,d), and acceleration x (e,f), driven 

by variance <T2 o f initial position. A l l simulations (dots) have been performed based on E q . (1). In the top panel, for a short time scale up 

to / = 0.1 ms, the position statistics is trivial for all damping values, as the mean (x) (a) does not develop with increasing initial noise of 

position. Similarly, the SNRX (b), is dominated by the noise spread and therefore vanishes. In the middle panel, (c), the evolution of the mean 

of instantaneous velocity is displayed for different values o f damping. A t low damping, T = 10~ 2 H z (black dots), the deterministic limit 

(black line), as derived in E q . (6), can be reached. O n the other hand, for higher damping, namely T = 10 H z (green dots), the over-damped 

limit (green line), described by the mean o f average velocity (v) ~ — (K/r)a2
(l is approached. T h e middle case o f T = 1 H z (purple dots), 

shows the sensitivity of mean of instantaneous velocity, (x), to the damping coefficient y. Simultaneously, in (d) the evolution of the SNRX 

depicts the role of the environmental temperature T for different pressures, showing a regime dominated by the latter (purple dots) denoted by 

a linear increase of the SNR± as discussed in E q . (9). In the bottom panel, (e), the mean of instantaneous acceleration is depicted for different 

pressures. W h i l e for small damping T = 10~ 2 H z (black dots), the shift of mean instantaneous acceleration, (x), is visible and close to the 

deterministic limit (black line), given in E q . (5). It vanishes for larger damping T = 10 H z (green dots), where no instantaneous acceleration 

exists, (f) depicts, by contrast, the role of the environmental temperature T recognisable in the SNRx by the linear dependency in o"̂  of initial 

position, to be less present even at damping T = 1 H z , in comparison to the case for velocity, as shown in E q . (10). 

E q . (1) has been simulated using K" = 6ksT\im~^Kg~l,T = 300 K (ambient temperature), (XQ) = 0, (XQ) = 0, O"i0 = 0, / = 0.1 ms, 

dt = 2 x 10~ 5 ms. 10 4 trajectories where generated with 5000 samples each. To compute the average quantities, v, a, the multiple time-step 

has been used, St = 10 x dt. 

dots). Differently is the case at higher pressures, T = 1 Hz (Fig.2,d, purple dots), where the condition softens to T « 140(7̂ , 
reducing the SNRx(t) at small initial noise a t . The condition, for environmental temperature T, in the standard deviation of 
instantaneous acceleration in Eq. (10) o~x, is much harder to fulfill. As can be glimpsed from Fig.2 (f), for the low pressure 
limit (black dots) the environmental noise is negligible even at ambient temperature T = 300 K, leaving the SNRx(t) « 1 /\/2 
unmodified. To be able to witness the effect of the environmental noise at such low pressures T = 10~2 Hz, Eq. (10) provides a 
condition T > mK o^/ksY (T « 150 x 10 a 4 K, for T = 10~2 Hz) showing the high temperature requirement, index of high 
robustness against environmental noise. For higher pressures, T = 1 Hz (purple dots), the condition softens to T « 144 x l O 2 ^ 
K, allowing, for small a l to witness a reduction of the SNRx(t) (purple dots). 

Role of initial particle velocity 
Thus far we have considered the case of an initially steady particle with (xo) = 0. Assuming we have infinitely precise 
control over the choice of initial speed, <r? = 0, one can observe the noise-induced effect for moving particles, rendering 
the experimental test broad. Generalising Eq. (7) for non-zero (xo), and introducing Ax = x(t)—xot, to exclude deterministic 
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position change, one obtains 

2 V 2 °A* ^ 2 (1+ 2*-2ff- V 4 ) 

As visible from Fig.3(a,b), Eq. (11) holds true for particles moving at different initial speed (blue, green and red dots), showing 
that even quickly moving particles at the considered short time scale t = 0.1ms do not move on average. 
For moving particles, the equation for instantaneous velocity reads x(t) = XQ — kx\t. From the latter, the velocity difference 
Ax = x(t) — XQ is introduced, and its statistical evaluation comes as follows 

(Ax)n-Kolt, OAt^VlKolt, = I M Í M _ L (12) 
<JAx V2 

As noticeable from Fig.3 (c,d), the mean instantaneous velocity of Eq. (12) holds true only for values of initial velocities 
(xo) = ±0.5 (blue dots). However, for particles initially moving at higher speed (green and red dots), the approximation in 
Eq. (12) fails to describe the motion now modified by higher order nonlinear terms, as the particle obtains more negative mean 
instantaneous velocity for smaller at. This high order nonlinear effects can only be investigated by numerical stochastic 
simulations. The SNR* (middle panel, right column), although affected by the change in initial velocity (green and red dots), 
for larger <r2 converges to its constant value SNRx = 1/\[Ť. of Eq. (12). 
To visualise the effect of initial velocity XQ on instantaneous acceleration x, one needs to explore the second order approximation 
to Eq. (4). We rewrite Eq. (4) to a set of dynamical equations for the position x and speed x. Substituting a short­time solution 
x w xo +XQt of the equation for the position x, to the right side of the equation for the speed x, we obtain a solution for the 
acceleration x(í) « — K(XQ + 2x§x§t + Xgi2). Introducing the quantity Ax = x'(i) + /ex2,/2, a pure effect of a 2 on acceleration 
can be described, for (xo) = 0, non vanishing (xo), and c? = 0 as follows 

(Ax)«­^(7 2 , aM « v W 2 , S O T ^ i M U ­ L (13) 
<JM V2 

Evidently, in Fig.3 (e,f), for a particle with small non­zero initial speed xo, the acceleration does not deviate from the 
approximation introduced in Eq. (13), but when XQ increases, the mean acceleration gets closer to zero and SNR/^ approaches 
1 /\fl much slower for larger o2

a, as visible in Fig.3 (e,f, green). For even larger initial speed (red dots), the particle obtains 
less negative average acceleration for smaller a 2 , producing an initially decreasing SNRM- Decreasing the time scale tenfold 
t = 0.01 ms brings the red dots closer to the zero­damping approximation (black line), indicating that the shift is generated 
by higher order nonlinear terms beyond the approximate result introduced in Eq. (13). The larger <r2 , the more the particle 
accelerates, resulting in an increase of the SNRAX, slowly approaching 1 /\fl. 
Fig.3 demonstrates that the noise­induced shift of particle position (a,b), instantaneous velocity (c,d) and instantaneous 
acceleration (e,f) can be observed also for slowly and deterministically moving particles (black, and blue, and green dots). 
Moreover, for (xo) > 0 stochastic breaking induced by initial noise can be witnessed where the particle breaks at average 
(x) = 0 for sufficiently large initial position noise a 2

r Similarly for (xo) < 0 stochastic speeding is observed, where the particle 
gains velocity for sufficiently large initial position noise at. The latter can be observed even during the short time period, and 
it is noticeable by the sign flip of mean instantaneous velocity (Axo) = — |xo| (Fig.3 c,d, dashed blue line). 

Sensitivity to velocity noise 
Complementary to the previous section, here we investigate how sensitive the noise induced effect is to an increase of initial 
velocity noise q? , for strictly zero initial velocity (xo) = 0, and (xo) = 0. Assuming negligible y, as witnessed already in Fig.2 
for the short time dynamics, Eq. (1) can be studied to describe the effect of initial statistics of velocity. Due to non­zero initial 
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Figure 3. Noise-induced effects for initially m o v i n g particle i n position statistics (a,b), instantaneous velocity statistics (c,d), and 

instantaneous acceleration statistics (e,f). A l l simulations (dots) have been performed based o n E q . (1) using <J? = 0. For mean particle 

position (a) the dynamics remains unchanged from that o f E q . (11) (black line) independent o f the chosen initial velocity (io), while the 

SNRfa (b, dots) remains small (close to zero), as the standard deviation increases faster than the mean. For mean instantaneous velocity 

(c,d), the approximation introduced i n E q . (12) (black line) holds true for values of initial velocity up to (io) = ± 5 . W i t h i n this frame, 

stochastic speeding (for (io) > 0) and stochastic breaking (for (io) < 0) are witnessed when (Ai) = — |(io)|. Specifically, for (io) = ± 0 . 5 

(blue dots), the initial position noise induced stochastic speeding/breaking is met at values o f (Ai) = —0.5 (blue dashed line). For values 

(io) | > 5 (green, and red dots) the dynamics can no longer be described by E q . (12), as higher order nonlinear terms become relevant. A s 

a result, the slope remains similar to that of the black line, but the curve is shifted to a non-zero value at <jj? = 0. T h e resulting SNR^ 

display a slower convergence to the black line as the initial velocity becomes larger in magnitude. Particle acceleration (e,f) displays a solid 

robustness against the initial velocity (io) < 20 in both mean (e), and SNR^ (f). However, for values of (io) > 20 (red dots), the evolution 

of mean instantaneous acceleration ( A i ) deviates from the approximation of E q . (13) (black line). In this regime, the SNR^ presents an 

initial decrease, index of highly unstable dynamics, followed by a slow convergence towards the black line. E q . (1) has been simulated using 

K = 6kBT\im~3Kg-1, T = 300 K , T = 10~ 2 H z , / = 0.1 ms, dt = 2 x 10~ 5 ms. 10 4 trajectories where generated with 5000 samples each. 

velocity noise, Eqs. (5)- (7) modify to 

K(J21 I I I 

« 0 > « — ° x ~ \ ^ < + ° l + - 2 K 2 < t A i SNRX~ (14) 

1 
^ « ^ ± 2 ^ 2 ( 7 4 , SNR** g 2 (15) 

% + t 2 

v/2 

At short time scale, the mean position (x(t)) does not move, resulting in a vanishing SNRX independent of the value of the 
initial velocity noise, as visible in Fig.4 (a,b). For time larger than t = 0.3 ms, when the nonlinear terms in Eq. (14) are 
prominent and SNRX approaches l/y/2, the initial velocity noise can modify the statistics of position if cr? » Ka2

at2/V2 
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(a? « l O - 2 ^ , at f = 0.3 ms, T = 10~2 Hz). The statistics of instantaneous velocity, as described in Eq. (15) are more affected 
by increasing initial velocity noise at short time scales. For values of (72

0 3> 2K t « 4 x l O - 2 ^ (at t = 0.1 ms, T = 10~2 

Hz), the statistics of SNRX slowly approaches the constant 1 /\fi value, and rather approaches that of Eq. (15) as shown in 
Fig.4 (d, purple dashed line). As can be seen directly from Eq. (16), instantaneous acceleration bears the ability to be driven 
both by initial, velocity noise axi, dominating in the long time scale, and initial position noise axi, dominating in the short 
time scale. As can be seen in Fig.4 (e) at timescales of t = 0.1 ms the term axi dominates over the dynamics (black and 
purple dots), retrieving the zero-damping approximation results (black dashed line). At larger values of Cg (orange dots) the 
enhancing effects of initial velocity noise becomes visible as the mean instantaneous acceleration becomes more negative than 
the zero-damping approximation (black dashed line). Simultaneously the SNRX (e) quickly converges to 1/V2 independent of 
the choice of initial velocity noise. 
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Figure 4. Robustness of initial noise-induced effect to initial velocity noise a:? for position statistics (a,b), instantaneous velocity statistics 

(c,d), and instantaneous acceleration (e,f). A l l simulations (dots) have been performed based o n E q . (1) using (xo) = (io) = 0. In the top 

panel, for particle position, the increasing initial velocity noise <r2

o does not modify the statistics of both mean position (a), and SNRX (b). In 

the middle panel, for instantaneous velocity, the noise-induced feature is still observable for increasing initial velocity noise a.? , at the cost 

o f h i g h ensemble size requirements for mean instantaneous velocity computation (c). T h e SNRX (d) still shows the noise induced effect, 

increasing with initial position noise, but its statistics gets modified, according to E q . (15) (purple and orange dots), to a linearly increased 

SNRX T h e bottom panel, (e,f) for instantaneous acceleration, displays a small sensitivity to initial velocity noise a^. A s obtained from 

E q . (16), the condition the initial position uncertainty must fulfill to overthrow the initial velocity noise, <r2

0 2> yax<)/V2K fa 5 x l O - 3 ^ , is 

quite trivial, rendering the impact of a ? negligible upon the statistics of instantaneous acceleration, never reaching, for the parameters o f 

the experiment used, the regime introduced in E q . (16) for SNRX. The case of large initial velocity noise = 20 (orange dots) introduces 

enhancement of mean instantaneous acceleration (e), that can be described by (x) ~ — K(OX^) + o ^ i 2 ) as introduced in E q . (16). E q . (1) has 

been simulated using K" = 6ksT\lm~~'Kg­1, T = 300 K , T = 10~ 2 H z , / = 0.1 ms, dt = 2 x 10~ 5 ms. Nt = 10 4 trajectories where generated 

with N = 5000 samples each. 

Coherent motion of maximum of distribution 
To complete the analysis, the dynamics of a levitated particle in cubic potential needs to be characterised also by means of 
the most­likely position, speed and acceleration. The maxima of the respective distribution are not only a directly measurable 
characteristic of unstable motion, but they also open a new local use of Maxwell's deamon in stochastic thermodynamics 
2 7 . Both mean and maximum of instantaneous quantities, stimulated by initial noise, should ideally increase coherently 
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Figure 5. Initial noise-induced shift o f m a x i m u m o f position x m a x , for high (a) and low (b) pressure limit, m a x i m u m o f instantaneous 

velocity x m a x (c), and acceleration XmaX (d). A l l simulations (dots) have been performed based on E q . (1) using (XQ) = (XQ) = 0, and <J? = 1. 

The top panel highlights the atypical evolution of maximum of particle position x m a x (a, red dots) retrieved in 2 1 , 3 0 for over-damped dynamics 

(a, red line), and witnessed again in the low pressure limit (b, red). To make the shift in m a x i m u m more visible, E q . (1) has been simulated 

with / = 0.3 ms. The maximum of instantaneous velocity x m a x , in the low pressure limit (c), introduces a new effect comprising of a coherent 

shift o f x m a x (red) alongside the potential force (black) T h e inset, showing snapshots of the P(x at different a 2 , highlights the instability 

(heavy tails o n the left), with a clear shift o f the m a x i m u m alongside. Similarly, the m a x i m u m o f instantaneous acceleration x m a x (d, red), 

shifts coherently with its mean (x) (black), corroborated by the inset picture, showing the left shift o f x m a x for different values o f aXf). B y 

comparing the shift of x m a x , and x m a x , we notice that the latter is comprised o f a larger shift induced by initial position noise <jj?. Moreover, 

comparing the P(x), and P(x) (inset a,b), with the P(x) (inset c,d), we notice the absence of light tail in the former, that is visible in position 
2 1 . To produce the figure on the bottom panel, E q . (1) has been simulated with / = 0.1 ms. The other parameters used to produce this graph 

from E q . (1) are K" = 6kBTjxm~3Kg~l, T = 300K,dt = 2 x 10~ 5 ms. N, = 10 4 trajectories where generated w i t h N = 5000 samples each. 

(typical motion in the same direction) with a constant signal-to-noise ratio. Fig.5 shows the dynamics of maximum of 
position distribution(a,b, red dots), in both high friction regime (a), as well as in low friction regime (b). The latter shifts 
more pronouncedly, while maintaining its atypical feature observed in 2 7 , 3 0 for over-damped dynamics. A new feature arises 
for the-most-likely speed, where both in high and low friction regime, the maximum of average and instantaneous velocity 
distribution shifts alongside the potential force as seen by the red arrow in Fig.l (c,d). A more quantitative dynamics of the 
latter is shown in Fig.5 (c) showing that the deterministic limit (red line) is reached at damping of T = 10~2 Hz. Contrarily 
to the mean instantaneous velocity, shown in Fig.4, the maximum of velocity distribution does not succumb to increasing 
initial velocity noise. The curvature on the other hand is responsible for the reduction of the SNRXmax, as it becomes larger with 
increasing initial velocity noise <J? , slowing down the convergence of the SNRXmax as shown in Fig.6 (d). 
The shift of the most-likely acceleration is alongside the potential force, as shown in Fig. 1 (f, red arrow). It becomes evident 
only at low pressures, and disappears towards the high friction limit. The sharp shape of the acceleration distribution, displayed 
in the inset of Fig.5 (e) shows a large shift of mean of instantaneous acceleration, but a small shift of its maximum, although 
larger compared to the shift of the maximum of velocity distribution. Despite the negligible role that the uncertainty of the 
initial velocity state displays in the evolution of the maximum of acceleration distribution, as shown in Fig.6 (e,f), it is of notice 
the convergence of the SNRX to the 1 /V2, denoted by the dashed black line in Fig.6 (f). 
The minimal requirement to observe a shift of the maximum in the acceleration distribution, is a non-zero noise in the initial 
velocity state, which mediates from the sharp tail on the right of the distribution, making its maximum hard to identify. Moreover 
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w e report that the m o s t - l i k e l y a c c e l e r a t i o n , w h e n the d y n a m i c s starts at different i n i t i a l p o s i t i o n (xn) ^ 0, shifts a t y p i c a l l y for 

s m a l l v a l u e s o f i n i t i a l p o s i t i o n u n c e r t a i n t y . T h i s is d u e b y a p u r e d e t e r m i n i s t i c drift i n a r e g i m e d o m i n a t e d b y i n e r t i a w h e n 

the trajectory e x p l o r e r e g i o n a w a y f r o m the p l a t e a u . M o r e o v e r , their d i s t r i b u t i o n s h o w s n o v i s i b l e l i g h t tai ls , c o n t r a r y to the 

p o s i t i o n d i s t r i b u t i o n i n the o v e r - d a m p e d r e g i m e 2 7 , w h e r e the fast a n d unstable d y n a m i c s o f x drags a l l the trajectories q u i c k l y 

to the d i v e r g e n c e . 
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Figure 6. The noise-induced effect in the maxima of distribution for position, instantaneous velocity and acceleration to the uncertainty of 

the initial velocity state, o~?. (a,b), the evolution of the maximum of position distribution is not modified by increasing initial uncertainty of 

the velocity state, o~? , similar to its global counterpart (x). (c,d), the evolution of m a x i m u m of velocity distribution is investigated, showing 

on (c), almost no sensitivity to small changes in initial velocity noise, but increase requirement of ensemble size. Simultaneously , the SNRX 

on (d) slowly converges to the SNR± = 1 / V 2 (black dashed line) value but its convergence is reduced with increasing initial velocity noise 

O"? . (e,f), the local characteristics of instantaneous acceleration, x m a x (e), displays little to no sensitivity to increasing initial velocity noise, 

while its SNRX- requires a high ensemble size to be simulated (N, = 10 6). The convergence of the SNRX- (f) is not modified by increasing initial 

velocity noise o~? . T h e black dashed line correspond to the evolution of maxima of distribution for the zero-damping-limit, shown in Fig.5. 

E q . (1) has been simulated using K: = 6kBTnm~3Kg~1, T = 300K, (x0) = 0, (x0) = 0,t = 0.1ms,dt = 2 x 10~ 6 ms. N, = 10 6 trajectories 

where generated with N = 5000 samples each. 

Conclusion for experimental tests 
W e h a v e d e m o n s t r a t e d the n o i s e - i n d u c e d i n s t a n t a n e o u s s p e e d a n d a c c e l e r a t i o n o f a l e v i t a t e d p a r t i c l e i n the h i g h l y u n s t a b l e 

c u b i c p o t e n t i a l . M o r e o v e r , a l l the s i m u l a t i o n s h a v e b e e n p e r f o r m e d u s i n g p a r a m e t e r s o f c u r r e n t u n d e r d a m p e d e x p e r i m e n t s 1 2 , 

t o g e t h e r w i t h the p a r a m e t e r s o f c u b i c o p t i c a l p o t e n t i a l 2 9 3 0 d i r e c t l y m o t i v a t i n g o u r p r e d i c t i o n s to b e e x p e r i m e n t a l l y tested 

to w i t n e s s these n e w n o n l i n e a r m e c h a n i c a l p h e n o m e n a . H o w e v e r , the a n a l y s i s o f the p r e s e n t e d r e g i m e is a l s o a p p l i c a b l e to 

other u n d e r d a m p e d e x p e r i m e n t s 3 1 " 3 3 . T h e first p o i n t w o r t h e x p e r i m e n t a l l y v e r i f y i n g , s h o w n i n F i g . l a n d F i g . 2 , is h o w the 

n o i s e - i n d u c e d effect turns to i n s t a n t a n e o u s v e l o c i t y a n d a c c e l e r a t i o n , r e a c h i n g the z e r o - d a m p i n g a p p r o x i m a t i o n d e s c r i b e d 

i n E q s . (5) to (7) at p r e s s u r e s o f p = 1 0 ~ 5 m b a r , a n d r o o m t e m p e r a t u r e . T h e n , the e x p e r i m e n t c a n p r o c e e d to invest igate 

h o w robust the p r e v i o u s result was w h e n the p a r t i c l e , instead o f b e i n g i n i t i a l l y steady at the p l a t e a u , p o s s e s s e d n o n z e r o i n i t i a l 

v e l o c i t y ( io) as s h o w e d i n F i g . 3 . T h e latter u n v e i l e d a n i n t e r e s t i n g feature, o b s e r v a b l e i n the c u b i c p o t e n t i a l , c o n s i s t i n g o f 

stochastic b r e a k i n g a n d s p e e d i n g i n d u c e d b y i n i t i a l p o s i t i o n n o i s e a X { ) . M o r e o v e r , r e m a r k a b l y the n o i s e - i n d u c e d effect c a n be 

o b s e r v e d even for s l o w l y m o v i n g particles (see blue a n d green dots i n F i g . 3 ) . A parameter that needs to be kept u n d e r c o n t r o l is 

the i n i t i a l v e l o c i t y n o i s e , w h i c h a l t h o u g h c a n d r i v e the shift o f instantaneous a c c e l e r a t i o n ( F i g . 4 o r a n g e dots) , is d i s r u p t i v e for 
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the measurement of instantaneous velocity (purple and orange dots Fig.4). Last, but not least, we showed that the maxima of 
the instantaneous speed, and acceleration distributions shift normally, alongside their respective mean in contrast to the position 
maximum which maintains its atypical shift as previously observed in the over-damped regime27'30 (Fig.5). The sensitivity 
of maxima towards increasing initial velocity noise, as shown in Fig.6, displays a worsening of the accuracy which in turns 
demands increasing ensemble size. All these experimental tests verify new underdamped transient effects of a particle living at 
the edge of instability, paving the way to explore highly nonlinear stochastic phenomena. Future targets comprise of quantum 
mechanical analysis of deeply underdamped and highly cooled particles in the unstable cubic potential, initially close to the 
mechanical ground state. 

Methods 
Numerical simulation with experimental numbers 
To numerically simulate the Langevin dynamics described in Eq. (1) using real experimental values, one has to re-scale the 
equation of motion. Usually, for linear dynamics, the equation is re-scaled using the mechanical Q-factor. With nonlinear 
systems this is not valid anymore, and a different route must be followed. In the case of Eq. (1), it is useful to re-scale position 
and time as follows 

x t 

?=y, t = - , (17) 
with q being the dimensionless position, / the position re-scaler, t the dimensionless time, and x the time re-scaler. It naturally 
follows from Eq. (17) that q = xx/l, and q = x2x/l. In order to determine the values of the re-scaler, one can use, for the 
position l = 5x 10~6 which is the length of the potential used in experiment30, and then focus attention on the positive part 
of the potential, of length 1/2. Subsequently choose a point, P belonging to it, with coordinate (xp,yp). With this point one 
can build a straight line passing through the origin and the chosen point, and notice that it forms a triangle containing the 
piece of potential up to point P chosen. The angle between the origin and the hypotenuse is then given by the stiffness k of 
the potential. Subsequently, the position re-scaler can be calculated as / = 2^/A/k, where A denotes the area of the triangle 
previously built, and the factor 2 comes from the fact that we extend the calculation to the whole domain of the cubic potential. 
The re-scaler / calculated, now has a clear dependence on the stiffness of the potential K m ksTpim^3, and subsequently on 
the chosen temperature T, and it varies between 10_3/xm < I < 10~2/J.m. The time re-scaler, x is calculated by numerically 
computing the first passage time for the selected parameters. 
Following the re-scaling procedure explained before, the Langevin equation can be transformed into 

- 5 5 x2 [ZD=, . 

q = - y T q - k x 2 l q 2 + j ^ — ^ t ) , (18) 

where k = K/13, and the mass m has been absorbed by K = K/m, y = T/m, D = kBTy/m, and f (?) = Vx~lt;(t). The term 
k = K/13 comes from the re-normalisation of the potential stiffness, done to render the dimensions of the new stiffness, 
k = [1/(ms 2)], such that the potential term, k x 2 l q 2 becomes a-dimensional in the re-scaling. As a crosscheck for the dynamics, 
the Pearson correlation coefficient is calculated, and simulated (Fig.7. As per its definition, the Pearson correlation is calculated 
as pxy = cov(xy)/oxoy, where cov(xy) = (xy) — (x) (y) is the covariance matrix of the pair. The simulated pairs presents the 
following Pearson correlations, assuming negligible y, as it does not seem to disrupt the dynamics much (bottom panel, centre 
column) 

1 a h + K 2 a i t 3 K 2 a i t 2 

--, PxAx = . pAxJc = ' (19) 
+ 1 V< ' 2 + §* 2 ^<' 3 + ̂ 6 V2K(a2

Q + a 2
o t 2 ) J a 2

o t 2 + l
l K

2 a ^ 

Noise-induced effects for non vanishing initial position 
Throughout the paper we have always assumed to have a particle initially positioned at the inflection point (xo) = 0. It becomes 
natural to ask how different (xo) affect the noise-induced effect described. As evidenced in Fig.8, for small nonzero (xo) = 1 
(blue dots), Eqs. (14)- (16) still describe the dynamics for position (a,b), velocity (c,d), and acceleration (e,f), where their SNR 
(b,d,f) show no deviation from l / v 2 . A different case is the large non zero (xo) (green dots) for which Eqs. (14)- (16) no 
longer holds. In this case, the particle already feels strong nonlinear terms, which require more terms in the time expansion 
from (4). While the respective SNR undergo an initial decrease (for velocity and acceleration), they all converge to 1 /\fl for 
increasing initial position noise a2 To preserve the short time dynamics at such nonlinear positions, a decrease of the time 
scale seems necessary (a tenth of t = 0.1ms is sufficient for the parameters used in Fig.8 to produce the green dots). 
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Figure 7. Pearson correlation coefficients, in time (a,b,c), and initial position noise (d,e,f) for the pairs pm, piAxi PAxx- From left to right the 

pure deterministic dynamics for (XQ) = (XQ) = 0, and noiseless initial velocity, followed by the small pressure regime (b,e), and finally the noisy 

initial velocity (c,f). (a,d) shows that in the pure deterministic scenario, T = 0, for <J? = 0, all the pairs are fully correlated with each other. A 

change in the damping, T = 10~ 2 (b,e), shows little to no modification, as the elements of the pairs quickly become correlated. A change in 

initial velocity noise (c,f), shows all the pairs to be uncorrelated at / = 0, increasing with / to ultimately converge to full correlation p = 1. O n 

the other hand, the pair remains fully correlated as the initial position noise increases, whereas the two remaining pairs grow at the same 

rate, converging slowly to p = 1. E q . (1) has been simulated using K" = 6kBTnm~3Kg~l, T = 300^r, (XQ) = 0, (XQ) = 0,dt = 2 x 1 0 - 5 ms. 

10 4 trajectories were generated with 5000 samples each. 
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0 1 2 ^ 3 4 5 0 1 2 2̂ 3 4 5 

Figure 8. Noise-induced effects for non vanishing initial position (XQ) for position statistics (a,b), instantaneous velocity statistics (c,d), and 

instantaneous acceleration statistics (e,f). A l l simulations (dots) have been performed based on E q . (1) using <J? = 0, and (XQ) = 0. Positioning 

the particle in different parts of the plateau region (blue dots), reveals no introduction o f higher order term of the time series for neither 

position, velocity, nor acceleration. Their dynamics is well described by Eqs. (14)- (16). Similarly, by positioning the particle away from the 

plateau, where the nonlinearity starts to become relevant (red dots), Eqs. (14)- (16) still hold to describe dynamics of position, velocity, and 

acceleration. A different case is when the particle is positioned in a highly nonlinear region of the potential (green dots), i.e., down the slope 

of the cubic potential (negative values), or o n the cubic wall (positive values). Such positions highly affect the dynamics, introducing new 

terms of the time series, where Eqs. (14)- (16) are no longer valid. A s a result, the position still displays the noise-induced feature, witnessed 

by the increasing SNR^- (b) that converges to the constant value 1 /%/2. Velocity (d) and acceleration (f) display a SNR initially decreasing to 

zero, after which the noise-induced feature becomes visible once again, converging with different speed of growth to the constant value 1 /%/2 

for larger values of initial position noise. E q . (1) has been simulated using K" = ekBT^im^Kg-1, T = 300K, <J? = 0, (x0) = 0,dt = 2 x 1 0 " 5 

ms. 10 4 trajectories where generated with 5000 samples each. 
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Abstract 

The fast pace that optically levitated platforms have experienced 

over the past decade has opened new ways to investigate a plethora 

of nonlinear stochastic mechanical effects. Amongst them, noise-to-

signal transitions, peculiar and interesting processes in physics, are 

the focus of this thesis. They allow to transform the environmental 

noise to useful mechanical effects. 

This thesis investigates the paradigm of stochastic highly nonlin­

ear dynamics of a levitated nanosphere in the classical, overdamped 

and underdamped regime. With main focus on the dynamical noise-

to-signal transitions in the optical cubic potential V(x) = kx3/3, 

where its inherent instabilities were positively exploited as a ther­

mally driven source to autonomously transform noise into useful 

coherent mechanical displacement. 

Such transformation can be performed because the nonlinearity, one 

iii 



Abstract iv 

of the essential ingredients together with instabilities, brings the me­

chanical system out of its thermal equilibrium, thus allowing energy 

from the fluctuating environment to be used as a source of coherent 

mechanical displacement and oscillations. 

Keywords— Nonlinear Dynamics, Optical Trapping and Manipulation, 

Brownian Motion, Transient Stochastic Effects, Non-equilibrium Statisti­

cal Mechanics 
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Introduction 

This report contains a brief summary of the main results presented in the 

thesis Stochastic Non-Linear Dynamics of Optically Trapped Particles. 

Chapter ED discusses the results presented in [ID, •], comprising of a new 

methodology based on the maximum of position distribution, to char­

acterise the otherwise divergent dynamics of highly nonlinear systems. 

Chapter based on a manuscript under review process for publication 

in Scientific Reports, illustrates the dynamics of a particle trapped in the 

optical cubic potential in the low pressure regime; introducing new un­

explored nonlinear ballistic effects appearing in the instantaneous speed 

and acceleration, obtained for parameters of current underdamped exper­

iments. Furthermore, Chapter • briefly discusses the numerical methodol­

ogy required to numerically simulate dynamics of highly nonlinear systems 

beyond their characteristic times. 

Lastly, Chapter • summarises the main results of the research. 
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Chapter 1 

Overdamped Stochastic 

Dynamics in Cubic 

Potential 

We investigate the noise-to-signal transitions in the optical cubic poten­

tial V{x) = kx3/3 by positively exploiting its inherent instabilities as a 

thermally driven source to autonomously transform noise into useful co­

herent motion. 

The governing equation of motion for the overdamped regime can be well 

3 
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.r 

<*(t)> * x ™ , ( t ) 

Figure 1.1: Noise-to-signal transitions, different point of view. 
On the left panel, the illustration shows how the uncertainty of the initial 
state enhances the instability of the cubic potential, showing first hand the 
non-linear effect of the noise-induced displacement effect, as described in 
Eq.(K3). On the right panel, the illustration shows how the unstable dy­
namics of a Brownian particle in cubic potential leads to the generation of 
heavy tails on the PDF, generated by diverging trajectories, which shows 
the limitation of the description by global statistical moments. Simultane­
ously it can be noticed the atypical dynamics of the local characteristics, 
evolving against the potential force, it too driven by the initial thermal 
noise, Eq.(ld), and environmental noise ßj. 

approximated by the following Langevin equation 

x = -Kx2 + y/2D£(t), (1.1) 
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where K = fc/7 is the normalised cubic potential stiffness, and D = ksT/j 

is the diffusion parameter. Solution of the deterministic motion of Eq.(DZD) 

shows diverging trajectories for negative initial position x(to) [3] 

X(t) = ~ ,X{tf> r , (1.2) 

as lim x(t)\x0<o = —00, limiting the dynamics with a characteristic time 
£ — • 0 0 

= 1/(^1^(^0)1) [Q]- As shown in Fig.DZD(left), by drawing initial condi­

tions from a Gaussian centered at (xo) = 0, but with nonzero variance ao, 

the value of the initial position in the cubic potential is a random value 

either positive, or negative. The uncertainty of the initial state introduces 

a noise-induced displacement effect, observed in the moments of particle 

position [•] 

(x(t)) = -k(x(t0)2)(t - to) - kD(t - to) 2 , (1.3) 

((Ax(t)f) = ((Ax(to)) 2) + 2D(t - to) + 8k2(t - to)2((Ax(t0))2)2, (1.4) 

at the second order approximation in time. 

In the absence of the diffusion term D, the initial noise is enough to pro­

duce drift on the particle motion with unchanged variance, showing a 

noise-induced displacement driving the mean particle position. For negli­

gible initial thermal noise, the mean displacement evolves with a quadratic 

term in time transforming environmental noise to displacement, while the 

variance evolves with free diffusion fashion. At larger time scales the cu-
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bic nonlinearity starts to affect the evolution of the variance, as the P D F 

grows heavy tails [ID, •], visible in Fig.rO(right). 

The witness of the noise-to-signal transition embedded in Eq.(E3),(lE3) 

can be quantified by the signal to noise ratio (SNR = \(x(t))\/ax(t)) [Q, 9], 

defined as a ratio between the useful signal in the motion (x), and its un­

certainty <7X. 

The S N R quantifies the quality of the noise-to-signal process, and if it 

grows the coherent displacement increases faster than the noise, vicev-

ersa, the S N R starts to decrease, regardless of the increasing mean value 

evolving linearly in time, and powered by initial thermal noise, as showed 

in Fig.rO(left panel), quantifying the noise supplying the transitions. Sim­

ilarly, in the strong diffusion regime, the S N R reaches [•] 

which increases faster in time than its small diffusion counterpart in 

Eq.(IC3), as the system is continuously supplied with energy due to the 

Brownian noise, as shown in Fig . rO (right). While the S N R increases 

in time for both regimes, the characteristic time of divergence bounds 

In the limit of small diffusion, the S N R evolve as [•] 

SNR(t) oc ky/((Ax(t))2)(t - to), (1.5) 

(1.6) 
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Figure 1.2: Noise-to-signal transitions powered by initial noise 
(left), and environmental noise (right) of a particle in cubic po­
tential in terms of mean displacement and S N R . 
The simulation are compared with analytical results presented in Eq.(E3) 
for the mean displacement (x(t)) (red and blue line in inset), and 
i£(7s.(OJ),(03) for the S N R , respectively in red and blue on the figure. 
For this figure, Eq. (OZD) has been simulated, using, for the left picture, 
t = 0.1, D = 0, dt = 10 _ 5 ,/c = 3, and for the right one, GQ = 0.0, t = 
0.1, dt = 10~5,k = 3. 5000 trajectories were generated. The figure has 
been taken from the thesis 

the dynamics, after which the divergence dominates. Such limitation is 

clearly marked by the prominent drop of the S N R (see Fig.[H3, red) and 

it renders the description of the dynamics, by global statistical moments, 

useless beyond it. 

While the generation of heavy tails towards the divergence dominates the 

flow of (x), and ax dynamics, culprit of the drop of SNR, the maximum 

of position distribution (Fig.DZD, right), exhibits a shift against the poten-
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Figure 1.3: Fast divergence of the global description using aver­
ages is demonstrated by a swift drop of the S N R (red line). 
The local description using the maximum of the PDF, and the curva­
ture around it, maintains its information value for all times (green line). 
D = 0.1, k = 1, dt = 2 • 10~ 3, xo = 0, and 4 • 10 5 trajectories where used. 

tial force. In [ID, •] we discuss the characterisation of the most probable 

particle position described by the maximum of the particle distribution 

P(x,t) to substitute the mean displacement, and the uncertainty around 

it characterised by the curvature around the maximum [•]. The investi­

gation is focused on the dynamics at the plateau of those trajectory that 

survives the divergence, bearing little to no information about it [0]. 

The dynamics is still quantified by the Signal to Noise Ratio, written now 

for local characteristics, SNR(t) = Xmax(t)/o~max(t), where the maximum 

Xmax is calculated by looking at the zero point of the derivative of the 
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P D F , dxP(x,t) = 0, leading for deterministic dynamics, to [HI] 

1 1 + x0kt - y/(l + x0kt)2 + 8a2 (kt)2 

kt + 4 ( j 2 ( H ) 3 
(1.7) 

and the curvature is denned according to its definition [ID] 

P(x max (t),t) 
(1.8) 

\diP(x. max 

To better understand the origin of the local characteristics, one can imag­

ine a trajectory starting from xo that follows the deterministic dynamics 

x(t) = XQ/[1 + xokt]. A trajectory initially starting on the right of the 

inflection point, converges to the origin as x(t) ~ 1/kt [ D], while a trajec­

tory starting on the left diverges. The trade-off between the two evolution 

leads to a plethora of behavior of local characteristics that strongly de­

pends on the initial distribution [ij.For non-vanishing xo, at short times, 

the evolution of maximum and curvature of particle position can be ap­

proximated by [ID] 

Xmax(i) ~ XQ + (2O~Q — X$)kt, (1.9) 

Vmax(t) ~ CTQ - 4a2x0kt - 10k2aot2. (1.10) 

The sufficient condition to observe the atypical shift in Eq. (OJ) , against 

the potential force — dxV{x) is given by the inequality 0 < XQ/\/2 < o~o, 

while the narrowing of the curvature in E q . ( O U ) requires only xo > 0 [l]. 
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The noise to signal transi­

tion for the maximum of 

particle position is shown 

in F i g . O l showing the 

atypical shift powered by 

noise in the limit of negli­

gible environmental noise, 

and weak diffusion. The 

S N R for local characteris­

tics, is a parameter that 

M l 
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1 • 1 | 1 1 1 1 1 
0.2 
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Figure 1.4: Atypical shift of maxi­
mum powered by initial thermal noise 

determines how well the (inset, black), and environmental 
noise(red) /t2/ 
The figure demonstrates the noise-to-signal 
transition for the most likely trajectory, 
with the atypical shift against the potential 

tally [m]. In turns it is force. 
The solid lines represent the analytical 
solutions, while the dots are the numerical 
simulation obtained via Eq.(lL3i), and using 

most likely position can 

be observed experimen-

required to have a non-

negligible S N R to be able 
7 = 1, ( x 0 ) = 0,dt = 2 x 10" 3, ai = 0 

to detect the shift of the (D = 0 for the inset), and nt 
trajectories where generated. 

3 x i n 5 

trajectories where generated. 

maximum of particle posi­

tion. In contrast to the S N R for global characteristics, it does not show a 

drop as time grows, remaining nonzero for any t, as both maximum and 

curvature converge to a positive value [i]. As shown in Fig.IC3, while the 

drop of the ratio for averages shows that the signal in the position is neg-
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ligible compared to the noise, the S N R for local characteristics exhibits 

the maximum of particle position maintaining its information values for 

all times. 

From the equation of motion E q the mean average velocity (v) = 

Ax/At can be calcualted, for the short time dynamics, as 

(v) = ( ^ ) ^ - n a 2
X 0 , (1.11) 

o-v « \/2K,2ai0 + 2D, (1.12) 

^ ( I + D K - W Q 2 ) 

SNRfj = - M l « 1 (1.13) 

The knowledge of average velocity paves the way towards the under-

damped regime, where the instantaneous velocity and acceleration be­

come the principal quantities to be driven by the initial thermal noise, as 

shown in Fig.iLJj. 
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Initial noise-induced statistics of position, velocity and acceleration of a levitated particle in cubic potential 

High-pressure regime: p — 10 2mbar(7 = 10 H z ) Low-pressure regime: p = 10 Jmbar(7 — 10 H z ) 

Figure 1.5: Noise-induced position, velocity and acceleration 
statistics of a levitated particle in cubic potential for the high 
pressure limit (left column) and for the low pressure limit (right 
column). 
The initial Gaussian distribution comprises of (xo) = 0, (xo) = 0 and 
cr|0 = 0, while cr 0̂ triggers the nonlinear dynamics. Top panel: the mean 
(green, black) and maximum (red) of position distribution do not develop 
at such short time scale, while their standard deviations (green-blue, yel­
low halo) increase as initial noise increases. Middle panel: comparing the 
mean average velocity (left column, green) to the mean instantaneous ve­
locity (right column, black), the former produces a smaller noise-induced 
shift. Their standard deviation (green blue halo) is significantly reduced 
in the low pressure regime. The maxima of velocity distributions (red) 
increase alongside the potential force with a significant reduction in the 
curvature for the low pressure regime (right column, yellow halo). Bottom 
panel: comparing the mean average acceleration (green) with the mean 
instantaneous acceleration (black), the former does not display a noise-
induced effect, while it is substantial in the low pressure regime. Simi­
larly, their standard deviation (green-blue halo) increases with noise only 
in the low pressure regime. The maxima of acceleration distribution (red) 
increases, alongside the potential force with a significant reduction in the 
curvature only in the low pressure regime (right), fn the high pressure 
regime (left), the maximum does not develop, and it is surrounded by a 
large curvature (yellow halo). To generate all the density plots, Eq. (EZD) 
has been simulated using K = 6kBTum~3Kg~1 ,T = 300 K, t = 0.1 ms, 
dt = 2x 10~ 5 ms. nt = 10 4 trajectories where generated with 5000 samples 
each. To calculate the instantaneous quantities, x = dx/dt, 'x = dx/dt, 
the time interval used is given by the time-step dt = 2 x 10~ 5 ms, whereas 
for the average quantities v = Ax/At, a = Av/At, the time interval, 
multiple of the time-step, has been used At = 10 x dt. 



Chapter 2 

Under damped 

Stochastic Dynamics in 

Cubic Potential 

We investigate the dynamics of a particle trapped in an optical cubic 

potential in the low pressure regime, discussing new unexplored nonlinear 

ballistic effects appearing in the instantaneous speed and acceleration. 

The equation of motion governing the dynamics can be well approximated 

13 
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by the following Langevin equation 

2 • i 

' — 7a; + (2-1) 

where n = k/m is the normalised cubic potential stiffness, 7 = T/m is 

the medium damping with drag coefficient V of the medium (i.e. air at 

low pressure), T is the absolute temperature, and fcs is the Boltzmann 

constant. 

In the limit of low friction, the dynamics is that of Eq.(EZD), where the 

characterisation of the statistics of instantaneous speed x and acceleration 

x unfold without changing initial position XQ. While these quantities are 

well defined in the underdamped regime, they exist only on average in the 

high friction limit v = Ax/At (Eqs (DZD])-(03)), and a = Av/At. 

If we consider the dynamics to be deterministic, i.e. 7 = 0, and char­

acterised by a Gaussian initial distribution with (xo) = aXQ = 0, the 

nonlinear ballistic dynamics is using only initial position uncertainty as a 

thermal energy resource. This translates into the following quantitative 

description of the moments of instantaneous acceleration and velocity 

(x) W —K<7 
2 

x 0 j (x(t)) (2-2) 

(t) ^ V2nalQt, (2-3) 

SNRx 
1 

SNRi( t ) 
1 

(2-4) 
y/2' 
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The first experimental verification to distinguish the nonlinear ballistic 

dynamics comprises of the shift of instantaneous acceleration (x(t)) pow­

ered by initial position noise, as demonstrated in F i g . I Q (comparison left 

and right column of the bottom panel). 

The second main feature of the nonlinear ballistic dynamics is charac­

terised by a prominent noise-induced shift of mean instantaneous velocity 

( £ ( £ ) ) , with reduced uncertainty Fig.ICS (comparison left and right col­

umn of the middle panel). 

Notice how both mean instantaneous acceleration, and velocity Eq.(E2) , 

and their respective standard deviation Eq.(E3) are equally powered by 

o~x0 to produce a constant S N R as shown in Fig.EZD (bottom and middle 

The short time scale of the transient regime is defined by a particle which 

on average does not move (x(t)) ~ 0. The evolution of moments of posi­

tion unveils as follows 

For the long time transient dynamics, but before the divergence, the mean 

position of Eq.(E3) evolves quadratically in time. Simultaneously, the 

panel). 

(x(t)) « - - K < T X Q t (2.5) 

(2.6) 

(2.7) 
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standard deviation depends on two terms, the first of which becomes neg­

ligible at long time scales, t > 0.9 ms (for the parameters used to produce 

Fig.EZD), leaving a standard deviation that grows comparably to mean 

position and realising a constant SNRa; «1/\f2 . 

For short time scale (t < 0.1 for the parameters used to produce Fig.EZD) 

the position does not move on average, while the standard deviation of 

Eq . (EB) is dominated by the first term cr^(t) a2
Q. The resulting dy­

namics produces a vanishing SNR^. 

This quick overview of the deterministic motion proves that the noise-

induced effect is prominently visible in the moments of instantaneous 

quantities x,x Eqs.(EZ3), and vanishes for position x as can be seen in 

Fig.EZD for the short time dynamics. The curves in Fig.EZD, have been 

simulated using real experimental parameters of the current setups [•], 

showing that at values of T = 1 0 _ 2 H z (black dots) the zero-damping 

approximation of Eqs.(EZ3)to(EZD) (black line) is reached. Moreover, it 

shows that at larger damping values T = 10Hz (green dots), the results 

from the high friction limit (green line) are obtained for position (top 

panel) and average velocity (middle panel), and the vanishing of acceler­

ation is observed (bottom panel). In principle, both mean and maximum 

of the instantaneous quantities should increase coherently with a con­

stant signal-to-noise ratio, and as the noise-induced evolution is unveiled 

(Fig.EZ3), we recall the result of the over-damped regime for maximum of 

position ( F i g . O l , inset, and Fig.EZ3 top panel, left column) moving atyp-
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ically against the potential force (Fig.E2, top panel, right column). 

The new feature of coherent motion of maximum velocity and acceleration 

appears at low frictions, where the latter shift alongside the potential force 

(qualitatively visible in Fig.DZS middle and bottom panel, right column, 

red arrow). A quantitative analysis of the shift of the most-likely velocity 

and acceleration can be based on the results shown in Fig .E2 , where the 

sharp shape of the acceleration distribution (bottom panel, right column, 

inset) leaves room for a visible shift of its maximum, which is larger com­

pared to the shift of the maximum of velocity distribution (bottom, panel, 

left column). 
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Figure 2.1: Noise-induced effect for initially steady particle in po­
sition x (top), instantaneous velocity x (middle), and acceleration 
x (bottom), driven by variance aXQ of initial position. 
Top panel: the mean position (x) (left) does not develop with increasing 
initial noise aXQ at the short time scale in neither of the damping val­
ues explored, spacing from low pressure regime (black) to high pressure 
regime (green). Because of the vanishing mean position, and the large 
noise spread dominating the position dynamics, the SNRX (right) van­
ishes too. Middle panel: the mean instantaneous velocity (x) (left) dis­
plays a noise-induced shift that reaches the deterministic limit (black line) 
for both r = 10~2 (black dots), and T = 1 (purple dots), while it retrieves 
the overdamped approximation of Eq.(\E33f) forT = 10 (purple dots). The 
respective SNRX (right) shows how sensitive is the standard deviation of 
velocity to environmental temperature T, at different pressures, keeping the 
low pressure closer to deterministic approximation (black), while leading to 
a converging SNRX for the higher pressure regime (green), retrieving once 
again the results from the overdamped regime, namely Eq. (il 13). Bottom 
panel: the mean of instantaneous acceleration (x) (left) clearly shows the 
main difference between the two limits (low pressure, black line, and high 
pressure green line), demonstrating the noise-induced feature for instan­
taneous acceleration close to the deterministic approximation (black) for 
r = 10~2 (black) and V = 1 (purple), while vanishing for larger damp­
ing (green). The role of environmental temperature can be observed for 
SNRX (left) where an increase in pressure (purple) leads to a larger stan­
dard deviation and to a converging SNRX. Eq. (EZD) has been simulated 
using K = 6fcsTft ,m~ 3 Kg~ x ,T = 300 K (ambient temperature), (xo) = 0, 
(xo) = 0, O x 0 = 0, t = 0.1 ms, dt = 2 x 10~ 5 ms. 10 4 trajectories where 
generated with 5000 samples each. To compute the average quantities, v, 
a, the multiple time-step has been used, St = 10 x dt. 
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0 1 „2 2 3 0 1 „2 2 3 
"ceo "x0 

Figure 2.2: Initial noise-induced shift of maximum of position 
Xmax (top), for high (left) and low (right) pressure limit, maxi­
mum of instantaneous velocity xmax (bottom left), and accelera­
tion Xmax (bottom right). 
All simulations (dots) have been performed based on Eq. (EZD) using 
(xo) = (xo) = 0, and cr|0 = 1. Top panel: The atypical motion of maxima 
of position is highlighted (red), following in the high friction limit (left) the 
results obtained in the overdamped regime /t3, 0/. The same atypical evolu­
tion is yet encountered at low pressures (right, red), where the red line in­
dicates the zero damping limit evolution of the maxima. To make the shift 
in maximum more visible, Eq. (EZD) has been simulated with t = 0.3 ms. 
Bottom panel: The maximum of instantaneous velocity at the low pressure 
limit (left) comprises of a coherent shift (red) alongside the mean instan­
taneous velocity (black). A similar behavior is noticeable for statistics of 
acceleration (right) with its maxima (red) shifting faster at higher initial 
noise than that of velocity. All the insets show a snapshot of the probability 
distribution at different cr 0̂ highlighting the instability (heavy tails on the 
left), and showing once again a clear shift of the maximum alongside the 
potential force. To produce the figure on the bottom panel, Eq. (EZD) has 
been simulated with t = 0.1 ms. The other parameters used to produce this 
graph from Eq. (EZD) are K = 6kBTfim~3Kg'1 ,T = 300K,dt = 2 x 10" 5 

ms. nt = 10 4 trajectories where generated with N = 5000 samples each. 
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Methods 3 

Stochastic Simulation 

in Unstable Cubic 

Potential 

Simulating a nonlinear system, as a Brownian particle evolving in the 

unstable cubic potential, bares certain intrinsic difficulties that require 

innovative method to tackle. The first lies in the discretisation of time, 

by dividing it into N small finite steps of length dt, such that 

tn = rn, n = 1,2, . . . , /V . (3.1) 

21 
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Figure 3.1: Computation of xmax compared to characteristic time(top). 
The graph can be split into two main parts; the first is for time smaller 
than the characteristic time, defined in this graph as the maximum of the 
S N R calculated from global dynamics, where the x m a x can be computed 
accurately by mere increase of ensemble size. Secondly approaching the 
characteristic time, the error performed on the computation of x m a x in­
creases, resulting in a poor accurate computation for time larger than the 
the turning point of S N R . 
Computation of x m a x compared to characteristic time, extension with re­
jection scheme (bottom). The blue dots show the improvement upon the 
calculation of x m a x for time approaching the characteristic time, and be­
yond. The accuracy obtained by applying the rejection scheme is much 
higher than in the computation of x m a x in the figure on the top panel, for 
the same ensemble size. For this figure Eq.(\nJ\) has been simulated, using 
k = 1, D = 0.1, CTQ = 0.0, dt = 10~ 5. An ensemble size of 3 x 10 5 has been 
used to generate this graph. 

Failure to use the correct time-step will result in a wrong computation of 

the stochastic process f* g(x, t)dWt„ approximated in numerical simula­

tion as ]Cn=o 9(x, tn)(Wtn+i - Wtn) in the limit of dt -> 0 [B]. 

Different algorithms can be adopted to solve a stochastic equation of the 

form of Eq.(DZD), but the Euler-Maruyama scheme is the one used in 
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this thesis work. W i t h the choice of the algorithm comes the conditions 

upon the convergence, requiring the function to be four time continuously 

differentiable with bounded derivatives, and not quickly growing with pa­

rameters [0]. Such convergence schemes need carefulness when dealing 

with unbounded and unstable potentials as, given certain regions of pa­

rameters, they lead to quickly diverging functions [ID, Q]. Nonetheless, in 

short time dynamics (shorter than the divergence time), one can safely 

operate the Euler-Maruyama scheme within the boundary imposed by the 

convergence, worrying only about the size of the statistical ensemble re­

quired to generate data with high accuracy. 

Accuracy can be thought of as a measure of closeness between the sim­

ulated value and the real one [0], defined as the Mean Absolute Error 

where t/i is the prediction, and x% is the true value. For time shorter than 

the characteristic time, a mere increasing of the ensemble size is enough 

to obtain accurate results, while for time larger than the divergence time, 

this is not true anymore, as shown in Fig.BZD(left). To simulate beyond 

the divergence time, and achieve high accuracy in the computation of 

the local characteristics, one needs to implement a rejection scheme upon 

the evolving trajectory, following the rule " Whenever the trajectory hits 

the absorbing boundary for the first time, reject the entire trajectory" [•], 

n 

(3.2) 
i—l 
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which bias the evolution to only those trajectories surviving the diver­

gence. The latter is achieved by applying an absorbing boundary to the 

evolving trajectory, following the condition a < - ( 3 f e T / f c ) 3 to avoid 

affecting any properties on the plateau [ID]. The resulting estimation of 

Xmax, showed in Fig.BID (right) presents an improvement upon the esti­

mation of the local characteristic without the rejection scheme, for the 

same ensemble size. 

In the underdamped regime, the numerical challenge lies in the compu­

tation of the average and instantaneous quantities. For instance, given 

a position trajectory evolving in time x(t), one can compute the average 

velocity simply as the ratio between the distance travelled and the elapsed 

time v = Ax/At. B y taking its limit as the elapsed time A t approaches 

zero x = lim Ax/At = dx/dt allows to calculate the instantaneous ve-

locity, telling us how fast the particle is moving anywhere along its path. 

In the underdamped regime, the instantaneous velocity x is naturally in­

troduced in the equation of motion and in the low friction limit, where 

the damping time is long, the computation always outputs the instanta­

neous quantity with accuracy varying with the sample size (see Fig. E 2 

top panel). As the friction increases the damping time shortens, result­

ing in a time evolution of velocity comprising both ballistic (t <C T) and 

diffusive dynamics (t >̂ T). The behavior can be observed in Fig. E 3 

(bottom panel, red dots), where for short time the velocity fits with the 

theoretical approximation of Eq.(E3) (red dashed line), whereas for larger 
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time the simulated curve converges to the result of average velocity of 

Eq.(DZLT]))(solid black line). Tweaking the spacing between the position 

difference Ax = x(n + m) — x[n) and time A t = mdt, or simply running 

simulations for larger timesteps dt, allows to calculate more efficiently the 

average velocity v = Ax/At. A similar logic applies for the computation 

of both instantaneous x = dx/dt and average a = Av/ At acceleration. 
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Figure 3.2: Computation of average and instantaneous veloc­
ity (left column) and acceleration (right column) for different 
timesteps dt, for low pressure regime (top) and high pressure 
regime (bottom). 
To obtain the dots, Eq.(E3L) has been simulated. Top panel: The instan­
taneous velocity x (left) is naturally introduced in the equation of motion 
Eq.(fZ31), and its mean (x) can be easily computed even at larger timesteps 
(black), fnstantaneous acceleration x (right) requires the numerical dif­
ferentiation algorithm to be calculated, and hence its mean (x) is more 
prone to error for increasing timesteps (blue, black). Bottom panel: in 
the high friction limit, by accessing the velocity output from e g . ( r O ) , one 
registers both ballistics and diffusive timescales (red dots). By making 
use of the differentiation algorithm x(n + m) — x(n)/mdt one can see a 
quick convergence of the average velocity (left) and acceleration (right) 
for small values of m (green) to the analytical results for overdamped dy­
namics (black). The Red lines correspond to analytical predictions at low 
pressure, whereas black lines correspond to analytical prediction at high 

pressure. 



Conclusions 

In this work, we investigated noise-to-signal transitions for a Brownian 

particle evolving in the unstable cubic potential. We studied two essen­

tial regimes with high experimental relevance in the actual scientific scope, 

comprising of overdamped and underdamped regime. 

The main result, at the heart of the unstable nonlinear systems, lies in 

the noise induced mechanical mean displacement (x) (in the high friction 

limit) F i g . E 3 (red line) [•]. A consequence of the unstable dynamics sees 

the P D F of the particle position developing heavy tail, while its moments 

cease to exist. Motivated by the limitation imposed by the rapid diverg­

ing trajectories, resulting in variance of position growing faster than its 

mean, we proposed and analyzed local directly measurable characteristics 

Xmax,crX:rnax, overcoming such limitation [i]. A key result in this frame­

work shows the peculiar behavior of the most probable position, which 

moves opposite to the acting force; both in time and temperature. 

27 
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Those results have been experimentally observed [•, CD], showing the 

time evolution of both mean and maximum of position distribution in 

short and long times dynamics. 

Motivated by the already reached underdamped regime for levitated ex­

periments [0-C3], which allow to probe the fundamentals of nonlinear 

stochastic dynamics in the limit of weak friction, we proposed and demon­

strated the first nonlinear ballistic effect for levitated nanoparticles op­

tically trapped in high vacuum, consisting of the noise-induced instanta­

neous speed and acceleration of in the highly unstable cubic potential. 

The key result, shown in Fig.DZ3, demonstrates that the noise-induced 

effect turns to instantaneous velocity and acceleration. Moreover, we ob­

served the coherent motion, alongside the potential force, of the mean and 

maxima of instantaneous speed and acceleration distributions, F ig .E3 . 

In the last chapter, we discussed the numerical methodologies to simu­

late the dynamics of a particle in unstable potentials. Although we focus 

on a particle in cubic potential, our methodologies are broadly applicable 

to any highly unstable potential. 

The key result of this chapter is contained within the rejection scheme 

that not only allowed to compute the maximum of the distribution be­

yond the characteristic time, but it also proved useful to minimise the 

demanding ensemble size requirement for its computation. 
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