
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

STATIC ANALYSIS USING THE META INFER
FRAMEWORK TO DETECT DATA RACES
STATICKÁANALÝZAVNÁSTROJIMETA INFER ZAMĚŘENÁNADETEKCI SOUBĚHUNADDATY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR LUCIE SVOBODOVÁ
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023



 

Institut: Department of Intelligent Systems (UITS)
 

Student: Svobodová Lucie
 

Programme: Information Technology
 

Specialization: Information Technology
 

 

Category: Software analysis and testing
 

Academic year: 2022/23
  

Assignment:
 

1. Get acquainted with principles of static analysis. Pay special attention to abstract interpretation
and to analyses designed for concurrent programs.

2. Get acquainted with the Meta Infer framework, its support for abstract interpretation, and existing
analysers under this framework, especially the L2D2 and Atomer checkers.

3. Design and implement within the Meta Infer framework an analysis for discovering potential data
races in multithreaded C programs.

4. Evaluate experimentally the designed analyser on suitably chosen programs, including at least
some real-life project.

5. Summarize the achieved results and discuss possibilities of future improvements of the designed
analyser.

 

Literature: 
Rival, X., Yi, K.: Introduction to Static Analysis: An Abstract Interpretation Perspective. MIT Press,
2020.
Distefano, D., Fähndrich, M., Logozzo, F., O'Hearn, P.W.: Scaling Static Analyses at Facebook.
Commun. ACM, 62(8):62-70, ACM, 2019.
Engler, D.R., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions and Deadlocks,
In: Proc. of SOSP'03, ACM, 2003.
Blackshear, S., Gorogiannis, N., O'Hearn, P.W., Sergey, I.: RacerD: Compositional Static Race
Detection, In: Proc. of OOPSLA’18, ACM, 2018.
Liu, B., Liu, P., Li, Y., Tsai, C.-C., Da Silva, D., Huang, J.: When Threads Meet Events: Efficient
and Precise Static Race Detection with Origins, In: Proc. of OOPSLA’21, ACM, 2021.
Harmim, D.: Advanced Static Analysis of Atomicity in Concurrent Programs through Facebook
Infer. Master thesis, Brno University of Technology, 2021.
Marcin, V.: Static Analysis Using Facebook Infer Focused on Deadlock Detection. Bachelor thesis,
Brno University of Technology, 2019.

Requirements for the semestral defence: 
The first two points and at least some work on the third one.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Vojnar Tomáš, prof. Ing., Ph.D.
 

Head of Department: Hanáček Petr, doc. Dr. Ing.
 

Beginning of work: 1.11.2022
 

Submission deadline: 10.5.2023
 

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148636

Statická analýza v nástroji Meta Infer zaměřená na detekci souběhu nad datyTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
Modern software systems often use concurrent programs to improve performance and in-
crease efficiency. However, ensuring the reliability and safety of such systems can be chal-
lenging due to the increased potential for bugs, including data races, to arise. In this thesis,
we introduce a new static data race detector, DarC, designed for programs written in C
using the Pthreads library. The proposed detector is implemented as an analyser plugin in
Meta Infer, a static analysis framework with the emphasis on compositional, incremental,
and consequently highly-scalable analysis. Our approach involves recording a set of accesses
that occur in the analysed program along with information about the set of locks held dur-
ing these accesses. The tool then identifies pairs of accesses that may lead to data races
and reports them to the user. Our tool was successfully evaluated on a set of benchmarking
programs as well as on real life projects, showing its potential for effectively detecting data
races in C programs.

Abstrakt
Vícevláknové programy jsou v moderních softwarových systémech využívány ke zlepšení
výkonu a zvýšení efektivity. Zajištění spolehlivosti a bezpečnosti takových programů však
může být náročné kvůli zvýšenému množství chyb, které se v nich vyskytují, včetně souběhu
nad daty. V této práci představujeme nový statický detektor souběhu nad daty, DarC,
navržený k analýze programů napsaných v jazyce C využívajících knihovnu Pthreads.
Navrhovaný nástroj byl implementován jako zásuvný modul prostředí Meta Infer, což je
nástroj pro statickou analýzu programů, který klade důraz na kompoziční, inkrementální
a díky tomu i vysoce škálující analýzu programů. Nový analyzátor zaznamenává množinu
přístupů ke sdíleným proměnným, ke kterým v analyzovaném programu došlo, spolu s in-
formací o množině zámků uzamknutých při jednotlivých přístupech. Množina přístupů je
dále použita k identifikaci dvojic přístupů, mezi nimiž by k souběhu nad daty mohlo do-
jít. Nástroj byl úspěšně ověřen na sadě testovacích vícevláknových programů, stejně tak
jako na několika programech běžně využívaných v praxi, čímž byl ukázán jeho potenciál
pro efektivní detekci souběhu nad daty v programech napsaných v programovacím jazyce C.

Keywords
static analysis, data race, Infer, program analysis, abstract interpretation, scalability, multi-
threaded programs, concurrent programs, program verification, incremental analysis

Klíčová slova
statická analýza, souběh nad daty, Infer, analýza programů, abstraktní interpretace, škálo-
vatelnost, vícevláknové programy, paralelní programy, verifikace programů, inkrementální
analýza

Reference
SVOBODOVÁ, Lucie. Static Analysis Using the Meta Infer Framework to Detect Data
Races. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor prof. Ing. Tomáš Vojnar, Ph.D.



Rozšířený abstrakt
Paralelní programování je důležitým aspektem vývoje moderního softwaru, který se up-
latňuje jak u programů provádějících vysoce výkonné výpočty, tak u běžných webových ap-
likací. Nicméně, paralelní programy jsou často mnohem komplexnější a složitější na porozu-
mění, testování i na následné ladění než klasické sekvenční programy, a to především kvůli
jejich nedeterministickému chování a nutnosti synchronizace paralelních vláken tak, aby
se vyloučily jejich nežádoucí interakce. Chyba souběhu nad daty (data race) je jednou
z nejčastěji se vyskytujících chyb v paralelních programech. Souběh nad daty nastává,
pokud ve vícevláknovém programu přistupuje ke sdílenému místu v paměti více vláken
současně, přičemž tyto přístupy nejsou správně synchronizované a alespoň jedno vlákno
na danou paměťovou lokaci zapisuje data. To může vést k neočekávanému a nepředvídatel-
nému chování, protože není zaručeno pořadí, ve kterém vlákna k dané paměťové lokaci
přistoupí. K předejití tomuto typu chyby je potřeba správně synchronizovat všechny přís-
tupy ke sdílené paměti, například s použitím zámků. Nicméně, zvyšování počtu zámků
použitých v programu může vést k nesprávnému pořadí jejich zamykání a odemykání, což
může následně způsobit jiný druh chyby, uváznutí (deadlock). Souběh nad daty, uváznutí,
porušení atomicity a další v programu vyskytující se chyby mohou způsobovat nesprávné
výsledky, neočekávané chování systému i úplné výpadky systému, což z nich činí kritické
problémy při zajištění spolehlivosti a bezpečnosti softwaru.

Tradiční techniky testování a ladění softwaru jsou často nedostačující při hledání chyb
ve vícevláknových programech, protože tyto chyby bývají závislé na specifickém pořadí
provádění instrukcí jednotlivými vlákny. Ke zvýšení pravděpodobnosti odhalení takových
chyb je možné použít jiných přístupů, například systematického testování [26] nebo testování
založeného na vkládání šumu [7]. Dalším efektivním přístupem je použití dynamických an-
alyzátorů, například [8, 22, 14], které sledují běh programu a na základě různých metod
identifikují potenciální chyby, i když v daném běhu přímo nenastanou. Monitorování běhu
velkého programu však může být velmi časově náročné, a navíc ani tyto analyzátory ne-
musí objevit všechny chyby, ke kterým v programu může dojít. K vyřešení posledního
zmíněného problému je možné použít například metodu model checking, která je přesná
a umožňuje detekci všech chyb, které mohou v programu nastat, přičemž neprodukuje
žádná falešná hlášení o chybách (false alarms). Vzhledem k tomu, že tato technika funguje
na prohledávání velkých částí stavového prostoru analyzovaného programu, není snadné ji
použít na rozsáhlé softwarové projekty. Je možno užít i takzvaný omezený model checking,
díky kterému můžeme omezit například maximální počet kroků či přepnutí kontextu, ale
jeho cena je také nemalá a při velkém omezení může snadno nenalézt hlubší chyby.

Statická analýza programů představuje alternativu k výše zmíněným technikám. Na rozdíl
od většiny dynamických analyzátorů je možné ji použít k identifikaci chyb v rané fázi vývoje
programu, kdy ještě není dostupná spustitelná verze. Díky tomu je možné odhalit chyby, je-
jichž oprava by byla časově i finančně velmi náročná při pozdějším odhalení. Při provádění
statické analýzy není samotný program spouštěn, ale je analyzována pouze syntax zdro-
jových kódů, případně jejich vhodným způsobem abstrahovaná sémantika, s cílem iden-
tifikovat potenciální chyby, zranitelnosti i výkonnostní problémy. Škáluje často lépe než
model checking a může nacházet některé chyby, které dynamická analýza nenalezne, ovšem
za cenu toho, že některé chyby přehlédne, nebo naopak nahlásí i chyby, které při běhu pro-
gramu nastat nemohou. Oblast statické analýzy je velmi rozsáhlá a zahrnuje velké množství



přístupů, například analýzu toku dat (data-flow analysis) a abstraktní interpretaci (abstract
interpretation), která je použita i v této práci.

V praxi je používáno mnoho prostředí pro statickou analýzu programů, řada z nich je ale
komerční a silně uzavřená, jako například nástroje Coverity [28] nebo KlocWork [30]. Exi-
stují však i nástroje, jejichž zdrojové programy jsou otevřené a rozšiřitelné. Mezi tyto
nástroje se řadí Frama-C [5] a Meta Infer [29]. V rámci této práce se soustředíme právě
na nástroj Infer, mezi jehož hlavní výhody patří inkrementální, kompoziční a interproce-
durální analýza směrem zdola nahoru dle stromu volání funkcí, díky čemuž je Infer vhodný
i pro analýzu rozsáhlých softwarových projektů. Infer poskytuje jednotlivé analyzátory
pro detekci různých typů chyb, jako například chyby dereference prázdného ukazatele (null
dereferencing), přetečení vyrovnávací paměti (buffer overflow), nebo únik paměti (memory
leaks). Výhodou prostředí Infer je také možnost přidání vlastních analyzátorů zaměřujících
se na detekci dalších typů chyb.

V rámci této práce představujeme nový statický detektor souběhu nad daty, který je navržen
pro analýzu programů napsaných v programovacím jazyce C s použitím nízkoúrovňového
zamykání a vláken s použitím knihovny Pthreads. Navržený analyzátor byl implemen-
tován jako zásuvný modul prostředí Infer, ve kterém takový analyzátor dosud scházel. Náš
přístup je založen na detekci všech přístupů ke sdíleným proměnným, ke kterým v an-
alyzovaném programu došlo, spolu s informací o množině zámků, které byly zamknuté
při daných přístupech. Ze získané množiny přístupů jsou následně vyfiltrovány dvojice
přístupů, mezi kterými by mohlo dojít k souběhu nad daty, a tyto dvojice jsou následně
nahlášeny uživateli. Potenciál využití nově navrženého analyzátoru byl demonstrován jak
na sadě programů vytvořených k testování analyzátorů chyb vyskytujících se v paralelních
programech, tak na několika softwarových projektech využívaných v běžné praxi.



Static Analysis Using the Meta Infer Framework
to Detect Data Races

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of prof. Ing. Tomáš Vojnar, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Lucie Svobodová

May 9, 2023

Acknowledgements
I would like to thank my supervisor Tomáš Vojnar for his support during the work on this
thesis. I would also like to thank Ondřej Pavela and Dominik Harmim for their technical
assistance regarding the Infer framework, and to Tomáš Dacík for his help in obtaining the
materials for the experimental evaluation. Lastly, i am grateful for the support received
from the Czech Science Foundation project AIDE and the Horizon Europe project CHESS.



Contents

1 Introduction 2

2 Preliminaries 4
2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Meta Infer Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Related Work on Data Race Detection . . . . . . . . . . . . . . . . . . . . . 8

3 Data Race Detection 10
3.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Phase 1: Recording a Set of Accesses . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Phase 2: Data Races Computation . . . . . . . . . . . . . . . . . . . . . . . 21

4 Implementation 22
4.1 Integration of the DarC Plugin with Infer . . . . . . . . . . . . . . . . . . . 22
4.2 The Abstract Domain and Function Summaries . . . . . . . . . . . . . . . . 23
4.3 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Data Race Detection and Reporting . . . . . . . . . . . . . . . . . . . . . . 35

5 Experimental Evaluation 36
5.1 Simple Codebases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Real-World Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions 42

Bibliography 43

Appendices 46

A Contents of the Attached Memory Media 47

1



Chapter 1

Introduction

Concurrent programming is an essential aspect of modern software development, with ap-
plications ranging from high-performance computing to web applications. However, con-
current programs are also more complex and harder to understand, test, and debug than
sequential programs due to their non-deterministic behavior and the necessity to suitably
synchronize their various concurrently running threads. Improper synchronization may lead
to various nasty kinds of bugs that manifest only rarely, are hard to spot and debug, but can
be highly destructive. Data races are one of the most common and frequent kinds of such
bugs in concurrent programs. A data race is a problem that occurs when multiple threads
access the same memory location simultaneously without proper synchronization, and at
least one of these accesses is a write access. This can lead to unexpected and unpredictable
behavior as the order in which the threads access the memory location is not guaranteed.
To avoid data races, proper synchronization mechanisms such as locks can be used to en-
sure that only one thread can access the shared memory at a time. However, increasing
the number of locks in the program can lead to other bugs such as deadlocks, making the
program even more complex and harder to debug. Data races, deadlocks, atomicity viola-
tions and other concurrency bugs can cause unpredictable behavior, incorrect results, and
system crashes, making them critical challenges for ensuring the reliability and safety of
software.

Traditional testing and debugging techniques are often insufficient for detecting and fixing
concurrency bugs due to the already mentioned fact that they depend on specific timing
and order of execution, making them hard to reproduce and diagnose. To increase the
likelihood of detecting rare behaviors in concurrent programs, different approaches such as
systematic testing [26] and noise-based testing [7] can be used. Another effective approach
is to use dynamic analysers like [8, 22, 14], which can identify potential errors by observing
the program’s behavior during its execution, looking for symptoms of potential bugs even if
no bugs manifest during the test runs. Unfortunately, monitoring a run of a large program
may be quite expensive and time-consuming, and these analysers can still miss errors.
On the other hand, approaches based on model checking may be precise and capable of
detecting all errors in a program without producing false alarms. However, they may search
potentially very large parts of the state space of the program, which may be infeasible for
larger programs. Model checking can of course be bounded (e.g., in the number of context
switches or the number of steps that a program may perform), leading to pragmatic error
detection that has already reached many successes in practice. However, apart from that,

2



such an approach may miss some deeper bugs, it may still be quite expensive for larger
programs, it requires one to prepare a test harness, and may have problems with certain
program constructions (input/output operations).

Static analysis is an alternative to the above approaches. It can help identify and fix
problems early on, reducing the risk of costly and time-consuming bugs later on. It can
also help to improve the overall quality and maintainability of the software. Static analysis is
a technique for evaluating the properties of software without executing the code, which may
involve analysing the syntax of the source code or its appropriately abstracted semantics
to identify potential bugs, vulnerabilities, and performance issues. It can often scale better
than model checking and find bugs not found by dynamic analysis, though for the price of
potentially missing some errors and/or producing false alarms. The area of static analysis
is very extensive and includes many different approaches, such as data-flow analysis and
abstract interpretation, which will be discussed later in this thesis.

Static analysis frameworks are widely used in software development to automatically iden-
tify potential bugs and vulnerabilities in code. While many of these frameworks are propri-
etary, such as Coverity [28] and KlocWork [30], there are also open-source alternatives like
Frama-C [5] and Meta Infer [29]. In this work, we focus on the latter framework, which
provides several advantages including a bottom-up approach suitable for incrementality and
high scalability. Infer is not only a framework that provides multiple checkers for various
types of bugs, such as null dereferencing, buffer overflows, and memory leaks, but it also
allows for the addition of new analyser plugins focused on other types of bugs.

Within this work, we present DarC – a new static data race detector designed for low-level C
code. The proposed analyser is implemented as a plugin of the Meta Infer framework, which
was so far missing such a detector. It is based on recording the set of accesses to shared
variables that occur in the program, along with the information about synchronization
between them. These accesses are then filtered in order to exclude those that are properly
synchronized, and finally, the pairs of accesses between which a potential data race occurs
are reported. The proposed analyser showed promising results in our experiments performed
on a set of smaller benchmarks developed for evaluating concurrency testing tools as well
as on real-life projects.

Structure of the thesis. The rest of this thesis is structured as follows. Chapter 2 pro-
vides an introduction to static analysis and one of its approaches – abstract interpretation.
The Meta Infer framework is described in Section 2.2. Section 2.3 then presents some of
the existing tools designed for data race detection. Chapter 3 discusses the design of our
new data race detector, followed by the implementation details in Chapter 4. Chapter 5
presents the results of our experimental evaluation of the data race detector, including
benchmarks developed for testing tools for finding concurrency bugs and real-life projects.
Finally, Chapter 6 concludes the thesis and discusses possible future work.

3



Chapter 2

Preliminaries

This chapter provides the theoretical background for the thesis. It begins with a discussion
of static analysis in Section 2.1, followed by an explanation of abstract interpretation on
which the Meta Infer framework is based. Meta Infer will be then described in Section 2.2.
Finally, Section 2.3 provides an overview of existing solutions for data race detection, cov-
ering both static and dynamic analysers.

2.1 Static Analysis

Static analysis is a method of analysing a program without actually executing the code [17].
This is done by examining the source code and looking for potential issues or bugs. The
goal of static analysis is to identify potential problems before the software is run, so that
they can be fixed before they cause any issues. Static analysis methods based on formal
methods can be used to prove the correctness of a program with respect to a specification,
but they can have limited scalability and often result in a large number of false alarms.
Static tools that are neither sound (may miss some bugs) nor complete (may report false
alarms) may be practical for analysing real-life software projects. The goal is not to find
all bugs but rather to find bugs that are the most likely to be critical [18].

Static analysis can be done automatically, using specialized tools that examine the code’s
syntax or abstractly analyse the flow of data and control through the code. These tools then
look for potential issues, such as bugs, security vulnerabilities, performance bottlenecks, or
various coding issues, such as undefined values or dead code. The area of static analysis is
very extensive and includes many different approaches, such as data-flow analysis, control-
flow analysis, and abstract interpretation, which this work builds on and which will be
discussed in the following subsection [17, 25, 24].

2.1.1 Abstract Interpretation

Abstract interpretation (AI) is a general framework for static analysis introduced by French
computer scientist Patrick Cousot and his wife Radhia Cousot at POPL’77 [3]. It is
a method for analysing the behavior of computer programs by modeling the program’s
semantics using abstract domains. The goal of abstract interpretation is to identify prop-

4



erties of the program that are true for all possible inputs (and, in the case of concurrent
programs, all possible interleavings), without necessarily analysing all such inputs (inter-
leavings). When certain properties of the components are met, the analysis is guaranteed
to be sound. If a potential error is not signaled, then it should be impossible [13].

The basic idea behind abstract interpretation is to replace the program’s concrete semantics
(i.e. a set of all possible executions in all possible execution environments) with an abstract
semantics (i.e. a simplified model of the program’s behavior that is easy to analyse). This
way the abstract interpretation approximates the program’s semantics with a more tractable
abstract domain, while preserving certain properties of the program that are relevant for
the analysis [2].

When creating a new analysis using abstract interpretation, the following set of components
that establish the semantics of the analysis needs to be defined:

• The abstract domain: the set of abstract values that the analysis works with, which
abstractly represent the possible states of the program being analysed. The choice of
the abstract domain depends on the nature of the program under analysis.

• The transfer functions: these define how the abstract state of the program changes
as it is symbolically executed. They are used to propagate abstract values through
the control flow of the program, approximating the effect of each program statement
on the abstract state.

• The join operator (∘): This operator is used to combine the abstract values of different
program points that may have multiple paths leading to them. The join operator takes
the information from each path and merges them into a single abstract value.

• The widening operator (△): This operator is used to ensure that the fixpoint is
reached in a finite number of steps when working with loops. A fixpoint is reached
when the so-far computed reachable abstract states of the program no longer change
in any possible further computation.

• The narrowing operator (▽): This operator is used to narrow down the set of possible
values in order to make the abstract representation more precise and accurate. The
narrowing operator is not required for the analysis but can help improve the precision
of the results when used in combination with the widening operator.

The formal definition of abstract interpretation is based on the notion of semilattices.
A partially ordered set (𝐴,≤𝐴) is a join semilattice if each non-empty, finite subset 𝐵 of 𝐴
has a least upper bound in 𝐴. A partially ordered set (𝐴,≤𝐴) is a complete semilattice if
each subset 𝐵 of 𝐴 has a least upper bound in 𝐴 [3].

A Galois connection provides a way to establish a correspondence between two lattices, one
representing the concrete domain and the other the abstract domain. According to [13],
Galois connection is a quadruple 𝜋 = (𝒫, 𝛼, 𝛾,𝒬) such that:

• 𝒫 = ⟨𝑃,≤⟩ and 𝒬 = ⟨𝑄,⊑⟩ are partially ordered sets (posets),
• 𝛼 : 𝑃 → 𝑄 and 𝛾 : 𝑄 → 𝑃 are functions such that ∀𝑝 ∈ 𝑃 and ∀𝑞 ∈ 𝑄 :

𝑝 ≤ 𝛾(𝑞) ⇐⇒ 𝛼(𝑝) ⊑ 𝑞.

In abstract interpretation, 𝑄 is the abstract domain, and 𝑃 is a (more) concrete domain –
elements of both domains, called abstract/concrete contexts, represent sets of states [13].

5



The abstract interpretation 𝐼 of a program 𝑃 with the instruction set Instr is a tuple:

𝐼 = (𝑄,⊔,⊑,⊤,⊥, 𝜏)

where:
• 𝑄 is the abstract domain,
• ⊔ : 𝑄×𝑄 → 𝑄 is the join operator,
• ⊑ ⊆ 𝑄×𝑄 is an ordering defined as 𝑥 ⊑ 𝑦 ⇐⇒ 𝑥⊔ 𝑦 = 𝑦 where (𝑄,⊑) is a complete

(join semi-)lattice,
• ⊤ ∈ 𝑄 is the supremum of (𝑄,⊑),
• ⊥ ∈ 𝑄 is the infimum of (𝑄,⊑),
• 𝜏 : Instr × 𝑄 → 𝑄 defines the abstract transformers for particular instructions,

required to be monotone on 𝑄 for each instruction from Instr [13].

The soundness of abstract interpretation is guaranteed when each instruction from Instr
and the corresponding abstract transformer 𝜏𝑖 respect the Galois connection [4, 18, 13].

2.2 Meta Infer Framework

Infer is an open-source1 framework for creating highly-scalable, compositional, incremental,
and interprocedural static analysers based on the abstract interpretation. It was developed
by Meta/Facebook, and it is designed for detecting bugs and security vulnerabilities in Java,
C, C++, and Objective-C code. Infer provides several analysers that check for various types
of bugs, such as null-dereferencing, memory leaks, or buffer overflows (Inferbo [27]). As for
concurrency-related bugs, Infer provides a support for detecting data races (RacerD [1]),
deadlocks, and starvation (Starvation [31]), but it is limited to Java programs and some
cases of C++ programs only. Infer is used at Meta to analyse the codebase of their mobile
and web apps, such as Facebook, Instagram, What’s up, Spotify, and Amazon [20].

Infer provides both intraprocedural and interprocedural analyses. Intraprocedural analysis
computes a summary for a single function, which can be used later by the abstract inter-
pretation framework (Infer.AI) at specific call sites to create an interprocedural analysis.
This is what makes Infer compositional and incremental – rather than analysing the entire
codebase after each code change, Infer only computes summaries of the functions that were
changed (or that were influenced by changed functions), significantly reducing the analysis
time and improving scalability. By leveraging this incremental analysis approach, Infer can
be run on large codebases after every code change where running the whole analysis from
the beginning would be too time-consuming.

The framework architecture consists of three parts: frontend, scheduler + results database,
and analyser plugins. A simplified diagram of the framework architecture is presented
in Figure 1. At the beginning of the analysis, the frontend parses the source code and
translates it into an intermediate representation (IR) that can be easily analysed. There
are two intermediate languages used in Infer, the Smallfoot Intermediate Language (SIL),

1Infer’s open-source repository on GitHub: https://github.com/facebook/infer

6

https://github.com/facebook/infer


and the High-level Intermediate Language (HIL). The input program is then represented as
a control flow graph (CFG) where each node of the graph consists of SIL or HIL instructions,
depending on the intermediate language used by the particular analysis.

scheduler
+ database

source code frontend

summaries

analyser plugin

Figure 1: A simplified representation of the Infer.AI framework architecture.

The Smallfoot Intermediate Language is a low-level intermediate representation of the
source code, which preserves the structure and control flow of the original program, but
abstracts away some of the low-level details, such as memory layout, and machine-specific
instructions. It provides four instructions:

• LOAD: loads a value from a memory address denoted by an expression and stores it
into a temporary identifier. The address expression can be either a program variable
or a more complex expression, e.g., an array-indexing expression or a structure field.

• STORE: stores the value of an expression into a location specified by an address ex-
pression. The expression to be stored consists of temporary identifiers created by
previous LOAD instructions, constants, exceptions, or more complex operations.

• CALL: represents a function call, provides information about return values, parameters
and their types, and call flags.

• PRUNE: splits the control flow of the program into two branches according to the result
of a Boolean expression, providing information about the source of the branching,
such as if statement, loop, or ternary operator. It is executed twice, once for the true
branch and once for the false branch.

The High-level Intermediate Language is a simplified version of SIL that includes only three
instructions: CALL, ASSIGN (an abstraction of the STORE instruction in SIL), and ASSUME
(an abstraction of the PRUNE instruction). HIL is sufficient for most analysis needs and is
easier to work with than SIL. However, HIL does not provide the necessary abstractions for
modeling the behavior of pointers and other low-level memory operations, and as a result,
it is not suitable for analyses that focus on memory-related bugs.

7



After creating the control flow graph, Infer.AI is called. It
must be instantiated by each checker implemented in In-
fer. Once Infer.AI is called, the control flow graph is di-
vided into separate functions, which are then analysed sep-
arately. The scheduler is responsible for determining the
order in which the functions should be analysed by examin-
ing the call graph and identifying the dependencies between
the functions. The analysis uses the bottom-up approach,
whereby the functions located at the leaves of the call graph
are analysed first, and then their results are propagated up-
wards to higher-level functions. An example of such a call
graph can be seen in Figure 2.

f1 f2

main

f4 f3

Figure 2: A call graph.

The analysis of a function is performed by traversing its control flow graph and interpreting
the SIL instructions, which correspond to the nodes of the graph. This interpretation pro-
cess is performed by an abstract interpreter and transfer functions, which must be defined
for each checker according to the specific analysis requirements. The transfer functions are
used to update the abstract state, and this process also involves the use of join and widen
operators to ensure that all possible paths are covered in the case a conditional branching or
a loop occurs in the program. This process of updating the current abstract state continues
until all nodes of the control flow graph have been processed and no further change in the
computed abstract state happens.

After a function is analysed, the results are stored in the results database. These results
are stored as function summaries, which are data structures containing relevant information
about the analysed function. The information stored in the function summaries is defined
by each checker independently as the data stored in the summary are relevant to the
particular analysis. Function summaries consist of two parts: preconditions, which are
conditions that are expected to be true before the function starts, and postconditions,
which are conditions that hold when the function finishes its execution. Some checkers
may only use postconditions for the analysis. When the function is called by a higher-level
function in the call graph, the summary of the callee function is integrated into the current
abstract program state, which makes the analysis interprocedural.

Errors detected by the analyser plugin are reported during the creation of summaries, or
after the summary computation is finished, depending on the particular checker [9, 19, 21].

2.3 Related Work on Data Race Detection

There are various tools that can be used for data race detection in concurrent programs.
This section lists some of the most popular existing static and dynamic analysers using
various approaches to the data race detection.

Dynamic analysis techniques for detecting data races analyse a single execution of a pro-
gram (or a set of executions) and often rely on either computing locksets or happens-before
relations. Locksets are sets of locks that guard all accesses to a shared variable, and the
absence of a data race is ensured when the lockset for a variable is non-empty, indicating
that at least one lock is held during each access. Eraser [22] was probably the first algorithm
to use locksets for detecting data races. FastTrack [8] is an example of a dynamic analysis

8



that employs the second approach, a happens-before algorithm, which uses so-called vector
clocks [12]. ThreadSanitizer [23] combines both of these approaches, the lockset and the
happens-before algorithms, to detect data races. In addition to computing locksets and
happens-before relations, some dynamic analysis techniques rely on the use of noise injec-
tion. For example, the AtomRace [14] algorithm uses techniques for a careful injection of
noise into the scheduling of the monitored programs. Another tool to be mentioned when
it comes to dynamic analysers is Helgrind [11], which is a tool developed by the Valgrind2

project, which uses a combination of instrumentation and thread-aware execution to detect
data races in C and C++ programs.

On the other hand, static analysers inspect the source code without running the program.
They can look for concrete patterns that are likely to cause a data race, or like dynamic
analysers, they are based on computing locksets or happens-before relations. RacerX [6] is
a static, flow-sensitive, context-sensitive, and non-compositional analysis for data race and
deadlock detection, which uses a top-down approach. It is designed for programs written
in C and is also based on storing summaries. To use the analyser, developers must first
add annotations to the code. RacerX employs various heuristics to reduce the number of
alarms emitted, such as a ranking algorithm. RacerD [1] is a static data race detector
that is already implemented in Infer, so it has all the features that were presented above
– it is highly scalable, incremental, and compositional. It is designed to detect data races
mainly in Java programs, C and C++ are not the primary languages that it supports, and
it only reports lock consistency violations for programs written in C++. Coderrect/O2 [15]
is an analyser for both C/C++ and Java/Android applications, which leverages origins,
an abstraction that unifies threads and events by treating them as entry points of code
paths attributed with data pointers.

2Valgrind – an instrumentation framework for building dynamic analysis tools: https://valgrind.org/

9

https://valgrind.org/


Chapter 3

Data Race Detection

The purpose of this chapter is to present an outline of the design principles that underpin
our newly developed analyser. In the first section, we discuss the design principles that
guided the development of our data race checker, which works in two phases. Section 3.2
describes the first phase of the data race detection process, which involves tracking memory
accesses made by each thread in the analysed program. These accesses are then used for
computing potential data races in the second phase, which will be described in Section 3.3.

3.1 Design Principles

The design of the new data race detector is based on the following principles:

1. Bottom-up analysis: The analysis starts at the leaf nodes of the call tree (i.e., the
lowest level of functions in the program) and works its way up to the root node
(i.e., the main function or another entry point of the program).

2. Interprocedural analysis: The analysis allows for more accurate and comprehensive
analysis as it considers the interactions between different procedures in the program,
including those in different modules or libraries.

3. Compositional analysis: Each function defined in the program is analysed indepen-
dently from its context. Only functions that were changed during further development
or depend on the changed functions are analysed again, which leads to much higher
scalability.

4. Points-to analysis: Variables are represented by access expressions and a light-weight
points-to analysis for detecting data races between variables referenced by pointers is
performed.

These design principles were chosen to address some of the key challenges in data race
detection and have influenced the design of our new data race detector. In addition to these
principles, we also had other important considerations in mind when designing our checker.
One such consideration was the desire to avoid using annotations in the code. While it is
common for analysers like RacerX [6] to require annotations that specify which locks protect
which data, we believe that it is better to be able to work without these annotations. This

10



is particularly important for large projects that have already been developed as adding
annotations to them can be a time-consuming and tedious process.

Another important consideration was the need to minimize the number of reported errors
and avoid overwhelming developers with too many warnings. To achieve this, our tool is
designed to report only one data race for each variable if a data race is found. By doing
so, developers can focus on one error at a time, fix it, and then move on to the next one,
rather than feeling discouraged by a large number of errors and not fixing any of them.

A data race between two accesses occurs when all of the following conditions are satisfied:

1. The accesses are to the same memory location.
2. At least one of the accesses is a write.
3. The intersection of the set of locks that are locked when accessing the memory location

is empty.
4. The accesses are from different threads.
5. Neither access is to thread-local memory.

These conditions led us to propose the structure of function summaries that are computed
during the analysis, from which the set of accesses that occurred in each analysed function
is especially crucial for the data races computation.

The analysis can be split into two phases: first, computing the set of accesses that occur
in the program under analysis on global or shared variables, and second, checking whether
there are any pairs of accesses in the set for which the conditions written above hold. For
such accesses, data races are then reported. Both phases will be discussed in the following
sections.

3.2 Phase 1: Recording a Set of Accesses

The first phase of the analysis involves computing the set of memory accesses that occur
in the analysed program. As our analysis uses a bottom-up approach, each function is
analysed individually, and a summary of this function is created. These summaries are
then propagated in a bottom-up manner from lower-level to higher-level functions. When
a recursive call occurs, the function is analysed up to the point of the recursive call, and
because at this point the summary for the function being analysed is not yet computed,
an empty summary is used to complete the computation. The analysis of the function then
continues as usual. When the analysis of all functions used in the program is complete, the
resulting set of accesses at the top-level function includes all the accesses that occurred in
the program and is used in the second phase to compute the data races.

To help better understand which information needs to be tracked during the process of
recording the set of accesses, let us consider a sample program shown in Listing 1. In this
example, the main function creates a new thread (thread1) by calling pthread_create,
which invokes the foo function in the new thread. Meanwhile, the main thread continues
to execute and sets the value of the global variable i to 42. The foo function also accesses
i but under the protection of a mutex lock. However, the lock is not held during the write
access by the main thread, which creates a potential data race since it is possible for the two
threads to access the same memory location concurrently without proper synchronization.

11



1 int i; // shared variable
2 void *foo() {
3 pthread_mutex_lock(lock);
4 i = 0; // data race
5 pthread_mutex_unlock(lock);
6 }
7 int main() {
8 pthread_create(t1, foo);
9 i = 42; // data race

10 }

Listing 1: A sample code illustrating a data race between two accesses to a shared variable
in the C language using POSIX3 threads.

To detect this data race, we keep track of the set of memory accesses that occur during
the execution of the program. Specifically, we record the following information for each
memory access:

1. The variable that is accessed: variables are represented as so-called access expressions
(e.g. &p, p, *p, **p), which helps with pointer handling.

2. The location in the code where the variable is accessed: this information is used to
identify where a possible data race could occur in the code.

3. The type of access: whether it is a read or write access.

4. The set of locked locks: locks that must be locked at the current program point.

5. The set of unlocked locks: locks that may be unlocked at the current program point.

6. The set of active threads: threads that may be running when the access occurs.

7. The set of joined threads: threads that must be joined when the access occurs.

8. The thread on which the access occurs: because of the bottom-up approach, the
information about the thread on which the access happens is not always available.
Therefore, None is used when the thread is currently unknown.

Listing 2 shows the set of memory accesses from Listing 1, along with the information for
determining whether there could be a data race between those accesses.

1 Accesses:
2 (i on line 4, Write, locked_locks={lock}, unlocked_locks={},
3 acive_threads={main, t1}, joined_threads={}, on thread t1),
4
5 (i on line 9, Write, locked_locks={}, unlocked_locks={lock},
6 active_threads={main, t1}, joined_threads={}, on thread main)

Listing 2: A set of accesses to the variable i from the example shown in Listing 1. For
each access, we record information about the accessed variable, the location where it was
accessed, the type of access (in this case, both are write accesses), the set of locked locks,
the set of unlocked locks, the set of active threads, the set of joined threads, and the thread
executing the access.

3POSIX standard: https://pubs.opengroup.org/onlinepubs/9699919799/

12

https://pubs.opengroup.org/onlinepubs/9699919799/


Memory accesses are one of the key parts of the abstract states computed by our analysis.
In particular, our abstract state consists of the following information:

1. Accesses: the set of memory accesses that occur in the function.
2. Active threads: the set of threads that may be active at the end of the function.
3. Join threads: the set of threads that were joined in the analysed function.
4. Locked locks: the set of locks that remain locked after the function ends.
5. Unlocked locks: the set of locks that remain unlocked after the function ends.
6. Local variables: the set of local variables that are read or written during the function.
7. Points-to relations: the set of points-to relations used to correctly identify the memory

locations being accessed through pointers.

During the analysis, the abstract states are transformed using abstract state transformers
as described in Section 2.2. At the end of the function analysis, the resulting abstract
state is saved as the postcondition in the function summary. The precondition part of
the summary is not used in our analysis. Function summaries are then propagated from
lower-level functions to higher-level functions along the call tree, as previously described
in Section 2.2. The individual components of our abstract state and the propagation of
function summaries will be described in more detail in the following subsections.

3.2.1 Threads That May Be Running

During the analysis of a program, the information about currently running threads needs
to be stored in order to accurately identify potential data races. The POSIX standard
provides the pthread_create function for creating new threads where the first argument
of the function is the thread to be created. To keep track of all active threads at any given
point during the analysis, we maintain the set of active threads called threads_active.
Each thread in this set is identified by its abstract thread identifier, which is the access
expression representing the variable used to reference that thread in the program, along
with the line number on which the thread was created. When a thread is created by calling
the pthread_create function, it is added to the threads_active set to ensure that it
is considered during the analysis. Similarly, when the pthread_join function is called,
we assume that the thread will no longer be active after that program point as the caller
function will wait for the thread to finish its execution before continuing its own execution.
Therefore, after joining the thread, it is removed from the current set of active threads.
Moreover, when analysing the main function we know that the main thread is running,
therefore the main thread is created and added to the set of active threads at the beginning
of the analysis of main.

When dealing with conditional statements where threads may be created or joined, worst-
case scenarios are considered. This is, as shown in Listing 3, if a thread is created in only
one branch of a conditional branching statement, it is added to the set of active threads as
though it was sure that it would always be created. Similarly, if a pthread_join function
call appears in a conditional statement, we must assume that it needs not happen and
that the thread may still be running even after the execution of the conditional statement.
Therefore, the thread remains in the set of active threads, as shown in Listing 4.

13



1 // threads_active: {}
2 if (x) {
3 pthread_create(&th, NULL, f, NULL);
4 // threads_active: {th}
5 } else {
6 ; // threads_active: {}
7 }
8 // thread th may be running
9 // threads_active: {th}

Listing 3: A simple code illustrating
the creation of a thread in one branch
of a conditional statement. After the
branching, we assume that the thread was
created regardless of the branch taken.

1 // threads_active: {th}
2 if (x) {
3 pthread_join(th, NULL);
4 // threads_active: {}
5 } else {
6 ; // threads_active: {th}
7 }
8 // thread th still may be running
9 // threads_active: {th}

Listing 4: An example of joining a thread
in a conditional statement. The thread
may be joined with the currently running
thread, but we assume the thread is still
active after line 7 during the analysis.

The threads_active set is stored in the summary of the function for the purpose of
propagating information about newly created threads into higher-level functions. When
a function containing a new thread in its summary is called, the resulting new abstract
state is then the union of the threads_active set of the callee and the threads_active
set in the current abstract state.

However, using only the set of active threads to determine whether a thread has been
joined in a function is not sufficient. This is because the resulting set of active threads in
the summary of a function would be the same in the following three cases:

1. there is no thread created or joined in the function,
2. there is a thread both created and joined in the function,
3. there is only a join of the thread, but the thread is not created before in the function.

The first two cases do not affect the current abstract state if they have the same set of
active threads. However, the third case is different because if we only use the set of active
threads to determine if a thread has been joined, we would consider a thread running even
if it has already been joined. This could lead to many false positives because the accesses
that occur from this point in the program on would be taken as running concurrently with
the joined thread. To avoid this issue, we keep track of joined threads in the summary
so that we can distinguish between these cases and propagate information about joined
threads correctly to higher-level functions.

When integrating the set of active and joined threads from the summary of a called func-
tion (callee) into the current abstract state, the new set of active threads is computed
from the current set of active threads ta and the current set of joined threads tj as
((𝑡𝑎 ∪ 𝑡𝑎_𝑐𝑎𝑙𝑙𝑒𝑒) ∖ 𝑡𝑗_𝑐𝑎𝑙𝑙𝑒𝑒) where ta_callee and tj_callee are the sets of active and
joined threads from the summary of the callee, respectively. The new set of joined sets is
then computed as ((𝑡𝑗 ∖ 𝑡𝑎_𝑐𝑎𝑙𝑙𝑒𝑒) ∪ 𝑡𝑗_𝑐𝑎𝑙𝑙𝑒𝑒).

In case there is a pthread_join function call in a conditional statement, and it occurs only
in one branch, the thread is not added to the set of joined threads as it may still be running
in the other branch. The same logic as in the threads_active case is used where the set
of joined threads is updated only if the join occurs in all possible execution paths.

14



The threads in the set of joined threads are identified in the same way as in threads_active,
that is, by using the abstract thread identifier and the location where the thread was
created. When a function only contains a call to pthread_join and the thread being
joined was not created within the same function and is not in the threads_active set, the
location where the thread was created is unknown at that point in the analysis. To handle
this, the thread is added to the set of joined threads with a negative line of code as the
location, indicating that the thread’s creation location is unknown. When a higher-level
function calls the function where the thread was joined, it checks whether the thread is in
the current abstract state and updates the threads_joined set with the location of the
thread’s creation to maintain consistency between the sets of active and joined threads.
The same applies when a pthread_join function call precedes the pthread_create call
for the same thread within the same function.

3.2.2 Locks That Must Be Locked

To identify whether multiple accesses to a variable are properly synchronized, it is essential
to keep track of the locks that are locked at a given program point. To achieve this, we store
a set of locked locks, called lockset, during the analysis. Whenever a lock is acquired using
the pthread_mutex_lock function, the lock passed to the function as an argument is added
to this lockset. When a lock is released through the pthread_mutex_unlock function, the
lock is removed from the lockset. This means that the lock is no longer locked after this
program point.

The lockset contains a set of locks that must be locked for proper synchronization. Hence,
opposite to the case of thread creation, if a lock is acquired in only one branch of the
statement and not in the other, we do not add the lock to the set, as shown in Listing 5.
This approach assumes the worst-case scenario where the branch in which the lock is not
locked would be executed. In such a case, the lock would not be locked, and the access
that would occur after the conditional statement would not be synchronized by the lock.
Similarly, if a lock is released in only one branch of a conditional statement, we assume that
the branch without the pthread_mutex_unlock function call will be executed. Therefore,
the lock is not removed from the set of currently locked locks. This case is shown in
Listing 6.

1 // lockset: {}
2 if (x) {
3 pthread_mutex_lock(lock);
4 // lockset: {lock}
5 } else {
6 ; // lockset: {}
7 }
8 // lock lock may still be unlocked
9 // lockset: {}

Listing 5: Example of a code snippet
demonstrating that when a lock is locked
in only one branch, it may still be unlocked
after the branching, and therefore it is not
added to lockset.

1 // lockset: {lock}
2 if (x) {
3 pthread_mutex_unlock(lock);
4 // lockset: {}
5 } else {
6 ; // lockset: {lock}
7 }
8 // lock lock may be unlocked
9 // lockset: {}

Listing 6: Example of unlocking a lock in
only one branch of a conditional statement.
After the branching, the lock may be
unlocked, and thus it is removed from the
set of locked locks.

15



However, in addition to the lockset, it is also important to keep track of the set of unlocked
locks, called unlockset, during the analysis. The unlockset is crucial in accurately identi-
fying data races. Without the unlockset, it is possible to miss real data races if a lock was
unlocked in a function and the information is not recorded in the unlockset. For example,
consider the code snippet in Listing 7, where a lock is unlocked in the function foo without
being recorded in the unlockset. In this case, the lockset in the summary of the function
foo would be empty, but the lock m would still be present in the lockset of the caller
function bar. This would incorrectly record the access to i in bar as properly synchronized
by the lock m, potentially leading to a false negative if there is simultaneous access to i on
another thread.

To avoid this issue, we record the information about unlocking the lock m in foo in the
unlockset. When integrating the summary of foo into bar, we update the lockset of bar
to not contain m anymore because it was unlocked in foo, and therefore the access to i in
bar will be correctly identified as unsynchronized.

When integrating the lockset and unlockset from the summary of a called function (callee)
into the current abstract state with the lockset ls and unlockset us, the new lockset
is computed as ((𝑙𝑠 ∪ 𝑙𝑠_𝑐𝑎𝑙𝑙𝑒𝑒) ∖ 𝑢𝑠_𝑐𝑎𝑙𝑙𝑒𝑒), and the unlockset is computed as
((𝑢𝑠 ∖ 𝑙𝑠_𝑐𝑎𝑙𝑙𝑒𝑒) ∪ 𝑢𝑠_𝑐𝑎𝑙𝑙𝑒𝑒) where ls_callee and us_callee are the lockset and the
unlockset from the summary of the called function, respectively.

1 int i;
2 pthread_mutex_t *lock;
3 void foo() {
4 pthread_mutex_unlock(lock);
5 }
6 void bar() {
7 pthread_mutex_lock(lock);
8 foo();
9 // lock is unlocked at this point

10 i = 0;
11 }

Listing 7: Example of unlocking a lock in a function call, demonstrating the need of
storing the set of unlocked locks, unlockset. This set helps determine that the access to
the variable i on line 9 in the function bar is no longer guarded by the lock lock due to
its unlocking in the function foo, which could lead to a data race.

The unlockset keeps the set of locks that may be unlocked during program execution. In
the case of conditional branching, if the pthread_mutex_unlock function call occurs only
in one branch, it is assumed that the lock may be unlocked regardless of the branch taken.
Therefore, the lock is added to the unlockset and removed from the lockset, as it is
possible that the accesses that occur after the branching will not be properly guarded by
the lock, leading to a potential data race.

3.2.3 Thread-local Memory

In order to accurately decide whether thread-local memory is accessed, it is necessary to
store the set of variables that are local to the function that is currently analysed. However,

16



when a new thread is created by calling the pthread_create function, the function’s local
variables may no longer be thread-local. Thus, to ensure that the analysis remains accurate,
any variable that is passed to a new thread as the fourth argument of the pthread_create
function must be removed from the set of local variables being tracked. An example of
passing a local variable to another thread is listed in Listing 8.

1 void *f(void *arg) {
2 ...
3 }
4 int main() {
5 int *p = ...;
6 // p is local
7 pthread_create(&th, NULL, f, p);
8 // p is now shared with the function f
9 }

Listing 8: An example of passing a local variable p to a newly created thread th. Once the
thread is created, the variable becomes shared and can be accessed from multiple threads.

3.2.4 Points-to Analysis

Since the proposed checker is designed to detect data races in programs written in C, where
the memory is commonly manipulated using pointers, including a points-to analysis was
an important part of the design. A points-to analysis attempts to determine the addresses
that a pointer holds. For example, in a C program, two pointers may point to the same
memory location, and if the program writes to that memory location through one pointer,
the value read through the other will be affected. Without tracking the set of variables
that may alias, it would be impossible to detect that both accesses are to the same memory
location, and therefore data races for these types of accesses would not be detected. Thus,
during the analysis of a function, a set of points-to relations is recorded.

Points-to relations computed in our analysis consist of pairs (p, a) where the variable p may
point to the memory location a. The memory location a can be represented in two ways. If
a is an address of a variable v allocated on the stack, the corresponding points-to relation
is then (p, &v), indicating that the variable p may point to the address of the variable v.
For memory locations allocated on the heap, we represent the address as the location in the
code where the memory was allocated, such as by calling the malloc function. For example,
if the memory is dynamically allocated on line 2 and assigned to a pointer variable q, the
corresponding points-to pair is denoted as (p, line 2). Both types of points-to relations can
be seen in Listing 9.

1 ...
2 int v; // points-to relations:
3 int *p = &v; // (p, &v)
4 int *q = malloc(sizeof(int)); // (q, line 4)
5 ...

Listing 9: An example of points-to relations in C code where the pointer variable p points
to the address of the variable v, represented as (p, &v), and the pointer variable q points
to a dynamically allocated memory location on line 4, represented as (q, line 4).

17



Listing 10 demonstrates how pointers can point to other pointers in C code and how the
points-to relations are updated during pointer assignments. On line 2, a pointer variable y
is assigned the address of an integer variable x, creating a points-to relation (𝑦,&𝑥) where
𝑦 may point to the address of 𝑥. Then, a pointer to a pointer variable m is assigned the
address of y, creating a new points-to relation (𝑚,&𝑦). When the pointer variable m is
dereferenced on line 7, the analysis looks at the points-to set and retrieves all the relations
that have m on the left side, which is the relation (𝑚,&𝑦) in this case. Since m is being
dereferenced, the analysis knows how to retrieve the value pointed to by m, which is the
address of y. It then returns the points-to relation that has y on the left side, which is
(𝑦,&𝑥) in this case. This updates the points-to relation from (𝑦,&𝑥) to (𝑦,&𝑧), meaning
that y now points to the address of z.

When a points-to relation is created inside a conditional statement, such as an if-else state-
ment, the analysis must consider all possible paths. Specifically, if a points-to relation is
created in one branch of the conditional statement, it is added to the set of points-to rela-
tions, even if there is a different points-to relation created in the other branch, as shown in
Listing 11. This is because the points-to relation is of the may-points-to type, and we must
consider all variables that may alias to make sure that any data race is not missed during
the analysis.

1 int x;
2 int *y = &x;
3 // y -> x
4 int **m = &y;
5 // m -> y -> x
6 int z = 0;
7 *m = &z;
8 // m -> y -> z

Listing 10: Example demonstrating the
points-to relations that are kept during the
analysis. The notation y -> x indicates
that the variable y may point to the address
of variable x. Similarly, the notation m ->
y -> z indicates that the variable m may
point to the address of variable y, and
the variable y may point to the address of
variable z.

1 int i, j, *p;
2 if (x) {
3 p = &i; // alias: p -> i
4 } else {
5 p = &j; // alias: p -> j
6 }
7 // ,-> i
8 // p -|
9 // ’-> j

Listing 11: Example illustrating points-to
relations in a conditional statement. The
pointer variable p is assigned the address
of i in one branch and the address of
j in the other branch. The points-to
set includes both possibilities after the
branching, indicating that p may point to
either i or j.

When analysing a function, the formal arguments that are of pointer type are initially
added to the points-to set with a default negative location to indicate that their addresses
are unknown at this point. During the analysis, the points-to relations are updated as
described above. Finally, only the points-to relations that refer to shared variables are
kept in the summary, which ensures that the analysis does not have to store all aliases,
even those of local variables. When a higher-level function calls a function, the formal
parameters of the called function are replaced with the actual parameters. The points-to
set for the called function is then propagated to the higher-level function, allowing the
analysis to track aliases across function calls.

18



3.2.5 Accessing a Variable

The key component in data race detection is the set of accesses that occur in the analysed
function. Each access is added to this set along with additional information that is used
later to detect possible data races. As we have already mentioned at the beginning of
Section 3.2, a memory access consists of the variable that is accessed, along with the
information about the location in the code where the access occurs, the type of access,
sets of locked and unlocked locks, sets of active and joined threads, and the thread on
which the access occurs. Each time a variable is accessed in the program, the access is
added to the set of accesses. At this point, the access stores information about the current
state of the program and holds the information described above.

The thread, sets of locks, and sets of threads are updated later on when more information
from the functions higher up in the call tree is collected and when the summaries are
integrated into the abstract state. For this, the same approach is used as when integrating
the summary of the called function (callee) to the summary of the caller. However, instead
of using the sets of the summary of the callee, we use the sets recorded in the access. In
each access, the lockset and unlockset are updated as described in Subsection 3.2.2, and the
sets of active and joined threads are updated as described in Subsection 3.2.1. The thread
on which the access occurs is updated in a specific manner. If there is already information
about the thread on which the access occurred, then the thread is not updated any further.
When the information is not yet known, and the main function is currently analysed, the
main thread is added as the thread on which the accesses occur. If a summary of a callback
function of pthread_create is being integrated, and therefore the thread that was just
created is known, then this thread is added as the thread on which the accesses occur.
When the thread is not yet known, the information remains unknown.

A sample code shown in Listing 12 will be used to help ground the description of how
the accesses are updated and the summaries integrated. The code illustrates a data race
between two accesses to the shared variable x. The program creates two threads, t1 in the
main function, and t2 in the function foo. The thread t2 accesses the variable x while
holding a lock m, which is then unlocked by the function foo. Meanwhile, the main thread
writes to x without any locks held in the function main.

The summaries for the functions from Listing 12 are shown in Listing 13. The summary
for the function bar includes the lock m in the lockset since this lock was acquired by
the pthread_mutex_lock function, and it was not released. Since no threads are cre-
ated or joined in the function, the sets of active threads (active_th) and joined threads
(joined_th) are empty. There is one access to the global variable x on line 7. At this point,
the sets of locks and threads in the access capture the current state when the access occurs,
therefore these are the same as in the summary. The thread on which the access occurs is
not yet known, but it will be added later when the summary is propagated to a higher-level
function. Since there are no pointer variables in the code, the points-to set is not shown in
the summary as it would be empty for all functions.

Next, the function foo is analysed. A new thread t2 is created on line 11 by calling the
pthread_create function and passing the function bar as its argument. This involves
adding the newly created thread t2 into the current set of active threads and integrating
the summary of bar into the current abstract state. The set of accesses from the summary
of bar is updated with the current set of active threads, which contains the thread t2.

19



1 int x;
2 pthread_t t1, t2;
3 pthread_mutex_t m;
4
5 void *bar() {
6 pthread_mutex_lock(&m);
7 x = 10;
8 }
9

10 void* foo() {
11 pthread_create(&t2, bar);
12 pthread_mutex_unlock(&m);
13 }
14
15 int main() {
16 pthread_create(&t1, foo);
17 x = 0;
18 }

Listing 12: A sample code
illustrating a data race between two
write accesses to the variable x.
The first access occurs on the
thread t2 in the function bar. The
access is protected by a lock m,
which is then unlocked in the
function foo. The second access
is performed by the main thread
in the main function, but it is not
protected by any lock. These two
accesses lead to a data race.

1 bar:
2 lockset={m}, unlockset={},
3 active_th={}, joined_th={},
4 accesses={(write to x on line 7,

.........lockset={m},unlockset={},

.........active_th={}, joined_th={},

.........on thread ⊥)}
5 foo:
6 lockset={}, unlockset={m},
7 active_th={t2}, joined_th={},
8 accesses={(write to x on line 7,

.........lockset={m},unlockset={},

.........active_th={t2}, joined_th={},

.........on thread t2)}
9 main:

10 lockset={}, unlockset={m},
11 active_th={main,t1,t2}, joined_th={},
12 accesses={(write to x on line 7,

.........lockset={m},unlockset={},

.........active_th={main,t1,t2},

.........joined_th={},

.........on thread t2),
13 (write to x on line 17,
14 lockset={},unlockset={m},
15 active_th={main,t1,t2},
16 joined_th={},
17 on thread main)}

Listing 13: The summaries of the functions bar,
foo, and main from Listing 12. The information
from bar and foo is propagated to the summary
of the main function, which holds information
about all accesses that occur in the program.

We now know that the function bar is executing on the thread t2, therefore the information
about the thread is added to the accesses in the summary of bar. These accesses are then
added to the set of accesses in foo. Finally, pthread_mutex_unlock is called, which removes
the lock m from the current lockset and adds it to the unlockset of foo.

Moving on to the main function, at the beginning of its analysis, the main thread is added
to the set of active threads. Next, a new thread t1 is created on line 16 by calling
pthread_create and passing foo as the callback function. This involves adding the thread
t1 into the current set of active threads and integrating the summary of foo into the
current state. The set of accesses from the summary of foo is updated with the current
threads_active set. Accesses from foo are updated with the thread t1 as the thread on
which the access occurs, but because the only access in foo already contains the informa-
tion about the thread, it is not edited. The set of accesses from foo is then added to the
set of accesses in main. Next, on line 17, there is a write access to the variable x. The
information about the current abstract state is captured in the sets of locks and threads
in the new access record. Because it is known that the analysis of the main function is
currently being done, the main thread is added as the thread on which the access on line

20



17 occurs. This access is then added to the set of accesses in the summary of main. When
the analysis of main is finished, the set of accesses from the summary of main is used for
the next phase, computing the data races and reporting potential issues.

3.3 Phase 2: Data Races Computation

The second phase of the analysis involves detecting data races between accesses obtained in
Phase 1. Once all functions have been analysed, all accesses that occurred in the program
are contained in the summary of the top-level function. Only these accesses are considered
for data race computation, and the summaries of the other functions are no longer needed.

The algorithm starts by creating pairs of accesses, which are created as a Cartesian product
of the set of accesses that occurred in the analysed program. To remove redundant pairs,
this set is then filtered to include only those accesses where the location of the first access
is less than or equal to the location of the second access. Next, it is evaluated whether each
pair satisfies the conditions for a potential data race. A pair is removed from the set if at
least one condition from the following is met:

1. Different memory locations are accessed.
2. In both accesses, the variable is read.
3. There is at least one lock in the intersection of locks held during the accesses.
4. Both accesses are on the same thread.
5. Thread-local memory is accessed.

The pairs of accesses that are left in the set after filtering represent possible data races.
In order to improve computation speed and reduce the size of the set of pairs, accesses
that refer to the same memory location can be merged before creating the set. The merged
accesses are used to create smaller sets, one set for each variable, and then the filtering
process described earlier is applied to each of these sets.

When a single access to a shared variable in the program is unsynchronized, but all other
accesses are protected by a lock properly, the filtering process may still result in a large set
of pairs of accesses that can create a data race. To address this issue, we decided to report
only one pair of accesses for each variable, ideally the most probable to contain a data race,
to ensure that the reports are manageable.

21



Chapter 4

Implementation

This chapter presents the implementation of DarC, a static data race checker proposed
in Chapter 3. This chapter begins by outlining the necessary steps to add a new anal-
yser to the Infer framework, with a focus on DarC. This includes the implementation of
required components and the definition of abstract interpretation aspects in the new anal-
yser. Section 4.2 discusses the structure of function summaries and abstract state used in
the analysis, along with the information about the modules implemented and utilized in
the function summaries. The following section discusses the abstract transformers of our
analyser, which are used to process SIL instructions and transform the current abstract
state to the new abstract state during the analysis. The implementation of the data races
check algorithm, including the reporting of detected data races, is described in Section 4.4.

The source code of Infer is available at GitHub4, and so is the implementation of the new
data race detector, DarC 5. Note that all files mentioned in this chapter refer to the imple-
mentation in the DarC checker’s repository. The main part of the implementation can be
found in files Darc.ml(i) and DarcDomain.ml(i) in the infer/src/concurrency direc-
tory. Throughout this chapter, the implementation is demonstrated using listings written
in OCaml or using pseudocodes that are similar to OCaml, which is an implementation lan-
guage of Infer. It is an extension of the Caml language with object-oriented programming
features. It is a functional language but also offers a variety of imperative features.

4.1 Integration of the DarC Plugin with Infer

When extending Infer with a new analyser, the analyser must be first registered in a file
infer/src/backend/registerCheckers.ml. Three main components need to be imple-
mented in the framework. First, the abstract domain used by the checker must be specified,
which includes the definition of the type of abstract states (astate) that is used in the anal-
ysis. Next, a comparator for comparing two abstract states, <=, must be provided, along
with an implementation for joining two abstract states. Therefore, the join and widen
procedures need to be implemented. The abstract domain should also have the pretty print
(pp) function defined, which prints the abstract state of the domain.

4Infer repository on GitHub: https://github.com/facebook/infer
5Data race detector on GitHub: https://github.com/svobodovaLucie/infer/tree/darc

22

https://github.com/facebook/infer
https://github.com/svobodovaLucie/infer/tree/darc


The next component, that needs to be defined is the type of the function summary, which
has to be added to the Payloads.t type in the file infer/src/backend/Payloads.ml. The
summary is then used for the interprocedural analysis to integrate summaries of lower-level
functions into higher-level functions. The type of function summaries in DarC is described
in the following section. Both the abstract domain and function summary are implemented
in the files DarcDomain.ml(i).

The last component required by the framework is the collection of abstract state transform-
ers. The signature for these transformers is provided in the TransferFunctions module
implemented in infer/src/absint/TransferFunctions.ml, but the definition itself must
be provided in the analyser. This module primarily contains the exec_instr procedure
that takes as input the current abstract state and the SIL instruction and computes the
new abstract state using the provided transformers. The transfer functions implemented
for our checker are described in Section 4.3, and the implementation can be found in the
source files Darc.ml(i).

4.2 The Abstract Domain and Function Summaries

The abstract state (astate) used in the DarC’s abstract domain is implemented as a record
type, containing several fields as shown in Listing 14. In order to perform interprocedural
analysis, a function summary is computed for every analysed function. For our analysis,
the type for the function summary is defined as the same record type as for the abstract
state. The type definitions for the abstract state and function summary can be found in
the DarcDomain.ml file.

1 type t =
2 {
3 threads_active: ThreadSet.t;
4 threads_joined: ThreadSet.t;
5 accesses: AccessSet.t;
6 lockset: Lockset.t;
7 unlockset: Lockset.t;
8 points_to: PointsToSet.t;
9 heap_points_to: HeapPointsToSet.t;

10 load_aliases: LoadAliasesSet.t;
11 locals: LocalsSet.t;
12 }
13
14 type summary = t

Listing 14: Definition of the abstract state and summary types in the DarC checker.

The fields of the DarC’s abstract state record have the types shown in Listing 14. The types
of the sets of active and joined threads, accesses, points-to and heap-points-to relations, the
set of load aliases, which will be described below, and the set of local variables are defined
in modules ThreadSet, AccessSet, PointsToSet, HeapPointsToSet, LoadAliasesSet and
LocalsSet, which are a part of the implementation of DarC. These modules will be de-
scribed in the following subsections. Subsection 4.2.8 discusses the implementation of ab-
stract interpretation operators: join, widen, and <= (leq).

23



4.2.1 The ThreadSet Module

The ThreadSet module represents a finite set of threads. The type of its elements is
ThreadEvent.t shown in Listing 15. In our implementation, each thread is represented as
a tuple containing an access expression, which is the abstract thread identifier of the newly
created thread, a location in the code where the thread was created, and a Boolean flag
indicating whether the thread was created in a loop. The HilExp.AccessExpression.t
type is provided by Infer, and DarC uses it for storing and handling access expressions that
represent variables in the analysed source code.

1 ThreadEvent.t = (HilExp.AccessExpression.t * Location.t * Bool.t)
2 module ThreadSet = AbstractDomain.FiniteSet(ThreadEvent)

Listing 15: Definition of the type t of ThreadEvent module and creation of the ThreadSet
module using AbstractDomain.FiniteSet for representing a finite set of ThreadEvent.

When a thread is first created, the create_in_loop flag is set to false. However, if
a thread should be added to the current threads_active set during the handling of the
pthread_create function, and it already exists in the set, the flag is changed to true and
the thread is added once more. This approach resolves the issue of detecting multiple thread
creations within the same loop when the corresponding source code instruction is on the
same line, as shown in Listing 16, which could result in the inability to detect that more
than one thread was created.

1 for (...) {
2 pthread_create(&t, NULL, foo, NULL);
3 }
4 // threads_active: {
5 // (t, line 2, created_in_loop=false),
6 // (t, line 2, created_in_loop=true)
7 // }

Listing 16: Example code showing the use of the created_in_loop flag when creating
threads in a loop. Without using this flag only one thread would be considered to have
been created.

4.2.2 The DeadlockDomain.Lockset Module

The DeadlockDomain.Lockset module deals with locks and was developed as part of
the L2D2: Modular Low-Level Deadlock Detector, in the bachelor’s thesis of Vladimír
Marcin [16]. The original implementation of this detector is available on Gitlab6. The
implementation of the L2D2 plugin was also included in the DarC’s repository as part
of our previous work on this plugin [10]. The Lockset module represents each lock as
a LockEvent, which is a tuple of the lock’s access path and the location where the lock
was created. The Lockset module is implemented as a finite set of these lock events. The
functions for acquiring and releasing locks in our checker were inspired by the thesis and
will be discussed further in Section 4.3.

6L2D2: https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency

24

https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency


4.2.3 The ReadWriteModels Module

The module ReadWriteModels contains the type definition t shown in Listing 17, which
represents two possible access types: read or write. The module also provides a comparison
function to compare two access types, with Write taking precedence over Read.

1 ReadWriteModels.t =
2 | Read
3 | Write

Listing 17: Definition of the ReadWriteModels.t type representing read or write accesses.

4.2.4 The AccessSet Module

The AccessEvent module defines the type t to represent an access to a variable, which
includes the variable var being accessed, the location loc where the access occurs, the
type of the access (access_type: Read or Write), the set of locks held during the access
(locked), the set of locks that were unlocked before the access (unlocked), the set of active
threads (threads_active) at the time of access, the set of threads joined before the access
(threads_joined), and the identifier of the thread to indicate the thread on which the
access occurs (thread). The module also provides a function to compare two access events
and predicate functions corresponding to the conditions underlying a data race (described
in Section 3.3) that are used to filter out pairs of accesses when computing data races at
the end of the analysis.

The AccessSet module defines the type t to represent a set of access events on shared
variables and provides functions to add or remove access events from the set, check if
an access event is in the set, and iterate over the set of access events.

The type of AccessEvent and the definition of the AccessSet module are shown in List-
ing 18. The process of adding new accesses to the abstract state and making subsequent
modifications to them will be discussed in Section 4.3.

1 AccessEvent.t =
2 {
3 var: HilExp.AccessExpression.t;
4 loc: Location.t;
5 access_type: ReadWriteModels.t;
6 locked: Lockset.t;
7 unlocked: Lockset.t;
8 threads_active: ThreadSet.t;
9 threads_joined: ThreadSet.t;

10 thread: ThreadEvent.t option;
11 }
12
13 module AccessSet = AbstractDomain.FiniteSet(AccessEvent)

Listing 18: Definition of the AccessEvent type which represents one access to a variable,
containing all the necessary information for data race detection. On the last line, the
AccessSet module is created as a set of AccessEvent.t elements.

25



4.2.5 PointsToSet and HeapPointsToSet Modules

The types of the PointsToSet and HeapPointsToSet modules represent the points-to re-
lations used in our points-to analysis. These relations are stored in separate sets due to
differences in their implementation types. The points-to set that represents the relation
between variables allocated on the stack is represented by a pair of access expressions that
indicate the variable names. On the other hand, the memory allocated on the heap is rep-
resented by a pair of an access expression for the pointer variable and a Location.t type
that indicates the location where the memory was allocated in the source code. Despite
these differences, both sets are used in a similar way. The creation of both modules and
the types of their elements are shown in Listing 19.

1 PointsTo.t = (HilExp.AccessExpression.t * HilExp.AccessExpression.t)
2 module PointsToSet = AbstractDomain.FiniteSet(PointsTo)
3
4 HeapPointsTo.t = (HilExp.AccessExpression.t * Location.t)
5 module HeapPointsToSet = AbstractDomain.FiniteSet(HeapPointsTo)

Listing 19: Definition of the PointsToSet and HeapPointsToSet modules, finite sets of
points-to relations created using the AbstractDomain.FiniteSet module, which uses the
PointsTo.t and HeapPointsTo.t types as their elements, respectively.

4.2.6 The LoadAliasesSet Module

The LoadAliasesSet module is used during the analysis to handle the LOAD instruction,
which is one of the four instructions of the Smallfoot Intermediate Language (SIL) used by
Infer. The LOAD instruction loads a value from a memory address denoted by an expres-
sion, which can be a program variable or a more complex expression like array indexing
or a structure field. The loaded value is then stored into a temporary identifier, which is
represented as the first member of the tuple of the LoadAlias.t type shown in Listing 20.
The second element represents the program variable that is stored in the temporary iden-
tifier. More details on how LOAD instructions are processed and how the load aliases are
handled in the analysis will be provided in the following section.

1 LoadAlias.t = (HilExp.AccessExpression.t * HilExp.AccessExpression.t)
2 module LoadAliasesSet = AbstractDomain.FiniteSet(LoadAlias)

Listing 20: Definition of the LoadAliasesSet set, which is used to store information about
which temporary identifier created by the LOAD instruction corresponds to which variable
in the program.

4.2.7 The Locals Module

The Locals module is a set of variables that are local to the function currently analysed.
Each member of this set is of the type HilExp.AccessExpression.t, which represents the
program variables. At the beginning of the function analysis, a list of local variables that
is provided by Infer is added to the empty summary. This list may be updated later when
the pthread_create function is called with a local variable passed to the callback function

26



as an argument, which will be further explained in the following section. We assume that
from this point the variable is shared and therefore removed from the set of local variables.
During the analysis of a function, accesses to variables that are local are not added to the
set of accesses, which helps to reduce the size of the set of accesses and improve scalability.

4.2.8 Abstract Interpretation Operators

The Infer.AI framework requires the analysis to implement the abstract interpretation op-
erators join, widen, and less-that-or-equal. These operators are used to manipulate the
abstract state during program analysis, especially after branching or when handling loops.

The <= operator compares two abstract states, astate1 and astate2, and returns true if
astate1 is less than or equal to astate2. The comparison is performed by comparing each
component of the abstract state using the following rules:

1. Known threads are compared based on the identity of the tuples that represent them.
2. An unknown thread is considered smaller than any known thread.
3. Access types are compared such that (r, r) <= (r, w)/(w, r) <= (w, w) where w denotes

a write and r denotes a read.
4. Variables, locations, and locks are compared based on their identity.
5. Accesses, which are tuples of the above entities, are compared on a per-component

basis, applying the rules described above.
6. Sets of threads, locks, points-to relations, and aliases are compared on inclusion. The

set of threads always consists of threads that are known, as threads are added to the
set only when they are created or joined and are therefore identifiable.

7. Abstract states, i.e., tuples of the above objects, are compared on a per-component
basis.

The join operator is shown in Listing 21. Joining two abstract states by the join operator
consists of joining each member of the abstract states independently and then putting them
all together to form the new abstract state. The join of locked locks is implemented as their
intersection because, after a branching, we need to have only those locks that must be
locked for sure in the lockset as described in Section 3.2. The same principle applies to
the set of joined threads. For the other fields of the abstract state, join is implemented as
their union. The widen operator is simply implemented as the join of two abstract states.
1 let join astate1 astate2 =
2 threads_active := astate1.threads_active ∪ astate2.threads_active;
3 threads_joined := astate1.threads_joined ∩ astate2.threads_joined;
4 accesses := astate1.accesses ∪ astate2.accesses;
5 lockset := astate1.lockset ∩ astate2.lockset;
6 unlockset := astate1.unlockset ∪ astate2.unlockset;
7 points_to := astate1.points_to ∪ astate2.points_to;
8 heap_points_to := astate1.heap_points_to ∪ astate2.heap_points_to;
9 load_aliases := astate1.load_aliases ∪ astate2.load_aliases;

10 locals := astate1.locals ∪ astate2.locals;
11 in (threads_active, threads_joined, accesses, lockset, ..., locals)

Listing 21: The implementation of the join operator used in the DarC checker. The
operator combines two abstract states (astate1 and astate2) at the end of a branching.

27



4.3 Transfer Functions

During the analysis, the abstract state is transformed using the TransferFunctions mod-
ule, which defines how individual SIL instructions, including LOAD, STORE, CALL, and PRUNE,
transform the abstract state. To implement this transformation, we define the exec_instr
function in the TransferFunctions module, which takes the current abstract state and
a SIL instruction as input, and produces a new abstract state as output.

The transformers for the LOAD, STORE, and CALL instructions will be described in the fol-
lowing subsections. When a PRUNE instruction is encountered, which splits the control flow
of the program into two branches, the abstract state in both branches is transformed in the
same way as if there was no branching, and the resulting abstract states are joined using
the join operator.

4.3.1 The LOAD Instruction Transformer

The LOAD instruction loads a value from an address denoted by an expression e into a tem-
porary identifier id. The expression e can be either a program variable or a more complex
expression, which may include array indexes or other temporary identifiers created by pre-
vious LOAD instructions. The latter case happens, for example, when dereferencing a pointer
or accessing a structure field. The temporary identifier id is then used in other instruc-
tions, such as STORE and CALL. However, the original program variables are not available
at this point, which makes it difficult to determine which temporary identifier corresponds
to which program variable.

To address this issue, we store a set of load aliases during the analysis, where a load alias
is a pair (𝑖𝑑, 𝑒), where 𝑖𝑑 is the temporary identifier generated by Infer and 𝑒 is the address
of the corresponding program variable. When a STORE instruction is processed, the right-
hand side expression is first loaded by the LOAD instruction into a temporary identifier, and
then the load alias for that identifier is used to determine which variable is being written
to. Similarly, in the case of a CALL instruction, the parameters passed to the function
are first loaded into temporary identifiers, which are then used to determine the program
variables passed to the function. In the case of a LOAD instruction, if a program variable is
read, an access to the corresponding program variable is added to the set of accesses in the
current abstract state.

To illustrate how the LOAD instruction works and how the corresponding load aliases are
created, consider the following examples:

• int i = j: The LOAD instruction loads the address of j into a temporary identifier
n$1, and the load alias (n$1,j) is created and added to the load_aliases set. Since
this expression is accessing the variable j, a new access of the ReadWriteModels.Read
type is added to the current abstract state. The assignment to the variable i is then
processed by the STORE instruction, which will be described in Subsection 4.3.2.

• int i = j + k: In this example, three LOAD instructions are generated. The first
LOAD instruction loads the address of j into the temporary identifier n$1, and the
load alias (n$1,j) is created. The second LOAD instruction loads the address of k
into the temporary identifier n$2, and the load alias (n$2,k) is created. The third
LOAD instruction loads the expression n$1+n$2 into the temporary identifier n$3, and

28



the alias (n$3,n$1+n$2) is created. Since this is a complex expression and does not
correspond to only one program variable, new read accesses are created and added to
the set of accesses only when the first and the second LOAD instructions are processed.
The assignment of n$3 to the variable i is handled later when processing STORE.

• int i = *p: This example illustrates a case where a temporary identifier is loaded
from another temporary identifier. The first LOAD instruction loads the address of p
into a temporary identifier n$1, creating the load alias (n$1,p). The second LOAD
instruction then dereferences the address in n$1 and loads the value into a new tem-
porary identifier n$2. Initially, a load alias (n$2,n$1) would be created, but since
the temporary identifier n$1 has a corresponding program variable, we obtain its load
alias, which indicates that p is loaded to n$1. Since n$2 now holds the address pointed
to by p, we add a dereference to the load alias of n$1 (i.e., the alias of p), resulting in
a new load alias (n$2,*p). This alias is then added to the set of load aliases. When
processing the LOAD instructions in this example, two accesses of the read type are
added – one for accessing the pointer variable p, and another for accessing the address
pointed to by p, that is, *p.

• int i = s.v: When a structure field is accessed, such as in this case, there are two
LOAD instructions generated. The first instruction loads the address of the structure
s into a temporary identifier n$1, and a load alias (n$1,s) is created. The second
instruction loads the address of the field n$1.v into a temporary identifier n$2, which
would create an alias (n$2,n$1.v). Since the value of n$1 is already present in
the set of load aliases, it is replaced in this alias, and the final load alias created is
(n$2,s.v). Two read accesses are created when processing these instructions: one
for the structure s, and the second one for the structure field s.v.

• int i = arr[x]: When accessing an array element, there are two LOAD instructions
generated. The first instruction loads the address of the index x into a temporary
identifier n$1, and a load alias (n$1,x) is created. An access to the variable x of the
read type is added to the set of accesses. The second instruction loads the address
of the offset of the array element into a temporary identifier n$2, which would create
the alias (n$2,arr[n$1]). Since we do not differentiate between the particular index
values in the array, the final read access will be added to the arr[_] access expression.

All accesses created when processing the LOAD instructions in the load instruction trans-
former are of the ReadWriteModels.Read type and represent the current abstract state of
the program when the access occurs. As we have already said, these accesses store infor-
mation about the current set of locks that must be locked, the set of locks that may be
unlocked, the set of threads that may be currently running, and the set of threads that
must be joined. If the access occurs within the main function, the access.thread field
is assigned to main_thread; otherwise, the thread field is set to None, indicating that the
thread is not yet known.

4.3.2 The STORE Instruction Transformer

The store transformer is responsible for handling STORE instructions in the analysed con-
trol flow graph. The transformer takes as an input the expression being stored (e2) and
an address expression e1 into which e2 is stored, along with the information about its type.
The right-hand side expression is usually created by the previous LOAD instructions and is

29



represented as a temporary identifier. The left-hand side expression may be a temporary
identifier, e.g., in the case of pointer dereferencing, or a program variable.

After resolving the temporary identifier on the left-hand side of an assignment expression,
the write access is added to the set of accesses for the corresponding variable as well as to all
variables that may alias with it. Similarly to adding a new access in the load transformer,
the write access contains information about the current abstract state, such as the sets
of locked and unlocked locks, and the sets of active and joined threads. Additionally,
information about the thread is added based on whether the access occurs in main or if the
thread is unknown, in which case None is used.

If the type of the expression on the left-hand side is a pointer type, the write access may
also lead to the editing of the sets of points-to and heap-points-to relations. Specifically,
the points-to relation for the left-hand side variable is updated to point to the address that
is being written to. If there are any existing relations with the left-hand side variable, they
are removed from the points-to set to indicate that the variable now points to the new
address. In a similar way to how the points-to relation is updated, if the left-hand side of
an expression involves a heap-allocated variable, the heap-points-to relation may also be
updated to reflect any changes.

Consider the following examples to illustrate how the store transformer works. We start
with the case where the points-to information is precise, i.e., we do not have more possible
targets of a single pointer.

• int i = j: In this assignment, the STORE instruction in the form of STORE n$1 to
&i is generated where n$1 is a temporary identifier generated by the previous LOAD
instruction. The set of load aliases contains the pair (n$1,j), therefore we know that
j is assigned to i. However, since the type of the expression is not a pointer type, no
points-to relations are created. Only a write access to the variable i is added to the
set of accesses when this instruction is processed as the read access of j has already
been added when processing the LOAD instruction.

• int *p = &i: This example represents the case when the right-hand side expression is
not represented by a temporary identifier but rather directly as &i. That is because
the LOAD instruction does not process the address operator. Therefore, the STORE
instruction generated in this case stores the address of i into p. First, the write
access to p is added to the set of accesses. Since this expression has a pointer type,
the set of points-to relations is updated. The points-to relation (p,&i) is created
and added to the set of points-to relations. If there is already an existing points-to
relation with the variable p on the left side, it is removed from the set of points-to
relations. This indicates that p now points to the address of the variable i.

• *p = 0: The STORE instruction generated for this expression is in the form of STORE
Const 0 into n$1 where n$1 is a temporary identifier generated by the previous
LOAD instruction, and thus, there is an alias (n$1,p) in the set of load aliases. Since
there is a dereference on the left-hand side, the location where the variable p points
to needs to be determined. This information is stored in the points-to set, which
contains the relation (p,&i) assuming that the above expression has been extended
previously. Consequently, the variable i is retrieved, and the write access is added
with the information that the variable accessed is i. Since this expression is not of
the pointer type, no points-to relations are updated.

30



• int *q = p: This assignment statement is first processed by the load transformer,
which generates the load alias (n$1,p) and stores it in the set of load aliases. The
STORE instruction then stores the temporary identifier n$1 to the variable q. The
write access to the variable q is added to the set of accesses. Since q is a pointer-type
variable, the points-to relations set is also updated. To determine where p points to,
the points-to relation for p is obtained, which is (p,&i) assuming that the statement
p=&i described above has been executed. This information is then used to create
a new points-to relation (q,&i) in the points-to set. This new relation indicates that
q now points to the same address as p, which is the address of the variable i.

These examples illustrate how the STORE instruction is processed and how the points-
to relations set is updated. The same principle applies when adding new heap-points-to
relations when dynamically allocating memory using functions such as malloc. The only
difference is that the new relation is added to the set of heap-points-to relations.

To illustrate a situation where one variable may point to multiple addresses in our analysis,
let us examine a more complex example in Listing 22. In this example, each branch of
the conditional statement is processed separately. In the if branch, we follow the same
logic as described above and add the points-to relation (p,&i) to the points-to relations
set, indicating that the variable p points to the address of the variable i. In the else
branch, a dynamic memory allocation is performed using the malloc function, and the
heap-points-to relation (p,line 5) is added to the heap-points-to relations set, indicating
that the variable p points to a newly allocated memory block on line 5.

1 int i, *p;
2 if (x) {
3 p = &i; // points-to: {(p, &i)}
4 } else {
5 p = malloc(sizeof(int)); // points-to: {(p, line 5)}
6 }
7 // points-to after join: {(p, &i), (p, line 5)}
8 *p = 0;

Listing 22: Example code demonstrating a scenario where a variable can have multiple
points-to relations during the analysis. The points-to set contains two relations, (p, &i)
and (p, line 5), after the conditional branching. Upon accessing the address pointed to
by p on line 7, a write access is conservatively added to both variable i and the access
expression *p for the dynamically allocated memory block allocated on line 5.

After the branching, the abstract states from both branches are joined together into a single
abstract state. As a result, the variable p now has two points-to relations, (p,&i) and
(p,line 5). When dereferencing p, it is unclear whether the write access is to the variable
i or to the dynamically allocated memory block on line 5. Therefore, both options must be
considered in our analysis, and a write access must be added to both locations. The sets of
points-to and heap-points-to relations are used to identify these locations. Consequently,
the new accesses that will be added to the current set of accesses will include (i, write)
for the variable i, and (*p, write) for the dynamically allocated memory block referenced
by the pointer p.

The points-to analysis used in our analysis performs a weak update when updating points-
to relations for a pointer that may point to multiple addresses. This means that if we have

31



a pointer to pointer, where the pointer on top has more points-to relations in the set, and
we perform a double dereference of this pointer and assign it a new address, the original
points-to relations will not be removed from the set. Instead, only new relations will be
added, resulting in a set of points-to relations that includes both the original relations and
the new ones. However, if a pointer has only one points-to relation in the set, updating
that relation will result in a strong update, where the original relation is replaced by the
new one.

The functions responsible for updating aliases and resolving them to get a list of all aliases
are implemented in the infer/src/concurrency/DarcDomain.ml file. Specifically, the
functions update_aliases and resolve_entire_aliasing_of_var are used to update the
points-to and heap-points-to relations sets and to obtain a list of all the aliases of a given
variable, respectively.

4.3.3 CALL Instruction Transformers

When a function is called in the analysed source code, a CALL instruction is generated in
the control flow graph. This instruction provides information about the called function,
including the name of the function, the list of actual arguments passed to the function, and
the temporary identifier representing the return expression of the function. It is important
to note that indirect function calls are handled through a combination of LOAD and CALL
instructions.

Certain function calls have a significant role in computing data races and need to be handled
individually. These include functions for creating and joining threads, locking and unlocking
locks, and handling dynamic memory allocation. The transformers used for handling these
function calls are implemented in the Darc.ml and DarcDomain.ml files, and they are listed
below.

The acquire_lock transformer. This transformer is responsible for handling the func-
tion pthread_mutex_lock that locks a particular lock. The transformer first resolves the
name of the lock being acquired as the lock may be represented by a temporary identifier in
the program, which must be changed to its corresponding variable. Next, the transformer
adds the lock to the current lockset as described in Section 3.2.2. If the lock is present in
unlockset, it is removed.

The release_lock transformer. This transformer is called upon every lock release in
the analysed source code. It works similarly to the acquire_lock transformer as it first
resolves the name of the lock being released by pthread_mutex_unlock and then this lock
is removed from the current lockset and added to the unlockset.

The handle_malloc transformer. This transformer is responsible for handling the
dynamic memory allocation, which is done by the malloc, calloc, and C++ __new function
calls. The process involves two steps: the first step is executed when the CALL instruction is
processed, and the second step is executed when the STORE instruction is processed. To help
illustrate this process, consider as an example the following dynamic allocation assuming
that it appears on line 2 of some code: int *x = malloc(sizeof(int)).

32



The first part of the handling is done when processing the malloc, calloc, or __new
function call itself by the CALL instruction. However, the transformer does not have access
to information about the variable to which the return value of the allocation function is
stored, which is the variable x in our example, as this information is provided by the STORE
instruction later. For this reason, the analysis_data.extras.heap_tmp list is kept as part
of the analysis state to store the temporary identifier of the return expression along with
the information about the line of code where the memory was allocated.

In the above example, the result of the malloc function call, which is the return expression in
the CALL instruction, is stored into a temporary identifier n$1 generated by Infer. Therefore
we know that the address of the memory dynamically allocated on line 2 is stored in the
expression n$1, and the relation (n$1, line 2) is added to the heap_tmp list.

In the second part of handling dynamic memory allocations, the STORE instruction is pro-
cessed. If the analysis_data.extras.heap_tmp list is not empty, it indicates that there
are dynamically allocated variables to be added to the heap_points_to set. To achieve
this, the handle_store_after_malloc procedure is called, which resolves the temporary
identifier from the heap_tmp list, along with the information about the location where the
variable was allocated.

Continuing with the example, when the STORE instruction is processed, the relation (n$1,
line 2) from the heap_tmp list is retrieved since it associates the temporary identifier n$1
with the actual program variable x. Finally, the identifier n$1 is replaced by the actual
program variable x in the relation, and the newly created relation (x, line 2) is added
to the set of heap-points-to relations in the heap_points_to set.

The integrate_summary transformer. This transformer ensures that the analysis is
interprocedural by applying a summary of a called function (callee) to the current abstract
state when the callee is called, which involves multiple steps.

In the first step, the accesses from the callee summary are modified using the current
abstract state, namely the currently locked and unlocked locks, and the active and joined
threads. The process of modifying the accesses was discussed in Subsection 3.2.5 and is
shown in Listing 23.

Second, the thread to be updated in accesses in the callee summary is determined based on
whether the currently analysed function is the main function or not. If the function is main,
the main_thread is added to the accesses, otherwise, the information about the thread is
not updated. It is worth noting that if an access already has information about the thread
it is running on, it will not be updated to avoid deleting information about accesses on
other threads.

Third, formal parameters of the callee function are replaced with the actual parameters.
For each actual parameter, its aliases are found using the set of points-to relations, and
all accesses from the callee summary that have the corresponding formal parameter as
a variable are updated with the information about the actual parameter and added to the
current set of accesses. If an actual parameter has multiple aliases, accesses to all of those
aliases will be added as well. Accesses from the callee summary that are to global variables
are also added to the current abstract state.

33



1 let update_access_with_locks_and_threads access astate current_thread =
2 access.locked := (astate.lockset ∪ access.locked) ∖ access.unlocked;
3 access.unlocked := (astate.unlockset ∖ access.locked) ∪ access.unlocked;
4 access.threads_active := (astate.threads_active ∪ access.threads_active)
5 ∖ access.threads_joined;
6 acces.threads_joined := astate.threads_joined ∪ access.threads_joined;
7 access.thread :=
8 match access.thread with
9 | None -> current_thread (* access.thread is set to current_thread *)

10 | Some th -> Some th (* access.thread remains unchanged *)

Listing 23: Simplified implementation of the update_access_with_locks_and_threads
function for updating access in the summary of the called function with the current
abstract state (astate), and with the currently running thread (current_thread). The
current_thread is set to main_thread if the function that is currently analysed is main.
The update_access_with_locks_and_threads function is applied to each access in the
summary of the called function.

Finally, the current abstract state is updated with the information about the lockset, un-
lockset, active threads, and joined threads from the callee summary, as shown in Listing 24.
After all of these transformations are performed, the updated abstract state is returned.

1 let integrate_summary_without_accesses a c =
2 a.threads_active := (a.threads_active ∪ c.threads_active) ∖ c.threads_joined;
3 a.threads_joined := (a.threads_joined ∖ c.threads_active) ∪ c.threads_joined;
4 a.lockset := (a.lockset ∪ c.lockset) ∖ c.unlockset;
5 a.unlockset := (a.unlockset ∖ c.lockset) ∪ c.unlockset;
6 a.points_to := a.points_to ∪ (remove_locals c.points_to);
7 a.heap_points_to := a.heap_points_to ∪ (remove_locals c.heap_points_to);

Listing 24: The implementation of the function that joins the lockset, unlockset,
threads_active, and threads_joined sets of the current abstract state (a) and the
summary of the called function (c).

The integrate_pthread_summary transformer. This transformer works similarly
to the integrate_summary transformer, but it is called specifically when a pthread_create
function is called in the analysed program. In this case, the callee summary is obtained by
calling the analyse_dependency function on the callback function provided as the third
argument to pthread_create. If the callback function has not yet been analysed, it is anal-
ysed on demand, and its summary is returned as callee_summary. Then, the newly created
thread specified in the first parameter of pthread_create is added to the threads_active
set. All accesses from the callee summary are updated with the currently created thread
as well as with the current lockset, unlockset, threads_active, and threads_joined
sets. The fourth argument of the pthread_create function is used to pass a variable to
the callback function, and this variable replaces the formal parameter in the accesses of
the callee summary. The process of replacing the formal parameter is the same as in the
integrate_summary transformer. Similarly, information about the current sets of locked
locks, unlocked locks, active threads, and joined threads is also updated in the same way
as in the integrate_summary transformer.

34



The handle_pthread_join transformer. When a function call to pthread_join is
detected, this transformer is invoked. It removes the thread that is passed as the first
argument to this function from the set of currently running threads, threads_active. The
thread is then added to the set of joined threads as described in Subsection 3.2.1.

4.4 Data Race Detection and Reporting

After the summaries of all functions used in the program are computed, the function
compute_data_races is called, and the detection of data races begins. Since the main
function is the top-level function and the functions in the bottom-up analysis are processed
from the leaves to the top, by the time the main function is analysed, all the functions
called by the top-level function have also been processed. As a result, the summary of the
main function contains all the accesses that occurred in the analysed program on shared
variables. The algorithm uses only the set from the summary of main to compute the data
races.

The compute_data_races function starts the computation by creating pairs of accesses for
each variable that is present in the set of derived accesses. Next, the pairs are filtered using
predicate functions implemented in the module AccessEvent (one for each of the below
mentioned conditions) such that only the pairs (a, a′) that meet the conditions discussed
already in Section 3.3 are retained. To recall, the conditions being checked are as follows:

1. a.var = a′.var,
2. a.access_type = Write ∨ a′.access_type = Write,
3. a.thread ̸= a′.thread,
4. a.lockset ∩ a′.lockset = ∅,
5. a.thread ∈ (a.threads_active ∩ a′.threads_active)

∨a′.thread ∈ (a.threads_active ∩ a′.threads_active).

The result of the filtering is a list of all pairs of accesses on which a data race may occur,
from which the first pair for each variable is returned. The final step of the analysis is to
report the results. Only one data race for each variable is reported to avoid overwhelming
developers during report examination. For reporting, the Reporting module provided by
Infer is used. Its implementation can be found in the files Reporting.ml(i). The issue type
reported by each checker must be registered in the IssueType.ml(i) module along with
the information about the kind of the issue reported, such as Like, Info, Advice, Warning, or
Error. The Error type has been chosen for issues reported by DarC. The report generated
for a program with one discovered data race could look as shown in Listing 25.

race-example.c:15: error: DarC Checker
Data race between: write to i on line 15 on thread t created on line 39,

read from i on line 17 on the main thread.
Found 1 issue

Issue Type(ISSUED_TYPE_ID): #
DarC Checker(DARC_CHECKER): 1

Listing 25: Report generated by DarC checker when analysing a simple program that
contains a data race on a shared variable i.

35



Chapter 5

Experimental Evaluation

This chapter presents an experimental evaluation of our new data race detector, DarC. The
main goal of this chapter is to assess the effectiveness of DarC in detecting data races in
various types of codebases. The first section focuses on small and simple programs that
mostly contain data races. We report on the number of data races detected by DarC and
compare our results to other data race analysers. We also report on the number of data
races and both true and false positives reported by DarC in the benchmark used in the
division of concurrent programs of the International Competition on Software Verification,
SV-COMP [32]. The second section presents the results of our experiments on several
real-world projects. These projects include several commonly used utilities, such as sort,
grep, and memcached, as well as the eProsima/Fast-DDS communication platform. We
discuss the challenges we faced in analysing these codebases and the reasons why some
races may have been missed. All of the experiments were run on a machine with the AMD
Ryzen 5 5500U CPU, 15 GiB of RAM, 64-bit Ubuntu 20.04.4 LTS, using Infer version
v1.1.0-0e7270157.

5.1 Simple Codebases

This section describes our experimental evaluation of DarC using three different benchmarks
consisting of shorter programs. Since we do not have information about real data races in
the first two benchmarks, we decided to compare the results of analysing these programs
using DarC with the results of one existing static analyser, Coderrect/O2 [15], and two
dynamic analysers, ThreadSanitizer [23] and Helgrind [11]. It is important to note that all
of these analysis tools may report false positives, meaning that they may report data races
that are not really present in the program. However, when multiple tools report the same
data race, it becomes more likely that the reported data race is real.

5.1.1 DataRaceBenchmark

DataRaceBenchmark7 is a set of C/Pthreads concurrent programs consisting mostly of pro-
grams with data races obtained from SCTBench8, a C/C++ benchmark for evaluating

7DataRaceBenchmark: https://github.com/marchartung/DataRaceBenchmark
8SCTBench: https://github.com/mc-imperial/sctbench

36

https://github.com/marchartung/DataRaceBenchmark
https://github.com/mc-imperial/sctbench


concurrency testing techniques. We have evaluated the results for the simple_build bench-
mark, which includes 67 programs ranging in size from 38 to 257 LOC9. The results of our
evaluation are presented in Table 5.1.
Table 5.1: Results of the DarC, Coderrect/O2, ThreadSanitizer, and Helgrind analysers
on the DataRaceBenchmark containing 67 programs. The column races shows the number
of programs in which data races were detected, no races represents the number of programs
in which data races were not detected by the tool. The timeout column represents the
number of programs for which the timeout expired, and the time column shows the analysis
time. The timeout was set for 6 seconds, and the summary time was measured without the
programs that timed out.

analyser races no races timeout time
DarC 40 28 0 24.4s
Coderrect/O2 29 39 0 1m26.2s
ThreadSanitizer 40 25 3 14.1s
Helgrind 40 25 3 25.6s

Upon analysis, DarC reported data races in 40 programs. Among these programs, 39 were
the same programs that were identified by both dynamic analysers as containing data races.
However, for one program, thread-pool.example.c, DarC did not identify any data races
while ThreadSanitizer and Helgrind did. As of yet, we have not been able to determine
why DarC failed to detect this data race, assuming it is indeed a real data race since it was
detected by both dynamic analysers.

On the other hand, DarC identified one program, twostage_bad.c, as containing a data
race, while the dynamic analysers did not. This program is dependent on the command-
line arguments that are specified when running it. When no command-line arguments are
provided, no parallel threads are created during program execution, and as a result, the
dynamic analysers do not detect any data race. However, if a command-line argument is
specified, indicating that more than one thread will be created, then both dynamic analysers
detect data races. In this case, DarC reported a data race as expected.

The fact that all programs detected by DarC as containing data races were also reported by
both dynamic analysers indicates that there is a high probability that these are genuine data
races. Moreover, the analysis time for DarC was similar to the times for dynamic analysers.
In contrast, the number of data races reported by O2/Coderrect was significantly lower
than that reported by DarC, and the analysis time was more than three times longer.

5.1.2 ConcurrencyBenchmark

ConcurrencyBenchmark10 is a test suite consisting of 91 small programs that we developed
ourselves for testing Darc. These programs are written in C/Pthreads, with a size range
of 38–57 LOC, and test various features that we wanted DarC to be able to handle, such
as creating threads in a loop and various aliasing examples. Moreover, these programs also
include cases in which we know that DarC will report false positives. We also evaluated
these programs using Coderrect/O2, ThreadSanitizer, and Helgrind for comparison.

9Lines of Code (LOC) - a metric used to evaluate a software program according to its size.
10ConcurrencyBenchmark: https://github.com/svobodovaLucie/ConcurrencyBenchmark

37

https://github.com/svobodovaLucie/ConcurrencyBenchmark


The experimental results are summarized in Table 5.2. Out of the 91 programs tested,
DarC reported data races in 60 of them. In 47 of these programs, data races were also
reported by at least one of the dynamic analysers. Out of those, 41 programs were reported
by both dynamic analysers, and 17 were reported by all four tools.

Table 5.2: Summary of the analysis results of DarC, Coderrect/O2, ThreadSanitizer,
and Helgrind analysers on the ConcurrencyBenchmark. This benchmark consists of 91
programs. The races column represents the number of programs where data races were
detected, no races column shows the number of programs where no data races were detected
by the tool. The timeout was set for 6 seconds, and the timeout column represents the
number of programs for which the timeout limit was reached. The time column displays
the analysis time, which was measured without including the timed-out programs.

analyser races no races timeout time
DarC 60 31 0 31.5s
Coderrect/O2 28 63 0 1m46.0s
ThreadSanitizer 49 38 4 18.6s
Helgrind 44 40 7 34.3s

Out of all programs in the benchmark, only one program (recursion.c) that contained
a real data race was reported by one dynamic analyser (ThreadSanitizer) and not by any
other tool. To better illustrate the reason why DarC failed to detect the data race, consider
a simplified version of the program shown in Listing 26.

1 int x;
2 pthread_t t1;
3 g() {
4 f(); // summary f: accesses={}
5 }
6 f() {
7 pthread_create(t1, g); // summary g: accesses={}
8 x = 0;
9 }

10 main() {
11 f(); // summary f: accesses={(x on line 9)}
12 }

Listing 26: A sample program with a recursive call that contains a data race on the global
variable x. The data race is not detected by our analyser due to the recursive call to the
function f on line 4 in the function g.

In the above example, the analysis starts with the analysis of the function f. There is a
call to the pthread_create function on line 7, which creates a new thread t1 that starts
executing the function g. Therefore, g is analysed on demand. Because the summary of
f is not yet computed, an empty summary is used for the summary integration on line 4.
This leads to g also having an empty summary. This summary is then integrated into the
current abstract state of function f on line 7 and the set of accesses is still empty at this
point. Next, on line 8, there is a write access to variable x, which is added to the current set
of accesses. The analysis of f then ends. Finally, the analysis of the main function begins,

38



which is executed on the main thread. On line 13, there is a function call to f, and the
summary of f is integrated, which involves adding the access to x on line 8 to the current
set of accesses. But since our analysis only recorded this one access and no accesses on
other threads were recorded, our detector did not detect any data races, even though they
actually exist in the program.

In terms of false positives, there were several reasons why DarC reported them. For instance,
when there are two write accesses to an array and each is on a different index. DarC does
not distinguish on which index the array was accessed and only records an access to that
array. As a result, DarC reports a data race on the array, which is not really present.
Another example involves a program that contains a lock in a conditional branch where
the condition is always true, and therefore the lock is locked in every case. However,
because DarC stores locks that must be locked, when there is locking in only one branch of
a conditional branching, the lock is not added to the lockset. Thus, the accesses that occur
after this are not recorded as protected by a lock, resulting in DarC reporting a data race.

5.1.3 SV-COMP Benchmark

To evaluate our checker on a broader range of programs, we used a benchmark from the In-
ternational Competition on Software Verification (SV-COMP) [32], which contains a large
number of programs written in various programming languages and designed to check vari-
ous kinds of bugs11. For our evaluation, we ran DarC only on C/C++ programs that were
labelled to contain or not contain data races in the SV-COMP benchmark itself.

The results for the programs that we analysed are shown in Table 5.3. As the benchmark
contains numerous programs, we were unable to manually go through every single program
and check why DarC did not report data races or why it reported false alarms. While the
results on some benchmarks are quite promising, DarC’s performance on some benchmarks,
such as pthread-wmm, was not satisfactory.

For the pthread-wmm benchmark, the reason why DarC reported all programs from this
benchmark as false positives could be due to the fact that, instead of the Pthreads library
functions, these programs extensively use the special synchronization primitives, such as
__VERIFIER_atomic_begin and __VERIFIER_atomic_end macros. These primitives are
not recognized by DarC, and therefore it may not be able to correctly reason about the
synchronization between threads. These primitives are not commonly used in regular pro-
grams and are specific to the SV-COMP benchmark. In addition, it should be noted that
many programs in the SV-COMP benchmark are highly preprocessed, making it difficult to
manually inspect them and determine the presence of data races. While DarC’s performance
on this benchmark may not have been optimal, our main priority was not to thoroughly
inspect all false positives or false negatives reported by DarC on this benchmark. It can
rather be used as a source of knowledge for the further development of DarC.

11SV-COMP benchmark: https://github.com/sosy-lab/benchexec

39

https://github.com/sosy-lab/benchexec


Table 5.3: Results of DarC on the SV-COMP benchmarks. The column races shows the
number of programs containing data races that were detected correctly, false negatives gives
the number of programs in which data races were not detected. The column no races shows
the number of programs without data race that were reported correctly by DarC, and the
false positives column gives the number of programs in which data races were detected
incorrectly. The time column shows the analysis time, and count displays the number of
programs in the benchmark.

benchmark races false negatives no races false positives time count
pthread 7 1 30 11 15.55s 49
pthread-atomic 9 1 0 7 5.62s 17
pthread-C-DAC 1 0 3 1 1.77s 5
pthread-complex 1 0 1 3 2.08s 5
pthread-deagle 15 5 4 0 7.51s 24
pthread-divine 11 2 2 1 5.55s 16
pthread-ext 31 0 1 30 20.49s 62
pthread-lit 11 0 0 3 4.87s 14
pthread-nondet 4 2 0 0 1.99s 6
pthread-wmm 0 0 0 283 1m51.4s 283
goblint-reg 34 33 142 7 1m10.8s 216
ldv-races 3 5 7 4 6.92s 19

5.2 Real-World Projects

In this section, we report on various experiments we have performed on real-world projects.
We have analysed five applications: grep 3.7, tgrep (a multi-threaded version of find com-
bined with grep by Ron Winacott12), GNU Coreutils sort 8.32, memcached version 1.6.10
(a distributed memory object caching system), and eProsima/Fast-DDS version 2.10.1,
a C++ implementation of the Data Distribution Service of the Object Management Group.
The source code of all of these programs apart from eProsima/Fast-DDS was pre-processed
by the Frama-C static analysis framework [5], and amounted to 49.3 kLOC in total. The
codebase for eProsima/Fast-DDS is 110kLOC. The runtime for the analysis of each pro-
gram was as follows: 2.1 seconds for grep, 0.8 seconds for tgrep, 1.9 seconds for sort, 7.7
seconds for memcached, and nearly 28 minutes for eProsima/Fast-DDS. We now discuss
the results of the analysis.

For memcached, DarC reported 60 data race issues. Due to the complexity of the code and
the large number of threads created in various conditional branches, it was not feasible to
investigate all of these issues. However, upon investigating a few of them, we found that
they had a similar nature. Due to the use of various conditional branching statements for
creating new threads, DarC may add multiple threads to the set of active threads even
though they cannot be created simultaneously during actual program execution. This re-
sults in the integration of summaries of multiple callback functions that cannot be executed
simultaneously. Furthermore, DarC assumes that a thread is active even after it has been
joined in a branch selected by the same condition as when the thread was created. Similarly,
DarC may assume that a lock is not held if it is only locked in one branch, even though that
branch might actually be executed in the real program. These issues arise because DarC

12tgrep: https://docs.oracle.com/cd/E19455-01/806-5257/6je9h034c/index.html

40

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h034c/index.html


does not take into account the various conditions and possible program paths. As a result,
many false alarms are reported for accesses that cannot lead to data races in reality.

Regarding the other programs, namely sort, grep, and tgrep, DarC did not report any data
races. However, we further investigated these programs and found possible reasons why
no alarms were reported. First, we examined the analysis report of tgrep and discovered
that pthread_create wrappers, which DarC does not currently support, are used in the
code. This may be one of the reasons why no errors were reported. To investigate further,
we replaced the wrappers in tgrep with calls to the pthread_create function itself, which
led to the detection of two data races. However, we do not know whether these are false
alarms. As a sanity check, we removed one pthread_mutex_lock call in tgrep, which was
used when locking a global variable, and DarC successfully reported the data race created
this way.

Regarding the sort program, one possible reason why DarC did not report any data races
is the recursive nature of the sortlines function, which is the only function in the pro-
gram where new threads are created. The callback function to which the new threads are
passed simply calls sortlines recursively and returns. Since the analysis of the sortlines
function is not yet finished, its summary is not available, resulting in an empty summary
being used instead. This leads to the callback function also having an empty summary,
and no accesses on other threads are added to the current abstract state when analysing
sortlines. Therefore, there can be no data races detected because all accesses that are
computed in the analysis occur on the main thread.

Additionally, during our inspection of the grep analysis results, we discovered that memory
for threads is dynamically allocated on the heap by calling the xmalloc function in this pro-
gram, and the threads are created in a loop with a thread id computed from an expression
threadId+i. This expression is complex since it involves a binary operation, which is not
currently correctly handled by DarC. Therefore, the integrate_pthread_summary trans-
former is not called, and the summary computed for the callback function is not integrated
into the current abstract state. As an experiment, we replaced the expression threadId+i
with an array of threads and then created threads for the expression threads[i] instead.
This modification led to DarC detecting one data race in the program, but we are not certain
whether it is a false alarm or not. As a further check, we removed one pthread_mutex_lock
call before writing to a variable worqueue.producer_done, where worqueue is a global
structure, and DarC reported this introduced data race successfully.

Finally, regarding eProsima/Fast-DDS, DarC did not report any data races in this program,
which could be due to several reasons. First, it uses C++ guard locks, which are not yet
supported by DarC. Additionally, the same problems as described above in the description
of sort, tgrep and grep could have also been present. However, due to the size of the project,
we were unable to go through the code and find all the root causes, and we plan to analyse
eProsima/Fast-DDS again after further improvement of our checker based on the issues
described above.

41



Chapter 6

Conclusions

In this thesis, we proposed a new static data race detector, DarC, designed for analysing
concurrent programs written in the C language using the Pthreads library. It was imple-
mented as a plugin of the Infer framework, an open-source framework for highly scalable
static program analysis. The proposed solution is based on recording a set of accesses to
shared variables that occur in the analysed program followed by checking pairs of these
accesses to detect possible data races. Our tool was experimentally evaluated on a set of
benchmarks developed for testing concurrency bugs, as well as on real-life projects. For the
benchmarks, DarC detected the vast majority of bugs detected by dynamic checkers used
for comparison. On the real-life projects, we observed some shortcomings that will be ad-
dressed in future work, and additionally, we intentionally introduced data races into those
programs, and DarC successfully detected all of them. These promising results demonstrate
the potential of our approach to detect data races in concurrent C programs.

Future work will focus on implementing several improvements to the DarC checker. Based
on the observations from our experiments, we plan to add support for pthread_create
wrappers and correctly handle more complex expressions used as abstract thread identifiers
during the creation of threads. Another crucial area of focus will be the implementation
of heuristics for filtering detected data races, as we are aware of the fact that reporting
only the first data race found for a variable can lead to overlooking real bugs. These
heuristics will be based on various factors, such as using preconditions to detect which
locks are expected to be locked and unlocked, or the number of aliases that a variable
might have. Furthermore, we aim to incorporate support for recursive locks and additional
locking and unlocking functions used in the program beyond those provided by the Pthread
library. These functions could be specified by developers and then used in the analysis
to be handled correctly as locking/unlocking functions. Another area of improvement will
be to add support for analysing programs that do not have a defined main function, such
as library functions, by providing a file or command line argument with entry points.
Finally, after incorporating these improvements, we plan to conduct further experiments
and analyse more real-life projects, including Firefox, Chromium, and the Linux kernel.
These experiments will help us recognise more areas of possible improvements.

42



Bibliography

[1] Blackshear, S., Gorogiannis, N., O’Hearn, P. W. and Sergey, I. RacerD:
Compositional Static Race Detection. Proc. ACM Program. Lang. New York, NY,
USA: Association for Computing Machinery. oct 2018, vol. 2, OOPSLA. DOI:
10.1145/3276514. Available at: https://doi.org/10.1145/3276514.

[2] Cousot, P. Abstract Interpretation in a Nutshell [online]. January 2010 [cit.
2023-01-10]. Available at: https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html.

[3] Cousot, P. and Cousot, R. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:.
January 1977, p. 238–252. DOI: 10.1145/512950.512973.

[4] Cousot, P. and Cousot, R. Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation. In: Bruynooghe, M.
and Wirsing, M., ed. Programming Language Implementation and Logic
Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, p. 269–295.
ISBN 978-3-540-47297-1.

[5] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J. et al.
Frama-C: A Software Analysis Perspective. Berlin, Heidelberg: Springer-Verlag,
2012. DOI: 10.1007/978-3-642-33826-7_16.

[6] Engler, D. and Ashcraft, K. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In: Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. New York, NY, USA: Association for Computing
Machinery, 2003, p. 237–252. SOSP ’03. DOI: 10.1145/945445.945468. ISBN
1581137575. Available at: https://doi.org/10.1145/945445.945468.

[7] Fiedor, J., Hrubá, V., Křena, B., Letko, Z., Ur, S. et al. Advances in
Noise-based Testing. Software Testing, Verification and Reliability. Willey. 2014,
vol. 24, no. 7, p. 1–38.

[8] Flanagan, C. and Freund, S. N. FastTrack: Efficient and Precise Dynamic Race
Detection. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2009, p. 121–133. PLDI ’09. DOI: 10.1145/1542476.1542490.
ISBN 9781605583921. Available at: https://doi.org/10.1145/1542476.1542490.

[9] Harmim, D. Statická analýza v nástroji Facebook Infer zaměřená na detekci porušení
atomičnosti. Brno, CZ, 2019. Bakalářská práce. Vysoké učení technické v Brně,

43

https://doi.org/10.1145/3276514
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/1542476.1542490


Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis/21689/.

[10] Harmim, D., Marcin, V., Svobodová, L. and Vojnar, T. Static Deadlock
Detection In Low-Level C Code. In: Computer Aided Systems Theory – EUROCAST
2022: 18th International Conference, Las Palmas de Gran Canaria, Spain, February
20–25, 2022, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2023,
p. 267–276. DOI: 10.1007/978-3-031-25312-6_31. ISBN 978-3-031-25311-9. Available
at: https://doi.org/10.1007/978-3-031-25312-6_31.

[11] Jannesari, A., Bao, K., Pankratius, V. and Tichy, W. F. Helgrind+: An
efficient dynamic race detector. In: IPDPS. IEEE, 2009, p. 1–13. Available at:
http://dblp.uni-trier.de/db/conf/ipps/ipdps2009.html#JannesariBPT09.

[12] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM. New York, NY, USA: Association for Computing Machinery. jul
1978, vol. 21, no. 7, p. 558–565. DOI: 10.1145/359545.359563. ISSN 0001-0782.
Available at: https://doi.org/10.1145/359545.359563.

[13] Lengál, O. and Vojnar, T. Abstract Interpretation. Presentation. Vysoké učení
technické v Brně, Fakulta informačních technologií, 2022 [cit. 2022-01-15]. Available at:
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-06.pdf.

[14] Letko, Z., Vojnar, T. and Křena, B. AtomRace: Data Race and Atomicity
Violation Detector and Healer. In: Proceedings of the 6th Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging. New York, NY, USA:
Association for Computing Machinery, 2008. PADTAD ’08. DOI:
10.1145/1390841.1390848. ISBN 9781605580524. Available at:
https://doi.org/10.1145/1390841.1390848.

[15] Liu, B., Liu, P., Li, Y., Tsai, C.-C., Da Silva, D. et al. When Threads Meet
Events: Efficient and Precise Static Race Detection with Origins. In: Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. New York, NY, USA: Association for Computing
Machinery, 2021, p. 725–739. PLDI 2021. DOI: 10.1145/3453483.3454073. ISBN
9781450383912. Available at: https://doi.org/10.1145/3453483.3454073.

[16] Marcin, V. Statická analýza v nástroji Facebook Infer zaměřená na detekci uváznutí.
Brno, CZ, 2019. Bakalářská práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/21920/.

[17] Møller, A. and Schwartzbach, I. M. Static Program Analysis. Department of
Computer Science, Aarhus University, October 2018.

[18] Nielson, F., Nielson, H. and Hankin, C. Principles of Program Analysis. Springer
Berlin Heidelberg, 2015.

[19] Pavela, O. Statická analýza v nástroji Facebook Infer zaměřená na analýzu
výkonnosti. Brno, CZ, 2019. Bakalářská práce. Vysoké učení technické v Brně,
Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis/21919/.

44

https://www.fit.vut.cz/study/thesis/21689/
https://doi.org/10.1007/978-3-031-25312-6_31
http://dblp.uni-trier.de/db/conf/ipps/ipdps2009.html#JannesariBPT09
https://doi.org/10.1145/359545.359563
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-06.pdf
https://doi.org/10.1145/1390841.1390848
https://doi.org/10.1145/3453483.3454073
https://www.fit.vut.cz/study/thesis/21920/
https://www.fit.vut.cz/study/thesis/21919/


[20] Peter O’Hearn, C. C. Open-sourcing Facebook Infer: Identify bugs before you ship
- Engineering at Meta [online]. [cit. 2023-01-10]. Available at:
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-
infer-identify-bugs-before-you-ship/.

[21] Sam Blackshear, J. V. Building your own compositional static analyzer with
Infer.AI [online]. [cit. 2023-01-25]. Available at:
https://fbinfer.com/downloads/pldi17-infer-ai-tutorial.pdf.

[22] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P. and Anderson, T.
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans.
Comput. Syst. New York, NY, USA: Association for Computing Machinery. nov
1997, vol. 15, no. 4, p. 391–411. DOI: 10.1145/265924.265927. ISSN 0734-2071.

[23] Serebryany, K. and Iskhodzhanov, T. ThreadSanitizer: Data Race Detection in
Practice. In: Proceedings of the Workshop on Binary Instrumentation and
Applications. New York, NY, USA: Association for Computing Machinery, 2009,
p. 62–71. WBIA ’09. DOI: 10.1145/1791194.1791203. ISBN 9781605587936.

[24] Thomson, P. Static Analysis: An Introduction: The Fundamental Challenge of
Software Engineering is One of Complexity. Queue. New York, NY, USA:
Association for Computing Machinery. aug 2021, vol. 19, no. 4, p. 29–41. DOI:
10.1145/3487019.3487021. ISSN 1542-7730. Available at:
https://doi.org/10.1145/3487019.3487021.

[25] Vojnar, T. Static Analysis and Verification [online]. Presentation. Vysoké učení
technické v Brně, Fakulta informačních technologií, 2022 [cit. 2022-01-15]. Available at:
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-01.pdf.

[26] Wu, J., Tang, Y., Hu, H., Cui, H. and Yang, J. Sound and Precise Analysis of
Parallel Programs through Schedule Specialization. In: Proc. of PLDI’12. ACM,
2012.

[27] Yi, K. Inferbo: Infer-based buffer overrun analyzer - Meta Research [online].
6. February 2017 [cit. 2022-01-09]. Available at: https://research.facebook.com/blog/
2017/2/inferbo-infer-based-buffer-overrun-analyzer/.

[28] Coverity Scan - Static Analysis [online]. [cit. 2023-04-23]. Available at:
https://scan.coverity.com/.

[29] Infer Static Analyzer [online]. February 2015 [cit. 2023-05-05]. Available at:
https://fbinfer.com/.

[30] Klocwork for C, C++, C#, Java, JavaScript, Python, and Kotlin | Perforce [online].
[cit. 2023-05-23]. Available at: https://www.perforce.com/products/klocwork.

[31] Starvation. [cit. 2022-01-09]. Available at:
https://fbinfer.com/docs/checker-starvation/.

[32] SV-COMP - International Competition on Software Verification. [cit. 2023-04-23].
Available at: https://sv-comp.sosy-lab.org/.

45

https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://fbinfer.com/downloads/pldi17-infer-ai-tutorial.pdf
https://doi.org/10.1145/3487019.3487021
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-01.pdf
https://research.facebook.com/blog/2017/2/inferbo-infer-based-buffer-overrun-analyzer/
https://research.facebook.com/blog/2017/2/inferbo-infer-based-buffer-overrun-analyzer/
https://scan.coverity.com/
https://fbinfer.com/
https://www.perforce.com/products/klocwork
https://fbinfer.com/docs/checker-starvation/
https://sv-comp.sosy-lab.org/


Appendices

46



Appendix A

Contents of the Attached Memory
Media

The attached memory media contains the following:

• /xsvobo1x_ibt.pdf

– This thesis in PDF format.
• /tex/

– The source code of this thesis.
• /infer/

– The source code of the Infer framework with the DarC plugin.
• /experiments/

– Programs used for the experimental evaluation of the DarC plugin.
– Additional information is provided in the README.md file located in this folder.

• /README.md

– File containing an installation and user manual.

47


	Introduction
	Preliminaries
	Static Analysis
	Meta Infer Framework
	Related Work on Data Race Detection

	Data Race Detection
	Design Principles
	Phase 1: Recording a Set of Accesses
	Phase 2: Data Races Computation

	Implementation
	Integration of the DarC Plugin with Infer
	The Abstract Domain and Function Summaries
	Transfer Functions
	Data Race Detection and Reporting

	Experimental Evaluation
	Simple Codebases
	Real-World Projects

	Conclusions
	Bibliography
	Appendices
	Contents of the Attached Memory Media

