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Abstrakt 
V této práci je prezentována inovativní metoda zvaná Zobrazovací Reflektometrie, která 

je založena na principu spektroskopické reflektometrie a je určena pro vyhodnocování 

optických vlastností tenkých vrstev . 

Spektrum odrazivosti je získáno z map intenzit zaznamenaných C C D kamerou. Každý 

záznam odpovídá předem nastavené vlnové délce a spektrum odrazivosti může být určeno 

ve zvoleném bodu nebo ve vybrané oblasti. 

Teoretický model odrazivosti se fituje na naměřená data pomocí Levenberg - Marquard-

tova algoritmu, jehož výsledky jsou optické vlastnosti vrstvy, jejich přesnost, a určení 

spolehlivosti dosažených výsledků pomocí analýzy citlivosti změn počátečních nastavení 

optimalizačního algoritmu. 

Abstract 
An innovative method of evaluating thin film optical properties, the so called Imaging Re-

flectometry based on principles of spectroscopic reflectometry is presented in this thesis. 

Reflectance spectra of the film is extracted from intensity maps recorded by C C D camera, 

that correspond to chosen wavelengths, either over selected area or at one point. 

A theoretical model of reflectance is fitted to experimental data (the extracted reflectance 

spectra) by applying Levenberg - Marquardt algorithm in order to determine optical prop

erties, their accuracy and reliability factor used to quantify a convergence successfulness 

of the reflectance model and hence the quality of the acquired results at given settings in 

a sense of a sensitivity analysis. 
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1 Introduction 

Many methods determined for measuring optical properties of thin films are known as well 

as many innovative processes have been developed and applied to improve these methods 

[1]. Nevertheless, some of the improvements are too specific to be implemented to every 

method and hence they are often suitable only to a certain method. 

One of the methods, so called Imaging Reflectometry based on principles of spectroscopic 

reflectometry [2, 3], enables measuring optical characteristics and morphology of mate

rials within a short time and figures out a reliability of the acquired results even if the 

measurement is carried out over a marked region of the sample. This method processes 

intensity images that are created by monochromatic light and recorded by C C D camera 

where the characteristics of the light are controlled by setting of a measuring assembly 

depicted in Fig. 1. The images store only a relative reflectance of the sample and because 

its absolute reflectance is required for the measurement a reference material (i.e. the 

material with known absolute reflectance [4]) has to be measured (presented in [2]). The 

absolute reflectance of the sample A$ can be then formulated as: 

As = y- • AR, (1) 

where Is and IR represent the intensities of a light reflected from the sample and reference 

respectively where the ratio Is to IR expresses the relative reflectance of the sample and 

the AR denotes the absolute reflectance of the reference. 

The calculations of the optical properties of the measured sample are proceeded by Lev-

enberg - Marquardt algorithm [5], [6, pp. 100 - 107]. Apart from measuring experimental 

data this algorithm is crucial at carrying out a sensitivity analysis where simulated data 

is proceeded to determine a convergence reliability of the algorithm in order to support or 

reject the reliability of the calculated results. The analysis deals with the initial setting of 

the optical characteristics and the global setting of the optimizing algorithm in a sense of 

detecting sets of initial settings of the optical properties that lead to the desired solutions. 

By the reason of complexity of the measurement, all procedures concerned with optical 

properties calculation are included in a R E F L E C T O M E T R Y software package. 
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Figure 1: Measuring assembly scheme. 
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2 Reflectance model 

2.1 M o d e l o f r e f rac t ive i n d e x 

Optical thin films are characterized by the thickness d and complex refractive index [1], 

[7, pp. 752] TV 

N = n + ik, (2) 

where n expresses the refractive index of the film and k represents its extinction coefficient 

(i.e. the coefficient describing the absorption of the material). 

The n and k actually describe the material dispersion as they are functions of wavelength 

A [7, pp. 752]. The material dispersion is sufficiently defined through the Cauchy's models 

[7, pp. 100] where n and k are expressed in a form of 

AL A2 AP  

n = ^o + ^ + ^ + ' - ' + ^ r , (3) 

* = * + § + f + ••• + £ . (4) 

Considering second term only is often sufficient enough to describe physical behavior of 

the material response. 

For illustration Cauchy's models [7, pp. 100] of TV of several materials are presented 

bellow and depicted in Fig. 2 where n and k are from [4]. 
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Figure 2: Refractive indices behaviors of several materials. 

2.2 M o d e l o f ref lec tance 

Each material has an ability to reflect or transmit a portion of incoming light where this 

property is measured by reflectance and transmittance respectively. The characteristics 

TV and d determine both reflectance and transmittance [7, pp. 45] of the film. In the 

following, the study will be focused on the reflectance of the films, only. 

The light reflection occurs whenever the incident light reaches an interface between differ

ent optical media and is described by discontinuity in the complex refractive index TV [2]. 

If the light wave propagated in ambient 1, described by TVi, crosses the interface between 

ambiances 1 and 2, that is described by TV2 (see Fig. 3), the reflection is described by 

Fresnel coefficient of reflection r 1 2 [1], [7, pp. 737]. 
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The relation between the incident angle (fy and the angle of propagation ip2 in the 

ambient 2 is described by the Snell's law in Eq. (5). 

Ni sin(</?i) = N2 sin(y?2) (5) 

In a case of spectroscopic reflectometry, the incidence of the light is normal. Based on 

this assumption, the r12 is expressed of a ratio of amplitudes of outgoing to incoming light 

waves. The Ty2 is formulated in Eq. (6). 

r12 = — — (6) 
Ny + N2 

The reflectance 1Z is defined as a ratio of intensities of outgoing to incoming light waves 

and in the most simple case (as depicted in Fig. 3) it is given by 

K=\r12\2. (7) 

To obtain a high reflectance in ambient 1, the material (i.e. the ambient 2) must have 

either refractive index n2 very different from ny or the extinction coefficient k2 very dif

ferent from k\ [1]. Usually the air is assumed as the ambient 1 where ny — 1 and ky = 0. 

In a case when a single film is deposited on a substrate (Fig. 4), the light reflection is then 

described by a total reflection coefficient r [7, pp. 64 - 65]. That is in this case determined 

by two Fresnel coefficients of reflection ry2 and r2s, because the light wave has to cross 

the interfaces between ambiances 1 and 2 and between 2 and 3 as depicted in Fig. 4. 

8 



Figure 4: Light reflection from a material with a single film. 

The meaning of the total reflection coefficient is the same as of the Fresnel coefficient 

of reflection in the case of simple reflection and is defined as 

-12/3 

1 + r12r23e 12/3 

where the j3 is a phase shift between the top and the bottom of the film [1] defined as 

P = 2ir^N2cos (y?2). A 

The reflectance of a substrate with a single film is given by 

(9) 

n = \r\ (10) 

Obviously, if the film thickness equals to 0 then the Eq. (8) reduces to Eq. (6) [1]. 

In a case of combining depositions of layers of more materials onto each other (the film 

can be called a multilayer) (Fig. 5), the total reflection coefficient is acquired by stepwise 

combining of all Fresnel coefficients of the multilayer starting at the top and continuing 

downwards the bottom as described in [8]. A multilayer consisting of m layers is described 

by m+1 Fresnel coefficients because the incident light has to interact with m+1 interfaces. 

Let r i 2 , r 2 3 , • • • ,rmm+i and rl,r2, • • • ,rm be the Fresnel coefficients and total reflection 

coefficients of the m - level multilayer, respectively. The total reflection of the multilayer 

can be then formulated as 

»"12 

r 
m 1, and 

mm+l̂  m-1 _i_ „ Q-i2/3„ 

1 _i_ r m - l r l l P - i 2 / 3 „ 
Vm = 2, 3. 

The reflectance 1Z is given by Eq. (10). This composition of the reflectance model is 

evidently more complicated with the higher m. The model is not flexible enough, if the 
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Figure 5: A model of a multilayer. 

count of layers is variable because it has to be specifically changed and recalculated for each 

m. The change would include also expressing and recalculating of all desired derivatives 

of the model which would lead to store m models for multilayer comprising of 1 to m 

layers. By these reasons a new model of determining the total reflectance coefficients and 

hence the reflectance of thin films, especially of the multilayers, based on these principles 

was developed and presented in [9]. It consists in building an alternative model of r of 

the multilayer where each layer is treated separately and is defined by its characteristic 

matrix Mj defined as 

Qj = A^cos(^) , (13) 
d 
r 

k = 2 7 T ^ , (14) 

cos(/3j) — sin(/3,-
Mj = | ™ <1, ^ ' | (15) 

iqj sin(/5j) cos(/5j) 

where the qj in Eq. (13) is substitution simplifying the formulas of /3j in Eq. (14), the 

phase shift between the top and the bottom of the j - th layer, and the characteristic 

matrix Mj in Eq. (15). 

The complete multilayer is then determined by its characteristic matrix 

M = ( m n m i 2 ) (16) 
Y 77121 "7 2 2 / 

where M is defined as a product of particular characteristic matrices 

M = MmMm_1---M2M1. (17) 

Using the substitution defined in Eq. (13) for the substrate (qs) and 

the ambient (qa), the r can be formulated (see [9]) more transparently as 

<?amn - qsm22 + qaqsm12 - m21 

qamu + qsm22 + qaqsm12 + m21 
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where for specification the 

qa = nacos(ipa), (19) 

qs = Ns cos(^ s) (20) 

and the reflectance 1Z is again given by Eq. (10). 

Reflectance of Si02 during its deposition is presented in Fig. 6 as an example of re

flectance variation in dependence on film thickness. 

A new method of thin film optical properties measurements based on the principles de

scribed in [9] has been developed and presented in [2]. 

wavelength (nm) wavelength (nn) 

Figure 6: Measured reflectance of Si02 growth on a silicon substrate. The reflectance at 

t = 0 min is a reflectance of silicon. 
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3 Data Analysis 

3.1 R e g r e s s i o n ana lys i s 

An important task in statistics is to find relationships, if any, that exist in a set of vari

ables when at least one is random, being subject to random fluctuations and possibly 

measurement errors [10, pp. 4 -6 ] . 

One of the variables is called the dependent variable that represents the monitored quan

tity usually denoted by Y. The other variables Xi,X2, • • • ,Xn usually predict or explain 

the behavior of Y [10, pp. 4 - 6]. If it appears that between X = ( X i , X 2 , • • • ,Xn) and 

Y could be some relationship usually more closely determined by vector of parameters i?, 

the Y can be described by a function / and it would be then written 

The symbol ~ is used because the Y is random and the equality can not be satisfied. 

The prediction of behavior of Y can be rather formulated (as presented in [10, pp. 4-6] 

and in [11, pp. 189 - 212]) as: 

where e is a random error that is caused by the random fluctuations of the regression 

coefficients i? 2, • • • , $m represented by vector i?. 

In the case of the reflectance (see chapter 2), the X is represented by only one variable A 

- the wavelength and i?2, • • • , i?m) describe the optical characteristics of the measured 

thin film such as refractive index and thickness. 

Note: The order of the parameters is the following: at first the coefficients of the refrac

tive index are exploited then coefficients of the extinction coefficient, if any, and at last 

the $m corresponds to the thickness d. 

The / ( X , i?) is called the regression function (or a regression model). If the Y can be for

mulated as a linear combination of all j — 1, 2, • • • ,n, the regression model is called 

linear, otherwise, it is called nonlinear. 

Note: Since the reflectance model described by Eq. (13) - (17) is complicated function 

where the regression coefficients appear in arguments of goniometric and exponential func

tions, the model is nonlinear and hence the linear model description is going to be omitted. 

To describe the behavior of Y as precisely as possible, the vector i? should be estimated 

by a method of maximal likelihood [10, pp. 32 - 33]. If the random errors e have a normal 

distribution N(0,a2(a2 > 0)), the method of maximal likelihood reduces to method of 

minimizing sum of residual squares [10, pp. 32 - 33], therefore, the method of sum of 

residual squares is then satisfactory method of estimating the i?. 

y « / ( x , 0 ) . (21) 

y = / ( X , 0 ) + e , (22) 
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Considering n measurements, each realization of Y can be expressed as 

Ui = /(xi,t?) +6i,i = 1,2,-•• ,n (23) 

where x$ denotes the realization of X and expresses the realization of the random error 

e at the i - th measurement. To simplify, the / ( X J , I ? ) is going to be denoted by the 

f (0) = / 2 • • • , /n0?)) and the y = {yu y2, • • • , yn). 

The aim of this method is to find vector d that minimizes the sum of residual squares 

S($) where the #* is considered as the true value of the vector rd. 

minimize S($) 
•d 1 ' (24) 

S(0) = rT(tf)r(tf) (25) 

r(#) = y - f ( t f ) (26) 

In the following assumptions, the •& is considered as a random vector. If the following 

assumptions 1-9 are held, the least square estimator d that minimizes the Eq.(24) exists, 

is consistent and it has asymptotically normal distribution[10, pp. 563 - 575]. 

The assumptions presented in [10, pp. 563 - 575] are: 

1. The £j are i.i.d. with mean zero and variance a2 (a2 > 0.) 

2. For each i, the = f(xi,,&) is a continuous function of i? G 0. 

3. 9 is a closed and bounded (i.e. compact) subset of M.m. 

4. Using 

n 

B„(# ,# i ) = &nd (27) 
i=i 

I>„(0,0i) = £ [/#) - Z , ^ ) ] 2 (28) 
i=i 

as defined in [10, pp. 563 - 575] then the following assumptions can be formulated 

as: 

(a) The n~1Bn{d) converges uniformly for all $ i in 0 to a function 

(that is continuous if 2 and 3 hold). This implies by expanding Eq.(28) 

that n - 1 D n ( 0 , 0 i ) converges uniformly to = i?) + — 

2B(#,#i). 

(b) It is now further assumed that i?*) = 0 if and only if i? = i?* (i.e. the 

D(i?, i?*) is positive definite ). 

13 



It was proved [10, pp. 563 - 575] that with given assumptions 1-3 the 4 is sufficient 
S(S) S($) 

for large n the $ and a2 = (a2 = for smaller n) to be strongly consistent 
n n — m 

estimators of d* and a2 respectively. 

5. The d* is an interior point of G (It means that •&* does not lie on the boundary but 

belongs in an open subset of 0.) Let 0* be an open neighborhood of d* in 0 . 

6. The first and second derivatives — and ~ „ * , r,s = 1, 2, • • • ,m, exist and 

are continuous for all i? G 0*. 

7 The l-x-dJM (dJM\ 
I N E

 N 2 ^ Q$ \ d-d ) 
i=i v 7 

1 

77 
FT(tf)F(tf) converges to some matrix f2(i?) 

dfM) 
uniformly in i? for i? G 0* where F(i?) = {——, z = 1, 2, • • • , n} and 

n 
T h e - V 

n . 
1=1 

d2fi($)~\2 

converges uniformly in i? for i? G 0* (r, s = 1, 2, • • • ,n). d$rd$ 

9. f2 = is nonsingular. 

If the 1 - 9 hold then 

Vn(*?-0*)~ A ^ O , ^ " 1 ) (29) 

asymptotically and —FT(i?)F(i?) is a strongly consistent estimator of f2. And for large n 
n 

the 
0 - r ~ 7vm(o, a 2 [ F T ( r ) F ( r ) ] _ 1 ) (30) 

can be figured out approximately [10, pp. 563 - 575]. 

3.1.1 Confidence intervals 

When the estimator d has been found and the assumptions 1-9 hold the d converges to 

$* and it has an asymptotic distribution 

$~N{$\a2 [FT(0*)F(0*)] *) 

where O = [FT(-#*)F (•#*)] 1 is a covariance matrix estimated by 17 = FT(-#)F(-#) 

and where its elements express mutual dependences among the regression coefficients and 

where the a2 = is an estimate of a2 [10, pp. 571]. The diagonal elements a2Clrr 

n — m 
represent estimates of variances of corresponding coefficients i?*. 

The i? itself does not give any information about the accuracy of the current estimate 

of therefore, the confidence intervals should be determined in order to present the 

accuracy of the found estimates. 

14 



Based on the variances of all coefficients $* their confidence intervals can be estimated 

depending on a significance level a which means that only lOOa [%] of the considerable 

values of each #* lies outside its confidence interval. 

The cofidence intervals are then estimated as: 

where t „ _ m ( l — | ) is a critical value of Student's - distribution with n — m degrees of 

freedom at the significance level a. If 0 G I&* then #* is considered as a statistically 

insignificant parameter because the null hypothesis H : #* = 0 can not be rejected [11. 

pp. 192], [12] and the minimization should be recomputed again with the fixed value of 

$ r at 0. 

If at least two different parameters i? r and t?s appear to be statistically insignificant 

another type of test should be carried out because the parameters do not have to be 

necessarily insignificant at once therefore, a conjugated hypothesis H : dr = 0 A i? s = 0 

should be tested [11, pp. 192]. 

3.1.2 Adequacy of the model 

Based on the reflectance theory (see chapter 2), the applied regression model can be 

considered as adequate. 

In spite of that, a constancy of the variance of the errors can be tested in order to check 

whether the measured data can be considered homoscedastic or not, i.e. whether the 

variance a1 can be constant or a function of x which can cause the model to be not 

sufficient for the actual measurement of optical characteristics. 

As formulated in [11, pp. 205 - 206], the hypothesis that variances of the errors £j are 

constant: H : var £j = const, Vz = 1, 2, • • • , n is tested. 

At first the vector x is divided into three vectors xp = {xi , x 2 , • • • ,xp}, 

X M = {xp+1,xp+2, ••• , xn_q} and xq = {xn_q+1,xn_q+2, ••• ,xn} where only x p and xq are 
Tl 

important and p > m, q > m, p + q < n. It is recommended to set p = q & — [11, pp. 
3 

205 - 206]. The vector y is divided exactly by the same way as the vector x. The yp and 

yq are treated as two separate sets of input data and the same regression model is applied 

to them in order to calculate the residual variances Sp and sq [11, pp. 205 - 206]. 

(31) 

4 
S{0P) (32) 
p — m 

(33) 
q — m 

(34) 
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a 
If the null hypothesis is valid the Ft has Fp_mq_m distribution and if Ft > Fp_m^_m{ — ) 

a 1 
or Ft < F p _ m j ( ? _ m ( l - - ) = — — the hypothesis is rejected [11, pp. 205 - 206]. 

^ g—m,p—m \ 2 ) 

3.2 S o l v e r 

Solving (24) may be very difficult in general, but in spite of that, suitable methods that 

are rapidly convergent were developed. 

However, these methods are seeking the nearest local extreme while a global minimum is 

required. Since these methods are iterative, the problem of stopping in a local extreme 

that is not the global minimum may be avoided, if a proper starting point has been chosen 

[10, pp. pp. 588 - 599], [6, pp. 12 -16]. 

Due to their character, many methods are based on a Newton's [10, pp. pp. 599 - 609], 

[6, pp. 44 -49] and the Steepest descent (Gradient) [10, pp. pp. 594 - 597], [6, pp. 26 -33] 

methods. The Newton's method grants a fast convergence when d is close enough to a 

local extreme and otherwise, it converges slowly. On the other hand the Steepest descent 

method converges rapidly, if the d is not close enough to the local extreme and otherwise, 

converges slowly[10, pp. 619 - 627]. 

Some of the developed methods combine together the advantages of both types of methods 

and hence they grant a rapid rate of convergence regardless on a distance of d and the 

nearest local extreme. 

Because of its previous successful implementations in solving problems in optics, the 

Levenberg - Marquardt algorithm (see [10, pp. pp. 619 - 627], [6, pp. 95 - 107]) that 

belongs to the group of mentioned combined methods, was chosen as a solver. 

The algorithm is one of so called Restricted step methods where step 5, an increment of 

#, is determined in each iteration [10, pp. pp. 619 - 627], [6, pp. 95 - 107]. Solving (24) 

by this method is supported by solving a subproblem 

minimize n(5) 
5 q { h (35) 

where the q(5) is a quadratic approximation of S(i9 + 5) obtained by truncating the Taylor 

series [6, pp. 95 - 107] and solving (35) means seeking 5M minimizing q(S) for all 5 within 

a preset neighborhood of $ [6, pp. 95 - 107]. 

The pivot of this method is to calculate the 5M in each iteration and decide whether it is 

a convergent step or not (i.e. whether 5M shall be added to $ or not). 

The 5M is acquired as a solution of (see [13]) 

( F T F + A M D ) • 5M = - F T r , (36) 

df(xi, i?) 

where F = {Fj7- = ———} is Jacobi's matrix, the factor AM indicates the character 

of the algorithm and D = d iag{F T F} + I is a diagonal matrix that keeps ( F T F + A M D ) 
16 



positive definite for all AM > 0 [6, pp. 95 - 107]. The smaller is the AM the closer is the 

character of the method to the Newton's method and on the other hand the greater is the 

AM the closer is the character of the method to the Gradient method. 

When the Su is known it shall be determined whether to add it to d or not (i.e. if it is a 

convergent step or not). The control of addition of SM to $ is affected by actual reduction 

AS in S on the certain iteration (37) and a corresponding predicted reduction Aq (38) [6. 

pp. 95 - 107]. 

S(0 + 8M) (37) 

q(5M) = S{&) - q(5M) (38) 

(39) 

The ratio TU in (39) measures the accuracy to which q(5u) approximates S(i9 + SM) in 

the sense that the r M is closer to 1 the better is the approximation [6, pp. 95 - 107]. The 

positive r M means that the SM is a convergent step and hence it is added to i?, the non 

positive ru leaves the i? exactly the same because the SM is classified as a non convergent 

step and hence it is not added to i?. 

The quality of the approximation also indicates the character of the method in the fol

lowing iteration (i.e. it also affects the AM)-

Besides affecting the character of the method the TM implicates setting the size of the 

neighborhood of i? in next iteration by reducing or extending it. Based on LB and UB -

the preset lower and upper bounds of TU respectively, the neighborhood can be extended 

only if TM < L B and can be reduced only if r M > UB, otherwise the size of the neigh

borhood stays unchanged. To modify the size of the neighborhood of i? in the following 

iteration means according to value of r M to multiply AM by EM or RM - the extension or 

reduction coefficients respectively [6, pp. 95 - 107]. 

In general the k - th iteration of the algorithm can be summarized in following steps, 

where i? is replaced by its estimate b as presented in [6, pp. 95 - 107]. 

AS 

Aq 

I'M 

g(0)-
AS 
Aq 
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1. To given x, bfc, A ^ calculate r(bfc), S{bk), Fk, D f c , ((F f c)TF f c + A^D f c) 

and (F f c)Tr(b f e) 

2. Solve (36) to give 5^ 

3. Evaluate S(bk + 8^) and ?(5M) a n d hence as defined in (39) 

_ v — \ f e 
^ A M ~~ AM 

i k f >o =• b ^ = b fc + 5* 
M \ < 0 b f c + 1 = bfe 

6. = + 1 and go to 1. 

The algorithm is then stopped if any of the following events occurs: 

• S(bk) < e, where e is preset value close to 0 considered as satisfying sum of residual 

squares 

• The number of iterations exceeds the preset maximum kmax, i.e. k > kmax 

• The objective function S(bk) can not be evaluated 

• The A^j reaches value very close 0, i.e. the size of neighborhood of bfc is nearly 0 

• The convergence is too slow, i.e. the ~ 0, if and only if the 8^ were added to 

bfc. 

Based on the steps 1-6 , the optimizing algorithm was successfully created and imple

mented in the R E F L E C T O M E T R Y software package developed to measure the optical 

properties of thin films. 
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3.3 S e n s i t i v i t y ana lys i s 

Choosing an adequate initial approximation $o might guarantee acquiring result d very 

close to the ideal solution i?*, therefore, the ability of convergence1 from initial approxi

mations to i?* should be studied. 

The more $o cause the solver to give such ů that can be considered as i?*, the less it 

depends on setting the initial approximations in order to acquire a very good estimate of 

Based on the ability of convergence, a new method was designed. The aim of this method 

is to detect a region of interest containing initial approximations that in the most cases 

grant the solver a convergence to the global minimum. 

Detecting the region of interest consists in cropping a chosen set of initial approximations 

B to acquire such set B 1 that if any $o were chosen from this set it rarely does not con

verge to the i?*. This can be achieved by studying the character of each acquired result ů 

whether it can be the global minimum or a different local extreme and consequently by 

calculating a relative frequency (further only "frequency")2 of convergence from chosen 

initial approximations to the global minimum. 

The initial approximations are separated into groups where at least one coefficient has an 

arbitrary value from its initial range while the rest of the coefficients remains constant. 

The frequency of convergence is then calculated as frequency of setting chosen coefficients 

to certain values regardless on the variable ones, i.e. the frequency of convergence of the 

group regardless on the omitted coefficients (i.e. the frequency of convergence of a chosen 

particular setting). 

To determine the frequency, the Ů* has to be known and a set of initial approximations B 

has to be assigned to i t 3 . The frequencies are then going to be calculated within this set 

and the smallest region B 1 that includes all $o with very high frequency of convergence 

is going to be detected. 

Each initial approximation $o of B is used as a starting point in the optimizing algorithm 

and the corresponding acquired result ě is compared to i?* to distinguish whether the ě 

can be considered as a global minimum or not. The ě is considered as global minimum if 

and only if: 

- H < é < ů* + is, (40) 

where \x and v are the lower and upper tolerances of •&* respectively. 

If the condition in Eq. (40) holds the $o is considered as convergent, otherwise, as non 

In a matter of the sensitivity analysis, the convergence is understood as ability to acquire a satisfactory 
result reasonably close to the global minimum calculated by the optimizing method that started at a 
chosen initial approximation. 

2The relative frequency can be also considered as a probability of convergence 
3It is recommended to choose B wherein the $* is a middle point. 
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convergent. It can be described by a function if : M m —> {0,1} where 

<pVO) = { N 7 7 (41) 
0 otherwise 

Apart from that the character of solution should be studied whether it can be a local 

extreme or not because setting too low limit of iterations can cause the algorithm to stop 

at a point that might not be an extreme because it would need more steps to reach some. 

The AM indicates the character of the acquired result [6, pp. 95 - 107] The low AM 

expresses that the d could be a local extreme and otherwise, the d could not be considered 

as a local extreme, if the AM is high. The character of the solution can be described by a 

function 7(i?o) : ^ m {1)3} where 

|̂  3 otherwise 

where the A is an upper limit still classifying the d as a local extreme. 

The frequencies of convergence should be calculated after it has been checked that the 

most of acquired results are local extremes (i.e. the iteration limit does not cause the 

algorithm to stop before the i? could have reached any local extreme very often). 

For more detailed analysis, the convergence and local extreme characteristics are combined 

together to describe whether the initial approximation i? 0 converges to to the global 

minimum, to a different local extreme or to some other solution. This can be described 

explicitly by a function iptyo) : M m —> {1, 2, 3,4} that is defined as: 

^(#o) = 7(#o) + <p(#o) (43) 

where the interpretation is the following: 

• VK^o) — 1 means that the corresponding initial approximation i? 0 is not convergent 

but the d is close to a local extreme different from i?*. 

• VK^o) — 2 expresses that $o can be considered as convergent to the global minimum 

• V'C^o) — 3 occurs in case when the initial approximation t?0 is n ° t convergent and 

the acquired i? is not close to any local extreme. This can be caused by exceeding 

maximum of iterations before reaching any extreme. 

• ^C#o) — 4 should not occur because the d is not considered as a local extreme but 

in spite of it the corresponding initial approximation $o is convergent. However, 

improper setting of A or initial AM might cause such case because the algorithm can 
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stop because of reaching satisfying sum of residual squares regardless on the size of 

AM and hence the d close to global minimum can be reached with AM > A 4 . 

Once all iptyo) are calculated a projection of the ip(B) can be carried out by omitting cho

sen regression coefficients in order to calculate a frequency of each possible result given by 

ip at each point of the projection (i.e. at each group of particular initial approximations). 

The most frequent value of ip and its frequency form the result of the projection. It means 

that each point of projection is characterized by modus of the combined characteristics 

and by its frequency. If the modus of ip = 3 occurs rarely the iteration limit can be 

considered as large enough and the frequency of convergence can be calculated. 

The frequency of convergence is calculated following these steps: 

1. A coefficient dr that is going to be omitted is chosen. 

2. A l l groups of $ 0 have to be checked (see Fig. 7) whether the limit kmax is sufficient 

or not. A first projection B p of B is created without removing any level of i? r and 

where B p comprises of all I?Q where each $Q expresses the group of $o with omitted 

coefficient dr. 

M o d u s W(&Q) M o d u s Vf&g) 

i i i i i i i r 

4 

a) 

Figure 7: Checking the sufficiency of the iteration limit kmax: a) sufficient, b) insufficient. 

3. The i? r can be arbitrary value of its initial range • • • , •#"'"}. The B is searched 

level by level until any convergent approximation is found (i.e. the ipfto) = 2 or 

4 or rather the tpfto) — 1) starting at the ends of range of the dr (i.e. starting at 

dr = $1 and at dr = tip). 

4These cases were very rare in practical detections. 
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If v?(i?o) — 0 for all $o from the searched level dl

r the level d). is removed from the 

calculations (see Fig. 8). 

This procedure reduces the range of $ r to • • • , tfj,} where k > 1 and I <nr. 

A l l l e v e l s 

o f a , 

a " ' 

R e m o v e d l e v e l s 

o f a , 

R e m o v e d l e v e l s 

o f a , 

Figure 8: A method of removing levels that do not include any convergent approximation. 

4. A repeated projection B p of B is created with all zero - levels of i? r removed after 

the step 3. 

The frequency p(#o) of the group $Q is then formulated (see the Eq. (44)) as rate 

of $ 0 from the group where <̂ (i?o) = 1 to all levels that remained after step 3 (see 

Fig. 9). 

PK) = < l - k + 1 k ~ l (44) 
y 0 otherwise 

The situation when k > I means that the set B does not include any convergent 

approximation and hence the frequency is 0. 
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Cropped B after the 

Figure 9: Calculating the frequency of convergence of the group $Q a n d its depiction in 

the projection. 
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5. A threshold frequency pt is set to detect the smallest region (selection of B P ) 

that includes all such $Q that 

pffi)>Pt, V ^ G B P . (45) 

It means to crop the intervals of the remaining coefficients following the step 3 where 

$o and p($o) > Pt a r e used instead of i?o and (p("&o) respectively. 

After all intervals . of all coefficients $j have been cropped the region B 1 is detected 

as: 

B ^ ^ x ^ x - x / ^ . (46) 

The B 1 can be determined after the B ^ has been detected because the cropped 

interval I$R is already known. A n example of detection of B ^ is depicted in Fig. 10. 

The region B can be characterized by a Reliability factor Rf that expresses a mean 

frequency p with that the initial approximation $ 0 chosen from the B 1 converges to the 

global minimum i?*. 

If a region B 1 characterized by higher p is required a higher pt should be set and the step 

5 should be repeated with the increased pt. 

An example of the R f calculation is shown in Fig. 11. 
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0.3 0.8 0.6 

0.8 1 0.9 

0.1 0.4 0.9 

pt=0.8 

Rf=0.64 

Figure 11: The Reliability factor R f calculation within the region B with pt = 0.8. 

This analysis was successfully implemented in the R E F L E C T O M E T R Y software 

package to support the optical properties measurements by determining a reliability of 

the acquired results. 
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4 Image Processing 

4.1 D i g i t a l space 

From [14, pp. 49], [15, pp. 7]: 

1. Definition — multiindex: 

Let Ik = { 0 , 1 , . . . , i k , . . . ,mk} 6 iV 0 be a set of indices. Then the set Î N^ = x^=1Ik 

is called multiindex. 

2. Definition — space support: 

Let Jk = (ak; bk) be intervals. Then the set = x%=1 Jk is called 

nD space support. 

3. Definition — equidistant multipartitioning: 

Let Dk = {xk

0. 
x\i • • • x\ki • • • xmk} be the equidistant partitioning of intervals 

Jk = (a>k',bk)- Then the set D^n) = x'l=1Dk is called the equidistant multipartioning of 

space support J^n\ 

4. Definition — digital space, resolution: 

Let J(n) = x'l=1Jk be a support of space D^n) = x'l=1Dk and Dk its equidistant multi

partioning. The ordered pair £>(») = (J(");D(")) is called nD digital space. The ordered 

n-tuple r = {mi, rog,..., mk..., mn) is called the resolution of space 

Digital geometry may be defined as a mathematical discipline, which studies charac

teristics of digital space. 

In n - dimensional space T>^ = (j(n); D^n )̂ are at call: 

sets of indices intervals interval partitioning 

Ik = {Q,l,...,ik,...,mk} Jk = {ak;bk) Dk = {xg, x\, ... x\k, ... xk

mk} 

k=0, l . . . ,n 

<-nJ; Multiindices i, j G are expressed as i = [ij, i g , . . . , ik,..., ir, 

j = \JI,J2,- • • ,JK,- • • ,JN], zero - multiindex is then expressed as 0 = [0, 0 , . . . , 0]. Then it 

is able to express the items M, N G D^n^ as: 
J\/f |\y>0 ,y\ 1 AT r,y-.0 ,y\ ^Yl 1 

or M = A[iui2j_jikjin] — A{; N = A [ j l j 2 r . . J t j j = Ay 
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4.2 P h y s i c a l d o m a i n , p h y s i c a l space 

From [14, pp. 50], [15, pp. 8]: 

1. Definition — physical domain 

The subset F ^ C J ( n ) of digital space £> ( n ) = ( J ( n ) ; D<n>) is called the physical 

nD domain, if and only if F^ n) = x k = 1 (xf\ x f I t is written as 

p(n) _ x N IK K \ _ n u m k e r -fc — xfc - ^ ; j f c G i is called 

— t-up/e dimension of physical nD domain 
F(«)_ 

2. Theorem 

— twp/e dimensions v\ of all physical nD domains F i e 2)(n) are equal. 

Proof:The statement is implied by assumed equidistance of partitioning of Dk. 

Note: 

The theorem enables to ignore the multi index at the dimensions of physical nD domain, 

i.e. to write only vk. If no misunderstanding occurs the dimensionality specification of 

nD domain can be also ignored, i.e. domain will be written instead of nD domain. 

3. Theorem 

Set = {F(") = X-k=i{xt'ixt+i)'i^k ^ h} of all physical domains of support of 

digital space T>^ = D^)) is called the fragmentation of digital space support j(n\ 
Proof:It is necessary to prove following three statements: 

a)Vi e I ( N ) : F | n ) + 0. b)Vi, j e I ( N ) : i± j => n F(.n) = 0. c)UIei<») F, = jW 

ad a) i=[iuis,...,ik,..., in] => F ; = x%=1 (xk;xk

+1). Let sk

k be set to . Then 

Vfc e { l , 2 , . . . , n} :sffc e = ^ [ s g , s ^ , . . . , 4 , . . . , 4 j e x J J = J ( x ^ ; x ^ + J ) = F ; => 

F i ^ 0 . 

ad b)Let be i = [t,, i g , . . . , ik,..., 4];j = \ji,js, • • • ,3k, • • • ,i«];j ^ i Then 

3/c e { l , 2 , . . . , n} : zfe ^ j f c (x*; a £ + 1 ) n <a;Jt; = 0 ^ x " = i {xk; xk

+1) n 

; ) = 0 x n

k=1 (xl• x?k+1 ) n x » = 1 (x*; ) = 0 =j- F , n Fj = 0. 

ad c ) u i e / W F i = U i k [ x * = i = x L , [ U J e / w « ; < + J ] = x J U J * = J ( n ) - ° 

The following theorem is a direct implication of this proof. 

4. Theorem 

Let P(") = (j(n);D(n)) be a digital space and A , ß G J ^ arbitrary items of its support. 

The relation p e x defined as p(A, B) 3F ; e J ^ ( n ) : A e F t A 5 e F t is an 

equivalence at J(n). 

5. Definition — physical space 

The factorial set F^n^ = jp from previous theorem is called the physical space of 

support J*-™-1 like of the space = (3^; D ^ ) . Resolution of physical space is 

considered as resolution of space 
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4.3 L o g i c a l d o m a i n , l o g i c a l space, m a p p i n g 

From [14, pp. 51], [15, pp. 9 - 10]: 

1. Definition — logical space, logical domain 

Let F(n) je be a physical space of digital space and Vk dimensions of its physical 

domains. Also let C G : C = [cj, c2, • • •, C}.,..., c„]; cj. G (0;vf.). The set = 

x J U { r t e M|Vfc G {1, 2,..., n} : r£ G (x^k;x^+1) A r£ - x£ = cfc} is called the logical 

space of space = (J^; D(n)), its items Lci \ i = [ij, i2,..., 4 , . . . , in], are called logical 

domains. Resolution of logical space Cc is in fact resolution of space 

2. Theorem 

Let F^n^ be a physical space and be a logical space of the same digital space 

(j(n) ;D(n))_ x h e projection ^ c : F(n) -> £ i n ) such as (pc(F{) = LCji LCji G F t , is 

bijection. 

Proof: If [r\v r f 2 , . . . , rf , . . . , rfj G ££ n ' 1, then the provable statement is an implication of 

equivalence: Vr£ : r£ G (xf f e;xf f e + 1) ^ \r\vr\,... , r £ , . . . , r £ ] G x" = 1 (xf f e ; a £ + 1 ) = F t • 

3. Definition — physical space mapping, reference point 

The projection ipc : F^n^ —> from previous theorem is called mapping of physical space 

p(«)_ p 0 j n ^ Q e j(«) . Q — [a, C2, • • •, Ck, • • •, cn]; Ck G (0;vk) is called its reference 

point. 

4. Note: 

£/ie inference of theorem 2, inversive mapping exists to each mapping: ipc : —> 

i.e. if'1 : —> J F ^ ) . T/ien it is afr/e to assign to each physical domain F{ the only one 

logical domain Lci by mapping ipc and on the contrary to each logical domain Lci it is 

able to assign the only one physical domain F\ by inversive mapping (p~*. 

5. Definition — vertex and central mapping: 

Mapping ipv : —> with its control point V = [0,0,..., 0], is called vertex 

mapping. Mapping tpB : —> Cin\ with its control point 

S = [-j-, , - ^ ] , is called central mapping (see Fig. 12 on the right). 
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vertex mapping. 
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pixels depiction, on the right: central and 

6. Definition — global coordinate system: 

Let = (j(n); D(n)) be a digital space, vk dimensions of its domains and (pc : —> 

Lc"̂  arbitrary mapping. And let R/™*1 be n - dimensional real vector space with base 

{^k)l=i^k = (0,0,...,vk,...,0). 

Ordered (n + 2) - tuple L ^ = {£(n\ S,e1,e2i.. .e f c,..., e„) is called the global coordinate 

system of logical space . 

Ordered (n+2) - tuple F^n) = (J7^, 5, ê , eg,. . . e*,..., e„) is called the global coordinate 

system of physical space induced by mapping ipc. 

Ordered (n+2) - tuple D ^ = (T>(n\ S, ê , e2, • • • ek,..., e„) is called the global coordinate 

system of digital space induced by mapping <pc. 
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4.4 Image 

1. Definition - Physical and logical pixel 

The smallest and indivisible5 displayable object is called a pixel6. Physical pixel is defined 

as 2D physical domain and logical pixel is then defined as 2D logical domain. 

Physical pixel is the very small areal element of visualizing output device. This element is 

controlled directly by hardware of this output device. In practice several smallest elements 

are put together in order to create one pixel [14, pp. 47 - 48]. 

For instance: 

• Screen - several small elements highlight one pixel 

• ink jets - size of pixel corresponds to size of color drop 

• laser jets - size of element corresponds to several grains of toner 

Logical pixel is scattered point with integer coordinates, which contains integer color value 

of corresponding physical element [14, pp. 47 - 48]. Logical pixels are representatives of 

physical pixels (see Fig. 12 on the left). 

From [14, pp. 129 - 130], [15, pp. 14 - 16]: 

2. Definition — sampling function: 

Let 1^ be support of digital space. Function g(x) defined for every 

x = [xi, x2, • • • i xn] e l " is called sampling function only if Vx e : 

#(x) = giTrunc (x)), where Trunc(x) = [Trunc^xx); Trunc(x2);...; Trunc(xn)]. 

3. Definition — Image: 

Let W = (0;w) C R; w e N (Width); H = (0; h) C R; h e N {Height); 

V — (vi; v2) C R (Value Set) be intervals. Let function I : W x H —> V be called (ana

log) image. If function I is sampling function then this image is called sampling image. 

If W x H, the range of definition of function J, is physical (logical) plane then this image 

is called physical (logical) image. Physical (logical) space resolution is in fact resolution 

of its support. If function I is sampling function and H C N , then the image is called 

digital image. 

Digitizing of image is run in two phases - sampling and quantizing. The aim of sam

pling is transformation of analog image in sampled image. It means to transform the 

analog image in such way that each pixel in physical plane would carry constant value. 

Values of pixels are mostly taken from analog image by sampling function. The samples 

are taken off by high - frequency periodic function with high amplitude. These samples 

are acquired from original signal in ordinary intervals. In addition to rare exceptions, a 
5The indivisibility is ignored in special cases. 
6Pixel is abbreviation of picture element. 
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loss of information occurs. This loss does not have to be significant. However, wrong 

sampling can deteriorate the image very much [14, pp. 129 - 130] (see Fig. 13 and 14). 

Figure 13: Correctly sampled image. 

If Fouriere transformation is applied on the sampled image then its space frequency de

composition is gained. If frequencies higher then the sampling frequencies are significantly 

present in the image then new low - frequented information is brought into the sampled 

image, which was not present in the original image. The low - frequented signal within 

the meaning of Fouriere transformation is called an alias. It appears when the maximal 

image frequency fmax is sampled with frequency lower than 2fmax, i.e. below Nyquist's 

limit [15, pp. 15 - 16]. Alias occurs mostly at sampling of periodic textures or at sampling 

of images with details that are smaller than size of physical pixel of the output device. 

flBRR 
l i • 

Figure 14: A l l stripes in this image seemingly contract. When their width underruns the 

size of physical pixel, the image is under sampled and it contains new structures larger 

than one pixel. 
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4.5 A d d i t i v e noise , i t s d e t e c t i o n 

Let Rp be image matrix (perfect image) and let Rs be matrix of the same type as Rp 

and its elements are stochastically insignificant realizations of random variable X. Let 

R = Rp + Rs, then it is said that R contains additive noise. Characteristics of random 

variable X are called characteristics of additive noise. 

The following two cases of additive noise are distinguished: 

1. Additive noise independent on image. 

i.e. Rp and Rs are stochastically independent. In practice it is satisfying, if following 

weaker condition is fulfilled: p(Rp, Rs) = 0 where p denotes a correlation coefficient 

or cov(i?p, Rs) = 0, where cov(Rp, Rs) is covariance of Rp and Rs [16, pp. 526], 

[15, pp. 16]. Undesirable presence of such noise in an image can be reduced by 

application of an adequate low pass filter (see section 4.7.1). 

2. Noise dependent on image, 

i.e. there exists some stochastic dependence between RP and Rs that neither dis

ables determining parameters of this noise nor to filter it [15, pp. 16]. In practice 

some dependences are considered insignificant e.g. the neighboring pixels depen

dence of C C D chip while recording an image. 

Additive noise detection 

Assume image R = Rp + Rs as a sum of perfect image Rp and stochastically independent 

noise Rs. Due to assumption of noise independence on the image, it is possible to estimate 

a variance (standard deviation) of the noise by using autocovariance function of image 

relative displacements. For non zero displacements z, the cov(R, Rz) is not affected by 

Rs and therefore, 

otherwise, cov(i?, RQ) = vax(R) = var(i? p) + var(i? 5) (see Fig. 15)7. 

The functional dependence of the cov(R, RZ) on the displacement z is strictly monotonic 

function, decreasing with growing z and cov(i?, RZ) —> 0 for reasonably large z. 

Most often, a function exp(a • z + b) that satisfies these function constraints, is used as 

determining the autocovariance function. The exp(6) corresponds to the variance of the 

perfect image RP and the var(i?) — exp(6) corresponds to the variance of the noise image 

RS (see Fig. 15). Therefore, the estimate of the additive noise standard deviation is 

y /(var(i?) — exp(6)). 

It is recommended to use logarithmic values of the cov(R, RZ) and of the exponential 

function because it is easier and quicker to fit a line to data than the exponential function. 
7If the image R is large enough, the var(i?) and var(i?z) are considered as equal Vz = 0, • • • , zmax. 

(47) 

32 



Also autocorrelation function can be used instead of the autocovariance function for the 

noise detection because the autocorrelation function does not exceed 1 and hence the 

calculations are proceeded within the same range (0,1) regardless on the dynamic range 

of the image, i.e. regardless on the highest possible value of the autocovariance function. 

The additive noise detection was successfully implemented in the R E F L E C T O M E T R Y 

software package. 

cov{/?,/?z) 

var(/?s){ 

var(RP) ^ exp(s-z+£>) 

• 

z[pxls] 

Figure 15: Model of auto covariation characteristics. 

4.6 B r i g h t n e s s test 

Value of each pixel of the C C D chip depends on the intensity of incoming light. It was 

empirically found out that bellow a certain intensity limit, the dependence is linear and 

above this limit, the dependence is nonlinear and a pixel with such value is considered as 

over exposed. Usually, the linearity of the C C D can be guaranteed within 80 - 98% of the 

dynamic range of the pixel according to the type of the C C D chip. 

Therefore, the image can be considered as over exposed, if it contains more than certain 

rate limit of the over exposed pixels. The limit rate can be different for each C C D chip. 

This principle is used in the input data calibration, a necessary component of the 

R E F L E C T O M E T R Y software package. 

4.7 Image F i l t e r s 

From [14, pp. 115 - 125], [15, pp. 17 - 24]: 

1. Definition - Image Filter 

Image Filter is such operation that changes each pixel of an image by a defined process. 
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2. Definition - Convolution 

nD convolution of two functions C(x), g(x) defined for every x = [xi;x 2 ; • • • ,xn] e J n 

and quadratically integrable on J™ is defined as an integral 

C(x) ® $(x) = / C(t)#(x-t)dt. (48) 
J j" 

3. Theorem 

If C(x), g(x) are digitalized functions then 

[ei;e2;— ;en] 

C(x)®s(x) = / C(%(x- t )d t= £ C(t ) j (x- t ) . (49) 
t = [ - £ i ; - £ 2 l " - ;-£nJ 

If n — 2 and a physical plane with an unit pixels size is defined on J 2 then for each 

physical pixel F y 

e £ £ £ 
C ( F y ) ® s ( F y ) = £ £ C ( F m ; > ( F i _ m ; . _ J = £ ] T C ( m ; n M * - m , j - n ) . (50) 

m=—£n=—£ m=—£n=—£ 

According to discrete and finite value domain, the value of calculated convolution has to 

be rounded or truncated. For n = 2 the C(m;n) of real values is a matrix that can be 

formally defined as projection 

C(m; n) : {-£i, • • • ; 0; • • • ; x {-e 2; • • • ; 0; • • • ; e2} -> R, 

nD matrix C(t) is then C(t) = x ^ = 1 { - £ i ; • • • ; 0; • • • ; ^} -»• R. 

Filters that can be described by the mentioned convolution assign value to a pixel that is 

a linear combination of pixels from its rectangular neighborhood. These filters are called 

Linear Filters. Filters that can not be described by this convolution are then called 

Nonlinear Filters. 

4. Definition - Convolution matrix 

Matrix C(m, n)or C(t) from theorem 2. is called 2D or nD convolution matrix. 

These convolutions are mostly applied to 2D images when their evaluation is interpreted 

as coloring. 

According to chosen matrices C, the filters have a certain characteristics such as Low 

pass filters, High pass filters or Emboss filter. 
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4.7.1 Linear Filters 

The linear filters assign new value to pixel by linear combination of pixels from its neigh

borhood. It can be described by the following formula: 

k=n l=n 

bij = E aijkck-i+2,i-j+2 + D, (51) 
k=—n l=—n 

where bitj and aitj are new and old values of a pixel respectively, C = (QJ ) is a square8 

convolution matrix of type 2n+l, D is an additive constant affecting the image brightness 

and E is multiplicative constant affecting the image contrast 

[14, pp. 117]. 

In the sense of the Fouriere transformation, high and low space frequencies of an ideal 

image are uniformly distributed. The high pass and low pass filters prefer representation 

of only one group of the frequencies to the other. 

Low pass filters 

Higher representation of low space frequencies causes the image to be blurred because all 

image details and sharp edges of objects that are represented by high space frequencies 

are of low contrast [14, pp. 119], [15, pp. 23]. 

Not only details and sharp edges of objects are the representatives of the high space 

frequencies but also the additive noise is represented in the image by high frequencies. 

Hence the low pass filters can decrease the influence of the additive noise by blurring the 

image. 

It is common for typical representatives of low pass filters that D = 0 and 

k=n l=n 

Yl Yl c^ 
k=—n l=—n 

For example 

V 

1 1 1 

1 1 1 

1 1 1 

\ 

/ 

/ 

V 

0 1 o 

1 I I 

o 1 o 

(52) 

/ 
are some of the typical representatives of low pass filters [14, pp. 119]. A n example of 

filter application is depicted in Fig. 16 on the left. 

Square convolution matrices are the most common in practical use. 
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High pass filters 

The high pass filters enhance the high space frequencies of the filtered image. So the 

contrast of details and edges of objects is increased. This filter is commonly used to create 

sharp image or to detect borders of objects. However, these filters also increase a volume 

of the present additive noise and hence they should be applied with this consideration. 

The typical representatives of high pass filters are usually presented with D = 0 and 

E — 1, where {c0jo = Ac + c^i, Ac > 1} is the only positive element of the 
(fĉ O)V(Ẑ O) 

convolution matrix, all other elements are non positive. If E is large enough then the 

filter can be used as border detector [14, pp. 119], [15, pp. 21 - 22]. The Eq. (53) shows 

two of typical high pass filters and Fig. 16 on the right depicts result of high pass filter 

application. 
/ —1 —1 —1 \ / 0 - 1 0 ^ 

9 - 1 . C = - 1 8 - 1 (53) 

V V o o / 

Figure 16: Image on the left - low pass filter application, image on the right - high pass 

filter application. 
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Gaussian filters 

To enhance image details or decrease the additive noise representation it is better to apply 

so called Gaussian filters because better results of filtering are usually acquired9. These 

filters can be both high pass and low pass and are described by the following formula: 

2 2 m n 
£m,n = k • e °%, m,n——a,---,a (54) 

where <r̂  and a\ are chosen variances for directions x and y respectively [14, pp. 119]. 

Emboss filters 

A special case of linear filter where the convolution matrix is written as 

( - 1 , i = j,-n <i <0, 

1, i = j, 0<i<n, (55) 

0, otherwise 

is called the Emboss filter that makes the image to look like it was embossed (see Fig. 

17). The filter is the more demonstrative the larger is the n[14, pp. 120] 1 0 . 

Figure 17: Example of Emboss filters applications. 

9For some application it is satisfactory to apply the non Gaussian filters. 
°i.e. the size of convolution matrix is greater 
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4.7.2 Nonlinear Filters 

The nonlinear filters assign the pixel new value by principally different way than linear 

filters so the new pixel value is not determined by a linear combination. To the group of 

nonlinear filters belong functions minimum, maximum or thresholding that are used 

most often. 

Minimum 

This filter assigns the pixel the lowest value of its chosen neighborhood. In case of gray 

scale images the minimum is simply defined as minimal gray level, on the other hand in 

case of colored images the minimum can be defined by several ways, e.g. minimal color 

can be defined as combination of minima of each color channel, e.g. in R G B images the 

minimal color C m i n is then defined by the following sum [14, pp. 120 - 121], [15, pp. 25]: 

^min 256 • Bmin -\- 256 • ~\~ R m ^ n , (^^) 

B m i n — rnin{Bjj}, Gmin — min{Gjj}, Rmin — min{Rjj}, 

^l^>j] ^ {{Imini I max) X {Jmin, Jmax)} (^^) 

where B m i n , Gmin, Rmin are the minima of blue, green and red channels respectively 

searched within pixel's neighborhood determined by rectangle 

{{Imin] Imax) x {Jmin'i Jmax)}, or as minimum of combination of all color channels, 

e.g. in R G B images the C m i n is then defined as 

Cmin = min{256 • B j j + 256 • Gj j + Rjj}, V[i, j\ G {{Imin] ^max) X {Jmin] Jmax)}- (58) 

A correction of results in the R E F L E C T O M E T R Y software package is based on the prin

ciple of the minimum filter. 

Maximum 

Analogically to minimum filter this filter assigns the pixel the highest value of its chosen 

neighborhood. If in equations (56) and (58) the function min were replaced by max the 

equations become considerable definitions of maximal color C m a z . 

Filters Minimum and Maximum are also known as filters Dilatation and Erosion 

[14, pp. 121], [15, pp. 25] because they can dilate or erode image objects. Dark objects 

with light background are dilated by minimum filter and eroded by maximum filter and 

interpretation of these filters is switched in case of light objects with dark background. 

Dilatation is also used for connection of objects and erosion is also applied in order to 

split these objects. For instance if a gap between two objects (at least locally) is lesser 

than diameter of the chosen neighborhood, the dilatation filter connects these objects 

and otherwise, if one object that looks like connection of two smaller objects is in place 

of connection thinner than chosen neighborhood of erosion filter this filter can split the 
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object into two smaller. 

Dilatation and erosion filters are usually combined together, especially in multiple use 

when one filter is applied k times and then the other is applied same times in order to 

connect or separate objects with respect to what is demanded. See examples of dilatation 

and erosion filters application in Fig. 18. 

Figure 18: Examples of dilatation and erosion applications. On the left - original image, 

on the right: on the top - detail of the image after the dilatation has been applied, 

at the bottom: on the left - scaled down image after erosion filter application, on the 

right - dilated original image - also scaled down. 

Threshold 

The threshold filter can be applied when objects borders detections are required. Other 

nonlinear filters that can detect borders of objects are gradient filters [14, pp. 124 -

125]. Threshold filter usually creates an binary image where objects are represented by 

chosen color and background of objects is represented by different color. The decision 

factor in this case is directly the threshold. If the pixel is lower than the set threshold 

it is considered as background and background color is assigned to it, otherwise, it is 

considered as object and object color is assigned. Then the threshold can be defined as 

limiting color difference instead of absolute color value and after application, image with 

depicted borders of objects only can be obtained (see Fig. 19). 

The principle of thresholding is used in the sensitivity analysis. 
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5 Results 

A specific software package called R E F L E C T O M E T R Y was developed for processing mea

surements of the thin films optical properties. Apart from the processing the experimental 

measurements, the program also offers an option to analyze the reliability of acquired re

sults by simulating the reflectance spectra and consequently by detecting the region of 

interest and by the calculating Reliability factor. 

5.1 E x p e r i m e n t a l d a t a a c q u i s i t i o n a n d c a l i b r a t i o n 

The experimental data is acquired as images recorded by C C D camera embodied into the 

measurement assembly where its model is depicted in Fig. 20. The Fig. 40 in the Figure 

annex shows the real measuring assembly. 

CCD camera 

Imaging spherical 
mirror Vacuum apparatus 

window 
Sample 

Beam splitters 

Monochromator 

Source of Ut '-17S radiation 

Figure 20: The scheme of the measuring assembly. 

Each image stores an intensity information of light reflected from the sample, related 

to the input intensity ij„ of the outcoming light from the monochromator and the recorded 

image corresponds to a wavelength A set by the monochromator. 

The image acquisition has to be carried out at constant Jj„ or each image should be 

weighted in relation to the input intensity in order to balance all images and to avoid 

any misinterpretation of the optical characteristics measurements caused by disbalanced 

measurement conditions which first of all means the wrong reflectance spectra extraction. 
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The images are specifically separated into categories according to the type of intensity 

they store. Those can be intensities of the Reference material (i.e. a material with known 

absolute reflectance), the measured Sample, the Background or the Noise. 

If the sample (or the reference material) is removed the Background images can be ac

quired. These images store an additional information of intensity of light reflected from 

the components of the measuring assembly (mainly from the beam splitters). 

In addition, if the arc discharge lamp is switched off the camera can record the Noise 

images that could randomly distort the intensity information and hence the Noise images 

should be subtracted from all other images. The Fig. 21 depicts examples of the experi

mentally measured intensities of the Sample and Reference, the intensities of Background 

and the Noise are too low in comparison to the Reference and Sample so they would 

appear just as black images and hence they are not depicted in the thesis. 

Figure 21: The experimentally measured intensities of the Reference (on the left) and the 

Sample (on the right). 

The calibration consists in two steps: 

• in the brightness test, 

• in the additive noise detection. 

The brightness test removes the over exposed and related images from further calcula

tions because using these over exposed images could cause significant distortion in the 

reflectance spectra extraction. See Fig. 22 and Fig. 23 to compare the distort and correct 

reflectance spectra extraction. 
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Figure 22: Extracted reflectance spectra including the over exposed intensity information. 
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Figure 23: Extracted reflectance spectra without any over exposed image. 

A l l over exposed images and all images corresponding to the same wavelengths as the 

over exposed images are removed from all data categories. 

The additive noise can also distort the calculations, therefore, it is recommended to detect 

its presence in all images and carry out some correction process such as application of the 

low pass filter to decrease its affection of the image. 

The Noise images should be subtracted from the other images before the detection is 

proceeded in order to possibly decrease the level of the present noise in the images. The 

example of the additive noise detection is depicted in Fig. 24. 

For creating experimental data silicon oxide thin films deposited on silicon wafers 

were measured, each sample size was 15 x 15 mm. ST - 7 X M E C C D camera with chip 

size 720 x 576 pixels proved as a reliable recorder because the estimated additive noise 

standard deviation of each saved image was detected bellow 1% of each image brightness 

mean (except the Noise category) and the setting of the camera enabled all images to 

satisfy the brightness requirements and hence none of the images was removed. 
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Re flee to me try 

Figure 24: The additive noise detection at Sample image corresponding to wavelength 

850nm. The estimated standard deviation of the additive noise is very low in comparison 

to the brightness mean and hence the image is considered as not affected by the additive 

noise. 
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5.2 S p e c t r a e x t r a c t i o n 

The calibrated data with the additive noise decreased to the lowest possible level can be 

used for the reflectance spectra extraction. 

The spectra is extracted at all wavelengths remained after the calibration. 

Since each image stores the intensity I of reflected light that can be expressed as fraction 

of the intensity Jj„, the absolute reflectance of the sample As is formulated as a relative 

reflectance of the sample related to the reference multiplied by the absolute reflectance 

of the reference, see Eq. (59) where Is, IR and AR denote the intensity of sample image, 

intensity of the reference and the absolute reflectance of the reference respectively. 

As = ^AR (59) 

Since each image comprises a portion of intensity of light reflected directly from the 

beam splitters, the intensity of the background IR should be subtracted from the Is and 

IR in order to extract much accurate spectra. The As should be then calculated as 

As = If-[fAR (60) 
IR — ±B 

Note: The Is, IR and IR are considered as decreased by the intensity of the Noise data. 

The example of the extracted reflectance spectra is depicted in Fig. 23. 

The sample intensities were measured either during the growth of the film or after it has 

been locally etched by the hydrofluoric acid where the etching created film with stair - like 

profile (see Fig. 25). 

Figure 25: Intensity information of the SiC>2 film etched by hydrofluoric acid. 
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5.3 M e a s u r e m e n t s e t t i n g 

The optical characteristics that indicate the sample reflectance are measured by fitting 

the experimental spectra to the theoretical model of reflectance. The quality of fitting 

inter alia depends on the general setting of the optimizing method and on the proper 

setting of the initial approximation. 

The general setting of the method defines conditions of stopping the calculations such as 

the maximum of iterations kmax, the satisfactory limit of sum of the residual squares e or 

the lowest considerable limit of the speed of convergence \\Sk\\, and the initial parameter 

A M , whereas the initial approximation defines what kind of material was or could poten

tially be the thin film made of. The initial approximations are loaded from library of the 

corresponding dispersion model of N. The library can be modified in the sense of adding 

or removing the models of N. 

In summary, before the spectra can be fitted to the theoretical model, the type of dis

persion model of TV and consequently a specific model have to be chosen and the general 

conditions of the optimization have to be set. 

The setting of the method is depicted in Fig. 26. 

Fteflectometry 

Options Additive noise Marquardt's optimization Reflectance spectra Program 
Reflectivity | Additive noise | Reflectivity Images Models of N~ I Results n,k,d | Spectra generator | Simulator options | 
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Figure 26: Optimization setting: choosing the dispersion model, setting the global para

meters of the optimization, initial setting of coefficients and the option to fix them. 
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5.4 M e a s u r e m e n t 

The optical characteristics can be measured either at chosen point (pixel) or at chosen 

rectilinear area. See Fig. 27 and Fig. 28 where the measurements at the chosen point 

and the chosen area are shown. 

1 i Residual sum of squares: 6.70788880976342E-0004 
lj Count of iterations: 11 

sol: true 
eval: true 
t: false 
lambda_M: 1.00000000000000E+0000 
Vector of regression parameters b: 
1.45149513384966E+0000 
5.11176347798388E+0003 
2.16751318093294E+0002 

Elapsed time: 0:00:00 

Interval estimates 

1.43122559202797E+0000 1.47176467567134E+0000 
1.90778513967702E+0003 8.31574181629074E+0003 
2.14254285187602E+0002 2.19248350998987E+0002 

wavelength [nm] 

350 375 400 425 450 475 500 525 550 GOO G25 G50 G75 700 725 750 775 800 825 

Figure 27: Measured characteristics of SiC>2 film at chosen point. The ring - shaped dots 

represent the extracted reflectance spectra and the line indicates the fitted model where 

the results are depicted in the dialog box. 
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A d RSS 

Figure 28: Measured characteristics A, d of Si02 film etched by the hydrofluoric acid 

over a chosen area 143 x 430 pixels followed by the RSS. The coefficients were unfixed 

and hence th affection by the mutual correlation between A and d is apparent (see the 

marked regions). The A is expected to be constant whereas the major change of A follows 

morphology of the film in the results. 

The characteristics measured within the chosen area can be corrected after the fitting 

has been completed. The correction consists in assigning each point such solution from its 

neighborhood that gives the smallest sum of residual squares. The surface is considered 

continuous and hence the neighboring points should give similar results unless something 

suddenly changes the reflectance of the sample (e.g. very sharp edge or a sharp bounded 

dust particle, drop of liquid, etc.). The higher is the resolution of the image, the more real 

is the depiction of the surface and the more difficult is to detect a very sharp edge. Then, 

if the resolution is high enough, the sudden changes of reflectance are mostly caused by 

the dust particles or the drops of some liquid, etc. This has to be also considered because 

the laboratory conditions do not have to be usually too strict. 

The neighborhood should be set carefully with respect to the resolution of the image. 

The higher is the resolution, the larger neighborhood can be set. The calculation of the 

results within the chosen area ran approximately 28 minutes whereas the correction with 

neighborhood set to ±10 pixels ran about 6 minutes. 

An example of the results correction is depicted in Fig. 29. 
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A d RSS 

Figure 29: The correction of the results within the chosen area. The correction can 

modify the results only at few points (see the marked regions), if the calculation was 

precise enough. Therefore, the results look the same as in Fig. 28. 

The other option of the measurement is to estimate the coefficients when all of them 

stay unfixed or some of them are fixed. Fixing chosen parameters can avoid the affection 

of mutual correlations among the regression coefficients and hence the measurement can 

be more precise. The difference of the acquired results is presented in Fig. 30 where the 

thickness was estimated within the chosen area. 
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5.5 S e n s i t i v i t y ana lys i s 

It is possible to carry out the analysis with various global settings of the method and 

with option to fix chosen regression coefficients. Three materials, the SÍO2, SÍ3N4 and 

P M M A with the refractive indices Ň = 1.52 + 5000nm 2/A 2, Ň = 2.0 + 15000nm 2/A 2 

and TV = 1.38 + 12000nm 2/A 2 respectively considered as deposited on silicon substrates 

were tested in the sense of the defined sensitivity analysis. The global setting of the 

optimizing method and setting of initial approximation were studied in order to check 

whether the region B 1 can be different for one material when the global setting changes 

or the coefficients of the initial approximations are fixed or unfixed. 

Note:Following the theory of the Sensitivity analysis, the ( ^ , $ 2 , $ 3 )
 and ($1 , $ 2 , $ 3 ) (ire 

going to be denoted by (Aid, Bid, did) and (A,B,d) respectively. 

The global setting differed only in the A M that was set to values: 0.01, 1 and 100 and the 

N = A + B/\2 was chosen as type of dispersion model where at most one of the coefficients 

A, B was fixed. Since the set tolerances of the thickness d were set too tightly, the analysis 

with fixed d was omitted. The tolerances \i and v were set to (±0.07, ±3000nm 2 , ± l n m ) , 

the A and the pt were set to 1 and 0.95 respectively and 44 wavelengths A in the range 

from 351 to 886nm were chosen for the analysis. 

The analysis started at the lowest values of A, B and d that were increased by their 

increments until they reached their maximal values and the B 1 was detected at each initial 

setting. The ranges of the coefficients that determine the B 1 are expressed as deviations 

(AAmin, ABmin, Admin) and (AAmax, ABmax, Admax) of the ideal solution (Aid, Bid, did) 

where B 1 = (Aid + AAmin, Aid + AAmax) x (Bid + ABmin, Bid + ABmax) x {did + Admin, did + 

Admax). The increments of the coefficients were set to (0.01,150nm2,2nm) when A was 

fixed and to (0.03,150nm2, 2nm) in other cases. 

The ideal thickness did [nm] was set in all analyzed cases to all values from range 

{100,105,110, •• • , 500}, i.e. for every analyzed material and every initial setting. 

A good initial setting can be found, if the B 1 is as large as possible and the R f is ideally 1 

or close to 1 as much as possible. On the other hand, a very small B 1 with very small R f 

means that the initial setting of the coefficients is very difficult to find because it is too 

case sensitive. The sensitivity analysis is going to be discussed in a matter of finding the 

initial setting of the regression coefficients or rather the successfulness of the fitting. Each 

analyzed setting is described by its input and output protocols (the modal and frequency 

characteristics) that are in a text format (see Fig. 41 - 43 in the Figure annex). 

The S i 0 2 was analyzed within these ranges of coefficients: (1.07, 500,100) -

(1.97,9500,500) when all coefficients were unfixed, (1.07,2000,100) - (1.97,8000,500) 

when B was fixed and (1.45, 500,100) - (1.59, 9500, 500) when A was fixed. 

The detected ranges of B and d were exactly the same as the initial ranges set for the 
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analysis, therefore, the initial setting of the regression coefficients was studied only as 

setting of the A. Results of the analysis are depicted in Fig. 31 - 33. Considering all 

cases of fixed and unfixed coefficients A and B, it appeared that the detected range of A 

is not significantly affected by the initial value of AM- The range of the initial A tends to 

contract with growing thickness of the film in the cases when A was unfixed (see Fig. 31) 

and because the R f in these cases (see Fig. 32) is not much variable, it could mean that 

it is more difficult to fit the model to measured data of films of higher thicknesses than 

to data of thinner films. 

In the case when A was fixed, the range of initial setting of A was detected rather as 

contracting with decreasing thickness of the film (see Fig. 33 a)). Together with the R f 

(see Fig. 33 b)) which appeared to grow with the thickness of the film, it could mean 

that it is convenient to use such setting for fitting the reflectance model to data of films 

of high thicknesses, if the A were reasonably precise. 
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Figure 31: The detected AAmin and AAmax of the simulated Si02 film when the : a) 

coefficients were unfixed, b) the coefficient B was fixed. The results are very similar 

because the variability of B does not affect the TV significantly and hence fixing or unfixing 

B leads to almost the same results. 
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Figure 32: The detected R f of the simulated S i 0 2 film when the : a) coefficients were 

unfixed, b) the coefficient B was fixed. 
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Figure 33: The detected £i.Amin, A.Amax and R f of the simulated S i 0 2 film when the A 

was fixed. 

The analysis of P M M A (see Fig. 34 - 36) was carried out with these settings: 

(0.93, 6000,100) - (1.83,18000, 500) when all coefficients were unfixed, 

(0.93, 9000,100) - (1.83,15000, 500) when B was fixed and (1.31, 6000,100) -

(1.45,18000, 500) when A was fixed. 

The results are similar to the SiC>2 analysis with a slight difference in a case when A was 

not fixed where the initial setting AM = 100 gives more precise results than the other 

settings (see Fig. 34). Anyway, it can be concluded again that for fitting the model 

to measured data of the P M M A films of higher thicknesses (~ above 400nm) it is more 

convenient to fix the value of A (see Fig. 36), if the A were known quite precisely, and on 

the other hand for fitting the model to data of lower thicknesses (~ bellow 200nm), better 

53 



results are acquired with A unfixed (see Fig. 34 - 35). Again, the detected ranges of B 

and d were the same as set before the analysis. 

0.5 I 1 1 1 1 1 1 1 1 0 5 

5 I , , , , , , , 1 . D 5 I , , , , , , , 1 
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 

djrf[nm] d,rf[nm] 

a) b) 

Figure 34: The detected £i.Amin and AAmax of the simulated P M M A film when the : a) 

coefficients were unfixed, b) the coefficient B was fixed. 

Figure 35: The detected R f of the simulated P M M A film when the : a) coefficients were 

unfixed, b) the coefficient B was fixed. 
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A was fixed. 
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mini L-x-rLmax 

and R f of the simulated P M M A film when the 

And finally, the analysis of the S i 3 N 4 (see Fig. 37 - 39) that was carried out within 

the following ranges of coefficients: (1.55, 9000,100) - (2.45, 21000, 500) when all 

coefficients were unfixed, (1.55,12000,100) - (2.45,18000,500) when B was fixed and 

(1.93, 9000,100)-(2.07, 21000,500) when A was fixed, showed that the model with unfixed 

A is more convenient for films of lower thicknesses (~ above 150nm) (see Fig. 37 - 38) 

and the model with fixed A could be used for films of any thicknesses from the analyzed 

range (see Fig. 39), if the A were reasonably precise. And again, the detected ranges of 

B and d were the same as set before the analysis. 
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Figure 37: The detected AAmin and AAmax of the simulated S i 3 N 4 film when the : a) 

coefficients were unfixed, b) the coefficient B was fixed. 
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d.rf[nm] d,rf[nm] 
a) b) 

Figure 38: The detected R f of the simulated S13N4 film when the : a) coefficients were 

unfixed, b) the coefficient B was fixed. 

d,rf[nm] d,.d[nm] 
a) b) 

Figure 39: The detected £±.Amin) AAmax and R f of the simulated S13N4 film when the A 

was fixed. 

Based on the results of the analysis, the fitting of the films of higher thicknesses 

requires most of all a reasonably precise setting of A with recommendation to fix this 

value. And on the other hand, the fitting the model to data of films of lower thicknesses 

might be better when the A is unfixed. 

So knowing A very close to the A^ generally does not have to mean to acquire model fitting 

precise enough. It should be reminded that this conclusion is based on an assumption 

that the measured data exactly follow the chosen dispersion and reflectance models and 

any distortion was not implemented into the simulated reflectance spectra. 
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The fluctuation of Bid actually causes an error of N that is up to 2 orders lower 

than the error caused by fluctuations of A, therefore, the results of sensitivity analysis 

when all coefficients were unfixed and when the B was fixed are very similar. If the 

fixing of coefficients is demanded it is recommended to fix rather the A than d because 

the refractive index is expected to be constant over the measured sample whereas the 

morphology may be variable. 

To analyze the quality of the fitting when the data follows a different model (especially 

the dispersion model) than the fitted one or when the data is distort (somehow to simulate 

the real measurement with possible errors), it could be a matter of another research. 

Note: Examples ofthe projections B p of chosen Si02, S^N^ and PMM A simulated films 

are depicted in Fig. 44 - 55 in the Figure annex. 
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6 Conclusion 

A new method of thin films optical properties measurements has been presented and 

tested on the experimental data. The method grants the optical properties being fast cal

culated because of the advanced processing of the images. Therefore, the thin film can be 

treated as any of various materials and the optical properties can be quickly recalculated 

with changed settings. 

The options of presented calculations also enable to measure only chosen characteristics, 

while the other remain fixed where such option can avoid the mutual correlations among 

the chosen characteristics and hence the measurement can be more precise. 

This method was successfully tested on ex situ measurements of coated silicon substrates. 

New approach has been introduced in sensitivity analysis by defining a tool that figures 

out and hence verifies the reliability of calculated results. 

The reliability of the acquired results was calculated at three chosen materials: the Si02, 

Si3N 4 and the P M M A , that can be considered as representatives of the low to high refrac

tive index materials and the simulated films of these materials were assumed as deposited 

on a silicon substrate. 

The simulated reflectance spectra were considered as following exactly the chosen model 

and the reliability of the acquired results was calculated within a reasonably large range of 

initial settings. It was concluded which setting of the global parameters of the optimizing 

method and which setting of the regression coefficients in the matter of their fixing or 

precision could lead to acquire very precise and high reliability results, if the data followed 

the chosen regression model. The setting of the initial regression coefficients appeared to 

be crucial in the setting of the refractive index coefficients, primarily the coefficient A and 

its option to be fixed or unfixed. The other coefficients could be set more liberally. Most 

of all, the settings differed in measuring thinner (~200nm) and thicker (~400nm) films. 
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7 Symbol list 

A refractive index coefficient 

Aid ideal value of 4̂ 

AR absolute reflectance of a reference 

As 
absolute reflectance of a sample 

A A • A A 
L-í-rímtni L-í-rLmax 

lower and upper detected deviances of respectively 

b vector of the calculated regression coefficients 

B blue component of color 

B refractive index coefficient 

Bid ideal value of B 

^Bmin^ ^Bmax lower and upper detected deviances of Bid respectively 

B set of initial approximations 

B 1 region of interest (sensitivity analysis) 

BP projection of the B 
BP selection of the B p 

C reference point of mapping 

C(x) convolution function, 

C(m, n) m x n 2D convolution matrix 
C 
^max 

maximal color 
c minimal color 

C(t) nD convolution matrix 

d thickness of the film 

did ideal value of d 

D additive constant of linear filter 

Dk equidistant partitioning 
D(") equidistant multipartitioning 

nD digital space 

global coordinate system of digital space 

^dmin, Admax lower and upper detected deviances of did respectively 

D diagonal matrix induced by Jacobi's matrix 

multiplicative constant of linear filter 

extension of the searched region 

/ (X ,0) regression function 

2 fmax minimal sampling frequency - Nyquist's limit 

F tested statistics, critical value of the F - distribution 

F(i?) Jacobi's matrix 

physical domain 
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fragmentation of digital space support 

F(n) physical space 

global coordinate system of physical space 

Fjj physical pixel 

G green component of color 

g(x) sampling function 

H image height 

/ image 

I#* confidence interval of the regression coefficient dr 

IB, IN intensity of the light reflected from the background 

and the intensity of the black background 

considered as noise respectively 

IR-, IS intensities of light reflected from reference and sample respectively 

Ik a set of indices 

l( n) multiindex 

I elementary matrix 

nD space support 

k extinction coefficient. 

index of a matrix/vector element11 

kmax maximum of iterations 

logical space 

L/ n ) global coordinate system of logical space 

LB lower bound of the optimizing algorithm decision factor 

m matrix/vector element index, matrix/vector dimension1 1 

Mj characteristic matrix of the j - th layer 

M characteristic matrix of the complete multilayer 

N complex refractive index 

n refractive index, the real part, 

matrix/vector dimension1 1 

na ambient refractive index 

p vector index 

P($Q) relative frequency of convergence of the $Q 

q vector index 

Qa, qj, qs substitutions 

Aq predicted reduction in the optimization step 

ri2 Fresnel coefficient of reflection 
1 1 The symbols subjected to the different meanings are used separately, each in different section, so 

the misunderstanding in their explanation is avoided. 
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r total reflection coefficient, index 1 1 

r vector of residuals, 

resolution of digital space11 

ru decision factor of the optimizing algorithm 

RM reduction of the searched region 

Rf reliability factor 

1Z reflectance of the film 

R blue component of color 

R image 

R Z image R displaced about z pixels 

according to its initial position 

R P perfect image 

R S image representing an additive noise 

s2, s2 residual variances 

S control point - center 

S("d) objective function - the residual sum of squares (RSS) 

AS actual reduction in the optimization step 

t critical value of the Student's distribution 

UB upper bound of the optimizing algorithm decision factor 

vf k — tuple dimension of physical nD domain 

V control point - vertex 

V value set (definition of an image) 

W image width 

x vector of realized measurements settings 

X random variable 

X vector of independent random variables 

V random variable 

y vector of realizations of the random variable Y 

(3 phase shift between the top and the bottom of the layer 

7(i?o) local extreme decision function 

5, 5M vectors of the regression coefficients increments 

e random error 

e satisfactory limit of the RSS 

(/?!, ip2, <f3 angles of light propagation in different ambiances 

(pa, ips angles of light propagation in the ambient 

and substrate respectively 

V?(i?o) convergence decision function 

ipc mapping 
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A wavelength 

AM factor of the optimizing algorithm 

A local extreme satisfactory limit of the AM 

fx, v tolerances of the solution 

•d vector of regression coefficients 

$ 0 initial approximation vector of the regression coefficients 

$Q initial approximations vector with reduced dimension 

by meaning of the projection 

ideal solution 

d estimator of d 

p(Rp,Rs) correlation coefficient of images Rp and Rs 

a2 variance 

a2 estimator of the variance 

Q covariance matrix 

Cl estimator of the covariance matrix 

^(i?o) function combining the convergence 

and local extreme decision functions 

6 3 



8 Figure annex 

Figure 40: The measuring assembly with a sample holder (in the bottom right corner) 

that was used for etching the sample. 
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C h a r a c t e r i s t i c s of the neasurenent 
The r e s u l t s are c l a s s i f i e d i n t o following groups: 
1 - Other l o c a l extreme 
2 - Global minimum 
3 - Hon conuergent s o l u t i o n , not extreme 
4 - Conuergent s o l u t i o n , not extreme 
Height: 31 
Uidth: 31 
Leuels: 31 
Type of p r o j e c t i o n : d 
Frequencies: 
» » » > Begin Data « « « < 
17,16,16,17,17,17,16,17,17,17,17,17,17,17,17,17,17,17,16,16,16,16,16,16,16,16,16, 
16,16,16,16 
16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.15.15.15.15.15.16.16.16.16.16.16.16, 
15.16.16.16 
16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.16.17.17.17.17.17.17.17, 
17.17.17.17 

18,18,18,18,18,18,17,18,18,18,18,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18, 
18,19,19,19 
18,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18, 
19,19,19,19 
» » » > End Data 1 « « « < C l a s s i f i c a t i o n s 
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 
1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2.2.2.2.2.1.2.2.2 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
» » » > End Data 2 « « « < 

Figure 42: The modal characteristics summarized in the output protocol. The frequencies 

are depicted in the top data set and the types of the most frequently acquired results are 

depicted in the bottom data set. 
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Output Image properties & range of parameters 
P r o b a b i l i t y threshold: B.95 
Local extreme consideration LM l i m i t : 1 
Height: 31 
Width: 31 
Leuels: 31 
Excluding parameter type: d 
Excluded l e u e l s : B ( B.BB%) 
Excluded l e u e l s - l i s t : [ ] 
Remained l e u e l s : min max: 7B.BBB 13B.BBB 
Range: 

bB: [ 1.55BB, 12BBB.BBBB, 7B.BBBB ] 
b1: [ 2.4588, 18BBB.BBBB, 13B.BBBB ] 
step: [ B.B3BB, 2BB.BBBB, 2.BBBB ] 
r e a l s o l u t i o n : [ 2.BBBB, 15BBB.BBBB, 1BB.BBBB ] 

Tolerances: 
min t o l : [ 1.9388, 12BBB.BBBB, 99.8888 ] 
max t o l : [ 2.B7BB, 18BBB.BBBB, 1B1.BBBB ] 

» » » > Begin Data « « « < 
B.452,B.452,B.452,B.452,B.452,B.452,B.452,B.452,B.452,B.452,B.452,8.452,8.452,8.4 
52,8.452,8.452,B.452,B.452,B.484,B.484,B.484,B.484,B.484,B.484,B.484,8.484,8.484, 
8.484,8.484,8.484,8.484 
8.484,8.484,B.484,B.484,B.484,B.484,B.484,B.484,B.484,B.484,B.484,8.484,8.484,8.4 
84,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516, 
8.516,8.516,B.516,B.516 
8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.516,8.548,8.548,8.5 
48,8.548,8.548,B.548,B.548,B.548,B.548,B.548,B.548,B.548,B.548,B.548,8.548,8.548, 
8.548,8.548,8.548,8.548 
8.548,8.548,B.548,B.548,B.548,B.548,B.548,B.548,B.548,B.581,B.581,8.581,8.581,8.5 
81,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581, 
8.581,8.581,B.581,B.581 

8.581,8.613,B.613,B.613 
8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.5 
81,8.581,8.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,8.581,8.581, 
8.581,8.613,8.613,8.613 
8.581,8.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,8.581,8.581,8.5 
81,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581, 
8.581,8.613,B.613,B.613 
8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.581,8.5 
81,8.581,8.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,B.581,8.581,8.581, 
8.613,8.613,8.613,8.613 
» » » > End Data « « « < 

Figure 43: The frequent characteristics summarized in the output protocol. 
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Figure 44: A n example of B p of 150nm thick SiC>2 film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The example shows that global minimum was the most frequent acquired result within 

the whole chosen set of initial approximations B. 
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B 

A 

Figure 45: A n example of B p of 460nm thick Si0"2 film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The region where mostly the global minimum was acquired is narrower in comparison to 

the detected region in Fig. 44. 

69 



B 
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Figure 46: A n example of B p of lOOnm thick SiO"2 film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The detected range of A is very narrow and hence estimating the optical properties of 

such film with fixed A could be very difficult. 
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Figure 47: A n example of B p of 460nm thick SiC>2 film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The calculations of the coefficients was successful in each point of measurement because 

the global minimum was reached from every initial approximation as depicted. 
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B[nm 2] 

Figure 48: A n example of B p of 150nm thick P M M A film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

Again, an example of highly successful measurement. 

72 



Figure 49: A n example of B p of 460nm thick P M M A film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

An example of analysis that showed that high reliability results can be acquired when the 

A started from a narrower interval surrounding the Aid as depicted in b). 
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Figure 50: A n example of B p of 130nm thick P M M A film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

It is too difficult to measure optical properties of such film when A is fixed even if it is 

set very close but not precisely to Aid. 
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a) 

B[nm2] 

b) 

Figure 51: A n example of B p of 460nm thick P M M A film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The fixed value of A can be set more liberally in order to measure the optical properties 

precisely in comparison to Fig. 50. 
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Figure 52: A n example of B p of 150nm thick S13N4 film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

Again, the initial approximation can be set to quite imprecise values and still only the 

global minimum can be acquired. 
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Figure 53: A n example of B p of 500nm thick S13N4 film on silicon substrate when all 

coefficients were unfixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The A has to be known quite precisely to fit successfully the reflectance model to re

flectance spectra of 500nm thick S i 3 N 4 film deposited on a silicon substrate. 
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Figure 54: A n example of B p of 140nm thick S13N4 film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The analysis of S13N4 showed that fixing the A to values close to Aid can guarantee 

acquiring results very close to the ideal solution, i.e. measuring the optical properties 

very precisely. 
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Figure 55: A n example of B p of 400nm thick S13N4 film on silicon substrate when the 

coefficient A was fixed and where the thickness d was omitted. 

a) The modal characteristics shows what type of the result (see the legend) was acquired 

most often. The lighter is the color, the higher is the frequency of the acquired result. 

b) The frequency characteristics expresses the rate of acquired global minims to all types 

of results at each particular setting, i.e. at each setting of A and B regardless on the 

thickness d. 

The analysis of S13N4 showed that fixing the A to values close to can guarantee 

measuring the optical properties very precisely. 
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