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Abstract 
Preprocessing, analysis, and quantification of Magnetic resonance spectroscopy (MRS) 

signals are required for obtaining the metabolite concentrations of the tissue under 

investigation. However, a fast, accurate, and efficient post-acquisition workflow 

(preprocessing, analysis, and quantification) of MRS is challenging.  

This thesis introduces novel deep learning (DL)-based approaches for preprocessing, 

analysis, and quantification of MRS data. The proposed methods achieved the objectives 

of robust data preprocessing, fast and efficient MR spectra quantification, in-vivo 

concentration quantification, and the uncertainty estimation of quantification. The results 

showed that the proposed approaches significantly improved the speed of MRS signal 

preprocessing and quantification in a self-supervised manner. Our proposed methods 

showed comparable results with the traditional methods in terms of accuracy. 

Furthermore, a standard data format was introduced to facilitate data sharing among 

research groups for artificial intelligence applications. The findings of this study suggest 

that the proposed DL-based approaches have the potential to improve the accuracy and 

efficiency of MRS for medical diagnosis. 

The dissertation is structured into four parts: an introduction, a review of state-of-the-art 

research, a summary of the aims and objectives, and a collection of publications that 

showcase the author's contribution to the field of DL applications in MRS. 

Keywords 
MR spectroscopy, inverse problem, deep learning, machine learning, convolutional 

neural network, metabolite quantification, frequency and phase correction. 

 

Abstrakt 

Pro získání koncentrace metabolitů ve vyšetřované tkáni ze signálů magnetické 

rezonanční spektroskopie (MRS) je nezbytné provézt předzpracování, analýzu a 

kvantifikaci MRS signálu. Rychlý, přesný a účinný proces zpracování (předzpracování, 

analýza a kvantifikace) MRS dat je však náročný.  

Tato práce představuje nové přístupy pro předzpracování, analýzu a kvantifikaci MRS 

dat založené na hlubokém učení (DL). Navržené metody potvrdily schopnost použití DL 

pro robustní předzpracování dat, rychlou a efektivní kvantifikaci MR spekter, odhad 

koncentrací metabolitů in vivo a odhad nejistoty kvantifikace. Navržené přístupy výrazně 

zlepšily rychlost předzpracování a kvantifikace MRS signálu a prokázaly možnost použití 

DL bez učitele. Z hlediska přesnosti byly získány výsledky srovnatelné s tradičními 



   

 

 

metodami. Dále byl zaveden standardní formát dat, který usnadňuje sdílení dat mezi 

výzkumnými skupinami pro aplikace umělé inteligence. Výsledky této studie naznačují, 

že navrhované přístupy založené na DL mají potenciál zlepšit přesnost a efektivitu 

zpracování MRS dat pro lékařskou diagnostiku. 

Disertační práce je rozdělena do čtyř částí: úvodu, přehledu současného stavu výzkumu, 

shrnutí cílů a úkolů a souboru publikací, které představují autorův přínos v oblasti aplikací 

DL v MRS. 

 

Klíčová slova 
MR spektroskopie, inverzní problém, hluboké učení, strojové učení, konvoluční 

neuronová síť, kvantifikace metabolitů, frekvenční a fázová korekce. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This project has received funding from the European Union's Horizon 2020 

research and innovation program under the Marie Sklodowska-Curie grant agreement No 

813120.  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bibliographic citation 
Printed work citation: 

SHAMAEI, Amir mohammad. Deep learning for single-voxel and multidimensional MR-

spectroscopic signal quantification, and its comparison with nonlinear least-squares 

fitting. Brno, 2023. Available also at: https://www.vutbr.cz/studenti/zav-

prace/detail/135526. Doctoral Thesis Topic. Vysoké učení technické v Brně, Fakulta 

elektrotechniky a komunikačních technologií, Department of Biomedical Engineering. 

Supervisor Radovan Jiřík, cosupervisor Jana Starčuková. 

Electronic source citation: 

SHAMAEI, Amir mohammad. Deep learning for single-voxel and multidimensional MR-

spectroscopic signal quantification, and its comparison with nonlinear least-squares 

fitting [online]. Brno, 2023 [cit. 2023-02-16]. Available from: 

https://www.vutbr.cz/studenti/zav-prace/detail/135526. Doctoral Thesis Topic. Vysoké 

učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 

Department of Biomedical Engineering. Supervisor Radovan Jiřík, cosupervisor Jana 

Starčuková. 

 

  



   

 

7 

 

CONTENTS 

1. INTRODUCTION ............................................................................................................................ 9 

2. STATE OF THE ART OF DL IN MRS ....................................................................................... 11 

3. AIMS OF THE DOCTORAL THESIS ........................................................................................ 13 

4. SELECTED PUBLICATIONS ..................................................................................................... 14 

4.1 PAPER 1 – MODEL-INFORMED UNSUPERVISED DEEP LEARNING APPROACHES TO FREQUENCY AND 

PHASE CORRECTION OF MRS SIGNALS .......................................................................................................... 17 
4.2 PAPER 2 – DEEP LEARNING FOR MAGNETIC RESONANCE SPECTROSCOPY QUANTIFICATION: A TIME-

FREQUENCY ANALYSIS APPROACH............................................................................................................... 18 

4.3 PAPER 3 – A WAVELET SCATTERING CONVOLUTION NETWORK FOR MAGNETIC RESONANCE 

SPECTROSCOPY SIGNAL QUANTITATION....................................................................................................... 19 

4.4 PAPER 4 – QUANTIFICATION OF MR SPECTRA BY DEEP LEARNING IN AN IDEALIZED SETTING: 

INVESTIGATION OF FORMS OF INPUT, NETWORK ARCHITECTURES, OPTIMIZATION BY ENSEMBLES OF 

NETWORKS, AND TRAINING BIAS. .................................................................................................................. 20 

4.5 PAPER 5 – PHYSICS-INFORMED DEEP LEARNING APPROACH TO QUANTIFICATION OF HUMAN BRAIN 

METABOLITES FROM MAGNETIC RESONANCE SPECTROSCOPY DATA. .......................................................... 21 

4.6 PAPER 6 – NIFTI‐MRS: A STANDARD DATA FORMAT FOR MAGNETIC RESONANCE SPECTROSCOPY .... 22 

5. CONCLUSION ............................................................................................................................... 23 

 

  



   

 

8 

 

TABLES 

Table 1 A summary of related work on MRS signal quantification using DL. ........................................... 12 
Table 2 A summary of our work on MRS signal quantification using DL. ................................................ 15 

  



   

 

9 

 

1. INTRODUCTION 

Magnetic resonance spectroscopy (MRS) has attracted the magnetic resonance (MR) 

community over the past seven decades [1]–[3]. A significant part of the interest in 

biomedical MRS stems from the possibility of non-invasive measurements of metabolites 

[3]. Information about tissue metabolites can help in clinical diagnostics. For instance, the 

detection of metabolic pathway changes may facilitate diagnosing disease in earlier stages 

before anatomy changes can be observed and thus enable more efficient treatment. This is 

demonstrated in glioma, a decrease of N-acetylaspartate (NAA) and creatine (Cr) 

concentrations and an increase of choline, lipids, and lactate predicts an increase in the 

glioma grade [1], [2]. 

Contrary to other diagnostic techniques such as Computed Tomography (CT) and 

Radionuclide imaging (e.g., Positron Emission Tomography (PET), Gamma camera), MRS 

emits no ionizing radiation to the subject, which enables follow-up studies [2].  

It is possible to get various information using Spectroscopy (MRS) and Spectroscopic 

Imaging (MRSI) for atomic nuclei such as Proton (1H), Phosphorus (31P), Carbon (13C), etc. 

The proton nucleus has the highest natural abundance (>99.9%) and intrinsic nuclear 

magnetic resonance (NMR) sensitivity (high gyromagnetic ratio) among all nuclei for MRS. 

Presently, the primary utilization of MRS in the clinical setting is centered around 1H, with 

other nuclei being predominantly applied in preclinical and fundamental research. Although 

a number of brain metabolites can be identified with 1H MRS, the quantity of substances 

assessable under in vivo conditions does not exceed 15-20, and is typically much lower. 

Further MR-visible nuclei with biochemical relevance have also demonstrated their value in 

providing information on tissue physiology and biochemistry [1]–[4]. Notably, the 

incorporation of non-1H MRS in clinical practice has yet to become widespread, potentially 

due to the prerequisite of nonstandard hardware and specialized MRS techniques [3]. 

Recently, there has been a resurgence of interest in MRS within the MR community for 

clinical neuroscience and translational purposes [3]. This is largely due to the increased 

availability of high and ultrahigh-field scanners, and a better understanding of the role of 

metabolism in neuroenergetics and neurotransmission. Consequently, there has been a rise in 

the use of MRS for both typical clinical applications and neurological research, supported by 

advancements in acquisition and processing techniques [3].  

However, MRS has some shortcomings that limit its routine use in clinical practice. Some of 

these are (i) MRS requires specialized equipment and software that are not widely available 

or standardized, (ii) MRS is time-consuming and prone to artifacts and noise that affect the 

quality and reliability of the spectra, (iii) MRS data analysis and interpretation are complex 

and require expert knowledge and skills [1], [5].  
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Deep learning (DL) has the potential to enhance the accuracy and efficiency of MRS by 

automating the data analysis, providing more reliable diagnoses, and enabling the use of MRS 

in routine clinical practice. 
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2. STATE OF THE ART OF DL IN MRS 

The recent success of DL, one of the latest machine learning approaches, in a variety of tasks, 

including applications with a low signal-to-noise ratio (SNR) [6], [7], suggests that it might 

also handle the spectral analysis of an MRS signal. Supervised DL-based approaches have 

been used for ghosting artifacts detection and removal [8], spectral reconstruction [9], 

automatic peak picking [10], MRSI spatial resolution enhancement [11], localized correlated 

spectroscopy acceleration [12], metabolites and MM separation in MRS signals, the 

quantification and noise removal of MRSI signals [13], [14], and poor-quality spectra 

identification [15].  

It has been shown that supervised DL can also be employed for FPC [16], [17] and could 

speed up FPC once it has been successfully trained. This supervised approach, using two 

separate networks in sequence to estimate frequency and phase, showed encouraging results. 

The first network was trained for frequency shift estimation using the magnitude of 

frequency- and phase-shifted spectrum as the input and the known frequency shift as the 

output. Subsequently, the second network was trained for phase shift estimation using real 

parts of the frequency-corrected spectrum as the input and phase shift as the output. In this 

approach, any error in the first step (frequency correction) may bias the phase shift 

estimation. Training two networks is a computationally expensive task. Moreover, the 

networks were trained in a supervised manner using simulated data. Any discrepancy 

between the in-vivo and the simulated spectra may result in errors in frequency and phase 

shift estimation. The true output values are unknown in MRS data, and obtaining hundreds 

of spectra with labeled frequency and phase shifts is almost infeasible. This makes it 

challenging to use supervised DL methods that rely on labeled transients. Self-supervised or 

unsupervised learning may eliminate the drawbacks of supervised learning. 

Moreover, several studies demonstrated the potential of artificial neural networks for 

quantifying MR spectra. Hiltunen et al. [18] have demonstrated the feasibility of constructing 

a quantifying analyzer for long echo time (TE) in vivo proton MRS (1H NMR) spectra using 

artificial neural networks with magnitude spectra. Hatami et al. [19] and Lee et al. [20] 

applied supervised DL approaches to metabolite quantification and presented results 

comparable to conventional LCM approaches. Chandler et al. [21] also applied a supervised 

DL approach to study metabolite quantification in edited human brain MRS spectra. These 

studies utilized supervised learning approaches, in which the input and the output were 

simulated spectra and known values, respectively. The true output values are however 

unknown in in-vivo MRS data. Moreover, a network trained in a supervised manner using 

simulated data might be prone to overfit training data [22]; thus, any discrepancy between 

the in-vivo and the simulated training spectra, such as the presence of nuisance peaks, 
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frequency, and phase shifts, and line-broadening, may result in errors in metabolite 

quantification. Self-supervised learning may eliminate the drawbacks of supervised learning. 

Bhat et al. [23] investigated the application of a radial basis function neural network 

(RBFNN) for the automatic quantification of short echo time, multi-voxel, phased spectral 

data. Gurbani et al. [24] presented a self-supervised DL architecture that integrates a CNN 

with peak fitting for quantifying MR spectra. In their approach, a deep autoencoder is used 

as a framework for self-supervised or unsupervised learning. However, their method does 

not utilize the advantages of LCM such as fewer fitting parameters and realistic basis spectra. 

Table 1 provides a comparison of related work on MRS signal quantification using DL. 

Even though DL algorithms have demonstrated equivalent quantitation performance to 

traditional methods, concerns have been raised about their robustness. Moreover, the effects 

of DL architectures, spectroscopic input types, and learning designs for optimal 

quantification in MRS of pathological spectra have not been investigated in previous studies 

and warrant further investigation.  

Table 1 A summary of related work on MRS signal quantification using DL. 

 Model 

architectures 

Input types Learning process Data type 

(training) 

Prior 

metabolite 

resonances 

model 

Hiltunen et 

al. [18] 

Shallow Neural 

Networks 

Magnitude 

spectra (1D) 

Supervised Simulated _ 

Bhat et al. 

[23] 

Radial basis 

function neural 

network 

Real part of 

spectra (1D) 

Self-supervised In-vivo Lorentzian‐

Gaussian 

lineshape 

Hatami et al. 

[19] 

Convolutional 

neural network 

Complex 

spectra (1D) 

Supervised Simulated – 

Lee et al. 

[20] 

Convolutional 

neural network 

Complex 

spectra (1D) 

Supervised Simulated – 

Chandler et 

al. [21] 

 

Convolutional 

neural network 

 

Real, 

imaginary and 

magnitude 

component of 

spectra (2D) 

Supervised Simulated – 

Gurbani et 

al. [24] 

Convolutional 

neural network 

Real part of 

spectra (1D) 

Self-supervised In-vivo Lorentzian‐

Gaussian 

lineshape 
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3. AIMS OF THE DOCTORAL THESIS 

The primary objective of this dissertation is to introduce and verify an advanced approach 

for rapid, efficient, and accurate quantification of metabolites using DL techniques in MRS. 

Moreover, this dissertation aims to construct a deep neural network that extracts features 

from FID signals, i.e., MRS signals in the time domain, for preprocessing and analyzing MRS 

data. The objectives of this research can be summarized as follows: 

 

1. To develop a robust DL method for preprocessing MR data, including frequency and 

phase correction,  

2. To design and implement a fast and appropriate DL-based approach for quantifying MR 

spectra, 

3. To propose a self-supervised approach for quantifying concentrations in in-vivo spectra, 

4. To propose a method for estimating the uncertainty of the concentration's estimation in 

DL-based methods. 

5. To compare the effectiveness and reliability of DL-based methods with nonlinear least-

squares (NLLS) fitting methods for quantification, 

6. To propose a standard data format to facilitate data sharing among research groups for 

artificial intelligence applications. 
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4. SELECTED PUBLICATIONS  

The present thesis is composed of six research papers (4 IF-journal publications, and 2 

conference extended papers), which are interconnected in their scope and theme. The central 

focus of this work is the development of DL approaches for MRS data analysis, with a 

particular emphasis on frequency and phase correction, metabolite quantification, and data 

standardization. 

 

MRS data preprocessing: 

The first paper [25] presents a model-informed unsupervised DL approach to the frequency 

and phase correction of MRS signals. The feasibility and efficiency of physics-informed DL-

based signal processing of MR spectroscopy data in an unsupervised manner were 

investigated. Simulated, phantom, and in vivo MEGA-edited MRS data were used in the 

study. This work aimed to solve the challenge of obtaining spectra with labels (i.e. spectra 

with labeled frequency and phase shifts) for the supervised DL approach to FPC. 

 

Metabolite quantification (supervised DL approaches): 

The next three papers focus on the development of supervised DL approaches to MRS signal 

quantification. The second paper [26] proposes a time-frequency analysis approach that 

leverages DL to produce highly accurate and robust MRS signal quantitation. This paper 

verified the hypothesis that DL in combination with time-frequency analysis can be used for 

metabolite quantification and yielded results more robust than DL trained with MR signals 

in the frequency domain [19]. This paper utilizes a CNN, but the training of CNNs is 

computationally intensive and its optimal architecture and hyper-parameters are not well 

understood. To address this issue, the third paper [27] utilizes a Wavelet Scattering 

Convolution Network (WSCN), which is a well-understood and computationally cheap. The 

WSCN approach achieved better quantification accuracy and computational efficiency 

compared to the CNN-based approach proposed in the second paper. The fourth paper [28] 

investigates the quantification of MR spectra by a supervised DL approach in an idealized 

setting, examining various forms of input, network architectures, optimization by ensembles 

of networks, and training bias. This work aimed to address concerns about the robustness of 

DL for MR spectra quantification.  

 

Metabolite quantification (self-supervised DL approaches): 

At the beginning of this Ph.D. study, the author was captivated by the idea of using supervised 

learning to solve complex problems in the quantification of MR spectra. The author spent 

several months exploring different supervised learning techniques and experimenting with 
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various datasets. However, as the author delved deeper into the subject, the author began to 

realize the limitations of supervised learning. At first, the author was hesitant to try self-

supervised learning, as the author noticed that developing a neural network and training it in 

a self-supervised manner were much more challenging than supervised learning. However, 

the author quickly discovered that self-supervised learning offered a wealth of opportunities 

to explore new ideas and solve problems in innovative ways. With self-supervised learning, 

the author proposed a physics-informed DL approach to quantifying human brain metabolites 

from MRS data in the fifth paper [29]. The author ventured to develop an approach in which 

neural networks can learn in a self-supervised manner to solve an inverse problem for human 

brain metabolite concentration estimation.  

The fourth and fifth papers shed light on a comparison between DL-based methods 

(supervised and self-supervised) and traditional methods (nonlinear least-squares fitting 

methods) for MRS data quantification. Additionally, the fifth paper's proposed method 

utilizes a physics-informed DL approach, allowing it to compute the Cramer-Rao lower 

bounds (CRLB) to estimate the uncertainty in concentration estimation. Table 2 provides a 

comparison of the author's work on MRS signal quantification using DL.  

Table 2 A summary of our work on MRS signal quantification using DL. 

 Model 

architectures 

Input types Learning 

process 

Data type 

(training) 

Prior 

metabolite 

resonances 

model 

Output of 

network 

Shamaei 

et al. 

[26] 

Convolutional 

neural network 

Complex time-

frequency 

domain 

scalogram 

(wavelet 

coefficients) 

(2D)  

Supervised Simulated a – Amplitudes 

Shamaei 

et al. 

[30] 

Wavelet 

scattering 

network 

Complex time-

domain signal 

(FID) (1D) 

Supervised Simulated b – Amplitudes 

Rizzo et 

al. [31] 

Convolutional 

neural network 

Complex 

spectra, time-

frequency 

domain 

spectrograms 

(2D) 

Supervised Simulated c – Amplitudes 

Shamaei 

et al. 

Physics-

informed 

Complex time-

domain signal 

Self-

supervised 

Simulated d 

and in-vivo 

Quantum-

mechanics 

Parameters 

of a 
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[29] convolutional 

neural network 

(FID) (1D) simulated 

metabolite 

responses 

complex 

model 

a a combination of amplitude-scaled frequency-shifted damped metabolite basis set signals, the baseline (without 

noise). 
b a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 

baseline and white noise. 
c a combination of amplitude-scaled damped metabolite basis set signals, the baseline and white noise (all basis 

set signals share the same damping factor). 
d a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 

baseline and white noise (all basis set signals share the same damping factor, frequency shift, and phase shift). 

 

Standard data format to facilitate data sharing among research groups: 

Finally, the sixth paper [32] advocates for a standard data format for MRS, which could 

facilitate data sharing and comparability across research groups for artificial intelligence 

applications.  

 

Taken together, these papers present an overview of the state-of-the-art in DL approaches to 

MRS data analysis. They offer insights into the potential of these methods to improve the 

efficiency, reproducibility, and reliability of MRS data analysis, and highlight some of the 

challenges and opportunities that lie ahead in this rapidly evolving field. The thesis concludes 

with a synthesis of the key findings and recommendations for future research. 
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4.1 Paper 1 – Model-informed unsupervised deep learning 

approaches to frequency and phase correction of MRS 

signals 

Citation 
[1] Shamaei, A, Starcukova, J, Pavlova, I, Starcuk, Z. Model-informed unsupervised deep 

learning approaches to frequency and phase correction of MRS signals. Magn Reson 

Med. 2023; 89: 1221– 1236. doi:10.1002/mrm.29498 

Paper contribution 
The paper proposes and investigates the feasibility and efficiency of two novel unsupervised 

deep learning-based methods for frequency and phase correction (FPC) of magnetic 

resonance spectroscopy (MRS) data. These proposed methods utilize a priori physics domain 

knowledge to improve the performance of FPC. The paper presents the training, validation, 

and evaluation of these methods using simulated, phantom, and in vivo MEGA-edited MRS 

data. This study proposes a new measure to evaluate the FPC method performance and 

compares the performance of the proposed methods with other commonly used FPC 

methods. This study also evaluates the ability of the proposed methods to perform FPC at 

varying signal-to-noise ratios (SNR). Additionally, a Monte Carlo study is conducted to 

investigate the performance of the proposed methods. The contribution of the paper lies in 

the development and evaluation of two novel unsupervised deep learning-based FPC 

methods for MRS data, which can improve the accuracy and efficiency of FPC in various 

MRS applications. 
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4.2 Paper 2 – Deep Learning For Magnetic Resonance 

Spectroscopy Quantification: A Time-Frequency Analysis 

Approach 

Citation 
[2] Shamaei, Amirmohammad. Deep Learning For Magnetic Resonance Spectroscopy 

Quantification: A Time-Frequency Analysis Approach. In: Proceedings II of the 26st 

Conference STUDENT EEICT 2020: Selected papers [online]. Vysoké učení technické 

v Brně, Fakulta elektrotechniky a komunikačních technologií, 2020, s. 131-135 [cit. 

2023-02-16]. ISBN 978-80-214-5868-0. Dostupné z: 

http://hdl.handle.net/11012/200638 

Paper contribution 
This paper explores the combination of deep learning and time-frequency analysis for more 

reliable metabolite quantification in magnetic resonance spectroscopy (MRS). This study 

verifies the hypothesis that this combination can produce more robust results than deep 

learning trained on MR signals in the frequency domain. The study uses the complex matrix 

of absolute wavelet coefficients for the time-frequency representation of the signal and 

implements convolutional neural networks (CNN) for deep learning. The paper also presents 

a comparison with DL used for the quantification of data in the frequency domain. Overall, 

the paper's contribution lies in providing an innovative approach to MRS quantification and 

advancing the understanding of the potential of deep learning and time-frequency analysis in 

this field. 
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4.3 Paper 3 – A Wavelet Scattering Convolution Network for 

Magnetic Resonance Spectroscopy Signal Quantitation 

Citation 
[3] Shamaei A., Starčuková J. and Starčuk Jr. Z. (2021). A Wavelet Scattering 

Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation.In 

Proceedings of the 14th International Joint Conference on Biomedical Engineering 

Systems and Technologies - Volume 2: BIOSIGNALS, ISBN 978-989-758-490-9, 

pages 268-275. DOI: 10.5220/0010318502680275 

Paper contribution 
The paper's contribution is to explore the use of a Wavelet Scattering Convolutional Network 

(WSCN) for magnetic resonance spectroscopy (MRS) signal quantification. The paper 

highlights that the most widely used network for MRS signal quantification is the 

Convolutional Neural Network (CNN), but that its optimal architecture and hyper-parameters 

for MRS are not well understood. The paper shows that a WSCN, which is well-understood 

and computationally cheap, could yield more robust results for metabolite quantification than 

one of the quantitation methods based on model fitting (QUEST) and equivalent results to a 

CNN while being faster. The study investigates the effects of phase, noise, and 

macromolecule variation on the WSCN estimation accuracy. Overall, the paper's contribution 

is to propose an alternative deep learning approach to MRS signal quantification that is more 

computationally efficient and potentially more accurate than existing methods. 
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4.4 Paper 4 – Quantification of MR spectra by deep learning in 

an idealized setting: Investigation of forms of input, network 

architectures, optimization by ensembles of networks, and 

training bias. 

Citation 
[4] Rizzo, R, Dziadosz, M, Kyathanahally, SP, Shamaei, A, Kreis, R. Quantification of 

MR spectra by deep learning in an idealized setting: Investigation of forms of input, 

network architectures, optimization by ensembles of networks, and training bias. Magn 

Reson Med. 2022; 1- 21. doi:10.1002/mrm.29561  

Paper contribution 
The paper explores the application of deep learning (DL) architectures, spectroscopic input 

types, and learning designs for optimal quantification in magnetic resonance spectroscopy 

(MRS) of simulated pathological spectra. The study investigates 24 different DL 

architectures, with active learning through altered training and testing data distributions to 

optimize quantification performance. Ensembles of networks are explored to improve DL 

robustness and reduce the variance of estimates. The paper compares the performance of DL 

predictions and traditional model fitting (MF) using a set of scores. The results show that 

ensembles of heterogeneous networks that combine 1D frequency-domain and 2D time-

frequency domain spectrograms as input perform best, and dataset augmentation with active 

learning can improve performance but gains are limited. MF is more accurate, although DL 

appears to be more precise at low signal-to-noise ratios (SNRs). However, the overall 

improved precision of DL predictions originates from a strong bias for cases with high 

uncertainty  

toward the dataset the network has been trained with, tending toward its average value. The 

paper also highlights potential intrinsic biases on training sets, which are dangerous in a 

clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological data). 

The contribution of the paper lies in providing a comprehensive evaluation of DL 

architectures and learning designs for MRS quantification, and highlighting the importance 

of unbiased and robust MRS quantification algorithms in a clinical context. 
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4.5 Paper 5 – Physics-informed Deep Learning Approach to 

Quantification of Human Brain Metabolites from Magnetic 

Resonance Spectroscopy Data. 

Citation 
[5] Shamaei, A, Starcukova, J, Starcuk, Z. Physics-informed deep learning approach to 

quantification of human brain metabolites from magnetic resonance spectroscopy data. 

Computers in Biology and Medicine. 2023; 158: 106837. doi: 

10.1016/j.compbiomed.2023.106837 

Paper contribution 
The paper presents a novel, self-supervised deep learning (DL) method for the quantification 

of magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging 

(MRSI) data. This method is based on a linear combination model (LCM) and uses quantum-

mechanics simulated metabolite responses and neural networks for the quantification of 

relative metabolite concentrations. The proposed DL-based method is evaluated and 

compared to traditional methods using simulated and publicly accessible in-vivo human brain 

MRS data. The paper also includes a novel adaptive macromolecule fitting algorithm. The 

performance of the proposed methods is investigated in a Monte Carlo study. The 

contribution of this paper lies in the development and evaluation of a self-supervised DL-

based method for MRS data analysis that does not require ground truth fitted spectra, which 

is not always practical. This method can improve the accuracy and efficiency of MRS data 

analysis in various applications. To our knowledge, this is the first report showing the 

feasibility of the physics-informed self-supervised DL method for the quantification of MRS 

data.  
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4.6 Paper 6 – NIfTI‐MRS: A standard data format for magnetic 

resonance spectroscopy 

Citation 
[6] Clarke, W, Mikkelsen, M, Oeltzschner, G, Bell T.K., Shamaei, A, Soher, B.J., Emir, 

U, Wilson, W. NIfTI-MRS: A standard data format for magnetic resonance 

spectroscopy. Magn Reson Med. 2022; 88: 2358- 2370. doi:10.1002/mrm.29418 

Paper contribution 
The contribution of this paper is the proposal of a standardized format, NIfTI-MRS, for 

magnetic resonance spectroscopy (MRS) data that incorporates essential spectroscopic 

metadata and additional encoding dimensions, and its implementation as an extension to the 

Neuroimaging informatics technology initiative (NIfTI) format. The standard format allows 

for easy data sharing, algorithm development, and integration of MRS analysis with other 

imaging modalities. The paper provides a detailed description of the NIfTI-MRS format 

specification, an open-source command-line conversion program to convert MRS data to 

NIfTI-MRS, and a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image 

viewer for visualization of data in the proposed format. The paper also includes online 

documentation, 10 example datasets in the proposed format, and code examples of NIfTI-

MRS readers implemented in common programming languages. 
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5. CONCLUSION 

In summary, this dissertation aimed to develop a novel DL-based approach for rapid and 

accurate quantification of metabolites in magnetic resonance spectroscopy.  

The proposed methods achieved the objectives of developing a robust DL method for 

preprocessing MR data [25], designing and implementing a fast and efficient DL-based 

approaches for quantifying MR spectra [26]–[29], investigating the applicability of the 

proposed approaches for quantifying concentrations in in-vivo spectra [29], and comparing 

the effectiveness and reliability of DL-based methods with NLLS fitting methods for 

quantification [28], [29].  

The results of this study demonstrate that the proposed DL-based approaches can improve 

the speed and accuracy of MRS signal preprocessing and quantification in a self-supervised 

manner [29]. The performance of our methods on synthetic data is comparable with the 

traditional methods in terms of accuracy in a shorter amount of processing time. Furthermore, 

a standard data format was proposed to facilitate data sharing among research groups for 

artificial intelligence applications [32].  

The results achieved in this research, corresponding to the objectives outlined in the Aims of 

the doctoral thesis section, can be summarized as follows: 

 

1. Two novel unsupervised DL-based FPC methods for MRS data have been developed, 

which can improve the accuracy and efficiency of FPC in various MRS applications. 

The results have been published in an IF journal [Paper 1]. 

 

2. Fast and efficient DL-based solutions for quantifying MR spectra have been 

developed and tested on simulated and in-vivo data, and the results have been 

published in conferences and IF journals [Papers 2, 3, 4, and 5]. 

 

3. The applicability of the proposed self-supervised approach for quantifying relative 

concentrations in in-vivo spectra has been investigated [Paper 5]. 

 

4. The functionality of the proposed self-supervised approach has been extended to 

estimate the uncertainty of the concentration's estimation [Paper 5 and an abstract 

based on the findings of this thesis has been accepted for presentation at International 

Society for Magnetic Resonance in Medicine conference in 2023, in Toronto. 

Additionally, a manuscript based on this research is currently under preparation for 

submission to a high-impact factor journal.)]. 
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5. A comprehensive comparison between DL-based methods and traditional NLLS 

fitting methods for MRS data quantification has been made, and the results have been 

published in two IF journals [Papers 4 and 5]. 

 

6. In collaboration with an international group of experts, a standard data format has 

been proposed to facilitate data sharing among research groups, and the results have 

been published in an IF journal [Paper 6]. The proposed format has been used in the 

present study for data sharing. 

 

This research opens the door to further exploration of the applications of DL techniques in 

MR spectroscopy and spectroscopic imaging signal processing, potentially leading to 

significant advancements in medical diagnosis. Some potential applications of DL in MR 

spectroscopy and spectroscopic imaging for future work are: 

 

Automated analysis: DL algorithms can be trained to automatically analyze MRS and MRSI 

data, reducing the time and effort required for manual analysis, 

Improved signal-to-noise ratio: DL algorithms can be used to denoise MR signals [An 

abstract was presented by the author at the European Society of Magnetic Resonance in 

Medicine and Biology (ESMRMB) conference 2021], improving the signal-to-noise ratio 

and enabling higher-quality data, 

Quantitative analysis: DL algorithms can be trained to perform quantitative analysis of MR 

spectroscopic data, allowing for the automated calculation of metabolite concentrations and 

other important parameters, 

Image segmentation: DL algorithms can be used for automatic image segmentation, 

allowing for the separation of different tissues and structures within MR spectroscopic 

images, 

Signal classification: DL algorithms can be trained to classify MRS signals based on specific 

features, allowing for improved diagnosis and treatment planning. 

 

Overall, DL has the potential to significantly enhance the capabilities of MR spectroscopy 

and spectroscopic imaging in medical imaging. It is important to note that while DL can 

greatly aid in the analysis and interpretation of MR data, it should be used in conjunction 

with traditional methods and the expertise of experienced radiologists to ensure accurate and 

reliable results. 
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