

Czech University of Life Sciences Prague

 Faculty of Economics and Management

 Department of information technology

Bachelor Thesis
Linux server system setup and configuration using terraform and ansible

 by

Tinashe Bvukumbwe

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES
PRAGUE

Faculty of Economics and Management

BACHELOR THESIS TOPIC

Author of thesis: akad. Tinashe Bvukumbwe, prom. geog.

Study programme: Informatics

Thesis supervisor: Ing. Tomáš Vokoun

Supervising
department:

Department of Information Technologies

Language of a thesis: English

Thesis title: Linux server system setup and configuration using
terraform and ansible

Objectives of thesis: Main objective

The main objective of this thesis is to Investigate how
a small company can leverage open-source tools
such as Ansible and Terraform to run efficient
infrastructure using gitops principles.

Partial objectives

-Explain and evaluate the existing literature on cloud
computing, google cloud platform, Linux, ansible,
terraform, bitbucket and GitOps.

-Explain and evaluate trends in IT infrastructure from
physical hardware to virtual machines.

-Explain how IT infrastructure can be managed using
code, from setting up a Linux server using Terraform
to configuring it using Ansible.

Methodology: The study will analyze information sources, including
books and online journals. The student will also use
scientific and expert literature as well as data from
academic journals that cover the topics of Linux
infrastructure and configuration. The author will also
create a virtual machine and configure it.

The proposed extent of
the thesis:

40-50

Keywords: Linux, cloud computing, google cloud platform, Linux,
ansible, terraform, bitbucket, git ops

Recommended information sources:

BRESNAHAN, Christine and Richard BLUM. CompTIA Linux+ Study Guide:
Exam XK0-004. Newark: John Wiley & Sons, Incorporated, 2019. ISBN
9781119556039;1119556031

FLICKENGER, Rob. Linux server hacks. Sebastopol: O'Reilly, 2003. ISBN
9780596004613;0596004613

HOCHSTEIN, Lorin and René MOSER. Ansible: up and running: automating
configuration management and deployment the easy way. Second. ed.
Beijing;Farnham;Sebastopol;Tokyo;Boston: O'Reilly, 2017. ISBN
1491979801;9781491979808

Linux System Administration for the 2020s: The Modern Sysadmin Leaving
Behind the Culture of Build and Maintain by Kenneth Hitchcock Released
February 2022 Publisher(s): Apress ISBN: 9781484279847

MALLETT, Andrew and SpringerLink (ONLINE SLUŽBA). Red Hat certified
engineer (RHCE) study guide: ansible automation for the Red Hat Enterprise
Linux 8 Exam (EX294). New York: Apress, 2021. ISBN
148426861X;9781484268612

Red Hat Certified System Administrator (RHCSA) RHEL 9 by Sander van Vugt
Released March 2023 Publisher(s): Pearson IT Certification ISBN: 0137931522

Expected date of
thesis defence:

2023/24 WS - PEF

Electronically approved: 4. 7. 2023

doc. Ing. Jiří Vaněk, Ph.D.

Head of department

Declaration

I declare that I have worked on my bachelor thesis titled " Linux server system setup and

configuration using terraform and ansible" by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the thesis

does not break any copyrights.

In Prague on 8/6/2023

Acknowledgement

I would like to thank my supervisor for his guidance and my family and friends for their support

Summary

This thesis is about how a small firm, and entrepreneurs can take advantage of open-
source technologies.

It shows how the process of setting up a linux server is done using infrastructure as code
and git ops principles.

southern

Tato práce pojednává o tom, jak mohou malá firma a podnikatelé využít výhod open-
source technologií.

Ukazuje, jak se proces nastavení linuxového serveru provádí pomocí infrastruktury jako
kódu a principů git op

Table of content

Introduction……………………………………………………. 9

Objectives and Methodology…………………………………………………….10

Objectives…………………………………………………….10

Methodologies.…………………………………………………….10

Literature Review …………………………………………………….11

GitOp…………………………………………………….11

Introduction…………………………………………………….11

GitOps vs DevOps …………………………………………………….11

The benefits of GitOps…………………………………………………….12

Typical GitOps tools …………………………………………………….13

Introduction to cloud computing…………………………………………………….14

Types of cloud computing …………………………………………………….15

Terraform…………………………………………………….16

Why Terraform…………………………………………………….17

How does Terraform function?…………………………………………………….18

Modules for Terraform…………………………………………………….19

Terraform providers…………………………………………………….19

What is Ansible?…………………………………………………….20

How Ansible works.…………………………………………………….20

Ansible playbook? …………………………………………………….20

Introduction

Small businesses and entrepreneurs can simply get started thanks to open-source
technologies. They allow small businesses to cut costs and to modify them for their
needs without many restrictions because they are free. Setting up servers can be a very
expensive and challenging task. Both money and a lot of expertise

are needed. The configuration management process can be automated with the use of
open-source tools like ansible. Automation of the procedure eliminates the need for
repetitive configuration effort. The provisioning of the servers is aided by Terraform, which
speeds up the process if the number of servers needed needs to be increased. Utilizing
cloud platforms like AWS and GCP enables small businesses to launch without having to
make significant financial investments. The business can modify these tools to meet its
needs by utilizing open-source technologies.

There is practically no cost involved. The tools can be replaced by additional options. For
Ansible, for instance, such options might be Chef or Puppet. Windows and Mac are
potential Linux substitutes. However, there are numerous Linux distributions, to name a
few: openSUSE, Fedora, Debian, Ubuntu, and Fedora.

Using the Ubuntu distribution will be used in this study report. There are also a number of
additional cloud computing options, including Linde, IBM Cloud,

Microsoft Azure, and Oracle Cloud. Bitbucket equivalents include things like GitHub,
GitLab, and Azure Repositories, among others.

Objectives and Methodology

Main objective

The main objective of this thesis is to Investigate how a small company can leverage open

source tools such as Ansible and Terraform to run efficient infrastructure using GitOps

principles.

Partial objectives

-Explain and evaluate the existing literature on cloud computing, google cloud platform, Linux,

ansible, terraform, bitbucket and GitOps.

-Explain and evaluate trends in IT infrastructure from physical hardware to virtual machines.

-Explain how IT infrastructure can be managed using code, from setting up a Linux server

using Terraform to configuring it using Ansible.

Methodologies

The study will analyze information sources, including books and online journals. The student

will also use scientific and expert literature as well as data from academic journals that cover

the topics of Linux infrastructure and configuration. The author will also create a virtual

machine and configure it.

Literature Review

GitOps

Introduction

GitOps is an operational framework that uses continuous integration/continuous delivery
(CI/CD), version control, and DevOps methods to automate infrastructure and manage
software deployment. It enables programmers to automate operational processes by
saving the ideal infrastructure condition. From the beginning of the development
workflow all the way through deployment, a set of best

…

practices known as GitOps are used(gitlab 2023). GitOps is a developer-focused
approach that uses tools that developers are already familiar with. Git is currently used by
developers to store the source code for applications; GitOps extends this concept to
encompass infrastructure, operational procedures, and

application configuration. All of a project's infrastructure, including that which takes the
form of code, configuration, and application code files, is maintained by GitOps in Git
repositories. Every change to the apps and infrastructure is immediately synchronized
with the live environment.(2023 codefresh)

GitOps can be used to manage the deployments of any infrastructure. Platform engineers
and software developers that use Kubernetes and want to switch to continuous operating

models will find it especially useful. GitOps makes continuous deployment for cloud-
native applications straightforward. This is

achieved by ensuring that cloud infrastructure can be quickly replicated based on a Git
repository's current state.

GitOps vs DevOps

It is important to stress that GitOps is not a natural extension of DevOps or even DevOps
2.0. GitOps is a set of deployment techniques, whereas DevOps is a philosophy, or better
yet, an attitude. Due to the GitOps process and

contemporary DevOps approaches' shared concepts, teams find it easier to apply them.

The benefits of GitOps

A GitOps framework enables infrastructure automation, and while automation is valuable
in and of itself, GitOps also has other advantages. Companies that use GitOps gain
additional benefits with long-lasting effects.

Cooperating on infrastructure upgrades will allow senior engineers to focus on issues
other than infrastructure management because each update will go through the same
change/merge request/review/approval process.

Time to market is shortened since manual point-and-click operations take longer to
execute in code. Stable environments can be provided fast due to the repeated and
automated nature of test cases.

Making audits simpler. When infrastructure upgrades are made manually across
numerous different interfaces, auditing can become challenging and time-

consuming. Data must be gathered and harmonized from numerous sources in order to
execute the audit. GitOps makes audits easy because all changes to environments are
documented in the git log.

reduced danger. All infrastructure changes are tracked via merge requests, which also
enable rolling back modifications to an earlier state.

less liable to mistakes. Infrastructure descriptions are recorded and replicable, which
lowers the possibility of human error. Through the use of collaborative merge requests
and code reviews, errors can be detected and rectified before being released into
production.

reduced costs and downtime. Automation of infrastructure definition and testing
reduces downtime, boosts productivity, and gets rid of human tasks thanks to

built-in revert/rollback functionality. Additionally, automation makes it possible for IT staff
to better manage cloud resources, which reduces cloud costs.

improved access control. Since changes are automatically made, just CI/CD needs
access, so all infrastructure components don't need login information.

Typical GitOps tools

GitOps stands out since it consists of numerous platforms, plugins, and products.

Teams may manage IT infrastructure using the same processes they use to develop
applications, thanks to a solution called GitOps. Although Ansible,

Terraform, and Kubernetes are popular technologies, the GitOps process is largely
technology-independent (with the obvious exception of Git).

GitOps is appropriate in a variety of circumstances. For instance, Kubernetes and GitOps
complement each other quite nicely. Kubernetes, which is supported by all of the main
cloud platforms, makes use of stateless and immutable containers.

Because Kubernetes-based containerized apps are self-contained, you don't need to
provision and build up servers for every program. Kubernetes clusters and

other essential infrastructure, such as networking and database systems, are provisioned
using Terraform.

When deploying stateful apps, external services like Redis caches and Amazon Aurora
database instances need to be taken into account. Even though Kubernetes is a solid
foundation for a GitOps architecture,

GitOps execution is not required. It can also be utilized with virtual machines and other
traditional cloud infrastructure. In this case, new VMs would be provisioned using
Terraform, and they would be set up using a configuration management tool like Ansible
(gitlab 2023).

 Tools

Git repository git

Git management tool GitHub bitbucket

Continuous integration tool Jenkins circleci

Continuous delivery tool spinnaker flux

Configuration manager ansible Puppet

Infrastructure provisioning terraform Aws CloudFormation

Container orchestration Kubernetes

Introduction to cloud computing

A small business can use cloud computing to obtain all the IT infrastructure it requires. To

provide quicker innovation, adaptable resources, and scale economies, cloud computing is the

supply of computing services—including servers, storage, databases, networking, software,

analytics, and intelligence—over the internet.

According to Azure 2023, users often only pay for the cloud services they really use, which

lowers operational expenses, improves infrastructure management, and enables them to scale as

their business requirements evolve.

A small business may decide to use a cloud platform instead of its own on- premises

infrastructure for a variety of reasons. The following are a few potential motives:

- By reducing the costs related to maintaining IT infrastructure, using the cloud platform
will significantly reduce the costs of IT infrastructure. To put it another way, using the cloud
enables users to swap fixed costs for

variable costs. Only what customers actually utilize will be charged. They use the pay-as-
you-go method of payment.

The cloud is more secure than on-premise since it offers a broad set of

policies, technologies, and controls that strengthen security, helping protect data, apps,
and infrastructure from potential threats.

- The cloud enables the instantaneous delivery of computing services. This makes it
possible for the business to get going right away rather than having to wait for the hardware
to be set up, which could take weeks or even months. - The cloud is more trustworthy.
They do this by making data

backup, disaster recovery, and business continuity simpler and less

expensive because of the ability to mirror data across numerous redundant sites on the
network of the cloud provider.

The cloud also makes it possible for businesses to quickly extend into other countries and
regions. Faster server and service deployments are made possible by it...

Types of cloud computing

Public cloud

These are owned and run by a separate cloud service provider that offers online access to

computer resources like servers and storage. In a public cloud, the cloud provider owns and

manages all of the hardware, software, and other supporting infrastructure.

Private cloud

Cloud computing resources used solely by a single company or organization are referred to as

private clouds. Physically, a private cloud may be situated on the business's on-site datacenter.

Hybrid cloud

Public and private clouds are combined in hybrid clouds, which are connected by a
system that enables data and applications to be transferred between them. A hybrid
cloud allows your company more flexibility and deployment options by enabling data and
apps to migrate between private and public clouds. It also helps to optimize your current
infrastructure, security, and compliance.

(IaaS) Infrastructure as a Service

IaaS contains the basic building blocks of cloud computing. It is common practice to
provide access to networking capabilities, computers (virtual or on dedicated hardware),
and data storage capacity. IaaS gives you the most flexibility and administrative control
over your IT resources. It is most similar to the present IT resources that many IT
businesses and developers are used to (AWS 2023).

PaaS (Platform as a Service)

By relieving you of the burden of managing the underlying infrastructure (typically
hardware and operating systems), PaaS allows you to focus on the deployment and
administration of your apps. Because you won't have to worry about things

like resource acquisition, capacity planning, software maintenance, patching, or any
other undifferentiated heavy lifting (AWS 2023), you can run your application more
effectively.

SaaS (software as a service)

Through SaaS, you can have a complete product that is run and managed by the service
provider. When someone talks about SaaS, they typically mean end-user apps, such as
web-based email. When choosing a SaaS provider, you don't have to worry about how the
service is managed or the underlying infrastructure is

maintained. You need just think about how you intend to use that particular piece of
software (AWS 2023).

Terraform

Terraform is a declarative coding tool that enables developers to specify the intended
"end-state" cloud or on-premises infrastructure for operating an application using the
high-level configuration language known as HCL (HashiCorp Configuration Language).
After that, it creates a plan to get there and carries it out to furnish the infrastructure.

Terraform is now one of the most well-liked infrastructure automation tools

because it has a clear syntax, can provision infrastructure across different cloud and on-
premises data centers, and can safely and effectively re-provision

infrastructure in response to configuration changes. You'll probably want to learn about
Terraform if your company intends to create a hybrid cloud or multi-cloud

infrastructure(IBM 2023).

It helps to first grasp the advantages of Infrastructure as Code (IaC) to better understand
the benefits of Terraform. IaC enables developers to codify

infrastructure in a way that automates, accelerates, and repeats provisioning. It's an
essential part of Agile and DevOps techniques like continuous integration, continuous
deployment, and version control.

Infrastructure provisioning using terraform.

Is an infrastructure as code tool that is used to build, change, and version cloud and on-
prem resources safely and efficiently. It also allows the user to define both cloud and on-
prem resources in human-readable configuration files that can be reused and shared.
Terraform can manage low-level components like computer, storage, and networking
resources, as well as high-level components like DNS entries (hashicorp 2023). That can
provision resources from the cloud from simple declarative code.

Infrastructure as code can help with the following:

Boost speed: When it comes to deploying and/or connecting resources, automation is
quicker than manually browsing an interface.

Increased dependability is important since it is simple to setup resources incorrectly or to
provision services in the wrong sequence when your

infrastructure is huge. The resources are always provided and set up exactly as declared
when using IaC.

Prevent configuration drift: When the configuration that was used to provision your
environment no longer corresponds to the real environment, configuration drift occurs.
(Read more about 'Immutable infrastructure' below.)

Support for experimentation, testing, and optimization: Infrastructure as Code makes
provisioning new infrastructure so much faster and simpler that you can

make and test experimental changes without devoting a lot of time and resources. If the
results are positive, you can quickly scale up the new infrastructure for production.

Why Terraform?

Developers favor Terraform over competing Infrastructure as Code technologies for a few
main reasons:

Open source: Terraform is supported by sizable contributor communities that create
platform extensions. No matter which cloud provider you choose, it's simple to locate
plugins, extensions, and expert support. This also means that terraform develops quickly,
adding new features and benefits on a regular basis.

Platform agnostic: It is platform-agnostic, so you can use it with any supplier of cloud
services. The majority of other IaC solutions are made to function with a

single cloud provider.

Immutable infrastructure: Infrastructure as Code technologies typically produce
malleable infrastructure, which can alter to accommodate modifications like a
middleware upgrade or new storage server. Configuration drift is the risk with

mutable infrastructure; when the modifications multiply, the provisioning of various
servers or other infrastructure components 'drifts' further from the initial configuration,
making problems or performance issues challenging to identify and fix. Terraform creates
immutable infrastructure, which implies that if the

environment changes, the infrastructure is reprovisioned with a new configuration that
takes the new environment into account. Better still, earlier settings can be kept around
as versions, allowing rollbacks if required or desired.

controlling any infrastructure

In the Terraform Registry, you may find providers for many of the platforms and services you
already use. You can create your own as well. The complexity of updating or changing your
services and infrastructure is reduced by Terraform's immutable approach to
infrastructure.

Following your infrastructure

Before changing your infrastructure, terraform produces a plan and requests your consent.
Additionally, it maintains a status file of your actual infrastructure, which serves as the
environment's single source of truth. Terraform analyzes the state

file to decide what modifications need to be made to your infrastructure in order for it to
comply with your setup.

Automate your changes.

Declarative configuration files for Terraform explain the final state of your

infrastructure. Terraform handles the underlying logic, so creating resources does not
require you to write detailed instructions. Terraform simultaneously develops or alters
non-dependent resources while constructing a resource graph to identify resource
dependencies. Terraform can provision resources effectively because of this.

Establish uniform configurations.

In order to save time and promote best practices, terraform enables reusable
configuration components known as modules that define configurable groups of
infrastructure. Use the Terraform Registry's publicly accessible modules or create your
own.

Collaborate

As your configuration is stored in a file, you may utilize Terraform Cloud to effectively
manage Terraform processes between teams and commit your

configuration to a Version Control System (VCS). In addition to offering safe access to
shared state and secret data, role-based access controls, a private registry for sharing
both modules and providers, and other features, Terraform Cloud

executes Terraform in a dependable, consistent environment.

How does Terraform function?

Terraform uses application programming interfaces (APIs) to construct and

manage resources on cloud platforms and other services. Terraform can integrate with
practically any platform or service that has an accessible API, thanks to

providers.

To handle a wide range of resources and services, HashiCorp and the Terraform
community have already created thousands of providers. All publicly accessible providers,
such as Amazon Web Services (AWS), Azure, Google Cloud Platform (GCP) and many
others, may be found on the Terraform Registry.

The primary stages of the Terraform workflow are as follows:

You specify the resources, which might be spread across various cloud service providers.
As an example, you could build up a network in a Virtual Private Cloud (VPC) with security
groups and a load balancer to deploy an application on virtual machines.

Plan: Terraform creates an execution plan that details the infrastructure it will create,
update, or remove based on the already-existing infrastructure and your configuration.

Apply: After accepting, Terraform accurately and with care for any resource requirements
carries out the specified activities. For instance, if you alter the

features of a VPC and alter the number of virtual machines in that VPC. Terraform will
regenerate the VPC before scaling the virtual machines.

Modules for Terraform

Terraform modules are condensed, reusable Terraform configurations for a

collection of infrastructure resources. Because they use reusable, customizable
components, Terraform modules allow for the automated automation of complex
resources. A module is created even while writing a very simple Terraform file. The
configuration-assembly procedure can be sped up and made easier by a module's
capacity to call other modules, also referred to as child modules. Modules may also be
invoked several times, either within the same configuration or in different configurations
(IBM 2023).

Terraform providers.

Resource types are implemented via plugins called terraform providers. On behalf of the
user, providers have all the necessary code to authenticate and connect to a service—
typically from a public cloud provider. You can locate providers for the cloud services and
platforms you employ, include them in your configuration, and then use their resources to
provision infrastructure. Nearly all the main cloud

providers, SaaS offerings, and other services have providers that were created and/or are
sponsored by the Terraform community or specific businesses

(HASHICORP 2023).

What is Ansible?

Ansible is an infrastructure automation, tool that automates provisioning, configuration
management, application deployment, orchestration, and many

other manual IT processes. It is an agentless automation tool that can be installed on a
single host (referred to as the control node). From the control node, Ansible can manage
an entire fleet of machines and other devices (referred to as

managed nodes) remotely with SSH all from a simple command-line interface. There is no
need for extra servers, daemons, or databases (Redhat 2021).

How Ansible works

Ansible works by establishing a connection to the task you wish to automate and then
pushing scripts that carry out instructions that would have been manually carried out.
These applications make use of Ansible modules that were created

with a focus on the connection, user interface, and command expectations of the
endpoint. The modules are then executed by Ansible (by default over regular SSH) and, if
necessary, removed at the end (Redhat 2021).

What are Ansible playbooks?

Ansible playbooks are blueprints for automation tasks, which are advanced IT operations
carried out without the need for human intervention. Ansible playbooks are written in
human-readable YAML format and executed on a set,

group, or classification of hosts, which together make up an Ansible inventory. We will
discuss more of how the ansible playbooks work in the practical part of this thesis paper.

Uses of Ansible

Infrastructure provisioning with Ansible

The infrastructure (such as a server or cloud endpoint, for example), must first be setup
before you can install and configure an application. Companies aiming to

scale IT rapidly and reliably use Ansible playbooks since manually provisioning hundreds
or thousands of servers is not practical. The practice of supplying hundreds or thousands
is no longer practical. You can create a single instance with

Ansible, then use it or any number of other servers immediately using the same
infrastructure parameters or information. The next step after provisioning the
environment is configuration, which Ansible excels at handling as part of the IT
operational life cycle(Redhat 2021).

Configuration management with Ansible

The simplest method for automating common IT operations is Ansible. It is intended to
have a very little learning curve for administrators, developers, and IT managers and to be
minimal in nature, consistent, secure, and highly

reliable. Ansible uses straightforward data descriptions of your infrastructure that are both
machine-passable and human-readable, ensuring that any member of your team can
comprehend the purpose of each configuration task.

Application deployment with Ansible

With Ansible, you can reliably and consistently deploy multi-tier applications using a
single framework. From a single shared system, you can push application

artifacts and configure necessary services. Your team no longer creates specialized code
to automate your processes; instead, they merely provide straightforward task
descriptions that even the newest team member can immediately comprehend. This
reduces upfront expenses and makes it simpler to respond to ongoing change.

In this research paper we are going to use ansible mainly for configuration management.

Practical part

At first, we are going to creation a linux server by using terraform. For this we will need the
following and we will need to install terraform.

Prerequisites for creating a virtual machine using terraform.

Github account- this is where we will keep our files. We can easily create a free account.

AWS account – we will use Amazon web service as our cloud platform. We can a free
account and use it for a year before we start to get charge

AWS access key id – we will need this to identify which account we will create the server
on

AWS secret access key – this is to grant us the permission to create the virtual machine.

Terraform – it’s required for us to use it to create the virtual machine.

Linux based machine – We are going use a linux machine as a preference not a
requirement. We can use a code editor like virtual studio code and install terraform and
use a terminal to run commands.

Installing terraform on amazon Linux

We will be using an amazon Linux machine and we will need to install terraform using the
following commands and process

Install yum-config-manager to manage your repositories

sudo yum install -y yum-utils

We will use the following command to add the official Hashicorp Linux repository.

sudo yum-config-manager --add-repo

https://rpm.releases.hashicorp.com/AmazonLinux/hashicorp.repo

3 Final we install terraform

sudo yum -y install terraform

After we will check if terraform is installed and also that we can the current version

terraform --version

After the above steps, we will then move on to create a GitHub repository. We will keep
our project files

First, we will need to create an SSH key by running the below command

[root@ip-172-31-17-0 ~]# ssh-keygen

The above command will create a ssh key. We will copy this key and paste it in our github
account under the ssh and gpg keys.

After this, we will create two repositories, one for our ansible and another for Terraform

We will then get into one of these repositories and copy their URL and run the below
command to download the folder in our linux virtual machine. At first we will start with
terraform

At first we will run the below command to see if we have git installed

[root@ip-172-31-17-0 ~]# which git

/usr/bin/git

The below command will download our git repository

[root@ip-172-31-17-0 ~]# git clone git@github.com:tinashebvukumbwe/Terraform-

thesis-project.git

The below credentials will tell git who we are.

[root@ip-172-31-17-0 Terraform-thesis-project]# git config --global user.name

"tinashebvukumbwe"

[root@ip-172-31-17-0 Terraform-thesis-project]# git config --global user.email

"trbvukumbwe1@gmail.com"

The below commands contain our aws access key id and our aws secret access key.
These will enable us to create resources on our aws account

[root@ip-172-31-17-0 Terraform-thesis-project]# export

AWS_ACCESS_KEY_ID="AKIAXYKJWZRVTRZGVHWW"

[root@ip-172-31-17-0 Terraform-thesis-project]# export

AWS_SECRET_ACCESS_KEY="mxVzllASXxPElFR6EOUJioi7WdxR3MxIy6yo5Wo4"

Creating a linux instance and a virtual private network

After the above steps are completed. We will start to write our terraform code. This is the
code that will be used to create all the resources we will need to set up a Linux server.

Main.tf

resource "aws_instance" "thesis_server" {

 ami = "ami-03484a09b43a06725"

 instance_type = "t2.micro"

 tags = {

 Name = "exampleserver"

 }

}

resource "aws_vpc" "this" {

 for_each = var.vpc_parameters

 cidr_block = each.value.cidr_block

 enable_dns_support = each.value.enable_dns_support

 enable_dns_hostnames = each.value.enable_dns_hostnames

 tags = merge(each.value.tags, {

 Name : each.key

 })

}

resource "aws_subnet" "this" {

 for_each = var.subnet_parameters

 vpc_id = aws_vpc.this[each.value.vpc_name].id

 cidr_block = each.value.cidr_block

 tags = merge(each.value.tags, {

 Name : each.key

 })

}

resource "aws_internet_gateway" "this" {

 for_each = var.internet_gatway_parameters

 vpc_id = aws_vpc.this[each.value.vpc_name].id

 tags = merge(each.value.tags, {

 Name : each.key

 })

}

resource "aws_route_table" "this" {

 for_each = var.route_table_parameters

 vpc_id = aws_vpc.this[each.value.vpc_name].id

 tags = merge(each.value.tags, {

 Name : each.key

 })

 dynamic "route" {

 for_each = each.value.routes

 content {

 cidr_block = route.value.cidr_block

 gateway_id = route.value.use_igw ?

aws_internet_gateway.this[route.value.gateway_id].id : route.value.gateway_id

 }

 }

}

resource "aws_route_table_association" "this" {

 for_each = var.route_table_association_parameters

 subnet_id = aws_subnet.this[each.value.subnet_name].id

 route_table_id = aws_route_table.this[each.value.rt_name].id

}

provider "aws" {

 region = var.region

}

outputs.tf

output "vpcs" {

 description = "VPC Outputs"

 value = { for vpc in aws_vpc.this : vpc.tags.Name => { "cidr_block" :

vpc.cidr_block, "id" : vpc.id } }

}

providers.tf

terraform {

 required_version = "~> 1.7.4"

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = ">= 5.0.0"

 }

 }

}

variables

variable "vpc_parameters" {

 description = "VPC parameters"

 type = map(object({

 cidr_block = string

 enable_dns_support = optional(bool, true)

 enable_dns_hostnames = optional(bool, true)

 tags = optional(map(string), {})

 }))

 default = {}

}

variable "subnet_parameters" {

 description = "Subnet parameters"

 type = map(object({

 cidr_block = string

 vpc_name = string

 tags = optional(map(string), {})

 }))

 default = {}

}

variable "internet_gatway_parameters" {

 description = "Internet gateway parameters"

 type = map(object({

 vpc_name = string

 tags = optional(map(string), {})

 }))

 default = {}

}

variable "route_table_parameters" {

 description = "Route table parameters"

 type = map(object({

 vpc_name = string

 tags = optional(map(string), {})

 routes = optional(list(object({

 cidr_block = string

 use_igw = optional(bool, true)

 gateway_id = string

 })), [])

 }))

 default = {}

}

variable "route_table_association_parameters" {

 description = "Route Table association parameters"

 type = map(object({

 subnet_name = string

 rt_name = string

 }))

 default = {}

}

variable "region" {

 description = "AWS region"

 type = string

 default = "eu-central-1"

}

After creating the above files, we will then run some terraform commands to create all the
resources we mentioned above

Firstly, we will need to the validity of our syntax by running the following command

terraform validate

If everything is okay, we will move on to running the next command

[root@ip-172-31-16-162 Terraform-thesis-project]# terraform init

The above image is the output of the terraform init command. Since terraform has been
initialized successfully, we will move on to the next command :

[root@ip-172-31-16-162 Terraform-thesis-project]# terraform plan

The above image is the output of the terraform plan command. Since the planning has
been successful, we will move on to the next command :

[root@ip-172-31-16-162 Terraform-thesis-project]# terraform apply

Configuration using Ansible

The first thing we need to do is install ansible and also to make sure that we have python
and pip install. The server we will use to run ansible needs to have both ansible and
python to be installed. The servers we will manage do not need to have ansible install but
they will need to have python installed in them.

Inventory

We will keep the servers we want to manage here. The external ip addresses of the server
will be stored in the file /etc/hosts

server1.thesis.com

server2.thesis.com

[root@ip-172-31-17-0 ~]# yum install ansible

The above output shows that we have ansible already installed

The below configuration file will enable us to have root access and enable us to login with
the help of the ssh key when we will run our playbooks

Ansible.cfg

[defaults]

inventory = inventory

remote_user = ec2-user

host_key_checking = false

deprecation_warning = false

[privilege_escalation]

become = True

become_method = sudo

become_user = root

become_ask_pass = False

install-apache.yml

The below script will install the httpd server and start the service, which can be used as a
web server

- name: install httpd

 hosts: all

 tasks:

 - name: install httpd server

 yum:

 name: httpd

 state: present

 - name: create an index.html

 copy:

 content: 'welcome to the thesis web server'

 dest: /var/www/html/index.html

 - name: start the service

 service:

 name: httpd

 state: started

 enabled: true

selinux.yml

The below script will enable selinux which is necessary to regulate what each user,
process, and daemon is allowed to do on the system. Daemons with well-defined data
access and activity privileges, such web servers and database engines, are contained by
it.

- hosts: all

 tasks:

 - name: Enable SELinux for security

 ansible.posix.selinux:

 policy: targeted

 state: enforcing

user.yml

The below script will be used to create a user and group

- name: I am going to create users and groups using this playbook

 hosts: all

 tasks:

 - name: create an admin group

 group:

 name: admin

 state: present

 - name: create admin users

 user:

 name: tinashe

 comment: admin

 groups: admin

Conclusion

Conclusion

For the conclusion of this research paper, l created a survey to ask about the experiences
of users, and below are the questions and results

From the survey above we can see that getting started with ansible and terraform is
difficult. But people in the IT industry are still finding it useful to learn it since it will make
life easier for them once they learn it.

References

https://www.redhat.com/en/technologies/management/ansible/what-is-ansible
https://www.redhat.com/en/technologies/management/ansible
https://docs.ansible.com/ansible/latest/getting_started/index.html

https://codefresh.io/learn/gitops/ https://about.gitlab.com/topics/gitops/

https://www.redhat.com/en/technologies/management/ansible/hybrid-cloud
https://www.ibm.com/topics/cloud-computing

https://aws.amazon.com/what-is-cloud-computing/ https://www.linux.com/what-is-linux/

https://developer.hashicorp.com/terraform/intro
https://www.atlassian.com/git/tutorials/gitops

https://www.redhat.com/en/technologies/management/ansible/what-is-ansible
https://www.redhat.com/en/technologies/management/ansible
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://codefresh.io/learn/gitops/
https://about.gitlab.com/topics/gitops/
https://www.redhat.com/en/technologies/management/ansible/hybrid-cloud
https://www.ibm.com/topics/cloud-computing
https://aws.amazon.com/what-is-cloud-computing/
https://www.linux.com/what-is-linux/
https://developer.hashicorp.com/terraform/intro
https://www.atlassian.com/git/tutorials/gitops

https://www.ibm.com/topics/terraform

https://www.ibm.com/topics/terraform

