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Abstract 
The presented dissertation deals with general singular stress concentrators (GSSC) namely with a sharp notch also 
known as a V-notch, a sharp bi-material notch and a sharp material inclusion. The review section briefly outlines 
the Kolosov-Muskhelishvili complex potential theory of the plane elasticity applied on fracture mechanics problems. 
Next, the linear elastic fracture mechanics of cracks, V-notches, bi-material notches and bi-material junctions 
is discussed. The review also includes the crack initiation direction and the stability criteria of the maximum 
tangential stress, the strain energy density factor and the coupled stress-energy criterion. In the following text, 
limits of the single parameter and advantages of the multi-parameter fracture mechanics are presented. The next 
section introduces methods to determine the necessary parameters to describe the stress and displacement field 
near the GSSCs. The parameters include the eigenvalue Afc and the generalized stress intensity factor Hk- The 
Afc is determined as an eigenvalue problem, while the methods to calculate the H). are the ^-integral and the 
overdeterministic method. Both the methods are applied on the studied GSSCs and mutually compared. Finally 
the criteria for crack initiation in the GSSCs are proposed in the multi-parameter form. The crack initiation 
direction and the stability conditions are predicted for particular problems in numerical examples. The failure 
forces for a V-notch are predicted by above mentioned criteria and compared with experimental data found in 
literature. In following section methods to analyze multi-material problem are shown. The final section summarizes 
with means of the crack initiation and propagation near the sharp material inclusion. 

Keywords 
Fracture mechanics, general singular stress concentrator, bi-material notch, sharp material inclusion, composite 
material 

Abstrakt 

Předkládaná disertace se zabývá obecnými singulárními koncentrátory napětí a to zejména ostrým vrubem neboli 
V-vrubem, ostrým bi-materiálovým vrubem a ostrou materiálovou inkluzí. V první části práce je stručně nastí­
něna Kolosovova-Muschelišviliho teorie komplexních potenciálů rovinné pružnosti aplikovaná na problémy lomové 
mechaniky. Dále je diskutována lineární elastická lomová mechanika trhlin, V-vrubů, bi-materiálových vrubů a 
bi-materiálových spojů. V rešerši jsou dále zahrnuta kritéria směru iniciace trhliny i její stability a to kritérium ma­
ximálního tečného napětí, faktor hustoty deformační energie a sdružené napěťově-energetické kritérium. Následují 
text uvádí omezení jednoparametrové lomové mechaniky a výhody její multiparametrové formy. Další část předsta­
vuje metody pro určení nezbytných parametrů pro popsání pole napětí a posuvů v blízkosti obecného singulárního 
koncentrátoru napětí. Tyto parametry zahrnují vlastní číslo Afc a zobecněný faktor intenzity napětí iřfc. Vlastní 
číslo Afc je určeno jako řešení problému vlastních hodnot zatímco metody pro určení Hk tvoří ^-integrál a me­
toda přeurčitosti. Obě zmiňované metody jsou aplikovány na zde studované obecné singulární koncentrátory napětí 
a vzájemně porovnány. Kritéria pro vznik trhliny v obecném singulárním koncentrátoru napětí jsou navržena. V 
rámci numerických příkladů jsou předpovězeny směry iniciace trhliny a podmínky stability pro konkrétní problémy. 
Kritické síly pro V-vrub jsou předpovězeny pomocí výše zmíněných kritérií a srovnány s experimentálními daty 
v literatuře. V následující části jsou ukázány metody analýzy multi-materiálového problému. V závěru práce jsou 
shrnuty způsoby iniciace a šíření trhliny v blízkosti ostré materiálové inkluze. 

Klíčová slova 

Lomová mechanika, obecný singulární koncentrátor napětí, bi-materiálový vrub, ostrá materiálová inkluze, kompo­
zitní materiál 
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Figure 1: Locations in a composite material where a singular stress concentration is expected. 

1. Introduction 
Fracture mechanics has been developed following the fact that the majority of components and structures in engi­
neering application contain cracks or crack-like flaws [1]. Linear elastic fracture mechanics (LEFM) uses methods 
of the linear elastic stress analysis of a cracked part to determine the conditions under which a crack, or crack-like 
flaw will extend. The linear elastic analysis of a body with a crack shows that the stresses around the crack tip 
vary according to r - 1 / 2 where r is the distance from the crack tip. It is obvious that the elastic stresses become 
unbounded as r approaches the crack tip [2, 3]. 

As a result of the near tip stress field character of a crack, it is among so called singular stress concentrators. A 
crack can be conceived as a special case of a sharp V-notch with an opening angle equal to zero. It has been found 
that the stress field in the vicinity of a sharp V-notch tip (with a non-zero opening angle) also has the singular 
character, nonetheless different from the case of a crack [8]. The singular stress concentrators discussed above 
originate from a discontinuity in geometry. However, singular stress character in a body different from a crack can 
also arise from a material properties discontinuity. This may be the case of a bi-material junction which is a model 
for a sharp polygon-like inclusion embodied in a parent material. A n ultimate case of a singular stress concentrator 
a sharp bi-material notch is the case combining both geometrical and material discontinuities. 

Nowadays we encounter a rising number of components and structures made out of composite materials. The 
composite materials (or composites) consist of two or more combined constituents that are combined at a macro­
scopic level [6]. One constituent is called the reinforcing phase and the one in which the reinforcement is embedded 
is called the matrix as shown in Figure 1. The reinforcing phase material may be in the form of fibers, particles, 
or flakes. One of the reasons to choose composites is that for example monolithic metals and their alloys cannot 
always meet the demands of today's advanced technologies. Only by combining several materials can the perfor­
mance requirements be met as we can see in the aerospace industry where a combination of supreme structural 
characteristics and low weight is critical. On the other hand, the very nature of composites (the material properties 
mismatch) brings higher complexity of their description in terms of fracture mechanics. 

Advanced studies of the linear elastic fracture mechanics of cracks show an influence of particular singular and 
non-singular stress series terms on the fracture behavior of solids with a crack. It is shown in literature that the 
first non-singular (constant) term of Williams' stress series [9] called T-stress plays an important role within crack 
behavior assessment both in the case of brittle fracture and in the case of fatigue crack propagation [11, 12, 13, 14]. 
Similarly, the effects of the T-stress on interfacial cracks in isotropic bi-materials were studied [15]. 

Contrary to this, the approaches that will be able to assess the influence of the non-singular stress terms on a 
fracture initiation in the general singular stress concentrators are in the focal point to be developed. The following 
stress concentrators are considered: the sharp V-notch in isotropic material, the sharp bi-material notch composed 
of two isotropic materials, and the bi-material junction composed of two isotropic materials. In the case of the 
general stress concentrators, the influence of the non-singular terms has not been studied sufficiently, but it is 
expected as well. The stress concentrators mentioned above can model a number of typical dangerous points of 
components usually responsible for their failure. 

Depending on loading conditions and geometry of a component with the stress concentrator, a generalized 
constraint can have a positive or negative influence. It can counteract crack initiation or it can stimulate it. Thus 
assessment not covering the influence of the constraint provides overestimated or underestimated results. In the 
first case the new approaches can save a certain volume of material, while in the second case the new stability 
assessment can prevent a fatal damage. Thus the results of the future research can raise the credibility and extend 
the application possibilities of the fracture mechanics. 

As mentioned above, the general singular stress concentrators (GSSCs) exhibit a stress distribution at their tip 
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Figure 2: Sharp material inclusion tip where a singular stress concentration is expected. 

similar to a crack in linear elastic fracture mechanics. Within the description of the stress distribution in the form 
of an infinite series the stress singularity exponents differ from V2. Similarly, the higher order terms appearing in 
the stress distribution of the general stress concentrators have their generalized form (e.g. the exponent of the first 
non-singular term differs from 0). 

Some of crack initiation criteria of generalized stress concentrators require establishing a specific distance from 
the tip of the concentrator, which depends on material characteristics (the strength and fracture toughness of the 
material [23] or the size of material grain, [18, 19]). In fact, these distances are in some cases much larger than 
the characteristic dimension of the domain of prevailing singular stress terms [16, 17, 21, 22]. Consequently, the 
influence of the non-singular stress terms could be significant and emphasizing the necessity of their study is due to 
good understanding of fracture processes at the sharp bi-material notch or the sharp material inclusion tip, Figure 
2, studied within the dissertation. 
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Figure 3: A coordinate system located at the crack tip and the Cartesian stress field components. 

2. Review 

2.1. Methods of the Kolosov-Muskhel ishvi l i complex potential theory for plane elas­
t ici ty 

Among various mathematical methods in plane elasticity, the complex potential function method developed by 
Kolosov and Muskhelishvili is one of the most powerful and convenient methods to treat two-dimensional problems 
[3, 4, 5]. In the complex potential method the displacement and stresses are expressed in terms of analytical 
functions of complex variables. The basic equations of elasticity consist of equilibrium equations of stresses without 
presence of body forces in the form of: 

^ 1 + ^ = 0, (1) 

daxV davv _ q 
dx dy 

where the individual stress components together with the coordinate system located at the crack tip are depicted 
in Figure 3. The relations between strains and displacements are: 

dux duy 1 / dux duy 

and finally the stress-strain relations are: 

®xx — A (&xx ~r~ &yy) ~t~ ^f-l^xx: (3) 

^yy ^ i^^xx ~r" ^yy) ^l-^^-yy> 

Oxy ^f-U^xy 

The symbol ji stands for the shear modulus and A* is given by: 
(3 - K) 

(K- 1) 

3 — 4^ plane strain 
palne stress 

In the expression above v is Poisson's ratio. It is common also to use the equation (3) in inverted form, which is: 

where K is Kolosov's constant defined as: 

^ (^yy ^zz)\ , ^xy -a XI) • 
1 

j£ i~ - \~ y-y • ~ i ~-*>y 

— [ayy-v(axx+azz)}, eyz = —ayz, (4) 

1 r M 1 

\Vzz — v (axx + (Jyy)\ , ezx = —ozx hi L\x 
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Figure 4: A coordinate system located at the crack tip and the polar stress field components. 

Throughout presented dissertation, materials are always represented by linear elastic material model. The compat­
ibility equations of strains can be obtained from equation (2) by eliminating displacements as follows: 

dy2 + dx2 dxdy (5) 

By using the stress-strain relations (4) and the equilibrium conditions (1) the compatibility condition (5) above can 
be expressed in terms of stresses as: 

where V 2 is the Laplace operator given by: 

d2 d2 

dx2 dy2 

0, 

The Airy's stress function <3> is defined as: 

ö 2 $ 
dx2 ' dy2 ' dxdy 

Using the relations above, the equilibrium equations (1) are automatically satisfied and the compatibility equation 
(5) becomes: 

V 4 $ 0. (6) 

Any function which satisfies the equation above is called a bi-harmonic function. Once the Airy's stress function is 
known, the stresses, strains and displacements are expressed through equations (3) and (2) respectively. The solution 
for the stress field has to satisfy both the equation (6) above and the boundary conditions. The main difficulty 
may arise in finding the stress function which satisfies the boundary conditions of interest [1]. The problem can 
be approached in reverse order, that is we can first postulate the function <3>(z) and then examine what boundary 
conditions are satisfied. Finally, the complex potential representation of the Airy's stress function [3, 4, 5] is given 
by: 

$ = ®{zn(z) + x(z)}, 

2$ = zSl(z) + zSl(z) + x(z)+x(z), 

where O(z) and x(z) a r e analytic functions (also known in literature as complex potentials). Complex variable is 
z = x + iy for Cartesian coordinate system and z = r(cos8 + isin#) = re10 for polar coordinate system as shown 
in Figure 4. The line over the symbols stands for the complex conjugate and the symbol 5R {z} represents the real 
part of the complex number z. Considering u>{z) = x ' ( z ) ; where the symbol ' denotes the derivative by variable z, 
the Kolosov-Muskhelishvili formulas for general plane problems are: 

&xx i ®yy 

^yy ' ^^xy 

2fi{ux + iuy) 

45R{0'(z)}, 
2 { ž O " ( z ) + W

, ( z ) } , 
KQ,(Z) — zCl'(z) — üi(z). 

(7) 
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Figure 5: Zones surrounding the crack tip. 

By simple algebraic operations and the choice of polar coordinate system the set of equations (7) can be rewritten 
into a form used through the dissertation [43]: 

arr+iar6 = O'(z) + 0'(z) - zfi"(z) - w'(z), (8) 
aee - iare = fi' (z) + O' (z) + zQ!'{z) + w'(z), 

ur+iue = — e~l9 [KQ(Z) — zfi'(z) — UJ(Z)] . 

By adding the complex conjugate of first equation of (8) to the first equation of (8) we obtain the expression for the 
radial stress component. Similarly we can obtain any individual stress or displacement component. The resulting 
equations are as follows: 

arr = n'(z) + n'(z)-^n"(z)-^n"(z)-^uj'(z)-^'(z), (9) 

aee = fi' (z) + JV (z) + | f i " (z) + | f i " (z) + \j (z) + \j (z), 

ard = £ f i " ( z ) - £ f i " ( z ) + I a , ' ( z ) - i a > ' ( z ) ) 

ur = —\e-ie \K£1 (Z) - zO (z) - ui (z)l + eie [KO (Z) - zf i (z) - w (z)l} , 

M 0 = ^ - {e~ie [KO (Z) - zSl (z) - LO (Z)] - e i e [KO (Z) - zO (z) - w (z)] } . 

2.2. Fracture mechanics of a crack in homogeneous media 

Linear elastic analysis of a cracked body shows that for the stresses near the crack tip it follows that: 

1 

where r is the distance from the crack tip as shown in Figure 3 or Figure 4. It is obvious that —> oo as r 
approaches the crack tip [1, 2, 3]. A fundamental concept of fracture mechanics is to accept the theoretical stress 
singularity at the crack tip but not to use stress directly to determine failure or crack extension. This is based on 
the fact that the stress in the vicinity of the crack tip has a limit which is the yield stress or the cohesive stress 
between atoms. The singular stress field is a convenient representation of the actual finite stress field if the actual 
discrepancy between the two lies in a small area near the crack tip, in a so called core region as shown in Figure 
5. This concept is known as small-scale yielding. Thus the validity of Hooke's law in all areas of the body except 
the core region is the basic assumption of Linear Elastic Fracture Mechanics (LEFM) . When a load is applied to 
a cracked body, the crack surfaces move relative to each other and there are three possible modes of crack surface 
displacement as shown in Figure 6. These are: 

• Mode I, the opening mode when the opposing crack surfaces move directly apart, Figure 6a. 

11 
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Figure 6: Basic fracture modes, (a) Mode I, opening (b) Mode II, in-plane shear (c) Mode III, out-plane shear 

• Mode II, the in-plane shear when the crack surfaces move over each other perpendicular to the crack front, 
Figure 6b. 

• Mode III, the out-plane shear when the crack surfaces move over each other parallel to the crack front, Figure 
6c. 

A general case of crack tip surface displacement can be described by superimposing the three modes. In practice, 
most cracks tend to grow in Mode I, [1]. In order to describe the stress field in a cracked body a suitable Airy's 
stress function has to be found as discussed in sub-section 2.1. Consider an infinite plate with a crack along the 
x-axis as shown in Figure 7. The solution proposed by Westergaard begins by defining the stress function Z{z) in 
the following form: 

Z(z) = 2$'(z) 

If both the loading and geometry are symmetrical about the ic-axis, then axy = 0 along y = 0 and it follows that: 

® XX 
ayy 

® xy 

K{Z(z)}-y^{Z'(z)}-A, 
K{Z(z)}-y<3{Z'(z)} + A, 
-y&{Z\z)}, 

where A is a real constant. The symbol denotes the imaginary part of the complex number z. The suitable 
function for given geometry and boundary conditions is: 

*(z) = aoo[z-a2(z2 -a2)-1'2)]. 

Then the near-tip solution for the stress components is given by: 

: COS -
fhrr 2 
KY 9 
, cos -

JŽŤřř 2 

1 — sin - sin — , 
2 2 
9 39 

1 + sin - sin — 
2 2 

Ki 9 9 39 
axv = cos - sin - cos—. 

v Vfr^ 2 2 2 

The detailed determination of equations above can be found in [1, 3]. The near-tip displacements are obtained 
similarly, therefore: 

8/J.1T 
(2K — 1) cos - — cos — 

^ 0 30" (2K + 1) sin - — sin — 
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Figure 7: Central crack in an infinite sheet under uniform biaxial tension. 

Thus the formal definition of mode I Stress Intensity Factor (SIF) is: 

Ki = l im V2nrayy (9 = 0). 

Simple analysis reveals that the unit of SIF is [Ki] = M P a • m i . The Williams's stress function [8, 9] is a generalized 
form of the Westergaard's stress function [1], stresses are expanded into a series. The Airy's stress function has the 
following form: 

fc=0 

where Afc is eigenvalue and Fk (9) is corresponding eigenfunction. The solution of the bi-harmonic equation (6) is 
given by: 

Fk(9) = A f c sin(A f c + 1)9 + Bkcos(\k + 1)9 + Cksm(\k - 1)9 + Dkcos(\k - 1)9. 

For Mode I crack problems, the constants Ak and Ck are zero. It can be shown [3] that for the nontrivial solution 
of the remaining constants Bk and Dk the characteristic equation of the eigenvalue Afc is: 

sin (2Afc7r) = 0. 

Thus the roots 1 of this equation are Afc = -|, k = 1, 2 , . . . Finally the Williams's stress series can be written as [2]: 

= fi3(9) + J2kkrk2gi3k (9), 
/ 2 n r k=0 

where the fij (9) and gijk(9) are eigenfunctions. Analysis of stress term behavior when r —> 0 indicates that the 
first singular term becomes unbounded, the term of stress intensity factor kk with k = 0 is constant and the other 
higher terms (k > 0) disappear. Nevertheless, as for Westergaard's solution, the stress field in the vicinity of a crack 
tip is dominated by the leading term of the Williams's stress function. 

Determination of the stress intensity factors 

In general there are two methods how to determine SIFs by finite element analysis of a homogeneous body with a 
crack. In the first case the mid-side nodes of a special triangular plane element are moved to the 1 /4 points as shown 
in Figure 8. Such a modification results in a 1/\/r strain singularity, which enhances the numerical accuracy of the 
solution. Then the numerical determination of the stress intensity factor by fitting into the analytical relations is 
usually a built-in part of an F E system postprocessor. The second widely used option of SIF calculation without 
a need for special elements is its determination by the contour integral. The path integration sufficiently far from 
the singular point mitigates incorrect results of F E M in the closest vicinity of the singular stress concentrator. 

1 O n l y the positive values of Afc are considered. The negative values would lead to infinite displacements at the crack tip and Afc — 0 
leads to unbounded strain energy [3]. 

13 
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crack 

Figure 8: Special triangular elements with shifted mid-side nodes. 

Criteria of crack propagation direction 

Maximum tangential stress criterion. The path of a crack in homogeneous material is sometimes curved. 
Generally we can say that a crack tends to propagate in Mode I of loading [1, 2]. Thus for the case of a crack 
subjected to a combined loading mode, the crack deflects towards the direction corresponding to a normal loading 
mode. The criterion of the maximum tangential stress used for determination of crack propagation direction is 
based on the assumption that a crack will propagate in the direction where the stress opening the crack will reach 
its maximum [26]. The angle 9Q of further crack propagation must meet the following conditions: 

d2(T00 
de2 

< 0. 

Strain energy density factor. Another method to predict crack propagation direction is to use Sih's Strain 
energy density factor (SEDF), it states that the crack will propagate in the direction of minimal value of SEDF 
[571: 

a s 
de 

o, 

-w) > °-
u o J 9=90 

where the SEDF can be calculated using stress components as: 

E = r [2aggarr(k-l) + (a2

00 +a2

r)(k + l)+4a2

0] - J - (10) 

and k is constant defined: 

\ — 2v plane strain 
palne stress 

Stability criteria 

Critical value of stress intensity factor. A crack does not propagate if the value of the stress intensity factor 
K\ is below its critical value -Kicrit- The critical value i f i c r i t can be represented by the fracture toughness K\Q for 
cases of brittle fracture or by the threshold value ifnh for fatigue crack propagation2. Then the stability criterion 
is: 

Ki < Klciit. (12) 
2 I n the case of fatigue crack propagation, the stability condition is written AKi < Kj^, where the AKi is the stress intensity factor 

range. The condition is valid for stress ratio R = 0. 
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Figure 9: The sharp homogeneous notch with a Cartesian and polar coordinate system at its tip. 

Critical value of strain energy density factor. The Sih's stability criterion states, that the crack will prop­
agate when the SEDF E reaches its critical value £ c r j t : 

E < E c r j t . 

The critical value of SEDF £ c r j t is material parameter, which can be determined in relation to the critical value of 
-Kicrit for given material: 

E c r i t = (13) 

2.3. Fracture mechanics of V-notch and bi-material notch 
In the following we consider the geometrical and material configuration of a sharp homogeneous notch or sharp 
bi-material notch as shown in Figure 9 and Figure 10 respectively. In following text we will intentionally omit the 
word sharp, however both the homogeneous and bi-material notch are always considered sharp, i.e. with a zero 
notch radius throughout this dissertation. Please note that the sharp homogeneous notch is often referred in the 
literature by simplistic V-notch which will be also used in this text. The geometry of a V-notch is characterized by 
the angles 71 and 72 and complementary opening angle 2a. The case of a bi-material notch has three geometric 
parameters 71, 72 and 73 and complementary opening angle 2a. The material properties are given by the elastic 
constants of Young's moduli and Poisson's ratios. The solution mostly presupposes the approximation of plane 
strain or plane stress. For the case of a bi-material notch a perfect bonding (displacement and traction continuity) 
is assumed at the interface. The material characteristics, therefore, change by step at the interface. Furthermore, 
the notch surfaces are traction-free. Stress distribution in the case of a V-notch or bi-material notch [17, 27] is given 
by: 

a* = J2^7=r~Pkf^(0) (14) 
fc=i ^ 

where the indices = (r,9) are polar coordinates. The symbol stands for the Generalized Stress Intensity 
Factor (GSIF) with the unit of [H^] = M P a . mPk. The fijk (0) is the angular eigenfunction, which is dimensionless. 
The stress singularity exponents are given by: 

Pk = 1 - A f e 

where A& is the fcth eigenvalue of the problem, which is real or complex number. In most of the geometrical and 
material configurations of V-notches and bi-material notches there are two real stress singularity exponents p\ and 
P2 in the interval (0,1) corresponding to the singular terms of the series [28]. Higher order eigenvalues can be either 
real or complex numbers. Since its real part is greater than one, these eigenvalues correspond to the non-singular 
higher order terms. The Figure 23 on p. 35 shows the dependence of real and imaginary part of the eigenvalues A^ 
on the notch opening angle 2a for the V-notch. Similarly in Figure 24 on p. 36, the resulting eigenvalues for the 
bi-material notch are depicted. 
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Figure 10: The sharp bi-material notch with a Cartesian coordinate system at its tip. 

Determination of the stress terms order 

As mentioned above we consider that notch surfaces are traction-free and the interface between the materials is 
perfectly bonded (ideal adhesion). The eigenvalues of V-notches or bi-material notches are gained from a numerical 
solution of so the called characteristic equation depending on the geometry and material properties of the notch 
[29, 30, 31]. A n effective tool to describe problems of isotropic plane elasticity is the Muskhelishvili's complex 
potential theory [4, 5, 7]. Another advantage of the stress-displacement field description by the complex potentials 
is the effortless handling of the complex eigenvalues and the corresponding complex stress singular and non-singular 
exponents. For the case of a bi-material notch the characteristic equation originates from equations enforcing zero 
stress at the i th notch free surfaces, traction (both agg and arg) and displacement continuity at the interface. In the 
above-mentioned (and other) publications the exponents corresponding to the singular stress terms are described. 
The stress exponents of higher order (non-singular) terms will be determined within the dissertation from a set 
of the boundary conditions corresponding to a particular problem [32]. The determination is shown in detail in 
sub-chapter 4.2 on p. 27. 

Determination of the stress intensity factors of particular stress terms 

Methods for determination of the stress intensity factors of cracks are generally available in F E M commercial 
systems. However, in the case of GSSCs, no simple method incorporated in F E M systems exists, and the amplitudes 
of the stress terms must be determined via direct or integral methods e.g. [33, 36, 37, 38] . Both direct and integral 
methods are combination of F E M and analytical approaches. For the case of determination of non-singular terms 
the direct methods must be further modified. The direct method called the overdeterministic method (ODM) is 
based on the solution of overdetermined system of linear equations by least-squares method [36]. The O D M has 
been chosen for the study especially because of its minimal requirements for the F E software (there is no need to use 
any special crack finite elements like the one depicted in Figure 8). The system of linear equations can be written: 

F[2mxn]H[„] = U [ 2 m ] , 

where F [ 2 m X n ] is the matrix composed of the analytically determined eigenfunctions for displacements in radial 
and tangential direction. H[„] is the unknown vector of GSIFs. On the right hand side stands the vector up m ] of 
radial and tangential displacements calculated by means of F E M 3 . Since 2m > n the system is overdetermined as 
stated above and the unknown vector H[ n] is calculated as a least square solution. In principal, the GSIFs can be 
determined by taking both displacements and stresses from F E A . In such cases the matrix F [ 2 m X n ] has to contain 
the eigenfunctions for both displacements and stresses. However, the displacement results from displacement based 
F E system should be more accurate than stress results, which are in that case derived from displacement results. 
Therefore the O D M based on displacement results only is sometimes preferred. See p. 44. 

A n alternative method of choice to determine GSIFs is the two state path independent integral, also called 
"J-integral. The successful application of the 'I'-integral is conditioned by the knowledge of the so-called regular and 
auxiliary solutions of the above-mentioned eigenvalue problem, [39], following from the stress analysis of the notch 

3 Index m does not represent material number m , it is used due to lack of useful indices. 
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tip. By means of the 'I'-integral fcth GSIF can be calculated as: 

k *(rx*fijk(0),r-x*frjk(e)y 

where u F E is the F E M solution, fijk(9) is the eigenfunction by ordinary analytical solution and f^k(9) is the one 
given by auxiliary analytical solution. Both analytical solutions will be described via Muskhelishvili's formalism. If 
U and V are two elastic solutions, the 'I'-integral is defined as: 

V(y,V) = I [ (a(U)nV - a(V)nU)ds, 
2 Jr 

where n is a normal pointing towards the origin [23]. Calculations of GSIFs based on the 'I'-integral method require 
extracting the F E M results along the path sufficiently far from the notch tip, where the F E M results are rather 
accurate (which is also the region where not only the singular terms of the stress expansion are dominant). See p. 
38. 

Criteria of crack initiation direction and stability criteria 

A V-notch, bi-material notch and a crack in homogeneous material are all the singular stress concentrators. Thus 
we suppose that the mechanism of crack initiation in a V-notch or bi-material notch is the same as the mechanism 
of crack propagation in single material. The criteria of the direction of crack initiation at a V-notch or bi-material 
notch tip and the criteria of the stability of a V-notch or bi-material notch are derived in analogy to the approaches 
of a crack in homogeneous material. The criteria of the direction of crack initiation in these cases will be described 
in detail in sub-chapter 4.2 on p. 55. Note that the definition of the stability of notches means determination 
of conditions under which a crack initiates from the notch tip. Contrary to the case of a crack, in the case of a 
V-notch or bi-material notch, the stress singularity exponent changes as a step function during crack initiation. 
The stress singularity exponent of the initiated crack differs from the original exponent of a V-notch or bi-material 
notch. Moreover, in the case of a bi-material notch, each stress term in (14) represents an inherently combined 
loading mode (the function fijk (9) contains both odd and even terms). Note that the dimension of generalized 
stress intensity factors is [Hk] = M P a . mPk and depends on pk. A l l these facts lead to the conclusion that it is not 
possible to describe the behavior of a V-notch or bi-material notch by applying the standard (classic) approaches 
of the (crack) fracture mechanics. The general principle of stability assessment of a GSSC was introduced in [41]. 
The classic fracture mechanics approach of comparison of the stress intensity factor K\ with its critical value KiCIlt 

(12) is generalized to the following relation: 

Hi (<7 a p pl) < -Hl,crit (-Klcrit) • (15) 

The stability condition can be understood in the following way. A crack is not initiated at the notch tip if the 
value Hi is lower than its critical value H l c i i t . The value Hi (cappi) follows from a numerical solution and depends 
mainly on the level of external loading and on the global geometry. Its critical value i?i,Crit depends on the critical 
material characteristic Kic or .Kith and has to be deduced with the help of the controlling variable L, see [41]. 
The controlling variable L needs to have a clear and identical physical meaning in the case of assessing both a 
crack in homogeneous material and a V-notch or bi-material notch. With respect to particularities of a V-notch 
or bi-material notch following controlling variables L were chosen: (i) the mean value of the stress component agg 
and (ii) the mean value of the strain energy density factor E . These two have been found suitable controlling 
quantities to derive generalized multi-parameter fracture mechanics (see below) of V-notches or bi-material notches 
in the dissertation. The alternative approach is to use (iii) coupled stress-energy criterion by Leguillon [23], which 
states that both the energy and stress criteria are necessary conditions for fracture but neither one nor the other 
are sufficient. The fracture occurs when the two criteria are fulfilled simultaneously, together they form a sufficient 
one. Wi th consideration of single real governing term of the stress series, the Leguillon criterion can be written 4: 

Hi < Gc y ( *c 
A(2a,60)J \fgg(90) 

where Gc is material toughness and ac is material strength. The coefficient A (2a, 9Q) is a scaling term dependent on 
local geometry (2a) and the direction of crack initiation 9Q. Its determination is further commented in sub-chapter 
4.2 on p. 59. 

Single real governing singularity term is assumed, which occurs for instance in the case for a symmetric loading [23]. 
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Figure 11: Bi-material junction as a model for a sharp material inclusion. 

2.4. Fracture mechanics of sharp material inclusion 
The literature review of the sharp material inclusion fracture mechanics revealed that only limited research had 
been focused on this field of interest. In the studies found, attention is mostly paid to the order of singularity 
determination of a sharp material inclusion model, a bi-material junction, which is the special case of a multi-
material junction [42, 43]. Even fewer studies regarding stress series terms calculation have been found [44] and 
none that would describe crack initiation direction or a stability condition formulation. Establishing these will be 
in the main focus of the dissertation. The geometry of a bi-material junction as shown in Figure 11 is characterized 
by angles 70, 71 and 72. Analogically to the case of the sharp notch, complementary opening angle 2a is defined. 
The joint has two interfaces and no free surface. The material is considered as linear elastic and fully described by 
Young's moduli and Poisson's ratios in terms of elasticity. Perfect bonding is assumed at the interfaces. The material 
characteristics change by step at each interface. Displacements and tractions are assumed to be continuous. The 
solution mostly presupposes the approximation of plane strain or plane stress. In this dissertation, the bi-material 
junction tip is always presumed to be sharp. The stress distribution in the case of a bi-material junction is given 
by the asymptotic expansion [42]: 

°H = | = r A ' - V « i ( » ) + | = ^ ( » ) + i ^ 1 / « 8 ( « ) + . . , (16) 
V27T V27T V27T 

where the indices = (r,9) are polar coordinates. The symbol Hk again stands for the GSIF. Please note 
that this expansion is identical to the one for a bi-material notch, just the exponents of the singularity are not 
denoted by symbol pk = 1 — Afc anymore. Generally, the eigenvalue Afc is a complex number. For Afc satisfying 
0 < 5R (Afc) < 1, the corresponding stress term is considered singular. For Afc where 1 < 5R (Afc) the corresponding 
stress term is considered non-singular. The dependence of the eigenvalues for the bi-material junction of given 
bi-material combination on opening angle 2a has been calculated for one particular bi-material configuration in 
Numerical example A . It is shown in a Figure 63 shows on p. 63. 

Determination of the stress terms order 

We consider that the interface between materials is perfectly bonded (ideal adhesion). The eigenvalues are gained 
from a numerical solution to the characteristic equation depending on the geometry and material properties of a 
bi-material junction [42, 43, 44]. Similar to the case of a V-notch or bi-material notch, an effective tool to describe 
problems of isotropic plane elasticity is the Muskhelishvili's complex potential theory [5, 43]. The characteristic 
equation originates from equations enforcing stress and displacement continuity at the i th interface The stress 
exponents of singular and higher order (non-singular) terms will be determined within the dissertation from a set 
of the boundary conditions corresponding to a particular problem as shown in detail in sub-section 4.3 on p. 70. 

Determination of the stress intensity factors of particular stress terms 

As in the case of a V-notch and bi-material notch the overdeterministic method [36] is an appropriate method 
to be used for stress terms determination. A n alternative method of stress terms determination for the case of 
a V-notch or bi-material notch, the path independent ^-integral can also be applied to the case of a bi-material 
junction. We previously assumed that this integral method cannot be applied, because of the non existing free 
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Figure 12: Crack terminating at the inclusion/matrix interface. 

surfaces. However by prof. Leguillon it has been shown that it can indeed be applied as it will be explained 
later in the text. Nevertheless, to author's best knowledge, these two methods for GSIFs determination has been 
applied to V-notches or bi-material notches only. Its application to multi-material junctions will be a subject of the 
dissertation. A method of stress intensity factor determination based on the quantity of n was proposed in [44], 
but this method does not give reliable results when all of the eigenvalues are small. See details on p. 75 for the \&-
integral and p. 82 for the O D M . 

Criteria of crack initiation direction and stability criteria 

A sharp material inclusion is regarded as a singular stress concentrator, which is represented by a model of a bi-
material junction. As in the case of a V-notch or bi-material notch the criteria of the direction of crack initiation 
near the bi-material junction tip and the criteria of the stability of bi-material junctions are derived in analogy to 
the approaches of a crack in homogeneous material. Again, the mechanism of crack initiation from the bi-material 
junction tip is presumed to be identical to the mechanism of crack propagation in single homogeneous material. The 
stability condition of a bi-material junction suggests the condition when the crack is initiated from the bi-material 
junction tip. Analogical to the case of a V-notch or bi-material notch, the stress singularity exponent changes as 
the step function during crack initiation. The stress singularity exponent of the initiated crack differs from the 
original exponent of a bi-material junction. Since an inherently combined loading mode is observed in majority 
of cases it is generally speaking not possible to separate the modes from each other (possible only in e.g. the 
symmetrically loaded symmetrical bi-material junction). Moreover, the dimension of generalized stress intensity 
factors is [Hk] = M P a . m A * _ 1 a n d depends on At - 1. The discussion above indicates that the classic approaches 
of L E F M cannot be applied directly and have to be modified. The stability assessment of a GSSC as it is defined 
in (15) for notches can be utilized for the case of a bi-material junction. Then the controlling quantity L regarding 
the identical physical meaning for a crack in homogeneous material and a bi-material junction has to be chosen, 
approaches (i) or (ii). Similarly as in the case of a V-notch and bi-material notch, coupled stress-energy criterion 
can be used to assess the stability of a bi-material junction, (iii). Note that this model will contribute to a complete 
description of fracture behavior near the sharp material inclusion (see Figures 83-86 on p. 96). The following four 
models can be utilized: 

• interfacial crack 

• crack with its tip at a bi-material interface (see Figure 12) 

• bi-material notch 

• bi-material junction 

The former two are described in literature, while the latter two are not described sufficiently and will be a part of 
the dissertation. See also the chapter 4: Methods on p. 24. 

2.5. Limitat ions of single-parameter fracture mechanics 

The area near the crack in which the stress field is precisely described only by a singular term is known as the 
^-dominated region (in the case of fracture mechanics of cracks). A similar region can be found near the notch tip 
or the bi-material junction tip, and it is again a region where the singular stress terms dominate as illustrated in 
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Figure 13: Region of domination of singular terms ahead of a crack and a notch or an inclusion, where stress is 
precisely described by singular terms only. Dashed line describes the singular terms solution. 

Figure 13. This region with dominating singular terms is one of the building blocks of classic fracture mechanics. 
However, some criteria based on the parameter of a specific distance from the singular stress concentrator tip require 
sufficiently precise knowledge of stresses further away from the notch tip. In fact, this means that a description 
only by a singular term may not be sufficient to describe stresses precisely enough and therefore to assess reliably 
the stability of a dangerous point. Single-parameter fracture mechanics is not sufficient in the case of assessment 
of crack initiation and propagation in silicate-based composites. In these quasi-brittle materials a fracture process 
zone ahead of a crack has a larger size (in the order of millimeters) than a plastic zone occurring in the case of 
metallic materials (typically from micrometers to 1 mm). For this reason, stress distribution must be described 
reliably in a larger area ahead of the stress concentrator by singular and non-singular terms. 

Another question arises in the case of a free-edge singularity, which can be modeled as the bi-material notch with 
the opening angle 2a = 180° and as illustrated in Figure 14. This geometrical configuration leads to the existence 
of one singular term. When considering only singular stress terms, the crack initiation direction 9o resulting from 
generalized fracture mechanics assessment depends on the ratio Hi /H\, see [32]. Thus for the existence of only one 
singular term, the crack initiation angle is independent of the direction of external loading. This fact should not 
correspond to reality. Further (non-singular) terms are a promising tool to cover the influence of the direction of 
external loading in this case. 

2.6. Mult i-parameter fracture mechanics 
Multi-parameter fracture mechanics of a crack (T-stress) 

In 1952 Williams described the stress field around the notch tip for linear elastic materials as a set of infinite series 
expansions [8]. If the notch angle becomes zero, i.e. 2a = 0° , the notch turns into a sharp crack as shown in Figure 
15. The Cartesian coordinate system form of the equations for a crack in mode I loading is given by: 

Figure 14: Free edge singularity, where 2a = 180°. The angles 71 = 90° and 72 = 180°. 
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Figure 15: Crack in homogeneous material. 
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The first term in each stress component expansion for which n = 1, is singular while the higher order terms are 
non-singular. The second term of Williams's solution for which n = 2, often called T-stress, is a constant term 
independent of the distance from the crack tip. The previous studies on the fracture assessment of cracked bodies 
have shown that in addition to the singular term, T-stress may significantly affect the process of crack growth. For 
example, Larsson and Carlsson in [45] investigated the effect of T-stress on the size and shape of the plastic zone 
in Mode I loading. Similarly, Betegon and Hancock in [46]. Ayatollahi et al. in [47] also showed T-stress could 
influence the initiation of brittle fracture. Furthermore, it has been shown that in loading Mode I T-stress is an 
important parameter for the stability analysis of the fracture trajectory (Cotterell and Rice, [48]). They suggested 
that for positive values of T-stress, the fracture trajectory gradually deviates from the line of the initial crack. In 
contrast, specimens with negative T-stress exhibit a stable fracture path. Calculations of non-singular terms were 
performed using various methods [49, 50, 51]. 

Multi-parameter fracture mechanics of V-notches and bi-material notches 

The effects of non-singular terms on the behavior of cracks have been assessed by many researchers. Despite this, 
almost no results have been reported concerning the role of non-singular terms in the stress distribution description 
around GSSCs such as V-notches or bi-material notches. The only notable works are related to K i m et al. and 
Ayatollahi et al. In [52] K i m et al. studied the effect of the first non-singular term of Mode I on the size and 
shape of the plastic zone around a V-notch. Ayatollahi et al. [27, 53] studied the influence of the presence of 
generalized T-stress (so called I-stress) on stress distribution in the case of a V-notch. In [54] Ayatollahi used the 
photoelasticity method to determine the higher order stress terms in bi-material notches. Further, they used the 
overdeterministic method for calculating the generalized stress intensity factors and the coefficients of the higher 
order terms for structures containing V-notches [36] and presented the first studies of evaluation of the eigenvalues 
of the first non-singular term for bi-material notches [55]. 

Multi-parameter fracture mechanics of a sharp material inclusion 

Multi-parameter fracture mechanics of a bi-material junction is not available in literature (according to our knowl­
edge). However, methods describing the behavior of GSSCs near the sharp material inclusion are required for a 
reliable description of their fracture behavior. Multi-parameter fracture mechanics is indispensable in the case of 
assessment of crack initiation and propagation in silicate-based composites. In this case the fracture process zone 
ahead of a crack has a larger size than a plastic zone occurring in the case of metallic materials. For this reason, 
stress distribution must be described reliably in a larger area ahead of the stress concentrator. Multi-parameter 
approaches provide a simple way to ensure this. 
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Summary of the state of the art 

This review briefly describes current trends in extension of the classic linear elastic fracture mechanics to general 
singular stress concentrators. Possible approaches of stress term order determination are discussed with the main 
attention focused on the Muskhelishvili's complex variable function methods and all of its benefits. In terms of the 
non-singular terms in the case of a V-notch and bi-material notch this short literature review seems to be rather 
complete. The above-mentioned papers deal with initial studies of this field of problems, but they cover only a 
small group of geometrical and material configurations of the concentrators. However, for the case of a bi-material 
junction in comparison to bi-material notches a noticeably smaller amount of research has been performed. A very 
limited number of studies has been concerned with the singular stress terms determination and none has been 
published regarding the effect of the first non-singular term on the fracture behavior of a bi-material junction. 
Further, there is no study dealing with the stability criteria or the criteria of crack initiation direction or dealing 
with it comprehensively both from the theoretical and numerical point of view. Finally, there are no studies or 
papers (as far as we know) concerning the effect of higher order terms on the fracture behavior of bi-material 
junctions (or sharp polygon-like inclusions in general). The works [27, 36, 52, 53, 54, 55] published in 2009-2011 
prove the topicality of the problem. Further it demonstrates that additional research of the problem will lead to 
innovative and up-to-date results contributing to higher credibility of fracture mechanics of general singular stress 
concentrators. 
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3. Aims of the thesis 
On the basis of the literature survey, the aims of the research conducted within the PhD study were proposed as: 

(i) formulation of multi-parameter fracture mechanics approaches for a V-notch or bi-material notch 

a. determination and study of stress exponents of singular and non-singular terms 

b. modification of methods for calculation of stress terms factors 

c. derivation of multi-parameter criteria for crack initiation direction 

d. derivation of multi-parameter criteria of stability 

(ii) formulation of multi-parameter fracture mechanics approaches to a bi-material junction 

a. determination and study of stress exponents of singular and non-singular terms 

b. modification of methods for calculation of stress terms factors 

c. derivation of multi-parameter criteria for crack initiation direction 

d. derivation of multi-parameter criteria of stability 

(iii) developing a complete description of crack initiation and propagation near a sharp inclusion 

The generalized stability criteria determining the crack initiation conditions will contribute to overall assessment 
of V-notches, bi-material notches and bi-material junctions. The influence of the subsumption of the non-singular 
terms in analytical-numerical assessment will be described both qualitatively and quantitatively. The research 
is motivated by the attempt to enhance the safety of constructions or parts made of composite materials. The 
application of the results of the research in structural design will lead to better utilization of material volume and 
thus e.g. to weight reduction of components. 
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4. Methods and results 

4.1. Fundamental equations to describe general singular stress concentrators 

In general, there are three different methods to analyze stress singularities in terms of the asymptotic analysis, 
namely the eigenvalue expansion method, the Mellin transform technique and the complex function representation. 
The application of the eigenvalue expansion method was studied by Williams on reentrant corners in plates in 
extension [8] and on crack problems in [9]. Mellin transform technique was applied on some problems by Hein and 
Erdogan in [10] and by Pageau et al. in [42]. A l l three approaches were clearly summarized by Paggi and Carpinteri 
in [43]. This dissertation deals from now on with the complex function representation method. Please recall the 
Kolosov-Muskhelishvili's equations (8) for plane elasticity on p. 11. We assume functions Slkm, (z) and iokm (z) of 
complex variable z in the form of: 

O f c m ( z ) = IkmzXk + LkmzXk, (17) 

iokm(z) = MkmzXk + NkmzXk. 

where the Ikm, Lkm, Mkm and Nkm are unknown complex constants. The subscript k denotes that the particular 
constant that belongs to fcth eigenvalue Afc. The m defines quantities referred to the material sector m. These com­
plex functions (17) are substituted into the Kolosov-Muskhelishvili equations for particular stress and displacement 
component, Eq. (9) on p. 11. The first and second derivative of the functions (17) and their complex conjugates 
are found in Appendix A . l on p. 105 as well as the detailed derivation of following expressions for stress (18) and 
displacement components (19) written below: 

(18) 

+ r ^ " 1 [-Ikm\k (A fc - 3) e - t f f a - 1 ) - L k m \ k (Xk - 3) e*9^*"1) - MkmXke-i9('Xk+1) - Nkrn\ké^Xk+1^]}, 

a r r k m (r, 9) = \ { r X k ^ [-IkmXk (Xk - 3) e « < ^ > - LkmXk (Xk - 3) - M k m X k e ^ - N k m X k e ~ ^ ] + 

a r e k m (r, 9) = i { r * - i [lkmXk (Afc - 1) - LkmXk (Xk - 1) + M k m X k e ^ - N k m X k e ~ ^ } + 

+ r^-1 [-IkmXk (Afc - 1) e - ' ^ ^ - 1 ) + LkmXk (A fc - l ) e

i e ( ^ " 1 ) - MkmXke-i9(Xk+1) + NkmXkei9(Xk+1)]}, 

(reekm (r, 9) = \{rXk~l [hmXk (Xk + 1) e 'W*- 1 ) + LkmXk (Xk + 1) e -* (** - i ) + MkmXkeie^Xk+1'> + NkmXke-ie^+1^ + 

+ r**" 1 [/ f cmAfc (Afc + 1) e - ^ - 1 ) + LkmXk (Afc + l ) e^**" 1) + MkmXke-^Xk+1) + NkmXke^Xk+^] }, 

(19) 

u r k m (r, 9) = -r^—{rXk \lkm (nm - Afc) e * ^ - 1 ) + Lkm (nm - Xk) e -* (** - i ) - Mkmeie^Xk+1'> - Nkme-ie^Xk+lA + 

+ rXk [lkm (Km - Afc) e-tft**-1) + Lkm (Km - Afc) e '*(**-D - Mkme~^Xk+^ - J W * ( A * + 1 ) ] }, 

u e k m (r, 9) = -r^—{rXk \lkm (nm + Afc) e 'W*" 1 ) - Lkm (nm + Xk) e -* (** - i ) + Mkmeie^Xk+1'> - Nkme-ie^Xk+lA + 

+ rXk [-Ikm (Km + Afc) e - ^ - 1 ) + Lkm (Km + Afc) e ^ ( ^ - i ) - Mkme~<Xk+1) + Nkme^Xk+l)] } 

Let's write down the most general, complex form of Williams's expansion describing stresses near a GSSC: 

ai3(r,9) = ^{Hkrx*-1fiik(0)+HkT**-1fijk(0)}. (20) 
fc=i 

By using the superposition principle we consider the equation which consists of fcth quantities (18) as an individual 
fcth contribution to the actual stress field near the concentrator. This contribution is represented as a fcth term of 
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the stress series (which contains fcth eigenvalue, eigenfunction and GSIF). A V-notch consists of one material only, 
therefore the index m is omitted. For the case of a bi-material notch or a bi-material junction m = 1,2. Please 
note that in this series we intentionally do not factor out the constant l/y/2n in contrast to form of the series of 
a bi-material notch as written in Eq. (14) on p. 15 or the series of a bi-material junction Eq. (16) on p. 18. We 
found the upper form of the series more convenient to work with. The conversion of GSIFs calculated in this work 
to form used sometimes in literature (the terms with out-factored constant l/y/2n) is easy. It just requires division 
of individual Hk by \/2K. In the case of a bi-material notch we define the angular eigenfunction and its complex 
conjugate for stress expansion in terms of material regions as: 

fijk{9) = lfijkl[e\ 7i < 0 < 72 

fijk (9) 
fijki (9) 7i<9<^2 

fijki (9) 72 < 9 < 73 ' 

where the angles 71, 72 and 73 are described in Figure 10 on p. 16. The case of a bi-material junction, the 
eigenfunction and its complex conjugate are defined: 

fijki (9) 7o < 9 < 71 
fnk(9) = r , (22) 

Vtí*2(0) 7 i < č < 7 2 

fijk (9) 
fijki (9) 70 < 9 < 71 
fijki (9) 71 < 9 < 72 

and the angles 70, 71 and 72 are described in Figure 11 on p. 18. By comparison of expansion (20) with equations 
(18) and (21) or (22) we define eigenfunctions fijkm (9) and fijkm (9) in terms of complex constants Ikm, Lkm, Mkm 
and Nkm as: 

(23) 

frrkm {9 - \\ - 4 „ A l ( A t - 3 ) e » < - . - - L l „ , A l ( A l - 3 ) e - _ Mkm\ke^Xk+1'> - Ňkm\ke-^x*+^] 

frrkm {9 = w -Ikm^k (Afc - 3) e ~ l S (^* _ 1 ) - LkmXk (Afc - 3) eie(xk-i) _ Ň k m X k e - i e { x k + i ) _ N k m X k e < ^ 

frdkm (9 
1 
2~i 

[hm\k (Afc - 1) e****-1) - L f c m Afc (Afc - 1) e~l 6^-1)+MkmXke^x^-NkmXke-M<-x^] , 

frdkm (9 
1 
2i [-Ikmh (Afc - 1) e"*9^*"1) + L k m \ k (Afc - 1 ) e ^ - 1 ) - M f c m A f c e - l f l ( ^ + 1 ) + Nkm\ké9(Xk+ 

feekm (9 - i [ 
/ f c m Afc (Afc + 1) e*^*- 1) + L f c m Afc (Afc + 1) e~i6 (^) + MkmXke^x^ + ŇkmXke-^x^] , 

feekm (9 = \\ Ikmh (Afc + 1) e " ' ^ ^ - 1 ) + Lkm\k (Afc + 1) é + Mkm\ke-^Xk+1) + Nkm\keie^+1)' 

Similarly the most general complex form of expansion describing displacement field a GSSC is: 

Ui(r,9) = ^{Hkrx«fik(9)+Hkrx«fik(9)}. (24) 

Again, a V-notch consists of one material only, therefore the index m is omitted, while for the case of a bi-material 
notch or a bi-material junction we have m = 1,2. Thus for a bi-material notch we define the angular eigenfunction 
and its complex conjugate for displacement expansion in terms of material regions as: 

fik (9) 
fiki (9) 7i < $ < 72 
jifc2 (9) 72 < 9 < 73 

(25) 
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fik (0) 
fiki (0) 71 < 9 < 72 
hk2 (0) 72 < 0 < 73 

where the distinct material regions are illustrated in Figure 10. For the case of a bi-material junction we write the 
eigenfunction and its complex conjugate as follows: 

hk(9) = \ h k l { d ) ^ < 0 < ^ \ (26) 
K ' I hk2 (9) 7i < 0 < 72 K ' 

fik (9) 
fiki (0) 7o < 0 < 7i 
hk2 (0) 7i < 9 < 72 

For the description of angles 70, 71 and 72 see Figure 11. Finally by using the superposition principle and by 
comparison of expansion (24) with (19) and (25) or (26) we define the eigenfunction fikm (9) and its complex 
conjugate fikm (9) in terms of complex constants as: 

frkm(0) = - ^ \ l k m ( K m - \ k ) e i 9 ^ - V + L k m ( K m - \ k ) e - i 9 ^ - V - M k ^ (27) 

frkm (9) = \hm (nm - A f c) e " ^ " 1 ) + Lkm (Km - A f c) e ^ * " 1 ) - Mkme-i9('Xk+1) - Nkmei9(Xk+1)] , 

(9) = ~r~ [/ f e m ( « m + A f c) e****-1) - L f c m ( K m + A f c) e"**^*"1) + M f c m e i e ( A * + 1 ' - Nkrne-i9^Xk+1A , 

fekm (9) = \-Ikm (nm + Afc) e " i e ( ^ - 1 ) + Lkm (Km + A f c) e ^ * " 1 ) - Mkme-i9('Xk+1) + Nkmei9(Xk+1)} . 

In sake of completeness, let's write down the real form of the stress series, i.e. for Afc £ R and i?fc £ K: 

<r„ = ^ ^ A " 1 / * ^ ) , (28) 
fc=i 

where the stress eigenfunction /* fc (0) is for different material regions m = 1, 2 of a bi-material notch defined as: 

,* f m _ I ftjki (*) 71 < 0 < 72 

V*fc 2W 7 2 < 9 < 7 3 ' 
while for the case of a bi-material junction we have: 

,* m _ J / y f c i W 7 o < ^ < 7 i 
^ j l / * f c 2 W 7 i < 9 < 7 2 ' 

The stress eigenfunction f*jkm (9) is defined: 

frrkm W = frrkm (9) + frrkm (9) , (29) 
frdkm (#) = frBkm (9) + frBkm (9) , 
feekm (0) = /eefcm (9) + /eefcm (#), 

where eigenfunction fijkm (9) and its complex conjugate fijkm (9) are found in set of equations (23). For a V-notch 
the same equations apply, only the index m is omitted. Similarly the real form of the displacement series, i.e. for 
Afc £ R and Hk £ R is: 

£ > f e r A V 4 ( 0 ) , (30) 
fc=i 
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where again the displacement eigenfunction f*k (9) is for different material regions m = 1, 2 of a bi-material notch 
defined as: 

,* m _ UijlW H<0<12 
1 \f*32 (0) 72 < 0 < 7 3 ' 

and similarly for the case of a bi-material junction we have: 

f*j2{6) 7 i < ^ < 7 2 

Finally the displacement eigenfunctions f*km (9) are defined: 

frkm (9) = frkm (0) + frkm (#) , 
fkm W = fekm (0) + fekm (#) , 

where eigenfunction fikm {&) and its complex conjugate fikm (0) are found in the set of equations (27). 

4.2. Formulation of multi-parameter fracture mechanics approaches for V-notch and 
bi-material notch 

It follows from the literature survey that the fracture mechanics behavior of V-notches and bi-material notches is 
well known considering singular stress terms. Non-singular terms are rarely considered, the mentioned publications 
[36, 52, 53, 54, 55] cover only a small group of geometrical and material configurations of the singular stress 
concentrators. Further, there is no study dealing with the stability criteria or the criteria of crack initiation 
direction or dealing with it comprehensively both from the theoretical and numerical point of view. Within the 
dissertation it is necessary to determine stress terms exponents, calculate factors of particular stress terms, derive 
the criteria for crack initiation direction and the criteria of stability. 

Stress terms exponents determination and study 

The exponents of series terms depend only on local boundary conditions, i.e. are independent of the applied 
loading and global geometry. The stress exponents of higher order (non-singular) terms will be determined within 
the dissertation from a set of the boundary conditions corresponding to a particular problem [32, 42, 43]. The 
boundary conditions of the V-notch are: 

o"00fc(r,7i) = 0 (31) 
o>0fc(r,7i) = 0 
o"eefc(r,72) = 0 
oY0fc(r,72) = 0 

for Vfc, where the angles 71 and 7 2 defines position of the notch faces and are depicted in Figure 9 on p. 15. 
Specifically the equations above enforce zero traction at both free surfaces of the notch. Similarly, the boundary 
conditions for the bi-material notch are: 

o-eeki(r,ji) = 0 (32) 
oYflfci (r,7i) = 0 
«flfci(r,7 2) = ugk2{r,^2) 
«rfci(r ,7 2 ) = urk2{r, 72) 

Oflflfci (r,7 2) = (Jggk2{r,72) 
oYflfci (r,72) = o-rgk2(r,72) 

cggk2 (r, 73) = 0 

0~rBk2 (r, 73) = 0 
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for Vfc, with the geometry described in Figure 10 on p. 16. The equations above enforce zero traction on the 
notch faces, i.e. locations 9 = 71 and 9 = 73. In addition, traction and displacement continuity is enforced at the 
interface T i.e. where 9 = 72. System of equations is formed based on the boundary conditions of the problem for 
the V-notch (31) or bi-material notch (32) by substituting Eq. (19) and (18) on p. 24. Such a system contains 4 
equations for the V-notch problem and 8 equations for the bi-material notch. The complex constants Mk N, 
Ikm and Lkm are then factored out and the system of equations can be written in the matrix form. For the simpler 
case, the V-notch, the system is written as: 

•n(H+1) A f c e - ^ l ( A * + 1 ) fl) e

iTi( Afc- 1) I j e - ^ i C * * - 1 ) " 
2 

Afc(Afc 
2 

_l)eiTi(Afc-1) Afc(Afc 
2 

_l)e-<Tl(*k-l) 
2 i 2 i 2 i 

i_l)eiT2(Afc-l) 
2 i 

l)e-<T2(>fc-l) 
2 

Afc(Afc 
2 

_l)eíT2(Afe-l) Afc(Afc 
2 

_ 1) e-iT2(A f c-l) 
2 i 2 i 2 i 2 i -1 

" M f c • " 0 " 
0 

4 0 
0 

(33) 

and Vk is the vector: 

T ( M f c Nk Ik Lk ) 

A V-notch consists only of one material, therefore the index m is intentionally omitted. The full matrix form of the 
equations for a bi-material notch is analogical, therefore it is not shown in the text. The main difference is that the 
matrix has 8 lines and the vector vk is constructed for the first and second material region, i.e.: 

T Af f c i Nkl Ik M m Nk Ik (34) 

Let's denote the matrix on the right-hand side of (33) as A (A). The determination of eigenvalues and eigenvectors 
is virtually identical for the case of a V-notch or a bi-material notch. For the system: 

A(X)v 0, (35) 

there are 5 unknowns, i.e. eigenvalue Afc and the complex coefficients Mk, Nk, Ik and Lk, and only 4 equations to 
be used (or 9 unknowns and 8 equations for the case of a bi-material notch). Therefore the system is undetermined. 
Following the basic principle of the linear algebra, the necessary condition for the non-trivial solution of (35) to 
exist is that: 

det (A (A)) = 0. (36) 

Expansion of this determinant leads to the so called characteristic equation, which roots are eigenvalues Afc £ C. 
A convenient way to study complex function f (z) = det (A (A)), which is function C —> C, is to use domain 
coloring method (known also as HSV) [56]. Since the graph of complex function is an object in four real dimensions, 
this function is difficult to visualize in three-dimensional space. By domain coloring, the phase 9 (also know as 
argument) of complex number z = re10 is represented as hue and the modulus r = \z\ is represented as intensity, 
see left-hand side of Figures 16-18 in the Numerical example A subsection on p. 30. The equation (36) is in general 
transcendental (does not have any closed form solution) and has to be solved numerically. Since the eigenvalues 
are complex numbers, the solution of equation is found as a vector [5R {Afc}, 5 {Afc}] by solving system of 2 real 
equations, i.e.: 

5R{det(A(5R{Afe}))} = 0, 
3 {det (A (3 {Afc}))} = 0. 

This is illustrated graphically on the right-hand side of Figure 16-18, where the blue and red curve stay for the loci 
where real and imaginary part of equation (36) respectively is equal to zero. In the graph the solution is represented 
as an intersection of the blue and red curve. When the system is solved, i.e. when the vector [5R {Afc} , 5 {Afc}] is 
found, the eigenvalue Afc £ C is constructed as: 

Afc = 5R{Afc} + i 3 { A f c } . 

For V-notches and bi-material notches where the opening angle 2a < 180° we find one or two eigenvalues Afc in the 
interval 5R(0,1) forming the singular terms exponents. There is also arbitrary number of eigenvalues Afc to be found 
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in the interval 5R(1, oo) forming exponents of non-singular terms as shown in Figures 23 and 24 on p. 35 and 36. 
The characteristic equation (36) has a trivial root A g r a n s = 0 which correspond to the term in displacement series 
responsible for rigid body translation and the term with A f c

o t = 1 that stand for the rigid body rotation [36]. Since 
these terms do not contribute to the stress field, they are omitted, which is in accordance to approaches found in 
literature [23]. By substitution of particular fcth eigenvalue Afc back in the matrix A (A) we can obtain eigenvector 
Vk, however since the system of equations (35) is a priori undetermined, value of one of the coefficients of vector Vk 
has to be chosen and only the ratios between coefficients of Vk can be determined. Practically, after the substitution 
of particular eigenvalue Afc we take the matrix A (A) and create reduced matrix A r e d (A) by removing its last line 
and taking its last column as a right side of the new reduced system of equations5. If we denote the right-hand side 
of the system as a r e d , we write: 

A r e d ( A ) 4 e d = a r e d (37) 

The dimension of A r e d (A) is 3 x 3. The unknown vector vT

k

ed and known vector a r e d are both 1 x 3 (or in the case 
of a bi-material notch 7 x 7 for A r e d (A) and 1 x 7 for v£ e d and a r e d ). In other words the system is determined 
and ready to be solved. Since we removed the last line of the matrix A (A), we choose the last coefficient of the 
vector Vk, the Lk equal to 1 (or Lk2 = 1 in the case of a bi-material notch). The eigenvector Vk is finally created by 
extending the vector vT

k

ed, which is the solution of reduced system of equations (37), by the unit coefficient (Lk or 
Lfc2). Since we have determined both the eigenvalue Afc and the eigenvector Vk, it is trivial to take their complex 
conjugates and to construct the angular eigenfunctions fijk (0) and fijk (0) for stress expansion (20) on p. 24 or 
fik (0) and fik (0) for displacement expansion (24) on p. 25. Since the choice of unit coefficient in eigenvector Vk is 
arbitrary, the eigenfunctions may be further normalized, e.g.: 

feek(90) = 1, (38) 

for symmetric terms of the series, i.e. k = 1,3, 5 . . . where Oo is the crack initiation angle. For anti-symmetric terms 
of the series with k = 2 ,4 ,6. . . : 

frdk (9o) — 1, 

Alternative and common normalization for crack problems is [23]: 

'feek(Oo) = l / v ^ F k = 1,3,5... 
(39) 

Uek (Oo) = I / V ^ T T k = 2 ,4 ,6 . . . " 

However, the choice of angle for eigenfunction normalization is arbitrary, therefore normalization by angles 9Q 
different from crack initiation angle can be chosen. From the computational point of view, the normalization of 
eigenfunction is performed by its division by the function fggk (OQ) or frgk (Oo), so: 

,n ( 9 ) _ \hjk(0)/feek(0o) k= 1,3,5.. . 
l 3 h [ ' \fijk(0)/fr8k(0o) k = 2 ,4 ,6 . . . ' 

similarly the displacement eigenfunction is normalized: 

r m _ ifik(0)/feek(0o) k = 1,3,5.. . 
\fik(0)/frek(0o) k = 2 ,4 ,6 . . . ' 

The complex conjugates are normalized analogically. In the following text, eigenfunctions are always considered 
normalized and the superscript n is intentionally omitted. The above mentioned normalization is in general appli­
cable only for the symmetrical V-notches and other symmetrical problems. The case of a bi-material notch is a 
non-symmetrical problem and each eigenfunction fijk (0) consists of both odd and even functions. In other words, 
it is not true anymore that the eigenfunction with an odd k is odd function and the eigenfunction with even k is an 
even function. In case of non-symmetrical problems, the normalization should be performed on individual basis. 

The choice of line and column to be removed is arbitrary, the last line and column is seen by the author as the easiest choice. 
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Numerical example A: Eigenvalues, eigenvectors and eigenfunctions of V-notch. The V-notch with local 
geometry as shown in Figure 9 on p. 15 is considered. Let's study three geometrical configurations, i.e. (i) 2a = 60°, 
(ii) 2a = 90°, (iii) 2a = 120°, (71 = a, 72 = 360° — a). The determination of eigenvalues Afc and eigenvectors Vk from 
the mathematical point of view is described in the previous sub-section. From the computational point of view, the 
roots are found by a code written in Python programming language. The main part of the code, the eigenequation 
solver, contains command fsolve which is a part of Python library called scipy.optimize [60]. Numerical module 
fsolve is based on advanced M I N P A C K ' s hybrd and hybrj algorithms [61]. The roots can be found with arbitrary 
numerical precision by choice of the xtol factor, which is in calculation through the dissertation set to xtol = le — 7. 
The calculation will terminate, if the relative error between two consecutive iterates is at most xtol. It is advised to 
check if the calculated value truly represents a root. This can be done by inserting a root back into the characteristic 
equation (36). Only the inputs which result in a close to zero value of the characteristic function are true roots. 
Another option is to compare the calculated value with the characteristic function plotted in a graph as it will be 
shown later. A l l the graphs are created by Python library called Mathplotlib [62]. In Tables 1, 2 and 3 we see first 
four resulting eigenvalues Afc for the V-notches with opening angles 2a of 60°, 90° and 120° respectively. For the 
sake of completeness, the values of complex coefficients Mfc, N^, Ik and Lfc are listed in Tables 1-3 as well. 

Sft(z) Di(z) 

Figure 16: (i) V-notch, 2a = 60°. On the left-hand side there is the graph of / (z) = det (A (A)). On the right-hand 
side a contour plot, the blue curve stands for 5R {det (A (5R {Afc}))} = 0 and the red one for 5 {det (A (5 {Afc}))} = 0. 

k Afc Mfc Â fc h Lk 
1 0.512221 -0.638227 + 0.049107Í 0.640113 + 0.000006Í -0.997054 + 0.076707Í 1 
2 0.730901 -0.136430+ 1.131423* -1.139619 + 0.000001Í 0.119715 -0.992808Í 1 
3 1.471028 + 0.141853Í 2.554167 - 1.346322Í -0.930264 - 0.732678Í -2.397982 - 0.441407Í 1 
4 2.074826 + 0.229426Í 2.157055 - 7.658169Í -1.275639+ 1.383938« -3.768504+ 1.914963« 1 

Table 1: (i) V-notch, 2a = 60°. First four eigenvalues Afc and eigenvector's Vk coefficients Mfc, Afc, l\. and Lfc. 
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Sft(z) Di(z) 

Figure 17: (ii) V-notch, 2a = 90°. On the left-hand side there is the graph of / (z) = det (A (A)). On the right-hand 
side contour plot, the blue curve stands for 5R {det (A (5R {Afc}))} = 0 and the red curve for 5 {det (A (5 {Afc}))} = 0. 

k Afc M f c Nk h Lk 
1 0.544484 -0.806223 + 0.231396Ž 0.838773 - 0.000002Ž -0.961193 + 0.275878Ž 1 
2 0.908529 0.350695 + 0.227131Ž -0.417822 -0.839339 - 0.543608Ž 1 
3 1.629257+ 0.231251Ž -3.174859 - 4.7193Hz -0.290233 + 1.298170Ž -2.941565 + 3.103293Ž 1 
4 2.301327 + 0.315837Ž -15.145801 + 2.378337Ž -0.349757 + 2.078146Ž 2.305751 + 6.900075Ž 1 

Table 2: (ii) V-notch, 2a = 90°. First four eigenvalues Afc and eigenvector's Vk coefficients Mfc, Afc, Ik and Lk-

As mentioned earlier, the stresses near the tip of a V-notch are proportional to the r~Pk where pk = 1 — Afc, 
Eq. (14) on p. 15. It is obvious that with increasing opening angle the strength of singularity decreases as the 
value of eigenvalue Afc increases (singular terms considered). This can be illustrated by plotting function r~pi for 
the calculated geometries (i), (ii) and (iii) as in Figure 19. Function r _ p i corresponds to the opening mode of the 
symmetrical V-notch. For the geometries considered throughout the study, the first term of the series which contains 
the exponent of singularity p\ is always singular. Nevertheless, the second term, which contains the exponent pi, 
is singular only in cases (i) and (ii), since the case (iii) has 5R{A2J > 1. This particular term vanishes as r —> 0 
as illustrated in Figure 20. Function r~P2 corresponds to the in-plane shear mode of the symmetrical V-notch. As 
explained in previous section, once the eigenvalues Afc and eigenvectors Vk are determined, it is possible to construct 
eigenfunctions fijk (0) and fik (0) for stress and displacement series respectively (or their complex conjugates fijk (0) 
and fik (#))• For the most common case of the V-notch with right angle, i.e. (ii) 2a = 90°, the stress eigenf unctions 
fijk (0) for k = 1,2, 3,4 are displayed in Figure 21. Similarly the displacement eigenf unctions fik (9) for k = 1, 2, 3,4 
are constructed and shown in Figure 22. Please note that illustrated eigenfunctions are normalized per equation 
(38) and the presumed crack initiation angle is due to symmetry of the problem 9Q = 180°. Also note that the stress 
and displacement eigenfunctions of the V-notch are symmetric or anti-symmetric relative to the axis or point where 
0 = 180°. To obtain general dependence of Afc (2a), eigenvalues for angles 2a £ (0°, 360°) were determined. Such 
general dependence of eigenvalues Afc on the opening angle 2a is shown in Figure 23. Note, that for angle 2a ~ 103° 
the eigenvalue A2 = 1. For larger angles 2a, the term associated with eigenvalue A2 is always a non-singular one. 
This is in accordance with results of Ayatollahi and Nejati in [36] who report the angle value of 102.55°. 
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Sft(z) Di(z) 

Figure 18: (in) V-notch, 2a = 120°. On the left-hand side there is the graph of / (z) = det (A (A)). On 
the right-hand side contour plot, the blue curve stands for 5R {det (A (5R {Afc}))} = 0 and the red curve for 
9{det (A (3{A f c }))} = 0. 

k Afc M f c Nk h Lk 

1 0.615731 -0.861987 + 0.767009Í 1.153830 -0.747066 + 0.664750« 1 
2 1.148913 -0.400153 + 0.542926Í 0.674456 -0.593297 + 0.804984« 1 
3 1.833549 + 0.252251« -4.230350 + 6.048695Í 0.638263 + 1.371624« 2.445221 + 4.222029« 1 
4 2.589479 + 0.348375Í 17.643684+ 11.953875« 0.958586 + 2.186906« 7.551600 - 4.757790« 1 

Table 3: (iii) V-notch, 2a = 120°. First four eigenvalues Afc and eigenvector's Vk coefficients Mk, Afc, Ik and Lk • 

Numerical example B: Eigenvalues, eigenvectors and eigenfunctions of bi-material notch. The bi-
material notch as shown in Figure 10 on p. 16 is considered with geometrical configuration of 2a = 90°, (71 = 
45°, 72 = 180°, 73 = 315°) and bi-material configurations of (i) E1/E2 = 0.50, (ii) E1/E2 = 0.25, (iii) E1/E2 = 0.10. 
In all cases, E\ = 20 GPa and v\ = v2 = 0.25. The eigenvalues Afc and eigenvectors Vk are determined from 
the mathematical point of view as described in previous sub-section. From the computational point of view the 
procedure is identical to the one described in the Numerical example A . The resulting eigenvalues Afc are listed in 
Table 4. The coefficients of eigenvector Vk were listed in Numerical example A for the sake of completeness, i.e. for 
illustration and the validation of other researchers' results. We intentionally omit those in the Numerical example 
B. A l l studied geometrical and material configurations lead to 2 singular terms of the stress expansion. We see 
that with increasing contrast in Young's moduli, the strength of singularity of the first term decreases as shown in 
Figure 25. However, again with increasing contrast in Young's moduli, the strength of the singularity of the second 
term increases as shown in Figure 26. The stress eigenfunctions fijk (9) for the case (iii) with the highest contrast 
in Young's moduli are plotted in Figure 27. In similar manner the displacement eigenfunctions fik (9) for the same 
case (iii) are shown in Figure 28. Note that these eigenfunctions are no longer symmetrical or anti-symmetrical as 
in the case of a V-notch. Another important fact is that the radial stress eigenfunction frrk(9) is discontinuous at 
the material interface T, i.e. 9 = 180°. Again, these eigenfunctions are normalized per equation (38) with chosen 
angle 9Q = 270°. To obtain general dependence of Afc (2a), eigenvalues for angles 2a £ (0°, 360°) for some particular 
configuration, e.g. (ii) were determined. Such general dependence of eigenvalues Afc on opening angle 2a is shown 
in Figure 24. 
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Figure 19: The function r~pi of the V-notch plotted on a radial distance of r £ (0.1; 3) mm. The exponents of 
singularity of the first term are: (i) pf° = 0.488, (ii) pf° = 0.456 and (iii) p\20 = 0.384. Wi th the increasing of 
the notch opening angle 2a the strength of stress singularity decreases. 

Figure 20: The function r~P2 of the V-notch plotted on a radial distance of r £ (0.1; 3) mm. The exponents of 
singularity of the second term are: (i) pf 0 = 0.269, (ii) pf 0 = 0.091 and (iii) P220 = —0.149. With the increasing 
of the notch opening angle 2a the strength of stress singularity decreases. 
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Figure 21: Stress eigenfunctions fijk (0) for k = 1,2,3,4 of the V-notch (ii), 2a = 90°. The yellow dashed line 
represents the axis of symmetry of the notch. 

E1/E2 = 0.5 E1/E2 = 0.25 E1/E2 = 0.10 
Ai 0.552239 0.572603 0.608051 
A 2 

0.894288 0.859567 0.806539 
A 3 

1.645612 ± 0.225305Í 1.693610 ± 0.206185« 1.770118 
A 4 

2.298183 ± 0.288001Í 2.294796 ±0.16466i 2.577451 ±0.219431i 

Table 4: Bi-material notch 2a = 90°, (71 = 45°, 72 = 180°, 73 = 315°) and bi-material configuration of (i) E\/E2 = 
0.5, (ii) E1/E2 = 0.25, (iii) E1/E2 = 0.1. 
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Figure 22: Displacement eigenfunctions fik (0) for fc = 1,2,3,4 of the V-notch (ii), 2a = 90°. The yellow dashed 
line represents the axis of symmetry of the notch. 

Figure 23: Dependence of eigenvalues Afc of the V-notch on the opening angle 2a. The black dashed line divides the 
graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line represents notch 
free plate. 
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Figure 24: Dependence of eigenvalues Afc of the bi-material notch on the opening angle 2a. The black dashed 
line divides the graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line 
represents the free edge singularity. The geometry of studied case is 71 = a, 72 = n, 73 = 2ir — a. The Young's 
moduli ratio is E\jEi = 0.25 and Poisson's ratio is v\ = v2 = 0.25. 

Figure 25: The function r~pi of the bi-material notch plotted on a radial distance of r £ (0.1; 3) mm. The exponents 
of singularity of the first term are: (i) p^- 5 0 = 0.448, (ii) p^- 2 5 = 0.427 and (iii) p ^ 1 0 = 0.392, where the superscript 
denotes Ei/E2. 
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Figure 26: The function r~P2 of the bi-material notch plotted on a radial distance of r £ (0.1; 3) mm. The exponents 
of singularity of the first term are: (i) p j ' 5 0 = 0.106, (ii) p j ' 2 5 = 0.140 and (iii) p j ' 1 0 = 0.193, where the superscript 
denotes Ei/E2-

Figure 27: Stress eigenfunctions fyk (0) for k = 1, 2, 3,4 of the bi-material notch (iii), 2a = 90°, E\jEi = 0.1. 
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Figure 28: Displacement eigenfunctions fa (9) for k = 1, 2, 3,4 of the bi-material notch (hi), 2a = 90°, E\jEi = 0.1. 

Calculation of stress terms factors 

Determination of GSIFs by the ^-integral 
This part of the text describes a derivation of the path independent 'I'-integral for a V-notch or a bi-material notch 

problem. The employment of the 'I'-integral is a convenient way for determination of the Generalized Stress Intensity 
Factors (GSIFs) H^. By use of the 'J-integral also another necessary parameter for the Leguillon's coupled stress-
energy criterion, the scaling coefficient A (2a, 9Q) can be determined as it will be shown in the following chapter. 
For the theoretical description of Leguillon criterion see p. 58. The derivation of the 'I'-integral will be shown on 
the more general case of a bi-material notch. However, analogically it can be performed for the simpler V-notch 
problem. First, let us consider a zero difference due to symmetry of the elastic tensor C: 

[ (C: VU : VV- C : W : VU)dx = 0. (40) 
Jv 

where U and V are two elastic solutions dependent on 2 coordinates (x, y) in Cartesian coordinate system or (r, 9) 
in polar coordinate system and V is gradient. T> is an arbitrary closed domain within the material domains Oi and 
O2 as shown in Figure 29. According to the Hooke's law in following form: 

a(U) = C W , (41) 

the equation (40) becomes: 

/ (a(U)VV - a{V)VU)dx = 0, (42) 
Jv 

where a(U) and a(V) are stress fields associated with U and V respectively. By applying the Green's theorem to 
the equation (42) we obtain: 

- J Va{U)Vdx + f a(U)nVds+ f Va{V)Udx - f a(V)nUds = 0, (43) 
Jv JdV JV JdV 

38 



Ondřej Krepl Methods and results 

A 

Figure 29: The path integral surrounding the tip of the bi-material notch. The integration path dT>, the boundary 
of T>, consists of the paths: r 1 ; T2, £ 1 , £2-

where dT> denotes the boundary of the domain V and n is the normal of the contour dT>. If equilibrium conditions 
apply, the first and the third term of equation (43) are equal to zero, therefore we can write: 

/ (a(U)nV - a(V)nU)ds = 0. (44) 
Jdv 

Since the negatively oriented boundary dT> consists of 4 contours dT> = T\ U T2 U £1 U £2, the integral (44) can be 
written as a sum of the following 4 contour integrals6: 

/ (a(U)nV - a(V)nU)ds + [ (a(U)nV - a(V)nU)ds + (45) 

J (a(U)nV - a{V)nU)ds + f (a(U)nV - a{V)nU)ds = 0, 

see Figure 29. Because of zero traction on the notch surfaces, for some terms we write: 

I (a(U)nV - a{V)nU)ds = 0, 
./Ei 

I (a(U)nV - a{V)nU)ds = 0, 

and equation (45) becomes: 

I (a(U)nV - a{V)nU)ds + f (a(U)nV - a{V)nU)ds = 0. 
yr i JT-2 

Let's denote the TA = T i and change orientation of the path TB = —^2, so both of the curves are positively oriented 
as in Figure 30. We obtain: 

I (a(U)nV - a{V)nU)ds = f (a(U)nV - a(V)nU)ds, 
JrA JTB 

which proves that the integral is path independent. There are important implications of the integral path indepen­
dence. Let's denote such path independent integral as: 

V(y,V) = \ J (a(U)nV - a(V)nU)ds, (46) 
2 Jr 

6 T h e symbols T i , T2, TA and TB in this sub-chapter always stay for integration path, not to be confused with Ti which denotes 
material interface in a l l other parts of this work. 
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Figure 31: Two positively oriented circular contours surrounding the tip of the bi-material notch, the TA and Tg. 

which path T is a circle of radius R (such as or TB in Figure 31). The relations for stress and displacement near 
the singular point are: 

u = Rahok{e), 
V = R0

giji(9), 
a{U) = Ra-lfik{9), 
a(V) = R^guiO), 

where fijk(8), 9iji{6) and fik(8), 9aifi) are the angular eigenfunctions for stress and displacement respectively. The 
a and /3 are the eigenvalues forming the exponents of singularity. By substitution of relations for displacements 
and stress near the singular point to (46) the integral becomes: 

J{K*-1Me)nRPgijl{6) - R0-1gu(9)nRafijk(9))Rd9 = 

I {Rafik{9)nRfigil{9)-Rfigu{9)nRafijk{9))d9 = 
Jo 

R a + 0 I (M0)ngiji(6) - ga(6)nfijk(6))d6. (47) 
Jo 

The integral as we defined it has to be independent of R. If a ^ —(3 in (47), the integral: 
/•27T 

/ {fik{e)ngijl{9) - gu{9)nfijk{9))&9 = 0, (48) 
Jo 
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1 8 1 

Figure 32: Area of refined mapped mesh near the singular point of the V-notch and bi-material notch. 

since it is the only way for the integral to remain path independent. Determination of the GSIFs using the 'I'-integral 
is shown in the following text. The admissible solution of eigenequation (36) on p. 28 are also roots Afc for which 

{Afc} < 0. These negative eigenvalues are called auxiliary denoted \k = —Afc and they remain without a direct 
physical interpretation. However, they play an important role in the GSIFs determination. The 'I'-integral applied 
to the finite element solution and to an auxiliary eigenvalue solution A^ = —Afc can be written: 

v ř ( U

F E ( 0 ) , r " A l / ^ ( 0 ) ) = * ( C + # i r A l / i i ( 0 ) + H2rx-fi2{9) + ... + Hnrx-fin(9), r " A l / « ( * ) ) , (49) 

where C represents the rigid body translation and f~k (9) is the auxiliary eigenfunction of the auxiliary displacement 
expansion. It is constructed analogically as ordinary eigenfunction /;fc {9), only with consideration of auxiliary 
eigenvalue Xk. The above-mentioned integral (49) can be rearranged into separate integrals: 

nu^{9),r-x^f-1{9)) v ř ( C , r " A l / a (*)) + tfi*(rAl/a(0),r-Al fr^O)) + H2*(rx* / « ( * ) , r " A l + • • • 
... + Hn^(rx-fm(9),r-x'f-1(9)). (50) 

Since property (48) applies, the terms with Afc and A ; where k ^ I vanish. The expression above becomes: 

9(uFE(9),r-Xlf-1(9)) = ffi*(/I/,i(«),r">7fl(«)), 

by which the generalized stress intensity factor Hi can be calculated as: 

tt(ttFE(fl),r-Ai,fc(fl))  
1 * ( r V i i ( 0 ) , r - * i i £ ( 0 ) ) " 

Thus, in general the fcth factor can be calculated as: 

*(uFE(9),r-x*f-k(9)) 
Hi 

*(rXkfik(9),r-^f-k(9)Y 

(51) 

(52) 

(53) 

Because of the ^-integral path independence the analytical term in denominator $ ^ n a y t = '&(rXk fik{9), f~Xk f~k{9)) 
can be calculated once for all for given problem. The term in the numerator \ I / F B = \ I / ( M F B (9) ,r~Xk f~k (9)) is 
calculated from the finite element results. From the computational point of view the F E results are calculated (in 
this work) in F E M code A N S Y S . The vicinity of the singular point at the 2D model consists of refined mapped 
mesh as shown in Figure 32. The numerical values of stress and displacement components are extracted from 
nodes which lay on a circle that surrounds the singular point (any closed curve can be used, however the author of 
this dissertation finds the circular curve the simplest way to obtain results). The model is meshed with standard 
quadratic plane elements (in A N S Y S denoted as PLANE183). The size of radius of the integration path denoted 
as r\ is optional, nevertheless it is recommended to take results reasonably far from the singularity i.e. r\ > 1.0 
mm in order to avoid error caused by the nature of F E M . In the Numerical example C (see p. 43), the effect of 
integration path radius on the leading term H\ value was always less than 1 % of the resulting value when the 
integral was calculated on radii between 1 and 3 mm. The model created by the author of this work enables the 
user to choose the size of area of refined mesh by choice of parameters ro and r2 as shown in Figure 33. It is 
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Figure 33: Area of refined mapped mesh near the singular point of the V-notch and bi-material notch. 

possible to extract the entire stress and displacement field on this area. It can be either used for calculation of the 
integral \ I / F B on all contours between ro and r2 or later used as a 2D F E M reference to calculated asymptotic field. 
The circle of radius ro surrounds the area where the stress becomes theoretically unbounded and the F E numerical 
error is significant. This area is not of particular interest in terms of the 'I'-integral calculation. Furthermore there 
are no special elements found at the notch tip (as those used for fracture mechanics of cracks, depicted in Fig. 
8 on p. 14). As the F E calculation is complete, just before writing of the values into data files, the rigid body 
translation C of the notch tip is subtracted of all nodal displacement values. Then, the values of all in-plane stress 
components a ™ (r, 9), a ™ (r, 6), ajf (r, 9) and displacement components u F E (r, 9), u F E (r, 9) in polar coordinate 
system are stored in data files. The computation proceeds with an execution of Python script. The first part of the 
Python script calculates the desired number n of eigenvalues Afc based on the local geometry and material properties 
of the problem, constructs the corresponding eigenvectors vk and eigenfunctions fijk(8) and fik(9) for stress and 
displacement components respectively. By considering \ k -Afc in a similar manner, the auxiliary eigenvectors 
vk and eigenfunctions f^k (9) and fik (9) are obtained. For the term in numerator in Eq. (53) the infinitesimal 
value of the term in numerator as written in the Python script is: 

d * i 4 k K E ( ö ) / - f c ( ö ) + 4E(9)f-gk(9) - rif-k(9)o™(9) - nfěk(9)o¥

rf(9)) dö, 

and the infinitesimal value of the analytical term in denominator, Eq. (53) is written: 

^analyt = ( / r f e fe (0) + / , f e (0) /" fe (0) - f^(9)frrk(9) - fa{9) fr6k(9)) M. 

After the script loads the F E results (stress and displacement component values), the numerical integration is 
conducted by the trapezoidal rule: 

E 
( d * r ( ö n - i ) + d * r ( ö n ) ) A ö 

analyt E 
^analyt + ^analyt ^ j M 

where the numerical integration step, the A9 is dependent on the circle division by elements (node to node distance). 
The script finally returns the resultant fcth GSIFs: 

Hi. k 
analyt 

Circle division by 5° or 2.5° (for notch of 2a = 90° i.e. 54 or 108 integration points) both give results of solid 
computational convergence. As shown in the Numerical example C that follows, the choice of the integration step 
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Ai A 2 A 3 A 4 

2a = 60° 0.556318 0.678908 1.495694 ±0.126455i 2.056555 ± 0.196967Í 
2a = 90° 0.572603 0.859567 1.693610 ±0.206185z 2.294796 ± 0.164660Í 
2a = 120° 0.627362 1.098829 1.779801 2.119643 ±0.380189i 

Table 5: Bi-material notch with bi-material configuration of E1/E2 = 0.25 and 3 geometric configurations 2a = 
60°, 90°, 120° 

SA0=2.5° s , A f l = 5 . 0 ° 

2a r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg. 
60° 49.074983 49.348909 49.122359 0.071201 49.105613 49.153084 49.043314 0.039942 
90° 51.320719 51.158123 51.234381 0.043204 51.366651 51.145435 51.199755 0.083277 
120° 54.323977 53.909335 54.152227 0.114307 54.384717 53.867149 54.161656 0.143541 

Table 6: V-notch 'I'-integral results for various 2a geometries. The values of leading term factor H\ determined on 
multiple radii with finer integration step of AO = 2.5° are listed in the left part of the table and coarser integration 
step of AO = 5.0° in the right side of the table. Both the cases are supplemented by standard deviation of the 
averaged value denoted by s. 

from 54 to 108 integration steps changes the value of leading term H\ by less than 0.5 % in all tested cases. In 
Figure 32 a detail of meshed model with element edge division by 2.5° is shown. For the case of the double root 
Ai = A2 = A the stress intensity factors Hi and H2 are obtained by solving the system of two equations: 

*(uFE,r-xf-2(9)) = Hi^(rxM(e),r-xf-2(9)) + H2^(rxfl2(e),r-xf-2(9)). 

From the equations as we defined it follows, that we need to do final adjustment for generalized stress intensity 
factors. 

Hk f o r 3 { A f c } ^ 0 
HJ2 f o r 3 { A f c } = 0 

Numerical example C : Integration step and path independence of the 'I'-integral for notches. The 
test example consists of the 'I'-integral calculation for 3 geometric configurations of the V-notch 2a = 60°, 90°, 120° 
(71 = a, 72 = 360° — a) and 3 geometric configurations of the bi-material notch 2a = 60°, 90°, 120° (71 = a, 72 = 
180°, 73 = 360° - a) with Ex jE2 = 0.25, Ex = 20 GPa and vx=v2= 0.25. The eigenvalues for the case of a V-notch 
were calculated in Numerical example A on p. 30. The first four eigenvalues for the bi-material notch are found 
in Table 5. In both the V-notch and bi-material notch test example the effect of integration step size AO is shown 
on multiple integration radii. The circles of multiple radii have been taken into account to another test example 
purpose, to validate the 'I'-integral path independence. Geometry of the model is identical to the one in Numerical 
example E on p. 50 in the case of the V-notch and to the one in Numerical example F on p. 53 in the case of the 
bi-material notch. In both cases, the model is loaded with force F = WON (per 1 mm of specimen thickness 6). 
The leading term factor Hi for the symmetrically loaded V-notch and leading term factors Hi and H2 for the case 
of the bi-material notch are calculated on 77 = 1 mm, r2 = 3 mm and as an average on all the radii between 77 
and r2 (the script adjust the mesh automatically, so there are 10 circles in the case of larger integration step and 
22 circles in the case of smaller integration step). The results for the V-notch are listed in Table 6. The results 
for the bi-material notch are found in Tables 7 and 8. In both cases, the left part of the table consists of smaller 
integration step results obtained by finer element division by A9 = 2.5°. The right side of the tables represents 
larger integration step results obtained with coarser element division by AO = 5.0°. The results are supplemented by 
standard deviation of the average value denoted by s

A e = 2 - 5 ° 0 r s

A e = 5 0 ° . The choice of number of the integration 
steps from 54 to 108 integration steps changes the value of leading term factor Hi by less than 0.5 % in both tested 
cases. The effect of the integration step on the resulting value of second leading term factor H2 in the case of the 
bi-material notch is more profound especially towards the large 2a. For such cases, the standard deviation value s 
is decreased by using a finer integration step. Therefore the choice of the finer integration step is beneficial. The 
effect of integration path radius on the leading term factor Hi value was always less than 1 % of the resulting 
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jjA0=2.5° s A f l = 2 . 5 ° ^ y A f l = 5 . 0 ° s A f l = 5 . 0 ° 

2a r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg. 
60° 2.948757 2.935656 2.936589 0.000437 2.978178 2.950140 2.952096 0.001021 
90° 9.159032 9.113595 9.123140 0.004574 9.200633 9.108610 9.125289 0.008979 
120° 7.235544 7.210268 7.214646 0.002019 7.262257 7.209313 7.217978 0.004529 

Table 7: Bi-material notch 'I'-integral results for various 2a geometries. The values of leading term factor H\ 
determined on multiple radii with finer integration step of A9 = 2.5° are listed in the left part of the table and 
coarser integration step of A9 = 5.0° in the right side of the table. Both the cases are supplemented by standard 
deviation of the averaged value denoted by s. 

# A « = 2 . 5 " s A f l = 2 . 5 ° s A f l = 5 . 0 ° 

2a r = 1 mm r = 3 mm avg. avg. r = 1 mm r = 3 mm avg. avg. 
60° 8.196698 8.218343 8.186926 0.018445 7.779961 7.808389 7.755549 0.032715 
90° 3.197018 3.283971 3.230628 0.032228 2.845325 2.998096 2.906699 0.058189 

120° 0.080194 0.226453 0.153295 0.046779 -0.280710 -0.014312 -0.142072 0.085072 

Table 8: Bi-material notch 'J-integral results for various 2a geometries. The values of leading term factor H2 

determined on multiple radii with finer integration step of A9 = 2.5° are listed in the left part of the table and 
coarser integration step of A9 = 5.0° in the right side of the table. Both the cases are supplemented by standard 
deviation of the averaged value denoted by s. 

value. The trends in the dependence of the integration radius are shown in graphs in Figure 34. Although the trend 
is plotted only for one geometric and bi-material configuration, it represents standard behavior of Hk calculation 
convergence by the ^-integral. We see that the leading term factors H± and H2 show solid convergence on all 
integration radii, whereas the higher order term factors converge towards larger integration radii. We therefore 
recommend to determine the higher order term factors on the larger distances such as r2 = 3 mm. To check that 
the radius to determine GSIFs was chosen correctly, we can compare the reconstructed analytical solution with pure 
F E solution (either on particular radius of interest or on the whole field, e.g. 0.1 mm - 3 mm) as it will be shown 
in Numerical example E and F on p. 50 and 53 respectively. 

Determination of GSIFs by overdeterministic method 
The overdeterministic method (ODM) belongs to so called direct methods and is based on the least-squares 

solution of overdetermined system of linear equations. The method was firstly proposed by Seweryn in [34] under a 
name of method of analytical constraints. In [35] Ayatollahi and Nejati applied this method to calculate SIFs of a 
crack problem. In an article that followed, they applied the O D M to the sharp notch problem [36]. Next Ayatollahi 
et al. studied O D M in application to the bi-material notch problem in [55], however they studied effect of first 
and real non-singular term only. The O D M is chosen especially because of its minimal requirements for the F E 
software (no need for special elements). The O D M takes large number of results, namely displacements from F E M 
to compute chosen number of GSIFs (stress components can also be used for GSIFs determination by the ODM). 
The displacements are usually preferred because the majority of F E codes is displacement based, which leads to 
increased inherent precision. The method can be used for calculation of H). G R when the real form of the stress 
Eq. (28) and displacement series Eq. (30) on p. 26 is considered. As stated above, the goal of the O D M is to find 
n GSIFs as a least square method solution of an overdetermined system of linear equations. These equations can 
be written in a matrix form as: 

f*i(0i)rXl  

/ ; i ( č 2 ) r A l 

# i ( 0 2 ) r A l 

f*r2{9i)rx* 
/ ; 2 ( č 2 ) r A 2 

/ « ( 0 i ) r A a 

Í9i(8m)rXl fí2(0m)r> 

Kn(0i)rX« 
/ ™ ( č 2 ) r A " 

fZn(Om)rX« 
fe*n(8i)rX" 
reMrx~ 

fL(0m)rx" 

Hi 
H2 

H„ 

" í ř M i ) 
(r,02) „ F E 

F E rm 
, F E 

(r, 9m) 
< ř M i ) 

, F E (r,9m) 

(54) 

44 



Ondřej Krepl Methods and results 

Figure 34: Dependence of the Hk on the radial distance r. The bi-material notch, 2a = 60°, Ei/E2 = 0.25. 
Calculation by the ^-integral. 

On the left-hand side the eigenfunctions of the first n displacement series term factors are listed in 2m lines which 
form the matrix 7 . First the m lines of this matrix are filled with the eigenfunctions for the radial displacement 
components. These are followed by m lines of eigenfunctions for tangential displacement components. The vector on 
the left-hand side is composed of n unknown GSIFs Hk- Finally, a vector of 2m length composed of F E A calculated 
m radial displacements and m tangential displacements stays on the right-hand side. For an overdetermined system 
of linear equations (54), in a short form written: 

F[ 2 m X n]H[„] = u [ 2 m ] , (55) 

no exact solution exists, since 2m > n. The approximation of solution (vector H[„] that contains n GSIFs) is found 
by minimizing the residual vector: 

r = F [ 2 m X n ] H H - up^j (56) 

by the least square method. In the general case of Hk £ C, the complex form of the stress and displacement series 
is Eq. (20) and displacement series Eq. (24) on p. 25 is considered. According to [34], the series is decomposed to 

7 T h e index m used in this sub-chapter does not correspond to the index m for mth material region. Identical index is used because 
of lack of useful indices. 
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real and imaginary part which is written in the matrix form as: 

(#i)r A l 

(92)rXi 

5ft' 
5ft 

r l ( # m ) r A l } 
/ei (9 i ) r A l ~ 
/ei (^ 2 ) r A l 

{fn ( 9 i ) r A l } 
(9 2 ) r A l } 

9 { / r i (0m)rXi} 
9 { / e i ( ^ i ) r A l } 
3 { / e i (e2)rAl} 

5R { / r 

(0i)r A* 
(6>2) rx" 

5R{/en (^i)r A " 
5R {/en (9 2 )r A " 

» { / • 
3 { / r 

(0i)r A* 
(6>2) r A -

3 { / ™ ( 0 m ) r A ' 
9 {/en (^i)r A " 

{/en (^2)rA 

. 5 R { / f l i ( 0 m ) r A l } 3 (0 m ) r A l } . . . 5R {/„„ (6m) r A " } 3 {/ e„ (0m)rx"} 

5R{#i} 
» { # i } 
5R{#2} 
3 { # 2 } 

5R{iřn} 

F E 
1 [ 2 m ] i 

2n and the F E vector uj^-where n' 
written analogically to (55) i.e. F[ 2 

analogically to (56) i.e. r = F [ 2 m > „ 

is identical to the previous real case. The equation is in matrix form 

tu, X n 
H 

/lHr. j'j = Up^,] and the solution is found also by minimizing residual vector 
u E E ,. The resulting GSIFs are finally reconstructed as: 

Hi $t{Hk} + i^{Hk}. (57) 

The nodal displacements in both radial and tangential directions are again taken from nodal points lying on a 
circle surrounding the singular point r±, see Figure 33. These nodal points are therefore characterized by the fixed 
radial coordinate r\ and variable angular coordinate 9j £ ( l ;m) as shown in Figure 33, which describes the F E 
results extraction. As for the ^-integral calculation, the O D M can be calculated on any circle between ro and r 2 . 
Furthermore the method does not require to take values from nodes laying on a circle. Values from basically any 
pattern can be used to calculate unknown GSIFs Hk by the O D M . Choice of circle is again seen by the author as 
the simplest mean of Hk computation. However, there are some setbacks related to the displacement based O D M . 
By the form of the O D M used in this work, the valid results are obtained for symmetrical problems (in terms 
of geometry and loading) of a V-notch and bi-material junction. The problem of a bi-material notch is always a 
non-symmetrical one. In the symmetrical cases the rigid body rotation of the specimen is equal to zero and does 
not enter into the calculation Hk • If the problem is non-symmetrical, the rigid body rotation is present. Please 
note that it cannot be as easily subtracted from the F E displacements as the rigid body translation can be. The 
rigid body rotation may be included in the displacement series by adding a term with A f c

o t = 1 , which describes 
it, as in [35, 36, 55]. The general determination of this term is nevertheless difficult. By substitution of the unit 
eigenvalue back into matrix A (A), one is unable to obtain the needed eigenfunction, since there is no solution of 
reduced system of equations A r e d (A f c

o t ) . The development of method to include rigid body rotation of a general 
problem in terms of methods of plane elasticity used in this work could be a subject of further research. Therefore, 
in the author's opinion, in non-symmetrical cases it is recommended to use the stress based O D M , which completely 
eliminates the problem. We consider the stress series, Eq. (28) as in p. 26. Similarly as in the displacement based 
O D M , we need to find a approximation of a solution of an overdetermined system of linear equations, which in the 
case of Hk £ R is: 
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(58) 

The matrix on the left-hand side is formed of the known analytical eigenfunctions. On the left-hand side we also 
find the unknown vector of n GSIFs. The right-hand side vector consists of radial, shear and tangential stress 

46 



Ondřej Krepl Methods and results 

components, determined by F E . For an overdetermined system of stress based linear equations (58) that is in a 
short form written: 

F [3mxn]H[ : ' [ 3 m ] , (59) 

as in the previous case of the displacement based O D M , since 3m > n no exact solution exists. The approximation 
of the solution is found by minimizing the residual vector: 

F [ 3 m X r i ] H [ i 
o F E 
& [ 3 ™ 

by the least square method. In the general case of Hk £ C the system has the following form: 
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where n ' = 2n and the F E vector S^1^ is identical to the previous real case. The resulting GSIFs are constructed 
using Eq. (57). Since the factors are determined on particular radius r, it is recommended to check if the dependence 
Hk (r) exists. If the strong and linear dependence exists, the singular leading term factors Hk can be extrapolated 
to r —> 0 by the linear regression (it is not recommended to calculate the GSIFs directly on a radius too close to 
singularity because of a significant numerical error). The method of calculation of Hk by the linear regression is in 
accordance to the definition of the stress intensity factor by a limit. If the dependence exists in the case of higher 
order terms the averaged value can be calculated however, in the author's experience, when the GSIFs are calculated 
reasonably far from singularity, the radial dependence is in general week, which will be shown and commented in 
numerical examples. To make sure that the used methodology is valid, we can compare the reconstructed analytical 
solution with pure F E solution (again as in the case of the integral, the comparison can be made on particular 
radius of interest or on the whole stress field). From mathematical point of view, the values of factors Hk should be 
dependent on the vector H[„/j length (number n of factors being calculated). This effect is investigated in following 
numerical example with foundation that the first two terms factors H\ and H2 converge when n' > 4 and the higher 
order terms H$ and H± when n' > 16. Although the behavior is demonstrated only on one numerical example, it is 
a general one and is in accordance with results published by Ayatollahi and Nejati in [36]. We therefore recommend 
to chose n' > 16 when the higher order terms are of interest. 

To conclude, we now compare the advantages and disadvantages of the O D M and ^-integral. General advantage 
of the O D M is its simplicity and its low computational cost. The general disadvantage of the O D M is its dependency 
on the number of term factors to be determined, which origins from the mathematical foundation of the method. 
Such effect will be examined in the following Numerical example D. The main advantage of the 'I'-integral is, that 
the Hk are determined mutually independently. In any case it is beneficial to compare results calculated by both 
methods with each other to prevent random errors. The comparison of results determined by both methods is 
shown in Numerical example D. 

Numerical example D: Determination of GSIFs by the O D M . We consider the identical bi-material notch 
as in previous Numerical example C on p. 43 with 2a = 60°, 90°, 120° and E\/E2 = 0.25. The leading singular 
terms with H\ and H2 and higher order terms with H% and H4 are calculated by the stress based overdeterministic 
method. Since we calculate the singular and non-singular term factors, the radius for the O D M determination is 
chosen as r\ £ (0.2 — 1) mm which is the area where the above mentioned singular and non-singular terms prevail. 
In addition, for the model created in this work, this area is characterized by low F E error. The effect of element 
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JJA0=2.5" SA0=2.5° JJA0=5.O" SA0=5.O° 

2a r = 0.2 mm r = 1 mm avg. avg. r = 0.2 mm r = 1 mm avg. avg. 
60° 2.918742 2.940974 2.917949 0.000630 2.911692 2.958155 2.909008 0.002037 
90° 9.116427 9.177946 9.113761 0.001769 9.104589 9.230813 9.093580 0.006558 
120° 7.210331 7.249287 7.208264 0.001346 7.207143 7.286563 7.199797 0.005228 

Table 9: Bi-material notch results for 2a = 60°, 90°, 120° geometries and E1/E2 = 0.25. Values of leading term 
factor H\ determined on multiple radii with finer division A9 = 2.5° are listed in the left part of the table and 
coarser division A9 = 5.0° on the right-hand side of the table. The both cases are supplemented by the standard 
deviation of the averaged value denoted by s

A e = 2 - 5 ° a n d sA0=5.o° 

HA0=2.5» SA0=2.5° HA0=5.0" SA0=5.O° 

2a r = 0.2 mm r = 1 mm avg. avg. r = 0.2 mm r = 1 mm avg. avg. 
60° 8.627544 8.696743 8.630076 0.003981 8.581582 8.732149 8.585571 0.004568 
90° 3.558906 3.575628 3.558123 0.001460 3.545283 3.573771 3.538515 0.002979 
120° 0.461848 0.461554 0.461771 0.000072 0.464420 0.457764 0.461831 0.002264 

Table 10: Bi-material notch results for 2a = 60°, 90°, 120° geometries and E1/E2 = 0.25. Values of leading term 
factor H2 determined on multiple radii with finer division A9 = 2.5° are listed in the left part of the table and 
coarser division A9 = 5.0° on the right-hand side of the table. The both cases are supplemented by the standard 
deviation of the averaged value denoted by s

A e = 2 - 5 ° a n d sA0=5.o° 

edge length division by 2.5° and 5.0° is studied. The resulting values are listed in Tables 9 and 10. The transition 
from coarser to finer element length has very low effect on the resulting value of leading GSIFs, with change less 
than 0.3 % in averaged H\ and less than 0.6 % change in averaged H2 for all studied configurations of 2a. The 
radial dependence of calculated leading singular terms factors H± and H2 is shown in Figure 35. The graphs 
show that very slight linear dependence of the values exists (see values listed in tables above). Thus the singular 
terms factors extrapolation to r —> 0 is performed using the linear regression with resulting values shown in Table 
9 and 10. This is in accordance to the fact, that the values of Hk calculated too close to the singular point may be 
heavily distorted by F E numerical error. Figure 36 shows radial dependence for non-singular terms factors H3 and 
H4. Non-singular terms factors show solid convergence towards r = 1 mm. The Table 11 and 12 compare values 
determined by the 'I'-integral (averaged) and O D M (linear regression extrapolated) with highest discrepancy of 22.1 
% in the case of H2 calculation and coarser mesh. This discrepancy is reduced to 10.2 % when finer mesh is used. 
The first singular term factor is calculated with almost identical values by both methods with maximum difference 
of 1.4 %. In all cases by mesh refinement, values with lower difference are obtained. We therefore recommend to 
use finer element division. Next, the effect of number of terms in vector H[„/j is studied, with results shown in 
Figure 37 for singular terms and in Figure 38 for non-singular terms. The results show that the first two terms 
factors Hi and H2 converge when n' > 4, as the difference between subsequent values of factor Hi is always less 

+—* Hi(R) by O D M linear regression 
! 
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Figure 35: Dependence of the leading singular terms factors Hi and H2 on the radial distance r and fitted curve 
by the linear regression. The bi-material notch, 2a = 90°, E1/E2 = 0.25. Calculation by the O D M . 
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Figure 36: Dependence of the non-singular terms factors H$ and H4 on the radial distance r. The bi-material 
notch, 2a = 90°, E1/E2 = 0.25. Calculation by the O D M . 

ffA0=2.5° j^A0=5.O" 
2a O D M extrap. Vř—integral avg. difference O D M extrap. Vř—integral avg. difference 
60° 2.919937 2.936589 0.6% 2.916078 2.952096 1.4% 
90° 9.118604 9.12314 0.1% 9.111950 9.125289 0.2% 
120° 7.211273 7.214646 0.1% 7.211940 7.217978 0.1% 

Table 11: Bi-material notch results for 2a = 60° geometry. Values of leading term factor Hi determined by the 
O D M extrapolation and as averaged value of the ^-integral. Both determined with finer division A9 = 2.5° in the 
left part of the table and coarser division A9 = 5.0° in the right part of the table. 

than 0.5 % and the difference in H2 subsequent values is always less than 1.5 %. In the case of higher order terms, 
the convergence rate of first non-singular term under 1.5 % is achieved with n' > 8. The second non-singular term 
H4 convergence rate under 1.75 % is achieved with n' > 16. For researchers interested particularly in non-singular 
terms, we recommend the size of vector H[„/j at least n' = 16. 

2a O D M extrap. Vř—integral avg. difference O D M extrap. Vř—integral avg. difference 
60° 8.641101 8.186926 5.6% 8.623311 7.755549 10.2 % 
90° 3.560358 3.230628 10.2 % 3.548921 2.906699 22.1 % 
120° N / A 0.153295 N / A N / A -0.142072 N / A 

Table 12: Bi-material notch results for 2a = 60° geometry. Values of leading term factor H2 determined by the 
O D M extrapolation and as averaged value of the ^-integral. For the case of 2a = 120° the regression is not 
performed since the term factor H2 is this case is non-singular. Both determined with finer division A9 = 2.5° in 
the left part of the table and coarser division A9 = 5.0° in the right part of the table. 
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Figure 37: Dependence of the Hk value on the number of terms in vector Hn. The bi-material notch, 2a = 90°, 
Ex J Ei =0.25. 
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Figure 38: Dependence of the Hk value on the number of terms in vector Hn. The bi-material notch, 2a = 90° 
Ex/E2 = 0.25. 

Numerical example E : Stress reconstruction for a V-notch. The specimen with the V-notch is modeled 
in 2D as shown in Figure 39 and it is characterized by the following dimensions: L = 76.2 mm, h = 17.8 mm, 
a = 3.56 mm, so the notch depth to height ratio is a/h = 0.2. The notch opening angle is 2a = 90° (71 = 
a, 72 = 180°, 73 = 360° — a). The specimen is modeled with P M M A (polymethyl methacrylate) material model, 
E = 2.3 GPa, v = 0.34 and loaded with force of F = 1 N (per 1 mm of specimen thickness 6). Plane strain state 
is chosen. The first five GSIFs Hk are calculated by the ^-integral, with integration radius r = 3 mm and by 
the linear regression extrapolated displacement and stress based O D M with r = 0.2 -f- 1 mm. The eigenfunctions 
are normalized per Eq. (38) on p. 29 with 9o = 180° where the coordinate system is shown in Figure 39. The 
parameters which form the mapped mesh near singular point as in Figure 33 are chosen as: ro = 0.01 mm, r± = 1 
mm and r2 = 3 mm and the element edge division is by 2.5°. The results are found in Table 13. We see that 
both methods for GSIFs calculation return values of the leading term factor H\ close to each other (within 0.3 % 
comparing the 'I'-integral and the stress based O D M and 0.1 % comparing the 'I'-integral and the displacement 
based ODM) . Because of symmetry of the problem, the odd terms factors of the expansion should be zero. This 
is true for H2 since both methods give a number smaller than 1 0 - 5 . The higher order terms factors H3, Hi and 
7?5 values are complex and determined by both methods with signs of solid computational convergence. The factor 
Hz value of both methods is close to each other, within 4.6 % when the stress based method is considered. For 
both methods, the odd term factor H4 is again in terms of numerical methods equal to zero as it should be. To see 
how the asymptotic solution fits the pure F E solution, we can plot individual Ujj (r, 9) on desired distance. Then 
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we can compare the F E solution with singular terms solution H±, Hi or with singular and non-singular solution 
H\ -\-H§. The results can be even compared on a polar plot and the error between F E and asymptotic quantified as 
in [22]. First, lets take the GSIFs determined by the integral. The stress field solution is reconstructed on radius 
r = 1 mm as in Figure 40. The F E solution is represented by the black squares. The singular terms solution is 
given dominantly by the singular term with Ai (the blue line), the consideration of second singular term containing 
A2 (the yellow line) does not lead to any change (as expected since Hi ~ 0). The overall trend of the singular 
terms solution is close to the trend of F E solution. The consideration of non-singular terms however increases the 
precision of stress reconstruction. The highest increase in precision is given by considering the first non-singular 
term with A3 (magenta line). Employment of higher order terms with A4 (the cyan line) and the term with A5 (the 
red line) does not lead to significant precision increase as all the three lines overlap each other. As expected, the 
fourth term with A4 does not increase precision of the analytical solution since H4 « 0. The H$ does not make 
significant change because the stress is reconstructed on a relatively small distance from the singular point. The 
contribution of the fifth term would become significant on larger distances. In conclusion, the analytical solution 
given by the 'I'-integral with consideration of non-singular terms highly increases the precision of stress description 
and almost perfectly overlaps the F E solution. Next, a comparison of analytical solution with GSIFs determined by 
the stress based O D M is shown in Figure 41. We see a similar trend as in the previous case, that the singular terms 
provide solid stress description on this particular radius, nevertheless the precision is increased by the employment 
of higher order terms. Since we have seen in the Table 13 that both methods gave GSIFs close to each other and 
seen that the stress reconstruction by the 'I'-integral fits the F E quite well, such results are not very surprising. 
In conclusion, the singular terms determined by both methods approximate the F E solution well in terms of the 
overall stress trend. The higher order terms provide a slight increase in precision (see arr stress component for the 
highest increase in precision). Both methods can be recommended for GSIFs calculation and the following fracture 
mechanics analysis. The choice of a particular method in this case is left to the preferences of the researcher. 

k Afc H% 
TrODM,(Tjj 

k 
rrODM,Ui 

k 
1 0.544484 0.511508 0.512873 0.512086 
2 0.908529 6 e - 0 6 -3e - 06 7 e - 0 6 
3 1.629257 ±0.231251« -0.031952 ±0.016126i -0.06112 ±0.041541i -0.047005 ± 0.02195Ž 
4 2.301327 ±0.315837i -5e - 06 ± 2e - 06i - l . l e - 0 5 ± 4 e - 0 6 i - 2 . 6 e - 0 5 ± 0 . 0 0 0 1 9 i 
5 2.971844 ±0.373931i -0.000438 ± 0.000577Í 0.003176 ± 0.000503Í 0.05861 ± 0.059737Í 

Table 13: V-notch, first three eigenvalues Afc and GSIFs Hk calculated by the 'I'-integral and the stress and dis­
placement based O D M . 
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0 [rad] 

Figure 40: Reconstruction of arr, arg and agg on r = 1 mm. The V-notch 2a = 90°. The GSIFs by the ^-integral. 

Figure 41: Reconstruction of arr, arg and agg on r = 1 mm. The V-notch 2a = 90°. The GSIFs by the O D M . 
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k Afc Ht k 
1 0.574837 0.103935 0.103929 
2 0.846410 0.017645 0.020187 
3 1.601034 0.059421 0.053779 
4 1.886466 ± 0.328683Í -0.025273 ± 0.008627Í -0.055768 ± 0.024402Í 
5 2.578256 ± 0.363686Í -0.001147 ± 0.000857Í -0.001897 ± 0.006968Í 

Table 14: Bi-material notch, first three eigenvalues Afc and GSIFs calculated by the 'I'-integral and O D M . 

Figure 42: Model of the bi-material notch specimen subjected to 3 point bending. 

Numerical example F: Stress reconstruction for a bi-material notch. The specimen with the bi-material 
notch (BMN) is modeled in 2D as depicted in Figure 42. The dimensions of the model in this numerical example 
are identical as in the previous Numerical example E, i.e. L = 76.2 mm, h = 17.8 mm, a = 3.56 mm, so the notch 
depth to width ratio is a/h = 0.2. The notch opening angle is 2a = 90° (71 = 0,72 = 180°, 73 = 360° — a). The 
material region 1 is modeled with P M M A material properties E\ = 2.3 GPa, v\ = 0.34 and the material region 2 
with aluminum material model E2 = 69 GPa, v2 = 0.33. The Young's moduli ratio in this case is E\jE2 = 0.033. 
Ideal adhesion on the interface is assumed. The model is loaded with force of F = 1 N (per 1 mm of specimen 
thickness b) and plane strain state is chosen. The eigenfunctions are normalized per Eq. (38) on p. 29 with 
9o = 270°, where the coordinate system is shown in Figure 42. This angle is chosen and does not represent the 
expected crack initiation angle, which is yet unknown. The parameters which form the mapped mesh near singular 
point as in Figure 33 are chosen as: ro = 0.01 mm, 7*1 = 1 mm and r2 = 3 mm and the element division is by 
2.5°. The first five GSIFs are calculated by the 'I'-integral, with integration radius r = 3 mm and the linear 
regression extrapolated H±, H2 or the averaged O D M H% -f- with r = 0.2 -f-1 mm. The first two terms factors 
were extrapolated since slight linear dependence existed for (r). The higher order terms factors were averaged 
since the linear regression is not applicable for these. For the reason discussed in theoretical part discussing the 
O D M , only the stress based determination is used. The results are found in Table 14. We see that both methods 
for GSIFs calculation for the singular leading terms factors H\ and H2 return values very close to each other (0.01 
% for H\ and 12.6 % for H2 ). In case of non-singular terms, good agreement is also found (10.5 % for H3, 9.4 
% for i?4 and 20.9 % for H5). The method for calculation of GSIFs for a given problem should be chosen by the 
comparison of reconstructed analytical solution by each method and pure F E solution. This is shown in Figures 43 
and 44, where stress solution on a radial distance r = 1 mm is compared. In the first set of graphs in Figure 43, 
the -Hfc were determined by the 'I'-integral method. Since the problem is not symmetric, contrary to the problem 
in the previous numerical example, both the singular term with H\ (the blue line) and with H2 (the yellow line) 
are needed to obtain the right trend of the stress distribution (solely the first singular term with H± marked as a 
the blue line does not approximate the F E solution trend well). When we plot the solution by singular and only 
the first non-singular term, which contains A3, we actually obtain solution which is in the material region 2 of less 
quality than singular solution only. However, when we add to the singular solution the first (which contains A3) 
and also the second non-singular term which contains A4 and is denoted by magenta line, we obtain great match 
to the F E . The fifth term, which contains A5 does not increase precision on the distance of 1 mm by any means. 
The same is true for analytical solution obtained by the O D M , which gives results of high quality (in accordance to 
the to the previous case of the V-notch). In conclusion, both methods produce results which correspond to the F E 
solution very well. In case of both methods used, the employment of non-singular terms leads to increased precision 
of stress description. The choice of the method in this case is again left to the researcher. 
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Figure 43: Reconstruction of arr, arg and agg on r = 1 mm for the B M N , E\jEi = 0.033, Hk by the ^-integral. 

Figure 44: Reconstruction of arr, arg and agg on r = 1 mm for the B M N with E\jEi = 0.033, Hf. by the O D M . 
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Figure 45: Tangential stress near the tip of the bi-material notch, area 0.1 — 3 mm. The results of this numerical 
example shows qualitative character of the problem, so the values of aee represented by individual contours are 
intentionally omitted. 

Criteria of crack initiation direction and stability criteria 

The criterion of maximum of average tangential stress 
As described in sub-section 2.2 on p. 14, the maximum tangential stress criterion states that the crack will initiate 

in the direction of maximal tangential stress. Contrary to the case of a crack, direction of maximum of tangential 
stress near tip of a bi-material notch is dependent on the radial distance. This can be observed in Figure 45, where 
tangential stress on area r = 0.1 — 3 mm near the singular point is shown by F E analysis. As the distance increases, 
the maximum changes its direction as shown in Figure 46, where the results of the same F E analysis are plotted in 
the graph. The geometry, bi-material combination and loading is identical to Numerical example F on p. 53. In 
order to mitigate the radial dependence of the maximum in tangential stress, an average value over specific distance 
d which is fracture mechanism or material microstructure related can be calculated as: 

a e e (0) = \ I a e e ( r , e ) d r . (60) 
" Jo 

Then, the maximum value is found by search for function extreme: 

{% - («> 

and by complying to the condition: 

Substituting the tangential stress component as in expansion (20) on p. 24, into equation (60) we obtain: 

= H1^rkl——fe6k(e)+H1^fkl^—fe6k(e) = 2^\H1^rkl——feEK(0)\, (62) 
fc=i A f c fc=i A f c I fc=i A f c J 

where the T^i is the ratio between individual GSIFs: 

r M = j | . (63) 
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Figure 46: Tangential stress calculated by pure F E M plotted on three radii: 0.1 mm, 0.2 mm and 1 mm. Please 
note the difference in predicted angles of crack initiation 9Q when different d is considered. 

Deriving the equation (62) with respect to 
of the equation (62) we get: 

and by forming equation as in Eq. (61) and considering only one part 

fc=i 
t i 

dXk dfeek (9) 
A f c 89 

(64) 

by which we will find the angle 9, where the tangential stress has its global extreme, which can occur in material 1 
or 2. Please note that detailed derivation of this equation and first and second derivative of eigenfunction fggk (9) 
with respect to 9 is found at the Appendix A.2 on p. 107. We presume the crack initiation mechanism to be 
identical as in the case of a crack propagation in homogeneous media. The critical value of average tangential stress 
follows from the case of crack propagation in material m subjected to mode I loading [40]: 

o"ssc (9o,m) 
2K IC,rrc 

Comparing this equation with equation (62), the critical value of GSIF for a notch problem is for complex Afc and 

Hi K\C,r, 

2TT5R { E L -fe 
(65) 

As introduced by Eq. (15) on p. 17, the generalized fracture toughness -ffic,m depends on the fracture toughness 
Kic,m of the material m. In the case of a bi-material notch, there are two materials in which the crack can initiate. 
If the value i ? i c , i is lower than i? ic ,2 , crack initiation is expected into the material 1, otherwise it onsets in the 
material 2. The third option is the crack initiation in the interface. The value i? ic , in ter face is determined based on 
fracture toughness of the interface, i^ ic , in ter face- Note that for all the critical values -ffic, i ; -Hic,2 and i ? ic , in ter face , 
the shape functions feek (9) shall contain corresponding angle of potential crack initiation #o,m(m = 1, 2, interface). 
The angle #o,m is determined by Eq. (64) for the case when the material contains the global maximum of agg (9) and 
equals to 72 for the remaining cases of local maximum of agg (9) of the interface failure. Then, the crack initiation 
occurs if the following stability criterion is violated [20]: 

H\ < {Hic,i,Hic,2,Hi C,interface (66) 
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In general, the criteria always compare value H\ with critical values -ffic.m- This is true for approach when only 
the singular terms factors are employed as well as for the multi-parameter approach. There is no need to compute 
critical values for other terms Hk since they are dependent on Hi by the ratio Tki- Finally the critical load for 
crack onset from a bi-material notch can be calculated: 

min ( - f f l C . l (#0,l) 1 Hic.2 (#0,2) , #1C,interface (#0,interface)) , „ n \ 
a C = a a p p l H^-[) • ( 6 ? ) 

The average strain energy density factor criterion 
In the linear elastic fracture mechanics of cracks, Sih's strain energy density factor (SEDF) criterion can be used 

to predict crack propagation conditions [57]. This approach can also be applied for the same purpose on other cases 
of stress concentration [58]. The case of a crack is characterized by independence of the extreme (minimum) of the 
SEDF on radial distance. General cases however show the radial distance dependence. Therefore, a mean value of 
the SEDF over distance d, which is a distance related to fracture mechanism or material microstructure, is used. In 
[18] Klusák and Knésl applied mean value of the SEDF to assess the stability of bi-material notches. No instances 
of the SEDF criterion employment with consideration of not only singular but also higher non-singular terms are 
found in the literature to the best of author's knowledge. As shown in the dissertation, some cases of V-notches and 
bi-material notches are characterized by rather weak singularities in comparison to crack problems (e.g. notches 
with 2a > 120°). In such cases, the singular terms may describe stress field precisely only on distances smaller than 
distance d related to fracture mechanism or material microstructure. Because of that, the SEDF criteria without 
consideration of higher order terms may give either overconservative or underestimated failure load prediction. In 
order to mitigate such discrepancy, the SEDF can be calculated using n singular and non-singular terms. The 
definition of the SEDF is [57]: 

v d W f A 
L = r—— = r ade, 

dV J0 

where the ĵy- represents strain energy density (strain energy per volume). When considering the brittle fracture 
the crack initiates when the SEDF reaches its critical value: 

where £ c is material parameter determined in relation to the fracture toughness of given material -ftTic,m- Let's 
recall Eq. (13) on p. 15. For crack problems: 

£ c , m = — : • (68) 

In the case of a bi-material notch, the SEDF will be determined for both material regions and the interface, thus 
for index m = 1, 2, interface. As discussed above, to account for dependence of the SEDF on radial distance, its 
mean value E m over specific distance d is determined as: 

d 
Em = \ I S m d r . (69) 

" Jo 

Let's recall the formula for calculation of the SEDF for plane problems, Eq. (10) on p. 14: 

[km - 1) + (a2

eem + a2

rrm)(km + 1) + 4a2

r6m] , (70) 

in which the material constant km is defined in Eq. (11) on p. 14. Let's substitute for each stress component its 
stress series form of n terms and integrate the equation over specific distance d. By doing that, the final form of 
the formula for the mean value of the SEDF is: 

£™ = a ^ E E r ^ r " x ^ U*lW)\ (71) 

I ^ m fc=i i=k *k + M J 
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in which the Tu is ratio between GSIFs defined: 

and the augmented shape functions in the following form: 

' Veek (9) Uk (9) (km - 1) + (feek (9) + frrk (9)) (km + 1) + Afr6k (9) k = l 
Ukl (9) = { 2(feek (9) frrl (9) + f99l (9) frrk (9)) (km - 1) + 2(feek (9) fm (9)+ k^l 

+frrk (9) frrl (9)) (fcm + 1) + 8fr9k (9) fr9l (9) . 

The detailed derivation of Eq. (71) is found in the Appendix A , p. 108. The crack initiation angle 9o is found as a 
minimum of mean value of the SEDF. Mathematically, the function extreme is: 

. 89 

and for the function minimum: 

0, (72) 

> 0. 
d92 

By substitution of Eq. (71) into Eq. (72) we finally obtain equation by which we will find the crack initiation angle 
9o-

The derivative of U^i (9) is found in the Appendix A , Eq. 109 on p. 110. We assume that the crack initiation 
process in the case of a bi-material notch is identical to the crack propagation process in the case of a crack in 
homogeneous media. The employment of equation (71) for mean value of the SEDF together with equation (68) 
for critical value of the SEDF leads to formula for determination of critical value of GSIF: 

Note that all the critical values -ff ic, i ; -Hic,2 and -ffic,interface should be evaluated for calculated corresponding 
angles of crack initiation #o,ii #0,2 and #o,interface respectively, which were determined earlier by Eq. (73). Once 
the critical fracture toughness values are known, in order to assess stability, the generalized stability condition as 
stated in equation (15) is used. The condition of stability for the case of a bi-material notch is written identically 
as in Eq. (66) in the M T S criterion section, since it is a general one. The crack onset load is then calculated by 
Eq. (67). 

The coupled stress-energy criterion 
The coupled stress-energy criterion developed by Leguillon [23] states that both the energy and stress criteria 

are necessary conditions for fracture but neither one nor the other are sufficient. The fracture occurs when the two 
criteria are fulfilled simultaneously, together they form a sufficient one. The energy criterion, which is commonly 
used in fracture mechanics of brittle solids is: 

HlC,m = KlC,m 

\ 

- i t > Gc< ( 7 5 ) 

where SS is newly created crack surface and Gc is fracture energy per unit surface, the fracture toughness. The 
incremental form of this criterion is the foundation of Finite fracture mechanics (FFM). It requires the knowledge 
of the crack increment surface SS [23]. The differential form of this criterion is known as Griffith criterion. Let's 
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(a) (b) 

Figure 47: Unperturbed and perturbed problem. 

consider the symmetrically loaded V-notch which is characterized by single real governing term of the stress expan­
sion (with GSIF H and eigenvalue A). The potential energy change at a crack onset in the direction do is written 
[24]: 

-SWP = H2 A (2a, d0) l2Xd + (76) 

where A (2a, do) is the scaling term dependent on local geometry (2a) and the direction of crack initiation do- Its 
computation is commented in following sub-chapter. The I is length of the newly created crack and d is the width 
of the specimen. The GSIF H is proportional to the applied load thus H = caoo- Combining equations (75) 
and (76), the lower bound for the crack increment length is: 

^ A(2a,d0)c2a2 " [ U ) 

Since the applied load cannot be infinitely large, the increment length I at crack onset cannot be infinitely small. 
The crack jumps from 0 to lo, which is the illustration of F F M . The tangential stress at a distance I from the tip 
in the direction 9Q is: 

aee(l,do) = Hlx~l fee (do) + • • • 

considering the stress failure condition: 

<?ee(hdo) > <rc, 

where ac is the critical tension, i.e. material strength. The upper bond for the increment length I is: 

j A - i <

 C(Jo°fee (Qo) £ 7 g j 

The increment length lo is derived by combining (77) and (78), so we get: 

Gcfje (Aq) 
A(2a,do)a'i 

The crack onset criterion can be obtain by substituting Eq. (79) into Eq. (76), thus: 

10 - A (2a, do) a2 • ( ? 9 ) 

H < 
„ \ l - A / \ 2 A - 1 

A (2a, do) J \ fee (do) 

Matched asymptotic expansion for the coupled stress-energy criterion 
Let's consider a domain O' which is slightly perturbed by a small crack of length I as illustrated in Figure 47b. 

The solution Ul(x\,X2) can be expressed as the unperturbed solution U°(x\,X2) defined in 0 ° , see Figure 47a, (0° 
is a limit of SI1 as I —> 0) plus a small correction: 

Ul(Xl,x2) = U0(x1,X2)+gi(l)U1(x1,x2), (80) 
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where gi(l) —> 0 as I —> 0. This expansion above (80) is called outer and it is valid in the whole domain (or fi') 
except near the corner point where the geometry is perturbed [23]. The singular solution U°(xi,x2) at the corner 
point can be written as: 

U°(x1,x2) = U°(0,0)+Hrxu(9) + ... (81) 

Where the term £/°(0,0) represents the rigid body translation. It is assumed for simplicity that the leading singular 
term is single real one (therefore we denote H± = H, \± = \ and u\ (9) = u(9)). In order to have description of 
near fields, the domain fi' is stretched (x l /Z) and as I —> 0 it leads to unbounded inner domain O l n where y\ = xi/l, 
2/2 = x2/l and p = r/l. The crack length is chosen as I = 1, so the inner expansion is: 

Ul(xux2) = Ul(ly1,ly2) = G0(l)V°(y1,y2) + G1(l)V1(y1,y2), (82) 

where G\(l)/Go{l) —> 0 as I —> 0. The behavior of outer terms in (80) when approaching to the singular point must 
match the behavior of the inner terms in (82) at infinity. The asymptotic character of (81) leads to: 

G 0 ( 0 = 1, V°(y1,y2) = U°(0,0) = C, G1(l) = Hlx. 

In addition it is prescribed that V1 (2/1,2/2) ~ pxu{9) as p —> 00. By using the superposition principle the function 
V^1 (2/1,2/2) is written: 

V\yi,y2) = pxu(9) + V(yi,y2), 

where V{y\,y2) is the complementary term. Therefore the inner expansion of perturbed problem is: 

Ul(yi,y2) = C + H1lx(pxu(9) + V(y1,y2)) + ... 

and the inner expansion of unperturbed problem: 

U°(yi,y2) = C + Hlxpxu(9) + ... 

The difference in strain energy thus is: 

Wp(<>) - Wp(l) = *(£/°, Ul) = * ( C + Hlx(pxu(9) + V(yuy2)) + ...,C + Hlxpxu(9) + ...), 

which can be expanded in individual 'J-integrals: 

H y o ) - WP{1) = * ( C , C) + HlxC^{C, pxu{9)) + HlxC^{pxu{9), C) + H2l2X^{pxu{9), pxu{9)) 

+Hlx^(V, C) + H2l2X^{V, pxu{9)). 

As the properties ^(u, u) = 0 and ^(u, v) = —^(v,u) apply, all the terms expect the last one are equal to zero. 
Equality Hlxtp(V, C) = 0 can be also proven [25]. The final form of the equation for difference in potential energy 
is 

Wp(0) - WP{1) = AH2l2X, (83) 

Figure 48: Domain with a small crack of length I. 
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Figure 49: On the left: F E model of the inner domain for a calculation of the scaling coefficient 
A (2a = 90°, 9Q = 180°) of the V-notch. On the right: the crack with unit length after deformation. 
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Figure 50: The left-hand side shows the convergence study of the scaling coefficient A (2a = 90°, 9Q = 180°) for 
the V-notch in dependence of integration path radius r^. The right-hand side shows the convergence study of the 
scaling coefficient A (2a = 90°, 9Q = 180°) for the V-notch in dependence of the inner domain size rz-

in which the term A is: 

A = ^(V,pxu(9)) = \ ((a(V)npxu(9)-a(pxu(9))nV) (84) 

and the Y is any contour surrounding the singular point as shown in Figure 48. We refer to A as to scaling coefficient. 
It is dependent on the general singular stress concentrator local geometry and the crack initiation angle. Thus we 
denote it as A (2a, 9Q). 

Numerical example G: Scaling coefficient A (2a, 9Q) of the coupled stress-energy criterion. The values 
of scaling coefficient A (2a, 9$) are calculated for the V-notch with geometry as shown in Figure 9 on p. 15. The 
V-notch is symmetrically loaded so the crack initiation angle is known, 9$ = 180°. The parameter A (2a, 9$) is 
calculated by matched asymptotic expansion, which is theoretically explained in the previous sub-chapter 4.2 on 
p. 59. Circular domain is modeled by F E M code A N S Y S with a small crack of unit length at its origin (with 
orientation of crack initiation angle 9Q). The F E model is shown in Figure 49. The crack faces are loaded with 
function r X l _ 1 fggi (9), which is normalized as in Eq. (38) on p. 29. The assumption for the inner domain is, that 
it has boundaries in infinity. This can not be modeled by F E M , therefore the domain has to be modeled large 
compared to the crack length of I = 1 mm. The nodes of elements laying on the outer edge of the domain are fixed 
in radial and tangential direction. Then, the scaling coefficient is determined by numerical integration of expression 
(84). Circular integration path T as shown in Figure 48 is chosen to fully surround the crack and the integration 
radius is denoted r^. The values of stress and displacement components are extracted from nodes found on this 
circle. The expression for an infinitesimal value of the integral as written in python script is: 
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Figure 51: Scaling coefficient A (2a) resulting values comparison. The magenta line represents results calculated 
by Leguillon, the cyan line represents author's results [23]. 

dAk(9) = rXk (r2frk(9)aFE(9) + r2f6k{9)aF

rf{9) - uFE(9)frrk(9) - uFE(9)fr0k(9)) M, 

which is later integrated by the trapezoidal rule: 

{dAk (9n-1)+dAk(9n))A9 

As in the case of the 'I'-integral applied on the V-notch of 2a = 90°, circle division A9 by 5° or 2.5° leads to 54 or 108 
integration points respectively. The choice of the finer integration step results in a very small change of coefficient 
(by 0.5 % or less). To prove the integral path independence, the integral is calculated on various circular paths 
with r2 between 10 and 25 mm. The results which are shown in chart on the left side of Figure 50 show satisfactory 
convergence. The size of inner domain is chosen as rs = 200 mm. This large dimension should represent behavior of 
the domain as if it had boundaries in infinity. The convergence study shows that further increasing of its size does 
not significantly affect the resulting scaling coefficient, see left chart in Figure 50. The calculated values of scaling 
parameter for the V-notch are compared with values calculated by Leguillon in [23]. Graph in Figure 51 shows the 
resulting values of scaling coefficient for variety V-notch opening angles 2a. Good match in results is found (within 
7 %). 

Failure load predictions vs. experimental data. Experiments on three point bending specimens made of 
polymethyl methacrylate ( P M M A ) with a V-notch were conducted by Dunn et al. in [64]. The geometry of specimen 
is identical to the one modeled in Numerical example E on p. 50. The actual thickness of specimen is b = 12.7 
mm. Dunn et al. tested specimens with notch opening angle 2a of 60°, 90° and 120°. They also varied the notch 
depth, so the specimens with a/h ratio of 0.1, 0.2, 0.3 and 0.4 were tested. In [64] Dunn et al. measured fracture 
toughness of P M M A as an average value K\Q = 1.02 MPa-y/m with standard deviation of 0.12 MPay 'm and the 
average strength au = 124 M P a . They reported on failure strength <7/ of notched specimens of individual geometric 
configuration. By knowledge of failure strength the failure force can be easily calculated by formula: 

2afbh2 

3L • 
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Figure 52: Comparison of experimental failure forces [64], the M T S and SEDF criterion predicted critical forces for 
a V-notch. The cyan color represents results of 2a = 60° and the magenta color represents results of 2a = 90°. 
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Figure 53: Comparison of experimental failure forces [64] 
a V-notch. Results of 2a = 120°. 

the M T S and SEDF criterion predicted critical forces for 

We predict FQ by simple modification of Eq. (67) on p. 57: 

Fc - appl 
Hi c \oo 

Hi (Fapp\) 

Whereas the -Hic,m are determined by Eq. (65) on p. 56 in the case of criterion of maximum of average tangential 
stress or by Eq. (74) on p. 58 in the case of average strain energy density factor criterion. The generalized fracture 
toughness is computed by the above stated K\Q of P M M A . The crack initiation angle is assumed to be Oo = 180° 
because of problem symmetry. The parameter d related to microstructure or fracture mechanism was varied, so the 
charts show predictions with d = 0.001 mm, d = 0.01 mm and d = 0.1 mm. The results for specimens with notch 
opening angle 2a = 60° and 2a = 90° are found in Figure 52 and the results for 2a = 120° in Figure 53. 

The review of results show, that the very good agreement between experimental data and theoretical predictions 
occur for d = 0.01 mm especially in the case of the largest opening angle 120°. The use of the above mentioned criteria 
and parameter d = 0.01 mm leads to results which underestimate the actual failure load. From the engineering 
point of view, it is a desirable situation, since the results lay on so called safe side. The chosen length d = 0.01 mm 
has the same order of magnitude by the material length parameter used by Taylor in [59]: 

1 (KicÝ _ 1 /1.02 M P a V m N 2 

7T V &u ) 7T V 124 M P a 
: 0.0215 mm 

The criteria used to predict the failure force are multi-parameter, nevertheless on distances in order of 1 0 - 2 mm, 
the contribution of higher order terms is small. The difference in failure loads predicted by the single-parameter 
criteria and multi-parameter criteria is in units of percents. The higher order terms contribution would become 
significant for materials and configurations where larger d is necessary. 
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k 1 2 3 4 
Afc 0.598793 1.142299 1.544159 2.098344 + 0.580010Ž 
Hk 0.077091 -0.011036 0.018588 -0.004002 + 0.007523Í 

Table 15: Eigenvalues A f c and GSIFs Hk of the bi-material notch with 2a = 120° and E1/E2 = 0.033. 

Numerical example H : Crack initiation direction and crack initiation load in the case of a bi-material 
notch. 

Part 1 The three point bending specimen with the bi-material notch is modeled. The studied problem is 
identical to the Numerical example F on p. 53 with only one difference, the notch opening angle is 2a = 120°. As 
in Numerical example F, the Young's moduli ratio is E\jE2 = 0.033. The GSIFs are calculated by the 'I'-integral 
method and listed in Table 15. Let's predict the crack initiation direction and the critical value of GSIF by (a) 
criterion of maximum of average tangential stress and (b) average strain energy density factor criterion. The crack 
initiation angle and failure load will be calculated using (i) singular terms, (ii) singular and non-singular terms. 
Case (i) contains one singular term thus n = 1, case (ii) contains one singular and three non-singular terms thus 
n = 4. We have seen in Numerical example F on p. 53, that the employment of the fifth term does not increase 
precision by any means, this is also true for this geometric configuration. 

(a) The criterion of maximum of average tangential stress. The crack initiation direction is predicted 
using the formula (64) on p. 56 to find the extreme of agg (9). The results are illustrated in Figure 54, where the 
graph shows averaged stress agg (9) over distance d = 1 mm using (i) singular term (the blue dotted line), singular 
and non-singular terms (the cyan dotted line). The blue and cyan vertical line shows the maximum of agg (9) 
determined by (i) singular term and (ii) singular together with non-singular terms respectively. In addition, the 
blue and cyan solid line with markers represents the agg (r, 9) reconstruction on particular distance d. The black 
squares denote the F E solution. When (i) only the singular term is used, the global maximum lays in material 2, 
which is aluminum. In case (ii) when singular and non-singular terms are used, the global maximum is again found 
in material 2. The difference in the angles of global maxima determined by (i) and (ii) is 2.3°. By varying the value 
of d, the angles of global maxima slightly changes (for d = 0.3 mm the difference is 1.8° and for d = 3.0 mm it is 1.2°). 
Therefore the averaging distance should be chosen carefully in relation to the fracture mechanism or microstructure 
of a particular problem. Since the purpose of this numerical example is only to provide illustration of application 
of the criteria, the critical distance will remain d = 1 mm. Furthermore the choice of d related to mechanism 
or microstructure is beyond scope of this work. The fracture toughness of P M M A is i f ™ M A = 1.02 MPa-^/m 
[64]. The fracture toughness of aluminum is 14-^28 MPa-^/m depending on the particular alloy and treatment. We 
choose aluminum alloy (7075) with Kfji = 24 MPa-y/m. Without an experiment with the particular bi-material 
configuration, it is uneasy to estimate fracture toughness of the interface. In [65] Shatil and Shaimoto tested 
aluminum/PMMA bi-material 3PB specimens, however they do not provide value regarding fracture toughness of 
the interface. To bond the materials together they use epoxy adhesive. Experimental evaluation in [67, 66] show 
that the fracture toughness of interface can vary widely depending on conditions and particular configuration of 
materials to be bonded. Our estimation for this numerical example therefore is i f ™ t e r f a c e = 0.75 MPay 'm. The 
generalized fracture toughness is calculated by Eq. (65) for global maximum, local maximum and the interface. 
The results calculated by (i) singular term are shown in Table 16 and by (ii) singular and non singular terms in 
Table 17. Please recall the stability condition (66) on p. 56. According to (i) the global maximum lays in m = 2, 
which is the aluminum with the crack initiation angle of #o,i = 183.3°. The corresponding generalized fracture 
toughness value i?ic,2 is the highest one since aluminum has ~ 20 times higher fracture toughness than P M M A . 
Crack is expected to initiate rather to direction of local maximum, in P M M A or to the interface. When we asses 
the local maximum, we see that the lowest value corresponds to the interface, therefore the crack is expected to 
initiate in this direction. According to (ii) the global maximum also lays in m = 2 with the crack initiation angle 
of #0,2 = 181.0°. The lowest value of generalized fracture toughness value also corresponds to the interface. The 
difference in this generalized fracture toughness value determined by (i) and (ii) is 1.8 %. 
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6o,m m Hic,m 

global maximum 183.3° 1 = aluminum 26.405477 
local maximum 180.0° 2 = P M M A 1.124533 
local maximum 180.0° interface 0.826863 

Table 16: The generalized fracture toughness i ? i c , m for global maximum, local maximum and the interface deter­
mined by (i) singular term and (a) criterion of maximum of average tangential stress. 

6o,m m Hic,m 

global maximum 181.0° 1 = aluminum 26.940646 
local maximum 180.0° 2 = P M M A 1.145156 
local maximum 180.0° interface 0.842027 

Table 17: The generalized fracture toughness i ? i c , m for global maximum, local maximum and the interface deter­
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress. 

Figure 54: Mean value of the ogg (9) plotted by (i) singular term: the blue dotted line, (ii) singular and non-singular 
terms: the cyan dotted line. The blue and cyan vertical line denotes the corresponding crack initiation angle. The 
black dashed vertical lines denote the interface and the free surfaces. 

(b) The average strain energy density factor criterion. The crack initiation direction is predicted 
using the formula to find the extreme of E (9) Eq. (73) on p. 58. The results are illustrated in Figure 55, where 
the graph shows averaged strain energy density E (9) over distance d using (i) singular term (the blue line with 
markers), (ii) singular and non-singular terms (the cyan line with markers). The blue and cyan vertical lines show 
extreme values (global minimum) determined by (i) and (ii) respectively. Both (i) and (ii) show the global minimum 
in material m = 2, which is aluminum. There is difference of 2.9° in direction of global minimum predicted by (i) 
and (ii). Because of much higher fracture toughness of aluminum in comparison to P M M A , the crack is expected 
to initiate rather to direction of local minimum of E (9) or to the interface. The results are summarized in Tables 
18 and 19. Per stability condition (66) on p. 56, the lowest value of -Hic.m corresponds to the local minimum of 
E (9) and the interface. Thus crack initiation in interface in the direction 9$ = 180.0° is expected. The difference 
in general fracture toughness value determined by (i) and (ii) is 5.2 %. 
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6o,m m Hic,m 

global minimum 184.5° 1 = aluminum 27.711504 
local minimum 180.0° 2 = P M M A 1.169967 
local minimum 180.0° interface 0.860270 

Table 18: The generalized fracture toughness i ? i c , m for global minimum, local minimum and the interface deter­
mined by (i) singular term and (b) average strain energy density factor criterion. 

6o,m m Hic,m 

global minimum 181.6° 1 = aluminum 28.83614 
local minimum 180.0° 2 = P M M A 1.230542 
local minimum 180.0° interface 0.904810 

Table 19: The generalized fracture toughness i ? i c , m for global minimum, local minimum and the interface deter­
mined by (ii) singular and non-singular terms and (b) average strain energy density factor criterion. 

Figure 55: Mean value of the E (9) plotted by (i) singular term: the blue line, by (ii) singular and non-singular 
terms: the cyan line. The blue and cyan vertical line denotes the corresponding crack initiation angle. The black 
dashed vertical lines denote the interface and the free surfaces. Please note that in the interval (r, 73) the value 
£ (9) is multiplied by factor of 10. 

Part 2 A free edge singularity as shown in Figure 56 is studied. The dimensions of the modeled specimen 
are L = 38.1 mm, h = 14.24 mm and the plane strain state is considered. The angles which define the free edge 
singularity by a bi-material notch model are 71 = 90°, 72 = 180° and 73 = 270°. The material region 1 consists of 
Aluminum material model, while the material region 2 consists of P M M A material model. The elastic constants 
are identical to those of Numerical example F on p. 53 thus the Young's moduli ratio is E\/ E2 = 30. The fracture 
parameters are identical to those in Part 1 of this numerical example. The force of 0.1 N / m m applied on a line is 
constantly distributed on the length h of the upper edge under direction of £ (per 1 mm of specimen thickness 6). 
This particular configuration of a bi-material notch has only one singular term with Ai = 0.721100. The second 
term is non-singular with A2 = 1.721014 ± 0.575276. Higher order terms have 5 {Afc} > 1 and do not significantly 
add to the precision on d = 1 mm. Both the eigenfunction are normalized by the angle 240°. The crack initiation 
direction and material in which the crack initiates is calculated by criterion of maximum of average tangential stress. 
According to the theory, when only the singular term is used for prediction of crack initiation direction #o,m, this 
direction should be independent of external loading direction £. The reason is apparent from examination of the 
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formula for crack initiation direction calculation Eq. (64) on p. 56. To account for the different loading of particular 
problem, the formulae contain ratio Tki- However, when only one singular term is used, this ratio remain constant 
and single one. Apparently, the angle of crack initiation should be dependent on the angle of external loading. 
With employment of the first non-singular term, the crack initiation angle changes as it should be. The distance 
d is again chosen as a 1 mm for the reasons discussed above. The results related to the criterion of maximum of 
average tangential stress for the case when £ = 180° are shown in Figure 57. The blue line with markers represents 
the (i) singular term solution of agg (r, 9) and the yellow line with markers represents (ii) singular and non-singular 
term solution of agg (r, 9) on distance d. The blue and yellow line represents the averaged distributions agg (9) by (i) 
and (ii) respectively. The dashed vertical lines represents the global maxima. The results for different £ determined 
by (a) are summarized in Table 20. The highest discrepancy in location of global maximum of agg (9) determined 
by (i) and (ii) occurs when £ = 180° and with a value of 6.0°. The results of generalized fracture toughnesses for 
the case £ = 90° determined by (i) and (ii) are listed in Table 21. In similar manner, the Table 22 summarizes 
the results for £ = 180°. According to the stability condition (66) on p. 56, the lowest value in both (i) and (ii) is 
Hie,interface- Therefore the crack is expected to be initiated in the direction of local maximum to the interface i.e. 
0o,interface = 180°. The difference in calculated critical value of -Hie,interface by (i) and (ii) is 5.5 % when £ = 90° 
and 20.4 % when C = 180° . 

F 

L 

h 

Figure 56: Bi-material plate with a free edge singularity, loaded with load of variable direction £. 

(i) singular term (ii) singular and non-singular terms 
c 9o 9o discrepancy 

90° 169.9° 171.0° 1.1° 
112.5° 169.9° 174.2° 4.3° 
135° 169.9° 175.0° 5.1° 
180° 169.9° 175.9° 6.0° 

Table 20: Variation of the crack initiation angle 9o on the external loading angle £ for free edge singularity. Values 
determined by (a) criterion of maximum of average tangential stress. 
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Figure 57: Mean value of the age (9) plotted by (i) singular term: the blue line, by (ii) singular and non-singular 
terms: the yellow line. The black dashed lines denote the interface and the free surfaces. The external load direction 
for this case is Q = 180°. 

(i) singular term (ii) singular and non-singular terms 
C = 90° 9o m Hic,m 9o m Hic,m 

global maximum 169.9° 1 = aluminum 35.844833 171.0° 1 = aluminum 34.219002 
local maximum 180.0° 2 = P M M A 1.594816 180.0° 2 = P M M A 1.507462 
local maximum 180.0° interface 1.172659 180.0° interface 1.108428 

Table 21: The generalized fracture toughness i ? i c , m determined by (a) criterion of maximum of average tangential 
stress for a free edge singularity with £ = 90°. 

(i) singular term (ii) singular and non-singular terms 
C = 180° 9o m Hic,m 9o m Hic,m 

global maximum 169.9° 1 = aluminum 35.844833 175.7° 1 = aluminum 29.665253 
local maximum 180.0° 2 = P M M A 1.594816 180.0° 2 = P M M A 1.269263 
local maximum 180.0° interface 1.172659 180.0° interface 0.933282 

Table 22: The generalized fracture toughness i ? i c , m determined by (a) criterion of maximum of average tangential 
stress for a free edge singularity with £ = 180°. 

69 



Ondřej Krepl Methods and results 

4.3. Formulation of multi-parameter fracture mechanics approaches for a sharp ma­
terial inclusion 

Stress terms exponents determination and study 

A sharp material inclusion is modeled as a bi-material junction which is shown in Figure 11 on p. 18. The boundary 
conditions of the problem are: 

From the equations above it follows that the traction and displacement continuity is enforced at both interfaces T i 
and To = r 2 . By substituting equations for stress components (18) and displacement components (19) on p. 24 
into 8 equations of boundary conditions above and by simple rearrangement we obtain the matrix A (A) analogical 
to a V-notch problem, Eq. (33), p. 28. Again, the system of equations can be written as in Eq. (35), i.e.: 

The system is characterized by 9 unknowns, the eigenvalue Afc and 8 complex constants in the eigenvector Vk, which 
has the same form as the eigenvector for a bi-material notch Eq. (34). From the mathematical point of view, the 
system is solved in accordance to the means described in detail in sub-section 4.2 p. 27. Brief recall of the approach 
is following. Eigenvalue Afc is found as a solution of the characteristic equation rising from determinant of matrix 
A (A) as in Eq. (36) on p. 28. The fcth eigenvalue Afc a is inserted back into the matrix in order to obtain eigenvector 
Vk- One complex coefficient of the eigenvector is chosen as 1 and the reduced system of equations is solved, see Eq. 
(37) and remaining coefficients of eigenvector determined. As the eigenvector Vk is constructed, eigenfunctions for 
stress fijk (9) and displacement series fik (#), Eq. (23) and (27) respectively, are fully defined. Normalization of 
eigenfunctions is conducted as in (38) or (39) on p. 29 in the assumed direction of crack initiation 9Q or another 
angle of choice. Contrary to the case of a V-notch, for eigenfunctions of a bi-material junction does not apply, 
that the odd eigenfunctions are with k = 1, 3, 5 . . . and even eigenfunction with k = 2,4, 6 . . . Therefore, in such 
case it is investigated if the function is odd or even and it is normalized accordingly. However, straightforward 
division to odd and even function is applicable only for symmetrical problems of a bi-material junction, i.e. when 
|7 I | = |TO I - General non-symmetrical problem of a bi-material junction is analogical to a bi-material notch, where 
each eigenfunction f^k (9) contains both odd and even functions. In such cases, the normalization should be 
performed on individual basis. 

Numerical example J : Eigenvalues, eigenvectors and the eigenfunctions of the bi-material junction 
(case of inclusion more compliant than matrix). The bi-material junction as shown in Figure 11 on p. 18 
is considered. Let's study three geometrical configurations, i.e. (i) 2a = 60°, (ii) 2a = 90°, (iii) 2a = 120° (for 
all cases: 70 = —a, 71 = a, 72 = 27r — a) . The material properties are defined by E\jEi = 0.25, E\ = 20 GPa 
and v\ = v2 = 0.25. This numerical example represents the case of the sharp material inclusion more compliant 
than matrix. The eigenvalues Afc and eigenvectors Vk are determined as described theoretically in the previous sub­
section. From the computational point of view, the search for roots is conducted with the same procedure as in the 
case of a bi-material notch, which is in detail described in the Numerical example B on p. 32. The eigenvalues are 
roots of the characteristic equation which are being found on a complex plane by solving system of two equations. 
Where both the real and imaginary part of the eigenequation is zero a root is found (location where the red and 
blue curve intersect). Again it is advised to check if the found value truly represents a root by inserting it back 
into the characteristic equation. The resulting value should be close to zero. For the first geometric configuration 
(i) 2a = 60° the solution is described in the graph in Figure 58 and the resulting eigenvalues listed in Table 23. For 
the first geometrical configuration in this numerical example, the complex coefficients of eigenvector Vk are for the 
sake of completeness listed in Table 24 for the first material region and in Table 25 for the second material region 
(eigenvectors of first four eigenvalues are considered). For the second geometric configuration (ii) of this numerical 

Oflflfci (r,7i) 
oYflfci (r,7i) 
Wflfci (r,7i) 
Wrfci (r,7i) 

o-09k2 (r,72) 
o>flfc2 (r,72) 
ugk2 (r,72) 
Urk2 (r,72) 

<J88k2 (r, 71) 
o-r0k2 (r, 71) 
ugk2 (r, 71) 
urk2 (r, 71) 
Oflflfci (r, 70) 
oYflfci (r, 70) 
Wflfci (r, 70) 
Wrfci (r, 70) 

(85) 

A(X)v = 0. 
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0.0 0.5 1.0 1.5 2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

Sft(z) Sft(z) 

Figure 58: (i) Bi-material junction, 2a = 60°, E\/E2 = 0.25. On the left-hand side there is the graph of / (z) = 
det (A (A)). On the right-hand side contour plot, the blue curve stays for 5R{det (A (5R{Afc}))} = 0 and the red 
curve for 9 {det (A (3 {A f c}))} = 0. 

k 1 2 3 4 5 6 
Ai, 0.816623 0.863720 1.252661 1.696219 2.000000 2.058139 ±0.154775i 

Table 23: (i) Bi-material junction, 2a = 60°, E\jEi = 0.25. First six eigenvalues Afc. 

example, the eigenvalues are found graphically as shown in Figure 59 and the eigenvalues listed in Table 26. The 
last geometrical configuration (iii) has the graphical solution of eigenvalues in Figure 60 and the eigenvalues listed 
in Table 27. As explained theoretically in the previous section, once the eigenvalues Afc and eigenvectors Vk are 
determined, one is able to construct eigenfunctions fijk (0) and fik (0) for stress and displacement series respectively 
(and their complex conjugates). For the most common case of the bi-material junction, i.e. (ii) 2a = 90°, the stress 
eigenf unctions fijk (0) for k = 1,2,3,4 are displayed in Figure 61. Similarly the displacement eigenfunctions fik (9) 
for k = 1, 2, 3,4 are constructed and shown in Figure 62. The yellow dashed line denotes the location of the interface 
r"i. The eigenfunctions are normalized with consideration of the Oo = 180°. We see that the eigenfunctions with 
k = 1,3,4 are odd and eigenfunction with k = 2 is even in terms of radial and tangential stress8. Analogically to 
a bi-material notch, the radial stress eigenfunction is discontinuous, in the case of a bi-material junction on two 
interfaces. The strength of singularity varies from case to case and a straightforward conclusion similar to case of 
a V-notch or bi-material notch cannot be proclaimed. A general understanding may be provided by plotting the 
dependence of Afc on the 2a for particular bi-material configuration. Such dependence of eigenvalues for bi-material 
configuration of E1/E2 = 0.25 is shown in Figure 63. 

Numerical example K : Eigenvalues, eigenvectors and the eigenfunctions of the bi-material junction 
(case of inclusion stiffer than matrix) Similarly as in the Numerical example J , the bi-material junction as 
shown in Figure 11 on p. 18 is considered. Again, let's study three geometrical configurations, i.e. (i) 2a = 60°, 
(ii) 2a = 90°, (iii) 2a = 120° (for all cases: 70 = —0,71 = 0 , 7 2 = 27r — a). The material properties are defined 
by E1/E2 = 4, Ei = 80 GPa and v\ = v-i = 0.25. Thus, the numerical example represents the case of the sharp 
material inclusion stiffer than matrix. The eigenvalues Afc are determined in the same way as described in the 
previous sub-section. The solution is plotted only for case (ii) which is a representative one, see Figure 64. The 
graphical solution of other cases has similar characteristics. The resulting eigenvalues are listed for the geometric 

8 B y referring to the eigenfunction as odd or even we mean that it is odd or even in part on each of two material domains, see Figure 
73. 
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k Iki Lki 
1 0.715493 + 0.464786Í 0.715492 + 0.464787Í 0.533424 + 0.346514Í 0.533424 - 0.346515Í 
2 0.436009+ 0.198952Í -0.435969 - 0.199039Í -0.284583 - 0.1299269Í 0.284611 - 0.129867Í 
3 -0.582004 + 0.591817Ž -0.582004 + 0.591817Ž 0.191283 -0.194508Ž 0.191283 + 0.19450Í 
4 0.300250 + 0.423752Í 0.300250 + 0.423752Í 0.157338 + 0.222056Í 0.157338 - 0.222056Í 

Table 24: (i) Bi-material junction, 2a = 60°, E\jEi = 0.25. First four eigenvector's Vk coefficients M^i, JVfci, Iki 
and Lfci. 

k Mk2 Nk2 Ik2 Lk2 

1 0.321620 + 0.722903Í 0.791219 + 0.000002Í 0.406484 + 0.913658Í 1 
2 0.723878 + 0.834526Í -1.104732 - 0.000094Í -0.655188 - 0.755466Í 1 
3 0.026795 + 1.602508Ž -1.602732 -0.016719 - 0.999860Í 1 
4 0.044471 - 0.126556Í -0.134142 -0.331519 + 0.943448Í 1 

Table 25: (i) Bi-material junction, 2a = 60°, E\jEi = 0.25. First four eigenvector's Vk coefficients Mk2, Nk2, Ik2 
and Lfc2-

0.0 0.5 1.0 1.5 2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

Sft(z) SR(z) 

Figure 59: (ii) Bi-material junction, 2a = 90°. On the left-hand side there is the graph of / (z) = det (A (A)). 
On the right-hand side contour plot, the blue curve stays for 5ft {det (A (5R {Afc}))} = 0 and the red curve for 
9{det (A (3{A f c }))} = 0. 

k 1 2 3 4 5 6 

Afc 0.771662 0.963713 1.223471 1.782013 ± 0.095427« 2.229579 ± 0.152656Í 2.906718 ± 0.380536Í 

Table 26: (ii) Bi-material junction, 2a = 90°, E\jEi = 0.25. First six eigenvalues Afc. 

k 1 2 3 4 5 6 
Afc 0.778634 1.093457 1.124854 1.900225 ± 0.157971« 2.000000 2.25895762 

Table 27: (hi) Bi-material junction, 2a = 120°, E\jEi = 0.25. First six eigenvalues Afc. 
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Figure 61: (ii) Bi-material junction, 2a = 90°, E\jEi = 0.25. Stress eigenfunctions fyk (0) for k = 1,2, 3,4. 
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Figure 62: (ii) Bi-material junction, 2a = 90°, E1/E2 = 0.25. Displacement eigenfunctions /ifc (9) for fc = 1,2,3,4. 

2a • 

Figure 63: Dependence of eigenvalues Afc the opening angle 2a. The geometry of the studied bi-material junction 
is defined: 70 = —a, 71 = a, 72 = 2-K — a. The Young's moduli ratio is E\jE2 = 0.25 and Poisson's ratios are 
vx = v2= 0.25. 
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Sft(z) Di(z) 

Figure 64: (i) Bi-material junction, 2a = 90°, Ei/E2 = 4. On the left-hand side there is the graph of f (z) = 
det (A (A)). On the right-hand side contour plot, the blue curve stays for 5R{det (A (5R{Afc}))} = 0 and the red 
curve for 3 {det (A (3 {A f c}))} = 0. 

configuration (i), (ii) and (iii) in Table 28, 29 and 30 respectively. Note that the first three eigenvalues were real 
for all studied bi-material configurations. We have seen this also in the Numerical example J . In fact, the chart 
in Figure 63 with dependence Afc (2a) shows that it is true for all admissible 2a (including both cases of inclusion 
more compliant than matrix and inclusion stiffer than matrix). As in the previous numerical example, the stress 
and displacement eigenfunctions are plotted in Figures 65 and 66 respectively, where the yellow dashed line denotes 
the location of the interface T i . 

k 1 2 3 4 5 6 
Afc 0.790989 1.071939 1.076264 1.740424 ± 0.154158Í 2.000000 2.134734 

Table 28: (i) Bi-material junction, 2a = 60°, E\jEi = 4. First six eigenvalues Afc. 

k 1 2 3 4 5 6 
Afc 0.840513 0.916435 1.139804 1.678525 1.843408 2.203158 

Table 29: (ii) Bi-material junction, 2a = 90°, E\jEi = 4. First six eigenvalues Afc. 

k 1 2 3 4 5 6 
Afc 0.853884 0.899008 1.221628 1.804944 2.000000 2.117332 ±0.295848 

Table 30: (iii) Bi-material junction, 2a = 120°, E\jEi = 4. First six eigenvalues Afc. 

Calculation of stress terms factors 

Determination of GSIFs by 'I'-integral 
This part of the text describes a derivation of the path independent 'I'-integral for the bi-material junction 

problem. As in the case of a V-notch and bi-material notch, the employment of the 'I'-integral is a convenient 
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Figure 65: (ii) Bi-material junction, 2a = 90°, E\jEi = 4. Stress eigenfunctions fijk (0) for k = 1,2, 3,4. 
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Figure 67: Two paths defined on two domains T> and V* of the bi-material junction which consists of material 
regions Qi and O2. The integration path dT>, the boundary of T>, consists of paths: T i , T2, S i and £2. The other 
integration path dT>*, the boundary of V*, consists of paths: r*, T j , T,\ and 

way for determination of Generalized Stress Intensity Factors (GSIFs) Hk. Similarly to the notch problem, a 
scaling coefficient A (2a, 9c) (necessary parameter for the Leguillon's coupled stress-energy criterion) can also be 
determined by the 'I'-integral. First, let recall equations (40)-(41) on p. 38. We consider a zero difference due to 
symmetry of the elastic tensor C: 

[ (C: VU : VV- C : VV : VU)dx = 0. (86) 
Jv 

where U and V are two elastic solutions dependent on 2 coordinates (x, y) in Cartesian coordinate system or (r, 9) 
in polar coordinate system and V is gradient. T> is an arbitrary closed domain within the material domains as 
shown in Figure 67. According to the Hooke's law in the following form: 

a(U) = CVU, 

the equation (86) becomes: 

/ (a(U)VV - a{V)VU)dx = 0, (87) 
Jv 

where a(U) and a(V) are stress fields associated with U and V respectively. By applying the Green's theorem to 
the equation (87) we obtain: 

- / Va(U)Vdx+ [ a(U)nVds+ [ Va{V)Udx - [ a(V)nUds = 0, (88) 
J v JdV J v JdV 

where dT> denotes the boundary of the domain V and n is the normal of the contour dT>. If equilibrium conditions 
apply, the first and the third term of equation (88) are equal to zero, therefore we can write: 

/ (a(U)nV - a(V)nU)ds = 0. (89) 
JdV 

Since the negatively oriented boundary dV consists of 4 contours dV = T\ U T2 U £1 U £2, the integral (89) can be 
written as sum of following 4 contour integrals: 

/ (a(U)nV - a(V)nU)ds + f (a(U)nV - a{V)nU)ds + (90) 

/ (a(U)nV - a(V)nU)ds + f (a(U)nV - a{V)nU)ds = 0. 
JT2 «^S2 
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Figure 68: Paths of two integrals overlap on the interfaces, namely the E i with E j and £2 with E£. 

Let us consider another contour integral which is defined by arbitrary boundary dT>* laying within the other material 
domain fii as illustrated in Figure 67: 

/ 
Jdv 

(a(U)n*V - a(V)n*U)ds = 0. (91) 

Similarly as done previously we can subdivide the contour dT>* into four parts and the contour integral (91) becomes: 

{a(U)n*V - a(V)n*U)ds+ f (a(U)n*V - a(V)n*U)ds + (92) 

{a{U)n*V - a(V)n*U)ds + / (a{U)n*V - a(V)n*U)ds = 0. 

Let's lead both the path dV and dV* in a way that E i and E* as well as E2 and E j perfectly overlap, see Figure 68. 
To obtain the same orientation of the path for these overlapping contours a sign of the integral has to be changed, 
since n* = —n. Therefore both integral equations (45) and (92) become: 

(a(U)nV - a{V)nU)ds + / (a(U)nV - a(V)nU)ds 
ri Jr2 

(93) 

(a(U)nV - a(V)nU)ds - Í (a(U)nV - a(V)nU)ds, 

(a(U)n*V - a{V)n*U)ds + / (a(U)n*V - a{V)n*U)ds 

(94) 

(a(U)nV - a{V)nU)ds + Í (a(U)nV - a{V)nU)ds. 
S i J S 2 

Because U, V, a(U) and a(V) are continuous through the interface, by adding (93) and (94) and a simple rear­
rangement we obtain: 

i (a(U)nV - a{V)nU)ds + [ (a(U)nV - a(V)nU)d 

(95) 

s + 

+ / (a(U)n*V - a(V)n*U)ds + / (a{U)n*V - a(V)n*U)ds = 0. 
JT* Jrz 

Since TA = T i + r* and T*B = T2+ T2 the equation (95) becomes: 

(a(U)nV - a(V)nU)ds + / (a(U)n*V - a{V)n*U)ds = 0, 
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Figure 69: Paths of the integrals TA and TB • 

1 • ANSYS 

Figure 70: Area of refined mapped mesh near singular point of the bi-material junction, 

or for negatively oriented curves TA and TB which are depicted in Figure 69 we finally get: 

[ (a(U)nV - a(V)nU)ds = f (a(U)nV - a(V)nU)ds, 
JrA JTB 

which shows that this integral is path independent. The implications of the integral path independence are in detail 
commented in the previous sub-chapter on p. 39. As in the case of a bi-material notch (or any notch problem), 
definition of the integral as in Eq. (46) on p. 39 and properties as in Eq. (47)-(52) leads identically to the fact that 
the GSIFs in the case of a bi-material junction can be calculated by equation (53) on p. 41. To obtain term \ I /^ B 

the stresses and displacements are analogically calculated in F E M code A N S Y S (in this work). The vicinity of the 
bi-material junction tip 2D model consists of refined mapped mesh as shown in Figure 70. 

Numerical example M : Path independence and integration step effect for the ^-integral. Let's con­
sider the geometric configuration of the bi-material junction 2a = 90°, which represents the most common case of the 
rectangular sharp material inclusion. In this numerical example, two bi-material configurations will be studied, the 
inclusion more compliant than matrix with (a) E1/E2 = 0.25 and inclusion stiffer than matrix with (b) E1/E2 = 4. 
In the former case E\ = 20 GPa, in the latter case E\ = 80 GPa and for both configurations v\ = v-i = 0.25. The 
eigenvalues, which were calculated previously in Numerical examples J and K are listed in Table 26 on p. 72 for the 
case (a) and in Table 29 on p. 75 for the case (b). The geometry of the studied problem is in both cases identical to 
Numerical example O, as shown in Figure 75 on p. 84. The loading for this numerical example is F = 100 N (per 
1 mm of specimen thickness 6). The problem is a symmetrical one. In such case we are mainly interested in terms 
with even eigenfunctions. As discussed in the theoretical section and shown in Numerical example J, the parity of 
k does not have to correspond to the the fcth eigenfunction symmetry (odd or even properties of the function). In 
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this numerical example, in the case (a) we find the even eigenfunctions when k = 1,3,4. In the case (b) the even 
eigenfunctions are with k = 1,3. The 'I'-integral is calculated with integration step of A9 = 2.5° and A9 = 5.0°. The 
integration is conducted on r = 1 mm, r = 3 mm and as an average between these radii (since the mesh is adjusted 
automatically to keep right shape of individual elements, there are 10 circles in the case of larger integration step 
and 22 circles in the case of smaller integration step). The results of the configuration (a) are listed in Table 31. 
When we consider the dominant terms with even eigenfunctions, the change in H^ by decreasing the integration 
step is low, with maximum of 9.0 % in average value of the fourth term. The terms factors H\ and Hz show low 
standard deviation value in both cases of integration step size. The term factor H2 with odd eigenfunction should 
have value close to zero, because of the problem symmetry. Its value is significantly closer to zero, when the finer 
integration step is used. Therefore results of better quality are obtained by smaller integration step size. Solid 
computational convergence is achieved as shown in Figure 71. We see that the term factor H4 tends to converge on 
larger distances as seen in the same figure. For the case (b), the dominant (even) terms are with Hi and with Hz-
The results are listed in Table 32. The decrease in integration step size results in very low change in GSIFs of 0.5 
% maximum (average of -Hi). Considering the dominant terms, both cases of integration step size show very low 
standard deviation values. The odd term shows values much closer to zero again when we use smaller integration 
step. For the case of finer integration step a good computational convergence is achieved as shown in Figure 72, 
with an exception of small valued negative H2. 

JJA0=2.5° SA0=2.5° 

r = 1 mm r = 3 mm avg. avg. 
Hi 31.711096 31.671537 31.685866 0.006926 
H2 

-0.526437 -0.414348 -0.471664 0.033578 
H3 -0.986715 -1.036437 -1.015922 0.013186 
Hi -2.607539 - 1.858953« -2.323283 - 1.819121« -2.437986 - 1.833683« 0.081679 

^ - A f l = 5 . 0 ° 
SA0=5.O° 

r = 1 mm r = 3 mm avg. avg. 
Hi 31.841465 31.756351 31.785227 0.01576 
H2 

-1.117199 -0.908541 -1.014935 0.066322 
H3 -0.909882 -0.984984 -0.956533 0.019120 
Hi -3.191347- 1.831145« -2.551828 - 1.797279« -2.796666 - 1.806883« 0.177578 

Table 31: Bi-material junction 'J-integral results for (a), 2a = 90°, Ei/E2 = 0.25. Values of terms factors H^ 
determined on multiple radii with finer integration step of A9 = 2.5° in the upper table and coarser integration 
step of A9 = 5.0° in the lower table. The both cases are supplemented by standard deviation of the averaged value 
denoted by s. 

HAQ=2Jf S A « = 2 . 5 8 

HAQ=T,sr S A « = 5 . 0 8 

r = 1 mm r = 3mm avg. avg. r = 1 mm r = 3 mm avg. avg. 
Hi -0.266383 -0.265541 -0.265972 0.000204 -0.265262 -0.263983 -0.264565 0.000304 
H2 -0.030557 -0.059586 -0.041799 0.008569 -0.079073 -0.133025 -0.101129 0.017091 
Hz 14.666912 14.672885 14.673597 0.000304 14.60914 14.634184 14.628421 0.003402 
Hi 0.018563 0.016835 0.016957 0.000667 0.035951 0.032162 0.033113 0.001354 

Table 32: Bi-material junction 'I'-integral results for (b), 2a = 90°, Ei/E2 = 4. Values of terms factors H^ 
determined on multiple radii with finer integration step of A9 = 2.5° in the left part of the table and coarser 
integration step of A9 = 5.0° in the right part of the table. Both the cases are supplemented by standard deviation 
of the averaged value denoted by s. 
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Figure 71: Dependence of the iřfc on r. Bi-material junction (a), 2a = 90°, E\jEi = 0.25. H). by the 'P-integral. 
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Figure 72: Dependence of the Hk on r. Bi-material junction (b), 2a = 90°, E\jEi = 4. Hk by the 'P-integral. 
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Determination of GSIFs by overdeterministic method 
The O D M is mathematically easy and robust method of GSIFs determination. It is based on a least square 

solution of overdetermined system of linear equations. Inputs from the F E A can be either displacements or stresses. 
First let's recall the displacement based method and rewrite the Eq. (55) on p. 45: 

F[2mxn]H[„] = U p ^ , | . 

The displacement based method is applicable only on symmetrical problems since we have not found a way to 
subtract the rigid body rotations or to account for them analytically in the displacement series. Rigid body 
rotations are typical for the case of non-symmetric problem as discussed in application of the O D M on the bi-
material notch problem on p. 44. The advantage of stress based method is its straightforward applicability on 
non-symmetric problems. Let's rewrite the equation (59) on p. 47: 

T? T T Q F E 

" p r n x n P W — S [ 3 m ] ' 

The Numerical example E on p. 50 has shown that the application of both methods give similar results (as it was 
tested in the case of symmetrical problem, when the comparison of methods is possible). The stress based method 
will be used further regardless of the problem symmetry. 

Numerical example N : Determination of the GSIFs by the O D M . In this numerical example, the GSIFs 
will be determined by stress based Overdeterministic method. The geometry, bi-material configuration and loading 
in this study is identical as in Numerical example M on p. 79. In the first case denoted (a) we calculate first four 
GSIFs for rectangular inclusion more compliant than matrix of which the dominant (even) are H\, H% and Hi . In 
the second case denoted (b) again first four terms factors are calculated for the rectangular inclusion stiffer than 
matrix of which dominant are the terms factors Hi and H 3 . The use of smaller element edge length and subsequent 
input higher amount of input data leads to a 0.2 % change in averaged Hi, a 5.1 % change in averaged H 3 , a 14.6 
% change in averaged H4 and decrease in standard deviation values in all cases. The odd term with H2 shows 
values closer to zero in case of finer integration step. There is very slight linear trend in Hk (r) so the value can be 
extrapolated to the point r = 0. This is illustrated in Figure 73. The case (b) shows a 0.5 % change in averaged 
Hi and less than 0.1 % difference in averaged H%. Again smaller values of non-dominant terms factors are better 
achieved by using smaller element edge length. The radial dependence of Hk is shown in Figure 74. The radial 
dependence of the second term factor may seem to have little signs of the convergence, however it is necessary to 
put it in the context of values it acquires (^ 1 0 - 5 in comparison to 1 0 _ 1 -f-101 of the dominant terms factors). The 
H2 is practically equal to zero. 

JJA0=5.0° SA0=5.O° 

regression r = 0.2 mm r = 1 mm avg. avg. 
Hi 31.754646 31.740088 31.910209 31.715068 0.017126 
H2 -0.006831 -0.006823 -0.006791 -0.006812 8 e - 0 6 
H3 N / A -0.982626 -1.026875 -1.019643 0.022973 
HA N / A -6.618669 - 3.382666Í -4.784998 - 3.466781Ž -5.634971 - 3.438265Í 0.555423 

SA0=2.5° 

regression r = 0.2 mm r = 1 mm avg. avg. 
Hi 31.654585 31.651782 31.737581 31.645112 0.004243 
H2 

-0.001675 -0.001676 -0.001676 -0.001676 8 e - 0 6 
H3 N / A -1.055008 -1.076553 -1.07387 0.010588 
Hi N / A -5.435045 - 3.564461Í -4.541765 - 3.560535Í -4.916542 - 3.564503Í 0.259246 

Table 33: Bi-material junction O D M results for (a), 2a = 90°, Ei/E2 = 0.25. Values of singular terms factors H\, 
H2 and non-singular terms factors H3 and Hi determined on multiple radii with finer element edge division by 
A.9 = 2.5° in the upper table and coarser element edge division by A9 = 5.0° in the lower table. In the first column 
there is the value obtained by the linear regression. Both the cases are supplemented by the average value and the 
standard deviation of the averaged value denoted by s. 
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Figure 73: Dependence of the Hf. on the radial distance r. The bi-material junction (a), 2a = 90°, E\/ E2 = 0.25. 
GSIFs calculated by the O D M . 

fjA0=5.0° s A f l = 5 . 0 ° 

regression r = 0.2 mm r = 1 mm avg. avg. 
-0.266041 -0.26581 -0.267448 -0.26562 0.000181 
-0.002643 -0.002777 -0.001786 -0.002969 0.000141 

# 3 N / A 14.679851 14.63162 14.689146 0.007211 
# 4 N / A 0.013506 -0.001887 0.006484 0.003380 

Hk 
2.5° s A f l = 2 . 5 ° 

regression r = 0.2 mm r = 1mm avg. avg. 

# 1 -0.266972 -0.266914 -0.267815 -0.266899 3.6e - 05 
H2 -4.3e - 05 -0.000115 0.000876 - 6 . 9 e - 0 5 3.4e - 05 
H3 N / A 14.707765 14.679417 14.708479 0.001195 
Hi N / A 0.007971 -0.002087 0.002714 0.002203 

Table 34: Bi-material junction O D M results for (b), 2a = 90°, E\/E2 = 4. Values of leading terms factors H\ and 
7J3 determined on multiple radii with finer element edge division by A9 = 2.5° in the left part of the table and 
coarser element edge division by A9 = 5.0° in the right side of the table. In the first column there is the value 
obtained by the linear regression. Both the cases are supplemented by the average value and the standard deviation 
of the averaged value denoted by s. 
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Figure 75: Model of the sharp material inclusion specimen subjected to 3 point bending. 

Numerical example O: Stress reconstruction for the Sharp Material Inclusion more compliant than 
matrix. The three point bending specimen that contains the sharp material inclusion is modeled in 2D as shown 
in Figure 75. The dimensions of the model are identical as in previous examples for notches, i.e. L = 76.2 mm, 
h = 17.8 mm, a = 3.56 mm, so the inclusion depth to width ratio is a/h = 0.2. The bi-material junction model is 
used with the opening angle 2a = 90° (70 = —a, 71 = «,72 = 360° — a). The material region 1, which represents 
the inclusion, is modeled with P M M A material properties E\ = 2.3 GPa, v\ = 0.34 and the material region 2, 
which represents matrix, with aluminum material model characterized by E2 = 69 GPa, v2 = 0.33. The Young's 
moduli ratio in this case is Ei/E2 = 0.033, thus it is the case of an inclusion more compliant than matrix. Ideal 
adhesion on the interfaces is assumed. The model is loaded with force of F = 1 N (per 1 mm of specimen thickness 
b) and plane strain state is chosen. The eigenfunctions are normalized per Eq. (38) with 9o = 180°, which is due to 
the problem symmetry the predicted angle of crack initiation. The reference coordinate system is shown in Figure 
75. The parameters which form the mapped mesh near singular point as in Figure 33 are chosen as: ro = 0.01 mm, 
r± = 1 mm and r2 = 3 mm and the element edge division is by 2.5°. The first five GSIFs Hk are calculated by the 
Vt-integral, with integration radius r = 3 mm and the linear regression extrapolated H\, H2 or the averaged O D M 
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Hz - T - H5. The universal stress based O D M is used. The results are found in Table 35. The difference in those 
two methods is 0.6 % for the first term factor Hi and 13% for the H±, nevertheless the O D M returns values of 
non-dominant terms factors Hi and H^ closer to zero. The stress is reconstructed on the radius of 1 mm as shown 
in Figure 76 with terms factors calculated by the O D M . We can see that the stress distribution within 71 - f - 72 by 
shape of the curves corresponds to the stress distribution of a V-notch. It is not difficult to explain why. When the 
more compliant material fills the V-notch area, which is normally a free space, it acts like compliant reinforcement. 
Overall behavior of the notch in terms of mechanics however remains. By overall trend the analytical solution 
corresponds well to the F E solution. In the case when only singular terms with H\ and Hi are used we see some 
difference between analytical solution and F E solution among all stress components. The first non-singular term 
with i ? 3 (magenta line) does not increase precision by any observable means. Next non-singular term with H4 (the 
cyan line) however increases precision in a way that it fits F E A excellently. Employment of following term with H$ 
(the red line) does not add any more precision as its line lays on the cyan line of H4 . We can identify a pattern 
in this behavior. Remember that this is a symmetrical problem and as commented in numerical example the odd 
terms are with H±, Hz and H±. The terms H\ and H4 which contribute to the solution for most are found among 
these and furthermore they are the two with the maximal absolute values. 

k A f c H t 
„ O D M ^ y 

1 0.589566 0.465328 0.462405 
2 0.918297 -0.006971 -8e - 06 
3 1.342835 -0.007708 -0.000275 
4 1.648027 + 0.2047Í -0.027841 - 0.018909Ž -0.063994 - 0.048784Í 
5 2.295327+ 0.294341Ž 0.002336 - 0.001035Í -7e - 06 + 4e - 06i 

Table 35: Eigenvalues Afc and Hk by the 'I'-integral and O D M . Bi-material junction, 2a = 90°, E\jEi = 0.033. 
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Numerical example P: Stress reconstruction for the Sharp Material Inclusion stiffer than matrix. 
This numerical example is analogical to the Numerical example 0 . Only the material region 1, which represents 
the inclusion, is modeled with aluminum material properties 69 GPa, v\ = 0.33 and the material region 2, which 
represents matrix, with P M M A model E2 = 2.3 GPa, v2 = 0.34. The Young's moduli ratio in this case is 
E\/E2 = 30, thus it is a case of inclusion stiffer than matrix. Ideal adhesion on the interfaces is assumed. The 
GSIFs were calculated by the 'I'-integral and the O D M . If we examine the eigenfunctions, we found that the functions 
with k = 2, 3 are even. Therefore, the terms with even eigenfunctions should be non-zero. The results are listed 
in Table 36. Difference in the second term factor H2 calculated by different methods is 3.6 % and the difference in 
the third term factor Hz is 7.5%. For the remaining terms values closer to zero are obtained by use of the O D M . 
The stress is reconstructed on the radius of 0.5 mm as shown in Figure 77. The stress distribution is typical for 
examples when the inclusion is stiffer than matrix (with consideration of three point bending or tension loading). 
Such stress distribution is different both from the case of notches and more compliant inclusion. The explanation 
is, that the stiffer inclusion acts like a reinforcement, which bears the load. The analytical stress distribution by 
first singular term with H\ (the blue line) is completely off relative to the F E solution. By employing the second 
singular term with H2 (the yellow line), the analytical solution by trend becomes closer to F E solution. When 
we take into account also the first non-singular term with Hz (the magenta line), the analytical solution fits F E 
solution with very good precision. Use of higher order terms with H4 (the cyan line) and H$ (the red line) does 
not add to the precision by any observable means as all the lines lay on each other. For a symmetric problem like 
this one, the even terms are the most significant. As shown in Table 36, these are also terms with highest absolute 
values. In conclusion, the singular terms do not describe the solution well even on 0.5 mm. In fact, even if we 
decrease the radial distance to the nanometers, the singular terms still does not describe the stress well [22]. Only 
by employment of higher order terms, the stress description begins to match F E A . 
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Figure 77: Stress reconstruction of arr (r,6), are (r,6) and aee (r,9) on r = 0.5 mm for the bi-material junction 
with 2a = 90° and E1/E2 = 30. The GSIFs for an analytical solution determined by the O D M . 
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k Afc H% Hk 
1 0.667580 -0.000136 1.8e-05 
2 0.783669 -0.014298 -0.013803 
3 1.159292 0.146576 0.136358 
4 1.628595 5 e - 0 6 1.6e-05 
5 1.676726 - l e - 0 5 -4.2e - 05 

Table 36: First five eigenvalues Afc and GSIFs Hk calculated by the 'I'-integral and O D M . The bi-material junction, 
2a = 90°, E1/E2 = 30. 

inclusion more compliant than matrix (E\ < E2) inclusion stiffer than matrix (E\ > E2) 
loading case description by s. t.: use of n. s. t.: case description by s. t.: use of n. s. t.: 
vertical (i) good increased precision (») poor necessary 
vertical (iii) good increased precision (iv) poor necessary 
horizontal (v) poor necessary (vi) good increased precision 
horizontal (vii) poor necessary (viii) good increased precision 

Table 37: Summary of results, the particular cases are shown in Figure 78. The acronym s. t. stands for singular 
terms and n. s. t. for non-singular terms. 

Criteria of crack initiation direction and stability criteria 

When we consider sharp rectangular material inclusion, there are 8 possible cases of loading direction and bi-material 
stiffness ratio variation. This determines the character of singularity, which exists at the singular concentrator tip. 
These 8 possible configurations are illustrated in Figure 78. For some cases, the singular terms describe the singular 
solution with solid accuracy (as in Numerical example O on p. 84), in other instances, the employment of higher 
order terms is essential (as in Numerical example P on p. 86). Let's analyse the configurations with the vertical 
loading, cases (i)-(iv). The Young's modulus of inclusion is denoted by E\ and the modulus of matrix by E2. The 
cases (i) and (iii) both act like a V-notch, since the inclusion acts like a compliant reinforcement. In the former 
case loaded in tension and the latter case in compression. In both cases the singular terms describe the stress state 
well. Employment of higher order terms increases precision on larger distances from the tip. On the other hand, we 
have configurations (ii) and (iv) which represent inclusion stiffer than matrix. The case (ii) is similar to Numerical 
example O, where the stress is not described well by singular terms. The case (iv) is its equivalent in compression, 
characterized also by poor description of the stress field by singular terms. Employment of higher order terms is 
essential to obtain stresses that truly represents the stress state near the inclusion tip. The configurations with 
horizontal tension (v)-(viii) show a different pattern. The cases (v) and (vii), i.e. cases of inclusion more compliant 
than matrix are characterized by poor stress description by singular terms. To obtain results that represent the 
actual stress field, employment of higher order terms is necessary. In contrast, in the cases (vi) and (vii) with 
inclusion stiffer than matrix singular terms describe the stress state well. Again, precision is increased by use of 
higher order terms. The Table 37 provides a summary of the cases. The general load of an engineering component 
is a combined one. Moreover, the orientation of an inclusion in composite is random (depending on the composite 
type). Therefore, we can not state that the singular terms only are sufficient for the case of an inclusion more 
compliant than matrix and that the non-singular terms are crucial for the case of inclusion stiffer than matrix. By 
comparing e.g. the cases (i) and (v) it is obvious, that even for cases of an inclusion more compliant than matrix, 
the non-singular terms do not describe the stress precisely enough. 

The criterion of maximum of average tangential stress 
As described in the sub-section 2.3 on p. 17, the maximum tangential stress criterion states that the crack will 

initiate in the direction of maximal tangential stress. General case of a bi-material junction (non-symmetrical) is 
characterized by radial dependence of the direction of maximum agg (r, 9). To mitigate this dependence, as in the 
case of a bi-material notch, we determine the average value of tangential stress agg (9) over some specific distance 
d. This distance d is established by the relation to microstructure or fracture mechanism. The derivation of the 
multi-parameter formula to assess stability of a bi-material junction is analogical to the case of a bi-material notch, 
see p. 55. Thus we can rewrite the equation (64): 
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Figure 78: 8 possible cases of rectangular inclusion loading and bi-material variation 
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E r 
dX* dfggk (9) 

k l ^ ^ 9 ~ = °' ( 9 6 ) 

fc=l K 

by which we find the global maximum of agg (9) (and also the local one). Recall that T^i is the ratio between 
GSIFs defined as T^i = Hk/H\. In the equation above, the angle of global maximum is the only unknown. In the 
case of a bi-material junction, there are three possible directions of crack onset. The crack can onset into direction 
with global maximum of agg (9), into a local maximum, or in one of the interfaces. These three depend on the 
fracture toughness of inclusion, matrix and the interface, the -ftTic,i, -Kic,2 and -ftTic,interface respectively. Based on 
an assumption that the crack initiation mechanism is the same as in the case of a crack propagation in homogeneous 
media, we compute the generalized critical value of fracture toughness as: 

Hlc,m = (97) 
v ^ S R {ELi r f c i ^ ^ / e e f c (9o,m)\ 

The generalized fracture toughness of the matrix, inclusion and the interface -Hic , i , -Hic,2 and -ffic.interface have to 
be calculated on corresponding angles of crack onset 9Q,I, #O,2 and #o,interface respectively. The condition of stability 
is a general one, common for both cases of a bi-material notch and junction, as written in Eq. (66) on p. 56. The 
critical load is calculated by Eq. (67) on p. 57. 

The average strain energy density factor criterion 
The strain energy density factor (SEDF) criterion, developed by Sih, found many applications in assessment of 

crack problems. The problem of a sharp material inclusion, modeled as a bi-material junction can be assessed by 
this criterion as well. The theoretical multi-parameter approach is identical to the case of a bi-material notch. The 
global minimum (and the local as well) of the SEDF is found as a potential crack initiation direction. Thus we 
rewrite the formula (68) on p. 57: 

S S " r " X T Ä T — - » 
Based on the SEDF approach, we determine the generalized fracture toughness for all potential crack onset di­
rections, the global minimum, local minimum and the interface. This is achieved by Eq. (74) on p. 58, written 
as: 

Hi Kic, (99) 

The condition of stability is a general one, common to all general singular stress concentrators, stated in Eq. (66) 
on p. 56. Finally the formula for critical load, also a general one, is given by Eq. (67) on p. 57. 

Numerical example Q: Crack initiation direction and initiation load in the case of a bi-material 
junction 

Part 1 First, we consider a problem described in Numerical example O on p. 84, which represents a three 
point bending specimen with rectangular inclusion more compliant than matrix where E1/E2 = 0.033. To assess 
crack initiation direction we use (a) criterion of maximum of average tangential stress and (b) average strain energy 
density criterion. The fracture parameters are identical to those in Numerical example H on p. 65. 
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(a) The criterion of maximum of average tangential stress. The tangential stress is averaged over a 
specific distance d, which is chosen as 1 mm. The averaged tangential stress calculated by (i) singular terms (the 
yellow dotted line) and by (ii) singular and non-singular terms (the cyan dotted line) is shown in Figure 79. The 
yellow line with markers represents the solution of agg (r, 9) on d = 1 mm by singular terms. In similar manner, the 
cyan line with markers represents the singular and non-singular terms solution. For this particular bi-material and 
geometrical configuration there are two singular terms. Regarding the singular and non-singular terms solution, 
two singular and two non-singular terms are considered (as shown in Numerical example O, the fifth term does 
not significantly contribute to the precision on 1 mm). Please recall the formula to find potential crack initiation 
directions (96) on p. 89. We see that there are two extremes in the tangential stress angular distribution, the global 
maximum (occurs in the matrix, m = 2) and the local maximum (occurs in the inclusion, m = 1). In both cases, the 
singular terms solution of extreme (represented by the vertical yellow solid line) and the non-singular terms solution 
of extreme (represented by the vertical cyan dashed line) has the same direction (both in the local and global average 
tangential stress maximum). The potential crack initiation direction in the global maximum is 9Q ' = 180° and in 
local maximum 91QC' = 0° which is apparent because of the problem symmetry. Nevertheless, as the solution by 
employment of non-singular terms is more precise, increase in precision of the critical parameters is also expected. 
In the previous theoretical chapter we stated that the crack initiation can occur in the inclusion, matrix or the 
interface, whereas each of them possesses a particular material parameter i ^ i c , m and therefore different -Hic.m- We 
calculate these critical values by Eq. (97). The results (i) singular terms solution are found in Table 38 and results 
of (ii) non-singular terms solution in Table 39. The methods (i) and (ii) lead to difference of 5.94 % in i?ic,2 which 
is in global maximum, 1.72 % in i ? i c , i which is in local maximum and 0.83 % in interface critical GSIF value. The 
minimum value of -Hic.m is found in the P M M A . By criterion of maximum of average tangential stress the crack 
is therefore predicted to initiate in this direction and material. Remember, that we assume interface with perfect 
adhesion, which allows full traction transmission. If the actual interface does not comply to this assumption and 
crack may not initiate in this predicted direction. 

9 [rad] 

Figure 79: Average value of the agg (9) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular 
terms: the cyan line. The black dashed lines denote the interfaces. 

9o,m m Hic,m 

global maximum 180.0° 2 = aluminum 177.765048 
local maximum 0.0° 1 = P M M A 62.32677 

interface ±45.0° interface 72.968331 

Table 38: The generalized fracture toughness i ? i c ,m for global minimum, local minimum and the interface deter­
mined by (i) singular terms and (a) criterion of maximum of average tangential stress. 
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6o,m m Hic,m 

global maximum 180.0° 2 = aluminum 188.317388 
local maximum 0.0° 1 = P M M A 61.254716 

interface ±45.0° interface 72.359732 

Table 39: The generalized fracture toughness i ? i c ,m tor global minimum, local minimum and the interface deter­
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress. 

(b) The average strain energy density factor criterion. The averaged strain energy density factor over 
distance d = 1 mm is plotted in Figure 80. The yellow line represents solution by (i) two singular terms and the 
cyan line represents solution by (ii) two singular and two non-singular terms. We see that there is a global minimum 
and a local one, found by solving Eq. (98). Both (i) and (ii) return identical angular values corresponding to these 
points. However some offset of E(#) between solutions exists, therefore difference in critical parameters is expected. 
The generalized fracture toughnesses are calculated by formula (99). The results (i) singular terms solution are 
found in Table 40 and results of (ii) non-singular terms solution in Table 41. The methods (i) and (ii) leads to 
the difference of 9.6 % in i?ic,2 which corresponds to local minimum, 2.9 % in i ? i c , i for global minimum and 2.2 
% in interface critical GSIF value prediction. The lowest value of generalized fracture toughness corresponds to 
the interface, thus the crack is expected to initiate in this direction. We see that the crack initiation direction and 
material predicted by (a) and (b) is different as in the former case the crack is predicted to initiate in P M M A with 
9Q = 0° and the latter case it is predicted to initiate in the interface with #o,interface = ±45°. In (a) only the 
tangential stress component is used to calculate i ? i c ,m whereas in (b) all stress components are employed. The 
level of tangential stress acting on the interfaces is low, leading to higher value of -ffic,interface calculated by (a) 
than by (b). 

0 1 2 3 4 5 
0[rad] 

Figure 80: Average value of the E (9) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular 
terms (the cyan line). The black dashed lines denote the interfaces. 

6o,m m Hic,m 

global minimum 0.0° 1 = P M M A 62.786943 
local minimum 179.9° 2 = aluminum 187.279553 

interface ±45.0° interface 39.704644 

Table 40: The generalized fracture toughness i ? i c ,m for global minimum, local minimum and the interface deter­
mined by (i) singular terms and (b) average strain energy density criterion. 
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9o,m 
m Hic,m 

global minimum 0.0° 1 = P M M A 60.974337 
local minimum 179.9° 2 = aluminum 205.32978 

interface ±45.0° interface 38.813687 

Table 41: The generalized fracture toughness i ? i c ,m for global minimum, local minimum and the interface deter­
mined by (ii) singular and non-singular terms and (b) average strain energy density criterion. 

Part 2 We consider a problem described in Numerical example P on p. 86, which represents a three point 
bending specimen with rectangular inclusion stiffer than matrix where E\/ E2 = 30. Again, to assess crack initiation 
direction and critical value of GSIF we use (a) the criterion of maximum of average tangential stress and (b) the 
average strain energy density criterion. In the part 2 of the numerical example, we use averaging distance d = 0.5 
mm. 

(a) The criterion of maximum of average tangential stress. The distribution of agg (9) is shown in 
Figure 81, where the yellow dotted line represents the averaged tangential stress solution given by (i) two singular 
terms. The cyan line represents the solution given by (ii) two singular and two non-singular terms. In addition, 
the stress on particular distance d is plotted by (i) and (ii) and denoted by lines with markers. Please note that 
the tangential stress given by (i) is compressive for all 9. The black squares represents the F E solution. As in the 
previous case, we see two extremes of agg (9) represented by vertical lines, the yellow in case of (i) and the cyan in 
case of (ii). Both singular and non-singular solution predict identical angles of crack initiation, i . e. 9Q ' = 180° 
and #o°c' = 0° • The difference in stress description by (i) and (ii) is severe, therefore significant difference in value 
of critical parameters is expected. The results by (i) are listed in Table 42. The results given by (ii) is summarized 
in Table 43. When (i) only the singular terms are taken as an input for critical GSIF calculation a negative valued 
Hic,m are obtained (since the agg (9) is compressive). For (ii), the minimum value is i? ic ,2 and the crack is expected 
to initiate in the direction of global maximum found in P M M A . 

9o,m m Hic,m 

global maximum 180.0° 2 = P M M A (-0.015640) 
local maximum 0.0° 1 = aluminum (-0.117511) 

interface ±45.0° interface (-0.001800) 

Table 42: The generalized fracture toughness i ? i c ,m for global minimum, local minimum and the interface deter­
mined by (i) singular terms and (a) criterion of maximum of average tangential stress. 

9o,m m Hic,m 

global maximum 180.0° 2 = P M M A 0.004104 
local maximum 0.0° 1 = aluminum 0.178545 

interface ±45.0° interface (-0.004031) 

Table 43: The generalized fracture toughness i ? i c ,m for global minimum, local minimum and the interface deter­
mined by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress. 
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Figure 81: Average value of the crgg (9) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular 
terms (the cyan line). The black dashed lines denote the interfaces. 

(b) The average strain energy density factor criterion. The angular distribution of strain energy density 
factor £(#) is shown in Figure 82. The yellow line represents (i) two singular terms solution. The cyan line 
represents (ii) two singular and two non-singular terms solution. Because the problem is a symmetric one, there are 
two directions where global minimum and local minimum are found. The yellow and cyan vertical lines represent 
the locations of local minima. The global minima are found at the interfaces. The results by (i) are listed in Table 
44 and by (ii) in Table 45. The difference in Hicm by (i) and (ii) is 1.1 % for the global minimum, 10.7 % for 
local minimum and 1.1 % for the interface. The lowest value of i?ic ,m is found at the interface, therefore it is the 
expected angle of crack initiation. 

Figure 82: Average value of the £ (9) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular 
terms: the cyan line. The black dashed lines denote the interfaces. In the region of inclusion, i.e. the £ (9) is 
multiplied by factor of 10. 
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6o,m m Hic,m 

global minimum ±45.0° 1 = aluminum 0.027674 
local minimum 85.9°, 274.4° 2 = P M M A 0.001334 

interface ±45.0° interface 0.000865 

Table 44: The generalized fracture toughness i ? i c ,m tor global minimum, local minimum and the interface deter­
mined by (i) singular terms and (b) average strain energy density criterion. 

6o,m m Hic,m 

global minimum ±45.0° 1 = aluminum 0.027360 
local minimum 85.9°, 273.9° 2 = P M M A 0.001477 

interface ±45.0° interface 0.000855 

Table 45: The generalized fracture toughness i ? i c ,m tor global minimum, local minimum and the interface deter­
mined by (ii) singular and non-singular terms and (b) average strain energy density criterion. 

The angle and material of expected crack initiation is different from (a), but as discussed in first part of this 
example, the possible explanation is that the SEDF uses all the stress components rather than tangential stress 
only. The thorough explanation of such behavior will be a subject of following research as well as experimental 
evaluation of the problem. 

4.4. Formulation of approaches for a general problem 
The multi-material notch or multi-material junction problem can be approached in general way by forming sparse 
structure matrix A (A) as in Eq. (35) on p. 28 from sub-matrices N g m for multi-material notch problem: 

MS 

In the simple case of a homogeneous notch, studied in this work, the matrix A (A) is: 

A (A) = 
N 1 

N 1 

72 J 

Similarly for the studied case of a bi-material notch, the matrix A (A) can be written: 

0 
A (A) 

N 1 

M 1 

72 
0 

- M 2 

72 
N 2 

73 

Xke ,e(xk+i) Afe(Afe + l)e í f l(A*-1) AfcíAfc + lJe-*9^*-1) ] 
2 

XkeiS(Xk+1) Afce" 
2 

-ie(xk+i) 
2 

X k ( X k - l ) e i e ( x k - í ) 
2 

A f c(A f c-l)e- í e(Afc- 1) 
2* 2* li li -1 

junction problem: 

Afceífl(Aí=+1) Xke ie(xk+i) Xk{Xk + l ) e i 9 ( ^ - ^ Afc(AÍ! + l)e- í e(A*- 1) 
2 

X k e i e ( x * + 1 ) Afce 
2 

-ie(xk + i) 
2 

X k ( X k - l ) e i e ( x k - í ) 
2 

X k ( X k - l ) e - i e ( x k - l ) 

2* 

e<9(*k + i) e~ 

2* 
i9(Xk + l) (K í-A f c) 2>(A*-i) ( K . - A ^ e - ^ W - 1 ) 

4 M i 
e « 0 * + l) el S(Xk + l) 

{ K i + X k ) e í s ( ^ ) K + A ^ e - ^ K - 1 ) 
4ißi 4ißi 4ißi 

For a problem of crack terminating at the bi-material interface as shown in Figure 12 on p. 19, the matrix A (A) 
can be written: 

A (A) 
M 1 - M 2 

71 71 
N 2 

72 

0 
0 0 

0 
0 

N 2 

70 
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As another example serves the case of the tri-material notch 

A (A) 

N 1 

71 

M 1 

7 2 

0 
0 

0 
- M 2 

7 2 

M 2 

7 3 

0 

0 
0 

- M 3 

N 3 

7 4 

which is a special case of a multi-material notch. In fact, multi-material notch consisting of even more material 
regions can be described by this approach, such as the last example, the quad-material notch: 

A (A) 

N 
M 

0 
0 
0 

0 0 0 
- M 2 

7 2 

M 2 

7 3 

0 

0 0 - M 2 

7 2 

M 2 

7 3 

0 

- M 3 

7 3 

M 3 

7 4 

0 

0 
- M 2 

7 2 

M 2 

7 3 

0 

- M 3 

7 3 

M 3 

7 4 

0 

- M 4 

7 4 

N 4 

7 5 J 
0 

- M 3 

7 3 

M 3 

7 4 

0 

- M 4 

7 4 

N 4 

7 5 J 
For the problem of a bi-material junction, studied in previous chapter, the matrix A (A) is: 

A (A) = 
M 1 - M 2 

7 1 7 1 

- M 1 M 2 

7 0 7 2 

A junction of three material domains, the tri-material junction is described by the following sparse structure matrix: 

0 
A (A) 

M 1 

7 1 

0 
- M i 

- M 2 

7 1 

M 2 

7 2 

0 

- M 3 

7 2 

M 3 

7 3 

and as the last example, the quad-material junction is characterized by the following matrix: 

M 1 

7 1 

0 
0 

- M 2 

7 1 

M 2 

7 2 

0 

0 0 

A (A) = 

M 1 

7 1 

0 
0 

- M 2 

7 1 

M 2 

7 2 

0 

- M 3 

7 2 

M 3 

7 3 

0 

0 
- M 4 

7 3 

M 4 

7 4 . 

- M 1 

L 70 
0 

- M 3 

7 2 

M 3 

7 3 

0 

0 
- M 4 

7 3 

M 4 

7 4 . 

In conclusion, a problem of any number of material domains can be easily described in this way. As the sparse 
structure matrix is formed, the eigenequation is obtained by Eq. (36) on p. 28. 

4.5. Developing a complete description of crack ini t iat ion and propagation near the 
sharp material inclusion 

This chapter examines possible scenarios of crack behavior near the sharp material inclusion embedded in matrix. 
Crack in matrix terminating at inclusion/matrix interface is shown left-hand side of Figure 83. Similarly, the crack 
in inclusion terminating at the inclusion/matrix interface is shown in right-hand side of Figure 83. This case can be 
modeled as a crack with its tip at a bi-material interface. The geometry of problem is shown in Figure 12 on p. 19 
and the methods are identical as those on p. 27. The crack that terminated at the interface can either propagate 
to the other material or propagate through the inclusion/matrix interface. The latter situation is examined further 
in Figure 84, where crack propagating through the inclusion/matrix interface is shown. In the left-hand side of the 
Figure 84 the crack originates in matrix and in the left-hand side of the Figure 84 it originates in inclusion. These 
cases is modeled as interfacial cracks (special case of the bi-material notch model with 2a = 0° and e.g. 71 = 0°, 
72 = 180° and 73 = 360°, see p. 27). Another situation occurs when the crack reaches the end point of the sharp 
material inclusion, as shown in Figure 85 (another special case of the bi-material notch model with 2a = 0° and 
e.g. 71 = 0°, 72 = 270° and 73 = 360°, see p. 27). Figure 86 shows crack initiated at the tip of the sharp material 
inclusion in the matrix (left-hand side) or in the inclusion (right-hand side). This case is modeled as a bi-material 
junction (see p. 70). Above mentioned situations capture complete crack behavior near the sharp material inclusion 
and all can be modeled by methods described in this dissertation. 
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Figure 83: Crack terminating at the inclusion/matrix interface. On the left-hand side the crack originates in matrix. 
On the right-hand side the crack originates in the inclusion. 

Figure 84: Crack propagating through the inclusion/matrix interface. On the left-hand side the crack originates in 
matrix. On the right-hand side the crack originates in the inclusion. 

Figure 85: Crack propagated to the end point of inclusion/matrix interface. On the left-hand side the crack 
originates in matrix. On the right-hand side the crack originates in the inclusion. 

Figure 86: Crack initiated at the tip of the sharp material inclusion. On the left-hand side the crack initiates in 
matrix. On the right-hand side the crack initiates in matrix. 
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5. Conclusions 
Methods of the classical fracture mechanics can not be directly applied on general singular stress concentrators 
and its generalization is the current objective of many researchers. The identical motivation stays behind this 
thesis. Although the presented work is primarily theoretical, it provides the researchers with the framework in 
order to fully assess generalized singular stress concentrators in terms of the multi-parameter criteria proposed 
herein. Experiments to verify the theory on general singular stress concentrators different from a V-notch are the 
next step to be conducted. For this purpose the specimens modeled in this work can be used. 

This work presents methods to determine the eigenvalues to form the exponents of singular and non-singular 
stress terms in cases of general singular stress concentrators. When the eigenvalues are determined, the angular 
eigenfunction can be easily formed. The cases of a V-notch, bi-material notch and bi-material junction are studied 
in detail. However, the methods presented herein allow researchers to determine the order of singularity for any type 
of multi-material general singular stress concentrator (for example quad-material notch or quad-material junction). 
In the following part, application of two different methods to determine generalized stress intensity factors of 
singular and non-singular terms are studied. The main advantage of the 'I'-integral method is, that it allows 
independent determination of fcth generalized stress intensity factor. The overdeterministic method is simpler and 
computationally less expensive. When some requirements are fulfilled, i.e. if the integration path is far enough 
from singular point in the case of the ^-integral, or number of terms n to be determined is high enough in the 
case of the O D M , both methods return results very close to each other. By the knowledge of the eigenvalues and 
generalized stress intensity factors, stress field near singular point can be reconstructed. The analytical solution 
can be compared with pure finite element solution. When we are interested in the stress field on distances such 
as 0.1 — 1 mm, the employment of non-singular terms leads either to significant increase in precision (notches and 
inclusion more compliant than matrix) or provides the only means to describe the stress field well (inclusion stiffer 
than matrix). 

The dissertation also presents stability criteria modified to contain higher order terms. These multi-parameter 
criteria are namely the criterion of maximum of average tangential stress and the average strain energy density 
factor criterion. Both criteria are applied on problems of V-notch, bi-material notch and bi-material junction. In 
the case of V-notch, comparison of the predicted failure loads and experimental data show very good agreement. In 
other cases, the crack initiation direction and critical parameters are calculated. Use of the multi-parameter criteria 
leads to change in the predicted critical parameters in order of percents. The experimental validation of proposed 
criteria will be a subject of further research. 
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Ondřej Krepl Nomenclature 

7. Nomenclature 
a half of the crack length 
A (2a, 0Q) scaling coefficient of the coupled stress-energy criterion 
A K , Bk, Ck, Dk constants of the solution of bi-harmonic equation 
A (A) characteristic matrix of a problem 
A r e d (A) reduced characteristic matrix of a problem 
a half of the notch/junction opening angle 
a, P eigenvalues (only in 'I'-integral sub-chapter) 
C elastic tensor 
T>, T>* domain 
dT>, dT>* curve surrounding domain V or V* 
A9 element angular length / integration step size 
Sij strain tensor component 
EM Young's moduli of mth material 
Fk (9) kth eigenfunction of Williams' stress function 
fij (9), gijk (9) Williams' series angular functions 
fijk (9) kth stress eigenfunction for i j th stress component 
f*jk (9) kth real stress eigenfunction for i j th stress component 
fik (9) kth displacement eigenfunction for i th displacement component 
f*k (9) kth real displacement eigenfunction for i th displacement component 
fijk (^) kth auxilary stress eigenfunction for i j th stress component 
f~k (9) auxilary displacement eigenfunction for i th displacement component 
F[2mxn] matrix of eigenfunctions of 2m rows and n columns 
<3> Airy's stress function 
Qiji (9) Ith stress eigenfunction for i j th stress component (only in 'I'-integral subchapter) 
gn (9) displacement eigenfucntion for i th displacement component (only in 'I'-integral subchapter) 
Gc material toughness 
7i angular parameter 
Fi ith bi-material interface 
T i , T2, r ^ , integration paths (only in 'I'-integral subchapter) 
Fkl, Tn ratios between individual GSIFs and first GSIF 
Hk generalized stress intensity factor 
Hic,m generalized fracture toughness 
H[„] unknown vector of n generalized stress intensity factors 
3 {z} imaginary part of the complex number z 
i imaginary unit 
Ikm, Lkm, Mkm, Nkm complex constants 
Ki stress intensity factor of mode I 
.ftTicrit critical value of stress intensity factor 
Kic fracture toughness 
.ftTith threshold value for fatigue crack propagation 
km elastic constant (in terms of Poisson's ratio) 
kk stress intensity factor in Williams' stress series 
KM Kolosov's constant of mth material 
I crack length in pertubated domain 
L controling variable 
L, h, b, a dimensions of the modeled specimen (only in numerical examples) 
Afc fcth eigenvalue 
A* material constant (in terms of Kolosov's and shear modulus) 
H shear modulus 
n normal 
Ngm sub-matrix of a multi-material notch problem to form a characteristic matrix A (A) 
vm Poisson's ratio of mth material 
N g m sub-matrix of a multi-material junciton problem to form a characteristic matrix A (A) 
V gradient 
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V 2 Laplace operator 
O ( r 1 / 2 ) higher order term of the Williams series 
fim mth material region 
0 (z), x iz)i <-° (z) analytic functions (complex potentials) in general 
fii, O2 material domains 
O l n unbounded inner domain 
^ f c m (z), oJkm (z) analytic functions for fcth eigenvalue and mth material region 
Pk stress singularity exponent 
Vl/ (U, V) path independent 'I'-integral 
v| / F B \P-integral of F E solution 
^anaiyt <P-integral of analytical solution 
r, 8 polar coordinates 
ro> rii R2 F E radial parameters 
5R {z} real part of the complex number z 
s standard deviation of generalized stress intensity factor average 
Sp^j vector of F E stresses 
<Jij stress tensor 
(Too far field loading 
(Tappi applied stress 
o"c material strength 
agg (0) averaged value of the tangential stress (averaged over r) 
E m strain energy density factor of mth material 
E m averaged value of the strain energy density factor of mth material (averaged over r) 
E c r j t critical value of strain energy density factor 
E c , m critical value of strain energy density factor of mth material in terms of brittle fracture 
E i , E2 integration paths (only in 'I'-integral subchapter) 
T T-stress (constant value term in Williams' expansion) 
#0 crack initiation angle 
up m ] vector of F E displacements 
U, V elastic solutions 
Ul(xi,X2) perturbed solution 
U° (xi,xi) unperturbed solution 
Uki (0) augmented shape functions for average SEDF crigerion 
Vk fcth eigenvector 
v]j.ed reduced fcth eigenvector 
V complementary term in matched asymtotic expansion 
Wp strain energy 

strain energy per volume 
x, y cartesian coordinates 
2/i, 2/2 stretched coordinates (xl /Z) 
Z (z) Westergaard's stress function 
z complex variable 
£ external loading angle 
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List of abbreviations 
A P D L Ansys program design language 
B M N bi-material notch 
F E finite element 
F E A finite element analysis 
F E M finite element method 
GSIF generalized stress intensity factor 
GSSC general singular stress concentrator 
HSV hue, saturation, value, color model for a domain colorin; 
L E F M linear elastic fracture mechanics 
O D M overdeterministic method 
P M M A polymethyl methacrylate 
SIF stress intensity factor 
SEDF strain energy density factor 
3PB three point bending 
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A. Detailed derivation of equations 

A . l . Kolosov-Muskhel ishvi l i formulas 

First, recall the complex analytical functions from (17) on p. 24, i.e.: 

^fcm (^) J-kmZ ~\~ JJ

krnZ , 

iokm(z) = MkmzXk + NkmzXk. 

The first derivative of the complex function £lkm (z) by complex variable z is: 

n'km (z) = hmXkZ^-1 + L ^ X ^ - 1 = / ^ A f c A - V ^ - 1 ' + L f c m A f c r A * - 1 e i e ( A * - 1 ) (100) 

and by knowing that z = re~l9 its complex conjugate is: 

n'km(z) = ikm\kzx<*-l+Lkm\kzx<*-1 = / f c m A f c r A * - 1 e - i e ( A * - 1 ) + L f c m A f c r A * - 1 e - i e ( A * - 1 ) . (101) 

The second derivative of complex function £lkm (z) by complex variable z is: 

n'lm{z) = I k m \ k ( \ k - l ) z x - - 2 + L k m \ k { \ k - l)zXk-2 = (102) 

= hm\k (Afc ~ 1) r > * - V « ( A * - 2 ) + L k m \ k (Afc - 1) r A , - 2 e ^ ( A , - 2 ) 

and similarly its complex conjugate is: 

0' f e 'm(z) = Ikm\k(Xk-l)zXk-2 + L k m \ k ( \ k - l ) z X k - 2 = (103) 

= hmhih ~ l)rx*-2e-^x*-V + L k m \ k (Afc - 1) r^-2

e-^xK-2) 

The first derivative of the complex function u>km (z) by complex variable z is: 

Jkm{z) = Mkm\kzx«-1 + Nkm\kzx<*-1 = M f c m A f c r A * - 1 e i e ( A * - 1 ) + V f c m A f c r A * - 1 e i e ( A * - 1 ) (104) 

and finally its complex conjugate is: 

io'km(z) = M^X^-1 + N ^ X ^ - 1 = M f c m A f c r A * - 1 e - i e ( A * - 1 ) + V f c m A f c r A * - 1 e - i e ( A * - 1 ' . (105) 

By substitution of (100), (101), (102), (103), (104), (105) into Kolosov-Muskhelishvili equations for stress com­
ponents (9) on p. 11 we can show derivation of previously shown equations (18), p. 24. For a r r k m we thus 
write: 

Vrrkm (r, 9) = W ^ - ' e ^ - 1 ) + LkmXkrXk~xe^*"1) + 

" [ 4 m A f c (Afc - l ) r A * - 2 e i « ( A f c - 2 ) + ( A f c _ x ) r A f c - 2 ^ ( A f c - 2 ) ] _ 

[ 4 m A f c (Afc - 1) r**- 2e-*(**- 2> + L f c m A f c (A fc - 1) r A * - 2 e - i e ( A * - 2 ) ] -

i [ M f c m A f c ^ - V ^ - ) + A T f c m A f c A - V ^ - ) ] -

[ M f c ^ A f c A " ^ - ^ ^ - 1 ) + J V ^ A t r ^ - ' e - ' 9 ^ - 1 ' ] 

i ^ " 1 [ - 4 m A f c (Afc - 3) e ^ - D - L f c m A f c (A fc - 3) B - « < ^ > - M k m X k e ^ - N k m X k e ~ ^ } 

+ r1*-1 [-IkmXk (Afc - 3) e - t f fa" 1 ) - L f c m A f c (A fc - 3) e*9^*"1) - M f c m A f c e - * e ( A * + 1 ) - NkmXke^x^]}. 

2 
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The expression for arekm is again obtained by substitution of equations (100)-(105) into (9). Therefore we write: 

VrekmW) = ^ [lkm\k (Xk - 1) rXk~ V e ^ - 2 ) + LkmXk (Xk - l ) r ^ - 2 e i e ( ^ - 2 ) ] -

- ^ [hm\k (h - 1) r ^ - V * ^ " 2 ) + LkrnXk (A* - 1) r x " - 2 e - i e ^ ] + 

\ . \MkmXkrXk~1e~ie(Xk~1) + Nkm\krXk~le~i6(-Xh~1^ 

= Yi^"'1 lhmXk { X k ~ 1 } e l f l ( A t " 1 ) " L k m X k ( A f c " X ) e - W ( A * _ 1 ) + M f c m A f c e ^ A * + 1 > - NkmXke-^Xk+1>} + 

+ r ^ " 1 [ - I f c m A f c (A* - 1) e - ^ ( ^ - i ) + L f c r o A f c (A* - l ) e^**" 1) - MkmXke-^+l) + NkmXke^+1)] }, 

and similarly for (Jeekm we write: 

oeekm (r, 0) = /fcmAfcr**- 1 ^'**- 1 ) + I h n A i k r x * - 1 e t f ( X t - 1 ) + 

+ Ikmhr^e-^"-1) + LkmXkrx^e~i6^-V + 

+ ^ [hmXk (Xk - 1) r A * - V * ^ - 2 ) + L f e m A f c (A* - 1) r A , - 2 e ^ ( A f c - 2 ) j + 

+ ^ [hmXk (Xk 1) r A , - 2 e - l 9 ( A f c - 2 ) + l k m X k ^ _ 1 ) r A f c - 2 e - ^ ( A f c - 2 ) ] + 

+ \ [MkmXkrx^e^x^ + NkmXkrx»-lew^] + 

+ I [MkmXkrx^-1e~iS^-1'> + NkmXkrx^e-^x*-V] 

= l ^ - 1 [hmXk (Xk + 1) e ^ " 1 ) + LkmXk (Xk + 1) e - ^ - D + MkmXke^x^ + NkmXke-^x^] + 

+ r ^ " 1 [lkmXk (Xk + 1) e-*^*- 1 ) + L f c r o A f c (A fc + l ) e ^ ' 1 ) + MkmXke~^Xk+') + NkmXke^x^] }. 

The displacements are derived in a similar manner, for u r k m we thus write: 

Urkm (r, 9) = - L { K m e - 1 0 \lkmrXkei9X" + LkmrXk elBXk] -

r [/fanAfc^-^-^C^- 1) +Z f c m A f c r^- 1 e- i 9 ( A *- 1 ) ] -

- e~lf> \MkmrXke-l9Xk + NkmrXk e~ieXk] + 

+ Kmeie [lkmrXke-i6Xk + LkmrXke-l6Xk] -

r [ i k m ^ - ^ ^ + L ^ ^ e ^ - 1 ) ] -

- eie [MkmrXkel6Xk + NkrnrXkeWXk] } 

= -^-{rXk \lkm (Km - Xk) e*'**-1' + Zkm («m - A f c) e - * ( * * - i ) - Mkme^Xk+^ - Nkme-^Xk+1A 

+ r X » [J f c r a (Km - AA:) e - " ^ " 1 ) + Lkm (nrn - Xk) e ^ " 1 ' - Mkme~^Xk+^ - Nkmeie^k+^] }, 
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and finally for the uekm we write: 

u 0 k m (r, 9) = -^—{e-i6Km \lkmrXkei6Xk + Lkmr~XkeieXk] -

r [hmXkT^e-^-1) + Z f e m A f e r ^ - 1 e - ^ - 1 ) ] -

- e~ie [MkmrXke-ie'Xk + NkmrXke-i9Xk\ -

- ei9

Km [lkmr'Xke-i9Xk + LkmrXk e~i6Xk\ -

+ r [hmX^e»^-» + LkmXkrXk~1ei0(Xk~1^ + 

+ eie [MkmrXke-i0Xk + NkmrXkei0Xk} } 

= J^—irXk [ / fc™ + A f c ) ~ lk™ + A f c ) ^ 6 { X k ~ X ) + Mkme^Xk+^ - Nkme-^Xk+1A + 

+ r~Xk [-Ikm (Km + Xk) e-^-1) + Lkm (Km + Xk) e ^ " 1 ) - Mkme~^Xk+l) + Nkme^Xk+l)] }. 

A . 2 . Cr i ter ion of maximum of average tangential stress 
The derivation of Eq. (64) on p. 56 is shown by substitution of first 3 stress series terms in complex form, Eq. (20) 
on p. 24 into equation (61) on p. 55. The equation becomes: 

1 9 
Í 

[H1rXl-1f001 (9) + H2rX2-1fee2 (9) + H ^ - 1 fees (9)) dr+ 

+H1rXl-1f001(9)+H2rX2-1f002 (9)+H3rXs-1f003 (9)] = 0, 

which after integration is: 

„ dXl dfeei (9) dx* dfee2 (9) dx* d f e e 3 (g) dAx dfggi ( g ) dx2 df-gg2 (g) dA 3 g / f l f l 3 (g) 

where the first derivative of eigenfunction feekm (9) in terms of complex constants ifc m , Lkm, Mkm and iVfcm is: 

d f e 6 k ™ { 0 ) = ^ [ e ^ " 1 ) / ^ (Afe - ^ 

+ ei0(Xk+V Mkm\k (Afc + 1) - e - i e ( A * + 1 )7V f c m A f c (Afc + 1)] , 

and similarly for feekm (9) we write: 

d f e e k ™ ( 9 ) = \i [ - e - K ^ ) l k m X k ( A f c - l ) ( A f c + l ) + e ^ - 1 ) L f c m A f c ( A f c - l ) ( A f c + l ) -

- e-ie('Xk+1)MkmXk (A fc + 1) + eie('Xk+1)NkmXk (Xk + l ) ] . 

The GSIF i ? i can be factored out of the equation, so we introduce factors between GSIFs Tfci as in Eq. (63) on p. 
55. Since the crack initiation direction does not depend on GSIFs absolute value, we obtain: 

r rfAl dfeei (9) dx- dfee2 (9) dx* dfeez (9) - dfeei (9) , - dx- dfee2 (9) - dx* dfee3 (9) 
r n ^ ; ^ 9 ~ + r 2 1 j 2 - ^ 9 ~ + r 3 1 j 3 - ^ 9 ~ + r n j ; ^ 9 ~ + r 2 1 j ; ^ 9 ~ + r 3 1 j ; ^ 9 ~ ~ °-

which leads to the general form of the equation with n terms, equation (65) on p. 56. The derivation of complex 
form follows. We can rewrite the stress expansion as: 

n n 

= H1J2^kirXk-1fijk(9)+H1J2^kirXk-1fijk(9), 
fc=i 
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which can be analogically derived, integrated and rearranged, so we obtain Eq. (65) on p. 56. For completeness, 
the second derivative of function feekm (0) in terms of complex constants is: 

d f ° e * ™ i 9 ) = ~ \ Y 6 { X k - X ) h r a \ k (Afc - l ) 2 (Afc + 1) + e - ^ x ^ L k m \ k (Afc - l ) 2 (Afc + 1) + 

+ eie^+l^Mkm\k (Afc + l ) 2 + + e - i e ( A * + 1 ) A f c m A f c (A fc + l ) 2 ] , 

and its complex conjugate: 

+ e - ^ + l ) M k m \ k (Afc + l ) 2 + e w ^ + l ) N k m \ k (Afc + l ) 2 ] . 

A . 3 . Average strain energy density criterion 

The derivation of Eq. (71) on p. 57 for calculation of a mean value of SEDF is shown in following text. Let's 
consider stress expansion, Eq. (20) on p. 24 in following form: 

<Tij = 25ř j ^ t f f e r A l - % f e ( 0 ) j 

The derivation is shown on a series containing first 3 terms only. General form for n terms follows later on. First, 
each stress component in its expansion form is substituted into formula for calculation SEDF on mth material 
region in case of a plane problem, Eq. (70) on p. 57: 

£m = n{r^[2(H1rXl-1feei(0) + H2r^-1fee2(9) + H3r>*-1fee3(0)) (106) 

( # i r A l - 7 r r l (9) + H2rx--1frr2 (9) + H3rx^x frr3 (9)) (km - 1) + 

+ (y{H1rXl-1fee1(9)+H2rX2-1f002 (9)+H3rXs-1f003 (9))2 + 

+ ( # i r A l - 7 r r l (9) +H2rX2~1frr2 (9) + H3rx^ frr3 (0)) 2) (km + 1) + 

+ 4 ( J f f i r A l " 1 / r e i (9) + H2rx*-Xfrei (9) + H3rx^fr03 (9))2] } . 

Thus after expanding and some simple rearrangements the equation (106) becomes: 

E m = r-^—Wi {Hlr2^-V [2feeifrn (km - 1) + f661 (km + 1) + / 2

r l (km + 1) + 4 / 2

e i ] + (107) 

+ ff2V(A2-i) [ 2 / e e 2 / r r 2 (km - 1) + / e

2

e 2 (km + 1) + / 2

r 2 (km + 1) + 4 / 2

e 2 ] + 

+ Hlr2^-1) [2fee3frr3 (km - 1) + f2

ee3 (km + 1) + / 2

r 3 (km + 1) + 4 / 2

e 3 ] + 

[2/eei/rr2 (km — 1) + 2fgg2frri (km — 1) + 2JQQIJQQ2 (km + 1) + 2frrlfrr2 (km + 1) + 8freifre2] + 

[2/eei/rr3 (km — 1) + ^.f993 frrl (km — 1) + 2fggifgg3 (km + 1) + 2 / r r i / r r 3 (km + 1) + 8/r0i/r(93] + 
+ H2H3r^~1'>+^-1'> 

[2/e«2/rr3 (km ~ 1) + 2fgg3frr2 (km - 1) + 2fgg2fgg3 (km + 1) + 2frr2frr3 (km + 1) + 8 / r e 2 / r e 3 ] } , 

where the all the functions /ijfc above are functions of angle 9. For the sake of saving available text field, the symbol 
(9) is intentionally omitted. We can identify the functions Ukim (9) as: 

' 2feek (9) frrk (9) (km - 1) + (fggk (9) + frrk (9)) (km + 1) + 4 / 2

e f c (9) k = l 
Uklm (0) = { 2(fggk (9) frrl (9) + feet (9) frrk (9)) (km - 1) + 2(feek (9) feei (9) + k ? I • 

+ frrk (0) frrl (0)) (fcm + 1) + 8/ refc (9) frBl (9) 
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Where the function Ukim (9) is defined for each material region m = 1, 2 of bi-material notch as: 

Uklm (0) = 

and for the case of bi-material junction as: 

Uklm (0) = 

The formula (107) after further rearrangement becomes: 

Uui (9) 7i < 9 < 72 
Uki2 (9) 72 < 9 < 73 

Uui (9) 7o < 9 < 7i 

£4(2 (9) 7i < 0 < 72 

1 
ft { i ř í r 2 ^ - 1 ^ ! ! (0) + Hlr2X2-1U22 (9) + Ä | r 2 A 3 _ 1 l 7 3 3 (0) + 

+ d i f f e r A!+A 2 - l7 Č7i2 (0) + HiHsr^+^Uu (9) + H2H3r A2 + A 3 - l t/23 m } . 

(108) 

The mean value of SEDF is defined in Eq. 
integrate it and finally we get: 

on p. 57. Thus we substitute the equation (108) above into it, 

2ßm { 

•2Ai-l ^Ai + Aa-l 
U12 (9)+H1H: 

^Ai + A s - l 

Ai + A 3 

-U13(9) + 

j 2 A 2 - l 

H l ^ ^ U 2 2 (9)+H2H3 

H. 

2A 2  

: i 2A 3 

^A 2 + A 3 - l 

A2 + A3 
-U23 (9) + 

U33 (9) 

This expression with consideration of n terms leads to Eq. (71) on p. 57. The extreme of function above is found 
by substitution of equation above into Eq. (72) on p. 58 and its derivation in dependence of angle 9: 

rfA1 + A ! - l d U n (g) 
1 Ai + Ai 39 

+ HiH2 

+H2H2 

d A 1 + A 2 - l ßUi2 (0) d A 1 + A 3 - l g U i 3 ^ 
f H1H3-Ai + A 2 89 

d\2 + \2~l SU22 (#) 

A2 + A2 80 
+ H2H; 

+ H3H; 

Ai + A 3 89 
d A 2 + A 3 - l ß u 2 3 

A2 + A3 00 
d A 3 + A 3 - l ör7 3 3 

+ 

A3 + A3 00 
0. 

With consideration of Tk and Tj and for n terms we finally obtain the general formula (73) as found in the main 
text on p. 58. The first derivatives of stress eigenfunctions fijk (9) in terms of complex constants are written: 

8 frrkm (0) 
89 

i -4mAfe (A fc - 3) (A fc - 1) e ie(xk-i) + L k m \ k (Afc — 3) (Afc — 1) e -ie(Afc-i) 

-M f c m Afc (Afc + 1) e i8(\k + l) + Nkm\k (Afc + 1) e -i6(\k + l 

dfrBkm (9) 

89 
l \ l k m \ k (Afc - l ) 2 e*^*- 1) + L f c m Afc (Afc - l ) 2

 e - i 9 ^ - r - + 

+M f c mAfc (Afc + 1) e i f l(A* + 1) + Nkm\k (Afc + 1) e - i ö ( A * + 1 ) j , 

d f e 6 k ™ { e ) = ^[ / f c m Afc(Afc + l ) ( A f c - l K f l ^ 

+M f c mAfc (Afc + 1) e i f l(A* + 1) - Nkm\k (Afc + 1) e - i ö ( A * + 1 ) j . 
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and the second derivatives of stress eigenfunctions fijk (9) are written: 

d 2 f r r

d

k ™ { 9 ) = ± [ / f c m A f c (Afc - 3) (Afc - 1) 

+Mkm\k (Afc + l ) 2 ei9^+1^ + Nkm\k (Afc + l ) 2

 e - i 9 ^ + 1 A , 

+ 
d2frdkm{0) 1 [" . ,3 i0(Xk-l) f x M -.,3 - i 0 ( X k - l ) 

= ňl MfemAfe (Afc - 1) e ^* ; - L f c m A f c (Afc - 1) e * ; 

892 

+MkmXk (Afc + l ) 2 e i f l(A* + 1) - A f c m Afc (Afc - l ) 2

 e - i f l ( A * + 1 ) ] , 

d2feQ™{9) = ~\ [hmXk (Afc + 1) (Afc - l ) 2

 eW*-V + L k m \ k (Afc + 1) (Afc - l ) 2

 e-"(**-i>+ 

+ M f c m A f c (Afc + l ) 2 ei9^+1^ + Nkm\k (Afc + l ) 2 e- i e ( A * + 1 )] . 

The function Ukim (9) for k = I is in terms of complex constants written: 

Ukkm(9) = 4 A 2 [ f c m ( 4 2

m e 2 ^ - 1 ) + L L e - 2 ^ ^ - 1 ) ) + 

+ (Afc - 1) (LkmMkme2i0 + IkmNkme-2ie) + 

+ ((Afc — l ) 2 + 2kmJ IkmLkm + Mfc m Afc m j 

The first derivative of function Ukim (9) for k = I is in terms of complex constants written 

dUklm (9) 
4A 2 [km (2i (Afc - 1) I 2

k m e 2 ^ - ^ - 2* (Afc - 1) L2

kme~2i0{Xk~1}^ + (109) 
89 

+ (Afc - 1) (2iLkmMkme2i0 - 2iIkmNkme-2i0) = 

= 8.A 2 (Afc - 1) [km ( i L e ™ ^ ~ i L e - ^ " 1 ' ) + 
+ LkmMkme210 — IkmNkme~220] 

and the second derivative of function Ukim (9) for k = I is: 

d2Uklm (9) . m - 1 6 A 2 (Afc - 1) [km (Afc - 1) ( i L e ™ ^ + Line-"**-!)) + 

+ LkmMkme210 + IkmNkme~220] 

For k ̂  I the function Ukim (9) is written: 

UMm (9) = 4A f cA, [(A f cA ; - Afc - A, + 2km + 1) {ei0{-Xk~^IkmLlm + e~i0{-Xk-x^ IlmLkm} 

+ (Afc - 1) ( e ^ A * - A ' - 2 ) 4 m A ^ + e-*0(-Xk-x>-VLkmMlm) + 

+ (A, - 1) ( e ^ A ' - A * - 2 ^ m 7 V f c m + e-*0(-x>-Xk-VLlmMkm) + 

+ 2km ( l k m I l m e ^ X k + x ^ + e - ^ ( A * + A ' - 2 ) L f c m L i m ) + 

+ MkmNlmei0(Xk-x^ + MlmNkme-i0^-x^] 

first derivative of function Ukim (9) is written 

+ 
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dUklm (9) 
89 

4iA f c A ; [(Afc - Aj) (A f cA ; - A f c - A, + 2km + 1) {ei6^-x^ I k m L l m - e-i6^-^ItmLkmj + 
+ (Afc - 1) (Afc - A, - 2) (eie{-x*-x>-VlkmNlm - e - i 0 ( x k - x , - 2 ) L k m M l J j + 

+ (A, - 1) (A, - Afc - 2) ( e i e ^ - x « - V I l m N k m - e - * ( A . - A * - 2 ) L l m M k m ) + 

+ 2km (Afc + A, - 2) ( l k m h m e i e i - X k + x ^ - e - i e { - X k + x ^ L k m L l m ) + 

+ (Afc - AO (MkmNlmeie{-Xk-x^ - MlmNkme-iö^-x'^] 

and the second derivative of function Ukim (9) is: 

< H { " ] = - 4 A f c A ; [(Afc - A ; ) 2 (A f cA ; - A f c - A, + 2km + 1) (e*< A *- A «>J f c f n L, 

+ (Afc - 1) (Afc - A, - 2) 2 {ew(xk-M-2)hmNi 

d92 
+ e 

-i8(\k-\i' Ilm.L ra^Km + 

+ e~ 9 ( A f c - A i - 2 ) LkmMlm I + 

+ (A, - 1) (A, - Afc - 2) 2 ( é 6 ^ - X k - 2 h l m N k m + e-i6^-Xk-^LlmMkm) + 

+ 2km (Afc + A, - 2) 2 ( l k m I l m e ^ x « + x ^ + e - i « ( A * + A , 

+ (Afc - A ; ) 2 (MkmNlmeie{-x«-x^ + MlmNk 

LkmLlm j + 

i9(\k-\i] 

A . 4 . Basic two-dimensional elasticity equations 

Many problems in elasticity may be treated satisfactorily by a two-dimensional (plane) theory of elasticity [63]. 
By that the stress analysis is considerably simplified. There are two general types of problems involved in this 
plane analysis, plane stress and plane strain. These two types are defined by setting down certain restrictions and 
assumptions on the stress and displacement fields. The plane stress is defined to be a stress in which the normal 
stress azz and the shear stresses axz and ayz directed perpendicular to the xy plane are assumed to be zero 9. This 
approach is applicable on bodies where one dimension is much smaller than the remaining two, e.g. thin flat planes. 
The stress tensor is for plane stress problem written: 

axy 0 
ayy 0 
0 0 

and strain tensor: 

~xx ^xy 

Syx £yy 1 

0 0 £ 

When we consider the cylindrical coordinate system: 

arr (Trg 0 
&9r &66 0 
0 0 0 

Sgr Sgg 0 
0 0 e z z 

To assess safety of engineering structure in terms of yield criterion it is in general required to compute equivalent 
tensile stress. The von Misses stress for example is defined: 

2 {(°xx -eVy) + (oyy -azz) + (azz-axx)\+3 [a2

xy + a\z + a2

zx) 

°lx + tfy + azz - OxxOyy - O y y O z z - ozzoxx + 3 (a2

y + a2

z + <72

zx) 

i s o t r o p i c material is assumed. 
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which in cylindrical coordinate system is 

Oe = -\j{(Jrr ~ vee) + (cree - crzz) + {&zz - vrr) + 3 (a2

d + a2

z + a2

r) = 

''a2

r + a2

ee + a2

z - arrcree - vee^zz - VzzVrr + 3 (a2

d + ajz + a2

r) 

Since the plane stress case if characterized by azz = arz = agz = 0, the von Misses stress is calculated as: 

(110) 

air + ai (700 + 3a 

The plane strain is defined to be a state in which the strain normal to the xy plane ezz and the shear strains exz 

and eyz are assumed to be zero. The plane strain approach applies to bodies where one dimension is very large in 
comparison with the dimension of the structure in other two directions. The stress tensor for plane strain problem 
is written: 

' XX u Xti 

Jxy Vyy • 
0 0 a 

and strain tensor is: 

In cylindrical coordinate system we write: 

£xy 0 
£yx £VV 0 
0 0 0 

<Jrr are 0 
aer &ee 0 
0 0 <?z 

Err 0 
0 

0 0 0 

Considering stress-strain relation (4) on p. 9: 

The stress component azz can be calculated as: 
E 

[&zz - v (arr + agg)] 

&zz = v(arr + a00) 

Therefore by substitution in Eq. (110) the von Misses stress is: 

a2

r + a2

e + v2 (arr + agg)2 - aRRU00 - 000V (arr + 000) - v (arr + 000) arr + 3a2

d 

l<j2

r (1 - v + v2) + a2

99 {l-v + v2)- urrU00 (1 + 2v - 2v2) + 3 a 2

e 

In terms of eigenfunction, the von Misses stress can be written: 
n ( n 

ae = Y, HkrXk~lU (9) + Hkr~x"-lU (9) = 2R HkrXk~1 fek (9) 
fc=i lfc=i 

where the eigenfunction fek(9) for plane stress problem is: 

fek (9) = ^frrk (9) + f2

ek (9) - frrk (9) f60K (9) + 3f2

ek (9) 

and for plane strain problem: 

fek(0) = ^f2

rk (9) (1 - v + v2) + f2

ek (9) (1 - v + v2) - Urk (0) feek (0) (1 + 2 ! / - 2^ 2) + 3 / 2

e f c (9) 

and the eigenequations fijk (9) are defined in Eq. (23) on p. 25. 
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B. Attached scripts 
The attachment of the thesis consists of the computer scripts created during the years of the author's research. 
These files can be with author permission distributed and further used for non-commercial research purposes. The 
written codes may be divided into two parts: the first part consists of the scripts written in A P D L (Ansys Program 
Design Language) and the second of Python scripts (Python 2.7 run in Spyder 2.3 development environment). The 
scripts written in A P D L can be run in commercial software code A N S Y S v l3 and newer. By these scripts, users 
have an access to three point bending specimen models of V-notch, bi-material notch specimen, sharp material 
inclusion and the model of free edge singularity. The model of outer domain for matched asymptotic expansion 
calculations and script that maps the load on the crack faces is attached, too. The models are parametric, so 
geometry, loads and bi-material combinations can be widely varied. The outputs of these models are text files 
which contains parameters about the models, nodal displacements and deflections field. 

Next group of scripts was written in Python script using python libraries such as Numpy and Scipy. The 
Python scripts load the F E data and do the analytical part. Individual scripts calculate the eigenvalues, construct 
the eigenvectors and create the eigenfunctions. Another script performs the overdeterministic method or calculates 
the Psi-integral to obtain generalized stress intensity factors. Next it plots the stress or displacement distribution. 
A l l the data in tables throughout the dissertation and almost all the pictures were created by Python scripts. 
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