
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UCENI TECHNICKE V BRNE 

FACULTY OF INFORMATION TECHNOLOGY 
DEPARTMENT OF INFORMATION SYSTEMS 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

REGULATED GRAMMARS: 
CONCEPTS, PROPERTIES AND APPLICATIONS 
REGULOVANÉ GRAMATIKY: K O N C E P T Y , VLASTNOSTI A VYUŽITÍ 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Be. PETR BEDNÁŘ 
AUTOR PRÁCE 

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc. 
VEDOUCÍ PRÁCE 

BRNO 2016 



Master Thesis Spectficatton/17977/2015/xbedna46 

Brno University of Technology - Faculty of Information Technology 

Department of Information Systems Academic year 2015/2016 

M a s t e r T h e s i s S p e c i f i c a t i o n 

For: Bednář Petr, Be. 
Branch of study: Information Systems 
Title: Regulated Grammars: Concepts, Properties and Applications 
Category: Theoretical Computer Science 

Instructions for project work: 
1. Study regulated grammars, their properties and applications. Consult this study with your 

advisor. 
2. Introduce new regulated grammars. 
3. Study the properties of grammars defined in 2. Compare their power with other 

grammars. 
4. Discuss applications of grammars defined in 2. Consider complicated syntax structures 

that are non-context-free. Describe their parsing based on grammars from 2. 
5. Implement and test the parsing methods developed in 4. 
6. Summarize the results. Discuss the future investigation concerning this project. 

Basic references: 
• Rozenberg, G. and Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1 through 

3, Springer, 1997, ISBN 3-540-60649-1 
• Aho, A. V., Sethi, R., Ullman, J. D. : Compilers : principles, techniques, and tools, 

Addison-Wesley, 2nd ed., 2007, ISBN: 0321486811 

Requirements for the semestral defense: 
Parts 1 and 2. 

Detailed formal specifications can be found at http://www.fit.vutbr.cz/lnfo/szz/ 

The Master Thesis must define Its purpose, describe a current state of the art, introduce the theoretical and 
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or 
have been taken over from other sources. 

Each student will hand-In printed as well as electronic versions of the technical report, an electronic version of the 
complete program documentation, program source files, and a functional hardware prototype sample If desired. The 
Information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats 
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report. 

Supervisor: Meduna Alexander, prof. RNDr., CSc , DIFS FIT BUT 
Beginning of work: November 1, 2015 
Date of delivery: May 25, 201 

ICEAÍ TFCMNICKŕ V BRNÉ 
•ntormačniet) (»chnoiogM 

UHM .nformaqilci systému 
612 66 Brno, BeSfcchova 2 

Dušan Kolář 
Associate Professor and Head of Department 

http://www.fit.vutbr.cz/lnfo/szz/


Abstract 
This thesis is investigating regulated grammars. Introduces new modifications of existing 
regulated grammars. Introduces parsing methods of newlz introduces modifications. Dis

cusses problems of determinism in definition of grammars. It studies the expressive strength 
of these new modifications applied on regularcontrolled grammars. 

Abstrakt 
Tato práce se zabývá regulovanými gramatikami. Zavádí nové modifikace existujících reg

ulovaných gramatik. Pro tyto modifikace zavádí metody syntaktické analýzi. Diskutuje 
problémy determinismu v definici gramatik. Studuje sílu nově uvedených modifikací ap

likovaných na regulárně regulované gramatiky. 
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Chapter 1 

Introduction 

Languges are the single meaning of a communication. Humans use natural languages to 
convey and store information. Natural languages are rich in their varieties and capabilities. 
They have also few crucial disadvantages. Mutual understanding of two different parties 
inherently depends on shared model of a world. Any differences can lead to information 
loss or change. In time, the model can be changed. This may result in loss of stored 
informations even with unharmed data, which represents it. The natural languages proven 
itselves to be hard to machine analyse. This is largely due to wide range of variations and 
minute differences, brought by any human user. 

The disadvantages and hardship with using natural languages while interfacing comput
ers, led to creation of formal languages. Now, formal languages are one of corner stones of 
theoretical informatics. They allow us, to record both data and algoriths, used to manip
ulate those data. Basic form of programming languages and communication protocols are 
usually defined using formal languages. Their rigid and formaly specified notation allow us 
to communicate safely, without the danger of misinterpretation. 

The formal languages are classified into different language families. Families are created 
by similarities in instances of related instances of languages. They also pose a restrictions 
on languages. The formal language theory uses mainly two basic kinds of formal models: 
grammars, which defines a language by capability to generate its every word, and automata, 
which defines a by ability to accept its every word. 

The grammar is a generative model of formal language. The start symbol is rewriten, 
untill a sentence of language is acquired. The rewrites are controlled by a set of rules, which 
are an only form of action a grammar can take. 

One of the families of formal languages are context-free languages, specified by context-
free grammars. The field of context-free grammars was studied for a long time. The 
goal was, to use them to specify both, a natural and programming lanugages. Context-
free languages, and grammars, are comparably simple in their form. But they often fail 
in real applications, due to limits of their expressive strength. Not even commonly used 
programming languages can be specified by them. 

Regulated languages aims to increase expressive power of their unregulated counter
parts. This should be achieved without changing of basic form of production rules. In 
history, many models of regulated grammars has been introduced. They use regulations 
both imperatively, when describing order of productions, or declaratively, when deciding 
only by the combined effect, created by using number of production rules. 
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1.1 Focus 

The goal of this thesis is creation of new models of regulated grammars. This new models are 
based on already existing models, not creating entirely new branch of regulated grammars. 
We introduce new modes of operation, for already existing regulated grammars. 

For newly introduced models, a formal definition and an example of parsing technique, 
is presented. The computational power is investigated. 

1.2 Organization 

The theis is organized into 6 chapters. We will look closer to the content of each of them. 

• Chapter 1, this chapter, serves as a simple introduction into field of study, outlines 
the focus of this work and describes its structure. 

• Chapter 2 describes background definitions of basic terms, used later in this thesis. 
This includes terms on formal languages, grammars and automata. This thesis require 
the reader to be familiar with basic mathematical concepts and notation. 

• Chapter 3 is a closer study of the current state of regulated grammars study. The reg
ulated grammars are cathegorized acording to similarities of productions and means 
of conduct. 

• Chapter 4 describes a basic model used for parsing of a newly introduced grammars. 

• Chapter 5 introduces the first of newly proposed modes of regulation, which is called 
pause-paused mode. We define this mode for already existing language-controlled 
regulation model. Chapter describes a way, to generate a valid sentence under this 
mode and introduces a way for parsing a sentence using this modification. 

• Chapter 6 introduces the second of newly proposed modes of regulation, this one 
is called determinism-paused mode. As for the first mode, we define this mode for 
already existing language-controlled regulation model. Chapter describes a way, to 
generate a valid sentence under this mode and introduces a way for parsing a sentence 
using this modification. 

• Chapter 7 summarizes the results of this work, and discusses the several ways for 
further research of recently presented modes of regulated grammars. 
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Chapter 2 

Basic Concepts 

This chapter gives the survey of the fundamental terms,used in formal languages theory 
and later in this thesis. At first section 2.1, the formal languages and its parts are defined. 
Next two sections, 2.2 and 2.4, serves as an introduction to the models, used to specify 
formal languages. A section 2.3 is dedicated to establishing of hiearchical view of formal 
languages. A section 2.5 is explaining the term of derivation tree. Lastly, a section 2.6 
describes a term of syntax analysis. 

The definitions and formalisms in this chapter are based on [10], [11], [7] and [11]. 

2.1 Basic Definitions 

In order to underestand terms, introduced in this thesis, we need to establish a common 
set of knowledge. Hence, we will introduce several terms, related to the formal languages. 
This terms are used later in this thesis. 

The set, tuple and sequence are standard mathematical devices. Rigorous definitions 
can be studied in literature. It is expected from the reader, to be familiar with them. For 
sequence, the term group may be used interchangeably. 

2.1.1 Alphabets and Words 

Definition 2.1 (Symbol) 

The symbol is a basic atomic unit in formal languages. 

Definition 2.2 (Alphabet) 

The alphabet is a finite, nonempty set of symbols. 

Definition 2.3 (Size of alphabet) 
Let E be an alphabet. Then the |S | denotes the size of alphabet S. It is defined as a number 
of symbols contained in set S. The empty alphabet is an alphabet, containing no symbols. 
Definition 2.4 (Word and string) 
Let X be an alphabet. The word is then ordered group of symbols of any length. For 
a group (xo, x\,..., xn), where n > 1, we can use shorter notation XQX\ ... xn. Alternative 
name for a word is string. 

• e is an empty group, which contains no symbols. It is called an empty word. 

• If x is a word over an alphabet £ and a G X , then xa is a string over an alphabet X . 
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Let E* denote the set of all words over E and s e t E + = E * \ { e } . 

Definition 2.5 (Length of word) 
Let x be a word over an alphabet E . Then length of word x , denoted ctS |x|, is defined as 
a number of symbols in a word. 

• If x = e, then \x\ = 0. 

• If x = aia2 . . . a„, where a\ G E , for all 0 < i < n and some n > 1, then |x| = n . 

Definition 2.6 (Concatenation of words) 
Let x and y be two words over an alphabet E . Then, xy is the concatenation of x and y. 
For every word x, it holds xe = ex = x. 

Definition 2.7 (Power of word) 
Let x be a word over an alphabet E . Then, xn denotes nth power of word, which is defined 
such: 

• x° = e, 

• xn = x x n _ 1 , where n > 1 and n is an integer. 

Definition 2.8 (Subword and substring) 
Let x and y be two words over an alphabet E . Then x is a subword of y if there exist two 
words z and z', over E , such that zxz' = y. li x £ {e, y} then x is a proper subword of y. 

Definition 2.9 (Prefix and suffix) 
Let x, y and z be words over an alhabet E , such that x = yz. Then y is a prefix of x and 2 
is a suffix of x. If y ^ {e, x} , then y is a proper prefix of x . If z ^ {e, x} , then z is a proper 
suffix of x. 

2.1.2 Languages 

Definition 2.10 (Language) 
Let E be an alphabet. Then any set L C E* is a language over E . The set E* is called 
the universal language. It contains all strings over the alphabet E . If L = 0, then L is an 
empty language. If L contains single string, then L is a unary language. 

Definition 2.11 (Concatenation of languages) 
Let L\ and L2 be two languages. The concatenation of languages L\ and L 2 , denoted 
by L1L2, is defined as a language containing all possible concatenations of strings of both 
languages. L 1 L 2 = {xy|x G L\ A y G L2} . 

Definition 2.12 (Union of languages) 
Let L i and L2 be two languages. The union of languages L\ and L 2 , denoted by L i U L 2 , is 
defined as a language containing sentences of both languages. L 1 U L 2 = {x|x G L i V x G L2}. 

Definition 2.13 (Intersection of languages) 
Let L\ and L2 be two languages. The intersection of languages L\ and L 2 , denoted by 
L\ n L 2 , is defined as a language containing sentences, which appears in both languages. 
L1nL2 = {x\x G L\ A x G L 2 } . 
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Definition 2.14 (Difference of languages) 
Let L\ and Li be two languages. The difference of languages L\ and L 2 , denoted by Li\Li, 
is defined as a language L\ without a sentences of language L2. L\ \ L2 = {x\x G L\ A x ^ 
L2}. 

Definition 2.15 (Complement of language) 
Let L be a language over an alphabet E . The complement of language L, denoted by L, is 
defined as L = E* \ L. 

Definition 2.16 (Power of language) 
Let L be a language. The nth power of language L, denoted by Ln, for n > 0, is defined as 
a number of language concatenations. The recursive definition is 

• L° = {£}, 

• Ln = LLn~l, where n > 1 and n is an integer. 

Definition 2.17 (Class of languages) 
The class of languages is defined as a set of languages. 

2.2 Grammars 

In the formal language theory, a grammar is a fundamental model for generating languages. 
When grammar defines a language, then all and no other string can be generated by this 
grammar. 

Definition 2.18 (Phrase structure grammar) 
A phrase structure grammar G is a quadruple 

G = (N,T,P,S), (2.1) 

where 

• A?" is an alphabet of nonterminals; 

• T is an aplhabet of terminals, N n T = 0; 

• P C (N U T)*N(N U T)* x (N U T)* is a finite set of rules; 

• S £ N is the start symbol. 

Pairs (a, /3) G P are also called rewriting rules or production rules. 

Convention: Instead of (a,/3) € P, the form (a /J) G P can be used. 

The set V" = U T is the toiaZ alphabet of G . A rewriting rule a -> e e P is called an 
erasing rule. If there is no erasing rule in P, then we say that G is a propagating, or e-free 
grammar. 

The word from V* is called a sentential form and the word from T* is called a sentence. 
The G-based direct derivation is a relation over I/*. It is denoted by a symbol and 

defined as 

x^GV (2-2) 

9 



if and only if x = x\ax2l y = xi/3x2, where x\, X2 G V* and a —>• f$ G P. 
Since =4>g is a relation, =4>G is the fcth power of =4>g> for /c > 0, =4>G is the transitive 

closure of =4>g> and =^G is the reflexive-transitive closure of =4>g- Let Z) be a derivation 
S =4>G x, if x G T*, then D is a successful (or terminal) derivation. 

The language of G, denoted by L(G), is the set of all sentences defined as 

L(G) = {to G T*|5 ^ w}. (2.3) 

For every phrase-structure grammar G, we define two sets, F(G) and A ( G ) . -F(G) 
contains all sentential forms of G . A(G) contains all sentential forms from which there is 
a derivation of a string in L{G). 

The grammar G can be writen as a quintuple (iV, T, Vl/, P, S). In this form, the additional 
$f denotes a set of labels. For each rule there exists exactly one label, which is paired with 
a bijection tp from \l/ to P. 

2.3 Language Families 

Language family is other name used for language class. This name is usualy used for 
systematically created class, not just arbitrary created one. Wi th both language family 
or class, we sometimes use another term, an expressive power, or computational power. 
The model has an expressive power of a certain language class, when we are able to fully 
describe this class by this model. Wi th expressive power we manipulate in a similar maner 
to sets. When a model has a power to express certain class Ci, we expect it to have power 
to express any class C2 Q £<i fully. 

2.3.1 Recursively Enumerable Languages 

Definition 2.19 (Recursively enumerable language) 
A recursive enumerable language is a language, for which there exists a phrase-structured 
grammar. 

Commonly used abbreviation is R E or type 0. Any language models that characterize 
R E are said to be computationaly complete. They have the same expressive strength as all 
possible language-defining procedures according to Church-Turing's thesis. 

Convention: The family of recursively enumerable languages is denoted by C{RE). 

2.3.2 Context-Sensitive Languages 

Definition 2.20 (Context-sensitive grammar) 

A context-sensitive grammar is a phrase-structure grammar 

G=(N,T,P,S) (2.4) 

such that every a —>• (3 G P satisfies the form 

a = X!Ax2, (3 = X!yx2, AeN, a,/3 G (NUT)*, y e(NUT)+. (2.5) 

Definition 2.21 (Context-sensitive language) 

A context-sensitive language is a language generated by a context-sensitive grammar. 

Commonly used abbreviation is CS or type 1. 

Convention: The family of context-sensitive languages is denoted by C{CS). 
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2.3.3 Context-Free Languages 

Definition 2.22 (Context-free grammar) 
A context-free grammar is a phrase-structure grammar 

G = (N, T, P, S) 

such that every a —> f3 € P satisfies the form 

a G N, /3€ {NUT)*. 

Definition 2.23 (Context-free language) 

A context-free language is a language generated by a context-free grammar. 

Commonly used abbreviation is C F or type 2. 

Convention: The family of context-free languages is denoted by C(CF) 

Ambiguity 

For context-free languages we define few additional properties. These are directly tied to 
context-free grammars. 
Definition 2.24 (Ambiguity) 
Let G = (N, T, P, S) be a context-free grammar. If there exists a word x 6 L(G) such 
that S =>Q x[ni] and S =^ xfa] with 7ri / TT2, then G is ambiguous; otherwise, G is 
unambiguous. 

Definition 2.25 (Inherent ambiguity) 
Let L be language. If every context-free grammar G satisfying L(G) = L is ambiguous, 
then L is inherently ambiguous. 

2.3.4 Metalinear Languages 

Definition 2.26 (Metalinear grammar) 
A metalinear grammar is a phrase-structure grammar 

G = (N, T, P, S) 

such that every a —> (5 € P satisfies the form 

ttGiV, P = x\Bx2, x1,x2 e f , Be (NUe) 

or 

a = S, 15 = xQBlx2B2 ... xn.xBnxn, X l G T*, B G (JV \ {5}). (2.10) 

Occurence of rule in second form implies, that no rule uses symbol S on its right-hand side. 

Definition 2.27 (Metalinear language) 

A metalinear language is a language generated by a metalinear grammar. 

Commonly used abbreviation is M L I N . 
Convention: The family of context-free languages is denoted by C(MLIN). 
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2.3.5 Linear Languages 

Definition 2.28 (Linear grammar) 

A linear grammar is a phrase-structure grammar 

G=(N,T,P,S) (2.11) 

such that every a —>• (3 G P satisfies the form 

a e N, j3 = X!Bx2, xi, x2 G T*, B G (N U e). (2.12) 

Definition 2.29 (Linear language) 

A linear language is a language generated by a linear grammar. 

Commonly used abbreviation is LIN. 

Convention: The family of context-free languages is denoted by C(LIN). 

2.3.6 Regular Languages 

Definition 2.30 (Regular grammar) 

A regular grammar is a phrase-structure grammar 

G=(N,T,P,S) (2.13) 

such that every a —>• (3 G P satisfies the form 

a G N, (3 = aB, a G T, B G (NUe). (2.14) 

Definition 2.31 (Regular language) 

A regular language is a language generated by a regular grammar. 

Commonly used abbreviation is R E G or type 3. 

Convention: The family of regular languages is denoted by C{REG). 
The regular language, is the weakest form of infinite languages we are using. If we want 

to write down any infinite language, we cannot list every possible sentence. We usually use 
grammar, automata or set of conditions, that specifies this language. For regular languages 
we also specify regular expressions. These are based on specification of sets of allowed 
substrings. 

Used notation of regular expressions: 

• 0 is a regular expression denoting an empty set: 

• e is a regular expression denoting a set {e}: 

• a is a regular expression denoting a set {a}, for a G S; 
• if x and y are both regular expressions, denoting a sets X and Y, we may construct 

another expressions: 

— x + y is a regular expression, denoting a set X U Y, 
— xy is a regular expression, denoting a set X • Y, 
— x* is a regular expression, denoting a set X*, 
— x+ is a regular expression, denoting a set X • X*, 
— ar is a regular expression, denoting a set e U l . 
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2.3.7 Finite Languages 

Definition 2.32 (Finite languages) 
A finite language is a lanugage L with size \L\ = n, where n is a finite integer. A finite 
lanugage can be completly listed in a finite ammount of time. 

Commonly used abbreviation is FIN. 

Convention: The family of finite languages is denoted by C(FIN). 

2.3.8 Chomsky Hierarchy 

Language classes can be classified into hierarchical language system. This system is organ
ised by properties of languages. One of the well-known hierarchies was created by Noam 
Chomsky [ ]. This hierarchy has proven itself to be usefull in qualification of concrete 
models of languages. It is specified with theorem 2.1 [4]. 

Theorem 2.1 (Chomsky hierarchy) 
C(REG) C C{CF) c C(CS) C C(RE) 

Figure 2.1: Chomsky hierarchy of languages 

This hierarchy can be expanded by adding another classes of languages, to get expanded 
hierarchy 2.2 [ ] [Theorem 0.2.3]. 

Theorem 2.2 (Extended Chomsky hierarchy) 
C(FIN) c C(REG) C C(LIN) c C{CF) c C(CS) C C{RE) 

2.4 Automata 

In the formal language theory, an antomata serves as a counterpart to grammars. Automata 
are models for accepting languages. When language is defined by an antumata, then this 
automata has to succesfully stop for all and no other string of this language. This section is 
limited to finite automata, pushdown automata and grammar automata because they serve 
as a models used later. Many other automata systems exists. 

2.4.1 Finite Automata 

Finite automata is one of basic automata models. It has advantage of constant space 
complexity, which also limits its expressive power. 
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Definition 2.33 (Finite automaton) 
A finite automaton M is a quintuple 

M = (Q, E , R, s, F), (2.15) 

where 

• Q is a finite set of states: 

• E is an input alphabet, Q D E = 0, 

• R C Q ( E U {e}) x Q is a finite set of rates: 

• s G Q is the initial state: 

• F C Q is a set of _/maZ states. 

Convention: Instead of (pa, g) G i?, the form pa —>• g G i? is preferred. 

If R has the properties of a function and it holds, that 

Vp G Q Va G E 3g, g' G Q : p -> g G i? pa - ) • g' ^ i? (2.16) 

then finite automata is said to be deterministic. 
A configuration E of M , is defined as S G Q E * . Let £ = pau> and £' = gtw be two 

configurations of M, where w G E * , a G E U {e}, and p,q <E Q. If r : pa —> g G i? si a rule, 
then M makes a move from £ to £' according to r , writen as £ \~M C M o r C 

The language L(M) accepted by finite automaton M is defined as 

L ( M ) = {ro G E * | OT / [ T T ] , / G F } . (2.17) 

Convention: Finite automata is abbreviated with FA, the deterministic variant by 
DFA. The family of languages accepted by F A is denoted by C(FA) 

Theorem 2.3 (Fininte automata strength) 
C(FA) = C(REG) [13] 

2.4.2 Grammar Automata 

The grammar automaton is an automaton builded upon a finite automaton. To this au
tomaton is added a work string and input string. The automaton generates a working 
model of a sentential form in its work string. Using this template, it reduces the input 
string t i l l no original input symbols are left. 

Definition 2.34 (Grammar automaton) 

The grammar automaton GA, see [2] [Definition 4.1], is an 8-tuple 

GA = (Q,E,T,R,s,S,F,5), (2.18) 

where 
• Q = Qe U Qr, Qe H Qr = 0, where Qe is a finite set of empty states, which does not 

apply any rules and Qr is a finite set of non-empty states. Every non-empty state t 
applies exactly one production rule pt : r + —>• T*, when the automaton moves into 
this state: 
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• £ is an input aplhabet: 

• r is an alphabet of work symbols: 

• C (Q x N x / x Q) is a finite set of rules, where / : (T* x S* x {0,1}) is a feasibility 
function. The rule, writen as ip,v,f,q) G R, is feasible only when the feasibility 
function has a value 1 as its last element. The symbol v denotes the priority of the 
rule: 

• s G Q is an initial state: 

• S G T"1" is an initial work string: 

• F C Q is a finite set of _/maZ states: 

• <5 : (r* x S* x T* x £*) is a normalization function, which is applied after every 
application of the rule, to acquire a normalized form of a work and input string. 

Convention: Instead of (p,v, f, q) G R, the form p{v, / ) —>• 5 G R is preferred. 

If feasibility function is constantly 1 and a priority is 0, the rule is called to be joining. 
The rule is r\ is said to be executable only when 

n : p (u i , / i ) -> 9i, 
r 2 : p(v2,h) -)• 92, (2.19) 

where n , r 2 G P , v i < «2, S i G T*, S 2 G £* and / i ( 5 i , 5 2 ) = 1 A f2(Si,S2) = 0 
Let 

so, s i , • • •, Sn, for ^ ^ 1, be a string of states of grammar automata, then therealways 
exists at least one rule such that 

sm{v, f) -> s m + i £ i ? A 0 < m < n - l . (2.20) 

The configuration of the grammar automata is a triplet (g, P , I), where q G Q, P G T* 
is the work string and l £ E * denotes the input string. 

The grammar automaton is said to be finished, when in an actual configuration (q, P, I), 
the state q G F and both P and / equals e. 

The transition of a grammar automaton from a state p into a state g by a rule r is 
denoted by 

p\-q[r]. (2.21) 

For joining rule, we can use a notation 

ph£q[r]. (2.22) 

The step c[r] of a grammar automata from a state into a state p2 by a rule r is a string 
of transistions, containing exactly one non-joining transition, such that 

c : p o h * p i hp2[r] . (2.23) 

For every state p G Q if a grammar automaton is defined a joining closure C (p) such 
that 

C(p) = {<? I < z € Q A p h * q}. (2.24) 
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Convention: Abbreviation of grammar automata is GA. 

The grammar automata starts at initial configuration, which consists of initial state, 
initial work string and initial input. At every step, the automata applies a single rule, 
represented by an arriving into an automata state. This transition is permitted only when 
a feasibility function for current configuratio equals 1. There exists a hierarchy of rules, 
created by its priorities. Lower priority is always preferred. After each change of a work or 
input string, the normalization function is used, to acquire a mormalized state, ready for 
next step. 

2.5 Derivation Trees 

A derivation tree represents the structure of a derivation using a graph. This representation 
does preserve the structure of the derivation, but ommits an order in which individual rules 
were applied. 

It is expected from a reader to be familiar with the basic terms of the graph theory. 
These includes graph, directed graph, edge, path and tree. For more information, see [8]. 

Definition 2.35 (Directed subtree) 

Let T = (V, p) be a directed tree. A tree T" = (Vl,pl) is a directed subtree, when 

• V C V and V / 0; 
• p' = {y1 x V) n p: 

• there is no simple path from any node in V' to any node in V \ V in T 

Definition 2.36 (Ordered directed tree) 
Let T = (V, p) be a directed tree. It is an ordered directed tree, when upon nodes v\, vi... vn, 
for n > 0, which are direct descendants of node u, there exists total order. 
Definition 2.37 (Derivation tree) 
Let G = (N, T, P, S) be a context-free grammar. Then derivation tree is an ordered directed 
graph, such that: 

• Nodes of a derivation tree are labelled with a member of N U T U {e}: 

• Root of a derivation tree is labelled with S: 

• Let nodes v\, vi... vn, labeled with y\,yi... yn, be a direct descendants of a node u, 
labeled with x. The ordering < is defined as Vi < Uj+i. Then there exists a rule 
x —> y\V2 • • - Vn- Descendant labeled with a symbol e is allowed only for an erasing 
rule. 

2.6 Syntax Analysis 

Grammars are used to generate strings of formal language. Syntax analysis [ ], or parsing, 
is a reverse process with a simple goal. Take a concrete string as an input and decide, 
whethever this string is part of analysed language, or not. 

The syntax analysis is performed by a syntax analyser. This syntax analyser is created 
on the basis of a concrete grammar. Its input is a sentence, for which it decides membership 
of a sentence to the language specified by the grammar. 
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We can classify syntax analysers by the properties of its analysis process. We can divide 
them based on a direction of derivation and a number of tried derivations. 

Top-Down Approach 

The top-down analysis is starting from an initial string, defined by the grammar. This 
strings is then derived using a derivation rules, also specified by the grammar. The deriva
tions continue, until the derived string does not equal the input, in which case the output 
is positive. 

Bottom-Up Approach 

The bottom-up approach starts with the input string itself. On this string, it applies the 
derivation rules in a reverse, in an attempt to acquire the initial string of the grammar. 
When the analysis acquires the initial string, it proves, there is a derivation for an input 
sentence and ends. 

Brute Force Approach 

This method of syntax analysis is using some sort of blind search, to generate every possible 
derivation tree for a given input. It can use any way, to generate the combinations. We 
should note, that the grammars can contain a recursion, in which case, the depth-first 
search [ ] may not be the best choice, because of infinite loop may occure. 

Knowledge Based Approach 

This approach is using an input string and possible an analysis of the grammar itself, to 
limit the number of generated possibilities. When the number is decreased down to 1, we 
say it is deterministic. 
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Chapter 3 

Regulated Grammars 

Regulate grammars are one of many types of grammars introduced throughout the history. 
Their main goal is to provide greater expressive power or easier reasoning about instances 
of grammars. They should achieve this goals without significantly raising complexity of 
their model. 

Common practice for regulated grammars is to join two simpler models to achieve 
expresive power of a single, more complicated, model. This combination of models is usually 
implemented using a grammar, to generate a sentence by its rules, and an additional model 
to restrict the derivations. Based on type of used model, we characterize regulated grammar. 

This chapter defines several different types of regulated grammars. Defined grammars 
are grouped according to type of model, used for regulation. Other types also exists, more 
complete list can be found in [7]. In section 3.1 we will discuss a reasons, we might consider 
in choosing a regulated grammar over an unregulated one. Section 3.2 defines a basic 
concepts used in field of regulated grammars. The folowing sections serve as a short list of 
definitions of concrete regulated grammars models. Section 3.6 introduces commonly used 
modification used upon regulated grammars. 

We should note, that number of regulated grammars, discussed in this chapter were 
initialy introduced by in special forms. These was later studied and generalized. 

The survey of various types of regulated grammars is mostly based on [14] and [7]. 

3.1 Reasons to Study 

Ordinary grammars are using only their rules to transform start symbol into final sentence. 
In every production step, you have to choose a single rule of production from the same full 
set of rules. You always have a freedom in what rule you choose to use. Let us compare 
the two most used unregulated models. 

Regulated grammars are trying to join smaller complexity of using simpler grammars 
with greater expresive power of their more complex relatives, by restricting grammars in 
their operation. 
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3.1.1 Context-Free Grammars 

Example 3.1 (Simple context-free grammar) 
Look at simple example of context-free grammar G\. 

Pi 

(N^P^S) 
{S,A,B} 

(3.1) 
(3.2) 

(3.3) {a,b} 
{n:S -»• A, 
r2:S 
r 3 : A aA. 
r 4 : A aB 
r 5 : B ->• 6̂ 4, 
r 6 : 5 ->• 65, 
r7 : A e, 

r 8 : 5 - ) • e} (3.4) 

We can easily see that grammar G\ is generating language L\, which is composed of sen
tences using only two symbols in any amount and in any order. In every derivation step, we 
specify the symbol generated in next derivation step, by choosing appropriate nonterminal 
symbol. And we can always choose any of them. 

Example 3.1 is a demonstration of a grammar with great freedom of choice. Every 
nonterminal symbol in sentence form can be anytime rewriten in more than one way. This 
freedom of choice results in generating a simple language without structure, the universal 
language. 

Context-free grammars are using simple format of production rules. Each rule has 
exactly one nonterminal symbol on the left-hand side. Hence, all of these rules may be 
used to rewrite a single symbol to specified sequence of symbols without any limitations 
imposed by symbols surrounding them. This greatly limits expressive power of context-free 
grammars. 

3.1.2 Context-Sensitive Grammars 

Non-context-free grammars are taking into consideration surrounding symbols and thus 
improving expressive power of non-context-free languages. Yet, context-sensitive rules are 
relying on occurence of strict conditions, prescribed by their left-hand sides. 

Standard context-sensitive grammars are using single finite string to define left-hand 
side of its rules. This bears a certain complication, when we want to react on conditions, 
that had occured in a different part of sentence. Source of this complication is the fact, that 
while left-hand side of a rule is finite, the substring that stands between context-sensitive 
parts of a string might be always greater. 

L j = {xn\x G {a,b},n > 0} (3.5) 
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Example 3.2 (Simple context-sensitive grammar) 
Consider the contex-sensitive grammar G2. 

G2 = (N2,T2,P2,S) 
N2 = {S,Q} 

(3.6) 

(3.7) 

(3.8) T2 = {a, b, c] 

Pi = {fi '• S —>• abc, 
r2 : S —>• aSQ, 
r3 : 6Qc —>• bbcc, 
r^-.cQ^- Qc} (3.9) 

L 2 = { a n 6 n c n | n > 1} (3.10) 

The grammar G2 is generating canonical language L2[9, Fig. 15.1]. It is using the rule r2 

to prolong current string, by adding another terminal symbol a. Rule r± serves only for 
shuffling reminder symbol Q to its final place between group of symbols b and c. Next 
special rule rz transforms this symbol to its terminal symbols. 

The way of operation of grammar G2 from example 3.2 may be seen as obfuscation of 
its real goal. The real goal is, in short, to generate strings with three parts of equal length. 
In order to do just that, it needs to generate two sequences and later convert one of them 
into two sequences of equal length. For that reason, it employs a remainder symbol and 
a shuffling rule to move it along the sentence. The remainder symbols is used to mark 
unfinished production or computation. 

On this simple example, we may see, that computation of a final position of a single 
symbol in a sentential form might need a great number of separate derivations. 

3.1.3 Computational History 

In the light of the possibility to shuffle symbols, we have to consider another disadvantage 
of using context-sensitive grammars. We cannot easily form a derivation tree for every 
sentence generated by any context-sensitive grammar. Let us look at a derivation tree as 
a directional continuous non-cyclic graph, where every node of the graph has atmost one 
inbound edge. Every rule, which has string of a left-hand side longer than 1, would result 
in creating a node of a tree with more than one inbound edge, resulting from rewriting 
more than one symbol. We cannot remove this disadvantage. This contradicts a definition 
of a derivation tree. Result is unability to use a standard derivation tree to represent 
a sentence of context-sensitive laguage. 

For contex-free grammars, the derivation tree represents a record of history of compu
tation. Every manipulation with sentence, from entering a start symbol to acquisition of 
complete final sentence, is recorded inside a derivation tree. It can not only be viewed as 
a record of history, but also as a record of a membership relation of a concrete terminal 
symbol with a subtree of derivation tree. More different rules may have generated single 
terminal symbol and in derivation tree, we may find complete path of used derivations from 
start symbol to a terminal symbol. One thing missing in normal derivation tree is an order 
of used derivations. 

This records of history may prove useful, when we are not tasked with simple generation 
or accepting of a strings from grammar-defined language, but with practical parsing of its 
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sentences, or using them for practical purposes. As an example for this could serve semantic 
control used during parsing of programming languages in compilers. The information about 
a membership of a sentence into a language is not enough. We also need to read the sentence 
and extract informations, contained within. 

For context-sensitive grammars we are unable to use simple syntax tree, but we may use 
simple directional continuous non-cyclic graph to record whole computational history. But 
this representation has one major disadvantage. Its size may quickly grow, when grammar 
is moving a lot of information around. Look at example 3.2. For n, of already accepted 
symbols c, we need to apply the rule r± n-times. 

3.2 Basic Concepts 

Regulated grammars are joining multiple, more or less separate models into a single one. 
One of these models has to be grammar, so it can be called a regulated grammar. This 
grammar is usually called core grammar. This grammar is usually modified by changing 
the way of its usual operation. Either by modifying definition of single derivation or its use 
in definition of language. This is usually accompanied by adding annotations to original 
rules of core grammar. 

Regulated grammars are usually using context-free grammars as underlaying grammars. 
This has simple underlaying reason. 

We are trying to keep complexity of both models as low as possible. Wildly used 
regulating models have complexity of regular language. To serve as example, we can take 
Regular-controlled grammars, which have by definition regulating language regular. As 
next example may serve Programmed grammars or State grammars, both of which are 
based around finite automata. 

When we would use context-sensitive grammars as underlying grammars, we would 
easily achieve greater expressive strength. But the price for it would be more complex 
reasoning about generated language. 

When we would join two models of regular language expressive power together into 
single one, we would not be able to increase combined power to context-free, much less 
context-sensitive. Hence regulated grammars, using only regular grammar compliant rules, 
are of limited use. 

3.3 Context-Based Regulation 

Context-based grammatical regulation places context-related restrictions upon their sen
tential forms. This contextual conditions must be met by whole current sentential form. 
We will analyse a short list of grammars in this category. 

3.3.1 Random Context Grammars 

Random context grammars are adding two sets of symbols to every rule. One of them 
specifies symbols that has to be present in current sentential form and the other specifies 
symbols that must not be present. If this two conditions are met, then the production rule 
may be used. Any rule with satisfied conditions is alowed to be used. 
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3.3.2 Context-Conditional Grammars 

Context-conditional grammars are using the same mechanism as Random context gram
mars. But insted of mere symbols, the sets contains whole strings, with the same meaning 
as in random context grammars. 

3.3.3 Scatered Context Grammars 

Scatered context grammar is changing notion of a derivation as application of single pro
duction rule. It uses n-tupples of simple production rules. Every n-tupple is handled as 
single rule. Therefore all simple rules of selected n-tupple must be used simultaneously and 
in the same relative position to each other. 

3.3.4 Restricted Derivation Tree Grammars 

Whole range of grammars with restricted derivation trees[12] was introduced. This type 
of regulation is using regulating language to check context independently on rules used 
to produce sentential form. This language is used to check the form of a constructed 
derivation tree, rather then simply using current sentential form for restricting subsequent 
rewrite rules. 

3.4 Rule-Based Regulation 

This type of regulation places restrictions on the use of rules during derivation. Restrictions 
defines subsets of rules that are allowed for next derivation step. We will analyse a short 
list of grammars that can be placed in this category. 

3.4.1 Regular-Controlled Grammars 

Regular-controled grammars are one of integral pieces of theory of regulated rewriting. 
They use control language defined over a set of rules of a core grammar. The control 
language specifies allowed sequences of rules in G used to generate a sentence. 

Definition 3.1 (Regular-controlled grammar) 
A regular-controlled (context-free) grammar [ , Definition 5.1.1], is a pair 

H = (G,E), (3.11) 

where 

• G = (N,T,^f, P, S) is a context-free grammar, called core grammar: 

• S C iff* is a regular language, called control language. 

The language of H, denoted by L(H), is defined as 

L(H) = {w e T*\S w[a] AaeZ} (3.12) 

Convention: The abbreviation for regular-controlled grammar is R C and the family 
of languages generated by it is denoted by JC(RC). 
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3.4.2 Matr ix Grammars 

Matrix Grammar is a pair H = {G, M), where core grammar G is extended by a finite set M 
of sequences of rules. This grammar can be viewed as a special case of a regular-controlled 
grammar, where the control language is specified to be an iteration over a finite language. 

3.4.3 Programmed Grammars 

Programmed grammar is a context-free grammar, in which two sets, o> and ipr are attached 
to each rule r. Both of these sets are subsets of all rules of underlying grammar. If a rule r 
is used, then one of rules in ar must be used next. If a rule r could not be used, then one 
of rules in ipr has to be used next. 

Definition 3.2 (Programmed grammar) 
A programmad grammar is a quintuple 

G = (N, T, Psi, P, S) (3.13) 

where 

• N, T, and S are defined as in a context-free grammar: 

• P C * x N x (JV U T)* x 2* x 2* is a finite relation, called the set of rules. 

Convention: Instead of (r,A,x,ar,(pr) G P, we write (r : A —>• x,ar,(pr) G P. A is 
refferd to as the left-hand side of r, and x is reffered to as the right-hand side of r. 

Let V = iV U T be the ioiaZ alphabet. The direct derivation relation, symbolically denoted 
by =̂>G> is defined over V* x * as follows: for (x i , r ) , (x2, s) <E V* x fy, 

(Xl,r) ^ G (X2,s) (3.14) 

if and only if either 

x\ = yAz, X2 = ywz, (r : A—> w, ar, (pr) G P, and s G ar (3.15) 

or 

x\ = X2, (r : A —>• w, ar, (pr) G P, x\ ^ yAz for any y and z, and s G < r̂ (3.16) 

The (iu,s) G y* x f is called a configuration. The language of G is denoted by L(G) 
and defined as 

L(G) = {w G T*|(5,r) (iu, s), forsomer, s G ̂ } (3.17) 

Convention: The abbreviation for programmed grammar is P and the family of lan
guages generated by it is denoted by C{P). 

3.4.4 State Grammars 

State grammar is a context-free grammar extended by finite-state mechanism. Each rule 
is enhanced by source and destination state from a finite set of states. At each derivation 
step, leftmost nonterminal symbol, for which there exists a rule with source state equal to 
curent state, is rewriten, using this rule. 
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3.5 On Adaptive Grammars 

Rule-based regulated grammars are using a controlling model to select subset of production 
rules of core grammar that are allowed to be used in next production. But the original 
set of rules, from which they pick, does not change. The grammar remains constant. This 
behaviour may result in large set of rules in core grammar. This set is then greatly reduced 
for every production step. 

There also exists related model of Adaptive grammars^]. For this concept was histor-
icaly used many names, which includes Extensible, Modifiable and Dynamic. This gram-
mmars are using additional mechanisms to add, remove or modify rules in core grammar. 
They then use whole grammar at any given time. 

The addition and modification of rules distinquishes the class of adaptive grammars 
from the class of regulated grammars. Adaptive grammars can be used to specify dynamic 
languages by single grammar without additional semantical checking. 

3.6 Leftmost Modification 

With unregulated grammars we sometimes use leftmost modification of original grammars. 
This may be viewed as a regulation of some sort. The usage of this modification can greatly 
affect the outcom lanugage of a grammar. 

This modification can be defined as a regulation of both, used nonterminal and terminal. 
Although the leftmost usage of terminals is usually defined only in terms of automata. 

Let us define this modification of languages [7][54, type I]. 

Definition 3.3 (Unregulated leftmost modification) 
Under unregulated leftmost modification, the leftmost occurence of a nonterminal has to be 
rewritten. 

Convention: When a class of grammars G is using unregulated leftmost modification, 
we add a symbols UL to its upper index, to form GUL. 

This modification greatly diminishes the number of usable nonterminals to at most 1 in 
every derivation step. This takes also a great toll on expressive power of modified grammar. 
Even with control model in place, we do not surpass the original model. 

Lemma 3.1 (Strength under unregulated leftmost modification) 

C(PUL) = C(CF) [ ][Theorem 1.4.1] (3.18) 

C(RCUL) = C(CF) [7][Theorem 1.4.1] (3.19) 

When we are dealing with regulated grammars, the original definition of leftmost modi
fication may prove itself too restrictive, because not every time, we are able to derive every 
nonterminal of a sententian form, due to diminished set of rules we are able to use in the 
next derivation step [7] [54, type II]. 

Definition 3.4 (Regulated leftmost modification) 
Under regulated leftmost modification, the leftmost occurence of nonterminal, which can be 
currently rewritten, has to be rewritten. 

Convention: When a class of grammars G is using regulated leftmost modification, we 
add a symbol L to its upper index, to form GL. 
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We can see the sutle difference in formulation. This definition is giving us a freedom 
to follow the regulation, withou crushing due to missing nonterminals. This makes a big 
difference, because we are free to obey the control model and we have acquired a way to 
limit the nonterminal, on which it is used. 

Lemma 3.2 (Strength under unregulated leftmost modification) 

£{PL) = C{RE) [7][Theorem 1.4.3] (3.20) 

C(RCL) = C(RE) [ ][Theorem 1.4.4] (3.21) 

The left-most modification serves as an example of extreme-based nonterminal rewrite. 
In similar maner a right-most modification may be introduced. 
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Chapter 4 

Grammar Automata 

In this chapter we will introduce a reworked version of a grammar automata. This version 
is allowing us, to derive the nonterminal symbol at specified position. 

The section 4.1 contains definition of automata itself. In section 4.2, we will describe 
basic techniques to transfer regular-language regulation into an automata. Basic version of 
evaluation of automata is presented in senction 4.3. 

4.1 Positioned Grammar Automata 

Definition 4.1 (Positioned grammar automaton) 
The positioned grammar automaton PGA, is an 8-tuple 

GA = (Q,T,,T,A,R,s,S,F,S), (4.1) 

where 

• Q, S, T, s, S, F and 5 is defined as in grammar automata: 

• pt : N* x r + —>• T* is a function applying a production rule at state t; 

• i? C (Q x N x / x Q) is a finite set of rules, which differ from the original version in 
a feasibility function f : (T* x E ' x N * ) . The rule, is feasible only when the feasibility 
function has outputted one or more numbers, symbolising possible positions. The 
joining rule can have any priority and after transition with this rule, the production 
rule is not applied. 

4.2 Basic transformations 

We will introduce basic transformations of regular control language into a grammar au
tomaton. We will base this transformations on the fact, that every regular language can 
be writen with the help of regular expressions and regular expressions can be represented 
with a single symbols, and its concatenations, unions and iterations. We have to keep in 
mind, that the symbol of the control language is a label of a rule, which has to be applied. 

As opposed to the ordinary finite automata, the grammar automata accepts its string 
not by an edges it had to travel, but the states, it had to visit. Every automata resulting 
from basic transformation will have single start state and single final state, this will help 
us to systematically build an automata from separate pieces. 

26 



Let M i be a automata, with a start state gn and a final state gi2, for a regular expression 
r i , and M 2 be a automata, with a start state 521 and a final state 022, for a regular expression 
T2- We will use 2 as a standard priority. 

Symbol 

Application of a single rule is represented 
with two states go (start state) and gi (fi
nal state). The final state applies the pro
duction rule p : I —>• r, with a function 
p(n,silsr) = sirsr A \si\ £ n. Between this 
two states exists a single rule qo(n,/) —>• gi, 
where n is a standard priority and / is appli
cability function, defined by the grammar. 

start —*• Qn 

start —*• Q21 

(2,Pi) 

(2,P2) 

Figure 4.1: Single rules automata 

Concatenat ion 

The concatenation r i r 2 is created by joining 
two smaller automata, r\ and r2, by merging 
the states gi2 and g2i into a single state, while 
preserving the properties of the state gi2 and 
edges of both states. The resulting automaton 
will use gn as its start state and #22 as its final 
state. 

Union 

The union r\ + r2 is created by joining two 
smaller automata for r\ and r2- Both start 
states are merged, while preserving all their 
edges. New final state is created and new join
ing edges from original final states into a new 
final state is created. Figure 4.3: Union of M i and M 2 

Iteration 

The r i * is created by looping original au
tomata for r i into a start state. A new joining 
edge is created from a final state into a start 
state. A new final state is introduced, con
nected with a start state with a joining edge 
of a normal priority. 

start —*• Qn 

Figure 4.4: Iteration of M i 

27 



4.3 Operation 

We can create a generic algorithm for running a positioned grammar automaton 4.1. This 
algorithm outputs a string of visited non-empty states. The algorithm can end either 
successfully, with FINISH, or unsuccessfully, with FAIL. 

Later, we will use few common definitions, unless said otherwise. The work alphabet 
contains two border symbols ( and ), which are not defined by the grammar. The application 
of production rule 5, for production rule (p : I —>• r) chooses one of offered positions and 
symbol of a work string on that location rewrites with (r). The normalizing function 
5(work, input) is working as accepting function. If work string, after filtering out border 
symbols, equals the input string, both are completly emptied. Otherwise is nothing changed. 

Algorithm 4.1 Positioned grammar automaton run 

Input: A positioned grammar automaton A = (Q, S, T, R, s, S, F, d) 
Input: Input string Input 
Output: String of used non-empty states and FINISH or FAIL 

1: config <— (s, S, Input) 
2: while config ^ (/, e, s) A / € F do 
3: (state, work, input) <— config 
4: trans <— {(v, n, p) \ state(v, f) <— n A p = f(work, input) ^ 0} 
5: trans <— {(v,n,p) \ (v,n,p) G trans A v is minimal} 
6: if trans = 0 then 
7: FAIL, no possible transition 
8: end if 
9: Choose (v,next,pos) as one of trans 

10: state <— next 
11: if state G Qr then 
12: Emit state 
13: work <- pstate(work,pos) 
14: (work, input) <— 5(work, input) 
15: end if 
16: config <— (state, work, input) 
17: end while 
18: FINISH 
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Chapter 5 

Switch-Paused Regulated 
Grammars 

Standard regulated grammars are using their regulating mechanism in every production 
step. This mode of operation may result in excessive control over each step of production. 
We can use regulated grammars, when we want to have a structure of our grammar and 
subsequently languages, more obvious. 

If we are forced to write every used production rule into regulating language, the true 
purpose of this language may be obscured by its other parts. 

The first version of paused modes is using predefined two sets of rules to serve as on-
switches and off-switches for operation of regulating model. Every time, an on-switching 
rule is being used, the regulating mechanism is used. Regulation continues t i l l next off-
switching rule is used. 

This mode of operation is usefull in cases, where we want to regulate only certain portion 
of sentence. This allows us to keep regulating model simpler and more focused. 

This chapter introduces a new modification of regulated models. In sections 5.1 and 5.2, 
it is defined for various regulated grammars. Few examples of grammars are in section 5.3 
Sections 5.4 and 5.5 are dealing with generation and parsing of sentences. Lastly, the 
section 5.6 is investigating properties of this modifcation. 

5.1 Definition 

We can define switch-paused regulation for regular-controlled grammars. This definition 
is directly adding two sets of switching rule labels to the definition of the original non-
switching version of the grammar. The definition of generated language is then modified 
to accomodate the switching nature of newly defined grammar. 

Definition 5.1 (Switch-paused regular-controlled grammar) 
A switch-paused regular-controlled (context-free) grammar, is a 4-tuple 

• G = (N,T,^f, P, S) is a context-free grammar, called core grammar: 

• E C (tyFREE + ( * J C W * ' O F F * ' ® ' O F F ) ) * ' ( * J C W * ' O F F ) 1 is a regular language, called 
control language: 

H = (G,E,^0N,^OFF) 

where 
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• * JON = ^ON \ ^OFF is set of rules, which are only on-switching: 

• ^FREE = ^ON n ^OFF is a set of rules, which serve both switching functions: 

• iV is a finite set of nonterminal symbols: 

• T is a finite set of terminal symbols: 

• P C (JV x (iV U T)*) is a set of rales: 

• 5 G N: 

• ^ is a set of symbols called rule labels such that = \P\ and there exists a bijection 
^ from to P : 

• ^ c w Q * is a set of on-switching rules: 

• ^ O F F C ^ is a set of off-switching rules: 

The sentential form can be in two of the possible states States = {ON, OFF}. 
The language of PT, denoted by L(H), is defined as 

L(H) = {w G T* | 3i > 1 : VO < j < i :S =>*G w[a] 

A a G n0ginig2n2 • • • gi-im-igi 

A rtj G ^OTV* A g\g2 . . . ft G H 

A # G FREE + {^JON^OFF*^OFF)) 

Agie (VJONVOFF)7} (5.2) 

Convention: The switch-paused regular-controlled grammar is abbreviated as RCSP 

and the family of languages generated by it is denoted by C(RCSP) 

From definition, we can see that rule can be both on-switching and off-switching. In that 
case, it serves both functions. On-switching semantics is applied before its off-switching 
counterpart. This rule is then allowed to stand freely by itself in control language. 

There are two main differences from standard definition of regular-controlled grammars. 
First is stricter form of the control language. It can be empty, which is not allowed in 
ordinary regulated grammars. Empty control language would result in generating only 
a single sentence containing only starting symbol. Empty control language, or empty string 
of control language, in switch-stopped regular-controlled grammars have a simple meaning. 
Non of on-switching rules may be used. 

When string of control language is not empty, its first rule has to be on-switching rule. 
It is a consequence of two properties of switch-paused modification. The controll language 
does contain switching rules and the language-driven controll is switched off at the start of 
generating of a sentence. 

Second difference is in generated language. Not every production need to be writen in 
the controll language. Conclusion is, that during production, more rules can be used, than 
specified by controll language. 

For usage during derivation run, the control language sentences are sliced into separate 
groups. Every group starts with on-switching rule and ends with off-switching. Inside 
group, there could be any number of rules which are not off-switching. Therefore even 
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more on-switching rules. The group can also be formed by single rule. This rule has to be 
in both switching set. This rule is therefore called free standing. 

The definition 5.1 is concerned only with regular language as controling language. We 
do not need to be limited to a single class of langages. We can use the original definition 
as a base for more general definition. This one allows the controll language to be of more 
expressive class, than regular language. 

Definition 5.2 (General switch-paused modification) 
A switch-paused L-controlled grammar, is a 4-tuple 

H = (G,E,^0N,^OFF), 

where H is a switch-paused regular-controlled grammar, and S is a language of class L . 

This definition further limits format of language S. It still has to maintain a format, 
where any non-empty string of controll language has to be on-switching rule and after any 
off-switching rule, which is not lats rule of controll sequence, has to be an on-switching 
rule. And additionaly, the controll language has to adhere to limitations of certain class, 
we want to achieve. 

5.2 Other Regulations 

This is not an exhaustive list of formal definitions of switch-paused mode of operation for 
any regulated grammars model. This list contains merely a descriptions of propositions, 
that supports the idea of more universal usage of switch-paused mode to opearation of 
regulated grammars. There exists more regulated grammars, which are not mentioned in 
this section. 

5.2.1 Rule-Based Regulations 

The rule-based regulations are generaly described using languages or automata. We defined 
switch-paused mode for regular-controlled grammar and expanded it to controll by any class 
of languages. 

Matrix Grammars 

Matrix grammars can be viewed as a close relative to regular controlled grammars. The 
matrix regulation can be directly translated to regular language regulation. Every matrix 
can be viewed as rigid string of rule labels and control language is then iteration over this 
strings. The switch-paused regulation of matrix grammar then has a similar definition. The 
matrices can serve as a self contained groups, where every matrix starts with a on-switching 
rule and ends with an off-switching one. 

State Grammars 

State grammars are using rules to travel between different states. When we would applied 
a switch-paused mode, we would ignore those transitions and conditions, while in off state. 
We would hold the last state acquired by the last off-switching rule that transitioned from 
the on-state to the off-state. The use of on-switching rule, with start state equal to the 
remembered one, would command a new state to be remembered, together with transition 
into an on-state. 
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5.2.2 Context-Based Regulations 

So far, we limited this mode of operation only for rule-based regulations. Context-based 
regulations does not directly specifies orders of rules. Context-based regulations are based 
on decisions, tied to state of current derivation, or history of its states. The limitations on 
rules used to generate the final sentence are direct consequence of that. 

The case of scattered-context grammars is straight forward. In this case, the definition 
of singular rules is completly ommited, together with core grammar, from the definition. 
We cannot use them as a single rules anymore. 

Even when we would recreate the original core grammar, to obtain original rules, we 
would hit another obstacle. The scattered context grammars are using multiple rules at 
the same time, in parallel to each other. The switching sets would have to be defined using 
this newly created rules, because when the controll mechanism is turned off, we cannot 
use compound rules to switch it on. The compound rule would then combine all semantic 
functions, in terms of off-swithing, of all rules it uses. 

5.3 Examples 

In this section, we will investigate a few examples of switch-paused regulated grammars. 
We will show examples from both ends of a spectra of ammount of regulation. 

Example 5.1 {{anbncn\n > 1}) 
Consider the switch-paused regular-controlled grammar Hi = (G, S, ^ON, ^OFF)-

G = (N,T,*,P,S) (5.3) 

N = {S,A,B,C} (5.4) 

T = {a,b,c} (5.5) 

p = { r i : S -> ABC, 
r2 : A —>• aA, r$ : A —>• a, 
r 3 : B bB, r 6 : B b, 
rA:C -tcC, r 7 : C c} (5.6) 

H = {(r 2r3r4)*(r 5r 6r7)} (5.7) 

* c w = { r 2 , r 5 } (5.8) 

*OFF = {} (5.9) 

L = {anbncn\n > 1} (5.10) 

The grammar H is generating canonical language L. The control lanugeage is created by 
iterations of phrases of three rules. Every phrase injects three eparate terminals, ensuring 
equal numbers. Only derivation, which happens outside of regulation is the initial usage of 
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rule r\. Let us explore an example of a derivation for a concrete example. 

S ^ABC[n] 
^aABC[r2] 
^aAbBC[r3] 
^aAbBcC[rA] 
^aabBcC[r5] 
^•aabbcC[rQ] 

=^aabbcc[r7] (5-11) 

Example 5.2 (Random interleaving) 
Consider the switch-paused regular-controlled grammar H2 = (G, S, ^ON, ^OFF)-

G = (N,T,V,P,S) (5.12) 

N = {S,X,Y} (5.13) 

T = {a,b,c} (5.14) 

p = { r i : 5 ->• XY, 
r2 : X -> o l , r 6 : F aY, 
r3:X^bX, r7:Y ->• 6F, 

r 4 : X -> aX", r 8 : F cY, 

r 5 : X ->• e, r 9 : F - ) • e} (5.15) 

5 = {((r 3 r 7 ) + (r 4r 8))*} (5.16) 

* c w = {r3, r 4 , r 7 , r 8 } (5.17) 

^ O F F = { r 4 , r 8 } (5.18) 

L = {wiW2\w = {b, c}* Awi,w2 are versions of w interleaved witha} (5.19) 

The grammar H2 is using regulating model only for positioning of tuples of symbols. The 
interleaving is uncontrolled. Let us explore an example of a derivation for a concrete 
example. 

S ^XY[n] 
^aXY[r2] 
^abXY[r3] 
^abXbY[r7] 
^abXbaY[r6} 
^abXbaaY[r6] 
=^abcXbaaY[ri\ 
=^abcXbaacY\r%\ 
=^abcbaacY\r^\ 
^abcbaac[rg] 

(5.20) 
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5.4 Generation 

The grammar is a generative model for language it specifies. In case of ordinary grammars, 
we can simple pick a nonterminal in current sentential form and any matching rule, derive 
the selected symbol using selected rule and repeat this steps, until final sentence is acquired. 
This simple algoritm is not sufficient, when we need to implement more complicated model. 

Algorithm 5.1 Generation of a string with RCSP grammar 

Input: RCSP grammar H = (G, E, ^ 0 N , ^OFF), where G = (N, T, P, S) 
Output: Sentence w G L(H) or Error 

1: States OFF 
2: W <r- S 
3: Possible <- {(p, \si\) \ silsr = w A I G N A (p : I-> r) G P} 
4: Possible <- {(p, i) | (p, i ) G Possible A (p £ \I>oiV V (pd G E A d G **) )} 
5: Track <— [(State, to, e, Possible)] 
6: while w ^T* do 
7: if empty(TracA;) then 
8: Error, no derivation possible 
9: end if 

10: (State, w, c, Possible) «— head(Track) 
11: if Possible = 0 then 
12: Track = tail(Track) 
13: else 
14: Choose (p, i ) G Possible 
15: Track <— (State, w, c, Possible \ {(p, i)}) + tail(Track) 
16: if p G ^OAT then 
17: State <- OiV 
18: end if 
19: if State = ON then 
20: C <— cp 
21: end if 
22: if p G ^ O F F then 
23: State <- OFF 
24: end if 
25: u> <— s;rs r, for tu = silsr, I G iV, = i, (p : Z —>• r) G P 
26: Possible <- {(p, |sj|) | s^s r = w A I £ N A (p : I ̂  r) G P} 
27: if State = OiV then 
28: Possible <— {(p, i) I (p, i) G Possible A cpd £ 5 A d G $*} 
29: else 
30: Possible <- {(p, i) | (p, i) G Possible A (p £ $?ON V (cpd e H A d G * * ) ) } 
31: end if 
32: Track <— (State, w, c, Possible) + Track 
33: end if 
34: end while 

In algorithm 5.1, we use few variables to help with tracking of current state of simulated 
model. The State variable represents one of two possible states, the algorithm can be in. 
The Track variable serves as a history of states. It is a list. On this variable we use a few 
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methods that are helping us to work with this list. The head method is accesing the first 
item in the list, the tail method is providing a sublist of its input list, without its head, 
and the empty method is checking, whethever the list contains no items. 

The algorithm is nondeterministic in selecting next rule used in production. This non-
determinism is the heart of generation of more than a single sentence. Error is raised, 
when language, defined by input grammar is empty. This algorithm uses a depth-first type 
exhaustive search in possible state-space of sentential forms. If there is no more states to 
search and no solution was found, the error is risen. 

The algorithm uses a pushdown stack to remember unfinished paths. Every cell of this 
virtual stack is formed of state, sentential form of a generated language, already accepted 
prefix of controll language and set of unfinished paths, represented with a set of rules and 
plaes to apply them. 

This algorithm is implementing a depth-first search, without checking of possible loops. 
The order of applied rules is dependant on a choice, which is handled outside of this algo
rithm. Therefore, for a recursive grammars, there could exist aa infinite sequence of choices, 
which leads to an infinite loop. 

The algorithm is using always exactly on top-most cell of its stack. The cell of its stack 
can grow based on the length of a sentential form and a prefix of the control language. Due 
to this, we are unable to fully implement this algorithm in a space limited linearly by the 
length of final sentence. 

We might decrease a real memory footprint, by working on a single instance of a sen
tential form. In this case we would memorise a used rule, instead of whole string. We can 
also interchange a prefix of control language with a state of automata, equivalent to the 
control language. Both of these limits a complexity to constant values. But we still remain 
with an unboulded length of stack. 

5.4.1 Leftmost Modification 

We treat the switch-paused regulation as a modification mode of original regulation. Sim
ilarly we can treat the leftmost modification, which can serve us as an eample of another 
modification appliable to most, if not all, of regulation models. 

The left-most modification simply limits the applicability of rules to left most nontermi
nal only. This does not impeed with pausing of regulation in any way. This modifications 
can be combined on the same grammar to further limit its derivations. 

In the case of combining left-most modification and switch-paused modification, we need 
to modify the way of selecting nontermial symbol of algorithm 5.1 to select only left most 
nonterminal symbol. 

5.5 Parsing 

Parsing of a sentence using particular grammar can answer the question of membership to 
the language, for a concrete sentence. This is usual operation, performed when working 
with a sentence in a compiler. 

5.5.1 Specific Transformations 

Using the basic transformations, we can express every regular-controlled grammar as a gram
mar automata. We need to add another transformations specific to the switch-paused nature 
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of RCSP grammars. 
For following graphical examples, we will use rules and language 

P = {Pi '• S aSb,p2 : S —>• ba,p3 : S —>• aSc}: 

= {Pi}: 

* O F F = {pi}; 
H = p i p i . (5.21) 

The feasibility function c(p) for a production rule p returns every applicable position of 
a rule p. 

Start State 

Every automata, generated by basic transformations 4.2 has an empty state as a start state. 
The RC grammars starts at an off-state. We have to allow usage of off-switching rules. 
A single state loops for all non on-switching production rules are created. 

start 

Figure 5.1: Original initial state Figure 5.2: Transformed initial state 

Middle Group 

For each occurence of a state, created from an off-switching rule, is inserted a new empty 
state qe. Only input edge to qe is from its off-switching state. Every edge transitioning 
from the off-switching state is rewriten, to originate from qe. A simple one-state loops are 
created upon the state qe for every rule which is not on-switching. 

Figure 5.3: Original off-switching state Figure 5.4: Transformed off-switching state 

36 



5.5.2 Analysis 

After we created the grammar automaton, using transformations from previous section, for 
our desired switch-paused regular-controlled grammar, we have to simply run the generic 
algorithm 4.1 for the grammar automaton, to commence a syntax-analysis of our input 
sentence. 

The algorithm 4.1 is not said to work deterministically. The same applies to the gram
mar itself. 

5.6 Properties 

We will investigate the properties of switch-paused regulated grammars. We will compare 
them with theirs non-paused versions. 

In language controlled regulated grammars, we usually deal with two variables, that 
define final power of regulated model. First is the type of core grammar. If not noted 
otherwise, we will use context-free grammar as a core grammar. The second variable is type 
of controll language. This language does not have to be only regular. We will investigate 
several types of languages used to controll the core grammar. 

5.6.1 Switch-Paused to Original 

We will construct a transformation of RCSP grammar into original RC grammar. This 
transformation 5.2 should preserve the generated language of an input language. It is based 
on interleaving of self-contained on-switched groups with iterations over not on-switching 
rules. 

Algorithm 5.2 Transformation of RCSF into RC 

Input: RCSP grammar Hj — (G, s j , ^ON: ^OFF) 
Output: RC grammar HQ = (G, S 0 ) , where G = (N, T, P, S) 

So <~ {so5iSiS2 • • • S n - i 5 n | 9i92 • • • 9n G 5 / A Sj G ^ON* A n > 1 A 0 < j < n 

1: A 9 j e {^FREE + {^JON^OFF*^OFF)) 

A g „ G (VJONVOFF)-} 

Lemma 5.1 (Correct transformation) Transformation algorithm 5.2 is correct. 

Proof 5.1 
Let us investigate properties of the transformation. 

• Core grammars are equal. 

• Every time, the regulation mechanism is switched off, a free iteration group is inserted 
into the control lanugage. 

• A l l inserted groups contains all rules allowed in off-switched state withous on-switching 
the regulation. 

• Every inserted group is a regular language. Regular languages are closed under con
catenation. Final control language is also regular. 
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5.6.2 Original to Switch-Paused 

The transformation of a RC grammar into RCSP, which preserves the generated language, 
is straight forward. We can preserve the control language in the expense of never using the 
advantages of RCSP grammars. Since we want to track every rule and never turn of the 
control, we wil not use the off-switching set and fill on-switching set with all rules. This 
transformation is described by the algorithm 5.3. 

Algorithm 5.3 Transformation of RC into RCSP 

Input: RC grammar flj = (G, E), where G = (N, T, P, S) 
Output: RCbP grammar HQ — (G, c, ^oNi ^OFF) 

1: $f0N <~ * 
2: OFF <- 0 

Lemma 5.2 (Correct transformation) Transformation algorithm 5.3 is correct. 

Proof 5.2 

Let us investigate properties of the transformation. 

• Control languages are equal. 

• Wi th first application of any rule, the switching mechanism is turned on. 

• The on-switching rule is always part of the control language. 

• Regulation is never turned off, because no off-switching rule exists. 
• Because every derivation happens under regulation, core grammars are equal and 

control languages are equal, produced languages are equal. 

5.6.3 Expressive Strength 

Theorem 5.1 

£{RC[P) = C{RCL), controll language L G {REG, CF, CS, RE} 

Proof 5.3 
We will prove equality with original model by transformations. 

• C(RCS

L

P) C C(RCL) 

— There exists a transformation 5.2 of any RCfp grammar into RCL grammar, 
defining the same language. 

• C(RCL) C C(RCS

L

P) 

— There exists a transformation 5.3 of any RCL grammar into RCfp grammar, 
defining the same language. 

• RC[p = RCL 

— Equality of expressive strength of both models is direct conclusion of RCfp C 
RCL and RCL C RC[P. 
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Theorem 5.2 

C(CF) C C(RCSP) C £(RE). See [ ] [Theorem 5.1.6] 

Theorem 5.3 

C(RCL) C £(RC[P), control language L G {FIN} 

Proof 5.4 

We will prove superiority of a switch-paused model for finite control languages. 

• Length of a right-side of any rule is finite. 

• Number of sentences of control languages in FIN is finite. 

• Hence RCL = FIN. 
• Consider a switch-paused finite-controlled grammar HSP = (G,ESP, iff ON, ^ OFF), 

where G = (N, T, P, S) and its non-paused version H = (G, S). 

• If ^ON = 0 and if?OFF = the regulation is never used. 

• If regulation is never used, the expressive power is determined by the grammar. 

• The grammar is context-free. C(FIN) C C{CF). 
From discovered properties, we can see, that we do not suffer from diminished expres

sive strength, while using switch-paused regulated grammars. In case of finite controll 
language, we can increase the expressive power of a grammar by using switch-paused regu
lated grammar model. The expressive power is directly comparable to non-switching version 
of regular-controlled grammars. 

Every non-paused regulated grammar can be directly translated into switch-paused 
version. This translation is executed by creating on-switching set equal to whole set of rule 
labels and an empty off-switching set. The grammar, constructed by this simple translation, 
is valid switch-paused regulated grammar, but does not use any of its different properties 
to its advantage. 
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Chapter 6 

Determinism-Paused Regulated 
Grammars 

When designing regulated grammars, we may face a problem of complicated control lan
guage. Standard regulated grammars are using their regulating mechanism in every produc
tion step. The construction of a correct controll language is not always a trivial task. We 
may want to use controll language to define only the parts, that needs explicit regulation. 

As the switch-paused mode of regulation, the determinism-paused mode tries to use 
control language with shorter sentences, by ommiting production steps, which are already 
fully defined by the core grammar. The switch-paused mode used explicit sets, to define 
entrance points between realm of regulation and non-regulation. 

The determinism-paused version of paused mode of rule-based regulation is using deter
minism of usage of production rules, to pause regulating model. When the core grammar 
can make deterministic step, it makes it, without checking of control model. This mode of 
operation may be useful, when we are dealing with nondeterminism only in few well defined 
places in every sentence of generated lanugage. 

This chapter introduces a new modification of regulated models. The section 6.1 serves 
as an introduction into a determinism in grammars. In sections 6.2 and 6.3, it is defined 
for various regulated grammars. Few examples of grammars are in section 6.4 Sections 6.5 
and 6.6 are dealing with generation and parsing of sentences. Lastly, the section 6.7 is 
investigating properties of this modifcation. 

6.1 On Determinism in Generation 

Grammars are, in oposition to its coresponding automata, intended to be primarily genera
tive tools for specified languages. And as a generative tool, they should be able to generate 
every string, that belongs to the specified language, and not any other string. 

Wi th deterministic-paused regulation, we are introducing concept of determinism into 
generation of the target language itself. In parsing, the determinism is well understood 
term. Any action is deterministic, when the algoritm has a single path to follow. It does 
not have to choose a single one of more possible paths, to continue. 

But in generating of strings by grammars, we are facing undeterministic decisions at 
almost every step. Yet we are using concept of deterministic applications of rules in paused 
modification of regulated grammars. This makes generation of strings using this modifica
tion even harder. 

40 



6.1.1 Undeterministic Generation 

Process of generating single string of target language, of ordinary uncontrolled grammars 
is simple. We can describe it with this short algorithm 6.1. This algorithm is a result 
of a definition of the generated language, by chaining derivations, until final sentence is 
acquired. 

Algorithm 6.1 Generation of string by unrestricted grammar 

Input: Grammar G = (N, T, P, S) 
Output: w £ T* is a generated string 

1: w <- S 
2: while w £ N* do 
3: Possible <— {(l,r, \si\)\silsr = w,(l r) G P} 
4: if \Possible\ = 0 then goto 1 
5: end if 
6: Choose (l,r,n) £ Possible 
7: silsr <— w, such that \si\ = n 
8: w <— sirsr 

9: end while 

We write down start symbol of our grammar. Then we apply any applicable rule of 
specified set of rules. We repeat this step until all symbols in our string are terminal 
symbols. 

This algorithm 6.1 alone is able to generate all strings of language, that is defined by 
our uncontrolled grammar. In this simple algorithm, we may find ourselves in dead-end, 
when no rule is applicable. This algoritm will then reset to its initial state and lets us 
choose different path. For just now, we can ignore infinite loops, that may occure during 
run of this algorithm. 

We can also write down an algorithm that outputs whole language, not just single 
string. But when lanugage is not finite, that algorithm would newer stop. This makes it 
impractical. 

Wi th rule-based regulation applied to a grammar, our job of generating a valid sentence 
for a given language, becomes a little bit harder. We need to adhere to the specified order of 
rule applications. This will limit the set of rules, we are able to use at any given time. This 
limitations can change between every derivation step. But when we adhere to this limits, 
we can use similar algorithm 6.2, to the one, we have used for the uncontrolled grammars. 

As with uncontrolled grammars, we write down a start symbol. We have added a string 
of used rules, this string we initialize on emptystring. We filter applicable rules with controll 
language, so that application of a selected rule would not fall outside of controll language. 
When we apply the selected rule, we also add its name into controll string. 

In preseted algorithm, we allow to use any applicable rule, for current sentence form. 
We never allow using a production rule, which is not usable with specified control language. 
We are allowed to take any path, that is allowed by the controlled grammar, therefore, we 
can generate any string from language, genrated by a given grammar. 

6.1.2 Ways to Determinism 

Only truly deterministic step in generation of a string, can be seen in a situation, where 
current sentential form contains a single occurence of a left-hand side of a single usable 
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Algorithm 6.2 Generation of string by regulated grammar 

Input: Grammar H = (G, S), where G=(N,T,V, P, S) 
Output: w G T* is a generated string 

to <- 5 
c <— e 
while w £ N* do 

Possible <— {(p, Z, r, |sj|)|sjZsr = to, (p : Z —>• r) G P, g G cpg € £ } 
if \Possible\ = 0 then goto 1 
end if 
Choose (p,l,r,n) G Possible 
S[lsr <— u>, such that = n 
w <— sirsr 

c <— cp 
end while 

production rule. In this situation we are unable to make any other choice, then use this 
single rule, to acquire next sentential form. In all other cases, we are forced to make a choice. 

We should note, that determinism is not equal to disambiguity. Wi th both, we are 
allowed to use only a single path, to generate a concrete sentence. When using determinism, 
we add another condition. When we have to choose a path, we can have only a single one. 
We are not allowed to try, fail and try again. 

We can choose multiple paths, to acquire generation with determinism. We will discuss 
two of them. The blind path and the controlled path. Both paths are using different 
mechanisms, but both paths are working on a principle of restricting original model. 

Blind Path 

The blind path can be, for example, used to define deterministic context-free language 6.1. 

Definition 6.1 (Deterministic context-free language) 
A lanugage L is a deterministic context-free lanugage, when there exists context-free gram
mar G, which describes it, and there exists a deterministic pushdown automata, which 
accepts language L. 

We may see, that this definition combines two very different models for the language, it 
describes. It uses both grammars and automata. Since we know, that pushdown automata 
are equivalent to context-free grammar, we can ommit the notion of a grammar from this 
definition, without compromising the result. After this, we only need to define deteminism 
for a puhdown automata. That is not our goal, since the determinism for parsing is already 
defined. 

When we stick with using grammars in definition of deterministic lanugage, we still are 
not telling anything about grammar itself, only that its language is deterministic. To that 
conclusion, we arrive by using some automata, to check afterwards. The grammar itself can 
behave undeterministically. We use grammar blindly, without any notion of determinism, 
during the production of a sentence. 

Based on the definition of a deterministic context-free language 6.1, we may attempt to 
create a definition of deterministic context-free grammar, that constructs the deterministic 
language by itself. To handle this, we may use a transformation algorithm, to transform 
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grammar into automata. Then we may define a deterministic context-free grammar as 
a context-free grammar, which by using particular transformation algorithm, yields deter
ministic pushdown automata. 

Construction of such algorithm may not be trivial matter. Especialy for a more compli
cated models, then context-free grammars. Even then, we still do not specify deterministic 
steps of production directly, but indirectly, by transformation. 

Controlled Path 

The controlled path to acquire determinism of generation, is build on top of a different 
concept from the blind path. We define a grammar itself, and a derivation used to produce 
strings, as a determistic. We will use additional control over them, to meet our target. This 
additional control will work side by side with the production rules. 

Main problem, we face, is the limited definition, of the atomic step of acquiring sentence 
of lanugage. It is single derivation. If we want to construct deterministic grammar, we need 
to limit the number of possible derivations to exactly one. But when we raise this extreme 
kind of limit, we will limit ourselves to at most single valid sentence in language. This is 
implied by choosing a single path in every step. We cannot deviate. 

We also do not want to take any path we want, and then check the result, if we realy 
was deterministic in our choices, that is the blind path. 

We want to restrict the derivation in such a way, that we will leter be able to say, 
that we acted deterministically, without actually acting deterministically. We can easily 
achieve that, by stating, that we are acting deterministically. This statement alone is very 
powerful!. Wi th this statement, we are saying, we had exactly single option to act, at 
a certain step of production. 

If, we would just created a statement, without retention of any supporting information, 
we would not be correct about defending it. 

Example 6.1 
G = --(N,T,P, S), where 

N = {S,R}, 
T = {a,b}, 
P = {pi:S -)• RbS, 

P2--R —>• aS, 

P3 • S 

(6.1) 
(6.2) 

(6.3) 

Lets look at two separate derivations, that may occure. Every derivation is marked using 
a tuple. First part of this tuple is a rule, used in this step, and the second part is a statement, 
whethever it was applied deterministically (D), or not (N). 

S =>KbS[(pi, D)] 
^aSbS[(p2,D)] 
^aaSbS[(p2,D)} 
^aabS[(p3,N)} 
^aab[(p3,D)] 

S ^aS[(p2,D)} 
=>aKbS[(pi,D)] 
^aaSbS[(p2, D)] 
^aaSb[(p3,N)} 
^aab[(p3, D)] 
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In example 6.1, we can see a problem, with a simple statement, about limiting number of 
available productions, when we do not take into an account all already executed derivations. 
The grammar outputted the same string, using two different sequences of derivations, while 
both of them started deterministically. This is a direct contradiction with the semantics of 
determinism during parsing. When we are conducting deterministic parsing, we can never 
take two different paths daterministcally, from the same initial conditions. 

In order, to generate a language, we have to choose to behave deterministically. We 
cannot create statements, and later ignore them. When we are stating, that we made 
a deterministic step, we are creating adhoc artificial limitation. This limitation states, that 
we choosed, to have no other choice. 

A l l of those limitations has to apply not only for current sentential form, but also for 
all consequent ones. Hence with every production, we are increasing a set of limitations. 
And when we are choosing next rule, we have to respect all already created limitations. 

We have to create limitations. Those limitations has to be recorded. We can use 
a natural lanugage to express them, but that would not be easy to transform into any 
practically usable form. We can use a formal lanugages, to express them. For every rule, 
we then create a limitation in form of a language. This language will then help us to specify 
the cases of deterministic usage. 

By using a production rule, we say, that final sentence will have to obey a form, pre
scribed by limiting language of the selected rule. When we use rule deterministically, no 
other limiting lanugage may be applicable to the final sentence. Also when we specificaly 
state, that rule was used nondeterministically, then all next sentential forms has to obey 
more than one of limiting languages, specified by rules of a grammar. 

Take a closer look at a form of each context-free rule. Its left-hand side contains sin
gle nonterminal symbol. Its right-hand side is formed by a single string of nonterminals 
and terminals. This should be the basic for our limiting language. We will use a simple 
transformation from a production rule to a limiting lanuguage. This transformation should 
characterise the right-hand side of a rule. Every string, that could be generated starting 
this rule, should be in the limiting lanugage. In other case, we would allow us to fall into 
a trap, by raising limitations, which could never be met. 

Our limitations will be created by analysing every rule in context of a whole grammar 
and finding a language, generated by this rule. This lanugage consists of a strings of terminal 
symbols, that are results of rewriting right-hand side of a rule, by any rule in the analysed 
grammar. Due to the context-free nature of every rule, the limiting language cannot specify 
conditions outside of a substring, generated directly of nonterminal, rewriten by this rule. 

This easy transformation of a rule into a produced language, can be performed with 
context-free rules, because they do not allow symbols to change relative position to each 
other. When two instancess x and y of symbols in a sentence kxlym, are in this particular 
order, then it will never change, even when strings k, I and m are changed. The only 
exception of this rule is a case, when one of the symbols is rewriten. In this case, the 
relation of a position holds with whole string, that came to be from the rewriten symbol. 
This holds, because the subtree of a derivation tree, rooted with a rewriten symbol, stays 
at the original position of a rewriten symbol. 

Extreme Examples 

We will analyze two extreme cases of limiting languages. We will demonstrate this limita
tions on a grammar from previous example 6.1. 
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The first example uses very liberal definition of a limiting lanugage. It is trying to be 
the least specific, it can be. 

Example 6.2 (Nonspecific limitation) 
Consider a context-free grammar G from example 6.1. Consider a limiting language L(p) = 
{w\w G T*}, for every rule p G P. For brevity, we write a rule p in format pn : I —>• r[L(p„)]. 

P = { P l : 5 -)• i26S[(a+ &)*], 
p2:R ->aS[(a + b)*], 
p3:S ^ e [ ( a + &)*]}. (6.4) 

A l l limiting lanugages are the same. They are all supersets of lanugages, that are actualy 
producable, from any of the rules. The limiting languages are universal languages. 

This transformation can be used to produce a limiting lanugage, but we are not able to 
define a deterministic limitation, using it. When we say, that one of the rules is not usable, 
non of them are. This limiting language can achieve only nondeterministic derivations, 
when sentential form contains more than a single occurence of nonterminal symbol. Even 
then, for deterministic operation, we would require exactly one rule for a nonterminal. 

Transformation of this model, to parser is straight forward. You may apply any rule, 
any time. Due to the fact, that every possible substring, that could appear in a concrete 
sentence, is valid for any of the rules. 

The second example goes to the farthes end of a spectra from the first example. The 
limiting lanugage is the most specific possible. 

Example 6.3 (Maximal limitation) 
Consider a context-free grammar G from example 6.1. Consider a limiting language L(l —> 
r) = {w\w G T*, r =^*G w}, for every rule p = ( ! - > r ) e P . For brevity, we write a rule p in 
format pn : I —>• r[L(pn)]. 

p = {Pl:S -> RbS[a+(ba*)+], 
p 2 : R ^ aS[a+(ba*)*], 
p3:S ^e[e]}. (6.5) 

A l l limiting lanugages are constructed as an exact languages producable from a right-
hand side of a rule. This transformation may yield a limiting language of the same class as 
the grammar itself. 

This type of transformation is the worst case. We need to perform the deepest possible 
analysys on a whole string of right-hand side of a rule and finds all possible subsentences, 
which start by using of a rule. Therefore this is an ultimate tool to check for deterministic 
decision on picking up a rule, because we can be certain, it is both applicable and only 
possible. 

Transformation of this model, to a parser is also straight forward. But its runtime 
complexity is much greater. In the first example, we had to check nothing. In this case, we 
have to check everything to the last symbol of a string we want to generate from a current 
symbol. We may see, that in the first derivation, we are trying to match the initial symbol 
with complete input string, therefore in order to pick the rule, to be used, we need to 
complete the syntax analysis itself. 
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Other Examples 

First two examples was exploring the farthes borders of a spectra of limiting languages. We 
can also make a compromise between the precision and an ammount of analysis needed. 

Example 6.4 (Leftmost 1) 
Consider a context-free grammar G2 

N 
T 
P 

(N,T,P,S), where 

{S,R}, 
{a,b, c}, 

S 
S 

s 
s 
R 

(6.6) 

(6.7) 

{Pi 
Pi 

P3 
PA 

P5 

RSb, 
RSc, 
aR, 
bR, 

(6.e 

Consider a limiting language L(l —>• r) = {ac\r =4>G aw A ((aw = e A c = e ) V ( a G T A c G 
T*))}. This limitation takes all first symbols, that may appear in a generated language and 
concatenates them with universal language, if that symbol exists. 

{Pi 
Pi 

P3 
PA 

P5 

S ->• RSb[(a + b)(a + b + c)*], 
S -> RSc[(a + b)(a + b + c)*], 
S aR[a(a + b + c)*], 

S ->• bR[b(a + 6 + c)*], 
(6.9) 

This is a metric used in LL(1) parsers, checking only a single symbol at the start of a subtree-
generated substring. 

Example 6.5 (Natural limitation) 
Consider a context-free grammar G2 from the example 6.4 and a limitation, which con
structs regular limiting lanugage from a rule. Every always erased symbol is replaced with 
e. Every other erasable nonterminal symbol is replaced with universal lanugage. Every 
non-erasable one with universal lanugage without empty string. We call this the natural 
limitation. 

P {Pi 
Pi 

P3 
PA 

P5 

S -> RSb[(a + b + c)+b], 
S -> RSc[(a + b + c)+c], 
S —>• ai?[a], 

S -+bR[b], 
R [e]}. (6.10) 

In the dfference from the previous example, we can see, that for rules p\ and P2, the most 
specific parts of a limiting language moved from the first symbol to the last symbol. Other 
rules becomes the most specific langages possible. 
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6.2 Definition 

We will define a determinism-paused regulation mode for regular-controlled grammars. 
Wi th this mode of paused regulated grammar, we need to closely monitor, which produc
tions was made deterministically and which not. Those, made deterministically, are not 
included in a string of controll language. This is a mechanism chosen for shortening of 
strings of control language. 

Definition 6.2 

A determinism-paused language-controlled (context-free) grammar, is a pair 

H = (G,E), 

where 

• G = (N,T,^f, P, S) is a context-free grammar, called core grammar: 

• 5 C ^ * is a language over rules, called control language: 

• iV is a finite set of nonterminal symbols: 

• T is a finite set of terminal symbols: 

• P C (JV x (iV U T)*) is a set of rules: 

• S eN: 
• is a set of symbols called rule labels such that = | P | and tp is a bijection from 

* to P ; 

The mapping function a : {0,1}) —>• is defined as 

a ( r ' ^ ) | £ otherwise. (6-H) 

The filtering function f3 : (D,(NUTU £>)*) -)• (iV U T)* is defined as 

{ £ iff to = £ 

/9(d,u) i f f | i | = l A i e d (6.12) 
tp(d,v) iE\t\ = lAt£d 

The formating function 7 : P —>• / C T* is the natural limitation (see example 6.5).The 
rule pi : l\ —>• n G P is inherently nondeterministic iff there exists rule p 2 : Z2 —> 2̂ G P , 
such that Zi = I2, r\ 7̂  r 2 and 7(^1 —>• r\) = 7(^2 —> ^2)-

The configuration is a tuple (u;, s), where to is a sentential form and Z is a set of limita
tions, which are defined as a tuple (f,0> t is a border symbol and I is a limiting lanugage. 
Each nonterminal symbol /c is upon insertion into a sentential form inserted into envelope of 
two new identical border symbols, which together form tightly packed group f/cf, without 
any interleaving symbols. Between border symbols is then contained a subtree, gained from 
the original symbol. The limiting language then forms a superset of language, allowed to 
apear between the belonging border symbols after application of the filtering function f3, to 
remove all inside border symbols. Default limiting language for a single symbol is universal 
language. 
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The configuration (w, s) is valid, when none of the limiting lanugage in s is empty lan
guage and for every substring x = XI]0V]QX2 of w, where v = u o t i ^ i t i ^ i • • • Vn-i]nun]nVn-, 
Vi G T*, B = { t | ( f ,0 G s} and (fj,I<i) G s for i > 0, the limiting language LQ n 
{/3(-B, u 0 L i u i . . . vn-iLnvn)} / 0. 

For the rule (p : Z —>• r) G P to be applicable on a configuration (x ; f^f ;X r , s), consequent 
configuration (x; t r fx r , {(], K)\(], L) G s A K = L n 7(p) if f = fz, L otherwise}) has to be 
a valid configuration. The application of the rule does not create impossible configuration 
of limitations. 

A single derivation =4># [{p, d)], using applicable production rule p : I —>• r is a relation 
between two valid configurations, defined as 

Cj = (wi = xijpljpxr, Si) ^ H [(p, d)](wi+1 = xi\pr\pxr, s i + i ) = Cj+i : 

if d = 0 : 

s'i+1 = {(],K)\(],L) esiAK = Ln~f(p) if 6 = t p , otherwiseL}, 

Sj+i = s^+ 1 where all limiting languagesL for any reachable single nonterminal n 

are chaged into L n 0{7(?) | (5 '• n —> o) G (P 

if d = 1 A exists any other configuration Cj =̂># Cj using any rule :, 
Sj+i = Si{( f , i f ) | ( t ,L) G Si AK = Lnjip) if b = f p, otherwiseL} (6.13) 

The language of i i " , denoted by L(PT), consists of all strings w, for which there is a derivation 
in H, such that a ( r i , di)a(r2, d2) • • • a{rn, dn) G H for some n > 1 where 

(5, 0) = c 0 ci[(ri , di)] c 2[(r 2, d2)] • • • c n [ ( r n ,d n ) ] = ( % , s n ) , 

w = P({s\(s,l) esn},wn) eT*, 

diE {0,1} (6.14) 

In definition 6.2, we can see a couple of differences, from previusly introduced switch-
paused mode of regulation. The determinism-paused mode does not add another sets do 
definition of grammar. Neither does it add another restrictions to the controll language. The 
definition of the grammar itself is unchanged from he original regular-controlled grammar. 
The change are mustly in the definition of derivation and generated language. 

The configuration contains serialized leafs of a derivation tree and applied limitations 
for subtrees. Derivations between this configurations can be either deterministic or nonde-
terministic. 

A simple mapping function a was added. This function is used in a definition of gen
erated language. Every production has to be either deterministic or non-deterministic. 
We need to track all of them, to create a full chain leading up to final string. When we 
compare string of productions with controll language, we use only non-deterministic ones. 
This function efectively drops the productions, which are not supposed to be in control 
lanaguage. 

Next, a filtering function f3 is used to remove marker symbols, which are not part of 
limiting or output lanugages. 

The formating function 7 is used in order to pick a production rule. Deterministic 
application of a rule blocks any other rules by intersecting limiting language of possible 
locations with complements of limiting lanugages of all non used rules. If inherently non-
deterministic production rule would be applied deterministically, then the other rule with 
the same limiting language would block it, because intersection of limiting lanugage with 
its complement is empty. 
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6.2.1 Leftmost Modification 

From definition of determinism-paused mode, we may see, that in many cases, we are 
standing between non-deterministic choice. Take a simple example of a sentential form, 
which contains two or more nonterminal symbols. When the already acquired conditions are 
not specific enough, we may successfully derive both of them. This results in undeterministic 
decision, which has to be writen into the control languge. This is unwanted, when we want 
to shorten a string of control language. 

The situation changes rapidly, when we apply the regulated leftmost modification 3.4, on 
top of the determinism-paused modification. We can always limit the derived nonterminal 
down to a single one. We only need to choose appropriate rule. 

We can also modify the formating function, to force a different definition of an inherently 
nondeterministic rule. As an example, we can choose the Leftmost 1 limitation 6.4. 

The effect of this compound LL{1) modification can be seen in example 6.4. 

6.3 Other Regulations 

This modification is intendet to be more general, than modify only regular=controlled 
grammars. We can outline few propositions for these modifications. There exists manz 
tzpes of regulated grammars. This list is not neither complete, nor does it contain complete 
rigorous definitions. 

6.3.1 Random Context Grammars 

This model can use similar modification to the one used for the regular-controlled grammars. 
It can attempt to find a production rule by first ignoring its permitting and forbidding sets. 
If a single rule is found this way, it can be applied. In other cases, the original model is 
used. 

6.3.2 Tree-Regulated Grammars 

Ordinary tree-regulated grammars are checking whole derivation tree or some subset of 
paths or cuts [12]. Determinism-paused modification of these grammars then must also 
take into account the whole derivation tree. Possible path can be seen, using two additional 
mechanisms. 

The first mechanism can be used to annotate nodes in drivation tree with one of two 
possible marks, carrying information, whetever it was rewriten deterministically or not. 
When a derivation tree is to be checked, the second mechanism can be imployed to create 
filtered image of an original tree, this image could contain only nondetermistically created 
symbols, while retaining path relations between them, only cumulating multiple edges into 
single one. Then the original model can perform checks on this filtered image. 

6.4 Examples 

We will investigate a few simple examples of languages, generated by determinism-paused 
modification of regulated grammars. 
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Example 6.6 (anbncn) 
Consider the regular-lanugage regulated grammar H\ and its determinism-paused variant 

Hi = (Gi .Sx) (6.15) 

G i = (N,T,*,P,S) (6.16) 

N = {S,A,B,C} (6.17) 
T = {a,b, c} (6.18) 
P = {p0:S ->• A B C , 

pi : ̂ 4 aA,p2 : B &.B,p3 : C cC, 
p 4 : ̂ 4 ->• a, p 5 : 5 ->• 6, p 6 : C ->• c} (6.19) 

E\ =Po(PlP2P3)*P4P5P6 (6.20) 

Li = { a n 6 n c n | n > 1} (6.21) 

The grammar H\ is generating canonical language L\. The control language can be 
divided into phrases of three rules, where every phrase injects exactly one terminal of each 
kind. 

S =>ABC\po] 
^aABC\pi] 
^aAbBC[p2] 
^aAbBcC[p3] 
^-aabBcC[pi\ 
^•aabbcClps] 

^aabbcc\p6] (6.22) 

The determinism-paused version does differ in the control lanugage. This difference 

ffr = ( G i D , S r ) (6.23) 
G1D = (N,T,*,P,S) (6.24) 

N = {S,A,B,C,X1,X2} (6.25) 
T = {a,b,c} (6.26) 
P = {p0:S ->• ABC, 

pi : A —>• oA,P2 : 5 &.B,P3 : C cC, 
Pi'. A —>• a,p5 : .B —>• 6,p6 : C —>• a X i , 

p 7 : C -)• c X 2 , p 8 : X i ->• e,p 9 : X 2 -)• e} (6.27) 

S f P = (piP2P3)*P4P5P6 (6.28) 

Most of the derivations are done in nondeterministic manner. This is a simple result 
of multiple nonterminals available, even when there exists only a single applicable rule for 
each of the nonterminals. It is an intrinsic property of grammars without limitation of used 
nonterminals. 
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S =>ABC[{po,0)] 
^aABC[(Pl,l)} 

^aAbBC[(P2,l)} 
^aAbBcC[(p3,l)] 
^aabBcC[{jpi, 1)] 
^aabbcC[(p5,1)] 
^aabbccXi[(pQ, 1)] 

^aabbcc[(ps, 0)] (6.29) 

In this example, we can see, that reasoning about RCDP grammars can be hard in situ
ations, when the grammar transitiones from using mutliple possible nonterminals to single 
one. We have to be avare of this possibility and create rules acordingly. In the first case, 
we are not forced to use nondeterministic rules, while still using them nondeterministically. 
In the second case, when we are limited to a single nonterminal, we have to create artifi
cial nondeterminism, when it is not already there, in order to control the production with 
control language. 

When we would used set of rules from original grammar H \ , we would be able to produce 
symbol s in any number > n. 

Example 6.7 (LL(1)) 
Lets look at another example. Consider the regular-lanugage regulated grammar H2 and 
its LL(1) determinism-paused variant B ^ P ' L L X . 

H2 = (G2,E2) (6.30) 

G2 = (N,T,*,P,S) (6.31) 

N = {S,A,B,C} (6.32) 

T = {a,b,c} (6.33) 

P = {p0:S ->• XtYt, 
pi : X —> aX,p2 : X —> cdX,pz : X —> ceX,p4 : X —>• e, 

p 5 : Y -> cdY,p6 : Y -)• ceY,p7 : Y -)• e} (6.34) 

=2 =Po(Pi(P2P5\P3P6))*P4P7 (6.35) 

L2 = {uv\u = (a*(cd\ce))nt A v = u bez a A n > 0} (6.36) 

The deterministic version differs only in used control lanugage. 

H ? P ' L L 1 = (G2,E2D) (6.37) 

E 2 D =(P2P5\P3P6)* (6.38) 

Only the leftmost derivable nonterminal are taken into consideration. We are able to 
simplify control language to the bare minimum, needed for contex-sensitive parts of the 
language. Most of the derivations are deterministical. 
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S =>XtYt[{po,0)] 
=>aXtYt[(pi,0)] 
^acdXtYt[(p2,1)] 
^acdaXtYt [(pi,0)] 
^>acdaXtc(iFt[(p5,1)] 
=^acdaceXicdyi[(p3,1)] 
=>acdaceaXtcdYt[(pi, 0)] 
^acdaceate(iFt[(p4, 0)] 

^acdaceatcdcet[(p7,0)] (6.39) 

In the example , we can see an interesting phenomena. We have statically restricted 
ourselves in selection of both nonterminal and terminal symbols. As a response, we have 
acquired a simpler control model, then we would have without these limitations. The 
control has effectively shifted between these two restrictions. Or rather it is not copied in 
both of them, since both can complement each other. 

6.5 Generation 

Grammars are, in oposition to its coresponding automata, intended to be primarily gener
ative tools for specified languages. From this reason alone, we should 

With rule-based regulation applied to grammar, our job of generating a valid sentence 
for a given language, becomes harder. We need to adhere to the specified order of rule 
applications. This will limit the set of rules, we are able to use at any given time. Thi 
limitations can change between every derivation. But when we adhere to this limits, we 
can still use the same algorithm, we have used for the uncontrolled grammars. 

Even the switch-paused mode of operation does not change this basic concept. It only 
adds another level of regulation to the way, we use to acquire a limitation for every derivation 
step. 

This simple concept changes, when we use a determinism-paused modification of con
trolled grammars. We need to introduce another concept to the process of generation of 
strings of the target language. It is a concept of determinism, which is usually used in terms 
of parsing. 

We start the genetion in the same manner as with unregulated grammars, by initializing 
working sentence to starting symbol. Then we employ regulating model to filter set of rules 
to a subset of all rules. We are then able to use only those rules. 

Wi th determinism-paused modification, we need to predict deterministic choices that 
would ocur in parsing of any given string, this will be 

6.6 Parsing 

For a newly introduced model, a parsing technique was crated. This is based upon a trans
formations of the basic model for regular-language regulation. 
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6.6.1 Application of Limitations 

We have defined a grammar, which is using sets of limitations on subsentences generated 
from a particular subtree. We have to reflect this design in a parsing routine. 

Every application of a rule adds its limitation to a certain substring of a generated 
sentence. In generation of a string, we start with universal lanuguage and limit it by using 
a rules. The generated sentence is then an intersection of all already applied limitations. 
We are applying another rules, until the intersection does not contain exactly one sentence 
and no more limitations can be added. 

In parsing, we already have a single sentence, and trying to find an order of rules appli
cations, which satisfies this single input sentence. Every intersection of a unary language 
with another lanugage can yield only the unary language itself, or empty language. When 
the intersection of applied limitations and input string is empty language, we were not 
successful in finding apropriate limitations. 

Because the possible intersection can have only single sentence, we do not need to store 
all applied limitations in any other way, than a current sentential form, because all of them 
is already writen into an input sentence. 

6.6.2 Specific Transformations 

Every rule in automata, created by basic transformations, is using feasibility function c(p), 
which is implemented as a search for every possible location of derivation by a rule p. At 
every state, small single rule loop for every production rule q is added. This loop starts with 
a single rule on a smaller priority and applies a single production rule. This rule is using 
feasibility function o(q), which is possitive only when the rule q and no other is applicable. 

(l,o(pi)) |(2,c(pi)) 

Figure 6.1: Original state Figure 6.2: Transformed state 

6.7 Properties 

We will discuss a properties of the newly introduced determinism-paused grammars. We 
will compare them with its original version. 

6.7.1 Original to Determinism-paused 

Every regular-controlled grammar can be converted to determinism-paused version, that 
generates the same language. The algorithm 6.3 is using inherently nondeterministic rules, 
to achieve this transformation. For every rule of original grammar, we create at least one 
other rule, which is in the same format. These two rules becomes inherently nondetermin
istic. 
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We cannot create second identical rule, because the rules are not organised in multiset. 
But we can introduce new nonterminal symbols, to create semanticaly identical rule. Every 
nonterminal symbol is doubled, to obtain two symbols with identical semantic function. 
For every rule, there is created a set of inherently nondeterministic rules, created by dif
ferentiation in used nonterminal symbols. By this system, we cannot duplicate the rules 
containing no nonterminal symbols. These rules can be multiplied by adding a nonterminal 
symbols, which are immediately deleted. 

At last, new controll language, which uses new rules, has to be created. In place of 
every original rule, any of new rules, created from it, could be used. 

Algorithm 6.3 Transformation of RC grammar to RCDP grammar 

Input: RC grammar Hi = (Gi, Sj ) , where Gi = (NI}T, Pi, S) 
Output: RCDP grammar H0 = (Go, So), where G0 = (N0, T, * 0 , Po, S) 

1: N0 <- {S} U ( ( J = {ni,n2}) 
2: N0 <- N0 U (\J{{XpA,Xp!2}\(p : I -> r ) £ P f A r £ T*}) 
3: Po <- {PSI • S -)• SUPS2 : S -)• S2} 

6: E 0 {(p5i|P52)yo2/i • • -ynko^ i • • .x„ G E / , X j G * 0 , y i G zXi,0 <i<n,n>0} 

Lemma 6.1 (Correct transformation) Transformation algorithm 6.3 is correct. 

Proof 6.1 

Let us investigate properties of the transformation. 

• Every rule is inherently nondeteministic. 

• Every production has to take a part in a control lanugage. 
• For every rule, there exists a group of one or two rules, which are a direct translation 

of it. 

• A l l translations are regular. 

• Regular languages are closed under transduction. 

This translation has also disadvantages. It introduces an erasing rules into a grammar, 
hence the output grammar is not propagating. The nonterminal can be rewriten to terminals 
or erased. For a rule rewriting into terminals, the erasing rule is introduced. 

6.7.2 Expressive Strength 

Theorem 6.1 
J0(RCL) C £(RC?P), control language L G {REG, CF, CS, RE} 
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Proof 6.2 
We will construct a proof by providing a transformation. 

• There exists a transformation 6.3 of any RCL grammar into RC®P grammar, defining 
the same language. 

Open problem 6.1 (Equality) 
JO(RCL) = C(RC£P) 

This problem is caused by forced deterministic steps. If they would be only allowed, 
not forced, we could simply insert group of any not inherently nondeterministic rules be
tween any two recorded productions. Next part is our unability to record the deterministic 
derivation in control language. 

Theorem 6.2 
C(CF) C C(RCL) C C{RCDP) C C{RE). See [14][Theorem 5.1.6] and theorem 6.1 

Theorem 6.3 (Empty sentence control language) 
£ ( i ? C £ p ) = C(DCFL), control language L = {e} 

Proof 6.3 
The grammar with empty string as a control lanugage can work only deterministically. 

• Control language of every grammar in RC^P is equal to {e}. 

• The grammar can use production rules only in deterministic mode. Every nondeter
ministic usage of rule would result in a non-empty string of control language. 

• Every deterministic usage of rules is allowed. 

• DCFL denotes the class of deterministic context-free languages, which are created 
by deterministic context-free grammars, which use rules only deterministcally. 

• Both models are using context-free rules in deterministic manner. 

Theorem 6.4 

C(RCL) C £ ( i ? C f p ) , control language L G {FIN} 

Proof 6.4 

We will prove superiority of a determinism-paused model for finite control languages. 

• Length of a right-side of any rule is finite. 

• Number of sentences of control languages in FIN is finite. 

• Hence RCL = FIN. 
• Consider a determinism-paused finite-controlled grammar H D P = (G, S), where G = 

(N,T,*,P,S). 
• A n unlimited number of deterministic derivations can be performed. 

• Wi th an empty control sentence, the lanugage is in C(DCFL), see theorem 6.3. 
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By employing the determinism-paused regulation, we can preserve the expressive strength 
of a regular-lanugage regulated grammars. Wi th limitations to finite control language, we 
are able to increase expressive power of a new introduced model. 

Every regular-lanugage regulated grammar can be directly translated into a detrminism-
paused version. The grammar, constructed by this translation, is valid determinism-paused 
regulated grammar. A grammar constructed in this way does not take advatage of the free 
deterministic steps. 
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Chapter 7 

Conclusions 

Formal languages are ireplaceable tool in modern theoretical informatics. Context-free lan
guages, represented with context-free grammars, are one class of those languages. Context-
free grammars have wanted properties in terms of complexity of production rules and conse
quently of implementation and reasoning. But they do not posses enough expressive power 
to solve all imaginable problems. 

This work deals with the regulated grammars, which intends to increase expressive 
strength by combining context-free grammar with regulations into a single model. Many of 
these models was already introduced in the past. 

In this work, a modification of grammar automata, the positioned grammar automata 
was introduced. This modification is adding a transfer of available positions between 
a checking function in rule of automata and the function applying the production rule 
of represented grammar. 

Two new modifications of already existing regulated grammars models was introduced in 
this work. Both modifications are targeted on reduction of regulation of its original models, 
by ommiting some of productions from a control language. Both are using differrent ways 
to achieve this removal. Modifications are presented on regular-controlled context-free 
grammars. Examples of grammars using this modifications was created. 

The switch-paused modification introduced additional switching sets of rules, to allow 
grammar to use free unregulated derivations. This could be used to ommit this parts from 
the control language, when the regulation is not needed. 

The determinism-paused modification is using determinism, to reduce length of control 
sentences. Every time, a grammar is making deterministical step, it is not regulated with 
control lanugage. In order to specify the cases of deterministical derivation, a sets of 
limitations upon sentential form, applied with usage of rules, were introduced. A spectrum 
of these limitations was created. 

A parsing methods was presented for both new modifications. This methods are working 
in a top-down manner, trying to simulate the derivation of an initial symbol into an input 
sentence. These methods was theoretically described using positioned grammar automata. 
A n actual implementation using a programming language was not created, together with 
subsequent testing of this implementation. 

It was proven, that none of the new modifications dimminish the expressive power of 
the original regular-controlled grammars model. The switch-paused modification has the 
exact same power of the unmodified model and the detrminism-paused modification has at 
least the same expressive power as the unmodified version. There exists an open problem 
of exact upper bound for a determinism-paused modification. 
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Next investigation could be directed towards solving suggested open problem. The 
modifications could also be defined for other regulated models of grammars. Properties 
would then have to be reevaluated for each of these models separately, based on details of 
definitions, but they should be similar for each regulation with power of regular languages. 
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Appendix A 

Content of C D 

Included C D contains: 

• text of the technical report in P D F format: 

• source code of the technical report in I^T£]Kformat. 
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