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Abstract 
Preprocessing, analysis, and quantification of Magnetic resonance spectroscopy (MRS) 
signals are required for obtaining the metabolite concentrations of the tissue under 
investigation. However, a fast, accurate, and efficient post-acquisition workflow 
(preprocessing, analysis, and quantification) of MRS is challenging. 
This thesis introduces novel deep learning (DL)-based approaches for preprocessing, 
analysis, and quantification of MRS data. The proposed methods achieved the objectives 
of robust data preprocessing, fast and efficient M R spectra quantification, in-vivo 
concentration quantification, and the uncertainty estimation of quantification. The results 
showed that the proposed approaches significantly improved the speed of MRS signal 
preprocessing and quantification in a self-supervised manner. Our proposed methods 
showed comparable results with the traditional methods in terms of accuracy. 
Furthermore, a standard data format was introduced to facilitate data sharing among 
research groups for artificial intelligence applications. The findings of this study suggest 
that the proposed DL-based approaches have the potential to improve the accuracy and 
efficiency of MRS for medical diagnosis. 

The dissertation is structured into four parts: an introduction, a review of state-of-the-art 
research, a summary of the aims and objectives, and a collection of publications that 
showcase the author's contribution to the field of D L applications in MRS. 

Keywords 
M R spectroscopy, inverse problem, deep learning, machine learning, convolutional 
neural network, metabolite quantification, frequency and phase correction. 

Abstrakt 
Pro získání koncentrace metabolitů ve vyšetřované tkáni ze signálů magnetické 
rezonanční spektroskopie (MRS) je nezbytné provézt předzpracování, analýzu a 
kvantifikaci MRS signálu. Rychlý, přesný a účinný proces zpracování (předzpracování, 
analýza a kvantifikace) MRS dat je však náročný. 

Tato práce představuje nové přístupy pro předzpracování, analýzu a kvantifikaci MRS 
dat založené na hlubokém učení (DL). Navržené metody potvrdily schopnost použití DL 
pro robustní předzpracování dat, rychlou a efektivní kvantifikaci M R spekter, odhad 
koncentrací metabolitů in vivo a odhad nejistoty kvantifikace. Navržené přístupy výrazně 
zlepšily rychlost předzpracování a kvantifikace MRS signálu a prokázaly možnost použití 
D L bez učitele. Z hlediska přesnosti byly získány výsledky srovnatelné s tradičními 



metodami. Dále byl zaveden standardní formát dat, který usnadňuje sdílení dat mezi 
výzkumnými skupinami pro aplikace umělé inteligence. Výsledky této studie naznačují, 
že navrhované přístupy založené na D L mají potenciál zlepšit přesnost a efektivitu 
zpracování MRS dat pro lékařskou diagnostiku. 
Disertační práce je rozdělena do čtyř částí: úvodu, přehledu současného stavu výzkumu, 
shrnutí cílů a úkolů a souboru publikací, které představují autorův přínos v oblasti aplikací 
D L v MRS. 
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1. INTRODUCTION 

Magnetic resonance spectroscopy (MRS) has attracted the magnetic resonance (MR) 
community over the past seven decades [l]-[3]. A significant part of the interest in 
biomedical MRS stems from the possibility of non-invasive measurements of metabolites 
[3]. Information about tissue metabolites can help in clinical diagnostics. For instance, the 
detection of metabolic pathway changes may facilitate diagnosing disease in earlier stages 
before anatomy changes can be observed and thus enable more efficient treatment. This is 
demonstrated in glioma, a decrease of N-acetylaspartate (NAA) and creatine (Cr) 
concentrations and an increase of choline, lipids, and lactate predicts an increase in the 
glioma grade [1], [2]. 
Contrary to other diagnostic techniques such as Computed Tomography (CT) and 
Radionuclide imaging (e.g., Positron Emission Tomography (PET), Gamma camera), MRS 
emits no ionizing radiation to the subject, which enables follow-up studies [2]. 
It is possible to get various information using Spectroscopy (MRS) and Spectroscopic 
Imaging (MRSI) for atomic nuclei such as Proton ( !H), Phosphorus (3 1P), Carbon ( 1 3C), etc. 
The proton nucleus has the highest natural abundance (>99.9%) and intrinsic nuclear 
magnetic resonance (NMR) sensitivity (high gyromagnetic ratio) among all nuclei for MRS. 
Presently, the primary utilization of MRS in the clinical setting is centered around ! H , with 
other nuclei being predominantly applied in preclinical and fundamental research. Although 
a number of brain metabolites can be identified with ! H MRS, the quantity of substances 
assessable under in vivo conditions does not exceed 15-20, and is typically much lower. 
Further MR-visible nuclei with biochemical relevance have also demonstrated their value in 
providing information on tissue physiology and biochemistry [l]-[4]. Notably, the 
incorporation of non- !H MRS in clinical practice has yet to become widespread, potentially 
due to the prerequisite of nonstandard hardware and specialized MRS techniques [3]. 
Recently, there has been a resurgence of interest in MRS within the M R community for 
clinical neuroscience and translational purposes [3]. This is largely due to the increased 
availability of high and ultrahigh-field scanners, and a better understanding of the role of 
metabolism in neuroenergetics and neurotransmission. Consequently, there has been a rise in 
the use of MRS for both typical clinical applications and neurological research, supported by 
advancements in acquisition and processing techniques [3]. 
However, MRS has some shortcomings that limit its routine use in clinical practice. Some of 
these are (i) MRS requires specialized equipment and software that are not widely available 
or standardized, (ii) MRS is time-consuming and prone to artifacts and noise that affect the 
quality and reliability of the spectra, (iii) MRS data analysis and interpretation are complex 
and require expert knowledge and skills [1], [5]. 
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Deep learning (DL) has the potential to enhance the accuracy and efficiency of MRS by 
automating the data analysis, providing more reliable diagnoses, and enabling the use of MRS 
in routine clinical practice. 
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2. STATE OF THE ART OF D L IN M R S 

The recent success of DL, one of the latest machine learning approaches, in a variety of tasks, 
including applications with a low signal-to-noise ratio (SNR) [6], [7], suggests that it might 
also handle the spectral analysis of an MRS signal. Supervised DL-based approaches have 
been used for ghosting artifacts detection and removal [8], spectral reconstruction [9], 
automatic peak picking [10], MRSI spatial resolution enhancement [11], localized correlated 
spectroscopy acceleration [12], metabolites and M M separation in MRS signals, the 
quantification and noise removal of MRSI signals [13], [14], and poor-quality spectra 
identification [15]. 
It has been shown that supervised DL can also be employed for FPC [16], [17] and could 
speed up FPC once it has been successfully trained. This supervised approach, using two 
separate networks in sequence to estimate frequency and phase, showed encouraging results. 
The first network was trained for frequency shift estimation using the magnitude of 
frequency- and phase-shifted spectrum as the input and the known frequency shift as the 
output. Subsequently, the second network was trained for phase shift estimation using real 
parts of the frequency-corrected spectrum as the input and phase shift as the output. In this 
approach, any error in the first step (frequency correction) may bias the phase shift 
estimation. Training two networks is a computationally expensive task. Moreover, the 
networks were trained in a supervised manner using simulated data. Any discrepancy 
between the in-vivo and the simulated spectra may result in errors in frequency and phase 
shift estimation. The true output values are unknown in MRS data, and obtaining hundreds 
of spectra with labeled frequency and phase shifts is almost infeasible. This makes it 
challenging to use supervised DL methods that rely on labeled transients. Self-supervised or 
unsupervised learning may eliminate the drawbacks of supervised learning. 
Moreover, several studies demonstrated the potential of artificial neural networks for 
quantifying M R spectra. Hiltunen et al. [18] have demonstrated the feasibility of constructing 
a quantifying analyzer for long echo time (TE) in vivo proton MRS (1H NMR) spectra using 
artificial neural networks with magnitude spectra. Hatami et al. [19] and Lee et al. [20] 
applied supervised DL approaches to metabolite quantification and presented results 
comparable to conventional L C M approaches. Chandler et al. [21] also applied a supervised 
DL approach to study metabolite quantification in edited human brain MRS spectra. These 
studies utilized supervised learning approaches, in which the input and the output were 
simulated spectra and known values, respectively. The true output values are however 
unknown in in-vivo MRS data. Moreover, a network trained in a supervised manner using 
simulated data might be prone to overfit training data [22]; thus, any discrepancy between 
the in-vivo and the simulated training spectra, such as the presence of nuisance peaks, 
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frequency, and phase shifts, and line-broadening, may result in errors in metabolite 
quantification. Self-supervised learning may eliminate the drawbacks of supervised learning. 
Bhat et al. [23] investigated the application of a radial basis function neural network 
(RBFNN) for the automatic quantification of short echo time, multi-voxel, phased spectral 
data. Gurbani et al. [24] presented a self-supervised DL architecture that integrates a C N N 
with peak fitting for quantifying M R spectra. In their approach, a deep autoencoder is used 
as a framework for self-supervised or unsupervised learning. However, their method does 
not utilize the advantages of L C M such as fewer fitting parameters and realistic basis spectra. 
Table 1 provides a comparison of related work on MRS signal quantification using DL. 
Even though DL algorithms have demonstrated equivalent quantitation performance to 
traditional methods, concerns have been raised about their robustness. Moreover, the effects 
of DL architectures, spectroscopic input types, and learning designs for optimal 
quantification in MRS of pathological spectra have not been investigated in previous studies 
and warrant further investigation. 

Table 1 A summary of related work on MRS signal quantification using DL. 

Model 
architectures 

Input types Learning process Data type 
(training) 

Prior 
metabolite 
resonances 
model 

Hiltunen et 
al. [18] 

Shallow Neural 
Networks 

Magnitude 
spectra (ID) 

Supervised Simulated -

Bhat et al. 
[23] 

Radial basis 
function neural 
network 

Real part of 
spectra (ID) 

Self-supervised In-vivo Lorentzian-
Gaussian 
lineshape 

Hatami et al. 
[19] 

Convolutional 
neural network 

Complex 
spectra (ID) 

Supervised Simulated — 

Lee et al. 
[20] 

Convolutional 
neural network 

Complex 
spectra (ID) 

Supervised Simulated — 

Chandler et 
al. [21] 

Convolutional 
neural network 

Real, 
imaginary and 
magnitude 
component of 
spectra (2D) 

Supervised Simulated 

Gurbani et 
al. [24] 

Convolutional 
neural network 

Real part of 
spectra (ID) 

Self-supervised In-vivo Lorentzian-
Gaussian 
lineshape 
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3. AIMS OF THE DOCTORAL THESIS 

The primary objective of this dissertation is to introduce and verify an advanced approach 
for rapid, efficient, and accurate quantification of metabolites using DL techniques in MRS. 
Moreover, this dissertation aims to construct a deep neural network that extracts features 
from FID signals, i.e., MRS signals in the time domain, for preprocessing and analyzing MRS 
data. The objectives of this research can be summarized as follows: 

1. To develop a robust DL method for preprocessing M R data, including frequency and 
phase correction, 

2. To design and implement a fast and appropriate DL-based approach for quantifying M R 
spectra, 

3. To propose a self-supervised approach for quantifying concentrations in in-vivo spectra, 
4. To propose a method for estimating the uncertainty of the concentration's estimation in 

DL-based methods. 
5. To compare the effectiveness and reliability of DL-based methods with nonlinear least-

squares (NLLS) fitting methods for quantification, 
6. To propose a standard data format to facilitate data sharing among research groups for 

artificial intelligence applications. 
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4. SELECTED PUBLICATIONS 

The present thesis is composed of six research papers (4 IF-journal publications, and 2 
conference extended papers), which are interconnected in their scope and theme. The central 
focus of this work is the development of DL approaches for MRS data analysis, with a 
particular emphasis on frequency and phase correction, metabolite quantification, and data 
standardization. 

MRS data preprocessing: 
The first paper [25] presents a model-informed unsupervised DL approach to the frequency 
and phase correction of MRS signals. The feasibility and efficiency of physics-informed DL-
based signal processing of M R spectroscopy data in an unsupervised manner were 
investigated. Simulated, phantom, and in vivo MEGA-edited MRS data were used in the 
study. This work aimed to solve the challenge of obtaining spectra with labels (i.e. spectra 
with labeled frequency and phase shifts) for the supervised DL approach to FPC. 

Metabolite quantification (supervised DL approaches): 
The next three papers focus on the development of supervised DL approaches to MRS signal 
quantification. The second paper [26] proposes a time-frequency analysis approach that 
leverages DL to produce highly accurate and robust MRS signal quantitation. This paper 
verified the hypothesis that DL in combination with time-frequency analysis can be used for 
metabolite quantification and yielded results more robust than DL trained with M R signals 
in the frequency domain [19]. This paper utilizes a CNN, but the training of CNNs is 
computationally intensive and its optimal architecture and hyper-parameters are not well 
understood. To address this issue, the third paper [27] utilizes a Wavelet Scattering 
Convolution Network (WSCN), which is a well-understood and computationally cheap. The 
WSCN approach achieved better quantification accuracy and computational efficiency 
compared to the CNN-based approach proposed in the second paper. The fourth paper [28] 
investigates the quantification of M R spectra by a supervised DL approach in an idealized 
setting, examining various forms of input, network architectures, optimization by ensembles 
of networks, and training bias. This work aimed to address concerns about the robustness of 
DL for M R spectra quantification. 

Metabolite quantification (self-supervised DL approaches): 
At the beginning of this Ph.D. study, the author was captivated by the idea of using supervised 
learning to solve complex problems in the quantification of M R spectra. The author spent 
several months exploring different supervised learning techniques and experimenting with 
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various datasets. However, as the author delved deeper into the subject, the author began to 
realize the limitations of supervised learning. At first, the author was hesitant to try self-
supervised learning, as the author noticed that developing a neural network and training it in 
a self-supervised manner were much more challenging than supervised learning. However, 
the author quickly discovered that self-supervised learning offered a wealth of opportunities 
to explore new ideas and solve problems in innovative ways. With self-supervised learning, 
the author proposed a physics-informed DL approach to quantifying human brain metabolites 
from MRS data in the fifth paper [29]. The author ventured to develop an approach in which 
neural networks can learn in a self-supervised manner to solve an inverse problem for human 
brain metabolite concentration estimation. 
The fourth and fifth papers shed light on a comparison between DL-based methods 
(supervised and self-supervised) and traditional methods (nonlinear least-squares fitting 
methods) for MRS data quantification. Additionally, the fifth paper's proposed method 
utilizes a physics-informed DL approach, allowing it to compute the Cramer-Rao lower 
bounds (CRLB) to estimate the uncertainty in concentration estimation. Table 2 provides a 
comparison of the author's work on MRS signal quantification using DL. 

Table 2 A summary of our work on MRS signal quantification using DL. 

Model 
architectures 

Input types Learning 
process 

Data type 
(training) 

Prior 
metabolite 
resonances 
model 

Output of 
network 

Shamaei Convolutional Complex time 
et al. neural network frequency 
[26] domain 

scalogram 
(wavelet 
coefficients) 
(2D) 

Shamaei Wavelet Complex time 
et al. scattering domain signal 
[30] network (FID) (ID) 
Rizzo et Convolutional Complex 
al. [31] neural network spectra, time-

frequency 
domain 
spectrograms 
(2D) 

Shamaei Physics- Complex time 
etal. informed domain signal 

Supervised Simulateda 

Supervised Simulatedb 

Supervised 

Self-
supervised 

Simulated 1 

Simulated A 

and in-vivo 

Amplitudes 

Amplitudes 

Amplitudes 

Quantum-
mechanics 

Parameters 
of a 
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[29] convolutional (FID) (ID) simulated complex 
neural network metabolite model 

responses 
a a combination of amplitude-scaled frequency-shifted damped metabolite basis set signals, the baseline (without 
noise). 
b a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 
baseline and white noise. 
c a combination of amplitude-scaled damped metabolite basis set signals, the baseline and white noise (all basis 
set signals share the same damping factor). 
d a combination of amplitude-scaled frequency-shifted phase-shifted damped metabolite basis set signals, the 
baseline and white noise (all basis set signals share the same damping factor, frequency shift, and phase shift). 

Standard data format to facilitate data sharing among research groups: 
Finally, the sixth paper [32] advocates for a standard data format for MRS, which could 
facilitate data sharing and comparability across research groups for artificial intelligence 
applications. 

Taken together, these papers present an overview of the state-of-the-art in DL approaches to 
MRS data analysis. They offer insights into the potential of these methods to improve the 
efficiency, reproducibility, and reliability of MRS data analysis, and highlight some of the 
challenges and opportunities that lie ahead in this rapidly evolving field. The thesis concludes 
with a synthesis of the key findings and recommendations for future research. 
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4.1 Paper 1 - Model-informed unsupervised deep learning 
approaches to frequency and phase correction of MRS 
signals 

Citation 
[1] Shamaei, A, Starcukova, J, Pavlova, I, Starcuk, Z. Model-informed unsupervised deep 

learning approaches to frequency and phase correction of MRS signals. Magn Reson 
Med. 2023; 89: 1221- 1236. doi:10.1002/mrm.29498 

Paper contribution 
The paper proposes and investigates the feasibility and efficiency of two novel unsupervised 
deep learning-based methods for frequency and phase correction (FPC) of magnetic 
resonance spectroscopy (MRS) data. These proposed methods utilize a priori physics domain 
knowledge to improve the performance of FPC. The paper presents the training, validation, 
and evaluation of these methods using simulated, phantom, and in vivo MEGA-edited MRS 
data. This study proposes a new measure to evaluate the FPC method performance and 
compares the performance of the proposed methods with other commonly used FPC 
methods. This study also evaluates the ability of the proposed methods to perform FPC at 
varying signal-to-noise ratios (SNR). Additionally, a Monte Carlo study is conducted to 
investigate the performance of the proposed methods. The contribution of the paper lies in 
the development and evaluation of two novel unsupervised deep learning-based FPC 
methods for MRS data, which can improve the accuracy and efficiency of FPC in various 
MRS applications. 
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4.2 Paper 2 - Deep Learning For Magnetic Resonance 
Spectroscopy Quantification: A Time-Frequency Analysis 
Approach 

Citation 
[2] Shamaei, Amirmohammad. Deep Learning For Magnetic Resonance Spectroscopy 

Quantification: A Time-Frequency Analysis Approach. In: Proceedings II of the 26st 
Conference STUDENT EEICT 2020: Selected papers [online]. Vysoké učení technické 
v Brně, Fakulta elektrotechniky a komunikačních technologií, 2020, s. 131-135 [cit. 
2023-02-16]. ISBN 978-80-214-5868-0. Dostupné z: 
http://hdl.handle.net/11012/200638 

Paper contribution 
This paper explores the combination of deep learning and time-frequency analysis for more 
reliable metabolite quantification in magnetic resonance spectroscopy (MRS). This study 
verifies the hypothesis that this combination can produce more robust results than deep 
learning trained on M R signals in the frequency domain. The study uses the complex matrix 
of absolute wavelet coefficients for the time-frequency representation of the signal and 
implements convolutional neural networks (CNN) for deep learning. The paper also presents 
a comparison with DL used for the quantification of data in the frequency domain. Overall, 
the paper's contribution lies in providing an innovative approach to MRS quantification and 
advancing the understanding of the potential of deep learning and time-frequency analysis in 
this field. 

18 

http://hdl.handle.net/11012/200638


4.3 Paper 3 - A Wavelet Scattering Convolution Network for 
Magnetic Resonance Spectroscopy Signal Quantitation 

Citation 
[3] Shamaei A., Starcukova J. and Starcuk Jr. Z. (2021). A Wavelet Scattering 

Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation.In 
Proceedings of the 14th International Joint Conference on Biomedical Engineering 
Systems and Technologies - Volume 2: BIOSIGNALS, ISBN 978-989-758-490-9, 
pages 268-275. DOI: 10.5220/0010318502680275 

Paper contribution 
The paper's contribution is to explore the use of a Wavelet Scattering Convolutional Network 
(WSCN) for magnetic resonance spectroscopy (MRS) signal quantification. The paper 
highlights that the most widely used network for MRS signal quantification is the 
Convolutional Neural Network (CNN), but that its optimal architecture and hyper-parameters 
for MRS are not well understood. The paper shows that a WSCN, which is well-understood 
and computationally cheap, could yield more robust results for metabolite quantification than 
one of the quantitation methods based on model fitting (QUEST) and equivalent results to a 
CNN while being faster. The study investigates the effects of phase, noise, and 
macromolecule variation on the WSCN estimation accuracy. Overall, the paper's contribution 
is to propose an alternative deep learning approach to MRS signal quantification that is more 
computationally efficient and potentially more accurate than existing methods. 
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4.4 Paper 4 - Quantification of MR spectra by deep learning in 
an idealized setting: Investigation of forms of input, network 
architectures, optimization by ensembles of networks, and 
training bias. 

Citation 
[4] Rizzo, R, Dziadosz, M , Kyathanahally, SP, Shamaei, A, Kreis, R. Quantification of 

MR spectra by deep learning in an idealized setting: Investigation of forms of input, 
network architectures, optimization by ensembles of networks, and training bias. Magn 
Reson Med. 2022; 1- 21. doi:10.1002/mrm.29561 

Paper contribution 
The paper explores the application of deep learning (DL) architectures, spectroscopic input 
types, and learning designs for optimal quantification in magnetic resonance spectroscopy 
(MRS) of simulated pathological spectra. The study investigates 24 different DL 
architectures, with active learning through altered training and testing data distributions to 
optimize quantification performance. Ensembles of networks are explored to improve DL 
robustness and reduce the variance of estimates. The paper compares the performance of DL 
predictions and traditional model fitting (MF) using a set of scores. The results show that 
ensembles of heterogeneous networks that combine ID frequency-domain and 2D time-
frequency domain spectrograms as input perform best, and dataset augmentation with active 
learning can improve performance but gains are limited. M F is more accurate, although DL 
appears to be more precise at low signal-to-noise ratios (SNRs). However, the overall 
improved precision of DL predictions originates from a strong bias for cases with high 
uncertainty 
toward the dataset the network has been trained with, tending toward its average value. The 
paper also highlights potential intrinsic biases on training sets, which are dangerous in a 
clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological data). 
The contribution of the paper lies in providing a comprehensive evaluation of DL 
architectures and learning designs for MRS quantification, and highlighting the importance 
of unbiased and robust MRS quantification algorithms in a clinical context. 
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4.5 Paper 5 - Physics-informed Deep Learning Approach to 
Quantification of Human Brain Metabolites from Magnetic 
Resonance Spectroscopy Data. 

Citation 
[5] Shamaei, A, Starcukova, J, Starcuk, Z. Physics-informed deep learning approach to 

quantification of human brain metabolites from magnetic resonance spectroscopy data. 
Computers in Biology and Medicine. 2023; 158: 106837. doi: 
10.1016/j .compbiomed.2023.106837 

Paper contribution 
The paper presents a novel, self-supervised deep learning (DL) method for the quantification 
of magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging 
(MRSI) data. This method is based on a linear combination model (LCM) and uses quantum-
mechanics simulated metabolite responses and neural networks for the quantification of 
relative metabolite concentrations. The proposed DL-based method is evaluated and 
compared to traditional methods using simulated and publicly accessible in-vivo human brain 
MRS data. The paper also includes a novel adaptive macromolecule fitting algorithm. The 
performance of the proposed methods is investigated in a Monte Carlo study. The 
contribution of this paper lies in the development and evaluation of a self-supervised DL-
based method for MRS data analysis that does not require ground truth fitted spectra, which 
is not always practical. This method can improve the accuracy and efficiency of MRS data 
analysis in various applications. To our knowledge, this is the first report showing the 
feasibility of the physics-informed self-supervised DL method for the quantification of MRS 
data. 
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4.6 Paper 6 - NlfTI-MRS: A standard data format for magnetic 
resonance spectroscopy 

Citation 
[6] Clarke, W, Mikkelsen, M , Oeltzschner, G, Bell T.K., Shamaei, A, Soher, B.J., Emir, 

U , Wilson, W. NlfTI-MRS: A standard data format for magnetic resonance 
spectroscopy. Magn Reson Med. 2022; 88: 2358- 2370. doi:10.1002/mrm.29418 

Paper contribution 
The contribution of this paper is the proposal of a standardized format, NlfTI-MRS, for 
magnetic resonance spectroscopy (MRS) data that incorporates essential spectroscopic 
metadata and additional encoding dimensions, and its implementation as an extension to the 
Neuroimaging informatics technology initiative (NlfTI) format. The standard format allows 
for easy data sharing, algorithm development, and integration of MRS analysis with other 
imaging modalities. The paper provides a detailed description of the NlfTI-MRS format 
specification, an open-source command-line conversion program to convert MRS data to 
NlfTI-MRS, and a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image 
viewer for visualization of data in the proposed format. The paper also includes online 
documentation, 10 example datasets in the proposed format, and code examples of NlfTI-
MRS readers implemented in common programming languages. 
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5. CONCLUSION 

In summary, this dissertation aimed to develop a novel DL-based approach for rapid and 
accurate quantification of metabolites in magnetic resonance spectroscopy. 
The proposed methods achieved the objectives of developing a robust DL method for 
preprocessing M R data [25], designing and implementing a fast and efficient DL-based 
approaches for quantifying M R spectra [26]-[29], investigating the applicability of the 
proposed approaches for quantifying concentrations in in-vivo spectra [29], and comparing 
the effectiveness and reliability of DL-based methods with NLLS fitting methods for 
quantification [28], [29]. 
The results of this study demonstrate that the proposed DL-based approaches can improve 
the speed and accuracy of MRS signal preprocessing and quantification in a self-supervised 
manner [29]. The performance of our methods on synthetic data is comparable with the 
traditional methods in terms of accuracy in a shorter amount of processing time. Furthermore, 
a standard data format was proposed to facilitate data sharing among research groups for 
artificial intelligence applications [32]. 
The results achieved in this research, corresponding to the objectives outlined in the Aims of 
the doctoral thesis section, can be summarized as follows: 

1. Two novel unsupervised DL-based FPC methods for MRS data have been developed, 
which can improve the accuracy and efficiency of FPC in various MRS applications. 
The results have been published in an IF journal [Paper 1]. 

2. Fast and efficient DL-based solutions for quantifying M R spectra have been 
developed and tested on simulated and in-vivo data, and the results have been 
published in conferences and IF journals [Papers 2, 3, 4, and 5]. 

3. The applicability of the proposed self-supervised approach for quantifying relative 
concentrations in in-vivo spectra has been investigated [Paper 5]. 

4. The functionality of the proposed self-supervised approach has been extended to 
estimate the uncertainty of the concentration's estimation [Paper 5 and an abstract 
based on the findings of this thesis has been accepted for presentation at International 
Society for Magnetic Resonance in Medicine conference in 2023, in Toronto. 
Additionally, a manuscript based on this research is currently under preparation for 
submission to a high-impact factor journal.)]. 
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5. A comprehensive comparison between DL-based methods and traditional NLLS 
fitting methods for MRS data quantification has been made, and the results have been 
published in two IF journals [Papers 4 and 5]. 

6. In collaboration with an international group of experts, a standard data format has 
been proposed to facilitate data sharing among research groups, and the results have 
been published in an IF journal [Paper 6]. The proposed format has been used in the 
present study for data sharing. 

This research opens the door to further exploration of the applications of DL techniques in 
MR spectroscopy and spectroscopic imaging signal processing, potentially leading to 
significant advancements in medical diagnosis. Some potential applications of DL in M R 
spectroscopy and spectroscopic imaging for future work are: 

Automated analysis: DL algorithms can be trained to automatically analyze MRS and MRSI 
data, reducing the time and effort required for manual analysis, 
Improved signal-to-noise ratio: DL algorithms can be used to denoise M R signals [An 
abstract was presented by the author at the European Society of Magnetic Resonance in 
Medicine and Biology (ESMRMB) conference 2021], improving the signal-to-noise ratio 
and enabling higher-quality data, 
Quantitative analysis: DL algorithms can be trained to perform quantitative analysis of M R 
spectroscopic data, allowing for the automated calculation of metabolite concentrations and 
other important parameters, 
Image segmentation: DL algorithms can be used for automatic image segmentation, 
allowing for the separation of different tissues and structures within M R spectroscopic 
images, 
Signal classification: DL algorithms can be trained to classify MRS signals based on specific 
features, allowing for improved diagnosis and treatment planning. 

Overall, DL has the potential to significantly enhance the capabilities of M R spectroscopy 
and spectroscopic imaging in medical imaging. It is important to note that while DL can 
greatly aid in the analysis and interpretation of M R data, it should be used in conjunction 
with traditional methods and the expertise of experienced radiologists to ensure accurate and 
reliable results. 
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