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Abstract
The presented dissertation deals with general singular stress concentrators (GSSC) namely with a sharp notch also
known as a V-notch, a sharp bi-material notch and a sharp material inclusion. The review section briefly outlines
the Kolosov-Muskhelishvili complex potential theory of the plane elasticity applied on fracture mechanics problems.
Next, the linear elastic fracture mechanics of cracks, V-notches, bi-material notches and bi-material junctions
is discussed. The review also includes the crack initiation direction and the stability criteria of the maximum
tangential stress, the strain energy density factor and the coupled stress-energy criterion. In the following text,
limits of the single parameter and advantages of the multi-parameter fracture mechanics are presented. The next
section introduces methods to determine the necessary parameters to describe the stress and displacement field
near the GSSCs. The parameters include the eigenvalue λk and the generalized stress intensity factor Hk. The
λk is determined as an eigenvalue problem, while the methods to calculate the Hk are the Ψ-integral and the
overdeterministic method. Both the methods are applied on the studied GSSCs and mutually compared. Finally
the criteria for crack initiation in the GSSCs are proposed in the multi-parameter form. The crack initiation
direction and the stability conditions are predicted for particular problems in numerical examples. The failure
forces for a V-notch are predicted by above mentioned criteria and compared with experimental data found in
literature. In following section methods to analyze multi-material problem are shown. The final section summarizes
with means of the crack initiation and propagation near the sharp material inclusion.

Keywords
Fracture mechanics, general singular stress concentrator, bi-material notch, sharp material inclusion, composite
material

Abstrakt
Předkládaná disertace se zabývá obecnými singulárními koncentrátory napětí a to zejména ostrým vrubem neboli
V-vrubem, ostrým bi-materiálovým vrubem a ostrou materiálovou inkluzí. V první části práce je stručně nastí-
něna Kolosovova-Muschelišviliho teorie komplexních potenciálů rovinné pružnosti aplikovaná na problémy lomové
mechaniky. Dále je diskutována lineární elastická lomová mechanika trhlin, V-vrubů, bi-materiálových vrubů a
bi-materiálových spojů. V rešerši jsou dále zahrnuta kritéria směru iniciace trhliny i její stability a to kritérium ma-
ximálního tečného napětí, faktor hustoty deformační energie a sdružené napěťově-energetické kritérium. Následují
text uvádí omezení jednoparametrové lomové mechaniky a výhody její multiparametrové formy. Další část předsta-
vuje metody pro určení nezbytných parametrů pro popsání pole napětí a posuvů v blízkosti obecného singulárního
koncentrátoru napětí. Tyto parametry zahrnují vlastní číslo λk a zobecněný faktor intenzity napětí Hk. Vlastní
číslo λk je určeno jako řešení problému vlastních hodnot zatímco metody pro určení Hk tvoří Ψ-integrál a me-
toda přeurčitosti. Obě zmiňované metody jsou aplikovány na zde studované obecné singulární koncentrátory napětí
a vzájemně porovnány. Kritéria pro vznik trhliny v obecném singulárním koncentrátoru napětí jsou navržena. V
rámci numerických příkladů jsou předpovězeny směry iniciace trhliny a podmínky stability pro konkrétní problémy.
Kritické síly pro V-vrub jsou předpovězeny pomocí výše zmíněných kritérií a srovnány s experimentálními daty
v literatuře. V následující části jsou ukázány metody analýzy multi-materiálového problému. V závěru práce jsou
shrnuty způsoby iniciace a šíření trhliny v blízkosti ostré materiálové inkluze.

Klíčová slova
Lomová mechanika, obecný singulární koncentrátor napětí, bi-materiálový vrub, ostrá materiálová inkluze, kompo-
zitní materiál
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Figure 1: Locations in a composite material where a singular stress concentration is expected.

1. Introduction
Fracture mechanics has been developed following the fact that the majority of components and structures in engi-
neering application contain cracks or crack-like flaws [1]. Linear elastic fracture mechanics (LEFM) uses methods
of the linear elastic stress analysis of a cracked part to determine the conditions under which a crack, or crack-like
flaw will extend. The linear elastic analysis of a body with a crack shows that the stresses around the crack tip
vary according to r−1/2 where r is the distance from the crack tip. It is obvious that the elastic stresses become
unbounded as r approaches the crack tip [2, 3].

As a result of the near tip stress field character of a crack, it is among so called singular stress concentrators. A
crack can be conceived as a special case of a sharp V-notch with an opening angle equal to zero. It has been found
that the stress field in the vicinity of a sharp V-notch tip (with a non-zero opening angle) also has the singular
character, nonetheless different from the case of a crack [8]. The singular stress concentrators discussed above
originate from a discontinuity in geometry. However, singular stress character in a body different from a crack can
also arise from a material properties discontinuity. This may be the case of a bi-material junction which is a model
for a sharp polygon-like inclusion embodied in a parent material. An ultimate case of a singular stress concentrator
a sharp bi-material notch is the case combining both geometrical and material discontinuities.

Nowadays we encounter a rising number of components and structures made out of composite materials. The
composite materials (or composites) consist of two or more combined constituents that are combined at a macro-
scopic level [6]. One constituent is called the reinforcing phase and the one in which the reinforcement is embedded
is called the matrix as shown in Figure 1. The reinforcing phase material may be in the form of fibers, particles,
or flakes. One of the reasons to choose composites is that for example monolithic metals and their alloys cannot
always meet the demands of today’s advanced technologies. Only by combining several materials can the perfor-
mance requirements be met as we can see in the aerospace industry where a combination of supreme structural
characteristics and low weight is critical. On the other hand, the very nature of composites (the material properties
mismatch) brings higher complexity of their description in terms of fracture mechanics.

Advanced studies of the linear elastic fracture mechanics of cracks show an influence of particular singular and
non-singular stress series terms on the fracture behavior of solids with a crack. It is shown in literature that the
first non-singular (constant) term of Williams’ stress series [9] called T-stress plays an important role within crack
behavior assessment both in the case of brittle fracture and in the case of fatigue crack propagation [11, 12, 13, 14].
Similarly, the effects of the T-stress on interfacial cracks in isotropic bi-materials were studied [15].

Contrary to this, the approaches that will be able to assess the influence of the non-singular stress terms on a
fracture initiation in the general singular stress concentrators are in the focal point to be developed. The following
stress concentrators are considered: the sharp V-notch in isotropic material, the sharp bi-material notch composed
of two isotropic materials, and the bi-material junction composed of two isotropic materials. In the case of the
general stress concentrators, the influence of the non-singular terms has not been studied sufficiently, but it is
expected as well. The stress concentrators mentioned above can model a number of typical dangerous points of
components usually responsible for their failure.

Depending on loading conditions and geometry of a component with the stress concentrator, a generalized
constraint can have a positive or negative influence. It can counteract crack initiation or it can stimulate it. Thus
assessment not covering the influence of the constraint provides overestimated or underestimated results. In the
first case the new approaches can save a certain volume of material, while in the second case the new stability
assessment can prevent a fatal damage. Thus the results of the future research can raise the credibility and extend
the application possibilities of the fracture mechanics.

As mentioned above, the general singular stress concentrators (GSSCs) exhibit a stress distribution at their tip

7
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Figure 2: Sharp material inclusion tip where a singular stress concentration is expected.

similar to a crack in linear elastic fracture mechanics. Within the description of the stress distribution in the form
of an infinite series the stress singularity exponents differ from ½. Similarly, the higher order terms appearing in
the stress distribution of the general stress concentrators have their generalized form (e.g. the exponent of the first
non-singular term differs from 0).

Some of crack initiation criteria of generalized stress concentrators require establishing a specific distance from
the tip of the concentrator, which depends on material characteristics (the strength and fracture toughness of the
material [23] or the size of material grain, [18, 19]). In fact, these distances are in some cases much larger than
the characteristic dimension of the domain of prevailing singular stress terms [16, 17, 21, 22]. Consequently, the
influence of the non-singular stress terms could be significant and emphasizing the necessity of their study is due to
good understanding of fracture processes at the sharp bi-material notch or the sharp material inclusion tip, Figure
2, studied within the dissertation.

8
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Figure 3: A coordinate system located at the crack tip and the Cartesian stress field components.

2. Review
2.1. Methods of the Kolosov-Muskhelishvili complex potential theory for plane elas-

ticity
Among various mathematical methods in plane elasticity, the complex potential function method developed by
Kolosov and Muskhelishvili is one of the most powerful and convenient methods to treat two-dimensional problems
[3, 4, 5]. In the complex potential method the displacement and stresses are expressed in terms of analytical
functions of complex variables. The basic equations of elasticity consist of equilibrium equations of stresses without
presence of body forces in the form of:

∂σxx
∂x

+ ∂σxy
∂y

= 0, (1)

∂σxy
∂x

+ ∂σyy
∂y

= 0,

where the individual stress components together with the coordinate system located at the crack tip are depicted
in Figure 3. The relations between strains and displacements are:

εxx = ∂ux
∂x

, εyy = ∂uy
∂y

, εxy = 1
2

(
∂ux
∂y

+ ∂uy
∂x

)
, (2)

and finally the stress-strain relations are:

σxx = λ∗(εxx + εyy) + 2µεxx, (3)
σyy = λ∗(εxx + εyy) + 2µεyy,
σxy = 2µεxy.

The symbol µ stands for the shear modulus and λ∗ is given by:

λ∗ = (3− κ)
(κ− 1)µ,

where κ is Kolosov’s constant defined as:

κ =
{

3− 4ν plane strain
3−ν
1+ν palne stress

.

In the expression above υ is Poisson’s ratio. It is common also to use the equation (3) in inverted form, which is:

εxx = 1
E

[σxx − ν (σyy + σzz)] , εxy = 1
2µσxy,

εyy = 1
E

[σyy − ν (σxx + σzz)] , εyz = 1
2µσyz, (4)

εzz = 1
E

[σzz − ν (σxx + σyy)] , εzx = 1
2µσzx

9
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Figure 4: A coordinate system located at the crack tip and the polar stress field components.

Throughout presented dissertation, materials are always represented by linear elastic material model. The compat-
ibility equations of strains can be obtained from equation (2) by eliminating displacements as follows:

∂2εxx
∂y2 + ∂2εyy

∂x2 = 2∂2εxy
∂x∂y

. (5)

By using the stress-strain relations (4) and the equilibrium conditions (1) the compatibility condition (5) above can
be expressed in terms of stresses as:

∇2(σxx + σyy) = 0,

where ∇2 is the Laplace operator given by:

∂2

∂x2 + ∂2

∂y2 = 0.

The Airy’s stress function Φ is defined as:

σxx = ∂2Φ
∂x2 , σyy = ∂2Φ

∂y2 , σxy = ∂2Φ
∂x∂y

Using the relations above, the equilibrium equations (1) are automatically satisfied and the compatibility equation
(5) becomes:

∇4Φ = 0. (6)

Any function which satisfies the equation above is called a bi-harmonic function. Once the Airy’s stress function is
known, the stresses, strains and displacements are expressed through equations (3) and (2) respectively. The solution
for the stress field has to satisfy both the equation (6) above and the boundary conditions. The main difficulty
may arise in finding the stress function which satisfies the boundary conditions of interest [1]. The problem can
be approached in reverse order, that is we can first postulate the function Φ(z) and then examine what boundary
conditions are satisfied. Finally, the complex potential representation of the Airy’s stress function [3, 4, 5] is given
by:

Φ = <{z̄Ω(z) + χ(z)} ,
2Φ = z̄Ω(z) + zΩ̄(z) + χ(z) + χ̄(z),

where Ω(z) and χ(z) are analytic functions (also known in literature as complex potentials). Complex variable is
z = x + iy for Cartesian coordinate system and z = r(cos θ + i sin θ) = reiθ for polar coordinate system as shown
in Figure 4. The line over the symbols stands for the complex conjugate and the symbol <{z} represents the real
part of the complex number z. Considering ω(z) = χ′(z), where the symbol ′ denotes the derivative by variable z,
the Kolosov-Muskhelishvili formulas for general plane problems are:

σxx + σyy = 4<{Ω′(z)} , (7)
σxx − σyy + iσxy = 2 {z̄Ω′′(z) + ω′(z)} ,

2µ(ux + iuy) = κΩ(z)− zΩ̄′(z)− ω̄(z).

10
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Figure 5: Zones surrounding the crack tip.

By simple algebraic operations and the choice of polar coordinate system the set of equations (7) can be rewritten
into a form used through the dissertation [43]:

σrr + iσrθ = Ω′(z) + Ω̄′(z)− zΩ̄′′(z)− ω̄′(z), (8)
σθθ − iσrθ = Ω′(z) + Ω̄′(z) + zΩ̄′′(z) + ω̄′(z),

ur + iuθ = 1
2µe

−iθ [κΩ(z)− zΩ̄′(z)− ω̄(z)
]
.

By adding the complex conjugate of first equation of (8) to the first equation of (8) we obtain the expression for the
radial stress component. Similarly we can obtain any individual stress or displacement component. The resulting
equations are as follows:

σrr = Ω′ (z) + Ω̄′ (z)− z̄

2Ω′′ (z)− z

2Ω̄′′ (z)− 1
2ω
′ (z)− 1

2 ω̄
′ (z) , (9)

σθθ = Ω′ (z) + Ω̄′ (z) + z̄

2Ω′′ (z) + z

2Ω̄′′ (z) + 1
2ω
′ (z) + 1

2 ω̄
′ (z) ,

σrθ = z̄

2iΩ
′′ (z)− z

2i Ω̄
′′ (z) + 1

2iω
′ (z)− 1

2i ω̄
′ (z) ,

ur = 1
4µ
{
e−iθ

[
κΩ (z)− zΩ̄ (z)− ω̄ (z)

]
+ eiθ

[
κΩ̄ (z)− z̄Ω (z)− ω (z)

]}
,

uθ = 1
4iµ

{
e−iθ

[
κΩ (z)− zΩ̄ (z)− ω̄ (z)

]
− eiθ

[
κΩ̄ (z)− z̄Ω (z)− ω (z)

]}
.

2.2. Fracture mechanics of a crack in homogeneous media
Linear elastic analysis of a cracked body shows that for the stresses σij near the crack tip it follows that:

σij ∝ 1√
r
,

where r is the distance from the crack tip as shown in Figure 3 or Figure 4. It is obvious that σij → ∞ as r
approaches the crack tip [1, 2, 3]. A fundamental concept of fracture mechanics is to accept the theoretical stress
singularity at the crack tip but not to use stress directly to determine failure or crack extension. This is based on
the fact that the stress in the vicinity of the crack tip has a limit which is the yield stress or the cohesive stress
between atoms. The singular stress field is a convenient representation of the actual finite stress field if the actual
discrepancy between the two lies in a small area near the crack tip, in a so called core region as shown in Figure
5. This concept is known as small-scale yielding. Thus the validity of Hooke’s law in all areas of the body except
the core region is the basic assumption of Linear Elastic Fracture Mechanics (LEFM). When a load is applied to
a cracked body, the crack surfaces move relative to each other and there are three possible modes of crack surface
displacement as shown in Figure 6. These are:

• Mode I, the opening mode when the opposing crack surfaces move directly apart, Figure 6a.

11
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Figure 6: Basic fracture modes, (a) Mode I, opening (b) Mode II, in-plane shear (c) Mode III, out-plane shear

• Mode II, the in-plane shear when the crack surfaces move over each other perpendicular to the crack front,
Figure 6b.

• Mode III, the out-plane shear when the crack surfaces move over each other parallel to the crack front, Figure
6c.

A general case of crack tip surface displacement can be described by superimposing the three modes. In practice,
most cracks tend to grow in Mode I, [1]. In order to describe the stress field in a cracked body a suitable Airy’s
stress function has to be found as discussed in sub-section 2.1. Consider an infinite plate with a crack along the
x-axis as shown in Figure 7. The solution proposed by Westergaard begins by defining the stress function Z(z) in
the following form:

Z(z) = 2Φ′(z)

If both the loading and geometry are symmetrical about the x-axis, then σxy = 0 along y = 0 and it follows that:

σxx = <{Z(z)} − y={Z ′(z)} −A,
σyy = <{Z(z)} − y={Z ′(z)}+A,

σxy = −y<{Z ′(z)} ,

where A is a real constant. The symbol ={z} denotes the imaginary part of the complex number z. The suitable
function for given geometry and boundary conditions is:

Φ(z) = σ∞[z − a2(z2 − a2)−1/2)].

Then the near-tip solution for the stress components is given by:

σxx = KI√
2πr

cos θ2

(
1− sin θ2 sin 3θ

2

)
,

σyy = KI√
2πr

cos θ2

(
1 + sin θ2 sin 3θ

2

)
,

σxy = KI√
2πr

cos θ2 sin θ2 cos 3θ
2 .

The detailed determination of equations above can be found in [1, 3]. The near-tip displacements are obtained
similarly, therefore:

ux = KI
8µπ

[
(2κ− 1) cos θ2 − cos 3θ

2

]
,

uy = KI
8µπ

[
(2κ+ 1) sin θ2 − sin 3θ

2

]
.

12
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Figure 7: Central crack in an infinite sheet under uniform biaxial tension.

Thus the formal definition of mode I Stress Intensity Factor (SIF) is:

KI = lim
r→0

√
2πrσyy (θ = 0) .

Simple analysis reveals that the unit of SIF is [Ki] = MPa ·m 1
2 . The Williams’s stress function [8, 9] is a generalized

form of the Westergaard’s stress function [1], stresses are expanded into a series. The Airy’s stress function has the
following form:

Φ =
∞∑
k=0

rλk+1Fk (θ) ,

where λk is eigenvalue and Fk (θ) is corresponding eigenfunction. The solution of the bi-harmonic equation (6) is
given by:

Fk(θ) = Ak sin(λk + 1)θ +Bk cos(λk + 1)θ + Ck sin(λk − 1)θ +Dk cos(λk − 1)θ.

For Mode I crack problems, the constants Ak and Ck are zero. It can be shown [3] that for the nontrivial solution
of the remaining constants Bk and Dk the characteristic equation of the eigenvalue λk is:

sin (2λkπ) = 0.

Thus the roots1 of this equation are λk = k
2 , k = 1, 2, . . . Finally the Williams’s stress series can be written as [2]:

σij = KI√
2πr

fij (θ) +
∞∑
k=0

kkr
k
2 gijk (θ) ,

where the fij (θ) and gijk(θ) are eigenfunctions. Analysis of stress term behavior when r → 0 indicates that the
first singular term becomes unbounded, the term of stress intensity factor kk with k = 0 is constant and the other
higher terms (k > 0) disappear. Nevertheless, as for Westergaard’s solution, the stress field in the vicinity of a crack
tip is dominated by the leading term of the Williams’s stress function.

Determination of the stress intensity factors

In general there are two methods how to determine SIFs by finite element analysis of a homogeneous body with a
crack. In the first case the mid-side nodes of a special triangular plane element are moved to the 1/4 points as shown
in Figure 8. Such a modification results in a 1/

√
r strain singularity, which enhances the numerical accuracy of the

solution. Then the numerical determination of the stress intensity factor by fitting into the analytical relations is
usually a built-in part of an FE system postprocessor. The second widely used option of SIF calculation without
a need for special elements is its determination by the contour integral. The path integration sufficiently far from
the singular point mitigates incorrect results of FEM in the closest vicinity of the singular stress concentrator.

1Only the positive values of λk are considered. The negative values would lead to infinite displacements at the crack tip and λk = 0
leads to unbounded strain energy [3].
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crack

Figure 8: Special triangular elements with shifted mid-side nodes.

Criteria of crack propagation direction

Maximum tangential stress criterion. The path of a crack in homogeneous material is sometimes curved.
Generally we can say that a crack tends to propagate in Mode I of loading [1, 2]. Thus for the case of a crack
subjected to a combined loading mode, the crack deflects towards the direction corresponding to a normal loading
mode. The criterion of the maximum tangential stress used for determination of crack propagation direction is
based on the assumption that a crack will propagate in the direction where the stress opening the crack will reach
its maximum [26]. The angle θ0 of further crack propagation must meet the following conditions:(

∂σθθ
∂θ

)
θ=θ0

= 0,

(
∂2σθθ
∂θ2

)
θ=θ0

< 0.

Strain energy density factor. Another method to predict crack propagation direction is to use Sih’s Strain
energy density factor (SEDF), it states that the crack will propagate in the direction of minimal value of SEDF
[57]: (

∂Σ
∂θ

)
θ=θ0

= 0,

(
∂2Σ
∂θ2

)
θ=θ0

> 0,

where the SEDF can be calculated using stress components as:

Σ = r
[
2σθθσrr(k − 1) + (σ2

θθ + σ2
rr)(k + 1) + 4σ2

rθ

] 1
8µ (10)

and k is constant defined:

k =
{

1− 2ν plane strain
1−ν
1+ν palne stress

. (11)

Stability criteria

Critical value of stress intensity factor. A crack does not propagate if the value of the stress intensity factor
KI is below its critical value KIcrit. The critical value KIcrit can be represented by the fracture toughness KIC for
cases of brittle fracture or by the threshold value KIth for fatigue crack propagation2. Then the stability criterion
is:

KI < KIcrit. (12)
2In the case of fatigue crack propagation, the stability condition is written ∆KI < KIth, where the ∆KI is the stress intensity factor

range. The condition is valid for stress ratio R = 0.
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Figure 9: The sharp homogeneous notch with a Cartesian and polar coordinate system at its tip.

Critical value of strain energy density factor. The Sih’s stability criterion states, that the crack will prop-
agate when the SEDF Σ reaches its critical value Σcrit:

Σ < Σcrit.

The critical value of SEDF Σcrit is material parameter, which can be determined in relation to the critical value of
KIcrit for given material:

Σcrit = kK2
Icrit

4πµ . (13)

2.3. Fracture mechanics of V-notch and bi-material notch
In the following we consider the geometrical and material configuration of a sharp homogeneous notch or sharp
bi-material notch as shown in Figure 9 and Figure 10 respectively. In following text we will intentionally omit the
word sharp, however both the homogeneous and bi-material notch are always considered sharp, i.e. with a zero
notch radius throughout this dissertation. Please note that the sharp homogeneous notch is often referred in the
literature by simplistic V-notch which will be also used in this text. The geometry of a V-notch is characterized by
the angles γ1 and γ2 and complementary opening angle 2α. The case of a bi-material notch has three geometric
parameters γ1, γ2 and γ3 and complementary opening angle 2α. The material properties are given by the elastic
constants of Young’s moduli and Poisson’s ratios. The solution mostly presupposes the approximation of plane
strain or plane stress. For the case of a bi-material notch a perfect bonding (displacement and traction continuity)
is assumed at the interface. The material characteristics, therefore, change by step at the interface. Furthermore,
the notch surfaces are traction-free. Stress distribution in the case of a V-notch or bi-material notch [17, 27] is given
by:

σij =
n∑
k=1

Hk√
2π
r−pkfijk (θ) (14)

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk stands for the Generalized Stress Intensity
Factor (GSIF) with the unit of [Hk] = MPa �mpk . The fijk (θ) is the angular eigenfunction, which is dimensionless.
The stress singularity exponents are given by:

pk = 1− λk

where λk is the kth eigenvalue of the problem, which is real or complex number. In most of the geometrical and
material configurations of V-notches and bi-material notches there are two real stress singularity exponents p1 and
p2 in the interval (0, 1) corresponding to the singular terms of the series [28]. Higher order eigenvalues can be either
real or complex numbers. Since its real part is greater than one, these eigenvalues correspond to the non-singular
higher order terms. The Figure 23 on p. 35 shows the dependence of real and imaginary part of the eigenvalues λk
on the notch opening angle 2α for the V-notch. Similarly in Figure 24 on p. 36, the resulting eigenvalues for the
bi-material notch are depicted.
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Figure 10: The sharp bi-material notch with a Cartesian coordinate system at its tip.

Determination of the stress terms order

As mentioned above we consider that notch surfaces are traction-free and the interface between the materials is
perfectly bonded (ideal adhesion). The eigenvalues of V-notches or bi-material notches are gained from a numerical
solution of so the called characteristic equation depending on the geometry and material properties of the notch
[29, 30, 31]. An effective tool to describe problems of isotropic plane elasticity is the Muskhelishvili’s complex
potential theory [4, 5, 7]. Another advantage of the stress-displacement field description by the complex potentials
is the effortless handling of the complex eigenvalues and the corresponding complex stress singular and non-singular
exponents. For the case of a bi-material notch the characteristic equation originates from equations enforcing zero
stress at the ith notch free surfaces, traction (both σθθ and σrθ) and displacement continuity at the interface. In the
above-mentioned (and other) publications the exponents corresponding to the singular stress terms are described.
The stress exponents of higher order (non-singular) terms will be determined within the dissertation from a set
of the boundary conditions corresponding to a particular problem [32]. The determination is shown in detail in
sub-chapter 4.2 on p. 27.

Determination of the stress intensity factors of particular stress terms

Methods for determination of the stress intensity factors of cracks are generally available in FEM commercial
systems. However, in the case of GSSCs, no simple method incorporated in FEM systems exists, and the amplitudes
of the stress terms must be determined via direct or integral methods e.g. [33, 36, 37, 38] . Both direct and integral
methods are combination of FEM and analytical approaches. For the case of determination of non-singular terms
the direct methods must be further modified. The direct method called the overdeterministic method (ODM) is
based on the solution of overdetermined system of linear equations by least-squares method [36]. The ODM has
been chosen for the study especially because of its minimal requirements for the FE software (there is no need to use
any special crack finite elements like the one depicted in Figure 8). The system of linear equations can be written:

F[2m×n]H[n] = u[2m],

where F[2m×n] is the matrix composed of the analytically determined eigenfunctions for displacements in radial
and tangential direction. H[n] is the unknown vector of GSIFs. On the right hand side stands the vector u[2m] of
radial and tangential displacements calculated by means of FEM3. Since 2m > n the system is overdetermined as
stated above and the unknown vector H[n] is calculated as a least square solution. In principal, the GSIFs can be
determined by taking both displacements and stresses from FEA. In such cases the matrix F[2m×n] has to contain
the eigenfunctions for both displacements and stresses. However, the displacement results from displacement based
FE system should be more accurate than stress results, which are in that case derived from displacement results.
Therefore the ODM based on displacement results only is sometimes preferred. See p. 44.

An alternative method of choice to determine GSIFs is the two state path independent integral, also called
Ψ-integral. The successful application of the Ψ-integral is conditioned by the knowledge of the so-called regular and
auxiliary solutions of the above-mentioned eigenvalue problem, [39], following from the stress analysis of the notch

3Index m does not represent material number m, it is used due to lack of useful indices.
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tip. By means of the Ψ-integral kth GSIF can be calculated as:

Hk =
Ψ(uFE, r−λkf−ijk(θ))

Ψ(rλkfijk(θ), r−λkf−ijk(θ))
,

where uFE is the FEM solution, fijk(θ) is the eigenfunction by ordinary analytical solution and f−ijk(θ) is the one
given by auxiliary analytical solution. Both analytical solutions will be described via Muskhelishvili’s formalism. If
U and V are two elastic solutions, the Ψ-integral is defined as:

Ψ(U, V ) = 1
2

∫
Γ
(σ(U)nV − σ(V )nU)ds,

where n is a normal pointing towards the origin [23]. Calculations of GSIFs based on the Ψ-integral method require
extracting the FEM results along the path sufficiently far from the notch tip, where the FEM results are rather
accurate (which is also the region where not only the singular terms of the stress expansion are dominant). See p.
38.

Criteria of crack initiation direction and stability criteria

A V-notch, bi-material notch and a crack in homogeneous material are all the singular stress concentrators. Thus
we suppose that the mechanism of crack initiation in a V-notch or bi-material notch is the same as the mechanism
of crack propagation in single material. The criteria of the direction of crack initiation at a V-notch or bi-material
notch tip and the criteria of the stability of a V-notch or bi-material notch are derived in analogy to the approaches
of a crack in homogeneous material. The criteria of the direction of crack initiation in these cases will be described
in detail in sub-chapter 4.2 on p. 55. Note that the definition of the stability of notches means determination
of conditions under which a crack initiates from the notch tip. Contrary to the case of a crack, in the case of a
V-notch or bi-material notch, the stress singularity exponent changes as a step function during crack initiation.
The stress singularity exponent of the initiated crack differs from the original exponent of a V-notch or bi-material
notch. Moreover, in the case of a bi-material notch, each stress term in (14) represents an inherently combined
loading mode (the function fijk (θ) contains both odd and even terms). Note that the dimension of generalized
stress intensity factors is [Hk] = MPa �mpk and depends on pk. All these facts lead to the conclusion that it is not
possible to describe the behavior of a V-notch or bi-material notch by applying the standard (classic) approaches
of the (crack) fracture mechanics. The general principle of stability assessment of a GSSC was introduced in [41].
The classic fracture mechanics approach of comparison of the stress intensity factor KI with its critical value KIcrit
(12) is generalized to the following relation:

H1 (σappl) < H1,crit (KIcrit) . (15)

The stability condition can be understood in the following way. A crack is not initiated at the notch tip if the
value H1 is lower than its critical value H1,crit. The value H1 (σappl) follows from a numerical solution and depends
mainly on the level of external loading and on the global geometry. Its critical value H1,crit depends on the critical
material characteristic KIC or KIth and has to be deduced with the help of the controlling variable L, see [41].
The controlling variable L needs to have a clear and identical physical meaning in the case of assessing both a
crack in homogeneous material and a V-notch or bi-material notch. With respect to particularities of a V-notch
or bi-material notch following controlling variables L were chosen: (i) the mean value of the stress component σθθ
and (ii) the mean value of the strain energy density factor Σ. These two have been found suitable controlling
quantities to derive generalized multi-parameter fracture mechanics (see below) of V-notches or bi-material notches
in the dissertation. The alternative approach is to use (iii) coupled stress-energy criterion by Leguillon [23], which
states that both the energy and stress criteria are necessary conditions for fracture but neither one nor the other
are sufficient. The fracture occurs when the two criteria are fulfilled simultaneously, together they form a sufficient
one. With consideration of single real governing term of the stress series, the Leguillon criterion can be written4:

H1 <

(
GC

A (2α, θ0)

)1−λ(
σC

fθθ (θ0)

)2λ−1
,

where GC is material toughness and σC is material strength. The coefficient A (2α, θ0) is a scaling term dependent on
local geometry (2α) and the direction of crack initiation θ0. Its determination is further commented in sub-chapter
4.2 on p. 59.

4Single real governing singularity term is assumed, which occurs for instance in the case for a symmetric loading [23].
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Figure 11: Bi-material junction as a model for a sharp material inclusion.

2.4. Fracture mechanics of sharp material inclusion
The literature review of the sharp material inclusion fracture mechanics revealed that only limited research had
been focused on this field of interest. In the studies found, attention is mostly paid to the order of singularity
determination of a sharp material inclusion model, a bi-material junction, which is the special case of a multi-
material junction [42, 43]. Even fewer studies regarding stress series terms calculation have been found [44] and
none that would describe crack initiation direction or a stability condition formulation. Establishing these will be
in the main focus of the dissertation. The geometry of a bi-material junction as shown in Figure 11 is characterized
by angles γ0, γ1 and γ2. Analogically to the case of the sharp notch, complementary opening angle 2α is defined.
The joint has two interfaces and no free surface. The material is considered as linear elastic and fully described by
Young’s moduli and Poisson’s ratios in terms of elasticity. Perfect bonding is assumed at the interfaces. The material
characteristics change by step at each interface. Displacements and tractions are assumed to be continuous. The
solution mostly presupposes the approximation of plane strain or plane stress. In this dissertation, the bi-material
junction tip is always presumed to be sharp. The stress distribution in the case of a bi-material junction is given
by the asymptotic expansion [42]:

σij = H1√
2π
rλ1−1fij1 (θ) + H2√

2π
rλ2−1fij2 (θ) + H3√

2π
rλ3−1fij3 (θ) + . . . , (16)

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk again stands for the GSIF. Please note
that this expansion is identical to the one for a bi-material notch, just the exponents of the singularity are not
denoted by symbol pk = 1 − λk anymore. Generally, the eigenvalue λk is a complex number. For λk satisfying
0 < < (λk) < 1, the corresponding stress term is considered singular. For λk where 1 < < (λk) the corresponding
stress term is considered non-singular. The dependence of the eigenvalues for the bi-material junction of given
bi-material combination on opening angle 2α has been calculated for one particular bi-material configuration in
Numerical example A. It is shown in a Figure 63 shows on p. 63.

Determination of the stress terms order

We consider that the interface between materials is perfectly bonded (ideal adhesion). The eigenvalues are gained
from a numerical solution to the characteristic equation depending on the geometry and material properties of a
bi-material junction [42, 43, 44]. Similar to the case of a V-notch or bi-material notch, an effective tool to describe
problems of isotropic plane elasticity is the Muskhelishvili’s complex potential theory [5, 43]. The characteristic
equation originates from equations enforcing stress and displacement continuity at the ith interface Γi. The stress
exponents of singular and higher order (non-singular) terms will be determined within the dissertation from a set
of the boundary conditions corresponding to a particular problem as shown in detail in sub-section 4.3 on p. 70.

Determination of the stress intensity factors of particular stress terms

As in the case of a V-notch and bi-material notch the overdeterministic method [36] is an appropriate method
to be used for stress terms determination. An alternative method of stress terms determination for the case of
a V-notch or bi-material notch, the path independent Ψ-integral can also be applied to the case of a bi-material
junction. We previously assumed that this integral method cannot be applied, because of the non existing free
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Figure 12: Crack terminating at the inclusion/matrix interface.

surfaces. However by prof. Leguillon it has been shown that it can indeed be applied as it will be explained
later in the text. Nevertheless, to author’s best knowledge, these two methods for GSIFs determination has been
applied to V-notches or bi-material notches only. Its application to multi-material junctions will be a subject of the
dissertation. A method of stress intensity factor determination based on the quantity of Π was proposed in [44],
but this method does not give reliable results when all of the eigenvalues are small. See details on p. 75 for the Ψ-
integral and p. 82 for the ODM.

Criteria of crack initiation direction and stability criteria

A sharp material inclusion is regarded as a singular stress concentrator, which is represented by a model of a bi-
material junction. As in the case of a V-notch or bi-material notch the criteria of the direction of crack initiation
near the bi-material junction tip and the criteria of the stability of bi-material junctions are derived in analogy to
the approaches of a crack in homogeneous material. Again, the mechanism of crack initiation from the bi-material
junction tip is presumed to be identical to the mechanism of crack propagation in single homogeneous material. The
stability condition of a bi-material junction suggests the condition when the crack is initiated from the bi-material
junction tip. Analogical to the case of a V-notch or bi-material notch, the stress singularity exponent changes as
the step function during crack initiation. The stress singularity exponent of the initiated crack differs from the
original exponent of a bi-material junction. Since an inherently combined loading mode is observed in majority
of cases it is generally speaking not possible to separate the modes from each other (possible only in e.g. the
symmetrically loaded symmetrical bi-material junction). Moreover, the dimension of generalized stress intensity
factors is [Hk] = MPa �mλk−1and depends on λk − 1. The discussion above indicates that the classic approaches
of LEFM cannot be applied directly and have to be modified. The stability assessment of a GSSC as it is defined
in (15) for notches can be utilized for the case of a bi-material junction. Then the controlling quantity L regarding
the identical physical meaning for a crack in homogeneous material and a bi-material junction has to be chosen,
approaches (i) or (ii). Similarly as in the case of a V-notch and bi-material notch, coupled stress-energy criterion
can be used to assess the stability of a bi-material junction, (iii). Note that this model will contribute to a complete
description of fracture behavior near the sharp material inclusion (see Figures 83-86 on p. 96). The following four
models can be utilized:

• interfacial crack

• crack with its tip at a bi-material interface (see Figure 12)

• bi-material notch

• bi-material junction

The former two are described in literature, while the latter two are not described sufficiently and will be a part of
the dissertation. See also the chapter 4: Methods on p. 24.

2.5. Limitations of single-parameter fracture mechanics
The area near the crack in which the stress field is precisely described only by a singular term is known as the
K-dominated region (in the case of fracture mechanics of cracks). A similar region can be found near the notch tip
or the bi-material junction tip, and it is again a region where the singular stress terms dominate as illustrated in
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Figure 13: Region of domination of singular terms ahead of a crack and a notch or an inclusion, where stress is
precisely described by singular terms only. Dashed line describes the singular terms solution.

Figure 13. This region with dominating singular terms is one of the building blocks of classic fracture mechanics.
However, some criteria based on the parameter of a specific distance from the singular stress concentrator tip require
sufficiently precise knowledge of stresses further away from the notch tip. In fact, this means that a description
only by a singular term may not be sufficient to describe stresses precisely enough and therefore to assess reliably
the stability of a dangerous point. Single-parameter fracture mechanics is not sufficient in the case of assessment
of crack initiation and propagation in silicate-based composites. In these quasi-brittle materials a fracture process
zone ahead of a crack has a larger size (in the order of millimeters) than a plastic zone occurring in the case of
metallic materials (typically from micrometers to 1 mm). For this reason, stress distribution must be described
reliably in a larger area ahead of the stress concentrator by singular and non-singular terms.

Another question arises in the case of a free-edge singularity, which can be modeled as the bi-material notch with
the opening angle 2α = 180° and as illustrated in Figure 14. This geometrical configuration leads to the existence
of one singular term. When considering only singular stress terms, the crack initiation direction θ0 resulting from
generalized fracture mechanics assessment depends on the ratio H2/H1, see [32]. Thus for the existence of only one
singular term, the crack initiation angle is independent of the direction of external loading. This fact should not
correspond to reality. Further (non-singular) terms are a promising tool to cover the influence of the direction of
external loading in this case.

Material I

Material II

θ
γ1

2α

r

γ2

Figure 14: Free edge singularity, where 2α = 180°. The angles γ1 = 90° and γ2 = 180°.

2.6. Multi-parameter fracture mechanics
Multi-parameter fracture mechanics of a crack (T-stress)

In 1952 Williams described the stress field around the notch tip for linear elastic materials as a set of infinite series
expansions [8]. If the notch angle becomes zero, i.e. 2α = 0° , the notch turns into a sharp crack as shown in Figure
15. The Cartesian coordinate system form of the equations for a crack in mode I loading is given by:
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The first term in each stress component expansion for which n = 1, is singular while the higher order terms are
non-singular. The second term of Williams’s solution for which n = 2, often called T-stress, is a constant term
independent of the distance from the crack tip. The previous studies on the fracture assessment of cracked bodies
have shown that in addition to the singular term, T-stress may significantly affect the process of crack growth. For
example, Larsson and Carlsson in [45] investigated the effect of T-stress on the size and shape of the plastic zone
in Mode I loading. Similarly, Bétegon and Hancock in [46]. Ayatollahi et al. in [47] also showed T-stress could
influence the initiation of brittle fracture. Furthermore, it has been shown that in loading Mode I T-stress is an
important parameter for the stability analysis of the fracture trajectory (Cotterell and Rice, [48]). They suggested
that for positive values of T-stress, the fracture trajectory gradually deviates from the line of the initial crack. In
contrast, specimens with negative T-stress exhibit a stable fracture path. Calculations of non-singular terms were
performed using various methods [49, 50, 51].

Multi-parameter fracture mechanics of V-notches and bi-material notches

The effects of non-singular terms on the behavior of cracks have been assessed by many researchers. Despite this,
almost no results have been reported concerning the role of non-singular terms in the stress distribution description
around GSSCs such as V-notches or bi-material notches. The only notable works are related to Kim et al. and
Ayatollahi et al. In [52] Kim et al. studied the effect of the first non-singular term of Mode I on the size and
shape of the plastic zone around a V-notch. Ayatollahi et al. [27, 53] studied the influence of the presence of
generalized T-stress (so called I-stress) on stress distribution in the case of a V-notch. In [54] Ayatollahi used the
photoelasticity method to determine the higher order stress terms in bi-material notches. Further, they used the
overdeterministic method for calculating the generalized stress intensity factors and the coefficients of the higher
order terms for structures containing V-notches [36] and presented the first studies of evaluation of the eigenvalues
of the first non-singular term for bi-material notches [55].

Multi-parameter fracture mechanics of a sharp material inclusion

Multi-parameter fracture mechanics of a bi-material junction is not available in literature (according to our knowl-
edge). However, methods describing the behavior of GSSCs near the sharp material inclusion are required for a
reliable description of their fracture behavior. Multi-parameter fracture mechanics is indispensable in the case of
assessment of crack initiation and propagation in silicate-based composites. In this case the fracture process zone
ahead of a crack has a larger size than a plastic zone occurring in the case of metallic materials. For this reason,
stress distribution must be described reliably in a larger area ahead of the stress concentrator. Multi-parameter
approaches provide a simple way to ensure this.
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Summary of the state of the art

This review briefly describes current trends in extension of the classic linear elastic fracture mechanics to general
singular stress concentrators. Possible approaches of stress term order determination are discussed with the main
attention focused on the Muskhelishvili’s complex variable function methods and all of its benefits. In terms of the
non-singular terms in the case of a V-notch and bi-material notch this short literature review seems to be rather
complete. The above-mentioned papers deal with initial studies of this field of problems, but they cover only a
small group of geometrical and material configurations of the concentrators. However, for the case of a bi-material
junction in comparison to bi-material notches a noticeably smaller amount of research has been performed. A very
limited number of studies has been concerned with the singular stress terms determination and none has been
published regarding the effect of the first non-singular term on the fracture behavior of a bi-material junction.
Further, there is no study dealing with the stability criteria or the criteria of crack initiation direction or dealing
with it comprehensively both from the theoretical and numerical point of view. Finally, there are no studies or
papers (as far as we know) concerning the effect of higher order terms on the fracture behavior of bi-material
junctions (or sharp polygon-like inclusions in general). The works [27, 36, 52, 53, 54, 55] published in 2009-2011
prove the topicality of the problem. Further it demonstrates that additional research of the problem will lead to
innovative and up-to-date results contributing to higher credibility of fracture mechanics of general singular stress
concentrators.
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3. Aims of the thesis
On the basis of the literature survey, the aims of the research conducted within the PhD study were proposed as:

(i) formulation of multi-parameter fracture mechanics approaches for a V-notch or bi-material notch

a. determination and study of stress exponents of singular and non-singular terms

b. modification of methods for calculation of stress terms factors

c. derivation of multi-parameter criteria for crack initiation direction

d. derivation of multi-parameter criteria of stability

(ii) formulation of multi-parameter fracture mechanics approaches to a bi-material junction

a. determination and study of stress exponents of singular and non-singular terms

b. modification of methods for calculation of stress terms factors

c. derivation of multi-parameter criteria for crack initiation direction

d. derivation of multi-parameter criteria of stability

(iii) developing a complete description of crack initiation and propagation near a sharp inclusion

The generalized stability criteria determining the crack initiation conditions will contribute to overall assessment
of V-notches, bi-material notches and bi-material junctions. The influence of the subsumption of the non-singular
terms in analytical-numerical assessment will be described both qualitatively and quantitatively. The research
is motivated by the attempt to enhance the safety of constructions or parts made of composite materials. The
application of the results of the research in structural design will lead to better utilization of material volume and
thus e.g. to weight reduction of components.
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4. Methods and results
4.1. Fundamental equations to describe general singular stress concentrators
In general, there are three different methods to analyze stress singularities in terms of the asymptotic analysis,
namely the eigenvalue expansion method, the Mellin transform technique and the complex function representation.
The application of the eigenvalue expansion method was studied by Williams on reentrant corners in plates in
extension [8] and on crack problems in [9]. Mellin transform technique was applied on some problems by Hein and
Erdogan in [10] and by Pageau et al. in [42]. All three approaches were clearly summarized by Paggi and Carpinteri
in [43]. This dissertation deals from now on with the complex function representation method. Please recall the
Kolosov-Muskhelishvili’s equations (8) for plane elasticity on p. 11. We assume functions Ωkm (z) and ωkm (z) of
complex variable z in the form of:

Ωkm (z) = Ikmz
λk + Lkmz

λ̄k , (17)
ωkm (z) = Mkmz

λk +Nkmz
λ̄k .

where the Ikm, Lkm, Mkm and Nkm are unknown complex constants. The subscript k denotes that the particular
constant that belongs to kth eigenvalue λk. The m defines quantities referred to the material sector m. These com-
plex functions (17) are substituted into the Kolosov-Muskhelishvili equations for particular stress and displacement
component, Eq. (9) on p. 11. The first and second derivative of the functions (17) and their complex conjugates
are found in Appendix A.1 on p. 105 as well as the detailed derivation of following expressions for stress (18) and
displacement components (19) written below:

(18)

σrrkm (r, θ) = 1
2{r

λk−1
[
−Ikmλk (λk − 3) eiθ(λk−1) − L̄kmλk (λk − 3) e−iθ(λk−1) −Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]

+

+ rλ̄k−1
[
−Īkmλ̄k

(
λ̄k − 3

)
e−iθ(λ̄k−1) − Lkmλ̄k

(
λ̄k − 3

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) −Nkmλ̄keiθ(λk+1)
]
},

σrθkm (r, θ) = 1
2i{r

λk−1
[
Ikmλk (λk − 1) eiθ(λk−1) − L̄kmλk (λk − 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]

+

+ rλ̄k−1
[
−Īkmλ̄k

(
λ̄k − 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k − 1

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λ̄k+1)

]
},

σθθkm (r, θ) = 1
2{r

λk−1
[
Ikmλk (λk + 1) eiθ(λk−1) + L̄kmλk (λk + 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) + N̄kmλke
−iθ(λk+1)

]
+

+ rλ̄k−1
[
Īkmλ̄k

(
λ̄k + 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k + 1

)
eiθ(λ̄k−1) + M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λk+1)

]
},

(19)

urkm (r, θ) = 1
4µm
{rλk

[
Ikm (κm − λk) eiθ(λk−1) + L̄km (κm − λk) e−iθ(λk−1) −Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]

+

+ rλ̄k
[
Īkm

(
κm − λ̄k

)
e−iθ(λ̄k−1) + Lkm (κm − λk) eiθ(λk−1) − M̄kme

−iθ(λk+1) −Nkmeiθ(λk+1)
]
},

uθkm (r, θ) = 1
4iµm

{rλk
[
Ikm (κm + λk) eiθ(λk−1) − L̄km (κm + λk) e−iθ(λk−1) +Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]

+

+ rλ̄k
[
−Īkm

(
κm + λ̄k

)
e−iθ(λ̄k−1) + Lkm

(
κm + λ̄k

)
eiθ(λ̄k−1) − M̄kme

−iθ(λ̄k+1) +Nkme
iθ(λ̄k+1)

]
}

Let’s write down the most general, complex form of Williams’s expansion describing stresses near a GSSC:

σij (r, θ) =
∞∑
k=1

{
Hkr

λk−1fijk(θ) + H̄kr
λ̄k−1f̄ijk(θ)

}
. (20)

By using the superposition principle we consider the equation which consists of kth quantities (18) as an individual
kth contribution to the actual stress field near the concentrator. This contribution is represented as a kth term of
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the stress series (which contains kth eigenvalue, eigenfunction and GSIF). A V-notch consists of one material only,
therefore the index m is omitted. For the case of a bi-material notch or a bi-material junction m = 1, 2. Please
note that in this series we intentionally do not factor out the constant 1/

√
2π in contrast to form of the series of

a bi-material notch as written in Eq. (14) on p. 15 or the series of a bi-material junction Eq. (16) on p. 18. We
found the upper form of the series more convenient to work with. The conversion of GSIFs calculated in this work
to form used sometimes in literature (the terms with out-factored constant 1/

√
2π) is easy. It just requires division

of individual Hk by
√

2π. In the case of a bi-material notch we define the angular eigenfunction and its complex
conjugate for stress expansion in terms of material regions as:

fijk (θ) =
{
fijk1 (θ) γ1 < θ < γ2

fijk2 (θ) γ2 < θ < γ3
, (21)

f̄ijk (θ) =
{
f̄ijk1 (θ) γ1 < θ < γ2

f̄ijk2 (θ) γ2 < θ < γ3
,

where the angles γ1, γ2 and γ3 are described in Figure 10 on p. 16. The case of a bi-material junction, the
eigenfunction and its complex conjugate are defined:

fijk (θ) =
{
fijk1 (θ) γ0 < θ < γ1

fijk2 (θ) γ1 < θ < γ2
, (22)

f̄ijk (θ) =
{
f̄ijk1 (θ) γ0 < θ < γ1

f̄ijk2 (θ) γ1 < θ < γ2

and the angles γ0, γ1 and γ2 are described in Figure 11 on p. 18. By comparison of expansion (20) with equations
(18) and (21) or (22) we define eigenfunctions fijkm (θ) and f̄ijkm (θ) in terms of complex constants Ikm, Lkm, Mkm

and Nkm as:

(23)

frrkm (θ) = 1
2

[
−Ikmλk (λk − 3) eiθ(λk−1) − L̄kmλk (λk − 3) e−iθ(λk−1) −Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]

f̄rrkm (θ) = 1
2

[
−Īkmλ̄k

(
λ̄k − 3

)
e−iθ(λ̄k−1) − Lkmλ̄k

(
λ̄k − 3

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) −Nkmλ̄keiθ(λ̄k+1)
]
,

frθkm (θ) = 1
2i

[
Ikmλk (λk − 1) eiθ(λk−1) − L̄kmλk (λk − 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]
,

f̄rθkm (θ) = 1
2i

[
−Īkmλ̄k

(
λ̄k − 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k − 1

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λ̄k+1)

]
,

fθθkm (θ) = 1
2

[
Ikmλk (λk + 1) eiθ(λk−1) + L̄kmλk (λk + 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) + N̄kmλke
−iθ(λk+1)

]
,

f̄θθkm (θ) = 1
2

[
Īkmλ̄k

(
λ̄k + 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k + 1

)
eiθ(λ̄k−1) + M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λ̄k+1)

]
.

Similarly the most general complex form of expansion describing displacement field a GSSC is:

ui (r, θ) =
∞∑
k=1

{
Hkr

λkfik(θ) + H̄kr
λ̄k f̄ik(θ)

}
. (24)

Again, a V-notch consists of one material only, therefore the index m is omitted, while for the case of a bi-material
notch or a bi-material junction we have m = 1, 2. Thus for a bi-material notch we define the angular eigenfunction
and its complex conjugate for displacement expansion in terms of material regions as:

fik (θ) =
{
fik1 (θ) γ1 < θ < γ2

fik2 (θ) γ2 < θ < γ3
, (25)
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f̄ik (θ) =
{
f̄ik1 (θ) γ1 < θ < γ2

f̄ik2 (θ) γ2 < θ < γ3
,

where the distinct material regions are illustrated in Figure 10. For the case of a bi-material junction we write the
eigenfunction and its complex conjugate as follows:

fik (θ) =
{
fik1 (θ) γ0 < θ < γ1

fik2 (θ) γ1 < θ < γ2
, (26)

f̄ik (θ) =
{
f̄ik1 (θ) γ0 < θ < γ1

f̄ik2 (θ) γ1 < θ < γ2
.

For the description of angles γ0, γ1 and γ2 see Figure 11. Finally by using the superposition principle and by
comparison of expansion (24) with (19) and (25) or (26) we define the eigenfunction fikm (θ) and its complex
conjugate f̄ikm (θ) in terms of complex constants as:

frkm (θ) = 1
4µm

[
Ikm (κm − λk) eiθ(λk−1) + L̄km (κm − λk) e−iθ(λk−1) −Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]
, (27)

f̄rkm (θ) = 1
4µm

[
Īkm

(
κm − λ̄k

)
e−iθ(λ̄k−1) + Lkm

(
κm − λ̄k

)
eiθ(λ̄k−1) − M̄kme

−iθ(λ̄k+1) −Nkmeiθ(λ̄k+1)
]
,

fθkm (θ) = 1
4iµm

[
Ikm (κm + λk) eiθ(λk−1) − L̄km (κm + λk) e−iθ(λk−1) +Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]
,

f̄θkm (θ) = 1
4iµm

[
−Īkm

(
κm + λ̄k

)
e−iθ(λ̄k−1) + Lkm

(
κm + λ̄k

)
eiθ(λ̄k−1) − M̄kme

−iθ(λ̄k+1) +Nkme
iθ(λ̄k+1)

]
.

In sake of completeness, let’s write down the real form of the stress series, i.e. for λk ∈ R and Hk ∈ R:

σij =
∞∑
k=1

Hkr
λk−1f∗ijk(θ), (28)

where the stress eigenfunction f∗ijk (θ) is for different material regions m = 1, 2 of a bi-material notch defined as:

f∗ijk (θ) =
{
f∗ijk1 (θ) γ1 < θ < γ2

f∗ijk2 (θ) γ2 < θ < γ3
,

while for the case of a bi-material junction we have:

f∗ijk (θ) =
{
f∗ijk1 (θ) γ0 < θ < γ1

f∗ijk2 (θ) γ1 < θ < γ2
.

The stress eigenfunction f∗ijkm (θ) is defined:

f∗rrkm (θ) = frrkm (θ) + f̄rrkm (θ) , (29)
f∗rθkm (θ) = frθkm (θ) + f̄rθkm (θ) ,
f∗θθkm (θ) = fθθkm (θ) + f̄θθkm (θ) ,

where eigenfunction fijkm (θ) and its complex conjugate f̄ijkm (θ) are found in set of equations (23). For a V-notch
the same equations apply, only the index m is omitted. Similarly the real form of the displacement series, i.e. for
λk ∈ R and Hk ∈ R is:

ui =
∞∑
k=1

Hkr
λkf∗ik(θ), (30)
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where again the displacement eigenfunction f∗ik (θ) is for different material regions m = 1, 2 of a bi-material notch
defined as:

f∗ik (θ) =
{
f∗ij1 (θ) γ1 < θ < γ2

f∗ij2 (θ) γ2 < θ < γ3
,

and similarly for the case of a bi-material junction we have:

f∗ik (θ) =
{
f∗ij1 (θ) γ0 < θ < γ1

f∗ij2 (θ) γ1 < θ < γ2
.

Finally the displacement eigenfunctions f∗ikm (θ) are defined:

f∗rkm (θ) = frkm (θ) + f̄rkm (θ) ,
f∗θkm (θ) = fθkm (θ) + f̄θkm (θ) ,

where eigenfunction fikm (θ) and its complex conjugate f̄ikm (θ) are found in the set of equations (27).

4.2. Formulation of multi-parameter fracture mechanics approaches for V-notch and
bi-material notch

It follows from the literature survey that the fracture mechanics behavior of V-notches and bi-material notches is
well known considering singular stress terms. Non-singular terms are rarely considered, the mentioned publications
[36, 52, 53, 54, 55] cover only a small group of geometrical and material configurations of the singular stress
concentrators. Further, there is no study dealing with the stability criteria or the criteria of crack initiation
direction or dealing with it comprehensively both from the theoretical and numerical point of view. Within the
dissertation it is necessary to determine stress terms exponents, calculate factors of particular stress terms, derive
the criteria for crack initiation direction and the criteria of stability.

Stress terms exponents determination and study

The exponents of series terms depend only on local boundary conditions, i.e. are independent of the applied
loading and global geometry. The stress exponents of higher order (non-singular) terms will be determined within
the dissertation from a set of the boundary conditions corresponding to a particular problem [32, 42, 43]. The
boundary conditions of the V-notch are:

σθθk (r, γ1) = 0 (31)
σrθk (r, γ1) = 0
σθθk (r, γ2) = 0
σrθk (r, γ2) = 0

for ∀k, where the angles γ1 and γ2 defines position of the notch faces and are depicted in Figure 9 on p. 15.
Specifically the equations above enforce zero traction at both free surfaces of the notch. Similarly, the boundary
conditions for the bi-material notch are:

σθθk1 (r, γ1) = 0 (32)
σrθk1 (r, γ1) = 0
uθk1 (r, γ2) = uθk2 (r, γ2)
urk1 (r, γ2) = urk2 (r, γ2)
σθθk1 (r, γ2) = σθθk2 (r, γ2)
σrθk1 (r, γ2) = σrθk2 (r, γ2)
σθθk2 (r, γ3) = 0
σrθk2 (r, γ3) = 0
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for ∀k, with the geometry described in Figure 10 on p. 16. The equations above enforce zero traction on the
notch faces, i.e. locations θ = γ1 and θ = γ3. In addition, traction and displacement continuity is enforced at the
interface Γ i.e. where θ = γ2. System of equations is formed based on the boundary conditions of the problem for
the V-notch (31) or bi-material notch (32) by substituting Eq. (19) and (18) on p. 24. Such a system contains 4
equations for the V-notch problem and 8 equations for the bi-material notch. The complex constants Mkm, N̄km,
Ikm and L̄km are then factored out and the system of equations can be written in the matrix form. For the simpler
case, the V-notch, the system is written as:

λke
iγ1(λk+1)

2
λke
−iγ1(λk+1)

2
λk(λk+1)eiγ1(λk−1)

2
λk(λk+1)e−iγ1(λk−1)

2
λke

iγ1(λk+1)
2i −λke

−iγ1(λk+1)
2i

λk(λk−1)eiγ1(λk−1)
2i −λk(λk−1)e−iγ1(λk−1)

2i
λke

iγ2(λk+1)
2

λke
−iγ2(λk+1)

2
λk(λk+1)eiγ2(λk−1)

2
λk(λk+1)e−iγ2(λk−1)

2
λke

iγ2(λk+1)
2i −λke

−iγ2(λk+1)
2i

λk(λk−1)eiγ2(λk−1)
2i −λk(λk−1)e−iγ2(λk−1)

2i



Mk

N̄k
Ik
L̄k

 =


0
0
0
0

 (33)

and vk is the vector:

vTk =
(
Mk N̄k Ik L̄k

)
.

A V-notch consists only of one material, therefore the index m is intentionally omitted. The full matrix form of the
equations for a bi-material notch is analogical, therefore it is not shown in the text. The main difference is that the
matrix has 8 lines and the vector vk is constructed for the first and second material region, i.e.:

vTk =
(
Mk1 N̄k1 Ik1 L̄k1 Mk2 N̄k2 Ik2 L̄k2

)
. (34)

Let’s denote the matrix on the right-hand side of (33) as A (λ). The determination of eigenvalues and eigenvectors
is virtually identical for the case of a V-notch or a bi-material notch. For the system:

A (λ) v = 0, (35)

there are 5 unknowns, i.e. eigenvalue λk and the complex coefficients Mk, N̄k, Ik and L̄k, and only 4 equations to
be used (or 9 unknowns and 8 equations for the case of a bi-material notch). Therefore the system is undetermined.
Following the basic principle of the linear algebra, the necessary condition for the non-trivial solution of (35) to
exist is that:

det (A (λ)) = 0. (36)

Expansion of this determinant leads to the so called characteristic equation, which roots are eigenvalues λk ∈ C.
A convenient way to study complex function f (z) = det (A (λ)), which is function C → C, is to use domain
coloring method (known also as HSV) [56]. Since the graph of complex function is an object in four real dimensions,
this function is difficult to visualize in three-dimensional space. By domain coloring, the phase θ (also know as
argument) of complex number z = reiθ is represented as hue and the modulus r = |z| is represented as intensity,
see left-hand side of Figures 16-18 in the Numerical example A subsection on p. 30. The equation (36) is in general
transcendental (does not have any closed form solution) and has to be solved numerically. Since the eigenvalues
are complex numbers, the solution of equation is found as a vector [<{λk} ,={λk}] by solving system of 2 real
equations, i.e.:

<{det (A (<{λk}))} = 0,
={det (A (={λk}))} = 0.

This is illustrated graphically on the right-hand side of Figure 16-18, where the blue and red curve stay for the loci
where real and imaginary part of equation (36) respectively is equal to zero. In the graph the solution is represented
as an intersection of the blue and red curve. When the system is solved, i.e. when the vector [<{λk} ,={λk}] is
found, the eigenvalue λk ∈ C is constructed as:

λk = <{λk}+ i={λk} .

For V-notches and bi-material notches where the opening angle 2α < 180° we find one or two eigenvalues λk in the
interval <(0, 1) forming the singular terms exponents. There is also arbitrary number of eigenvalues λk to be found
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in the interval <(1,∞) forming exponents of non-singular terms as shown in Figures 23 and 24 on p. 35 and 36.
The characteristic equation (36) has a trivial root λtrans

0 = 0 which correspond to the term in displacement series
responsible for rigid body translation and the term with λrot

k = 1 that stand for the rigid body rotation [36]. Since
these terms do not contribute to the stress field, they are omitted, which is in accordance to approaches found in
literature [23]. By substitution of particular kth eigenvalue λk back in the matrix A (λ) we can obtain eigenvector
vk, however since the system of equations (35) is a priori undetermined, value of one of the coefficients of vector vk
has to be chosen and only the ratios between coefficients of vk can be determined. Practically, after the substitution
of particular eigenvalue λk we take the matrix A (λ) and create reduced matrix Ared (λ) by removing its last line
and taking its last column as a right side of the new reduced system of equations5. If we denote the right-hand side
of the system as ared, we write:

Ared (λ) vred
k = ared (37)

The dimension of Ared (λ) is 3× 3. The unknown vector vred
k and known vector ared are both 1× 3 (or in the case

of a bi-material notch 7 × 7 for Ared (λ) and 1 × 7 for vred
k and ared ). In other words the system is determined

and ready to be solved. Since we removed the last line of the matrix A (λ), we choose the last coefficient of the
vector vk, the L̄k equal to 1 (or L̄k2 = 1 in the case of a bi-material notch). The eigenvector vk is finally created by
extending the vector vred

k , which is the solution of reduced system of equations (37), by the unit coefficient (L̄k or
L̄k2). Since we have determined both the eigenvalue λk and the eigenvector vk, it is trivial to take their complex
conjugates and to construct the angular eigenfunctions fijk (θ) and f̄ijk (θ) for stress expansion (20) on p. 24 or
fik (θ) and f̄ik (θ) for displacement expansion (24) on p. 25. Since the choice of unit coefficient in eigenvector vk is
arbitrary, the eigenfunctions may be further normalized, e.g.:

fθθk (θ0) = 1, (38)

for symmetric terms of the series, i.e. k = 1, 3, 5 . . . where θ0 is the crack initiation angle. For anti-symmetric terms
of the series with k = 2, 4, 6 . . .:

frθk (θ0) = 1,

Alternative and common normalization for crack problems is [23]:{
fθθk (θ0) = 1/

√
2π k = 1, 3, 5 . . .

frθk (θ0) = 1/
√

2π k = 2, 4, 6 . . .
. (39)

However, the choice of angle for eigenfunction normalization is arbitrary, therefore normalization by angles θ0
different from crack initiation angle can be chosen. From the computational point of view, the normalization of
eigenfunction is performed by its division by the function fθθk (θ0) or frθk (θ0), so:

fn
ijk (θ) =

{
fijk (θ) /fθθk (θ0) k = 1, 3, 5 . . .
fijk (θ) /frθk (θ0) k = 2, 4, 6 . . .

,

similarly the displacement eigenfunction is normalized:

fn
ik (θ) =

{
fik (θ) /fθθk (θ0) k = 1, 3, 5 . . .
fik (θ) /frθk (θ0) k = 2, 4, 6 . . .

.

The complex conjugates are normalized analogically. In the following text, eigenfunctions are always considered
normalized and the superscript n is intentionally omitted. The above mentioned normalization is in general appli-
cable only for the symmetrical V-notches and other symmetrical problems. The case of a bi-material notch is a
non-symmetrical problem and each eigenfunction fijk (θ) consists of both odd and even functions. In other words,
it is not true anymore that the eigenfunction with an odd k is odd function and the eigenfunction with even k is an
even function. In case of non-symmetrical problems, the normalization should be performed on individual basis.

5The choice of line and column to be removed is arbitrary, the last line and column is seen by the author as the easiest choice.
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Numerical example A: Eigenvalues, eigenvectors and eigenfunctions of V-notch. The V-notch with local
geometry as shown in Figure 9 on p. 15 is considered. Let’s study three geometrical configurations, i.e. (i) 2α = 60°,
(ii) 2α = 90°, (iii) 2α = 120°, (γ1 = α, γ2 = 360°−α). The determination of eigenvalues λk and eigenvectors vk from
the mathematical point of view is described in the previous sub-section. From the computational point of view, the
roots are found by a code written in Python programming language. The main part of the code, the eigenequation
solver, contains command fsolve which is a part of Python library called scipy.optimize [60]. Numerical module
fsolve is based on advanced MINPACK’s hybrd and hybrj algorithms [61]. The roots can be found with arbitrary
numerical precision by choice of the xtol factor, which is in calculation through the dissertation set to xtol = 1e−7.
The calculation will terminate, if the relative error between two consecutive iterates is at most xtol. It is advised to
check if the calculated value truly represents a root. This can be done by inserting a root back into the characteristic
equation (36). Only the inputs which result in a close to zero value of the characteristic function are true roots.
Another option is to compare the calculated value with the characteristic function plotted in a graph as it will be
shown later. All the graphs are created by Python library called Mathplotlib [62]. In Tables 1, 2 and 3 we see first
four resulting eigenvalues λk for the V-notches with opening angles 2α of 60°, 90° and 120° respectively. For the
sake of completeness, the values of complex coefficients Mk, N̄k, Ik and L̄k are listed in Tables 1-3 as well.
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Figure 16: (i) V-notch, 2α = 60°. On the left-hand side there is the graph of f (z) = det (A (λ)). On the right-hand
side a contour plot, the blue curve stands for <{det (A (<{λk}))} = 0 and the red one for ={det (A (={λk}))} = 0.

k λk Mk N̄k Ik L̄k

1 0.512221 −0.638227 + 0.049107i 0.640113 + 0.000006i −0.997054 + 0.076707i 1
2 0.730901 −0.136430 + 1.131423i −1.139619 + 0.000001i 0.119715− 0.992808i 1
3 1.471028 + 0.141853i 2.554167− 1.346322i −0.930264− 0.732678i −2.397982− 0.441407i 1
4 2.074826 + 0.229426i 2.157055− 7.658169i −1.275639 + 1.383938i −3.768504 + 1.914963i 1

Table 1: (i) V-notch, 2α = 60°. First four eigenvalues λk and eigenvector’s vk coefficients Mk, N̄k, Ik and L̄k.
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Figure 17: (ii) V-notch, 2α = 90°. On the left-hand side there is the graph of f (z) = det (A (λ)). On the right-hand
side contour plot, the blue curve stands for <{det (A (<{λk}))} = 0 and the red curve for ={det (A (={λk}))} = 0.

k λk Mk N̄k Ik L̄k

1 0.544484 −0.806223 + 0.231396i 0.838773− 0.000002i −0.961193 + 0.275878i 1
2 0.908529 0.350695 + 0.227131i −0.417822 −0.839339− 0.543608i 1
3 1.629257 + 0.231251i −3.174859− 4.719311i −0.290233 + 1.298170i −2.941565 + 3.103293i 1
4 2.301327 + 0.315837i −15.145801 + 2.378337i −0.349757 + 2.078146i 2.305751 + 6.900075i 1

Table 2: (ii) V-notch, 2α = 90°. First four eigenvalues λk and eigenvector’s vk coefficients Mk, N̄k, Ik and L̄k.

As mentioned earlier, the stresses near the tip of a V-notch are proportional to the r−pk where pk = 1 − λk,
Eq. (14) on p. 15. It is obvious that with increasing opening angle the strength of singularity decreases as the
value of eigenvalue λk increases (singular terms considered). This can be illustrated by plotting function r−p1 for
the calculated geometries (i), (ii) and (iii) as in Figure 19. Function r−p1 corresponds to the opening mode of the
symmetrical V-notch. For the geometries considered throughout the study, the first term of the series which contains
the exponent of singularity p1 is always singular. Nevertheless, the second term, which contains the exponent p2,
is singular only in cases (i) and (ii), since the case (iii) has <{λ2} > 1. This particular term vanishes as r → 0
as illustrated in Figure 20. Function r−p2 corresponds to the in-plane shear mode of the symmetrical V-notch. As
explained in previous section, once the eigenvalues λk and eigenvectors vk are determined, it is possible to construct
eigenfunctions fijk (θ) and fik (θ) for stress and displacement series respectively (or their complex conjugates f̄ijk (θ)
and f̄ik (θ)). For the most common case of the V-notch with right angle, i.e. (ii) 2α = 90°, the stress eigenfunctions
fijk (θ) for k = 1, 2, 3, 4 are displayed in Figure 21. Similarly the displacement eigenfunctions fik (θ) for k = 1, 2, 3, 4
are constructed and shown in Figure 22. Please note that illustrated eigenfunctions are normalized per equation
(38) and the presumed crack initiation angle is due to symmetry of the problem θ0 = 180◦. Also note that the stress
and displacement eigenfunctions of the V-notch are symmetric or anti-symmetric relative to the axis or point where
θ = 180◦. To obtain general dependence of λk (2α), eigenvalues for angles 2α ∈ (0°, 360°) were determined. Such
general dependence of eigenvalues λk on the opening angle 2α is shown in Figure 23. Note, that for angle 2α ∼ 103°
the eigenvalue λ2 = 1. For larger angles 2α, the term associated with eigenvalue λ2 is always a non-singular one.
This is in accordance with results of Ayatollahi and Nejati in [36] who report the angle value of 102.55°.
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Figure 18: (iii) V-notch, 2α = 120°. On the left-hand side there is the graph of f (z) = det (A (λ)). On
the right-hand side contour plot, the blue curve stands for <{det (A (<{λk}))} = 0 and the red curve for
={det (A (={λk}))} = 0.

k λk Mk N̄k Ik L̄k

1 0.615731 −0.861987 + 0.767009i 1.153830 −0.747066 + 0.664750i 1
2 1.148913 −0.400153 + 0.542926i 0.674456 −0.593297 + 0.804984i 1
3 1.833549 + 0.252251i −4.230350 + 6.048695i 0.638263 + 1.371624i 2.445221 + 4.222029i 1
4 2.589479 + 0.348375i 17.643684 + 11.953875i 0.958586 + 2.186906i 7.551600− 4.757790i 1

Table 3: (iii) V-notch, 2α = 120°. First four eigenvalues λk and eigenvector’s vk coefficients Mk, N̄k, Ik and L̄k .

Numerical example B: Eigenvalues, eigenvectors and eigenfunctions of bi-material notch. The bi-
material notch as shown in Figure 10 on p. 16 is considered with geometrical configuration of 2α = 90°, (γ1 =
45°, γ2 = 180°, γ3 = 315°) and bi-material configurations of (i) E1/E2 = 0.50, (ii) E1/E2 = 0.25, (iii) E1/E2 = 0.10.
In all cases, E1 = 20 GPa and ν1 = ν2 = 0.25. The eigenvalues λk and eigenvectors vk are determined from
the mathematical point of view as described in previous sub-section. From the computational point of view the
procedure is identical to the one described in the Numerical example A. The resulting eigenvalues λk are listed in
Table 4. The coefficients of eigenvector vk were listed in Numerical example A for the sake of completeness, i.e. for
illustration and the validation of other researchers’ results. We intentionally omit those in the Numerical example
B. All studied geometrical and material configurations lead to 2 singular terms of the stress expansion. We see
that with increasing contrast in Young’s moduli, the strength of singularity of the first term decreases as shown in
Figure 25. However, again with increasing contrast in Young’s moduli, the strength of the singularity of the second
term increases as shown in Figure 26. The stress eigenfunctions fijk (θ) for the case (iii) with the highest contrast
in Young’s moduli are plotted in Figure 27. In similar manner the displacement eigenfunctions fik (θ) for the same
case (iii) are shown in Figure 28. Note that these eigenfunctions are no longer symmetrical or anti-symmetrical as
in the case of a V-notch. Another important fact is that the radial stress eigenfunction frrk(θ) is discontinuous at
the material interface Γ, i.e. θ = 180◦. Again, these eigenfunctions are normalized per equation (38) with chosen
angle θ0 = 270°. To obtain general dependence of λk (2α), eigenvalues for angles 2α ∈ (0°, 360°) for some particular
configuration, e.g. (ii) were determined. Such general dependence of eigenvalues λk on opening angle 2α is shown
in Figure 24.
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Figure 19: The function r−p1 of the V-notch plotted on a radial distance of r ∈ (0.1; 3) mm. The exponents of
singularity of the first term are: (i) p60◦

1 = 0.488, (ii) p90◦
1 = 0.456 and (iii) p120◦

1 = 0.384. With the increasing of
the notch opening angle 2α the strength of stress singularity decreases.
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Figure 20: The function r−p2 of the V-notch plotted on a radial distance of r ∈ (0.1; 3) mm. The exponents of
singularity of the second term are: (i) p60◦

2 = 0.269, (ii) p90◦
2 = 0.091 and (iii) p120◦

2 = −0.149. With the increasing
of the notch opening angle 2α the strength of stress singularity decreases.
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Figure 21: Stress eigenfunctions fijk (θ) for k = 1, 2, 3, 4 of the V-notch (ii), 2α = 90°. The yellow dashed line
represents the axis of symmetry of the notch.

E1/E2 = 0.5 E1/E2 = 0.25 E1/E2 = 0.10
λ1 0.552239 0.572603 0.608051
λ2 0.894288 0.859567 0.806539
λ3 1.645612± 0.225305i 1.693610± 0.206185i 1.770118
λ4 2.298183± 0.288001i 2.294796± 0.16466i 2.577451± 0.219431i

Table 4: Bi-material notch 2α = 90°, (γ1 = 45°, γ2 = 180°, γ3 = 315°) and bi-material configuration of (i) E1/E2 =
0.5, (ii) E1/E2 = 0.25, (iii) E1/E2 = 0.1.
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Figure 22: Displacement eigenfunctions fik (θ) for k = 1, 2, 3, 4 of the V-notch (ii), 2α = 90°. The yellow dashed
line represents the axis of symmetry of the notch.
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Figure 23: Dependence of eigenvalues λk of the V-notch on the opening angle 2α. The black dashed line divides the
graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line represents notch
free plate.
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Figure 24: Dependence of eigenvalues λk of the bi-material notch on the opening angle 2α. The black dashed
line divides the graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line
represents the free edge singularity. The geometry of studied case is γ1 = α, γ2 = π, γ3 = 2π − α. The Young’s
moduli ratio is E1/E2 = 0.25 and Poisson’s ratio is ν1 = ν2 = 0.25.
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Figure 25: The function r−p1 of the bi-material notch plotted on a radial distance of r ∈ (0.1; 3) mm. The exponents
of singularity of the first term are: (i) p0.50

1 = 0.448, (ii) p0.25
1 = 0.427 and (iii) p0.10

1 = 0.392, where the superscript
denotes E1/E2.
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Figure 26: The function r−p2 of the bi-material notch plotted on a radial distance of r ∈ (0.1; 3) mm. The exponents
of singularity of the first term are: (i) p0.50

2 = 0.106, (ii) p0.25
2 = 0.140 and (iii) p0.10

2 = 0.193, where the superscript
denotes E1/E2.
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Figure 27: Stress eigenfunctions fijk (θ) for k = 1, 2, 3, 4 of the bi-material notch (iii), 2α = 90°, E1/E2 = 0.1.
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Figure 28: Displacement eigenfunctions fik (θ) for k = 1, 2, 3, 4 of the bi-material notch (iii), 2α = 90°, E1/E2 = 0.1.

Calculation of stress terms factors

Determination of GSIFs by the Ψ-integral
This part of the text describes a derivation of the path independent Ψ-integral for a V-notch or a bi-material notch

problem. The employment of the Ψ-integral is a convenient way for determination of the Generalized Stress Intensity
Factors (GSIFs) Hk. By use of the Ψ-integral also another necessary parameter for the Leguillon’s coupled stress-
energy criterion, the scaling coefficient A (2α, θ0) can be determined as it will be shown in the following chapter.
For the theoretical description of Leguillon criterion see p. 58. The derivation of the Ψ-integral will be shown on
the more general case of a bi-material notch. However, analogically it can be performed for the simpler V-notch
problem. First, let us consider a zero difference due to symmetry of the elastic tensor C:∫

D
(C : ∇U : ∇V − C : ∇V : ∇U)dx = 0. (40)

where U and V are two elastic solutions dependent on 2 coordinates (x, y) in Cartesian coordinate system or (r, θ)
in polar coordinate system and ∇ is gradient. D is an arbitrary closed domain within the material domains Ω1 and
Ω2 as shown in Figure 29. According to the Hooke’s law in following form:

σ(U) = C∇U, (41)

the equation (40) becomes: ∫
D

(σ(U)∇V − σ(V )∇U)dx = 0, (42)

where σ(U) and σ(V ) are stress fields associated with U and V respectively. By applying the Green’s theorem to
the equation (42) we obtain:

−
∫
D
∇σ(U)V dx+

∫
∂D

σ(U)nV ds+
∫
D
∇σ(V )Udx−

∫
∂D

σ(V )nUds = 0, (43)
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Figure 29: The path integral surrounding the tip of the bi-material notch. The integration path ∂D, the boundary
of D, consists of the paths: Γ1, Γ2, Σ1, Σ2.

where ∂D denotes the boundary of the domain D and n is the normal of the contour ∂D. If equilibrium conditions
apply, the first and the third term of equation (43) are equal to zero, therefore we can write:∫

∂D
(σ(U)nV − σ(V )nU)ds = 0. (44)

Since the negatively oriented boundary ∂D consists of 4 contours ∂D = Γ1 ∪ Γ2 ∪Σ1 ∪Σ2, the integral (44) can be
written as a sum of the following 4 contour integrals6:

∫
Γ1

(σ(U)nV − σ(V )nU)ds+
∫

Σ1

(σ(U)nV − σ(V )nU)ds+ (45)∫
Γ2

(σ(U)nV − σ(V )nU)ds+
∫

Σ2

(σ(U)nV − σ(V )nU)ds = 0,

see Figure 29. Because of zero traction on the notch surfaces, for some terms we write:

∫
Σ1

(σ(U)nV − σ(V )nU)ds = 0,∫
Σ2

(σ(U)nV − σ(V )nU)ds = 0,

and equation (45) becomes:∫
Γ1

(σ(U)nV − σ(V )nU)ds+
∫

Γ2

(σ(U)nV − σ(V )nU)ds = 0.

Let’s denote the ΓA = Γ1 and change orientation of the path ΓB = −Γ2, so both of the curves are positively oriented
as in Figure 30. We obtain:∫

ΓA
(σ(U)nV − σ(V )nU)ds =

∫
ΓB

(σ(U)nV − σ(V )nU)ds,

which proves that the integral is path independent. There are important implications of the integral path indepen-
dence. Let’s denote such path independent integral as:

Ψ(U, V ) = 1
2

∫
Γ
(σ(U)nV − σ(V )nU)ds, (46)

6The symbols Γ1, Γ2, ΓA and ΓB in this sub-chapter always stay for integration path, not to be confused with Γi which denotes
material interface in all other parts of this work.
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Figure 30: Two positively oriented contours surrounding the tip of the bi-material notch, the ΓA and ΓB .
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Figure 31: Two positively oriented circular contours surrounding the tip of the bi-material notch, the ΓA and ΓB .

which path Γ is a circle of radius R (such as ΓA or ΓB in Figure 31). The relations for stress and displacement near
the singular point are:

U = Rαfijk(θ),
V = Rβgijl(θ),

σ(U) = Rα−1fik(θ),
σ(V ) = Rβ−1gil(θ),

where fijk(θ), gijl(θ) and fik(θ), gil(θ) are the angular eigenfunctions for stress and displacement respectively. The
α and β are the eigenvalues forming the exponents of singularity. By substitution of relations for displacements
and stress near the singular point to (46) the integral becomes:∫

Γ
(Rα−1fik(θ)nRβgijl(θ)−Rβ−1gil(θ)nRαfijk(θ))Rdθ =∫ 2π

0
(Rαfik(θ)nRβgil(θ)−Rβgil(θ)nRαfijk(θ))dθ =

Rα+β
∫ 2π

0
(fik(θ)ngijl(θ)− gil(θ)nfijk(θ))dθ. (47)

The integral as we defined it has to be independent of R. If α 6= −β in (47), the integral:∫ 2π

0
(fik(θ)ngijl(θ)− gil(θ)nfijk(θ))dθ = 0, (48)
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Figure 32: Area of refined mapped mesh near the singular point of the V-notch and bi-material notch.

since it is the only way for the integral to remain path independent. Determination of the GSIFs using the Ψ-integral
is shown in the following text. The admissible solution of eigenequation (36) on p. 28 are also roots λk for which
<{λk} < 0. These negative eigenvalues are called auxiliary, denoted λ−k = −λk and they remain without a direct
physical interpretation. However, they play an important role in the GSIFs determination. The Ψ-integral applied
to the finite element solution and to an auxiliary eigenvalue solution λ−k = −λk can be written:

Ψ(uFE(θ), r−λ1f−i1(θ)) = Ψ(C +H1r
λ1fi1(θ) +H2r

λ2fi2(θ) + . . .+Hnr
λnfin(θ), r−λ1f−i1(θ)), (49)

where C represents the rigid body translation and f−ik (θ) is the auxiliary eigenfunction of the auxiliary displacement
expansion. It is constructed analogically as ordinary eigenfunction fik (θ), only with consideration of auxiliary
eigenvalue λ−k . The above-mentioned integral (49) can be rearranged into separate integrals:

Ψ(uFE(θ), r−λ1f−i1(θ)) = Ψ(C, r−λ1f−i1(θ)) +H1Ψ(rλ1fi1(θ), r−λ1f−i1(θ)) +H2Ψ(rλ2fi2(θ), r−λ1f−i1(θ)) + . . .

. . .+HnΨ(rλnfin(θ), r−λ1f−i1(θ)). (50)

Since property (48) applies, the terms with λk and λ−l where k 6= l vanish. The expression above becomes:

Ψ(uFE(θ), r−λ1f−i1(θ)) = H1Ψ(rλ1fi1(θ), r−λ1f−i1(θ)), (51)

by which the generalized stress intensity factor H1 can be calculated as:

H1 = Ψ(uFE(θ), r−λ1f−i1(θ))
Ψ(rλ1fi1(θ), r−λ1f−i1(θ))

. (52)

Thus, in general the kth factor can be calculated as:

Hk = Ψ(uFE(θ), r−λkf−ik(θ))
Ψ(rλkfik(θ), r−λkf−ik(θ))

. (53)

Because of the Ψ-integral path independence the analytical term in denominator Ψanalyt
k = Ψ(rλkfik(θ), r−λkf−ik(θ))

can be calculated once for all for given problem. The term in the numerator ΨFE
k = Ψ(uFE (θ) , r−λkf−ik (θ)) is

calculated from the finite element results. From the computational point of view the FE results are calculated (in
this work) in FEM code ANSYS. The vicinity of the singular point at the 2D model consists of refined mapped
mesh as shown in Figure 32. The numerical values of stress and displacement components are extracted from
nodes which lay on a circle that surrounds the singular point (any closed curve can be used, however the author of
this dissertation finds the circular curve the simplest way to obtain results). The model is meshed with standard
quadratic plane elements (in ANSYS denoted as PLANE183). The size of radius of the integration path denoted
as r1 is optional, nevertheless it is recommended to take results reasonably far from the singularity i.e. r1 > 1.0
mm in order to avoid error caused by the nature of FEM. In the Numerical example C (see p. 43), the effect of
integration path radius on the leading term H1 value was always less than 1 % of the resulting value when the
integral was calculated on radii between 1 and 3 mm. The model created by the author of this work enables the
user to choose the size of area of refined mesh by choice of parameters r0 and r2 as shown in Figure 33. It is
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Figure 33: Area of refined mapped mesh near the singular point of the V-notch and bi-material notch.

possible to extract the entire stress and displacement field on this area. It can be either used for calculation of the
integral ΨFE

k on all contours between r0 and r2 or later used as a 2D FEM reference to calculated asymptotic field.
The circle of radius r0 surrounds the area where the stress becomes theoretically unbounded and the FE numerical
error is significant. This area is not of particular interest in terms of the Ψ-integral calculation. Furthermore there
are no special elements found at the notch tip (as those used for fracture mechanics of cracks, depicted in Fig.
8 on p. 14). As the FE calculation is complete, just before writing of the values into data files, the rigid body
translation C of the notch tip is subtracted of all nodal displacement values. Then, the values of all in-plane stress
components σFE

rr (r, θ) , σFE
rθ (r, θ), σFE

θθ (r, θ) and displacement components uFE
r (r, θ) , uFE

θ (r, θ) in polar coordinate
system are stored in data files. The computation proceeds with an execution of Python script. The first part of the
Python script calculates the desired number n of eigenvalues λk based on the local geometry and material properties
of the problem, constructs the corresponding eigenvectors vk and eigenfunctions fijk(θ) and fik(θ) for stress and
displacement components respectively. By considering λ−k = −λk in a similar manner, the auxiliary eigenvectors
v−k and eigenfunctions f−ijk (θ) and f−ik (θ) are obtained. For the term in numerator in Eq. (53) the infinitesimal
value of the term in numerator as written in the Python script is:

dΨFE
k = r

λ−
k

1
(
uFE
r (θ)f−rrk(θ) + uFE

θ (θ)f−rθk(θ)− r1f
−
rk(θ)σFE

rr (θ)− r1f
−
θk(θ)σFE

rθ (θ)
)

dθ,

and the infinitesimal value of the analytical term in denominator, Eq. (53) is written:

dΨanalyt
k =

(
frk(θ)f−rrk(θ) + fθk(θ)f−rθk(θ)− f−rk(θ)frrk(θ)− f−θk(θ)frθk(θ)

)
dθ.

After the script loads the FE results (stress and displacement component values), the numerical integration is
conducted by the trapezoidal rule:

ΨFE
k =

∑
n=1

(
dΨFE

k (θn−1) + dΨFE
k (θn)

)
∆θ

2 ,

Ψanalyt
k =

∑
n=1

(
dΨanalyt

k (θn−1) + dΨanalyt
k (θn)

)
∆θ

2 ,

where the numerical integration step, the ∆θ is dependent on the circle division by elements (node to node distance).
The script finally returns the resultant kth GSIFs:

Hk = ΨFE
k

Ψanalyt
k

.

Circle division by 5° or 2.5° (for notch of 2α = 90° i.e. 54 or 108 integration points) both give results of solid
computational convergence. As shown in the Numerical example C that follows, the choice of the integration step
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λ1 λ2 λ3 λ4

2α = 60° 0.556318 0.678908 1.495694± 0.126455i 2.056555± 0.196967i
2α = 90° 0.572603 0.859567 1.693610± 0.206185i 2.294796± 0.164660i
2α = 120° 0.627362 1.098829 1.779801 2.119643± 0.380189i

Table 5: Bi-material notch with bi-material configuration of E1/E2 = 0.25 and 3 geometric configurations 2α =
60°, 90°, 120°

H∆θ=2.5°
1 s∆θ=2.5° H∆θ=5.0°

1 s∆θ=5.0°

2α r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg.
60° 49.074983 49.348909 49.122359 0.071201 49.105613 49.153084 49.043314 0.039942
90° 51.320719 51.158123 51.234381 0.043204 51.366651 51.145435 51.199755 0.083277
120° 54.323977 53.909335 54.152227 0.114307 54.384717 53.867149 54.161656 0.143541

Table 6: V-notch Ψ-integral results for various 2α geometries. The values of leading term factor H1 determined on
multiple radii with finer integration step of ∆θ = 2.5° are listed in the left part of the table and coarser integration
step of ∆θ = 5.0◦ in the right side of the table. Both the cases are supplemented by standard deviation of the
averaged value denoted by s.

from 54 to 108 integration steps changes the value of leading term H1 by less than 0.5 % in all tested cases. In
Figure 32 a detail of meshed model with element edge division by 2.5° is shown. For the case of the double root
λ1 = λ2 = λ the stress intensity factors H1 and H2 are obtained by solving the system of two equations:

Ψ(uFE, r−λf−i1(θ)) = H1Ψ(rλfi1(θ), r−λf−i1(θ)) +H2Ψ(rλfi2(θ), r−λf−i1(θ)),
Ψ(uFE, r−λf−i2(θ)) = H1Ψ(rλfi1(θ), r−λf−i2(θ)) +H2Ψ(rλfi2(θ), r−λf−i2(θ)).

From the equations as we defined it follows, that we need to do final adjustment for generalized stress intensity
factors.

Hk :=
{
Hk for ={λk} 6= 0
Hk/2 for ={λk} = 0

Numerical example C: Integration step and path independence of the Ψ-integral for notches. The
test example consists of the Ψ-integral calculation for 3 geometric configurations of the V-notch 2α = 60°, 90°, 120°
(γ1 = α, γ2 = 360°− α) and 3 geometric configurations of the bi-material notch 2α = 60°, 90°, 120° (γ1 = α, γ2 =
180°, γ3 = 360°−α) with E1/E2 = 0.25, E1 = 20 GPa and ν1 = ν2 = 0.25. The eigenvalues for the case of a V-notch
were calculated in Numerical example A on p. 30. The first four eigenvalues for the bi-material notch are found
in Table 5. In both the V-notch and bi-material notch test example the effect of integration step size ∆θ is shown
on multiple integration radii. The circles of multiple radii have been taken into account to another test example
purpose, to validate the Ψ-integral path independence. Geometry of the model is identical to the one in Numerical
example E on p. 50 in the case of the V-notch and to the one in Numerical example F on p. 53 in the case of the
bi-material notch. In both cases, the model is loaded with force F = 100N (per 1 mm of specimen thickness b).
The leading term factor H1 for the symmetrically loaded V-notch and leading term factors H1 and H2 for the case
of the bi-material notch are calculated on r1 = 1 mm, r2 = 3 mm and as an average on all the radii between r1
and r2 (the script adjust the mesh automatically, so there are 10 circles in the case of larger integration step and
22 circles in the case of smaller integration step). The results for the V-notch are listed in Table 6. The results
for the bi-material notch are found in Tables 7 and 8. In both cases, the left part of the table consists of smaller
integration step results obtained by finer element division by ∆θ = 2.5°. The right side of the tables represents
larger integration step results obtained with coarser element division by∆θ = 5.0°. The results are supplemented by
standard deviation of the average value denoted by s∆θ=2.5° or s∆θ=5.0°. The choice of number of the integration
steps from 54 to 108 integration steps changes the value of leading term factor H1 by less than 0.5 % in both tested
cases. The effect of the integration step on the resulting value of second leading term factor H2 in the case of the
bi-material notch is more profound especially towards the large 2α. For such cases, the standard deviation value s
is decreased by using a finer integration step. Therefore the choice of the finer integration step is beneficial. The
effect of integration path radius on the leading term factor H1 value was always less than 1 % of the resulting
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H∆θ=2.5°
1 s∆θ=2.5° H∆θ=5.0°

1 s∆θ=5.0°

2α r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg.
60° 2.948757 2.935656 2.936589 0.000437 2.978178 2.950140 2.952096 0.001021
90° 9.159032 9.113595 9.123140 0.004574 9.200633 9.108610 9.125289 0.008979
120° 7.235544 7.210268 7.214646 0.002019 7.262257 7.209313 7.217978 0.004529

Table 7: Bi-material notch Ψ-integral results for various 2α geometries. The values of leading term factor H1
determined on multiple radii with finer integration step of ∆θ = 2.5° are listed in the left part of the table and
coarser integration step of ∆θ = 5.0◦ in the right side of the table. Both the cases are supplemented by standard
deviation of the averaged value denoted by s.

H∆θ=2.5°
2 s∆θ=2.5° H∆θ=5.0°

2 s∆θ=5.0°

2α r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg.
60° 8.196698 8.218343 8.186926 0.018445 7.779961 7.808389 7.755549 0.032715
90° 3.197018 3.283971 3.230628 0.032228 2.845325 2.998096 2.906699 0.058189
120° 0.080194 0.226453 0.153295 0.046779 −0.280710 −0.014312 −0.142072 0.085072

Table 8: Bi-material notch Ψ-integral results for various 2α geometries. The values of leading term factor H2
determined on multiple radii with finer integration step of ∆θ = 2.5° are listed in the left part of the table and
coarser integration step of ∆θ = 5.0◦ in the right side of the table. Both the cases are supplemented by standard
deviation of the averaged value denoted by s.

value. The trends in the dependence of the integration radius are shown in graphs in Figure 34. Although the trend
is plotted only for one geometric and bi-material configuration, it represents standard behavior of Hk calculation
convergence by the Ψ-integral. We see that the leading term factors H1 and H2 show solid convergence on all
integration radii, whereas the higher order term factors converge towards larger integration radii. We therefore
recommend to determine the higher order term factors on the larger distances such as r2 = 3 mm. To check that
the radius to determine GSIFs was chosen correctly, we can compare the reconstructed analytical solution with pure
FE solution (either on particular radius of interest or on the whole field, e.g. 0.1 mm - 3 mm) as it will be shown
in Numerical example E and F on p. 50 and 53 respectively.

Determination of GSIFs by overdeterministic method
The overdeterministic method (ODM) belongs to so called direct methods and is based on the least-squares

solution of overdetermined system of linear equations. The method was firstly proposed by Seweryn in [34] under a
name of method of analytical constraints. In [35] Ayatollahi and Nejati applied this method to calculate SIFs of a
crack problem. In an article that followed, they applied the ODM to the sharp notch problem [36]. Next Ayatollahi
et al. studied ODM in application to the bi-material notch problem in [55], however they studied effect of first
and real non-singular term only. The ODM is chosen especially because of its minimal requirements for the FE
software (no need for special elements). The ODM takes large number of results, namely displacements from FEM
to compute chosen number of GSIFs (stress components can also be used for GSIFs determination by the ODM).
The displacements are usually preferred because the majority of FE codes is displacement based, which leads to
increased inherent precision. The method can be used for calculation of Hk ∈ R when the real form of the stress
Eq. (28) and displacement series Eq. (30) on p. 26 is considered. As stated above, the goal of the ODM is to find
n GSIFs as a least square method solution of an overdetermined system of linear equations. These equations can
be written in a matrix form as:

f∗r1 (θ1) rλ1 f∗r2 (θ1) rλ2 . . . f∗rn (θ1) rλn
f∗r1 (θ2) rλ1 f∗r2 (θ2) rλ2 . . . f∗rn (θ2) rλn

...
...

...
f∗r1 (θm) rλ1 f∗r2 (θm) rλ2 . . . f∗rn (θm) rλn
f∗θ1 (θ1) rλ1 f∗θ2 (θ1) rλ2 . . . f∗θn (θ1) rλn
f∗θ1 (θ2) rλ1 f∗θ2 (θ2) rλ2 . . . f∗θn (θ2) rλn

...
...

...
f∗θ1 (θm) rλ1 f∗θ2 (θm) rλ2 . . . f∗θn (θm) rλn




H1
H2
...
Hn

 =



uFE
r1 (r, θ1)
uFE
r2 (r, θ2)

...
uFE
rm (r, θm)
uFE
θ1 (r, θ1)
uFE
θ2 (r, θ2)

...
uFE
θm (r, θm)


(54)
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Figure 34: Dependence of the Hk on the radial distance r. The bi-material notch, 2α = 60°, E1/E2 = 0.25.
Calculation by the Ψ-integral.

On the left-hand side the eigenfunctions of the first n displacement series term factors are listed in 2m lines which
form the matrix7. First the m lines of this matrix are filled with the eigenfunctions for the radial displacement
components. These are followed bym lines of eigenfunctions for tangential displacement components. The vector on
the left-hand side is composed of n unknown GSIFs Hk. Finally, a vector of 2m length composed of FEA calculated
m radial displacements and m tangential displacements stays on the right-hand side. For an overdetermined system
of linear equations (54), in a short form written:

F[2m×n]H[n] = uFE
[2m], (55)

no exact solution exists, since 2m > n. The approximation of solution (vector H[n] that contains n GSIFs) is found
by minimizing the residual vector:

r = F[2m×n]H[n] − uFE
[2m] (56)

by the least square method. In the general case of Hk ∈ C, the complex form of the stress and displacement series
is Eq. (20) and displacement series Eq. (24) on p. 25 is considered. According to [34], the series is decomposed to

7The index m used in this sub-chapter does not correspond to the index m for mth material region. Identical index is used because
of lack of useful indices.

45



Ondřej Krepl Methods and results

real and imaginary part which is written in the matrix form as:

<
{
fr1 (θ1) rλ1

}
=
{
fr1 (θ1) rλ1

}
. . . <

{
frn (θ1) rλn

}
=
{
frn (θ1) rλn

}
<
{
fr1 (θ2) rλ1

}
=
{
fr1 (θ2) rλ1

}
. . . <

{
frn (θ2) rλn

}
=
{
frn (θ2) rλn

}
...

...
...

...
<
{
fr1 (θm) rλ1

}
=
{
fr1 (θm) rλ1

}
. . . <

{
frn (θm) rλn

}
=
{
frn (θm) rλn

}
<
{
fθ1 (θ1) rλ1

}
=
{
fθ1 (θ1) rλ1

}
. . . <

{
fθn (θ1) rλn

}
=
{
fθn (θ1) rλn

}
<
{
fθ1 (θ2) rλ1

}
=
{
fθ1 (θ2) rλ1

}
. . . <

{
fθn (θ2) rλn

}
=
{
fθn (θ2) rλn

}
...

...
...

...
<
{
fθ1 (θm) rλ1

}
=
{
fθ1 (θm) rλ1

}
. . . <

{
fθn (θm) rλn

}
=
{
fθn (θm) rλn

}





<{H1}
= {H1}
< {H2}
= {H2}

...
<{Hn}
= {Hn}


= uFE

[2m],

where n′ = 2n and the FE vector uFE
[2m] is identical to the previous real case. The equation is in matrix form

written analogically to (55) i.e. F[2m×n′]H[n′] = uFE
[2m] and the solution is found also by minimizing residual vector

analogically to (56) i.e. r = F[2m×n′]H[n′] − uFE
[2m]. The resulting GSIFs are finally reconstructed as:

Hk = <{Hk}+ i={Hk} . (57)

The nodal displacements in both radial and tangential directions are again taken from nodal points lying on a
circle surrounding the singular point r1, see Figure 33. These nodal points are therefore characterized by the fixed
radial coordinate r1 and variable angular coordinate θj ∈ (1;m) as shown in Figure 33, which describes the FE
results extraction. As for the Ψ-integral calculation, the ODM can be calculated on any circle between r0 and r2.
Furthermore the method does not require to take values from nodes laying on a circle. Values from basically any
pattern can be used to calculate unknown GSIFs Hk by the ODM. Choice of circle is again seen by the author as
the simplest mean of Hk computation. However, there are some setbacks related to the displacement based ODM.
By the form of the ODM used in this work, the valid results are obtained for symmetrical problems (in terms
of geometry and loading) of a V-notch and bi-material junction. The problem of a bi-material notch is always a
non-symmetrical one. In the symmetrical cases the rigid body rotation of the specimen is equal to zero and does
not enter into the calculation Hk . If the problem is non-symmetrical, the rigid body rotation is present. Please
note that it cannot be as easily subtracted from the FE displacements as the rigid body translation can be. The
rigid body rotation may be included in the displacement series by adding a term with λrot

k = 1 , which describes
it, as in [35, 36, 55]. The general determination of this term is nevertheless difficult. By substitution of the unit
eigenvalue back into matrix A (λ), one is unable to obtain the needed eigenfunction, since there is no solution of
reduced system of equations Ared (λrot

k ). The development of method to include rigid body rotation of a general
problem in terms of methods of plane elasticity used in this work could be a subject of further research. Therefore,
in the author’s opinion, in non-symmetrical cases it is recommended to use the stress based ODM, which completely
eliminates the problem. We consider the stress series, Eq. (28) as in p. 26. Similarly as in the displacement based
ODM, we need to find a approximation of a solution of an overdetermined system of linear equations, which in the
case of Hk ∈ R is:

f∗rr1 (θ1) rλ1 f∗rr2 (θ1) rλ2 . . . f∗rrn (θ1) rλn
f∗rr1 (θ2) rλ1 f∗rr2 (θ2) rλ2 . . . f∗rrn (θ2) rλn

...
...

...
f∗rr1 (θm) rλ1 f∗rr2 (θm) rλ2 . . . f∗rrn (θm) rλn
f∗rθ1 (θ1) rλ1 f∗rθ2 (θ1) rλ2 . . . f∗rθn (θ1) rλn
f∗rθ1 (θ2) rλ1 frθ2 (θ2) rλ2 . . . f∗rθn (θ2) rλn

...
...

...
f∗rθ1 (θm) rλ1 f∗rθ2 (θm) rλ2 . . . f∗rθn (θm) rλn
f∗θθ1 (θ1) rλ1 f∗θθ2 (θ1) rλ2 . . . f∗θθn (θ1) rλn
f∗θθ1 (θ2) rλ1 f∗θθ2 (θ2) rλ2 . . . f∗θθn (θ2) rλn

...
...

...
f∗θθ1 (θm) rλ1 f∗θθ2 (θm) rλ2 . . . f∗θθn (θm) rλn




H1
H2
...
Hn

 =



σFE
rr1 (r, θ1)
σFE
rr2 (r, θ2)

...
σFE
rrm (r, θm)
σFE
rθ1 (r, θ1)
σFE
rθ2 (r, θ2)

...
σFE
rθm (r, θm)
σFE
θθ1 (r, θ1)
σFE
θθ2 (r, θ2)

...
σFE
θθm (r, θm)



. (58)

The matrix on the left-hand side is formed of the known analytical eigenfunctions. On the left-hand side we also
find the unknown vector of n GSIFs. The right-hand side vector consists of radial, shear and tangential stress
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components, determined by FE. For an overdetermined system of stress based linear equations (58) that is in a
short form written:

F[3m×n]H[n] = SFE
[3m], (59)

as in the previous case of the displacement based ODM, since 3m > n no exact solution exists. The approximation
of the solution is found by minimizing the residual vector:

r = F[3m×n]H[n] − SFE
[3m]

by the least square method. In the general case of Hk ∈ C the system has the following form:

<
{
frr1 (θ1) rλ1

}
=
{
frr1 (θ1) rλ1

}
. . . <

{
frrn (θ1) rλn

}
=
{
frrn (θ1) rλn

}
<
{
frr1 (θ2) rλ1

}
=
{
frr1 (θ2) rλ1

}
. . . <

{
frrn (θ2) rλn

}
=
{
frrn (θ2) rλn

}
...

...
...

...
<
{
frr1 (θm) rλ1

}
=
{
frr1 (θm) rλ1

}
. . . <

{
frrn (θm) rλn

}
=
{
frrn (θm) rλn

}
<
{
frθ1 (θ1) rλ1

}
=
{
frθ1 (θ1) rλ1

}
. . . <

{
frθn (θ1) rλn

}
=
{
frθn (θ1) rλn

}
<
{
frθ1 (θ2) rλ1

}
=
{
frθ1 (θ2) rλ1

}
. . . <

{
frθn (θ2) rλn

}
=
{
frθn (θ2) rλn

}
...

...
...

...
<
{
frθ1 (θm) rλ1

}
=
{
frθ1 (θm) rλ1

}
. . . <

{
frθn (θm) rλn

}
=
{
frθn (θm) rλn

}
<
{
fθθ1 (θ1) rλ1

}
=
{
fθθ1 (θ1) rλ1

}
. . . <

{
fθθn (θ1) rλn

}
=
{
fθθn (θ1) rλn

}
<
{
fθθ1 (θ2) rλ1

}
=
{
fθθ1 (θ2) rλ1

}
. . . <

{
fθθn (θ2) rλn

}
=
{
fθθn (θ2) rλn

}
...

...
...

...
<
{
fθθ1 (θm) rλ1

}
=
{
fθθ1 (θm) rλ1

}
. . . <

{
fθθn (θm) rλn

}
=
{
fθθn (θm) rλn

}





<{H1}
= {H1}
< {H2}
= {H2}

...
<{Hn}
= {Hn}


= SFE

[3m],

where n′ = 2n and the FE vector SFE
[3m] is identical to the previous real case. The resulting GSIFs are constructed

using Eq. (57). Since the factors are determined on particular radius r, it is recommended to check if the dependence
Hk (r) exists. If the strong and linear dependence exists, the singular leading term factors Hk can be extrapolated
to r → 0 by the linear regression (it is not recommended to calculate the GSIFs directly on a radius too close to
singularity because of a significant numerical error). The method of calculation of Hk by the linear regression is in
accordance to the definition of the stress intensity factor by a limit. If the dependence exists in the case of higher
order terms the averaged value can be calculated however, in the author’s experience, when the GSIFs are calculated
reasonably far from singularity, the radial dependence is in general week, which will be shown and commented in
numerical examples. To make sure that the used methodology is valid, we can compare the reconstructed analytical
solution with pure FE solution (again as in the case of the Ψ-integral, the comparison can be made on particular
radius of interest or on the whole stress field). From mathematical point of view, the values of factors Hk should be
dependent on the vector H[n′] length (number n of factors being calculated). This effect is investigated in following
numerical example with foundation that the first two terms factors H1 and H2 converge when n′ > 4 and the higher
order terms H3 and H4 when n′ > 16. Although the behavior is demonstrated only on one numerical example, it is
a general one and is in accordance with results published by Ayatollahi and Nejati in [36]. We therefore recommend
to chose n′ > 16 when the higher order terms are of interest.

To conclude, we now compare the advantages and disadvantages of the ODM and Ψ-integral. General advantage
of the ODM is its simplicity and its low computational cost. The general disadvantage of the ODM is its dependency
on the number of term factors to be determined, which origins from the mathematical foundation of the method.
Such effect will be examined in the following Numerical example D. The main advantage of the Ψ-integral is, that
the Hk are determined mutually independently. In any case it is beneficial to compare results calculated by both
methods with each other to prevent random errors. The comparison of results determined by both methods is
shown in Numerical example D.

Numerical example D: Determination of GSIFs by the ODM. We consider the identical bi-material notch
as in previous Numerical example C on p. 43 with 2α = 60°, 90°, 120° and E1/E2 = 0.25. The leading singular
terms with H1 and H2 and higher order terms with H3 and H4 are calculated by the stress based overdeterministic
method. Since we calculate the singular and non-singular term factors, the radius for the ODM determination is
chosen as r1 ∈ (0.2− 1) mm which is the area where the above mentioned singular and non-singular terms prevail.
In addition, for the model created in this work, this area is characterized by low FE error. The effect of element
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H∆θ=2.5°
1 s∆θ=2.5° H∆θ=5.0°

1 s∆θ=5.0°

2α r = 0.2 mm r = 1 mm avg. avg. r = 0.2 mm r = 1 mm avg. avg.
60° 2.918742 2.940974 2.917949 0.000630 2.911692 2.958155 2.909008 0.002037
90° 9.116427 9.177946 9.113761 0.001769 9.104589 9.230813 9.093580 0.006558
120° 7.210331 7.249287 7.208264 0.001346 7.207143 7.286563 7.199797 0.005228

Table 9: Bi-material notch results for 2α = 60°, 90°, 120° geometries and E1/E2 = 0.25. Values of leading term
factor H1 determined on multiple radii with finer division ∆θ = 2.5° are listed in the left part of the table and
coarser division ∆θ = 5.0◦ on the right-hand side of the table. The both cases are supplemented by the standard
deviation of the averaged value denoted by s∆θ=2.5° and s∆θ=5.0° .

H∆θ=2.5°
2 s∆θ=2.5° H∆θ=5.0°

2 s∆θ=5.0°

2α r = 0.2 mm r = 1 mm avg. avg. r = 0.2 mm r = 1 mm avg. avg.
60° 8.627544 8.696743 8.630076 0.003981 8.581582 8.732149 8.585571 0.004568
90° 3.558906 3.575628 3.558123 0.001460 3.545283 3.573771 3.538515 0.002979
120° 0.461848 0.461554 0.461771 0.000072 0.464420 0.457764 0.461831 0.002264

Table 10: Bi-material notch results for 2α = 60°, 90°, 120° geometries and E1/E2 = 0.25. Values of leading term
factor H2 determined on multiple radii with finer division ∆θ = 2.5° are listed in the left part of the table and
coarser division ∆θ = 5.0◦ on the right-hand side of the table. The both cases are supplemented by the standard
deviation of the averaged value denoted by s∆θ=2.5° and s∆θ=5.0° .

edge length division by 2.5° and 5.0◦ is studied. The resulting values are listed in Tables 9 and 10. The transition
from coarser to finer element length has very low effect on the resulting value of leading GSIFs, with change less
than 0.3 % in averaged H1 and less than 0.6 % change in averaged H2 for all studied configurations of 2α. The
radial dependence of calculated leading singular terms factors H1 and H2 is shown in Figure 35. The graphs
show that very slight linear dependence of the values exists (see values listed in tables above). Thus the singular
terms factors extrapolation to r → 0 is performed using the linear regression with resulting values shown in Table
9 and 10. This is in accordance to the fact, that the values of Hk calculated too close to the singular point may be
heavily distorted by FE numerical error. Figure 36 shows radial dependence for non-singular terms factors H3 and
H4. Non-singular terms factors show solid convergence towards r = 1 mm. The Table 11 and 12 compare values
determined by the Ψ-integral (averaged) and ODM (linear regression extrapolated) with highest discrepancy of 22.1
% in the case of H2 calculation and coarser mesh. This discrepancy is reduced to 10.2 % when finer mesh is used.
The first singular term factor is calculated with almost identical values by both methods with maximum difference
of 1.4 %. In all cases by mesh refinement, values with lower difference are obtained. We therefore recommend to
use finer element division. Next, the effect of number of terms in vector H[n′] is studied, with results shown in
Figure 37 for singular terms and in Figure 38 for non-singular terms. The results show that the first two terms
factors H1 and H2 converge when n′ > 4, as the difference between subsequent values of factor H1 is always less
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Figure 35: Dependence of the leading singular terms factors H1 and H2 on the radial distance r and fitted curve
by the linear regression. The bi-material notch, 2α = 90°, E1/E2 = 0.25. Calculation by the ODM.

48



Ondřej Krepl Methods and results

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R [mm]

− 8

− 7

− 6

− 5

− 4

− 3

− 2

− 1

0

H
3

[M
P

a
·m

m
1−
λ

3
]

H3(R) by ODM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
4

[M
P

a
·m

m
1−
λ

4
]

H4(R) by ODM

Figure 36: Dependence of the non-singular terms factors H3 and H4 on the radial distance r. The bi-material
notch, 2α = 90°, E1/E2 = 0.25. Calculation by the ODM.

H∆θ=2.5°
1 H∆θ=5.0°

1
2α ODM extrap. Ψ−integral avg. difference ODM extrap. Ψ−integral avg. difference
60° 2.919937 2.936589 0.6 % 2.916078 2.952096 1.4 %
90° 9.118604 9.12314 0.1 % 9.111950 9.125289 0.2 %
120° 7.211273 7.214646 0.1 % 7.211940 7.217978 0.1 %

Table 11: Bi-material notch results for 2α = 60° geometry. Values of leading term factor H1 determined by the
ODM extrapolation and as averaged value of the Ψ-integral. Both determined with finer division ∆θ = 2.5° in the
left part of the table and coarser division ∆θ = 5.0◦ in the right part of the table.

than 0.5 % and the difference in H2 subsequent values is always less than 1.5 %. In the case of higher order terms,
the convergence rate of first non-singular term under 1.5 % is achieved with n′ > 8. The second non-singular term
H4 convergence rate under 1.75 % is achieved with n′ > 16. For researchers interested particularly in non-singular
terms, we recommend the size of vector H[n′] at least n′ = 16.

H∆θ=2.5°
2 H∆θ=5.0°

2
2α ODM extrap. Ψ−integral avg. difference ODM extrap. Ψ−integral avg. difference
60° 8.641101 8.186926 5.6 % 8.623311 7.755549 10.2 %
90° 3.560358 3.230628 10.2 % 3.548921 2.906699 22.1 %
120° N/A 0.153295 N/A N/A −0.142072 N/A

Table 12: Bi-material notch results for 2α = 60° geometry. Values of leading term factor H2 determined by the
ODM extrapolation and as averaged value of the Ψ-integral. For the case of 2α = 120° the regression is not
performed since the term factor H2 is this case is non-singular. Both determined with finer division ∆θ = 2.5° in
the left part of the table and coarser division ∆θ = 5.0◦ in the right part of the table.
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Figure 37: Dependence of the Hk value on the number of terms in vector Hn. The bi-material notch, 2α = 90°,
E1/E2 = 0.25.
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Figure 38: Dependence of the Hk value on the number of terms in vector Hn. The bi-material notch, 2α = 90°,
E1/E2 = 0.25.

Numerical example E: Stress reconstruction for a V-notch. The specimen with the V-notch is modeled
in 2D as shown in Figure 39 and it is characterized by the following dimensions: L = 76.2 mm, h = 17.8 mm,
a = 3.56 mm, so the notch depth to height ratio is a/h = 0.2. The notch opening angle is 2α = 90° (γ1 =
α, γ2 = 180°, γ3 = 360° − α). The specimen is modeled with PMMA (polymethyl methacrylate) material model,
E = 2.3 GPa, ν = 0.34 and loaded with force of F = 1 N (per 1 mm of specimen thickness b). Plane strain state
is chosen. The first five GSIFs Hk are calculated by the Ψ-integral, with integration radius r = 3 mm and by
the linear regression extrapolated displacement and stress based ODM with r = 0.2 ÷ 1 mm. The eigenfunctions
are normalized per Eq. (38) on p. 29 with θ0 = 180° where the coordinate system is shown in Figure 39. The
parameters which form the mapped mesh near singular point as in Figure 33 are chosen as: r0 = 0.01 mm, r1 = 1
mm and r2 = 3 mm and the element edge division is by 2.5°. The results are found in Table 13. We see that
both methods for GSIFs calculation return values of the leading term factor H1 close to each other (within 0.3 %
comparing the Ψ-integral and the stress based ODM and 0.1 % comparing the Ψ-integral and the displacement
based ODM). Because of symmetry of the problem, the odd terms factors of the expansion should be zero. This
is true for H2 since both methods give a number smaller than 10−5. The higher order terms factors H3, H4 and
H5 values are complex and determined by both methods with signs of solid computational convergence. The factor
H3 value of both methods is close to each other, within 4.6 % when the stress based method is considered. For
both methods, the odd term factor H4 is again in terms of numerical methods equal to zero as it should be. To see
how the asymptotic solution fits the pure FE solution, we can plot individual σij(r, θ) on desired distance. Then
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we can compare the FE solution with singular terms solution H1, H2 or with singular and non-singular solution
H1÷H5. The results can be even compared on a polar plot and the error between FE and asymptotic quantified as
in [22]. First, lets take the GSIFs determined by the Ψ-integral. The stress field solution is reconstructed on radius
r = 1 mm as in Figure 40. The FE solution is represented by the black squares. The singular terms solution is
given dominantly by the singular term with λ1 (the blue line), the consideration of second singular term containing
λ2 (the yellow line) does not lead to any change (as expected since H2 ≈ 0). The overall trend of the singular
terms solution is close to the trend of FE solution. The consideration of non-singular terms however increases the
precision of stress reconstruction. The highest increase in precision is given by considering the first non-singular
term with λ3 (magenta line). Employment of higher order terms with λ4 (the cyan line) and the term with λ5 (the
red line) does not lead to significant precision increase as all the three lines overlap each other. As expected, the
fourth term with λ4 does not increase precision of the analytical solution since H4 ≈ 0. The H5 does not make
significant change because the stress is reconstructed on a relatively small distance from the singular point. The
contribution of the fifth term would become significant on larger distances. In conclusion, the analytical solution
given by the Ψ-integral with consideration of non-singular terms highly increases the precision of stress description
and almost perfectly overlaps the FE solution. Next, a comparison of analytical solution with GSIFs determined by
the stress based ODM is shown in Figure 41. We see a similar trend as in the previous case, that the singular terms
provide solid stress description on this particular radius, nevertheless the precision is increased by the employment
of higher order terms. Since we have seen in the Table 13 that both methods gave GSIFs close to each other and
seen that the stress reconstruction by the Ψ-integral fits the FE quite well, such results are not very surprising.
In conclusion, the singular terms determined by both methods approximate the FE solution well in terms of the
overall stress trend. The higher order terms provide a slight increase in precision (see σrr stress component for the
highest increase in precision). Both methods can be recommended for GSIFs calculation and the following fracture
mechanics analysis. The choice of a particular method in this case is left to the preferences of the researcher.

k λk HΨ
k H

ODM,σij
k HODM,ui

k

1 0.544484 0.511508 0.512873 0.512086
2 0.908529 6e− 06 −3e− 06 7e− 06
3 1.629257± 0.231251i −0.031952± 0.016126i −0.06112± 0.041541i −0.047005± 0.02195i
4 2.301327± 0.315837i −5e− 06± 2e− 06i −1.1e− 05± 4e− 06i −2.6e− 05± 0.00019i
5 2.971844± 0.373931i −0.000438± 0.000577i 0.003176± 0.000503i 0.05861± 0.059737i

Table 13: V-notch, first three eigenvalues λk and GSIFs Hk calculated by the Ψ-integral and the stress and dis-
placement based ODM.
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Figure 39: Model of V-notched specimen subjected to 3 point bending.
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Figure 40: Reconstruction of σrr, σrθ and σθθ on r = 1 mm. The V-notch 2α = 90°. The GSIFs by the Ψ-integral.

1 2 3 4 5

θ [rad]

0.25

0.30

0.35

0.40

0.45

0.50

0.55

σ
rr

[M
P

a]

σ FEA
rr

σ λ 1
rr

σ λ 1,λ 2
rr

σ λ 1,λ 2,λ 3
rr

σ λ 1,λ 2,λ 3,λ 4
rr

σ λ 1,λ 2,λ 3,λ 4,λ 5
rr

1 2 3 4 5

θ [rad]

− 0.3

− 0.2

− 0.1

0.0

0.1

0.2

0.3

σ
rθ

[M
P

a]

σ FEA
rθ

σ λ 1

rθ

σ λ 1,λ 2

rθ

σ λ 1,λ 2,λ 3

rθ

σ λ 1,λ 2,λ 3,λ 4

rθ

σ λ 1,λ 2,λ 3,λ 4,λ 5

rθ

1 2 3 4 5

θ [rad]

− 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
θθ

[M
P

a]

σ FEA
θ θ

σ λ 1

θ θ

σ λ 1,λ 2

θ θ

σ λ 1,λ 2,λ 3

θ θ

σ λ 1,λ 2,λ 3,λ 4

θ θ

σ λ 1,λ 2,λ 3,λ 4,λ 5

θ θ

Figure 41: Reconstruction of σrr, σrθ and σθθ on r = 1 mm. The V-notch 2α = 90°. The GSIFs by the ODM.
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k λk HΨ
k H

ODM,σij
k

1 0.574837 0.103935 0.103929
2 0.846410 0.017645 0.020187
3 1.601034 0.059421 0.053779
4 1.886466± 0.328683i −0.025273± 0.008627i −0.055768± 0.024402i
5 2.578256± 0.363686i −0.001147± 0.000857i −0.001897± 0.006968i

Table 14: Bi-material notch, first three eigenvalues λk and GSIFs Hk calculated by the Ψ-integral and ODM.
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Figure 42: Model of the bi-material notch specimen subjected to 3 point bending.

Numerical example F: Stress reconstruction for a bi-material notch. The specimen with the bi-material
notch (BMN) is modeled in 2D as depicted in Figure 42. The dimensions of the model in this numerical example
are identical as in the previous Numerical example E, i.e. L = 76.2 mm, h = 17.8 mm, a = 3.56 mm, so the notch
depth to width ratio is a/h = 0.2. The notch opening angle is 2α = 90° (γ1 = α, γ2 = 180°, γ3 = 360° − α). The
material region 1 is modeled with PMMA material properties E1 = 2.3 GPa, ν1 = 0.34 and the material region 2
with aluminum material model E2 = 69 GPa, ν2 = 0.33. The Young’s moduli ratio in this case is E1/E2 = 0.033.
Ideal adhesion on the interface is assumed. The model is loaded with force of F = 1 N (per 1 mm of specimen
thickness b) and plane strain state is chosen. The eigenfunctions are normalized per Eq. (38) on p. 29 with
θ0 = 270°, where the coordinate system is shown in Figure 42. This angle is chosen and does not represent the
expected crack initiation angle, which is yet unknown. The parameters which form the mapped mesh near singular
point as in Figure 33 are chosen as: r0 = 0.01 mm, r1 = 1 mm and r2 = 3 mm and the element division is by
2.5°. The first five GSIFs Hk are calculated by the Ψ-integral, with integration radius r = 3 mm and the linear
regression extrapolated H1, H2 or the averaged ODM H3 ÷H5 with r = 0.2 ÷ 1 mm. The first two terms factors
were extrapolated since slight linear dependence existed for Hk (r). The higher order terms factors were averaged
since the linear regression is not applicable for these. For the reason discussed in theoretical part discussing the
ODM, only the stress based determination is used. The results are found in Table 14. We see that both methods
for GSIFs calculation for the singular leading terms factors H1 and H2 return values very close to each other (0.01
% for H1 and 12.6 % for H2 ). In case of non-singular terms, good agreement is also found (10.5 % for H3, 9.4
% for H4 and 20.9 % for H5). The method for calculation of GSIFs for a given problem should be chosen by the
comparison of reconstructed analytical solution by each method and pure FE solution. This is shown in Figures 43
and 44, where stress solution on a radial distance r = 1 mm is compared. In the first set of graphs in Figure 43,
the Hk were determined by the Ψ-integral method. Since the problem is not symmetric, contrary to the problem
in the previous numerical example, both the singular term with H1 (the blue line) and with H2 (the yellow line)
are needed to obtain the right trend of the stress distribution (solely the first singular term with H1 marked as a
the blue line does not approximate the FE solution trend well). When we plot the solution by singular and only
the first non-singular term, which contains λ3, we actually obtain solution which is in the material region 2 of less
quality than singular solution only. However, when we add to the singular solution the first (which contains λ3)
and also the second non-singular term which contains λ4 and is denoted by magenta line, we obtain great match
to the FE. The fifth term, which contains λ5 does not increase precision on the distance of 1 mm by any means.
The same is true for analytical solution obtained by the ODM, which gives results of high quality (in accordance to
the to the previous case of the V-notch). In conclusion, both methods produce results which correspond to the FE
solution very well. In case of both methods used, the employment of non-singular terms leads to increased precision
of stress description. The choice of the method in this case is again left to the researcher.
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Figure 43: Reconstruction of σrr, σrθ and σθθ on r = 1 mm for the BMN, E1/E2 = 0.033, Hk by the Ψ-integral.
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Figure 44: Reconstruction of σrr, σrθ and σθθ on r = 1 mm for the BMN with E1/E2 = 0.033, Hk by the ODM.
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Figure 45: Tangential stress near the tip of the bi-material notch, area 0.1 − 3 mm. The results of this numerical
example shows qualitative character of the problem, so the values of σθθ represented by individual contours are
intentionally omitted.

Criteria of crack initiation direction and stability criteria

The criterion of maximum of average tangential stress
As described in sub-section 2.2 on p. 14, the maximum tangential stress criterion states that the crack will initiate

in the direction of maximal tangential stress. Contrary to the case of a crack, direction of maximum of tangential
stress near tip of a bi-material notch is dependent on the radial distance. This can be observed in Figure 45, where
tangential stress on area r = 0.1−3 mm near the singular point is shown by FE analysis. As the distance increases,
the maximum changes its direction as shown in Figure 46, where the results of the same FE analysis are plotted in
the graph. The geometry, bi-material combination and loading is identical to Numerical example F on p. 53. In
order to mitigate the radial dependence of the maximum in tangential stress, an average value over specific distance
d which is fracture mechanism or material microstructure related can be calculated as:

σθθ (θ) = 1
d

∫ d

0
σθθ (r, θ) dr. (60)

Then, the maximum value is found by search for function extreme:

(
∂σθθ
∂θ

)
= 0, (61)

and by complying to the condition:

(
∂2σθθ
∂θ2

)
< 0.

Substituting the tangential stress component as in expansion (20) on p. 24, into equation (60) we obtain:

σθθ (θ) = H1

n∑
k=1

Γk1
dλk−1

λk
fθθk (θ) + H̄1

n∑
k=1

Γ̄k1
dλ̄k−1

λ̄k
f̄θθk (θ) = 2<

{
H1

n∑
k=1

Γk1
dλk−1

λk
fθθk (θ)

}
, (62)

where the Γk1 is the ratio between individual GSIFs:

Γk1 = Hk

H1
. (63)
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Figure 46: Tangential stress calculated by pure FEM plotted on three radii: 0.1 mm, 0.2 mm and 1 mm. Please
note the difference in predicted angles of crack initiation θ0 when different d is considered.

Deriving the equation (62) with respect to θ and by forming equation as in Eq. (61) and considering only one part
of the equation (62) we get:

n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (64)

by which we will find the angle θ, where the tangential stress has its global extreme, which can occur in material 1
or 2. Please note that detailed derivation of this equation and first and second derivative of eigenfunction fθθk (θ)
with respect to θ is found at the Appendix A.2 on p. 107. We presume the crack initiation mechanism to be
identical as in the case of a crack propagation in homogeneous media. The critical value of average tangential stress
follows from the case of crack propagation in material m subjected to mode I loading [40]:

σθθC (θ0,m) = 2KIC,m√
2πd

.

Comparing this equation with equation (62), the critical value of GSIF for a notch problem is for complex λk and
Hk:

H1C,m = KIC,m
√

2π<
{∑n

k=1 Γk1
dλk−

1
2

λk
fθθk (θ0,m)

} (65)

As introduced by Eq. (15) on p. 17, the generalized fracture toughness H1C,m depends on the fracture toughness
KIC,m of the material m. In the case of a bi-material notch, there are two materials in which the crack can initiate.
If the value H1C,1 is lower than H1C,2, crack initiation is expected into the material 1, otherwise it onsets in the
material 2. The third option is the crack initiation in the interface. The value H1C,interface is determined based on
fracture toughness of the interface, KIC,interface. Note that for all the critical values H1C,1, H1C,2 and H1C,interface,
the shape functions fθθk (θ) shall contain corresponding angle of potential crack initiation θ0,m(m = 1, 2, interface).
The angle θ0,m is determined by Eq. (64) for the case when the material contains the global maximum of σθθ (θ) and
equals to γ2 for the remaining cases of local maximum of σθθ (θ) of the interface failure. Then, the crack initiation
occurs if the following stability criterion is violated [20]:

H1 < {H1C,1, H1C,2, H1C,interface} . (66)
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In general, the criteria always compare value H1 with critical values H1C,m. This is true for approach when only
the singular terms factors are employed as well as for the multi-parameter approach. There is no need to compute
critical values for other terms Hk since they are dependent on H1 by the ratio Γk1. Finally the critical load for
crack onset from a bi-material notch can be calculated:

σC = σappl
min (H1C,1 (θ0,1) , H1C,2 (θ0,2) , H1C,interface (θ0,interface))

H1 (σappl)
. (67)

The average strain energy density factor criterion
In the linear elastic fracture mechanics of cracks, Sih’s strain energy density factor (SEDF) criterion can be used

to predict crack propagation conditions [57]. This approach can also be applied for the same purpose on other cases
of stress concentration [58]. The case of a crack is characterized by independence of the extreme (minimum) of the
SEDF on radial distance. General cases however show the radial distance dependence. Therefore, a mean value of
the SEDF over distance d, which is a distance related to fracture mechanism or material microstructure, is used. In
[18] Klusák and Knésl applied mean value of the SEDF to assess the stability of bi-material notches. No instances
of the SEDF criterion employment with consideration of not only singular but also higher non-singular terms are
found in the literature to the best of author’s knowledge. As shown in the dissertation, some cases of V-notches and
bi-material notches are characterized by rather weak singularities in comparison to crack problems (e.g. notches
with 2α > 120°). In such cases, the singular terms may describe stress field precisely only on distances smaller than
distance d related to fracture mechanism or material microstructure. Because of that, the SEDF criteria without
consideration of higher order terms may give either overconservative or underestimated failure load prediction. In
order to mitigate such discrepancy, the SEDF can be calculated using n singular and non-singular terms. The
definition of the SEDF is [57]:

Σ = r
dW
dV = r

∫ ε

0
σdε,

where the dW
dV represents strain energy density (strain energy per volume). When considering the brittle fracture

the crack initiates when the SEDF reaches its critical value:

Σ = ΣC,

where ΣC is material parameter determined in relation to the fracture toughness of given material KIC,m. Let’s
recall Eq. (13) on p. 15. For crack problems:

ΣC,m =
kmK

2
IC,m

4πµm
. (68)

In the case of a bi-material notch, the SEDF will be determined for both material regions and the interface, thus
for index m = 1, 2, interface. As discussed above, to account for dependence of the SEDF on radial distance, its
mean value Σm over specific distance d is determined as:

Σm = 1
d

∫ d

0
Σmdr. (69)

Let’s recall the formula for calculation of the SEDF for plane problems, Eq. (10) on p. 14:

Σm = r
[
2σθθmσrrm(km − 1) + (σ2

θθm + σ2
rrm)(km + 1) + 4σ2

rθm

] 1
8µm

, (70)

in which the material constant km is defined in Eq. (11) on p. 14. Let’s substitute for each stress component its
stress series form of n terms and integrate the equation over specific distance d. By doing that, the final form of
the formula for the mean value of the SEDF is:

Σm = <

{
H2

1
2µm

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl
Ukl (θ)

}
(71)
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in which the Γl1 is ratio between GSIFs defined:

Γl1 = Hl

H1
,

and the augmented shape functions in the following form:

Ukl (θ) =


2fθθk (θ) frrk (θ) (km − 1) + (f2

θθk (θ) + f2
rrk (θ)) (km + 1) + 4f2

rθk (θ) k = l

2(fθθk (θ) frrl (θ) + fθθl (θ) frrk (θ)) (km − 1) + 2(fθθk (θ) fθθl (θ) + k 6= l

+frrk (θ) frrl (θ)) (km + 1) + 8frθk (θ) frθl (θ) .

The detailed derivation of Eq. (71) is found in the Appendix A, p. 108. The crack initiation angle θ0 is found as a
minimum of mean value of the SEDF. Mathematically, the function extreme is:

(
∂Σm
∂θ

)
= 0, (72)

and for the function minimum: (
∂2Σm
∂θ2

)
> 0.

By substitution of Eq. (71) into Eq. (72) we finally obtain equation by which we will find the crack initiation angle
θ0:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0. (73)

The derivative of Ukl (θ) is found in the Appendix A, Eq. 109 on p. 110. We assume that the crack initiation
process in the case of a bi-material notch is identical to the crack propagation process in the case of a crack in
homogeneous media. The employment of equation (71) for mean value of the SEDF together with equation (68)
for critical value of the SEDF leads to formula for determination of critical value of GSIF:

H1C,m = KIC,m

√√√√ km

2π<
{∑n

k=1
∑n
l=k Γk1Γl1 d

λk+λl−1

λk+λl Ukl (θ)
} . (74)

Note that all the critical values H1C,1, H1C,2 and H1C,interface should be evaluated for calculated corresponding
angles of crack initiation θ0,1, θ0,2 and θ0,interface respectively, which were determined earlier by Eq. (73). Once
the critical fracture toughness values are known, in order to assess stability, the generalized stability condition as
stated in equation (15) is used. The condition of stability for the case of a bi-material notch is written identically
as in Eq. (66) in the MTS criterion section, since it is a general one. The crack onset load is then calculated by
Eq. (67).

The coupled stress-energy criterion
The coupled stress-energy criterion developed by Leguillon [23] states that both the energy and stress criteria

are necessary conditions for fracture but neither one nor the other are sufficient. The fracture occurs when the two
criteria are fulfilled simultaneously, together they form a sufficient one. The energy criterion, which is commonly
used in fracture mechanics of brittle solids is:

−δWp
δS

> GC, (75)

where δS is newly created crack surface and GC is fracture energy per unit surface, the fracture toughness. The
incremental form of this criterion is the foundation of Finite fracture mechanics (FFM). It requires the knowledge
of the crack increment surface δS [23]. The differential form of this criterion is known as Griffith criterion. Let’s
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Ω0 Ωl l

(a) (b)

Figure 47: Unperturbed and perturbed problem.

consider the symmetrically loaded V-notch which is characterized by single real governing term of the stress expan-
sion (with GSIF H and eigenvalue λ). The potential energy change at a crack onset in the direction θ0 is written
[24]:

−δWp = H2A (2α, θ0) l2λd+ . . . , (76)

where A (2α, θ0) is the scaling term dependent on local geometry (2α) and the direction of crack initiation θ0. Its
computation is commented in following sub-chapter. The l is length of the newly created crack and d is the width
of the specimen. The GSIF H is proportional to the applied load σ∞ thus H = cσ∞. Combining equations (75)
and (76), the lower bound for the crack increment length is:

l2λ−1 >
GC

A (2α, θ0) c2σ2
∞
. (77)

Since the applied load σ∞ cannot be infinitely large, the increment length l at crack onset cannot be infinitely small.
The crack jumps from 0 to l0, which is the illustration of FFM. The tangential stress at a distance l from the tip
in the direction θ0 is:

σθθ (l, θ0) = Hlλ−1fθθ (θ0) + . . .

considering the stress failure condition:

σθθ (l, θ0) > σC,

where σC is the critical tension, i.e. material strength. The upper bond for the increment length l is:

lλ−1 6
cσ∞fθθ (θ0)

σC
. (78)

The increment length l0 is derived by combining (77) and (78), so we get:

l0 = GCf
2
θθ (θ0)

A (2α, θ0)σ2
C
. (79)

The crack onset criterion can be obtain by substituting Eq. (79) into Eq. (76), thus:

H <

(
GC

A (2α, θ0)

)1−λ(
σC

fθθ (θ0)

)2λ−1
.

Matched asymptotic expansion for the coupled stress-energy criterion
Let’s consider a domain Ωl which is slightly perturbed by a small crack of length l as illustrated in Figure 47b.

The solution U l(x1, x2) can be expressed as the unperturbed solution U0(x1, x2) defined in Ω0, see Figure 47a, (Ω0

is a limit of Ωl as l→ 0) plus a small correction:

U l(x1, x2) = U0(x1, x2) + g1(l)U1(x1, x2), (80)

59



Ondřej Krepl Methods and results

where g1(l)→ 0 as l→ 0. This expansion above (80) is called outer and it is valid in the whole domain Ω0 (or Ωl)
except near the corner point where the geometry is perturbed [23]. The singular solution U0(x1, x2) at the corner
point can be written as:

U0(x1, x2) = U0(0, 0) +Hrλu(θ) + . . . (81)

Where the term U0(0, 0) represents the rigid body translation. It is assumed for simplicity that the leading singular
term is single real one (therefore we denote H1 = H, λ1 = λ and u1 (θ) = u (θ)). In order to have description of
near fields, the domain Ωl is stretched (×1/l) and as l→ 0 it leads to unbounded inner domain Ωin where y1 = x1/l,
y2 = x2/l and ρ = r/l. The crack length is chosen as l = 1, so the inner expansion is:

U l(x1, x2) = U l(ly1, ly2) = G0(l)V 0(y1, y2) +G1(l)V 1(y1, y2), (82)

where G1(l)/G0(l)→ 0 as l→ 0. The behavior of outer terms in (80) when approaching to the singular point must
match the behavior of the inner terms in (82) at infinity. The asymptotic character of (81) leads to:

G0(l) = 1, V 0(y1, y2) = U0(0, 0) = C, G1(l) = Hlλ.

In addition it is prescribed that V 1(y1, y2) ∼ ρλu(θ) as ρ → ∞. By using the superposition principle the function
V 1(y1, y2) is written:

V 1(y1, y2) = ρλu(θ) + V̂ (y1, y2),

where V̂ (y1, y2) is the complementary term. Therefore the inner expansion of perturbed problem is:

U l(y1, y2) = C +H1l
λ(ρλu(θ) + V̂ (y1, y2)) + . . .

and the inner expansion of unperturbed problem:

U0(y1, y2) = C +Hlλρλu(θ) + . . .

The difference in strain energy thus is:

Wp(0)−Wp(l) = Ψ(U0, U l) = Ψ(C +Hlλ(ρλu(θ) + V̂ (y1, y2)) + . . . , C +Hlλρλu(θ) + . . .),

which can be expanded in individual Ψ-integrals:

Wp(0)−Wp(l) = Ψ(C,C) +HlλCΨ(C, ρλu(θ)) +HlλCΨ(ρλu(θ), C) +H2l2λΨ(ρλu(θ), ρλu(θ))
+HlλΨ(V̂ , C) +H2l2λΨ(V̂ , ρλu(θ)).

As the properties Ψ(u, u) = 0 and Ψ(u, v) = −Ψ(v, u) apply, all the terms expect the last one are equal to zero.
Equality Hlλψ(V̂ , C) = 0 can be also proven [25]. The final form of the equation for difference in potential energy
is

Wp(0)−Wp(l) = AH2l2λ, (83)

Γ

B

Ωl

B0

l

σ.n = h

u = 0

Figure 48: Domain with a small crack of length l.
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Figure 49: On the left: FE model of the inner domain for a calculation of the scaling coefficient
A (2α = 90◦, θ0 = 180◦) of the V-notch. On the right: the crack with unit length after deformation.
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Figure 50: The left-hand side shows the convergence study of the scaling coefficient A (2α = 90◦, θ0 = 180◦) for
the V-notch in dependence of integration path radius r2. The right-hand side shows the convergence study of the
scaling coefficient A (2α = 90◦, θ0 = 180◦) for the V-notch in dependence of the inner domain size r3.

in which the term A is:

A = Ψ(V̂ , ρλu(θ)) = 1
2

∫
Γ
(σ(V̂ )nρλu(θ)− σ(ρλu(θ))nV̂ ) (84)

and the Γ is any contour surrounding the singular point as shown in Figure 48. We refer to A as to scaling coefficient.
It is dependent on the general singular stress concentrator local geometry and the crack initiation angle. Thus we
denote it as A (2α, θ0).

Numerical example G: Scaling coefficient A (2α, θ0) of the coupled stress-energy criterion. The values
of scaling coefficient A (2α, θ0) are calculated for the V-notch with geometry as shown in Figure 9 on p. 15. The
V-notch is symmetrically loaded so the crack initiation angle is known, θ0 = 180°. The parameter A (2α, θ0) is
calculated by matched asymptotic expansion, which is theoretically explained in the previous sub-chapter 4.2 on
p. 59. Circular domain is modeled by FEM code ANSYS with a small crack of unit length at its origin (with
orientation of crack initiation angle θ0). The FE model is shown in Figure 49. The crack faces are loaded with
function rλ1−1fθθ1 (θ), which is normalized as in Eq. (38) on p. 29. The assumption for the inner domain is, that
it has boundaries in infinity. This can not be modeled by FEM, therefore the domain has to be modeled large
compared to the crack length of l = 1 mm. The nodes of elements laying on the outer edge of the domain are fixed
in radial and tangential direction. Then, the scaling coefficient is determined by numerical integration of expression
(84). Circular integration path Γ as shown in Figure 48 is chosen to fully surround the crack and the integration
radius is denoted r2. The values of stress and displacement components are extracted from nodes found on this
circle. The expression for an infinitesimal value of the integral as written in python script is:
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Figure 51: Scaling coefficient A (2α) resulting values comparison. The magenta line represents results calculated
by Leguillon, the cyan line represents author’s results [23].

dAk(θ) = rλk2
(
r2frk(θ)σFE

rr (θ) + r2fθk(θ)σFE
rθ (θ)− uFE

r (θ)frrk(θ)− uFE
θ (θ)frθk(θ)

)
dθ,

which is later integrated by the trapezoidal rule:

Ak =
∑
n=1

(dAk (θn−1) + dAk (θn)) ∆θ
2 .

As in the case of the Ψ-integral applied on the V-notch of 2α = 90°, circle division ∆θ by 5° or 2.5° leads to 54 or 108
integration points respectively. The choice of the finer integration step results in a very small change of coefficient
(by 0.5 % or less). To prove the integral path independence, the integral is calculated on various circular paths
with r2 between 10 and 25 mm. The results which are shown in chart on the left side of Figure 50 show satisfactory
convergence. The size of inner domain is chosen as r3 = 200 mm. This large dimension should represent behavior of
the domain as if it had boundaries in infinity. The convergence study shows that further increasing of its size does
not significantly affect the resulting scaling coefficient, see left chart in Figure 50. The calculated values of scaling
parameter for the V-notch are compared with values calculated by Leguillon in [23]. Graph in Figure 51 shows the
resulting values of scaling coefficient for variety V-notch opening angles 2α. Good match in results is found (within
7 %).

Failure load predictions vs. experimental data. Experiments on three point bending specimens made of
polymethyl methacrylate (PMMA) with a V-notch were conducted by Dunn et al. in [64]. The geometry of specimen
is identical to the one modeled in Numerical example E on p. 50. The actual thickness of specimen is b = 12.7
mm. Dunn et al. tested specimens with notch opening angle 2α of 60°, 90° and 120°. They also varied the notch
depth, so the specimens with a/h ratio of 0.1, 0.2, 0.3 and 0.4 were tested. In [64] Dunn et al. measured fracture
toughness of PMMA as an average value KIC = 1.02 MPa

√
m with standard deviation of 0.12 MPa

√
m and the

average strength σu = 124 MPa. They reported on failure strength σf of notched specimens of individual geometric
configuration. By knowledge of failure strength the failure force can be easily calculated by formula:

Ff = 2σfbh2

3L .
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Figure 52: Comparison of experimental failure forces [64], the MTS and SEDF criterion predicted critical forces for
a V-notch. The cyan color represents results of 2α = 60° and the magenta color represents results of 2α = 90°.
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Figure 53: Comparison of experimental failure forces [64], the MTS and SEDF criterion predicted critical forces for
a V-notch. Results of 2α = 120°.

We predict FC by simple modification of Eq. (67) on p. 57:

FC = Fappl
H1C (θ0)
H1 (Fappl)

.

Whereas the H1C,m are determined by Eq. (65) on p. 56 in the case of criterion of maximum of average tangential
stress or by Eq. (74) on p. 58 in the case of average strain energy density factor criterion. The generalized fracture
toughness is computed by the above stated KIC of PMMA. The crack initiation angle is assumed to be θ0 = 180°
because of problem symmetry. The parameter d related to microstructure or fracture mechanism was varied, so the
charts show predictions with d = 0.001 mm, d = 0.01 mm and d = 0.1 mm. The results for specimens with notch
opening angle 2α = 60° and 2α = 90° are found in Figure 52 and the results for 2α = 120° in Figure 53.

The review of results show, that the very good agreement between experimental data and theoretical predictions
occur for d= 0.01 mm especially in the case of the largest opening angle 120°. The use of the above mentioned criteria
and parameter d = 0.01 mm leads to results which underestimate the actual failure load. From the engineering
point of view, it is a desirable situation, since the results lay on so called safe side. The chosen length d = 0.01 mm
has the same order of magnitude by the material length parameter used by Taylor in [59]:

d = 1
π

(
KIC
σu

)2
= 1
π

(
1.02 MPa

√
m

124 MPa

)2
.= 0.0215 mm

The criteria used to predict the failure force are multi-parameter, nevertheless on distances in order of 10−2 mm,
the contribution of higher order terms is small. The difference in failure loads predicted by the single-parameter
criteria and multi-parameter criteria is in units of percents. The higher order terms contribution would become
significant for materials and configurations where larger d is necessary.
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k 1 2 3 4
λk 0.598793 1.142299 1.544159 2.098344 + 0.580010i
Hk 0.077091 −0.011036 0.018588 −0.004002 + 0.007523i

Table 15: Eigenvalues λk and GSIFs Hk of the bi-material notch with 2α = 120° and E1/E2 = 0.033.

Numerical example H: Crack initiation direction and crack initiation load in the case of a bi-material
notch.

Part 1 The three point bending specimen with the bi-material notch is modeled. The studied problem is
identical to the Numerical example F on p. 53 with only one difference, the notch opening angle is 2α = 120°. As
in Numerical example F, the Young’s moduli ratio is E1/E2 = 0.033. The GSIFs are calculated by the Ψ-integral
method and listed in Table 15. Let’s predict the crack initiation direction and the critical value of GSIF by (a)
criterion of maximum of average tangential stress and (b) average strain energy density factor criterion. The crack
initiation angle and failure load will be calculated using (i) singular terms, (ii) singular and non-singular terms.
Case (i) contains one singular term thus n = 1, case (ii) contains one singular and three non-singular terms thus
n = 4. We have seen in Numerical example F on p. 53, that the employment of the fifth term does not increase
precision by any means, this is also true for this geometric configuration.

(a) The criterion of maximum of average tangential stress. The crack initiation direction is predicted
using the formula (64) on p. 56 to find the extreme of σθθ (θ). The results are illustrated in Figure 54, where the
graph shows averaged stress σθθ (θ) over distance d = 1 mm using (i) singular term (the blue dotted line), singular
and non-singular terms (the cyan dotted line). The blue and cyan vertical line shows the maximum of σθθ (θ)
determined by (i) singular term and (ii) singular together with non-singular terms respectively. In addition, the
blue and cyan solid line with markers represents the σθθ(r, θ) reconstruction on particular distance d. The black
squares denote the FE solution. When (i) only the singular term is used, the global maximum lays in material 2,
which is aluminum. In case (ii) when singular and non-singular terms are used, the global maximum is again found
in material 2. The difference in the angles of global maxima determined by (i) and (ii) is 2.3°. By varying the value
of d, the angles of global maxima slightly changes (for d = 0.3 mm the difference is 1.8° and for d = 3.0 mm it is 1.2°).
Therefore the averaging distance should be chosen carefully in relation to the fracture mechanism or microstructure
of a particular problem. Since the purpose of this numerical example is only to provide illustration of application
of the criteria, the critical distance will remain d = 1 mm. Furthermore the choice of d related to mechanism
or microstructure is beyond scope of this work. The fracture toughness of PMMA is KPMMA

IC = 1.02 MPa
√

m
[64]. The fracture toughness of aluminum is 14÷28 MPa

√
m depending on the particular alloy and treatment. We

choose aluminum alloy (7075) with KAl
IC = 24 MPa

√
m. Without an experiment with the particular bi-material

configuration, it is uneasy to estimate fracture toughness of the interface. In [65] Shatil and Shaimoto tested
aluminum/PMMA bi-material 3PB specimens, however they do not provide value regarding fracture toughness of
the interface. To bond the materials together they use epoxy adhesive. Experimental evaluation in [67, 66] show
that the fracture toughness of interface can vary widely depending on conditions and particular configuration of
materials to be bonded. Our estimation for this numerical example therefore is K interface

IC = 0.75 MPa
√

m. The
generalized fracture toughness is calculated by Eq. (65) for global maximum, local maximum and the interface.
The results calculated by (i) singular term are shown in Table 16 and by (ii) singular and non singular terms in
Table 17. Please recall the stability condition (66) on p. 56. According to (i) the global maximum lays in m = 2,
which is the aluminum with the crack initiation angle of θ0,1 = 183.3°. The corresponding generalized fracture
toughness value H1C,2 is the highest one since aluminum has ∼ 20 times higher fracture toughness than PMMA.
Crack is expected to initiate rather to direction of local maximum, in PMMA or to the interface. When we asses
the local maximum, we see that the lowest value corresponds to the interface, therefore the crack is expected to
initiate in this direction. According to (ii) the global maximum also lays in m = 2 with the crack initiation angle
of θ0,2 = 181.0°. The lowest value of generalized fracture toughness value also corresponds to the interface. The
difference in this generalized fracture toughness value determined by (i) and (ii) is 1.8 %.

65



Ondřej Krepl Methods and results

θ0,m m H1C,m

global maximum 183.3° 1 ≡ aluminum 26.405477
local maximum 180.0° 2 ≡ PMMA 1.124533
local maximum 180.0° interface 0.826863

Table 16: The generalized fracture toughness H1C,m for global maximum, local maximum and the interface deter-
mined by (i) singular term and (a) criterion of maximum of average tangential stress.

θ0,m m H1C,m

global maximum 181.0° 1 ≡ aluminum 26.940646
local maximum 180.0° 2 ≡ PMMA 1.145156
local maximum 180.0° interface 0.842027

Table 17: The generalized fracture toughness H1C,m for global maximum, local maximum and the interface deter-
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress.
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Figure 54: Mean value of the σθθ (θ) plotted by (i) singular term: the blue dotted line, (ii) singular and non-singular
terms: the cyan dotted line. The blue and cyan vertical line denotes the corresponding crack initiation angle. The
black dashed vertical lines denote the interface and the free surfaces.

(b) The average strain energy density factor criterion. The crack initiation direction is predicted
using the formula to find the extreme of Σ (θ) Eq. (73) on p. 58. The results are illustrated in Figure 55, where
the graph shows averaged strain energy density Σ (θ) over distance d using (i) singular term (the blue line with
markers), (ii) singular and non-singular terms (the cyan line with markers). The blue and cyan vertical lines show
extreme values (global minimum) determined by (i) and (ii) respectively. Both (i) and (ii) show the global minimum
in material m = 2, which is aluminum. There is difference of 2.9° in direction of global minimum predicted by (i)
and (ii). Because of much higher fracture toughness of aluminum in comparison to PMMA, the crack is expected
to initiate rather to direction of local minimum of Σ (θ) or to the interface. The results are summarized in Tables
18 and 19. Per stability condition (66) on p. 56, the lowest value of H1C,m corresponds to the local minimum of
Σ (θ) and the interface. Thus crack initiation in interface in the direction θ0 = 180.0° is expected. The difference
in general fracture toughness value determined by (i) and (ii) is 5.2 %.
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θ0,m m H1C,m

global minimum 184.5° 1 ≡ aluminum 27.711504
local minimum 180.0° 2 ≡ PMMA 1.169967
local minimum 180.0° interface 0.860270

Table 18: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (i) singular term and (b) average strain energy density factor criterion.

θ0,m m H1C,m

global minimum 181.6° 1 ≡ aluminum 28.83614
local minimum 180.0° 2 ≡ PMMA 1.230542
local minimum 180.0° interface 0.904810

Table 19: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (ii) singular and non-singular terms and (b) average strain energy density factor criterion.
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Figure 55: Mean value of the Σ (θ) plotted by (i) singular term: the blue line, by (ii) singular and non-singular
terms: the cyan line. The blue and cyan vertical line denotes the corresponding crack initiation angle. The black
dashed vertical lines denote the interface and the free surfaces. Please note that in the interval (Γ, γ3) the value
Σ (θ) is multiplied by factor of 10.

Part 2 A free edge singularity as shown in Figure 56 is studied. The dimensions of the modeled specimen
are L = 38.1 mm, h = 14.24 mm and the plane strain state is considered. The angles which define the free edge
singularity by a bi-material notch model are γ1 = 90°, γ2 = 180° and γ3 = 270°. The material region 1 consists of
Aluminum material model, while the material region 2 consists of PMMA material model. The elastic constants
are identical to those of Numerical example F on p. 53 thus the Young’s moduli ratio is E1/E2 = 30. The fracture
parameters are identical to those in Part 1 of this numerical example. The force of 0.1 N/mm applied on a line is
constantly distributed on the length h of the upper edge under direction of ζ (per 1 mm of specimen thickness b).
This particular configuration of a bi-material notch has only one singular term with λ1 = 0.721100. The second
term is non-singular with λ2 = 1.721014± 0.575276. Higher order terms have ={λk} > 1 and do not significantly
add to the precision on d = 1 mm. Both the eigenfunction are normalized by the angle 240°. The crack initiation
direction and material in which the crack initiates is calculated by criterion of maximum of average tangential stress.
According to the theory, when only the singular term is used for prediction of crack initiation direction θ0,m, this
direction should be independent of external loading direction ζ. The reason is apparent from examination of the
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formula for crack initiation direction calculation Eq. (64) on p. 56. To account for the different loading of particular
problem, the formulae contain ratio Γk1. However, when only one singular term is used, this ratio remain constant
and single one. Apparently, the angle of crack initiation should be dependent on the angle of external loading.
With employment of the first non-singular term, the crack initiation angle changes as it should be. The distance
d is again chosen as a 1 mm for the reasons discussed above. The results related to the criterion of maximum of
average tangential stress for the case when ζ = 180° are shown in Figure 57. The blue line with markers represents
the (i) singular term solution of σθθ(r, θ) and the yellow line with markers represents (ii) singular and non-singular
term solution of σθθ(r, θ) on distance d. The blue and yellow line represents the averaged distributions σθθ (θ) by (i)
and (ii) respectively. The dashed vertical lines represents the global maxima. The results for different ζ determined
by (a) are summarized in Table 20. The highest discrepancy in location of global maximum of σθθ (θ) determined
by (i) and (ii) occurs when ζ = 180° and with a value of 6.0°. The results of generalized fracture toughnesses for
the case ζ = 90° determined by (i) and (ii) are listed in Table 21. In similar manner, the Table 22 summarizes
the results for ζ = 180°. According to the stability condition (66) on p. 56, the lowest value in both (i) and (ii) is
H1C,interface. Therefore the crack is expected to be initiated in the direction of local maximum to the interface i.e.
θ0,interface = 180°. The difference in calculated critical value of H1C,interface by (i) and (ii) is 5.5 % when ζ = 90°
and 20.4 % when ζ = 180° .

L

F

h

Material 1

Material 2

y

x

θ

L/2

singular
point

ζ

Figure 56: Bi-material plate with a free edge singularity, loaded with load of variable direction ζ.

(i) singular term (ii) singular and non-singular terms
ζ θ0 θ0 discrepancy

90° 169.9° 171.0° 1.1°
112.5° 169.9° 174.2° 4.3°
135° 169.9° 175.0° 5.1°
180° 169.9° 175.9° 6.0°

Table 20: Variation of the crack initiation angle θ0 on the external loading angle ζ for free edge singularity. Values
determined by (a) criterion of maximum of average tangential stress.
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Figure 57: Mean value of the σθθ (θ) plotted by (i) singular term: the blue line, by (ii) singular and non-singular
terms: the yellow line. The black dashed lines denote the interface and the free surfaces. The external load direction
for this case is ζ = 180°.

(i) singular term (ii) singular and non-singular terms
ζ = 90° θ0 m H1C,m θ0 m H1C,m

global maximum 169.9° 1 ≡ aluminum 35.844833 171.0° 1 ≡ aluminum 34.219002
local maximum 180.0° 2 ≡ PMMA 1.594816 180.0° 2 ≡ PMMA 1.507462
local maximum 180.0° interface 1.172659 180.0° interface 1.108428

Table 21: The generalized fracture toughness H1C,m determined by (a) criterion of maximum of average tangential
stress for a free edge singularity with ζ = 90°.

(i) singular term (ii) singular and non-singular terms
ζ = 180° θ0 m H1C,m θ0 m H1C,m

global maximum 169.9° 1 ≡ aluminum 35.844833 175.7° 1 ≡ aluminum 29.665253
local maximum 180.0° 2 ≡ PMMA 1.594816 180.0° 2 ≡ PMMA 1.269263
local maximum 180.0° interface 1.172659 180.0° interface 0.933282

Table 22: The generalized fracture toughness H1C,m determined by (a) criterion of maximum of average tangential
stress for a free edge singularity with ζ = 180°.
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4.3. Formulation of multi-parameter fracture mechanics approaches for a sharp ma-
terial inclusion

Stress terms exponents determination and study

A sharp material inclusion is modeled as a bi-material junction which is shown in Figure 11 on p. 18. The boundary
conditions of the problem are:

σθθk1 (r, γ1) = σθθk2 (r, γ1) (85)
σrθk1 (r, γ1) = σrθk2 (r, γ1)
uθk1 (r, γ1) = uθk2 (r, γ1)
urk1 (r, γ1) = urk2 (r, γ1)
σθθk2 (r, γ2) = σθθk1 (r, γ0)
σrθk2 (r, γ2) = σrθk1 (r, γ0)
uθk2 (r, γ2) = uθk1 (r, γ0)
urk2 (r, γ2) = urk1 (r, γ0)

From the equations above it follows that the traction and displacement continuity is enforced at both interfaces Γ1
and Γ0 = Γ2. By substituting equations for stress components (18) and displacement components (19) on p. 24
into 8 equations of boundary conditions above and by simple rearrangement we obtain the matrix A (λ) analogical
to a V-notch problem, Eq. (33), p. 28. Again, the system of equations can be written as in Eq. (35), i.e.:

A (λ) v = 0.

The system is characterized by 9 unknowns, the eigenvalue λk and 8 complex constants in the eigenvector vk, which
has the same form as the eigenvector for a bi-material notch Eq. (34). From the mathematical point of view, the
system is solved in accordance to the means described in detail in sub-section 4.2 p. 27. Brief recall of the approach
is following. Eigenvalue λk is found as a solution of the characteristic equation rising from determinant of matrix
A (λ) as in Eq. (36) on p. 28. The kth eigenvalue λk a is inserted back into the matrix in order to obtain eigenvector
vk. One complex coefficient of the eigenvector is chosen as 1 and the reduced system of equations is solved, see Eq.
(37) and remaining coefficients of eigenvector determined. As the eigenvector vk is constructed, eigenfunctions for
stress fijk (θ) and displacement series fik (θ), Eq. (23) and (27) respectively, are fully defined. Normalization of
eigenfunctions is conducted as in (38) or (39) on p. 29 in the assumed direction of crack initiation θ0 or another
angle of choice. Contrary to the case of a V-notch, for eigenfunctions of a bi-material junction does not apply,
that the odd eigenfunctions are with k = 1, 3, 5 . . . and even eigenfunction with k = 2, 4, 6 . . . Therefore, in such
case it is investigated if the function is odd or even and it is normalized accordingly. However, straightforward
division to odd and even function is applicable only for symmetrical problems of a bi-material junction, i.e. when
|γ1| = |γ0|. General non-symmetrical problem of a bi-material junction is analogical to a bi-material notch, where
each eigenfunction fijk (θ) contains both odd and even functions. In such cases, the normalization should be
performed on individual basis.

Numerical example J: Eigenvalues, eigenvectors and the eigenfunctions of the bi-material junction
(case of inclusion more compliant than matrix). The bi-material junction as shown in Figure 11 on p. 18
is considered. Let’s study three geometrical configurations, i.e. (i) 2α = 60°, (ii) 2α = 90°, (iii) 2α = 120° (for
all cases: γ0 = −α, γ1 = α, γ2 = 2π − α) . The material properties are defined by E1/E2 = 0.25, E1 = 20 GPa
and ν1 = ν2 = 0.25. This numerical example represents the case of the sharp material inclusion more compliant
than matrix. The eigenvalues λk and eigenvectors vk are determined as described theoretically in the previous sub-
section. From the computational point of view, the search for roots is conducted with the same procedure as in the
case of a bi-material notch, which is in detail described in the Numerical example B on p. 32. The eigenvalues are
roots of the characteristic equation which are being found on a complex plane by solving system of two equations.
Where both the real and imaginary part of the eigenequation is zero a root is found (location where the red and
blue curve intersect). Again it is advised to check if the found value truly represents a root by inserting it back
into the characteristic equation. The resulting value should be close to zero. For the first geometric configuration
(i) 2α = 60° the solution is described in the graph in Figure 58 and the resulting eigenvalues listed in Table 23. For
the first geometrical configuration in this numerical example, the complex coefficients of eigenvector vk are for the
sake of completeness listed in Table 24 for the first material region and in Table 25 for the second material region
(eigenvectors of first four eigenvalues are considered). For the second geometric configuration (ii) of this numerical
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Figure 58: (i) Bi-material junction, 2α = 60°, E1/E2 = 0.25. On the left-hand side there is the graph of f (z) =
det (A (λ)). On the right-hand side contour plot, the blue curve stays for <{det (A (<{λk}))} = 0 and the red
curve for ={det (A (={λk}))} = 0.

k 1 2 3 4 5 6
λk 0.816623 0.863720 1.252661 1.696219 2.000000 2.058139± 0.154775i

Table 23: (i) Bi-material junction, 2α = 60°, E1/E2 = 0.25. First six eigenvalues λk.

example, the eigenvalues are found graphically as shown in Figure 59 and the eigenvalues listed in Table 26. The
last geometrical configuration (iii) has the graphical solution of eigenvalues in Figure 60 and the eigenvalues listed
in Table 27. As explained theoretically in the previous section, once the eigenvalues λk and eigenvectors vk are
determined, one is able to construct eigenfunctions fijk (θ) and fik (θ) for stress and displacement series respectively
(and their complex conjugates). For the most common case of the bi-material junction, i.e. (ii) 2α = 90°, the stress
eigenfunctions fijk (θ) for k = 1, 2, 3, 4 are displayed in Figure 61. Similarly the displacement eigenfunctions fik (θ)
for k = 1, 2, 3, 4 are constructed and shown in Figure 62. The yellow dashed line denotes the location of the interface
Γ1. The eigenfunctions are normalized with consideration of the θ0 = 180°. We see that the eigenfunctions with
k = 1, 3, 4 are odd and eigenfunction with k = 2 is even in terms of radial and tangential stress8. Analogically to
a bi-material notch, the radial stress eigenfunction is discontinuous, in the case of a bi-material junction on two
interfaces. The strength of singularity varies from case to case and a straightforward conclusion similar to case of
a V-notch or bi-material notch cannot be proclaimed. A general understanding may be provided by plotting the
dependence of λk on the 2α for particular bi-material configuration. Such dependence of eigenvalues for bi-material
configuration of E1/E2 = 0.25 is shown in Figure 63.

Numerical example K: Eigenvalues, eigenvectors and the eigenfunctions of the bi-material junction
(case of inclusion stiffer than matrix) Similarly as in the Numerical example J, the bi-material junction as
shown in Figure 11 on p. 18 is considered. Again, let’s study three geometrical configurations, i.e. (i) 2α = 60°,
(ii) 2α = 90°, (iii) 2α = 120° (for all cases: γ0 = −α, γ1 = α, γ2 = 2π − α). The material properties are defined
by E1/E2 = 4, E1 = 80 GPa and ν1 = ν2 = 0.25. Thus, the numerical example represents the case of the sharp
material inclusion stiffer than matrix. The eigenvalues λk are determined in the same way as described in the
previous sub-section. The solution is plotted only for case (ii) which is a representative one, see Figure 64. The
graphical solution of other cases has similar characteristics. The resulting eigenvalues are listed for the geometric

8By referring to the eigenfunction as odd or even we mean that it is odd or even in part on each of two material domains, see Figure
73.
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k Mk1 N̄k1 Ik1 L̄k1

1 0.715493 + 0.464786i 0.715492 + 0.464787i 0.533424 + 0.346514i 0.533424− 0.346515i
2 0.436009 + 0.198952i −0.435969− 0.199039i −0.284583− 0.1299269i 0.284611− 0.129867i
3 −0.582004 + 0.591817i −0.582004 + 0.591817i 0.191283− 0.194508i 0.191283 + 0.19450i
4 0.300250 + 0.423752i 0.300250 + 0.423752i 0.157338 + 0.222056i 0.157338− 0.222056i

Table 24: (i) Bi-material junction, 2α = 60°, E1/E2 = 0.25. First four eigenvector’s vk coefficients Mk1, N̄k1, Ik1
and L̄k1.

k Mk2 N̄k2 Ik2 L̄k2

1 0.321620 + 0.722903i 0.791219 + 0.000002i 0.406484 + 0.913658i 1
2 0.723878 + 0.834526i −1.104732− 0.000094i −0.655188− 0.755466i 1
3 0.026795 + 1.602508i −1.602732 −0.016719− 0.999860i 1
4 0.044471− 0.126556i −0.134142 −0.331519 + 0.943448i 1

Table 25: (i) Bi-material junction, 2α = 60°, E1/E2 = 0.25. First four eigenvector’s vk coefficients Mk2, N̄k2, Ik2
and L̄k2.
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Figure 59: (ii) Bi-material junction, 2α = 90°. On the left-hand side there is the graph of f (z) = det (A (λ)).
On the right-hand side contour plot, the blue curve stays for <{det (A (<{λk}))} = 0 and the red curve for
={det (A (={λk}))} = 0.

k 1 2 3 4 5 6
λk 0.771662 0.963713 1.223471 1.782013± 0.095427i 2.229579± 0.152656i 2.906718± 0.380536i

Table 26: (ii) Bi-material junction, 2α = 90°, E1/E2 = 0.25. First six eigenvalues λk.

k 1 2 3 4 5 6
λk 0.778634 1.093457 1.124854 1.900225± 0.157971i 2.000000 2.25895762

Table 27: (iii) Bi-material junction, 2α = 120°, E1/E2 = 0.25. First six eigenvalues λk.
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Figure 60: (iii) Bi-material junction, 2α = 120°, E1/E2 = 0.25. On the left-hand side there is the graph of
f (z) = det (A (λ)). On the right-hand side contour plot, the blue curve stays for <{det (A (<{λk}))} = 0 and the
red curve for ={det (A (={λk}))} = 0.
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Figure 61: (ii) Bi-material junction, 2α = 90°, E1/E2 = 0.25. Stress eigenfunctions fijk (θ) for k = 1, 2, 3, 4.
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Figure 62: (ii) Bi-material junction, 2α = 90°, E1/E2 = 0.25. Displacement eigenfunctions fik (θ) for k = 1, 2, 3, 4.
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Figure 63: Dependence of eigenvalues λk the opening angle 2α. The geometry of the studied bi-material junction
is defined: γ0 = −α, γ1 = α, γ2 = 2π − α. The Young’s moduli ratio is E1/E2 = 0.25 and Poisson’s ratios are
ν1 = ν2 = 0.25.
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Figure 64: (i) Bi-material junction, 2α = 90°, E1/E2 = 4. On the left-hand side there is the graph of f (z) =
det (A (λ)). On the right-hand side contour plot, the blue curve stays for <{det (A (<{λk}))} = 0 and the red
curve for ={det (A (={λk}))} = 0.

configuration (i), (ii) and (iii) in Table 28, 29 and 30 respectively. Note that the first three eigenvalues were real
for all studied bi-material configurations. We have seen this also in the Numerical example J. In fact, the chart
in Figure 63 with dependence λk (2α) shows that it is true for all admissible 2α (including both cases of inclusion
more compliant than matrix and inclusion stiffer than matrix). As in the previous numerical example, the stress
and displacement eigenfunctions are plotted in Figures 65 and 66 respectively, where the yellow dashed line denotes
the location of the interface Γ1.

k 1 2 3 4 5 6
λk 0.790989 1.071939 1.076264 1.740424± 0.154158i 2.000000 2.134734

Table 28: (i) Bi-material junction, 2α = 60°, E1/E2 = 4. First six eigenvalues λk.

k 1 2 3 4 5 6
λk 0.840513 0.916435 1.139804 1.678525 1.843408 2.203158

Table 29: (ii) Bi-material junction, 2α = 90°, E1/E2 = 4. First six eigenvalues λk.

k 1 2 3 4 5 6
λk 0.853884 0.899008 1.221628 1.804944 2.000000 2.117332± 0.295848

Table 30: (iii) Bi-material junction, 2α = 120°, E1/E2 = 4. First six eigenvalues λk.

Calculation of stress terms factors

Determination of GSIFs by Ψ-integral
This part of the text describes a derivation of the path independent Ψ-integral for the bi-material junction

problem. As in the case of a V-notch and bi-material notch, the employment of the Ψ-integral is a convenient
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Figure 65: (ii) Bi-material junction, 2α = 90°, E1/E2 = 4. Stress eigenfunctions fijk (θ) for k = 1, 2, 3, 4.
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Figure 66: (ii) Bi-material junction, 2α = 90°, E1/E2 = 4.0. Displacement eigenfunctions fik (θ) for k = 1, 2, 3, 4.
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Figure 67: Two paths defined on two domains D and D∗ of the bi-material junction which consists of material
regions Ω1 and Ω2. The integration path ∂D, the boundary of D, consists of paths: Γ1, Γ2, Σ1 and Σ2. The other
integration path ∂D∗, the boundary of D∗, consists of paths: Γ∗1, Γ∗2, Σ∗1 and Σ∗2.

way for determination of Generalized Stress Intensity Factors (GSIFs) Hk. Similarly to the notch problem, a
scaling coefficient A (2α, θC) (necessary parameter for the Leguillon’s coupled stress-energy criterion) can also be
determined by the Ψ-integral. First, let recall equations (40)-(41) on p. 38. We consider a zero difference due to
symmetry of the elastic tensor C: ∫

D
(C : ∇U : ∇V − C : ∇V : ∇U)dx = 0. (86)

where U and V are two elastic solutions dependent on 2 coordinates (x, y) in Cartesian coordinate system or (r, θ)
in polar coordinate system and ∇ is gradient. D is an arbitrary closed domain within the material domains Ω2 as
shown in Figure 67. According to the Hooke’s law in the following form:

σ(U) = C∇U,

the equation (86) becomes: ∫
D

(σ(U)∇V − σ(V )∇U)dx = 0, (87)

where σ(U) and σ(V ) are stress fields associated with U and V respectively. By applying the Green’s theorem to
the equation (87) we obtain:

−
∫
D
∇σ(U)V dx+

∫
∂D

σ(U)nV ds+
∫
D
∇σ(V )Udx−

∫
∂D

σ(V )nUds = 0, (88)

where ∂D denotes the boundary of the domain D and n is the normal of the contour ∂D. If equilibrium conditions
apply, the first and the third term of equation (88) are equal to zero, therefore we can write:∫

∂D
(σ(U)nV − σ(V )nU)ds = 0. (89)

Since the negatively oriented boundary ∂D consists of 4 contours ∂D = Γ1 ∪ Γ2 ∪Σ1 ∪Σ2, the integral (89) can be
written as sum of following 4 contour integrals:

∫
Γ1

(σ(U)nV − σ(V )nU)ds+
∫

Σ1

(σ(U)nV − σ(V )nU)ds+ (90)∫
Γ2

(σ(U)nV − σ(V )nU)ds+
∫

Σ2

(σ(U)nV − σ(V )nU)ds = 0.
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Figure 68: Paths of two integrals overlap on the interfaces, namely the Σ1 with Σ∗1 and Σ2 with Σ∗2.

Let us consider another contour integral which is defined by arbitrary boundary ∂D∗ laying within the other material
domain Ω1 as illustrated in Figure 67:

∫
∂D∗

(σ(U)n∗V − σ(V )n∗U)ds = 0. (91)

Similarly as done previously we can subdivide the contour ∂D∗ into four parts and the contour integral (91) becomes:∫
Γ∗1

(σ(U)n∗V − σ(V )n∗U)ds+
∫

Σ∗1
(σ(U)n∗V − σ(V )n∗U)ds+ (92)∫

Γ∗2
(σ(U)n∗V − σ(V )n∗U)ds+

∫
Σ∗2

(σ(U)n∗V − σ(V )n∗U)ds = 0.

Let’s lead both the path ∂D and ∂D∗ in a way that Σ1 and Σ∗1 as well as Σ2 and Σ∗2 perfectly overlap, see Figure 68.
To obtain the same orientation of the path for these overlapping contours a sign of the integral has to be changed,
since n∗ = −n. Therefore both integral equations (45) and (92) become:

(93)∫
Γ1

(σ(U)nV − σ(V )nU)ds+
∫

Γ2

(σ(U)nV − σ(V )nU)ds = −
∫

Σ1

(σ(U)nV − σ(V )nU)ds−
∫

Σ2

(σ(U)nV − σ(V )nU)ds,

(94)∫
Γ∗1

(σ(U)n∗V − σ(V )n∗U)ds+
∫

Γ∗2
(σ(U)n∗V − σ(V )n∗U)ds =

∫
Σ1

(σ(U)nV − σ(V )nU)ds+
∫

Σ2

(σ(U)nV − σ(V )nU)ds.

Because U , V , σ(U) and σ(V ) are continuous through the interface, by adding (93) and (94) and a simple rear-
rangement we obtain:

(95)∫
Γ1

(σ(U)nV − σ(V )nU)ds+
∫

Γ2

(σ(U)nV − σ(V )nU)ds +

+
∫

Γ∗1
(σ(U)n∗V − σ(V )n∗U)ds+

∫
Γ∗2

(σ(U)n∗V − σ(V )n∗U)ds = 0.

Since ΓA = Γ1 + Γ∗1 and Γ∗B = Γ2 + Γ∗2 the equation (95) becomes:∫
ΓA

(σ(U)nV − σ(V )nU)ds+
∫

Γ∗
B

(σ(U)n∗V − σ(V )n∗U)ds = 0,
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Figure 69: Paths of the integrals ΓA and ΓB .

Figure 70: Area of refined mapped mesh near singular point of the bi-material junction.

or for negatively oriented curves ΓA and ΓB which are depicted in Figure 69 we finally get:

∫
ΓA

(σ(U)nV − σ(V )nU)ds =
∫

ΓB
(σ(U)nV − σ(V )nU)ds,

which shows that this integral is path independent. The implications of the integral path independence are in detail
commented in the previous sub-chapter on p. 39. As in the case of a bi-material notch (or any notch problem),
definition of the integral as in Eq. (46) on p. 39 and properties as in Eq. (47)-(52) leads identically to the fact that
the GSIFs in the case of a bi-material junction can be calculated by equation (53) on p. 41. To obtain term ΨFE

k

the stresses and displacements are analogically calculated in FEM code ANSYS (in this work). The vicinity of the
bi-material junction tip 2D model consists of refined mapped mesh as shown in Figure 70.

Numerical example M: Path independence and integration step effect for the Ψ-integral. Let’s con-
sider the geometric configuration of the bi-material junction 2α = 90°, which represents the most common case of the
rectangular sharp material inclusion. In this numerical example, two bi-material configurations will be studied, the
inclusion more compliant than matrix with (a) E1/E2 = 0.25 and inclusion stiffer than matrix with (b) E1/E2 = 4.
In the former case E1 = 20 GPa, in the latter case E1 = 80 GPa and for both configurations ν1 = ν2 = 0.25. The
eigenvalues, which were calculated previously in Numerical examples J and K are listed in Table 26 on p. 72 for the
case (a) and in Table 29 on p. 75 for the case (b). The geometry of the studied problem is in both cases identical to
Numerical example O, as shown in Figure 75 on p. 84. The loading for this numerical example is F = 100 N (per
1 mm of specimen thickness b). The problem is a symmetrical one. In such case we are mainly interested in terms
with even eigenfunctions. As discussed in the theoretical section and shown in Numerical example J, the parity of
k does not have to correspond to the the kth eigenfunction symmetry (odd or even properties of the function). In
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this numerical example, in the case (a) we find the even eigenfunctions when k = 1, 3, 4. In the case (b) the even
eigenfunctions are with k = 1, 3. The Ψ-integral is calculated with integration step of ∆θ = 2.5° and ∆θ = 5.0°. The
integration is conducted on r = 1 mm, r = 3 mm and as an average between these radii (since the mesh is adjusted
automatically to keep right shape of individual elements, there are 10 circles in the case of larger integration step
and 22 circles in the case of smaller integration step). The results of the configuration (a) are listed in Table 31.
When we consider the dominant terms with even eigenfunctions, the change in Hk by decreasing the integration
step is low, with maximum of 9.0 % in average value of the fourth term. The terms factors H1 and H3 show low
standard deviation value in both cases of integration step size. The term factor H2 with odd eigenfunction should
have value close to zero, because of the problem symmetry. Its value is significantly closer to zero, when the finer
integration step is used. Therefore results of better quality are obtained by smaller integration step size. Solid
computational convergence is achieved as shown in Figure 71. We see that the term factor H4 tends to converge on
larger distances as seen in the same figure. For the case (b), the dominant (even) terms are with H1 and with H3.
The results are listed in Table 32. The decrease in integration step size results in very low change in GSIFs of 0.5
% maximum (average of H1). Considering the dominant terms, both cases of integration step size show very low
standard deviation values. The odd term shows values much closer to zero again when we use smaller integration
step. For the case of finer integration step a good computational convergence is achieved as shown in Figure 72,
with an exception of small valued negative H2.

H∆θ=2.5°
k s∆θ=2.5°

r = 1 mm r = 3 mm avg. avg.
H1 31.711096 31.671537 31.685866 0.006926
H2 −0.526437 −0.414348 −0.471664 0.033578
H3 −0.986715 −1.036437 −1.015922 0.013186
H4 −2.607539− 1.858953i −2.323283− 1.819121i −2.437986− 1.833683i 0.081679

H∆θ=5.0°
k s∆θ=5.0°

r = 1 mm r = 3 mm avg. avg.
H1 31.841465 31.756351 31.785227 0.01576
H2 −1.117199 −0.908541 −1.014935 0.066322
H3 −0.909882 −0.984984 −0.956533 0.019120
H4 −3.191347− 1.831145i −2.551828− 1.797279i −2.796666− 1.806883i 0.177578

Table 31: Bi-material junction Ψ-integral results for (a), 2α = 90°, E1/E2 = 0.25. Values of terms factors Hk

determined on multiple radii with finer integration step of ∆θ = 2.5° in the upper table and coarser integration
step of ∆θ = 5.0◦ in the lower table. The both cases are supplemented by standard deviation of the averaged value
denoted by s.

H∆θ=2.5°
k s∆θ=2.5° H∆θ=5.0°

k s∆θ=5.0°

r = 1 mm r = 3mm avg. avg. r = 1 mm r = 3 mm avg. avg.
H1 −0.266383 −0.265541 −0.265972 0.000204 −0.265262 −0.263983 −0.264565 0.000304
H2 −0.030557 −0.059586 −0.041799 0.008569 −0.079073 −0.133025 −0.101129 0.017091
H3 14.666912 14.672885 14.673597 0.000304 14.60914 14.634184 14.628421 0.003402
H4 0.018563 0.016835 0.016957 0.000667 0.035951 0.032162 0.033113 0.001354

Table 32: Bi-material junction Ψ-integral results for (b), 2α = 90°, E1/E2 = 4. Values of terms factors Hk

determined on multiple radii with finer integration step of ∆θ = 2.5° in the left part of the table and coarser
integration step of ∆θ = 5.0◦ in the right part of the table. Both the cases are supplemented by standard deviation
of the averaged value denoted by s.
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Figure 71: Dependence of the Hk on r. Bi-material junction (a), 2α = 90°, E1/E2 = 0.25. Hk by the Ψ-integral.
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Figure 72: Dependence of the Hk on r. Bi-material junction (b), 2α = 90°, E1/E2 = 4. Hk by the Ψ-integral.
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Determination of GSIFs by overdeterministic method
The ODM is mathematically easy and robust method of GSIFs determination. It is based on a least square

solution of overdetermined system of linear equations. Inputs from the FEA can be either displacements or stresses.
First let’s recall the displacement based method and rewrite the Eq. (55) on p. 45:

F[2m×n]H[n] = uFE
[2m].

The displacement based method is applicable only on symmetrical problems since we have not found a way to
subtract the rigid body rotations or to account for them analytically in the displacement series. Rigid body
rotations are typical for the case of non-symmetric problem as discussed in application of the ODM on the bi-
material notch problem on p. 44. The advantage of stress based method is its straightforward applicability on
non-symmetric problems. Let’s rewrite the equation (59) on p. 47:

F[3m×n]H[n] = SFE
[3m].

The Numerical example E on p. 50 has shown that the application of both methods give similar results (as it was
tested in the case of symmetrical problem, when the comparison of methods is possible). The stress based method
will be used further regardless of the problem symmetry.

Numerical example N: Determination of the GSIFs by the ODM. In this numerical example, the GSIFs
will be determined by stress based Overdeterministic method. The geometry, bi-material configuration and loading
in this study is identical as in Numerical example M on p. 79. In the first case denoted (a) we calculate first four
GSIFs for rectangular inclusion more compliant than matrix of which the dominant (even) are H1, H3 and H4 . In
the second case denoted (b) again first four terms factors are calculated for the rectangular inclusion stiffer than
matrix of which dominant are the terms factors H1 and H3. The use of smaller element edge length and subsequent
input higher amount of input data leads to a 0.2 % change in averaged H1, a 5.1 % change in averaged H3, a 14.6
% change in averaged H4 and decrease in standard deviation values in all cases. The odd term with H2 shows
values closer to zero in case of finer integration step. There is very slight linear trend in Hk (r) so the value can be
extrapolated to the point r = 0. This is illustrated in Figure 73. The case (b) shows a 0.5 % change in averaged
H1 and less than 0.1 % difference in averaged H3. Again smaller values of non-dominant terms factors are better
achieved by using smaller element edge length. The radial dependence of Hk is shown in Figure 74. The radial
dependence of the second term factor may seem to have little signs of the convergence, however it is necessary to
put it in the context of values it acquires (v 10−5 in comparison to 10−1÷ 101 of the dominant terms factors). The
H2 is practically equal to zero.

H∆θ=5.0°
k s∆θ=5.0°

regression r = 0.2 mm r = 1 mm avg. avg.
H1 31.754646 31.740088 31.910209 31.715068 0.017126
H2 −0.006831 −0.006823 −0.006791 −0.006812 8e− 06
H3 N/A −0.982626 −1.026875 −1.019643 0.022973
H4 N/A −6.618669− 3.382666i −4.784998− 3.466781i −5.634971− 3.438265i 0.555423

H∆θ=2.5°
k s∆θ=2.5°

regression r = 0.2 mm r = 1 mm avg. avg.
H1 31.654585 31.651782 31.737581 31.645112 0.004243
H2 −0.001675 −0.001676 −0.001676 −0.001676 8e− 06
H3 N/A −1.055008 −1.076553 −1.07387 0.010588
H4 N/A −5.435045− 3.564461i −4.541765− 3.560535i −4.916542− 3.564503i 0.259246

Table 33: Bi-material junction ODM results for (a), 2α = 90°, E1/E2 = 0.25. Values of singular terms factors H1,
H2 and non-singular terms factors H3 and H4 determined on multiple radii with finer element edge division by
∆θ = 2.5° in the upper table and coarser element edge division by ∆θ = 5.0◦ in the lower table. In the first column
there is the value obtained by the linear regression. Both the cases are supplemented by the average value and the
standard deviation of the averaged value denoted by s.
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Figure 73: Dependence of the Hk on the radial distance r. The bi-material junction (a), 2α = 90°, E1/E2 = 0.25.
GSIFs calculated by the ODM.

H∆θ=5.0°
k s∆θ=5.0°

regression r = 0.2 mm r = 1 mm avg. avg.
H1 −0.266041 −0.26581 −0.267448 −0.26562 0.000181
H2 −0.002643 −0.002777 −0.001786 −0.002969 0.000141
H3 N/A 14.679851 14.63162 14.689146 0.007211
H4 N/A 0.013506 −0.001887 0.006484 0.003380

H∆θ=2.5°
k s∆θ=2.5°

regression r = 0.2 mm r = 1mm avg. avg.
H1 −0.266972 −0.266914 −0.267815 −0.266899 3.6e− 05
H2 −4.3e− 05 −0.000115 0.000876 −6.9e− 05 3.4e− 05
H3 N/A 14.707765 14.679417 14.708479 0.001195
H4 N/A 0.007971 −0.002087 0.002714 0.002203

Table 34: Bi-material junction ODM results for (b), 2α = 90°, E1/E2 = 4. Values of leading terms factors H1 and
H3 determined on multiple radii with finer element edge division by ∆θ = 2.5° in the left part of the table and
coarser element edge division by ∆θ = 5.0◦ in the right side of the table. In the first column there is the value
obtained by the linear regression. Both the cases are supplemented by the average value and the standard deviation
of the averaged value denoted by s.
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Figure 74: Dependence of the Hk on the radial distance r. The bi-material junction (b), 2α = 90°, E1/E2 = 4.
GSIFs calculated by the ODM.
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Figure 75: Model of the sharp material inclusion specimen subjected to 3 point bending.

Numerical example O: Stress reconstruction for the Sharp Material Inclusion more compliant than
matrix. The three point bending specimen that contains the sharp material inclusion is modeled in 2D as shown
in Figure 75. The dimensions of the model are identical as in previous examples for notches, i.e. L = 76.2 mm,
h = 17.8 mm, a = 3.56 mm, so the inclusion depth to width ratio is a/h = 0.2. The bi-material junction model is
used with the opening angle 2α = 90° (γ0 = −α, γ1 = α, γ2 = 360° − α). The material region 1, which represents
the inclusion, is modeled with PMMA material properties E1 = 2.3 GPa, ν1 = 0.34 and the material region 2,
which represents matrix, with aluminum material model characterized by E2 = 69 GPa, ν2 = 0.33. The Young’s
moduli ratio in this case is E1/E2 = 0.033, thus it is the case of an inclusion more compliant than matrix. Ideal
adhesion on the interfaces is assumed. The model is loaded with force of F = 1 N (per 1 mm of specimen thickness
b) and plane strain state is chosen. The eigenfunctions are normalized per Eq. (38) with θ0 = 180°, which is due to
the problem symmetry the predicted angle of crack initiation. The reference coordinate system is shown in Figure
75. The parameters which form the mapped mesh near singular point as in Figure 33 are chosen as: r0 = 0.01 mm,
r1 = 1 mm and r2 = 3 mm and the element edge division is by 2.5°. The first five GSIFs Hk are calculated by the
Ψ-integral, with integration radius r = 3 mm and the linear regression extrapolated H1, H2 or the averaged ODM
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H3 ÷ H5. The universal stress based ODM is used. The results are found in Table 35. The difference in those
two methods is 0.6 % for the first term factor H1 and 13% for the H4, nevertheless the ODM returns values of
non-dominant terms factors H2 and H5 closer to zero. The stress is reconstructed on the radius of 1 mm as shown
in Figure 76 with terms factors calculated by the ODM. We can see that the stress distribution within γ1 ÷ γ2 by
shape of the curves corresponds to the stress distribution of a V-notch. It is not difficult to explain why. When the
more compliant material fills the V-notch area, which is normally a free space, it acts like compliant reinforcement.
Overall behavior of the notch in terms of mechanics however remains. By overall trend the analytical solution
corresponds well to the FE solution. In the case when only singular terms with H1 and H2 are used we see some
difference between analytical solution and FE solution among all stress components. The first non-singular term
with H3 (magenta line) does not increase precision by any observable means. Next non-singular term with H4 (the
cyan line) however increases precision in a way that it fits FEA excellently. Employment of following term with H5
(the red line) does not add any more precision as its line lays on the cyan line of H4 . We can identify a pattern
in this behavior. Remember that this is a symmetrical problem and as commented in numerical example the odd
terms are with H1, H3 and H4. The terms H1 and H4 which contribute to the solution for most are found among
these and furthermore they are the two with the maximal absolute values.
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Figure 76: Stress reconstruction of σrr (r, θ), σrθ (r, θ) and σθθ (r, θ) on r = 1 mm for the bi-material junction with
2α = 90° and E1/E2 = 0.033. The GSIFs for an analytical solution determined by the ODM.

k λk HΨ
k H

ODM,σij
k

1 0.589566 0.465328 0.462405
2 0.918297 −0.006971 −8e− 06
3 1.342835 −0.007708 −0.000275
4 1.648027 + 0.2047i −0.027841− 0.018909i −0.063994− 0.048784i
5 2.295327 + 0.294341i 0.002336− 0.001035i −7e− 06 + 4e− 06i

Table 35: Eigenvalues λk and Hk by the Ψ-integral and ODM. Bi-material junction, 2α = 90°, E1/E2 = 0.033.
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Numerical example P: Stress reconstruction for the Sharp Material Inclusion stiffer than matrix.
This numerical example is analogical to the Numerical example O. Only the material region 1, which represents
the inclusion, is modeled with aluminum material properties 69 GPa, ν1 = 0.33 and the material region 2, which
represents matrix, with PMMA model E2 = 2.3 GPa, ν2 = 0.34. The Young’s moduli ratio in this case is
E1/E2 = 30, thus it is a case of inclusion stiffer than matrix. Ideal adhesion on the interfaces is assumed. The
GSIFs were calculated by the Ψ-integral and the ODM. If we examine the eigenfunctions, we found that the functions
with k = 2, 3 are even. Therefore, the terms with even eigenfunctions should be non-zero. The results are listed
in Table 36. Difference in the second term factor H2 calculated by different methods is 3.6 % and the difference in
the third term factor H3 is 7.5%. For the remaining terms values closer to zero are obtained by use of the ODM.
The stress is reconstructed on the radius of 0.5 mm as shown in Figure 77. The stress distribution is typical for
examples when the inclusion is stiffer than matrix (with consideration of three point bending or tension loading).
Such stress distribution is different both from the case of notches and more compliant inclusion. The explanation
is, that the stiffer inclusion acts like a reinforcement, which bears the load. The analytical stress distribution by
first singular term with H1 (the blue line) is completely off relative to the FE solution. By employing the second
singular term with H2 (the yellow line), the analytical solution by trend becomes closer to FE solution. When
we take into account also the first non-singular term with H3 (the magenta line), the analytical solution fits FE
solution with very good precision. Use of higher order terms with H4 (the cyan line) and H5 (the red line) does
not add to the precision by any observable means as all the lines lay on each other. For a symmetric problem like
this one, the even terms are the most significant. As shown in Table 36, these are also terms with highest absolute
values. In conclusion, the singular terms do not describe the solution well even on 0.5 mm. In fact, even if we
decrease the radial distance to the nanometers, the singular terms still does not describe the stress well [22]. Only
by employment of higher order terms, the stress description begins to match FEA.
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Figure 77: Stress reconstruction of σrr (r, θ), σrθ (r, θ) and σθθ (r, θ) on r = 0.5 mm for the bi-material junction
with 2α = 90° and E1/E2 = 30. The GSIFs for an analytical solution determined by the ODM.
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k λk HΨ
k H

ODM,σij
k

1 0.667580 −0.000136 1.8e− 05
2 0.783669 −0.014298 −0.013803
3 1.159292 0.146576 0.136358
4 1.628595 5e− 06 1.6e− 05
5 1.676726 −1e− 05 −4.2e− 05

Table 36: First five eigenvalues λk and GSIFs Hk calculated by the Ψ-integral and ODM. The bi-material junction,
2α = 90°, E1/E2 = 30.

inclusion more compliant than matrix (E1 < E2) inclusion stiffer than matrix (E1 > E2)
loading case description by s. t.: use of n. s. t.: case description by s. t.: use of n. s. t.:
vertical (i) good increased precision (ii) poor necessary
vertical (iii) good increased precision (iv) poor necessary
horizontal (v) poor necessary (vi) good increased precision
horizontal (vii) poor necessary (viii) good increased precision

Table 37: Summary of results, the particular cases are shown in Figure 78. The acronym s. t. stands for singular
terms and n. s. t. for non-singular terms.

Criteria of crack initiation direction and stability criteria

When we consider sharp rectangular material inclusion, there are 8 possible cases of loading direction and bi-material
stiffness ratio variation. This determines the character of singularity, which exists at the singular concentrator tip.
These 8 possible configurations are illustrated in Figure 78. For some cases, the singular terms describe the singular
solution with solid accuracy (as in Numerical example O on p. 84), in other instances, the employment of higher
order terms is essential (as in Numerical example P on p. 86). Let’s analyse the configurations with the vertical
loading, cases (i)-(iv). The Young’s modulus of inclusion is denoted by E1 and the modulus of matrix by E2. The
cases (i) and (iii) both act like a V-notch, since the inclusion acts like a compliant reinforcement. In the former
case loaded in tension and the latter case in compression. In both cases the singular terms describe the stress state
well. Employment of higher order terms increases precision on larger distances from the tip. On the other hand, we
have configurations (ii) and (iv) which represent inclusion stiffer than matrix. The case (ii) is similar to Numerical
example O, where the stress is not described well by singular terms. The case (iv) is its equivalent in compression,
characterized also by poor description of the stress field by singular terms. Employment of higher order terms is
essential to obtain stresses that truly represents the stress state near the inclusion tip. The configurations with
horizontal tension (v)-(viii) show a different pattern. The cases (v) and (vii), i.e. cases of inclusion more compliant
than matrix are characterized by poor stress description by singular terms. To obtain results that represent the
actual stress field, employment of higher order terms is necessary. In contrast, in the cases (vi) and (vii) with
inclusion stiffer than matrix singular terms describe the stress state well. Again, precision is increased by use of
higher order terms. The Table 37 provides a summary of the cases. The general load of an engineering component
is a combined one. Moreover, the orientation of an inclusion in composite is random (depending on the composite
type). Therefore, we can not state that the singular terms only are sufficient for the case of an inclusion more
compliant than matrix and that the non-singular terms are crucial for the case of inclusion stiffer than matrix. By
comparing e.g. the cases (i) and (v) it is obvious, that even for cases of an inclusion more compliant than matrix,
the non-singular terms do not describe the stress precisely enough.

The criterion of maximum of average tangential stress
As described in the sub-section 2.3 on p. 17, the maximum tangential stress criterion states that the crack will

initiate in the direction of maximal tangential stress. General case of a bi-material junction (non-symmetrical) is
characterized by radial dependence of the direction of maximum σθθ (r, θ). To mitigate this dependence, as in the
case of a bi-material notch, we determine the average value of tangential stress σθθ (θ) over some specific distance
d. This distance d is established by the relation to microstructure or fracture mechanism. The derivation of the
multi-parameter formula to assess stability of a bi-material junction is analogical to the case of a bi-material notch,
see p. 55. Thus we can rewrite the equation (64):
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n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (96)

by which we find the global maximum of σθθ (θ) (and also the local one). Recall that Γk1 is the ratio between
GSIFs defined as Γk1 = Hk/H1. In the equation above, the angle of global maximum is the only unknown. In the
case of a bi-material junction, there are three possible directions of crack onset. The crack can onset into direction
with global maximum of σθθ (θ), into a local maximum, or in one of the interfaces. These three depend on the
fracture toughness of inclusion, matrix and the interface, the KIC,1, KIC,2 and KIC,interface respectively. Based on
an assumption that the crack initiation mechanism is the same as in the case of a crack propagation in homogeneous
media, we compute the generalized critical value of fracture toughness as:

H1C,m = KIC,m
√

2π<
{∑n

k=1 Γk1
dλk−

1
2

λk
fθθk (θ0,m)

} (97)

The generalized fracture toughness of the matrix, inclusion and the interface H1C,1, H1C,2 and H1C,interface have to
be calculated on corresponding angles of crack onset θ0,1, θ0,2 and θ0,interface respectively. The condition of stability
is a general one, common for both cases of a bi-material notch and junction, as written in Eq. (66) on p. 56. The
critical load is calculated by Eq. (67) on p. 57.

The average strain energy density factor criterion
The strain energy density factor (SEDF) criterion, developed by Sih, found many applications in assessment of

crack problems. The problem of a sharp material inclusion, modeled as a bi-material junction can be assessed by
this criterion as well. The theoretical multi-parameter approach is identical to the case of a bi-material notch. The
global minimum (and the local as well) of the SEDF is found as a potential crack initiation direction. Thus we
rewrite the formula (68) on p. 57:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0. (98)

Based on the SEDF approach, we determine the generalized fracture toughness for all potential crack onset di-
rections, the global minimum, local minimum and the interface. This is achieved by Eq. (74) on p. 58, written
as:

H1C,m = KIC,m

√√√√ km

π<
{∑n

k=1
∑n
l=k Γk1Γl1 d

λk+λl−1

λk+λl Ukl (θ)
} . (99)

The condition of stability is a general one, common to all general singular stress concentrators, stated in Eq. (66)
on p. 56. Finally the formula for critical load, also a general one, is given by Eq. (67) on p. 57.

Numerical example Q: Crack initiation direction and initiation load in the case of a bi-material
junction

Part 1 First, we consider a problem described in Numerical example O on p. 84, which represents a three
point bending specimen with rectangular inclusion more compliant than matrix where E1/E2 = 0.033. To assess
crack initiation direction we use (a) criterion of maximum of average tangential stress and (b) average strain energy
density criterion. The fracture parameters are identical to those in Numerical example H on p. 65.
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(a) The criterion of maximum of average tangential stress. The tangential stress is averaged over a
specific distance d, which is chosen as 1 mm. The averaged tangential stress calculated by (i) singular terms (the
yellow dotted line) and by (ii) singular and non-singular terms (the cyan dotted line) is shown in Figure 79. The
yellow line with markers represents the solution of σθθ (r, θ) on d = 1 mm by singular terms. In similar manner, the
cyan line with markers represents the singular and non-singular terms solution. For this particular bi-material and
geometrical configuration there are two singular terms. Regarding the singular and non-singular terms solution,
two singular and two non-singular terms are considered (as shown in Numerical example O, the fifth term does
not significantly contribute to the precision on 1 mm). Please recall the formula to find potential crack initiation
directions (96) on p. 89. We see that there are two extremes in the tangential stress angular distribution, the global
maximum (occurs in the matrix, m = 2) and the local maximum (occurs in the inclusion, m = 1). In both cases, the
singular terms solution of extreme (represented by the vertical yellow solid line) and the non-singular terms solution
of extreme (represented by the vertical cyan dashed line) has the same direction (both in the local and global average
tangential stress maximum). The potential crack initiation direction in the global maximum is θglb.

0 = 180◦ and in
local maximum θloc.

0 = 0◦ which is apparent because of the problem symmetry. Nevertheless, as the solution by
employment of non-singular terms is more precise, increase in precision of the critical parameters is also expected.
In the previous theoretical chapter we stated that the crack initiation can occur in the inclusion, matrix or the
interface, whereas each of them possesses a particular material parameter K1C,m and therefore different H1C,m. We
calculate these critical values by Eq. (97). The results (i) singular terms solution are found in Table 38 and results
of (ii) non-singular terms solution in Table 39. The methods (i) and (ii) lead to difference of 5.94 % in H1C,2 which
is in global maximum, 1.72 % in H1C,1 which is in local maximum and 0.83 % in interface critical GSIF value. The
minimum value of H1C,m is found in the PMMA. By criterion of maximum of average tangential stress the crack
is therefore predicted to initiate in this direction and material. Remember, that we assume interface with perfect
adhesion, which allows full traction transmission. If the actual interface does not comply to this assumption and
crack may not initiate in this predicted direction.
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Figure 79: Average value of the σθθ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms: the cyan line. The black dashed lines denote the interfaces.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 177.765048
local maximum 0.0° 1 ≡ PMMA 62.32677

interface ±45.0◦ interface 72.968331

Table 38: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (i) singular terms and (a) criterion of maximum of average tangential stress.
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θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 188.317388
local maximum 0.0° 1 ≡ PMMA 61.254716

interface ±45.0◦ interface 72.359732

Table 39: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress.

(b) The average strain energy density factor criterion. The averaged strain energy density factor over
distance d = 1 mm is plotted in Figure 80. The yellow line represents solution by (i) two singular terms and the
cyan line represents solution by (ii) two singular and two non-singular terms. We see that there is a global minimum
and a local one, found by solving Eq. (98). Both (i) and (ii) return identical angular values corresponding to these
points. However some offset of Σ(θ) between solutions exists, therefore difference in critical parameters is expected.
The generalized fracture toughnesses are calculated by formula (99). The results (i) singular terms solution are
found in Table 40 and results of (ii) non-singular terms solution in Table 41. The methods (i) and (ii) leads to
the difference of 9.6 % in H1C,2 which corresponds to local minimum, 2.9 % in H1C,1 for global minimum and 2.2
% in interface critical GSIF value prediction. The lowest value of generalized fracture toughness corresponds to
the interface, thus the crack is expected to initiate in this direction. We see that the crack initiation direction and
material predicted by (a) and (b) is different as in the former case the crack is predicted to initiate in PMMA with
θglb.

0 = 0◦ and the latter case it is predicted to initiate in the interface with θ0,interface = ±45◦. In (a) only the
tangential stress component is used to calculate H1C,m whereas in (b) all stress components are employed. The
level of tangential stress acting on the interfaces is low, leading to higher value of H1C,interface calculated by (a)
than by (b).
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Figure 80: Average value of the Σ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms (the cyan line). The black dashed lines denote the interfaces.

θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 62.786943
local minimum 179.9° 2 ≡ aluminum 187.279553

interface ±45.0◦ interface 39.704644

Table 40: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (i) singular terms and (b) average strain energy density criterion.
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θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 60.974337
local minimum 179.9° 2 ≡ aluminum 205.32978

interface ±45.0◦ interface 38.813687

Table 41: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (ii) singular and non-singular terms and (b) average strain energy density criterion.

Part 2 We consider a problem described in Numerical example P on p. 86, which represents a three point
bending specimen with rectangular inclusion stiffer than matrix where E1/E2 = 30. Again, to assess crack initiation
direction and critical value of GSIF we use (a) the criterion of maximum of average tangential stress and (b) the
average strain energy density criterion. In the part 2 of the numerical example, we use averaging distance d = 0.5
mm.

(a) The criterion of maximum of average tangential stress. The distribution of σθθ (θ) is shown in
Figure 81, where the yellow dotted line represents the averaged tangential stress solution given by (i) two singular
terms. The cyan line represents the solution given by (ii) two singular and two non-singular terms. In addition,
the stress on particular distance d is plotted by (i) and (ii) and denoted by lines with markers. Please note that
the tangential stress given by (i) is compressive for all θ. The black squares represents the FE solution. As in the
previous case, we see two extremes of σθθ (θ) represented by vertical lines, the yellow in case of (i) and the cyan in
case of (ii). Both singular and non-singular solution predict identical angles of crack initiation, i. e. θglb.

0 = 180◦
and θloc.

0 = 0◦ . The difference in stress description by (i) and (ii) is severe, therefore significant difference in value
of critical parameters is expected. The results by (i) are listed in Table 42. The results given by (ii) is summarized
in Table 43. When (i) only the singular terms are taken as an input for critical GSIF calculation a negative valued
H1C,m are obtained (since the σθθ (θ) is compressive). For (ii), the minimum value is H1C,2 and the crack is expected
to initiate in the direction of global maximum found in PMMA.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA (-0.015640)
local maximum 0.0° 1 ≡ aluminum (-0.117511)

interface ±45.0◦ interface (-0.001800)

Table 42: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (i) singular terms and (a) criterion of maximum of average tangential stress.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA 0.004104
local maximum 0.0° 1 ≡ aluminum 0.178545

interface ±45.0◦ interface (-0.004031)

Table 43: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress.
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Figure 81: Average value of the σ̄θθ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms (the cyan line). The black dashed lines denote the interfaces.

(b) The average strain energy density factor criterion. The angular distribution of strain energy density
factor Σ(θ) is shown in Figure 82. The yellow line represents (i) two singular terms solution. The cyan line
represents (ii) two singular and two non-singular terms solution. Because the problem is a symmetric one, there are
two directions where global minimum and local minimum are found. The yellow and cyan vertical lines represent
the locations of local minima. The global minima are found at the interfaces. The results by (i) are listed in Table
44 and by (ii) in Table 45. The difference in H1C,m by (i) and (ii) is 1.1 % for the global minimum, 10.7 % for
local minimum and 1.1 % for the interface. The lowest value of H1C,m is found at the interface, therefore it is the
expected angle of crack initiation.

0 1 2 3 4 5

θ [rad]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Σ
[M

P
a
.m

m
]
×

1e
−

7.
0

× 10− 7

Γ 0 Γ 1 γ 2

Σ
λ 1,λ 2

; d =0.5 mm

Σ
n.s.

; d =0.5 mm
∂ Σ

λ 1,λ 2

∂θ = 0; θ C =1.5 rad =85.9 ◦

∂ Σ
λ 1,λ 2

∂θ = 0; θ C =4.79 rad =274.4 ◦

∂ Σ
n.s.

∂θ = 0; θ C =1.5 rad =85.9 ◦

∂ Σ
n.s.

∂θ = 0; θ C =4.78 rad =273.9 ◦

Figure 82: Average value of the Σ̄ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms: the cyan line. The black dashed lines denote the interfaces. In the region of inclusion, i.e. the Σ̄ (θ) is
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θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027674
local minimum 85.9°, 274.4° 2 ≡ PMMA 0.001334

interface ±45.0◦ interface 0.000865

Table 44: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (i) singular terms and (b) average strain energy density criterion.

θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027360
local minimum 85.9°, 273.9° 2 ≡ PMMA 0.001477

interface ±45.0◦ interface 0.000855

Table 45: The generalized fracture toughness H1C,m for global minimum, local minimum and the interface deter-
mined by (ii) singular and non-singular terms and (b) average strain energy density criterion.

The angle and material of expected crack initiation is different from (a), but as discussed in first part of this
example, the possible explanation is that the SEDF uses all the stress components rather than tangential stress
only. The thorough explanation of such behavior will be a subject of following research as well as experimental
evaluation of the problem.

4.4. Formulation of approaches for a general problem
The multi-material notch or multi-material junction problem can be approached in general way by forming sparse
structure matrix A (λ) as in Eq. (35) on p. 28 from sub-matrices Nkm

θ for multi-material notch problem:

Nkm
θ =

[
λke

iθ(λk+1)
2

λke
−iθ(λk+1)

2
λk(λk+1)eiθ(λk−1)

2
λk(λk+1)e−iθ(λk−1)

2
λke

iθ(λk+1)
2i −λke

−iθ(λk+1)
2i

λk(λk−1)eiθ(λk−1)
2i −λk(λk−1)e−iθ(λk−1)

2i

]
,

and Mkm
θ for multi-material junction problem:

Mkm
θ =


λke

iθ(λk+1)
2

λke
−iθ(λk+1)

2
λk(λk+1)eiθ(λk−1)

2
λk(λk+1)e−iθ(λk−1)

2
λke

iθ(λk+1)
2i −λke

−iθ(λk+1)
2i

λk(λk−1)eiθ(λk−1)
2i −λk(λk−1)e−iθ(λk−1)

2i

− e
iθ(λk+1)

4µi − e
−iθ(λk+1)

4µi
(κi−λk)eiθ(λk−1)

4µi
(κi−λk)e−iθ(λk−1)

4µi
eiθ(λk+1)

4iµi − e
iθ(λk+1)

4iµi
(κi+λk)eiθ(λk−1)

4iµi
(κi+λk)e−iθ(λk−1)

4iµi

 .

In the simple case of a homogeneous notch, studied in this work, the matrix A (λ) is:

A (λ) =
[

N1
γ1

N1
γ2

]
,

Similarly for the studied case of a bi-material notch, the matrix A (λ) can be written:

A (λ) =

 N1
γ1

0
M1

γ2
−M2

γ2

0 N2
γ3

 .
For a problem of crack terminating at the bi-material interface as shown in Figure 12 on p. 19, the matrix A (λ)
can be written:

A (λ) =

 M1
γ1
−M2

γ1
0

0 N2
γ2

0
0 0 N2

γ0

 .
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As another example serves the case of the tri-material notch

A (λ) =


N1
γ1

0 0
M1

γ2
−M2

γ2
0

0 M2
γ3

−M3
γ3

0 0 N3
γ4

 ,
which is a special case of a multi-material notch. In fact, multi-material notch consisting of even more material
regions can be described by this approach, such as the last example, the quad-material notch:

A (λ) =


N1
γ1

0 0 0
M1

γ2
−M2

γ2
0 0

0 M2
γ3

−M3
γ3

0
0 0 M3

γ4
−M4

γ4

0 0 0 N4
γ5

 ,
For the problem of a bi-material junction, studied in previous chapter, the matrix A (λ) is:

A (λ) =
[

M1
γ1

−M2
γ1

−M1
γ0

M2
γ2

]
.

A junction of three material domains, the tri-material junction is described by the following sparse structure matrix:

A (λ) =

 M1
γ1

−M2
γ1

0
0 M2

γ2
−M3

γ2

−M1
γ0

0 M3
γ3


and as the last example, the quad-material junction is characterized by the following matrix:

A (λ) =


M1

γ1
−M2

γ1
0 0

0 M2
γ2

−M3
γ2

0
0 0 M3

γ3
−M4

γ3

−M1
γ0

0 0 M4
γ4

 .
In conclusion, a problem of any number of material domains can be easily described in this way. As the sparse
structure matrix is formed, the eigenequation is obtained by Eq. (36) on p. 28.

4.5. Developing a complete description of crack initiation and propagation near the
sharp material inclusion

This chapter examines possible scenarios of crack behavior near the sharp material inclusion embedded in matrix.
Crack in matrix terminating at inclusion/matrix interface is shown left-hand side of Figure 83. Similarly, the crack
in inclusion terminating at the inclusion/matrix interface is shown in right-hand side of Figure 83. This case can be
modeled as a crack with its tip at a bi-material interface. The geometry of problem is shown in Figure 12 on p. 19
and the methods are identical as those on p. 27. The crack that terminated at the interface can either propagate
to the other material or propagate through the inclusion/matrix interface. The latter situation is examined further
in Figure 84, where crack propagating through the inclusion/matrix interface is shown. In the left-hand side of the
Figure 84 the crack originates in matrix and in the left-hand side of the Figure 84 it originates in inclusion. These
cases is modeled as interfacial cracks (special case of the bi-material notch model with 2α = 0◦ and e.g. γ1 = 0◦,
γ2 = 180◦ and γ3 = 360◦, see p. 27). Another situation occurs when the crack reaches the end point of the sharp
material inclusion, as shown in Figure 85 (another special case of the bi-material notch model with 2α = 0◦ and
e.g. γ1 = 0◦, γ2 = 270◦ and γ3 = 360◦, see p. 27). Figure 86 shows crack initiated at the tip of the sharp material
inclusion in the matrix (left-hand side) or in the inclusion (right-hand side). This case is modeled as a bi-material
junction (see p. 70). Above mentioned situations capture complete crack behavior near the sharp material inclusion
and all can be modeled by methods described in this dissertation.
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Figure 83: Crack terminating at the inclusion/matrix interface. On the left-hand side the crack originates in matrix.
On the right-hand side the crack originates in the inclusion.

Figure 84: Crack propagating through the inclusion/matrix interface. On the left-hand side the crack originates in
matrix. On the right-hand side the crack originates in the inclusion.

Figure 85: Crack propagated to the end point of inclusion/matrix interface. On the left-hand side the crack
originates in matrix. On the right-hand side the crack originates in the inclusion.

Figure 86: Crack initiated at the tip of the sharp material inclusion. On the left-hand side the crack initiates in
matrix. On the right-hand side the crack initiates in matrix.
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5. Conclusions
Methods of the classical fracture mechanics can not be directly applied on general singular stress concentrators
and its generalization is the current objective of many researchers. The identical motivation stays behind this
thesis. Although the presented work is primarily theoretical, it provides the researchers with the framework in
order to fully assess generalized singular stress concentrators in terms of the multi-parameter criteria proposed
herein. Experiments to verify the theory on general singular stress concentrators different from a V-notch are the
next step to be conducted. For this purpose the specimens modeled in this work can be used.

This work presents methods to determine the eigenvalues to form the exponents of singular and non-singular
stress terms in cases of general singular stress concentrators. When the eigenvalues are determined, the angular
eigenfunction can be easily formed. The cases of a V-notch, bi-material notch and bi-material junction are studied
in detail. However, the methods presented herein allow researchers to determine the order of singularity for any type
of multi-material general singular stress concentrator (for example quad-material notch or quad-material junction).
In the following part, application of two different methods to determine generalized stress intensity factors of
singular and non-singular terms are studied. The main advantage of the Ψ-integral method is, that it allows
independent determination of kth generalized stress intensity factor. The overdeterministic method is simpler and
computationally less expensive. When some requirements are fulfilled, i.e. if the integration path is far enough
from singular point in the case of the Ψ-integral, or number of terms n to be determined is high enough in the
case of the ODM, both methods return results very close to each other. By the knowledge of the eigenvalues and
generalized stress intensity factors, stress field near singular point can be reconstructed. The analytical solution
can be compared with pure finite element solution. When we are interested in the stress field on distances such
as 0.1− 1 mm, the employment of non-singular terms leads either to significant increase in precision (notches and
inclusion more compliant than matrix) or provides the only means to describe the stress field well (inclusion stiffer
than matrix).

The dissertation also presents stability criteria modified to contain higher order terms. These multi-parameter
criteria are namely the criterion of maximum of average tangential stress and the average strain energy density
factor criterion. Both criteria are applied on problems of V-notch, bi-material notch and bi-material junction. In
the case of V-notch, comparison of the predicted failure loads and experimental data show very good agreement. In
other cases, the crack initiation direction and critical parameters are calculated. Use of the multi-parameter criteria
leads to change in the predicted critical parameters in order of percents. The experimental validation of proposed
criteria will be a subject of further research.
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7. Nomenclature
a half of the crack length
A (2α, θ0) scaling coefficient of the coupled stress-energy criterion
Ak, Bk, Ck, Dk constants of the solution of bi-harmonic equation
A (λ) characteristic matrix of a problem
Ared (λ) reduced characteristic matrix of a problem
α half of the notch/junction opening angle
α, β eigenvalues (only in Ψ-integral sub-chapter)
C elastic tensor
D, D∗ domain
∂D, ∂D∗ curve surrounding domain D or D∗
∆θ element angular length / integration step size
εij strain tensor component
Em Young’s moduli of mth material
Fk (θ) kth eigenfunction of Williams’ stress function
fij (θ), gijk (θ) Williams’ series angular functions
fijk (θ) kth stress eigenfunction for ijth stress component
f∗ijk (θ) kth real stress eigenfunction for ijth stress component
fik (θ) kth displacement eigenfunction for ith displacement component
f∗ik (θ) kth real displacement eigenfunction for ith displacement component
f−ijk (θ) kth auxilary stress eigenfunction for ijth stress component
f−ik (θ) auxilary displacement eigenfunction for ith displacement component
F[2m×n] matrix of eigenfunctions of 2m rows and n columns
Φ Airy’s stress function
gijl (θ) lth stress eigenfunction for ijth stress component (only in Ψ-integral subchapter)
gil (θ) displacement eigenfucntion for ith displacement component (only in Ψ-integral subchapter)
GC material toughness
γi angular parameter
Γi ith bi-material interface
Γ1, Γ2, ΓA, ΓB integration paths (only in Ψ-integral subchapter)
Γk1, Γl1 ratios between individual GSIFs and first GSIF
Hk generalized stress intensity factor
H1C,m generalized fracture toughness
H[n] unknown vector of n generalized stress intensity factors
={z} imaginary part of the complex number z
i imaginary unit
Ikm, Lkm, Mkm, Nkm complex constants
KI stress intensity factor of mode I
KIcrit critical value of stress intensity factor
KIC fracture toughness
KIth threshold value for fatigue crack propagation
km elastic constant (in terms of Poisson’s ratio)
kk stress intensity factor in Williams’ stress series
κm Kolosov’s constant of mth material
l crack length in pertubated domain
L controling variable
L, h, b, a dimensions of the modeled specimen (only in numerical examples)
λk kth eigenvalue
λ∗ material constant (in terms of Kolosov’s and shear modulus)
µ shear modulus
n normal
Nkm
θ sub-matrix of a multi-material notch problem to form a characteristic matrix A (λ)

νm Poisson’s ratio of mth material
Nkm
θ sub-matrix of a multi-material junciton problem to form a characteristic matrix A (λ)
∇ gradient
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∇2 Laplace operator
O
(
r1/2) higher order term of the Williams series

Ωm mth material region
Ω (z), χ (z), ω (z) analytic functions (complex potentials) in general
Ω1, Ω2 material domains
Ωin unbounded inner domain
Ωkm (z), ωkm (z) analytic functions for kth eigenvalue and mth material region
pk stress singularity exponent
Ψ (U, V ) path independent Ψ-integral
ΨFE
k Ψ-integral of FE solution

Ψanalyt
k Ψ-integral of analytical solution

r, θ polar coordinates
r0, r1, r2 FE radial parameters
<{z} real part of the complex number z
s standard deviation of generalized stress intensity factor average
SFE

[3m] vector of FE stresses
σij stress tensor
σ∞ far field loading
σappl applied stress
σC material strength
σθθ (θ) averaged value of the tangential stress (averaged over r)
Σm strain energy density factor of mth material
Σm averaged value of the strain energy density factor of mth material (averaged over r)
Σcrit critical value of strain energy density factor
ΣC,m critical value of strain energy density factor of mth material in terms of brittle fracture
Σ1, Σ2 integration paths (only in Ψ-integral subchapter)
T T -stress (constant value term in Williams’ expansion)
θ0 crack initiation angle
u[2m] vector of FE displacements
U , V elastic solutions
U l (x1, x2) perturbed solution
U0 (x1, x2) unperturbed solution
Ukl (θ) augmented shape functions for average SEDF crigerion
vk kth eigenvector
vred
k reduced kth eigenvector
V̂ complementary term in matched asymtotic expansion
Wp strain energy
dW
dV strain energy per volume
x, y cartesian coordinates
y1, y2 stretched coordinates (×1/l)
Z (z) Westergaard’s stress function
z complex variable
ζ external loading angle
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List of abbreviations
APDL Ansys program design language
BMN bi-material notch
FE finite element
FEA finite element analysis
FEM finite element method
GSIF generalized stress intensity factor
GSSC general singular stress concentrator
HSV hue, saturation, value, color model for a domain coloring
LEFM linear elastic fracture mechanics
ODM overdeterministic method
PMMA polymethyl methacrylate
SIF stress intensity factor
SEDF strain energy density factor
3PB three point bending
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A. Detailed derivation of equations
A.1. Kolosov-Muskhelishvili formulas
First, recall the complex analytical functions from (17) on p. 24, i.e.:

Ωkm (z) = Ikmz
λk + Lkmz

λ̄k ,

ωkm (z) = Mkmz
λk +Nkmz

λ̄k .

The first derivative of the complex function Ωkm (z) by complex variable z is:

Ω′km (z) = Ikmλkz
λk−1 + Lkmλ̄kz

λ̄k−1 = Ikmλkr
λk−1eiθ(λk−1) + Lkmλ̄kr

λ̄k−1eiθ(λ̄k−1) (100)

and by knowing that z̄ = re−iθ its complex conjugate is:

Ω̄′km (z) = Īkmλ̄kz̄
λ̄k−1 + L̄kmλkz̄

λk−1 = Īkmλ̄kr
λ̄k−1e−iθ(λ̄k−1) + L̄kmλkr

λk−1e−iθ(λk−1). (101)

The second derivative of complex function Ωkm (z) by complex variable z is:

Ω′′km (z) = Ikmλk(λk − 1)zλk−2 + Lkmλ̄k(λ̄k − 1)zλ̄k−2 = (102)
= Ikmλk (λk − 1) rλk−2eiθ(λk−2) + Lkmλ̄k

(
λ̄k − 1

)
rλ̄k−2eiθ(λ̄k−2)

and similarly its complex conjugate is:

Ω̄′′km (z) = Īkmλ̄k(λ̄k − 1)z̄λ̄k−2 + L̄kmλk (λk − 1) z̄λk−2 = (103)
= Īkmλ̄k(λ̄k − 1)rλ̄k−2e−iθ(λ̄k−2) + L̄kmλk (λk − 1) rλk−2e−iθ(λk−2)

The first derivative of the complex function ωkm (z) by complex variable z is:

ω′km (z) = Mkmλkz
λk−1 +Nkmλ̄kz

λ̄k−1 = Mkmλkr
λk−1eiθ(λk−1) +Nkmλ̄kr

λ̄k−1eiθ(λ̄k−1) (104)

and finally its complex conjugate is:

ω̄′km (z) = M̄kmλ̄kz
λ̄k−1 + N̄kmλkz

λk−1 = M̄kmλ̄kr
λ̄k−1e−iθ(λ̄k−1) + N̄kmλkr

λk−1e−iθ(λk−1). (105)

By substitution of (100), (101), (102), (103), (104), (105) into Kolosov-Muskhelishvili equations for stress com-
ponents (9) on p. 11 we can show derivation of previously shown equations (18), p. 24. For σrrkm we thus
write:

σrrkm (r, θ) = Ikmλkr
λk−1eiθ(λk−1) + Lkmλ̄kr

λ̄k−1eiθ(λ̄k−1) +
+ Īkmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + L̄kmλkr
λk−1e−iθ(λk−1) −

− re−iθ

2

[
Ikmλk (λk − 1) rλk−2eiθ(λk−2) + Lkmλ̄k

(
λ̄k − 1

)
rλ̄k−2eiθ(λ̄k−2)

]
−

− reiθ

2

[
Īkmλ̄k

(
λ̄k − 1

)
rλ̄k−2e−iθ(λ̄k−2) + L̄kmλk (λk − 1) rλk−2e−iθ(λk−2)

]
−

− 1
2

[
Mkmλkr

λk−1eiθ(λk−1) +Nkmλ̄kr
λ̄k−1eiθ(λ̄k−1)

]
−

− 1
2

[
M̄kmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + N̄kmλkr
λk−1e−iθ(λk−1)

]
= 1

2{r
λk−1

[
−Ikmλk (λk − 3) eiθ(λk−1) − L̄kmλk (λk − 3) e−iθ(λk−1) −Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]

+

+ rλ̄k−1
[
−Īkmλ̄k

(
λ̄k − 3

)
e−iθ(λ̄k−1) − Lkmλ̄k

(
λ̄k − 3

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) −Nkmλ̄keiθ(λk+1)
]
}.
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The expression for σrθkm is again obtained by substitution of equations (100)-(105) into (9). Therefore we write:

σrθkm (r, θ) = re−iθ

2i

[
Ikmλk (λk − 1) rλk−2eiθ(λk−2) + Lkmλ̄k

(
λ̄k − 1

)
rλ̄k−2eiθ(λ̄k−2)

]
−

− reiθ

2i

[
Īkmλ̄k

(
λ̄k − 1

)
rλ̄k−2e−iθ(λ̄k−2) + L̄kmλk (λk − 1) rλk−2e−iθ(λk−2)

]
+

+ 1
2i

[
Mkmλkr

λk−1eiθ(λk−1) +Nkmλ̄kr
λ̄k−1eiθ(λ̄k−1)

]
−

− 1
2i

[
M̄kmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + N̄kmλkr
λk−1e−iθ(λk−1)

]
= 1

2i{r
λk−1

[
Ikmλk (λk − 1) eiθ(λk−1) − L̄kmλk (λk − 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) − N̄kmλke−iθ(λk+1)
]

+

+ rλ̄k−1
[
−Īkmλ̄k

(
λ̄k − 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k − 1

)
eiθ(λ̄k−1) − M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λ̄k+1)

]
},

and similarly for σθθkm we write:

σθθkm (r, θ) = Ikmλkr
λk−1eiθ(λk−1) + Lkmλ̄kr

λ̄k−1eiθ(λ̄k−1) +
+ Īkmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + L̄kmλkr
λk−1e−iθ(λk−1) +

+ re−iθ

2

[
Ikmλk (λk − 1) rλk−2eiθ(λk−2) + Lkmλ̄k

(
λ̄k − 1

)
rλ̄k−2eiθ(λ̄k−2)

]
+

+ reiθ

2

[
Īkmλ̄k

(
λ̄k − 1

)
rλ̄k−2e−iθ(λ̄k−2) + L̄kmλk (λk − 1) rλk−2e−iθ(λk−2)

]
+

+ 1
2

[
Mkmλkr

λk−1eiθ(λk−1) +Nkmλ̄kr
λ̄k−1eiθ(λ̄k−1)

]
+

+ 1
2

[
M̄kmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + N̄kmλkr
λk−1e−iθ(λk−1)

]
= 1

2{r
λk−1

[
Ikmλk (λk + 1) eiθ(λk−1) + L̄kmλk (λk + 1) e−iθ(λk−1) +Mkmλke

iθ(λk+1) + N̄kmλke
−iθ(λk+1)

]
+

+ rλ̄k−1
[
Īkmλ̄k

(
λ̄k + 1

)
e−iθ(λ̄k−1) + Lkmλ̄k

(
λ̄k + 1

)
eiθ(λ̄k−1) + M̄kmλ̄ke

−iθ(λ̄k+1) +Nkmλ̄ke
iθ(λk+1)

]
}.

The displacements are derived in a similar manner, for urkm we thus write:

urkm (r, θ) = 1
4µm
{κme−iθ

[
Ikmr

λkeiθλk + Lkmr
λ̄keiθλ̄k

]
−

− r
[
Īkmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + L̄kmλkr
λk−1e−iθ(λk−1)

]
−

− e−iθ
[
M̄kmr

λ̄ke−iθλ̄k + N̄kmr
λke−iθλk

]
+

+ κme
iθ
[
Īkmr

λ̄ke−iθλ̄k + L̄kmr
λke−iθλk

]
−

− r
[
Ikmλkr

λk−1eiθ(λk−1) + Lkmλ̄kr
λ̄k−1eiθ(λ̄k−1)

]
−

− eiθ
[
Mkmr

λkeiθλ̄k +Nkmr
λ̄keiθλ̄k

]
}

= 1
4µm
{rλk

[
Ikm (κm − λk) eiθ(λk−1) + L̄km (κm − λk) e−iθ(λk−1) −Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]

+ rλ̄k
[
Īkm

(
κm − λ̄k

)
e−iθ(λ̄k−1) + Lkm (κm − λk) eiθ(λk−1) − M̄kme

−iθ(λk+1) −Nkmeiθ(λk+1)
]
},

106



Ondřej Krepl Appendix

and finally for the uθkm we write:

uθkm (r, θ) = 1
4iµm

{e−iθκm
[
Ikmr

λkeiθλk + Lkmr
λ̄keiθλ̄k

]
−

− r
[
Īkmλ̄kr

λ̄k−1e−iθ(λ̄k−1) + L̄kmλkr
λk−1e−iθ(λk−1)

]
−

− e−iθ
[
M̄kmr

λ̄ke−iθλ̄k + N̄kmr
λke−iθλk

]
−

− eiθκm

[
Īkmr

λ̄ke−iθλ̄k + L̄kmr
λke−iθλk

]
−

+ r
[
Ikmλkr

λk−1eiθ(λk−1) + Lkmλ̄kr
λ̄k−1eiθ(λ̄k−1)

]
+

+ eiθ
[
Mkmr

λke−iθλk +Nkmr
λ̄keiθλ̄k

]
}

= 1
4iµm

{rλk
[
Ikm (κm + λk) eiθ(λk−1) − L̄km (κm + λk) e−iθ(λk−1) +Mkme

iθ(λk+1) − N̄kme−iθ(λk+1)
]

+

+ rλ̄k
[
−Īkm

(
κm + λ̄k

)
e−iθ(λ̄k−1) + Lkm

(
κm + λ̄k

)
eiθ(λ̄k−1) − M̄kme

−iθ(λ̄k+1) +Nkme
iθ(λ̄k+1)

]
}.

A.2. Criterion of maximum of average tangential stress
The derivation of Eq. (64) on p. 56 is shown by substitution of first 3 stress series terms in complex form, Eq. (20)
on p. 24 into equation (61) on p. 55. The equation becomes:

1
d

∂

∂θ

[∫ d

0

(
H1r

λ1−1fθθ1 (θ) +H2r
λ2−1fθθ2 (θ) +H3r

λ3−1fθθ3 (θ)
)

dr+

+H̄1r
λ̄1−1f̄θθ1 (θ) + H̄2r

λ̄2−1f̄θθ2 (θ) + H̄3r
λ̄3−1f̄θθ3 (θ)

]
= 0,

which after integration is:

H1
dλ1

λ1

∂fθθ1 (θ)
∂θ

+H2
dλ2

λ2

∂fθθ2 (θ)
∂θ

+H3
dλ3

λ3

∂fθθ3 (θ)
∂θ

+ H̄1
dλ̄1

λ̄1

∂f̄θθ1 (θ)
∂θ

+ H̄2
dλ̄2

λ̄2

∂f̄θθ2 (θ)
∂θ

+ H̄3
dλ̄3

λ̄3

∂f̄θθ3 (θ)
∂θ

= 0,

where the first derivative of eigenfunction fθθkm (θ) in terms of complex constants Ikm, Lkm, Mkm and Nkm is:

∂fθθkm (θ)
∂θ

= 1
2 i
[
eiθ(λk−1)Ikmλk (λk − 1) (λk + 1)− e−iθ(λk−1)L̄kmλk (λk − 1) (λk + 1) +

+ eiθ(λk+1)Mkmλk (λk + 1)− e−iθ(λk+1)N̄kmλk (λk + 1)
]
,

and similarly for f̄θθkm (θ) we write:

∂f̄θθkm (θ)
∂θ

= 1
2 i
[
−e−iθ(λ̄k−1)Īkmλ̄k

(
λ̄k − 1

) (
λ̄k + 1

)
+ eiθ(λ̄k−1)Lkmλ̄k

(
λ̄k − 1

) (
λ̄k + 1

)
−

− e−iθ(λ̄k+1)M̄kmλ̄k
(
λ̄k + 1

)
+ eiθ(λ̄k+1)Nkmλ̄k

(
λ̄k + 1

)]
.

The GSIF H1 can be factored out of the equation, so we introduce factors between GSIFs Γk1 as in Eq. (63) on p.
55. Since the crack initiation direction does not depend on GSIFs absolute value, we obtain:

Γ11
dλ1

λ1

∂fθθ1 (θ)
∂θ

+ Γ21
dλ2

λ2

∂fθθ2 (θ)
∂θ

+ Γ31
dλ3

λ3

∂fθθ3 (θ)
∂θ

+ Γ̄11
dλ̄1

λ̄1

∂f̄θθ1 (θ)
∂θ

+ Γ̄21
dλ̄2

λ̄2

∂f̄θθ2 (θ)
∂θ

+ Γ̄31
dλ̄3

λ̄3

∂f̄θθ3 (θ)
∂θ

= 0,

which leads to the general form of the equation with n terms, equation (65) on p. 56. The derivation of complex
form follows. We can rewrite the stress expansion as:

σij = H1

n∑
k=1

Γk1r
λk−1fijk (θ) + H̄1

n∑
k=1

Γ̄k1r
λ̄k−1f̄ijk (θ) ,
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which can be analogically derived, integrated and rearranged, so we obtain Eq. (65) on p. 56. For completeness,
the second derivative of function f̄θθkm (θ) in terms of complex constants is:

∂f2
θθkm (θ)
∂θ2 = −1

2

[
eiθ(λk−1)Ikmλk (λk − 1)2 (λk + 1) + e−iθ(λk−1)L̄kmλk (λk − 1)2 (λk + 1) +

+ eiθ(λk+1)Mkmλk (λk + 1)2 + +e−iθ(λk+1)N̄kmλk (λk + 1)2
]
,

and its complex conjugate:

∂f̄2
θθkm (θ)
∂θ2 = 1

2

[
e−iθ(λ̄k−1)Īkmλ̄k

(
λ̄k − 1

)2 (
λ̄k + 1

)
+ eiθ(λ̄k−1)Lkmλ̄k

(
λ̄k − 1

)2 (
λ̄k + 1

)
+

+ e−iθ(λ̄k+1)M̄kmλ̄k
(
λ̄k + 1

)2 + eiθ(λ̄k+1)Nkmλ̄k
(
λ̄k + 1

)2]
.

A.3. Average strain energy density criterion
The derivation of Eq. (71) on p. 57 for calculation of a mean value of SEDF is shown in following text. Let’s
consider stress expansion, Eq. (20) on p. 24 in following form:

σij = 2<
{

n∑
k=1

Hkr
λ1−1fijk (θ)

}
.

The derivation is shown on a series containing first 3 terms only. General form for n terms follows later on. First,
each stress component in its expansion form is substituted into formula for calculation SEDF on mth material
region in case of a plane problem, Eq. (70) on p. 57:

Σm = <
{
r

1
2µm

[
2
(
H1r

λ1−1fθθ1 (θ) +H2r
λ2−1fθθ2 (θ) +H3r

λ3−1fθθ3 (θ)
)

(106)(
H1r

λ1−1frr1 (θ) +H2r
λ2−1frr2 (θ) +H3r

λ3−1frr3 (θ)
)

(km − 1) +

+
((
H1r

λ1−1fθθ1 (θ) +H2r
λ2−1fθθ2 (θ) +H3r

λ3−1fθθ3 (θ)
)2 +

+
(
H1r

λ1−1frr1 (θ) +H2r
λ2−1frr2 (θ) +H3r

λ3−1frr3 (θ)
)2) (km + 1) +

+ 4
(
H1r

λ1−1frθ1 (θ) +H2r
λ2−1frθ2 (θ) +H3r

λ3−1frθ3 (θ)
)2]}

.

Thus after expanding and some simple rearrangements the equation (106) becomes:

Σm = r
1

2µm
<
{
H2

1r
2(λ1−1) [2fθθ1frr1 (km − 1) + f2

θθ1 (km + 1) + f2
rr1 (km + 1) + 4f2

rθ1
]

+ (107)

+ H2
2r

2(λ2−1) [2fθθ2frr2 (km − 1) + f2
θθ2 (km + 1) + f2

rr2 (km + 1) + 4f2
rθ2
]

+
+ H2

3r
2(λ3−1) [2fθθ3frr3 (km − 1) + f2

θθ3 (km + 1) + f2
rr3 (km + 1) + 4f2

rθ3
]

+
+ H1H2r

(λ1−1)+(λ2−1)

[2fθθ1frr2 (km − 1) + 2fθθ2frr1 (km − 1) + 2fθθ1fθθ2 (km + 1) + 2frr1frr2 (km + 1) + 8frθ1frθ2] +
+ H1H3r

(λ1−1)+(λ3−1)

[2fθθ1frr3 (km − 1) + 2fθθ3frr1 (km − 1) + 2fθθ1fθθ3 (km + 1) + 2frr1frr3 (km + 1) + 8frθ1frθ3] +
+ H2H3r

(λ2−1)+(λ3−1)

[2fθθ2frr3 (km − 1) + 2fθθ3frr2 (km − 1) + 2fθθ2fθθ3 (km + 1) + 2frr2frr3 (km + 1) + 8frθ2frθ3]} ,

where the all the functions fijk above are functions of angle θ. For the sake of saving available text field, the symbol
(θ) is intentionally omitted. We can identify the functions Uklm (θ) as:

Uklm (θ) =


2fθθk (θ) frrk (θ) (km − 1) + (f2

θθk (θ) + f2
rrk (θ)) (km + 1) + 4f2

rθk (θ) k = l

2(fθθk (θ) frrl (θ) + fθθl (θ) frrk (θ)) (km − 1) + 2(fθθk (θ) fθθl (θ) + k 6= l

+frrk (θ) frrl (θ)) (km + 1) + 8frθk (θ) frθl (θ)
.
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Where the function Uklm (θ) is defined for each material region m = 1, 2 of bi-material notch as:

Uklm (θ) =
{
Ukl1 (θ) γ1 < θ < γ2

Ukl2 (θ) γ2 < θ < γ3

and for the case of bi-material junction as:

Uklm (θ) =
{
Ukl1 (θ) γ0 < θ < γ1

Ukl2 (θ) γ1 < θ < γ2
.

The formula (107) after further rearrangement becomes:

Σm = 1
2µm
<
{
H2

1r
2λ1−1U11 (θ) +H2

2r
2λ2−1U22 (θ) +H2

3r
2λ3−1U33 (θ) + (108)

+ H1H2r
λ1+λ2−1U12 (θ) +H1H3r

λ1+λ3−1U13 (θ) +H2H3r
λ2+λ3−1U23 (θ)

}
.

The mean value of SEDF is defined in Eq. (69) on p. 57. Thus we substitute the equation (108) above into it,
integrate it and finally we get:

Σm = 1
2µm
<
{
H2

1
d2λ1−1

2λ1
U11 (θ) +H1H2

dλ1+λ2−1

λ1 + λ2
U12 (θ) +H1H3

dλ1+λ3−1

λ1 + λ3
U13 (θ) +

+ H2
2
d2λ2−1

2λ2
U22 (θ) +H2H3

dλ2+λ3−1

λ2 + λ3
U23 (θ) +

+ H2
3
d2λ3−1

2λ3
U33 (θ)

}
.

This expression with consideration of n terms leads to Eq. (71) on p. 57. The extreme of function above is found
by substitution of equation above into Eq. (72) on p. 58 and its derivation in dependence of angle θ:

[
H1H1

dλ1+λ1−1

λ1 + λ1

∂U11 (θ)
∂θ

+H1H2
dλ1+λ2−1

λ1 + λ2

∂U12 (θ)
∂θ

+H1H3
dλ1+λ3−1

λ1 + λ3

∂U13 (θ)
∂θ

+

+H2H2
dλ2+λ2−1

λ2 + λ2

∂U22 (θ)
∂θ

+H2H3
dλ2+λ3−1

λ2 + λ3

∂U23 (θ)
∂θ

+

+H3H3
dλ3+λ3−1

λ3 + λ3

∂U33 (θ)
∂θ

]
= 0.

With consideration of Γk and Γl and for n terms we finally obtain the general formula (73) as found in the main
text on p. 58. The first derivatives of stress eigenfunctions fijk (θ) in terms of complex constants are written:

∂frrkm (θ)
∂θ

= 1
2 i
[
−Ikmλk (λk − 3) (λk − 1) eiθ(λk−1) + L̄kmλk (λk − 3) (λk − 1) e−iθ(λk−1)−

−Mkmλk (λk + 1) eiθ(λk+1) + N̄kmλk (λk + 1) e−iθ(λk+1)
]
,

∂frθkm (θ)
∂θ

= 1
2

[
Ikmλk (λk − 1)2

eiθ(λk−1) + L̄kmλk (λk − 1)2
e−iθ(λk−1)+

+Mkmλk (λk + 1) eiθ(λk+1) + N̄kmλk (λk + 1) e−iθ(λk+1)
]
,

∂fθθkm (θ)
∂θ

= 1
2 i
[
Ikmλk (λk + 1) (λk − 1) eiθ(λk−1) − L̄kmλk (λk + 1) (λk − 1) e−iθ(λk−1)

+Mkmλk (λk + 1) eiθ(λk+1) − N̄kmλk (λk + 1) e−iθ(λk+1)
]
.
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and the second derivatives of stress eigenfunctions fijk (θ) are written:

∂2frrkm (θ)
∂θ2 = 1

2

[
Ikmλk (λk − 3) (λk − 1)2

eiθ(λk−1) + L̄kmλk (λk − 3) (λk − 1)2
e−iθ(λk−1)+

+Mkmλk (λk + 1)2
eiθ(λk+1) + N̄kmλk (λk + 1)2

e−iθ(λk+1)
]
,

∂2frθkm (θ)
∂θ2 = 1

2 i
[
Ikmλk (λk − 1)3

eiθ(λk−1) − L̄kmλk (λk − 1)3
e−iθ(λk−1)+

+Mkmλk (λk + 1)2
eiθ(λk+1) − N̄kmλk (λk − 1)2

e−iθ(λk+1)
]
,

∂2fθθkm (θ)
∂θ2 = −1

2

[
Ikmλk (λk + 1) (λk − 1)2

eiθ(λk−1) + L̄kmλk (λk + 1) (λk − 1)2
e−iθ(λk−1)+

+Mkmλk (λk + 1)2
eiθ(λk+1) + N̄kmλk (λk + 1)2

e−iθ(λk+1)
]
.

The function Uklm (θ) for k = l is in terms of complex constants written:

Ukkm (θ) = 4λ2
k

[
km

(
I2
kme

2iθ(λk−1) + L̄2
kme

−2iθ(λk−1)
)

+

+ (λk − 1)
(
L̄kmMkme

2iθ + IkmN̄kme
−2iθ)+

+
(

(λk − 1)2 + 2km
)
IkmL̄km +MkmN̄km

]
The first derivative of function Uklm (θ) for k = l is in terms of complex constants written

∂Uklm (θ)
∂θ

= 4λ2
k

[
km

(
2i (λk − 1) I2

kme
2iθ(λk−1) − 2i (λk − 1) L̄2

kme
−2iθ(λk−1)

)
+ (109)

+ (λk − 1)
(
2iL̄kmMkme

2iθ − 2iIkmN̄kme−2iθ) =

= 8iλ2
k (λk − 1)

[
km

(
I2
kme

2iθ(λk−1) − L̄2
kme

−2iθ(λk−1)
)

+

+ L̄kmMkme
2iθ − IkmN̄kme−2iθ]

and the second derivative of function Uklm (θ) for k = l is:

∂2Uklm (θ)
∂θ2 = −16λ2

k (λk − 1)
[
km (λk − 1)

(
I2
kme

2iθ(λk−1) + L̄2
kme

−2iθ(λk−1)
)

+

+ L̄kmMkme
2iθ + IkmN̄kme

−2iθ]
For k 6= l the function Uklm (θ) is written:

Uklm (θ) = 4λkλl
[
(λkλl − λk − λl + 2km + 1)

(
eiθ(λk−λl)IkmLlm + e−iθ(λk−λl)IlmLkm

)
+

+ (λk − 1)
(
eiθ(λk−λl−2)IkmNlm + e−iθ(λk−λl−2)LkmMlm

)
+

+ (λl − 1)
(
eiθ(λl−λk−2)IlmNkm + e−iθ(λl−λk−2)LlmMkm

)
+

+ 2km
(
IkmIlme

iθ(λk+λl−2) + e−iθ(λk+λl−2)LkmLlm

)
+

+ MkmNlme
iθ(λk−λl) +MlmNkme

−iθ(λk−λl)
]

first derivative of function Uklm (θ) is written
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∂Uklm (θ)
∂θ

= 4iλkλl
[
(λk − λl) (λkλl − λk − λl + 2km + 1)

(
eiθ(λk−λl)IkmLlm − e−iθ(λk−λl)IlmLkm

)
+

+ (λk − 1) (λk − λl − 2)
(
eiθ(λk−λl−2)IkmNlm − e−iθ(λk−λl−2)LkmMlm

)
+

+ (λl − 1) (λl − λk − 2)
(
eiθ(λl−λk−2)IlmNkm − e−iθ(λl−λk−2)LlmMkm

)
+

+ 2km (λk + λl − 2)
(
IkmIlme

iθ(λk+λl−2) − e−iθ(λk+λl−2)LkmLlm

)
+

+ (λk − λl)
(
MkmNlme

iθ(λk−λl) −MlmNkme
−iθ(λk−λl)

)]
and the second derivative of function Uklm (θ) is:

∂2Uklm (θ)
∂θ2 = −4λkλl

[
(λk − λl)2 (λkλl − λk − λl + 2km + 1)

(
eiθ(λk−λl)IkmLlm + e−iθ(λk−λl)IlmLkm

)
+

+ (λk − 1) (λk − λl − 2)2
(
eiθ(λk−λl−2)IkmNlm + e−iθ(λk−λl−2)LkmMlm

)
+

+ (λl − 1) (λl − λk − 2)2
(
eiθ(λl−λk−2)IlmNkm + e−iθ(λl−λk−2)LlmMkm

)
+

+ 2km (λk + λl − 2)2
(
IkmIlme

iθ(λk+λl−2) + e−iθ(λk+λl−2)LkmLlm

)
+

+ (λk − λl)2
(
MkmNlme

iθ(λk−λl) +MlmNkme
−iθ(λk−λl)

)]
A.4. Basic two-dimensional elasticity equations
Many problems in elasticity may be treated satisfactorily by a two-dimensional (plane) theory of elasticity [63].
By that the stress analysis is considerably simplified. There are two general types of problems involved in this
plane analysis, plane stress and plane strain. These two types are defined by setting down certain restrictions and
assumptions on the stress and displacement fields. The plane stress is defined to be a stress in which the normal
stress σzz and the shear stresses σxz and σyz directed perpendicular to the xy plane are assumed to be zero9. This
approach is applicable on bodies where one dimension is much smaller than the remaining two, e.g. thin flat planes.
The stress tensor is for plane stress problem written:

σij =

 σxx σxy 0
σyx σyy 0
0 0 0


and strain tensor:

εij =

 εxx εxy 0
εyx εyy 0
0 0 εzz

 .
When we consider the cylindrical coordinate system:

σij =

 σrr σrθ 0
σθr σθθ 0
0 0 0



εij =

 εrr εrθ 0
εθr εθθ 0
0 0 εzz

 .
To assess safety of engineering structure in terms of yield criterion it is in general required to compute equivalent
tensile stress. The von Misses stress for example is defined:

σe =
√

1
2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2

]
+ 3

(
σ2
xy + σ2

yz + σ2
zx

)
=

=
√
σ2
xx + σ2

yy + σ2
zz − σxxσyy − σyyσzz − σzzσxx + 3

(
σ2
xy + σ2

yz + σ2
zx

)
9Isotropic material is assumed.
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which in cylindrical coordinate system is:

σe = 1
2

√
(σrr − σθθ)2 + (σθθ − σzz)2 + (σzz − σrr)2 + 3 (σ2

rθ + σ2
θz + σ2

zr) = (110)

=
√
σ2
rr + σ2

θθ + σ2
zz − σrrσθθ − σθθσzz − σzzσrr + 3 (σ2

rθ + σ2
θz + σ2

zr)

Since the plane stress case if characterized by σzz = σrz = σθz = 0, the von Misses stress is calculated as:

σe =
√
σ2
rr + σ2

θθ − σrrσθθ + 3σ2
rθ

The plane strain is defined to be a state in which the strain normal to the xy plane εzz and the shear strains εxz
and εyz are assumed to be zero. The plane strain approach applies to bodies where one dimension is very large in
comparison with the dimension of the structure in other two directions. The stress tensor for plane strain problem
is written:

σij =

 σxx σxy 0
σxy σyy 0
0 0 σzz


and strain tensor is:

εij =

 εxx εxy 0
εyx εyy 0
0 0 0

 .
In cylindrical coordinate system we write:

σij =

 σrr σrθ 0
σθr σθθ 0
0 0 σzz



εij =

 εrr εrθ 0
εθr εθθ 0
0 0 0

 .
Considering stress-strain relation (4) on p. 9:

εzz = 1
E

[σzz − ν (σrr + σθθ)]

The stress component σzz can be calculated as:

σzz = ν (σrr + σθθ)
Therefore by substitution in Eq. (110) the von Misses stress is:

σe =
√
σ2
rr + σ2

θθ + ν2 (σrr + σθθ)2 − σrrσθθ − σθθν (σrr + σθθ)− ν (σrr + σθθ)σrr + 3σ2
rθ =

=
√
σ2
rr (1− ν + ν2) + σ2

θθ (1− ν + ν2)− σrrσθθ (1 + 2ν − 2ν2) + 3σ2
rθ

In terms of eigenfunction, the von Misses stress can be written:

σe =
n∑
k=1

Hkr
λk−1fek (θ) + H̄kr

λ̄k−1f̄ek (θ) = 2<
{

n∑
k=1

Hkr
λk−1fek (θ)

}
where the eigenfunction fek(θ) for plane stress problem is:

fek (θ) =
√
f2
rrk (θ) + f2

θθk (θ)− frrk (θ) fθθk (θ) + 3f2
rθk (θ)

and for plane strain problem:

fek (θ) =
√
f2
rrk (θ) (1− ν + ν2) + f2

θθk (θ) (1− ν + ν2)− frrk (θ) fθθk (θ) (1 + 2ν − 2ν2) + 3f2
rθk (θ)

and the eigenequations fijk (θ) are defined in Eq. (23) on p. 25.
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B. Attached scripts
The attachment of the thesis consists of the computer scripts created during the years of the author’s research.
These files can be with author permission distributed and further used for non-commercial research purposes. The
written codes may be divided into two parts: the first part consists of the scripts written in APDL (Ansys Program
Design Language) and the second of Python scripts (Python 2.7 run in Spyder 2.3 development environment). The
scripts written in APDL can be run in commercial software code ANSYS v13 and newer. By these scripts, users
have an access to three point bending specimen models of V-notch, bi-material notch specimen, sharp material
inclusion and the model of free edge singularity. The model of outer domain for matched asymptotic expansion
calculations and script that maps the load on the crack faces is attached, too. The models are parametric, so
geometry, loads and bi-material combinations can be widely varied. The outputs of these models are text files
which contains parameters about the models, nodal displacements and deflections field.

Next group of scripts was written in Python script using python libraries such as Numpy and Scipy. The
Python scripts load the FE data and do the analytical part. Individual scripts calculate the eigenvalues, construct
the eigenvectors and create the eigenfunctions. Another script performs the overdeterministic method or calculates
the Psi-integral to obtain generalized stress intensity factors. Next it plots the stress or displacement distribution.
All the data in tables throughout the dissertation and almost all the pictures were created by Python scripts.
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