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Elektrická pomoc pro průmyslové vozíky

Abstrakt

Tato výzkumná práce se zaměřuje na probádání fyzikální interakce,
která vzniká mezi lidským operátorem a průmyslovým vozíkem
s pohonem (IPAC). Cílem výzkumu je zlepšit spolupráci člověka
a IPAC tím, že se nalezne správný mechanický design a způsob in-
teligentní kontroly za účelem dosažení takového stavu, ve kterém
vozík umí rozpoznat záměr operátora a je schopen nastavit svoje
parametry tak, aby došlo k lepší interakci vozíku s člověkem a bylo
zajištěno pohodlí a celkový výkon.

V rámci této disertační práce byl vyvinut prototyp průmyslového
vozíku, který byl vybaven sadou senzorů na měření parametrů in-
terakce člověka s vozíkem. Tento vyvinutý průmyslový vozík je
schopen rozpoznat záměr člověka na základě sledování parametrů
procesu interakce. Na začátku této práce byla provedena analýza
současného stavu techniky a byly vybrány nejslibnější kontrolní
techniky. Analyzovali jsme součásti průmyslového vozíku a
vytvořili jsme kinematický a dynamický popis modelu. Tento
vyvinutý vozík má dva stupně volnosti a byly použity regulátory
impedance tak, aby ovládaly oba stupně.

Přesto je však tato disertační práce hlavně zaměřena na zpětnou
vazbu a pohodlí člověka. Proto byl proveden soubor experimentů
s cílem odhadnout účinky parametrů proměnné impedance, co se
týče regulátoru translačních a rotačních pohybů. Za účelem vy-
hodnocení emocionální zpětné vazby lidského operátora byl vyv-
inut objektivní párový dotazník. Ve výsledku jsme našli vztah
mezi nezávislými proměnnými, jako jsou například parametry kom-
fortu obsluhy. Pomocí regresivní analýzy jsme zjistili, že ne všechny
parametry regulátoru impedance mají významný vliv na interakci.
Také jsme zjistili, že parametry impedance pro pohodlnou interakci
se liší u různých operátorů. Zjistili jsme, že existuje významná ko-
relace mezi průměrnou a standardní odchylkou absolutní hodnoty
interakční síly a rychlostí vozíku a pohodlím člověka.

Pomocí výsledků regresivní analýzy jsme použili algoritmus
zesíleného učení, který mohl přepínat stavy regulátorů impedance
podle záměrů operátora. V rámci této diplomové práce je před-
staven proces vývoje vozíku a metodologie výzkumu.
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Adaptive assistance considering human
factors for industrial carts

Abstract

The research work is focused on the study of physical interaction
between the human-operator and an industrial power-assisted cart
(IPAC). The research goal is to improve the cooperation between
human and IPAC by finding a proper mechanical design and meth-
ods of intelligent control in order to achieve a state in which the cart
can recognize operator’s intention and adjust its parameters for a
better human-cart interaction, comfort and overall performance.

In the scope of the thesis a prototype of an industrial cart was devel-
oped and equipped with a set of sensors to measure the human-cart
interaction parameters. Developed industrial cart could recognize
human intention by observing interaction process parameters. In
the beginning of the work the analysis of the state of art was per-
formed and the most promising control techniques were selected.
We analyzed the components of the industrial cart and created the
kinematic and dynamic description of the model. The developed
cart has two degrees of freedom and impedance controllers were
implemented to manage both of these degrees.

Nevertheless, The thesis is mainly focused on human feedback and
comfort. Therefore, a set of experiments was performed to esti-
mate the effect of variable impedance parameters for the controller
of transnational and rotational motions. In order to evaluate emo-
tional feedback of the human-operator an objective pair-based ques-
tionnaire was developed. As a result, we found a relationship be-
tween independent variables such as impedance control parameters
and operator’s comfort experience. Using regression analysis we
found out that not all the parameters of the impedance controller
have a significant effect on the interaction. We also learned that
the impedance parameters for comfortable interaction are different
for different operators. We learned that there is a strong correlation
between the mean and the standard deviation of absolute value of
interaction force and cart speed and human comfort.

Using the regression analysis results we implemented the reinforce-
ment learning algorithm that could switch states of the impedance
controllers according to the operator’s intention. The process of
cart development and the research methodology is presented in the
scope of the thesis.
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1 Introduction

In the rapidly developing landscape of industrial automation, the synergy between
human operators and intelligent machines plays an important role in shaping the
future of efficient and safe manufacturing environment [1].

According to a recent survey conducted by Fang et al. [2], a crucial aspect of
this development is the physical collaboration between human operators and robots,
which can be considered from two perspectives. On one side, human sensorimo-
tor control models provide novel insights into the human response that robots can
utilize to enhance human performance. On the other side, robots are becoming
instrumental in quantifying the performance of the musculoskeletal system. Con-
sequently, the combined use of human modeling and robotic methods in physical
human-robot interaction (PHRI) [3] can lead to both improved understanding of
human capabilities and functional assistance.

Within the context of this thesis, we consolidate and integrate the knowledge of
physics, control theory, reinforcement learning and emotional side of human being,
such as comfort, to improve process of physical interaction. Dissertation contributes
to the topic of PHRI on various levels from information collection and statistical
analysis to software development and hardware implementation.

The thesis consists of thirteen chapters. Chapter 1 provides the summary of the
topics involved in the dissertation and explains how to navigate through the the-
sis’s content. Chapter 2 contains problem definition, where risk factors in material
handling process and their root causes were identified by evaluation of high-quality
statistics and data provided by Eurostat [4], ergonomic manuals [5], [6], [7], risk
assessment reports [8], [9] and epidemiological studies [10], [11].

Chapter 3 includes a critical review of existing control algorithms, considering
classical techniques such as impedance and admittance control [12], [13], alongside
contemporary machine learning-based methodologies [14] and model predictive con-
trol [15], suitable for power-assisted vehicles (PAV).

Chapter 4 derives motivation for conducted research, followed by chapter 5 that
sets the goal and objectives of the project. In order to reach the research goal and
fulfill the objectives, the description of used theoretical, mathematical and empirical
research methods [16], [17] was combined in chapter 6. The concept of an industrial
cart was evaluated in chapter 7.

Chapter 8 reviews the process of the test platform development including the
main requirement hardware (HW) design, software (SW) implementation, the de-
scription of cart kinematics and dynamics. Appendix B contributes to the math-
ematical description of industrial carts, by providing the reader with step-by-step
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explanation of the PAV model. Chapter 9 presents the workflow of the human-
operator study starting with the description of the human motion and following
description of applied methods to evaluate the operator’s feedback.

Chapter 10 describes the process of human - industrial cart interaction. It in-
cludes the analysis of raw data and experiment design. In the chapter 11, the regres-
sion analysis of the experiment results is performed in order to reveal dependencies
between measured physical values from industrial cart and emotional feedback from
the operator.

Chapter 12 reinforcement learning [18] demonstrates the implemented algorithm
that uses a rating system based on actions, states and rewards. Based on the rewards
which are obtained for the actions b the learning system, the novel algorithm is able
to change the system’s state and adjust impedance controllers according to the
intentions of the operator. Most chapters are concluded by a list of variables used
in this particular chapter.

The thesis is concluded by the collection of outcomes and technical solutions,
highlights of the thesis, as well as suggestions for possible future research opportu-
nities and the area of human-industrial cart interaction.
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2 Problem statement

“If you define the problem
correctly, you almost have the
solution.”

Steve Jobs

In this chapter the statement of the problem is formulated to be resolved in the
later workflow of the thesis. Firstly, it is necessary to define the key components of
the human-robot interaction process. Secondly, the main factors in pushing/pulling
tasks are described and classified. It goes on to overview the latest statistics coming
from Eurostat to uncover the roots of the human-cart interaction problem. The
following pages summarise the information about the factors that could affect the
interaction process and lead to injuries or hazards. Some of the main potential
injuries and hazards are joined up in a system.

Human-robot interaction is a complex process that, in our view, should be ad-
dressed from the perspective of multiple disciplines, such as physiology, ergonomics,
robotics and machine learning. In the framework of the current thesis, the main
components are defined and referred to as follows: Human-Robot Interaction (HRI)
includes both physical aspects of helping a human being with some tasks, and socio-
emotional aspects, including but not limited to communication, social interaction,
robot acceptance. Haptic interaction is based on studying the tactile interaction
between a human and a robot. It can be viewed from two perspectives of a human
and a robot, addressing the physical interaction feelings of the human, and the algo-
rithms how a robot can define, classify, organise and apply the information about the
surrounding environment. Power-assisted system (support system) is a system that
allows to perform physical tasks. Examples of such systems include exoskeletons,
manual vehicles (carts equipped with an electrical drive). Material handling tasks
refer to logistical objectives of obtaining, moving, transporting, and handling mate-
rials and goods to ensure the consistent operation of supply chains within a factory
or a warehouse. The definition of a mobile robot is generally broader than the one
of a mobile platform, but for the sake of simplicity, in the framework of this thesis
these two concepts will be used interchangeably. Collaborative robotic environment
is the type of environment that allows robots and humans operate efficiently and
with minimal failures. Human operator is an individual who manipulates a mobile
platform and performs material handling tasks. Mobile platform is in this case a mo-
bile robot which can move in Cartesian space equipped with sensors and actuators,
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it can help an operator to perform material handling tasks. Human-cart interac-
tion describes the relationship between an operator and a powered industrial cart.
Industrial cart is a special type of a cart used at factories and warehouses which
can carry large volumes of freight. Manual pulling/pushing tasks involve applying
force by an operator to push the cart forward, backward, or to perform rotational
movement. Overexertion is a phenomenon of applying more force than needed to
perform a certain task. It may occur due to a fault in estimating the weight of a
load.

Industrial cart manipulation is a physical activity of a human operator that
involves exertion of considerable force in order to overcome the forces that resist
motion and reach target position. When operators carry a loaded or empty industrial
cart, they generate the force and transmit it to the cart through contact points. A
few researchers [7] identified a number of key factors that have a considerable effect
on the human – cart interaction process during manual pushing and pulling tasks.
These key factors are organized into the table 2.1.

Category Factors
Human Factors Height

Weight
Size-weight Illusion (SWI)
Age
Gender
Strength
Posture
Physiological Capacity

Task Factors Distance Moved
Movement Initiation Force Requirements
Sustained Motion Force Requirements
Direction and Nature of Movement
Duration of Pushing/Pulling Task

Cart/Equipment Factors Handhold Height
Handhold Orientation
Handhold Type
Caster/Wheel Design Specifications
Stability
Size
Weight

Floor/Ground Factors Surface Characteristics (smooth, rough, inclined)
Contaminants

Table 2.1: Key Factors in Pushing/Pulling Tasks [7]

However, there are certain material handling tasks performed with little assis-
tance from PAVs, or without any assistance at all, which means that human op-
erators tend to perform algorithms which might harm their physical health and
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well-being. If such algorithms are continuously carried out, it can result in wors-
ening physical conditions of human operators employed in various industrial fields.
Several studies have reported a relationship between pushing/pulling and shoulder
pain, such as increased shoulder pain from pushing/pulling wheeled equipment [9];
pushing/pulling heavy weights [19] and pushing against a high handle [20].

A review on pushing and pulling forces was carried out by Garg et al. [8],
who provided definition and recommendations on maximum acceptable pushing and
pulling forces applied by operators. Cross-sectional epidemiological studies often
show that the cart manipulation activities are associated with the shoulder pain, low-
back pain, and musculoskeletal disorders [21] and [10]. Pushing and pulling of carts
and objects exposes workers to two types of hazards: stresses to the musculoskeletal
system from applied hand force, and accidents due to slipping or tripping [11].

Pushing, pulling, and maneuvering industrial carts involves some common haz-
ards, such as overexertion. According to Eurostat data (2020), the most common
injuries that result from cart operations are:

• fingers and hands being caught in, on, or between the cart and other object

• toes, feet and lower legs being bumped into or crushed by the cart

• slips, trips, and falls, and strain injuries predominantly for the lower back,
shoulder, and arm muscles and joints.

These problems might be resolved with the help of adequate power-assisted ve-
hicles used to help operators perform material handling tasks.

2.1 Topic relevance
Manual cargo transportation tasks, many of which require pushing, pulling and
rotating are common in almost all industrial and warehouse environments. Nearly
half of all manual materials handling consists of pushing and pulling activities [22].
The current research thesis focuses specifically on carrying activities while using
industrial power assisted carts. These tasks often expose workers to musculoskeletal
stresses as well as other related injuries, slipping and tripping hazards.

Material handling exposes the worker to known risk factors for low-back disor-
der, such as lifting, bending, twisting, pulling, pushing and maintenance of static
postures.

If we take a look at the fatal and non-fatal accidents statistics in Europe in
2020 according to the Eurostat data shown in the figure 2.1, it becomes clear what
activities are the most dangerous. A share of 11.1% of all non-fatal accidents at work
is strongly connected to the activity ”handling of objects”, and 9.1% of accidents
happened when the workers were in process of carrying something by hand.

People who work in construction, transportation and manufacturing suffer from
many injures. Nearly 40% of all non fatal injures come from these three fields. Nearly
54% all deaths during working hours also happen in construction, transportation and
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Figure 2.1: Accidents at work by specific physical activity and economic activity,
EU, 2020, per cent [4]

manufacturing. Risk factors related to transportation and manual handling tasks
are placed second in the graph 2.2 of accidents at work by the injured body part
for the individual economic activities. In 2020, non-fatal accidents at work that
resulted in injuries of the upper extremities were particularly common in the EU
within manufacturing (52.5%). For injuries of the lower extremities, there were few
variations by activity, with the highest shares of injuries occurring in transportation
and storage (35.7%), and mining and quarrying (34.9%).

By analysing the job satisfaction level it was illustrated in figure 2.3 that people
in the countries that may have more production and therefore, have more elementary
occupation positions tend to be less satisfied with their jobs and lives.

However, the existing statistics do not reflect the importance of maneuvering
with industrial carts as potential risk factors causing injury at work in the full
scope, because the injuries may often fall into different categories making them
difficult to analyze. To conclude, human operators often do not obtain enough
support from a cart and may suffer from a number of injuries at their working place.
The imperfections of human-cart interactions may often put human operators at
risk of compromising their physical health and overall well-being, thus leading to
fatigue of their fellow colleagues. This results in a vicious circle of fatal and non-fatal
accidents which occur in material handling in various industries.
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Figure 2.2: Non-fatal accidents at work by part of body injured and economic
activity, EU, 2020 (per cent of non-fatal accidents for each activity) [4]

Figure 2.3: Employment by low job satisfaction for 15-74 year-olds, elementary occu-
pations, thousand workers, in 2021, Eurostat (online data code: LFSO_21JSAT03)
[4]
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3 State of art

“A state-of-the-art calculation
requires 100 hours of CPU time on
the state-of-the-art computer,
independent of the decade.”

Edward Teller

The objective of this chapter is to review the existing information on human –
mobile robot physical interaction including hazards, problems and existing solutions
in the area of physics, automation control theory, machine learning and psychology,
namely, emotional feedback. This chapter is aimed to demonstrate the existing
theories and approaches in the field of power-assisted vehicles. This topic is quite
relevant nowadays, as over the last few decades there have been a large number
of studies related to the physical human-robot interaction (between a man and a
machine), see Figure 3.1.

When analyzing the state of the art in the field of human – robot physical
interaction, it is necessary to consider the problem from two perspectives, such as
the point of physical interaction between the human operator and the industrial cart,
and methods of emotional feedback evaluation during their interaction with the cart.
This chapter describes the most promising power assisted techniques developed by
previous researchers, as well as the works related to the evaluation of operator’s
characteristics.
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Figure 3.1: PHRI publications in web of science core collection [23]
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3.1 Physical human-robot interaction
In order to enable humans and robots to work together in close proximity, a learning
framework was developed by Dinh et al. (2019) [24] that incorporates real-time ob-
stacle avoidance. As a result, both legibility and safety issues are addressed within
this framework. This implies that the task generalization strategy helps the robot
adapt to new tasks more quickly, which cuts down on training time. The method
was tested using both a real robot and an articulated KUKA IIWA robot in vir-
tual reality (VR) and human operators. According to Wang et al. (2019) [25],
utilizing robots’ ability to learn by demonstrating examples increased the quality
of collaboration between humans and robots. In this paper, techniques on human
teaching and robot learning have been examined together with the relevant applica-
tions. The researchers created two comparison charts of human teaching approaches
and robot learning approaches, from which kinaesthetic-based teaching was applied
in the current research. A method for postural optimization that considers task
limits and acceptability while reducing the risk of MSDs was introduced in Busch
et al. (2017) [5] who evaluated the operators’ posture during the interaction process
with 39 participants with the help of a motion tracking technology. A comprehen-
sive study by Muller et al. (2018) [26] investigated differences between variable
impedance controller and admittance controller finding that the participants im-
proved their problem-solving time using the variable impedance controller. Another
study (Kang et al., 2019) [27] confirmed that variable admittance control improves
run time, accuracy, and operators’ comfort.

However, the success of HRI in material handling tasks depends on a number of
factors, including the design of the robot and its user interface, the layout and or-
ganization of the work environment, and the level of training and support provided
to human workers. Studies have also shown that the effectiveness of HRI in ma-
terial handling tasks is influenced by the level of collaboration and communication
between humans and robots, as well as the level of trust that humans have in the
robot’s abilities. Namely, Capdepuy et al. (2015) [28] demonstrated that inversed
kinematics approach (IK) improves interaction comfort. The results obtained by
Herrera et al. (2016) [29] suggest that the system can overcome many common
disturbance situations and adapt its behavior to different disturbance events over
time using fuzzy logic methods. HRI has the potential to improve the efficiency and
productivity of material handling tasks, while also reducing the risk of injury and
fatigue for human workers. However, it is important to carefully consider the design
and implementation of HRI systems in order to ensure that they are safe, reliable,
and effective. A journal of HRI (vol.4) published in 2015 precisely focused on the
ways in which haptic interaction can be used to enable cooperation and commu-
nication between humans and robots, considering both the human perspective and
the engineering challenges involved. The introduction made by its editors MacLean
and Frisoli [30] stated that the development of robots that could potentially share
physical space and work cooperatively with humans will require the use of haptic
technology to facilitate communication and interaction during physical contact.

The article published in 2019 by Oltean [31] describes a mobile robot platform
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that has a fixed four-wheel chassis and is equipped with an electronic system based on
Raspberry Pi and Arduino Uno interfaces. The platform is designed to be low-cost,
reliable, and flexible, making it suitable for use in teaching and research. Potential
applications for this platform include serving as an autonomous guide robot for
indoor environments, assisting patients in a medical setting, military use, organizing
and transporting materials in warehouses, and transporting waste, laundry, food,
pharmaceuticals, or mail.

A great deal of research has been done on physiological and psychophysical as-
pects of materials handling. Ciriello and Snook [32],[33] have published a large data
base for designing lifting, lowering, pushing, pulling and carrying tasks. Ciriello’s
[34] study the maximum comfortable forces for pushing and pulling a cart. In addi-
tion, there have been many contributions to the human-robot physical interaction
area related to impedance and compliance control [35], [12], force/motion impedance
control [36], model reference adaptive impedance control [37]. In parallel, adaptive
control of robotic manipulators has advanced considerably in recent decades to re-
duce dependency on a precise knowledge of the dynamics of the robot and the
environment. It resulted in the increased interest in adaptive impedance control
[38], [39].

These studies focused on design factors of carriers and their effects through kine-
matic and biomechanical models. Despite researchers’ effort on the carrier design
improvement in terms of human factors, there are still various injuries because users’
preferences and reactions were not considered in the studies.

This dissertation proposes a systematic approach in development of a unified,
flexible and inexpensive device developed for comfortable human-robot interaction
that responds to the human operator expectations. The use of hand carts to trans-
port loads instead of carrying them saves workers a lot of effort. It decreases the
risk of overexertion injuries at work that include manual materials handling.

3.2 Aspects of human comfort and expectations
Within the topic of measuring comfort in human-robot interaction (HRI), user com-
fort in material handling tasks can be measured through a variety of methods, in-
cluding self-report surveys, physiological measures (such as heart rate and sweat
gland activity), and behavioral observations. These techniques are described in the
following paragraphs to reveal the research gap.

Self-report surveys are a common method to assess user comfort, as they allow
individuals to describe their experiences and perceptions directly. Surveys can in-
clude questions about the overall comfort level with the task, the perceived level of
physical strain, and the ease of the robot’s use. Physiological measures can provide
objective data on the body’s response to the task and can be used to indicate levels
of stress or discomfort. For example, an increase in heart rate or sweat gland activ-
ity may indicate that the user is experiencing discomfort or strain during the task.
In the study by Widdowson et al. (2017) [40] a multi-method approach incorporat-
ing behavioural measurements, self-report questionnaires, and physiological data to
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detect human arousal in a variety of predefined real-time scenarios and settings was
applied.

Behavioral observations involve observing and recording the actions and behav-
iors of the user during the task. This can include measures such as the speed
and smoothness of movements, the frequency of breaks or pauses, and the overall
performance on the task. In the article published in 2021 by Liu et al. [41], a
human-robot handover system was proposed based on human behaviour patterns.
The results showed that the model can predict an object’s transmission points that
conform to human handling habits. It can potentially provide a more natural and
smoother transmission experience with human operators.

The choice of method to measure user comfort depends on the specific goals of the
study and the resources available. It is important to use a combination of methods to
obtain a comprehensive understanding of user comfort in material handling tasks.
For this reason in the framework of this research, operator’s comfort estimation
methods are described in Chapter 9.

To our knowledge, the aspects of human comfort and expectations during human
– industrial cart interaction appear to be understudied. There are no studies related
to the human comfort estimation during goods transportation process with help of
industrial power-assisted cart (IPAC). However, Silva et al. present a cart built to
move 500 kg net loads with friendly human perception [42]. The complete system
is shown in the figure 3.2.

Figure 3.2: Mechanical traction system for electrical load cart developed by Silva et
al. [43]

In their study, the mechanical structure and power elements were designed to
aid in translational displacements of 500kg net load. The human command were
measured by a 1300N side effort compensated load cell. The control system devel-
oped by Silva et al. is based on emulated mechanical impedance that generates the
speed setpoint.

In order to evaluate the force controller performance, the authors compared the
human force necessary to move the vehicle when the human aid system was enabled
or disabled. As shown in figure 3.4, the average human force necessary to move the
cart without help from the cooperative system is about 3.5 times greater than that
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Figure 3.3: Load cell mounting scheme for human force measurement [43]

observed when the system is enabled. In order to summarise the algorithms that
could be used to create a cooperative system, we will briefly describe the capabilities
of each control algorithm to rationalise the choice of impedance control.

Figure 3.4: Human force with 120kg total load over a non-inclined surface [43]

Impedance control focuses on controlling the stiffness and damping properties
of a system. In the context of a powered cart, this would mean controlling how
the cart responds to external forces. Admittance control is essentially the inverse of
impedance control, emphasizing the relationship between the cart’s motion and the
applied force. Both the impedance and the admittance control can be effective for
applications where the cart needs to interact with its environment in a compliant
manner, adapting to varying conditions. This appears to be suitable in our case when
the cart needs to navigate through environments with uncertainties and obstacles.

Compliance control approach aims to make the system compliant or flexible, al-
lowing it to absorb external disturbances without significant disruption. It might be
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beneficial when the cart needs to handle dynamic and unpredictable environments,
providing a level of flexibility to navigate through obstacles without causing damage.

Model Reference Adaptive Impedance Control (MRAIC) combines the adapt-
ability of model reference control with the impedance control strategy. It adjusts
the impedance parameters based on the difference between the actual and desired
system behavior. This type of control is suitable for systems with varying dynamics
or environments. It can be effective in industrial applications where the cart may
encounter different loads or operating conditions.

First Order Lag controller introduces a time delay in the system’s response to
changes, providing a simple form of dynamic behavior. Such controllers are often
used in systems where a gradual response to changes is acceptable. However, for ap-
plications like powered carts that require more sophisticated and adaptable control,
other methods like impedance control or compliance control may be more suitable.

The most suitable control algorithm for an industrial powered cart depends on
the specific requirements of the application. If the cart needs to navigate through
dynamic and uncertain environments, impedance control, compliance control, or
MRAIC may be more appropriate due to their adaptability. On the other hand,
if a simpler response is acceptable, a first-order lag controller could be considered.
The choice ultimately depends on factors such as the desired level of adaptability,
precision, and response time in the given industrial context. In the case of the
current research, we opted for the impedance control as we work with uncertain
environment, which in this case, depends on the behaviour of the human operator.

3.3 Impedance/Admittance control
Theoretical concept of Impedance control was introduced in 1985 by Professor
Neville Hogan from Massachusetts Institute of Technology (MIT) [12]. The ob-
jective of impedance control is not to directly control position or force, but the
relationship between them. This allows to reduce or increase apparent stiffness,
damping, or mass depending on the task. The overall purpose of the impedance
control creation was to develop an approach to control a manipulated object that
would be suitable for a broad range of applications. General impedance control
scheme is shown in the figure 3.5.

Manipulation with the object of interest requires a physical interaction. In order
to fulfill the task requirements, the user chooses a desired impedance that could be
expressed by the following general equation 3.1:

Md(ẍ− ẍd) + Bd(ẋ− ẋd) +Kd(x− xd) = fe (3.1)
Where Md, Bd and Dd are positive constants that represent the desired iner-

tia, damping and stiffness, respectively. From the equation 3.1 we could find the
acceleration reference described by 3.2:

ẍr = ẍd +Md
−1[−fe +Bd(ẋ− ẋd) +Kd(x− xd)] (3.2)
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Figure 3.5: Example of a block diagram of an impedance controller form [36]

For admittance control, the control force is a position-controller designed to track
the trajectory x = xd. Trajectory tracking is implemented using a PD controller
with positive gains Kp and Kd:

fr = Kp(xd − x) +Kdẋ (3.3)
The simplified impedance controller could be written in the following form:

Md(ẍ− ẍd) + Bd(ẋ− ẋd) = fe (3.4)
It was proved by previous researchers [39] that the spring component of the

impedance controller does not have a significant impact on the process of interaction.
The impedance controller is a virtual dynamic system. Along with the com-

pliance controller it allows to set any desired system dynamics. By changing the
settings of the virtual mass (Mass), a virtual damper (Damp) and virtual spring
component we can obtain the desired system response to the control impact. In
our work we will use two controllers. One controller will be used for translation
motion in support of pushing and pulling tasks. The second controller will be used
for rotational motion in order to support the human operator in the task of rotation.

3.4 Compliance control
The example of power – assisted control based on compliance controller was proposed
by Nagami et al [35]. The author expresses his opinion regarding the conditions that
should be taken into account by the operator when moving loads. The main idea
of his work is the implementation of the operator’s desired movement without the
influence of external disturbances.

Compliance controller makes it possible to perform the assist motion for the cart
operator smoothly and improve the stability of the cart motion. The compliant
controller with variable gain is shown in figure 3.6.
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Figure 3.6: Block diagram of the compliant controller based on the applied force by
Nagami et al [35]

The variable compliant gain, and is adjusted so that the cart operator can move
the platform smoothly independently of the loaded object. The variable compliant
gain formula is expressed by the equation 3.5:

Ch
v = tan(ahvF h) (3.5)

where F h - human force, ahv - adjustable coefficient.
Compliance controller speed reference is listed in 3.6:

v̇h
ref =

1

Mh
v

(Ch
vF

h −Dh
vv

h) (3.6)

The parameters of the compliance controller are chosen empirically, which does
not allow to apply the developed solution for mobile carts with modified parameters
without prior resetting.

3.5 Model Reference Adaptive Impedance Control
(MRAIC)

Model Reference Adaptive Impedance Control (MRAIC) allows not only to track
the response of the reference model but also to make the dynamics of the closed-loop
system similar to the reference impedance model.

The desired reference impedance model for the robot end-effector in Cartesian
coordinates is generally defined by the equation 3.7. The reference model has two
poles in each Cartesian coordinate direction as:

r1 = −λ1 + iλ3 (3.7)

r2 = −λ2 + iλ3 (3.8)
where for the reference model stability, constants λ1 and λ2 should be positive.
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Figure 3.7: The structure of the Model Reference Adaptive Impedance Controllers
[37]

The model reference adaptive impedance controller for motor torque could be
written in the following form:

τmotor = M̂qv1 + Ĉqv2 + Ĝq + F̂q − JTfext (3.9)
where v1 and v2 are known vectors that do not contain any estimated parameters

of the robot’s dynamics.

v1 = J−1

(
ẍeq −

c

m
(ẋ− ˙xeq)−

k

m
(ẋ− ẋeq) +

1

m
fext + λ3

2x̃− J̇J−1ẋr

)
(3.10)

v1 = J−1ẋr (3.11)
Linearly parameterized equation in joint space has the following formula:

τmotor = Y1θ̂1 − JTfext (3.12)

where θ̂1 - estimation of actual parameters vector, Y1 - regressors matrix in joint
space.

Y1θ̂1 = Mqv1 + Cqv2 +Gq + Fq (3.13)
The adaptation law is expressed by the equation 3.14:

θ̂1 = −ΓY T
1 J−1s1 (3.14)

where Γ is symmetric positive definite matrix. s1 is error dynamics.

s1 = ẋ− ˙xeq (3.15)
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where ˙xeq is the reference velocity.

ẋr = xm − λ1x̃ (3.16)
x̃ is the reference model position error. This method gives very promising results.

However, it requires reference impedance model that is not available in our case due
to the human factor.

3.6 First order lag controller
Power-assisted control based on the first order lag controller and fuzzy logic was
introduced in the work of authors led by Terashima [44]. They introduced the
methodology which allowed to estimate the operators’ skill level and adjusted the
controllers’ parameters accordingly to influence the cart dynamics. Block diagram
of skill assist system is shown in the figure 3.8.

Figure 3.8: Block diagram of skill assist system by Terashima et al. [44]

In this work the author demonstrates his own developed methods to assess the
level of operator’s competence and configuration of a power – assisted controller
using fuzzy logic. It is demonstrated in the figure 3.9.

The author mentions that the developed system has a difficulty with adding
support in rotational motion. Operator feels uncomfortable during the manipulation
and fluctuations in the support system when vibration is caused by the operator
force. For this reason, this paper considers the support for the backward and forward
movement. First-order lag controller is used in order to convert the force applied by
the operator’s into the motor speed setpoint. The controller formula is provided in
3.17. vxvy

w

 =


kvx

Tvxs+1
0 0

0 kvy
Tvys+1

0

0 0 kvz
Tvzs+1


fxfy
m

 (3.17)

Performance index evaluating operator’s skill degree:

σvx =

√√√√ 1

n

n∑
i=1

(vxi − v̄x) (3.18)
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Figure 3.9: Skill level estimation Terashima et al. [44]

Skill level index:

Svx(t) = Svx(t−1) +
σvxs

Ts

(3.19)

where Ts – forgettable time.
The author conducted a comparative experiment for two people and has pro-

posed a formula to evaluate the skill of the operator. Later he conducted another
experiment for four people and confirmed the correct operation methods for the op-
erator’s evaluation and the regulator setting when moving backward and forward.
The implementation of presented methods for lateral, rotational and slant movement
was suggested for further research.

3.7 Alternative control strategies
In the framework of the current research we have opted for impedance control as its
suitability fits the specific requirements and constraints of the application, as well
as the hardware and software available in the project. Additionally, we have con-
sidered safety, human-robot interaction, and real-time performance when selecting
and implementing a control algorithm. However, we acknowledge that alternative
control strategies exist, they were described in Kouro et al. [45], Blaya and Herr
[46], Beltran et al. [47], Dayan and Balleine [48], Guo et al. [49], Guerrero et al.
[50], Sciarretta et al. [51], and Kiguchi et al. [52]. We attempted to summarize the
literature in the following table 3.1.
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Algorithm Description Advantages Drawbacks
Model Predic-
tive Control
(MPC)

MPC is a popular
control strategy for
systems with non-
linear dynamics and
constraints. It in-
volves formulating a
predictive model of
the system dynam-
ics and using an op-
timization algorithm
to compute the op-
timal control inputs
over a finite horizon.

Can handle non-
linear dynamics
and constraints.
Provides good
performance
and robustness
in the presence
of disturbances
and uncertain-
ties.

Computationally
intensive. Requires
a good model of
the system dynam-
ics. Sensitive to
modeling errors
and parameter
uncertainties.

Adaptive Con-
trol

Adaptive control is
a family of control
algorithms that ad-
just the control gains
online based on the
observed system re-
sponse. This can im-
prove the robustness
and stability of the
control system in the
face of uncertainties
and disturbances.

Adjusts control
gains online.
Provides good
performance and
robustness in
the face of un-
certainties and
disturbances.

May require a large
number of tuning pa-
rameters. Sensi-
tive to measurement
noise and model un-
certainties. May suf-
fer from slow con-
vergence and stabil-
ity issues.

Sliding Mode
Control (SMC)

SMC can pro-
vide robustness to
disturbances and un-
certainties, and can
be used for systems
with nonlinearities
or uncertainties. It
is also relatively
simple to implement
and requires little
tuning.

Provides robust-
ness to distur-
bances and un-
certainties. Can
be used for sys-
tems with non-
linearities or un-
certainties. Rel-
atively simple to
implement, re-
quires little tun-
ing.

Generates high-
frequency control
inputs, which can
be difficult to im-
plement. May suffer
from chattering and
high sensitivity to
modeling errors.
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Algorithm Description Advantages Drawbacks
Reinforcement
Learning (RL)

RL can learn opti-
mal control policies
through trial-and-
error interactions
with the environ-
ment, without the
need for a model
of the system dy-
namics. It can also
adapt to changes in
the environment and
disturbances.

Learns optimal
control poli-
cies through
trial-and-error
interactions.
Adapts to
changes in the
environment
and distur-
bances.

Computationally
intensive, may
require a large
amount of training
data. May suffer
from exploration-
exploitation trade-
offs and overfitting.

Fuzzy Control Fuzzy control can
handle uncertainties
and nonlinearities
in the system, and
can generate in-
terpretable control
rules. It can also
be robust to mea-
surement noise and
model uncertainties.

Handles un-
certainties and
nonlinearities.
Generates inter-
pretable control
rules. Robust
to measurement
noise and model
uncertainties.

Difficult to tune,
may require a large
number of fuzzy
rules. Sensitivity to
the choice of mem-
bership functions
and rule aggregation
methods.

Neural Network
Control

Neural network
control can learn
the system dynamics
and control policy
from data, and can
handle nonlinearities
and uncertainties in
the system. It can
also provide good
performance and
robustness in the
face of disturbances
and uncertainties.

Learns system
dynamics and
control pol-
icy from data.
Handles non-
linearities and
uncertainties.
Provides good
performance
and robustness.

Computationally in-
tensive, may require
a large amount of
training data. May
suffer from overfit-
ting and sensitivity
to the choice of
network architec-
ture and training
algorithm.
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Algorithm Description Advantages Drawbacks
Optimal Control Optimal control

can minimize a
given cost function
subject to system
constraints, and can
generate optimal
control inputs. It
can also provide
good performance
and energy effi-
ciency.

Minimizes a
given cost func-
tion subject
to system con-
straints. Gen-
erates optimal
control inputs.
Provides good
performance
and energy
efficiency.

Computationally
intensive, may re-
quire a good model
of the system dy-
namics. Sensitivity
to modeling er-
rors and parameter
uncertainties.

Robust Control Robust control can
provide performance
and stability guaran-
tees in the presence
of uncertainties and
disturbances. It can
also be used for sys-
tems with nonlinear-
ities or time-varying
dynamics.

Provides per-
formance and
stability guar-
antees in the
presence of
uncertainties.
Can be used for
systems with
nonlinearities
or time-varying
dynamics.

Computationally in-
tensive, may require
a good model of
the system uncer-
tainties. Conser-
vatism and limited
performance in the
absence of distur-
bances.

Decentralized
Control

Decentralized con-
trol can distribute
the control task
among multiple
agents, providing
scalability and fault
tolerance. It can
also be used for sys-
tems with complex
interactions and
dependencies.

Distributes the
control task
among multiple
agents. Provides
scalability and
fault tolerance.
Can be used
for systems
with complex
interactions and
dependencies.

Difficult to design,
may require coordi-
nation among the
agents. Limited per-
formance compared
to centralized con-
trol.

Table 3.1: Control Algorithms: Pros and Cons
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List of variables
Impedance/Admittance control

Md Positive constant representing the desired inertia of the impedance
controller

Bd Positive constant representing the desired damping of the
impedance controller

Kd Positive constant representing the desired stiffness of the impedance
controller

x Current position of the system
ẋ Current velocity of the system
ẍ Current acceleration of the system
xd Desired position of the system
ẋd Desired velocity of the system
ẍd Desired acceleration of the system
fe External force acting on the system
Kp Positive gain of the proportional (P) controller in trajectory track-

ing
Kd Positive gain of the derivative (D) controller in trajectory tracking
fr Control force in trajectory tracking

First order lag controller

vx Velocity component in the x direction.
vy Velocity component in the y direction.
w Angular velocity (rotation around the z axis).
kvx Controller gain for converting force to velocity in the x direction.
kvy Controller gain for converting force to velocity in the y direction.
kvz Controller gain for converting force to angular velocity.
Tvx Time constant for the first-order lag controller in the x direction.
Tvy Time constant for the first-order lag controller in the y direction.
Tvz Time constant for the first-order lag controller in the angular di-

rection.
fx Force component applied by the operator in the x direction.
fy Force component applied by the operator in the y direction.
m Moment (torque) applied by the operator (around the z axis).
σvx Skill degree evaluation performance index for operator’s velocity in

the x direction.
vxi Instantaneous velocity in the x direction.
v̄x Mean velocity in the x direction.
Svx(t) Skill level index at time t in the x direction.
Svx(t−1) Skill level index at time t− 1 in the x direction.
σvxs Standard deviation of skill degree.
Ts Forgettable time.
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Compliance control

Ch
v Compliant gain adjusted for smooth movement of the platform by

the cart operator
F h Human force applied to the system
ah
v Adjustable coefficient for the compliant gain

v̇h
ref Speed reference for the compliance controller

Mh
v Mass of the platform

Dh
v Damping coefficient of the platform

vh Velocity of the platform

Model Reference Adaptive Impedance Control (MRAIC)

r1 First pole of the reference model in Cartesian coordinate direction
r2 Second pole of the reference model in Cartesian coordinate direction
λ1, λ2 Positive constants for stability of the reference model. Real parts

of the complex poles r1 and r2 of the reference mode
λ3 Positive constants for stability of the reference model. Imaginary

part of the complex poles r1 and r2 of the reference model
τmotor Motor torque
M̂q Estimated inertia matrix of the robot. Represents the resistance to

changes in the robot’s state of motion, influenced by the distribu-
tion of masses in its links.

Ĉq Estimated Coriolis and centrifugal effects matrix. Accounts for the
forces and torques associated with motion and rotation, providing
a more accurate representation of dynamic behavior.

Ĝq Estimated gravitational torque vector. Describes the torques in-
duced by gravity on each joint, influenced by the mass distribution
and geometry of the robot.

F̂q Estimated additional external forces or torques. Accounts for exter-
nal factors or disturbances not covered by inertia, Coriolis, centrifu-
gal, or gravitational effects, such as friction or unknown external
forces.

v1, v2 Known vectors not containing estimated parameters of the robot’s
dynamics

τmotor Calculated motor torque.
J Jacobian matrix.
ẍeq Desired acceleration.
ẋ Actual velocity.
ẋeq Reference velocity.
fext External force.
x̃ Position error.
ẋr Reference velocity.
m Mass coefficient.
c Damping coefficient.
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k Stiffness coefficient.
Y1 Regressors matrix in joint space.
θ̂1 Estimation of the actual parameters vector.
s1 Error dynamics, calculated as ẋ− ˙xeq.
Γ Symmetric positive definite matrix.
xm Measurement of the position.
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4 Motivation

In our work we would like to evaluate a new power assistance system with human
comfort estimation, which sets up operator’s pushing, pulling and rotational force
to the comfortable level and decreases the risk of injury. One of the highlighted
specific challenges of the research was to develop a cart that responds more flexibly,
robustly and efficiently to the everyday needs of workers and citizens in professional
or domestic environments.

The motivation for this research is to reduce the number of injuries of people who
work in the area of material handling by solving the problem of faulty interaction
between human-operator and industrial cart. It is proposed to establish the system
that recognizes and adapts to the human-operator intentions based on rewards and
losses received for the quality of interaction process.

One significant part of the research is to specify the requirements for the indus-
trial cart, develop the proper mechanical design and equip the cart with required set
of sensors. Another important part is to design the architecture of the control sys-
tem and implement the elements of artificial intelligence that affect the interaction
process.

The objective is to establish a state in which the industrial cart seamlessly re-
sponds to the intentions of the human operator, exhibiting the necessary dynamics
for a harmonious and efficient interaction. As a result, human oriented study has
to be performed. It is necessary to find the correlation between emotional feedback
of the human operator and physical measures that could be obtained using sensors
of industrial cart.

In order to have a good overview on independent variables that affect human-
operator comfort, interaction process parameters have to be collected and evaluated
using regression analysis. Using a questionnaire-based technique the emotional feed-
back of the human operator will be obtained. The effect of found variables will be
evaluated with the group of experienced and inexperienced human-operators.

Based on this dependency the reward system will be defined. Using the meth-
ods of artificial intelligence, the support system will adapt to the human operator
intention by switching between different states and getting rewards for each single
action. Finally, the set of impedance controller parameters will be selected based on
the highest value of the interaction process quality for particular operator. It leads
to adaptation of industrial cart dynamics according to the intention of the human
operator.
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5 Goal and Objectives

The key point of the comfortable human – industrial cart physical interaction is
the question how to include physiological and psychophysical aspects of the human
operator in to the control system. Furthermore, as far as the author is concerned,
no estimation criteria which would address both the operator’s comfort level, and
their subjective expectations from the interaction process have been developed to
this day.

The research goal is to employ artificial intelligence (AI) methods to adjust the
controller settings in order to achieve a state where an operator can manipulate
a heavy loaded industrial cart with minimum physical effort and ultimate comfort.
Once the proper mechanical design and methods of intelligent control are discovered,
the processing of measured forces at the human-cart interface with recognition of the
desired behavior and following calculation of the control impact for electric drives
is assumed.

In order to achieve the goal, the following objectives are outlined as follows:

1. Collect the state of art information in the area of physical human-robot in-
teraction and the most promising existing algorithm that can be adapted to
deliver a new human-powered cart interaction control technique through lit-
erature analysis and practical investigations.

2. Prepare a mathematical description for dynamics and kinematics of the human
– cart physical interaction model.

3. Develop and assemble an experimental model of an industrial cart.

4. Perform a set of experiments including real people and estimate the human
feedback during the interaction process.

5. Analyze dynamic characteristics in order to search for criteria that directly or
indirectly determine a physical feeling of human comfort and his expectations
during the interaction with IPAC.

6. Synthesize the human estimation criteria that characterize the satisfaction and
comfort from the human-powered cart interaction process.

7. Develop the human – powered cart interaction control algorithm based on the
synthesized criteria using AI methods (Q-learning).

8. Test and verify the work of proposed solution for the developed industrial cart.
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In the framework of the current research, it is important to contribute the follow-
ing theoretical input into the field of technical cybernetics - the use of Q-learning
algorithm in adjusting controller settings so that the mobile platform adapts to the
unique gait and tasks of any operator it assists. To comply with this task, the models
from Chapters 8 and 9 will be derived and the model could be used in the future to
estimate the quality of control with the help of Markov processes. Markov processes
are utilized to make decisions on regulating the impedance control settings.
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6 A Brief Summary of the Implemented
Methods

In this chapter we describe the way we would like to reach the goal and meet ob-
jectives defined in the beginning of the research. Theoretical, empirical and math-
ematical research methods are combined in this work in order to reach the goal
formulated in chapter 5. The methods and objectives sorted by the research type
and addressed by the current study are listed below.

Theoretical methods:

• Analysis and synthesis of existing information was performed to determine the
state of the art and current research gaps.

• Modeling was used for industrial cart simulation and development of kinematic
and dynamic models.

Mathematical methods:

• Statistics method - regression analysis was performed to evaluate the experi-
mental data and determine the dependency between human operator feedback
and measured parameters of the interaction process.

• Programming was used to implement control algorithm.

Empirical methods:

• Observation was used to detect interaction states and conditions that could
have a positive or negative effect on the feelings of the cart operator.

• Survey was used to collect the feedback from human operators after the inter-
action process.

• Experiment was used to collect the data of the interaction process with chang-
ing conditions such as impedance controller settings, loads and operators.
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7 Industrial cart concept evaluation

7.1 A rationale for the current industrial cart
An industrial cart is a useful and popular tool for transporting goods and freight.
Strong and reliable carts may increase the efficiency of the workers, protect their
health and the integrity of the load. The rationale for a specific design is described
in this chapter. Such criteria as price (affordability), design simplicity, reliability go
in line with the state-of-the-art research described in 8.6. This chapter addresses the
design of carts, their types and functional features, the correct choice of a model for
specific needs. There are many research groups and organizations that have worked
on the problem of evaluating and selecting mobile platforms for material handling
tasks. These organizations also addressed the issue of occupational safety in various
industries. Therefore, a few notable organizations are worth mentioning:

1. The National Institute for Occupational Safety and Health (NIOSH) in the
United States, which conducts research and provides guidelines on the safe
design and use of mobile platforms in the workplace.

2. The European Agency for Safety and Health at Work (EU-OSHA), which
provides information and guidance on the safe use of mobile platforms in the
European Union.

3. The International Organization for Standardization (ISO), which develops and
publishes international standards for the design and use of mobile platforms,
including ISO 3691-4:2015 for mobile elevating work platforms and ISO 3691-
5:2015 for self-propelled industrial trucks.

4. The Industrial Truck Standards Development Foundation (ITSDF), which de-
velops and publishes safety standards for industrial trucks in North America.

5. The Center for Compact and Efficient Fluid Power (CCEFP), which conducts
research on the development of advanced power systems for mobile platforms.

6. The Robotics and Mechatronics Laboratory (RoMeLa) at Virginia Tech, which
conducts research on the development of advanced mobile platforms for various
applications, such as search and rescue, mining, and construction.

When evaluating construction and selecting a type of a mobile platform for
material handling tasks, several criteria should be considered. These may include:
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1. Load capacity: The maximum weight the platform can safely carry, as well as
its weight distribution capabilities. This factor was chosen to be one of the
most important ones for the current research as the platform is intended for
carrying weight up to 500kg.

2. Mobility: The platform’s maneuverability, stability, and ability to navigate
through the work environment. This factor was chosen to be one of the most
important ones for the current research as the same mobile platform is intended
to be used by multiple operators.

3. Reach: The maximum height and distance the platform can reach, as well as
its ability to rotate and pivot. We describe the specific configurations in the
table 7.2.

4. Speed: The platform’s maximum and minimum speeds, as well as its acceler-
ation and braking capabilities. In the current case, the maximum velocity of
the cart was limited 5 km/h to suit the gait of a human operator.

5. Durability: The platform’s ability to withstand heavy use and harsh environ-
ments, as well as its ease of maintenance and repair. The test platform was
built to be easily maintained and repairable.

6. Safety: The platform’s ability to protect operators and other personnel from
injury, as well as its compliance with relevant safety regulations. In our case
the mobile platform is equipped with emergency stop button to ensure an
immediate cut of the power supply to the drives.

7. Power source: The platform’s energy source, such as electric, hydraulic, or
combustion, and the compatibility with the available power supply. To power
the cart, 24V Lithium batteries were used.

8. Ergonomics: The platform’s design and features that can make the operator’s
task easier, more comfortable and less fatiguing. This factor was chosen to
be one of the most important ones for the current research as the platform is
intended for wider audiences of users.

9. Compatibility: The platform’s ability to work with other equipment and tools
that are already in use in the facility. The prototype is equipped with wired
and wireless interfaces suitable for Operation technologies(OT)/Information
technologies (IT) integration.

7.2 Constructing the industrial cart
Creating collaborative robotic environment for safe human robot interaction was
covered in multiple articles, including e.g. Pozo, Patel and Schroedel (2022) [53].
The researchers pointed out at the importance of creating safe environment to work
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with robots for inexperienced users. Collaborative industrial robot safety require-
ments are defined in ISO/TS 15066:2016 ISO (2016). Engineering of industrial cart
is a complicated process. During the development phase it is necessary to estimate
the required modifications to improve functionality for a specific task. Design pro-
cess of any industrial cart considers the following requirements: cargo format (type
of the load), ease of storage, carrying capacity, necessary ergonomics, safety mar-
gin, potential risk factors. The following basic points form the structure of a typical
industrial cart:

• Chassis (wheels). The most important elements, supporting parts of the trol-
ley. They consist of the wheel itself and the coating (tires). They could be
fixed positioned or rotary.

• Platform. The working surface, which is made in the form of a grid, a solid
structure, a base with a flooring of metal, plywood sheets or rubber-plastic.

• Handlebar (Control element). It can be single, double, folding, removable.
Mainly made from metal pipes. In heavy-duty platform models that require a
tractor for operation, the handle is replaced by the draw-bar.

The exiting cart models could be classified according to the specific parameters:

• Platform layout;

• Wheels configuration;

• Maximum carrying capacity;

• Extra features and options (Power assistance, height regulation, color options,
etc.)

The total lifting capacity of of industrial carts depends on the configuration,
model, type of structure and wheels, materials. The average load capacity of differ-
ent carts is from 60 to 900 kg (heavy-duty carts carry up to 3 tons).

The wheel configuration as a base has a considerable impact on the load capacity
and the amount of force exerted to move the cart. The most common configurations
for traditional rectangular cart are collected in the table 7.2. Each layout has its
own benefits and drawbacks.

Type, position and quantity of wheels impacts load capacity and maneuverabil-
ity of the industrial cart. The industrial application adds a specific constraint on
quantity and position of movable and fixed wheels of industrial cart. Each wheel
needs to be as lightweight as possible compared to the weight of the cart, so that
the kinetic energy goes into forward motion of the cart, not into the rotary motion
of the wheels. That is an argument why fewer wheels are used in the current pro-
totype. At the same time, larger wheels will have less rolling friction than smaller
ones. The reason carts for heavy loads which travel on hard surfaces have more
than four wheels to distribute the weight over six axles rather than just four. As a
result, maneuvering with the cart becomes easier because of the reduced pressure on
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the surface. A six wheel option has improved mobility when maneuvering in tight
and confined spaces with the heavy load. The two center rigid casters and swivels
on the end provide a tighter turning radius than the standard caster configuration.
This configuration ensures the cart can pivot on its own axis and provides zero-turn
maneuverability.

The frictional force has three components:

1. rolling resistance

2. friction at the axles

3. wind resistance

We assume that wind resistance is not changed very much by a 4-wheel versus
6-wheel design for indoor application, when the cart transportation speed is less
than 5km/h. In addition, friction at the axles is probably not as big as rolling
resistance. Therefore, we will now focus on the types of wheels which are described
in the following table 7.1.

Symbol Image Description
Rotatable supporting wheel (swivel caster) – wheel that
automatically aligns itself to the direction of travel. One
major disadvantage of casters is a flutter. A common
example of a caster flutter is in a supermarket shop-
ping cart, when one caster rapidly swings side-to-side.
This oscillation, which is also known as shimmy, occurs
naturally at certain speeds, and is similar to speed wob-
ble that occurs in other wheeled vehicles. The speed at
which caster flutter occurs is based on the weight borne
by the caster and the distance between the wheel axle
and steering axis. This distance is known as trailing dis-
tance, and increasing this distance can eliminate flutter
at moderate speeds. Generally, flutter occurs at high
speeds.
Fixed/Rigid supporting wheel (caster) – rigid casters
are casters that remain in one position. They tend to
restrict vehicle motion so that the vehicle travels along
a straight line. For improved results, it is common to
use a combination of swivel and rigid casters to achieve
the most favorable mix of stability and maneuverability.

47



Symbol Image Description
Mecanum wheel – the wheel consists of two rims and
multiple free-running rollers, which are mounted at a 45
degree angle. The wheels move independently of each
other, which means that the vehicle can move not only
forwards and sideways, but also diagonally and in a cir-
cle. The entire wheel is driven by an electric motor.
Omni wheel (poly wheel) – wheels with small discs
(called rollers) around the circumference which are per-
pendicular to the turning direction. The effect is that
the wheel can be driven with full force, but will also
slide laterally with great ease. These wheels are often
applied in holonomic drive systems.
Differential wheel unit – here are two main wheels, each
of which is attached to its own motor.  High precision
servo control. Precise angle control (absolute position
detection). Low center of gravity. Strong ground adapt-
ability.

Table 7.1: Review of available types of the wheels

The following table 7.2 describes possible constructions of mobile platforms with
our own analysis of their benefits and drawbacks.

Wheels’
configu-
ration

Application
example DoF Application description

2

Platform with two rotatable supporting
wheels and two fixed supporting wheels. In
case of powered industrial cart application
fixed supporting could be equipped with the
drives. This configuration is suitable for
driving in a straight line with occasional
turns (warehouse, shop, workshop).
Benefit: This configuration turns easily and
tracks very well when towed. Most popular
configuration for casters on carts and trucks.
Drawback: The cart cannot freely move in
any direction. To make a 90° turn, the cart
must be pulled around on a pivot of the rigid
casters.

48



Wheels’
configu-
ration

Application
example DoF Application description

3

Platform with four rotatable supporting
wheels. In case of powered industrial cart ap-
plication all wheels should be equipped with
fraction and steering drives. This configura-
tion is suitable for fast and short operations
with a constant change of course/direction
of motion, work with goods near the shelves
(retail areas, shopping malls).
Benefit: The cart can be moved in any di-
rection without the need for turning around.
Drawback: The cart can be hard to con-
trol when moving in a straight line. Easy fix:
Equip the casters with swivel locks.

2

Platform with one rotatable supporting
wheel and two fixed supporting wheels. In
case of powered industrial cart application
there are two possibilities exist. One op-
tion is to add fraction and steering drives to
rotatable supporting wheel. Alternative op-
tion is extending of the functionality of fixed
supporting wheels in a way of differential
drive. This configuration is suitable for driv-
ing in a straight line with occasional turns
(warehouse, shop, workshop, assembly line).
Straight forward motion. Turning about rear
axle. Preferred direction of motion is for-
ward.
Benefit: This is the lowest cost configura-
tion for carts with very good maneuverabil-
ity.
Drawback: It cannot carry heavy loads, be-
cause only three casters are in contact with
the floor at one time and it cannot be pushed
sideways. It is inconvenient to move the cart
in a strait line with higher velocity because
of the castor wheel shimmy vibration.
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Wheels’
configu-
ration

Application
example DoF Application description

2

Platform with four rotatable supporting
wheel and two fixed supporting wheels. In
case of powered industrial cart application
fixed supporting wheels are equipped with
the drives. This configuration is suitable for
transportation of heavy loads in a straight
line with rare changes of direction (airport,
station buildings, postal terminals).
Benefit: Similar to the 4-wheel diamond
caster patterns but can carry heavier loads
and are better suited for very long carts.
This caster pattern allows the cart to turn
in its own length and the cart style can ei-
ther by tilt type or non-tilt for even greater
load capacity.
Drawback: The cart cannot freely move in
any direction. To make a 90° turn, the cart
must be pulled around on a pivot of the rigid
casters.

1

Platform with four fixed supporting wheels.
In case of powered industrial cart application
fixed supporting wheels could be connected
to the drive. This configuration is suitable
for direct ”runs” in a large area (shop, as-
sembly line).
Benefit: This is the lowest cost configura-
tion for carts and trucks. It can also pivot
on the center wheels to turn or do complete
360° rotations.
Drawback: It cannot carry heavy loads, be-
cause only three casters are in contact with
the floor at one time (tilt type cart) and it
cannot be pushed sideways.
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Wheels’
configu-
ration

Application
example DoF Application description

3

Platform with four mecanum wheels. Each
wheel is connected to a separate motor with
independent control. This configuration is
suitable for maneuvers in a limited space.
Motion in every direction on a surface.
Benefit: The cart could freely and instantly
move in any direction and turn in its own
length.
Drawback: Construction is complex in
maintenance and expensive.

3

Omni-directional robotic platforms have vast
advantages over a conventional design in
terms of mobility in congested environments.
They are capable of easily performing tasks
in environments congested with static and
dynamic obstacles and narrow aisles. These
environments are commonly found in factory
workshops offices, warehouses, hospitals and
elderly care facilities. Motion in every direc-
tion on a surface. Install on the heavy-duty
Omni moving platform to make the platform
rotate to Omni directions. And it is mainly
used in industry, workshops, AGV, and so
on. It can even be used on stage show equip-
ment.
Benefit: The cart could freely and instantly
move in any direction and turn in its own
length.
Drawback: Construction is complex in
maintenance and expensive.
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Wheels’
configu-
ration

Application
example DoF Application description

3

Omnidirectional driving system can effort-
lessly move through very narrow aisles. With
four driving units, the platform is based on
an omnidirectional driving concept that al-
lows unrestricted freedom of movement. This
enables standardized forward and backwards
movements, as well as parallel, diagonal, and
rotary movements around its own axis. Mo-
tion in every direction on a surface.
Benefit: The cart could freely move in any
direction and turn in its own length. How-
ever, the cart needs an extra time to make
90° turn, because the change of wheel unit
orientation cannot be done immediately.
Drawback: Construction is complex in
maintenance and expensive, because each
wheel is a separate drive unit which is equipt
with two servomotors.

Table 7.2: Review of available wheel configurations

The configuration selected for the experimental platform corresponds to a plat-
form with four tilt wheels and two fixed supporting wheels. This construction is
capable of handling heavy loads and allows the cart to turn within its own length.
The fixed supporting wheels are suitable for the implementation of electrical drives,
as they are more cost-effective than in the case of implementing active steering for
the tilt wheels. This construction is more complex, less robust and more expensive.
Of course, the proposed construction has only two degrees of freedom, however, it
is believed to be a robust and cost-effective solution.
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8 Test platform development

8.1 Main requirements
This section describes the main requirements for a mobile platform that was created
for testing and verification of operator’s comfort. This developed model consists of
aluminum profile, the basis of the platform is set on the four cluster wheels. In the
center of the platform there are two leading wheels that function according to the
principle of a differentiated drive.

The vehicle has been constructed to satisfy the following requirements:

• to be easy-assembled, cheap, rapid prototyping oriented

• to allow measurement of human-vehicle interaction characteristics

• to hold the maximum load mass in the range of 500 kg

• to attain the speed of a walking individual in a range of 5 km/h

8.2 Hardware design
The developed platform has the characteristics shown in the table 8.1.

N Parameter Value
1 Length 1.255 [m]
2 Width 0.8 [m]
3 Height 1.275 [m]
4 Mass 53.535 [kg]
5 Max. Load 500 [kg]
4 Max. Speed 5 [km/h]

Table 8.1: Cart parameters

System actuators are presented by two 350W motors MY1016Z connected to the
wheels via chain belts. The drive is shown in the figure 8.3.

In the back of the cart there is a handle for the operator. The handle is con-
nected to the body of the cart through the tensiometers which are located on the
right and left side of the cart. The two tensiometers were selected as an optimal
solution because more tensiometers may not guarantee considerable enhancement
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Figure 8.1: Test platform [54]

N Parameter Value
1 Power 350 [W]
2 Voltage 24 [V]
3 Current 18 [A]
4 Rotor Resistance 1.3 [Ohm]
5 Rotor Inductance 0.001 [H]
6 kV 500 [kg]
7 Max. Speed 5 [km/h]

Table 8.2: Motor parameters

N Parameter Value
1 Excitation 10 [Vdc]
2 Load ±100 [KgF]
3 In Resist 378.3 [Ohm]
4 Out Resist 351.9 [Ohm]
5 Sensitivity 2.9994 [mV/V]

Table 8.3: Tensiometer parameters

in the learning process to an extent to which the costs of construction and design
may rise to. The accelerometer is located on the platform’s body in a significant
distance from drives and motor driver in order to avoid possible disturbances that
might be caused by the effect of the electromagnetic field. For detailed information
please see the visual 8.2.

The leading wheels are connected to the drives by a chain belt. The drives are
accommodated with encoders. In the chain of anchors of each drive there is a current
sensor.

The motors were selected based on reliability, price and low complexity criteria
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Figure 8.2: Tensiometer location

and are equipped with zm = 9 teeth pitch 12.7 roller. The motors have to satisfy
the dynamic parameters of the cart (mass and damping, see section 8.7). The
desired linear speed of the powered cart vd = 5[km/h] = 1.389[m/s]. Powered wheel
diameter Dw = 200[mm] = 0.2[m]. Desired wheel rotational speed [rpm]:

nw =
60�vd
π�Dw

= (60 · 1.389)/(3.14 · 0.2) = 132.696 (8.1)

Gear ratio:

Gr =
nm

nw

= 353/132.696 = 2.66 (8.2)

Teeth number of the wheel gear:

zw = Gr · zm = 2.66 · 9 ≈ 24 (8.3)
The final overview of the developed drive system is shown in the figure 8.3.

Figure 8.3: Drive system overview

Figure 8.4 demonstrate the layout of the drive system for a single wheel. The
cart has two powered wheels. Each wheel is connected to the motor by means of
spur and sprockets gears.
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Figure 8.4: Single wheel drive system layout

N Gears Gear ratio
1 Z1:Z2 9.78:1
2 Z3:Z4 1:2.66

Table 8.4: Drive gearing parameters

Motor control is carried out with the help of a driver. The driver is controlled
by a controller of a lower level. The controller of a lower level collects and partly
processes the signals from peripheral areas (encoders, current sensors, tensiometers).
The lower level controller is also connected to the extra controller that is responsible
for collecting and processing the data from the inertia motion unit (IMU) that
typically includes a magnetometer, an accelerometer and a gyroscope.

Detailed description of the technical characteristics could be found in the tech-
nical specifications [55], [56], [57], [58].

The second revision of the hardware consisted of HX711. Tensiometers are pro-
cessed by a pair of 24bit analog-to-digital converters HX711.

Inertia measurement unit is presented by HMC5983 and MPU6050 modules.
The module HMC5983 is a temperature compensated three-axis integrated circuit
magnetometer and MPU6050 is combining a MEMS 3-axis gyroscope and a 3-axis
accelerometer. As for the lower-level controller, prototyping boards from the AR-
DUINO ecosystem were used.

8.3 Arduino ecosystem
Arduino board provides a set of significant benefits. Firstly, it has the minimum
required amount of peripheral components such as frequency oscillator, capacitors,
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resistors, transistors, a DC-DC converter, the USB-UART ttl converter and the USB
port. The board should be selected based on system requirements. We define these
requirements based on the amount, type and interface of sensors and actuators that
we would like to connect to the control system. The equipment we used for the
interfaces is presented in the Table 8.5.

The Arduino Mega 2560 shown in Figure 8.5 is a microcontroller board based
on the ATmega2560 (8-bit AVR Microcontroller). It has 54 digital input/output
pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hard-
ware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an
ICSP header, and a reset button. It contains the compulsory components needed to
support the microcontroller. It is possible to connect it to a computer with a USB
cable or power it with a AC-to-DC adapter or battery. The Mega 2560 board is com-
patible with most shields designed for the Uno and the former boards Duemilanove
or Diecimila.

The high-performance, low-power Microchip 8-bit AVR® RISC-based microcon-
troller combines 256 KB ISP flash memory, 8 KB SRAM, 4 KB EEPROM, 86
general purpose I/O lines, 32 general purpose working registers, real-time counter,
six flexible timer/counters with compare modes, PWM, four USARTs, byte-oriented
Two-Wire serial interface, 16-channel 10-bit A/D converter, and a JTAG interface
for on-chip debugging. The device achieves a throughput of 16 MIPS at 16 MHz and
operates between 4.5-5.5 volts. By executing powerful instructions in a single clock
cycle, the device achieves a throughput approaching one MIPS per MHz, balancing
power consumption and processing speed.

Another microcontroller board used in the project was the Arduino Pro Mini.
This board is shown in the figure 8.6 based on the ATmega328P. It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, an
on-board resonator, a reset button, and holes for mounting pin headers. A six pin
header can be connected to an FTDI cable breakout board to provide USB power
and UART communication to the board.

The board has a number of facilities for communicating with a computer, another
Arduino, or other microcontrollers. The ATmega328P provides UART TTL serial
communication, which is available on digital pins 0 (RX) and 1 (TX). The Arduino
software includes a serial monitor which allows simple textual data to be sent to
and from the Arduino board via a USB connection.

Third important component of the platform control system was Raspberry Pi
4 Model B featured with high-performance 64-bit quad-core processor, dual-display
support at resolutions up to 4K via a pair of micro HDMI ports, up to 8GB of
RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet, USB
3.0, and PoE capability (via a separate PoE HAT add-on).

This compact single-board computer is suitable for space-constrained environ-
ments in mobile robots. Its small form factor allows for easy integration into robotic
systems without taking up much space. Raspberry PI provides sufficient computing
power for various robotic tasks such as image processing, sensor data fusion, and
control algorithms. It can handle real-time processing demands of mobile robots
effectively.
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In our application shown in connection block diagram 8.8, interaction forces be-
tween human operator and industrial cart are measured by two load cells. Analog
values of the forces are converted to the digital format using HX711 24-bit ADCs
and sent to the low-level controller (Arduino Mega board) over SPI. Using equations
8.18 and 8.19, the translation force and rotational torque are calculated based on
the forces measured from the right and left side of the handle bar. These calcu-
lated values are supplied to the corresponding input of transnational and rotational
impedance controller. The setpoints for linear and angular velocities of the cart were
obtained at the outputs of impedance controllers. Based on the linear and angular
velocities, the values for angular velocities of the left and right wheels were calcu-
lated using equations 8.16 and 8.17. At the final stage, the setpoints were processed
by the PID controllers of the corresponding wheels. Motors are controlled by the
drive unit (MOD-035) using PWM and direction control. Information about the
actual position and the current velocity of the wheels is received from the magnetic
rotary encoders (AS5040). The parameters of impedance controllers 8.22 and 8.23
could be changed remotely over the serial port of Arduino Mega board.

Additionally, we installed one more micro-controller (Arduino Pro Mini) that was
connected to IMU. Using the serial port the IMU controller passed the data through
the low-level controller to the high-level controller. Actual information about the
interaction process was recorded to an SD card with the time stamp.

Device Qty. Description Interface
HX711 2 ADC SPI
HMC5883L 1 Magnetometer I2C
MPU-6050 1 Accelerometer/Gyroscope I2C

AS5040 2 Incremental encoder Digital inputs (SPI op-
tional)

MOD-035 1 Motor driver Digital Inputs/Outputs
ACS712 2 Current measurement sensor Analog Inputs

Table 8.5: List of sensors with interfaces
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Figure 8.6: Arduino Mini Pro Board

Figure 8.7: Raspberry Pi Board
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Figure 8.8: Connection Block Diagram
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8.4 Software development
In order to extend the number of ready-made modules and to decrease the time
spent on programming and manuals, it was decided to merge libraries from AR-
DUINO open-source community with Matlab Simulink. To use the original Wiring
language of ARDUINO with RPi, the Wiring Pi library was developed. Wiring is
an open-source electronics prototyping platform composed of a programming lan-
guage, an integrated development environment (IDE), and a single-board micro-
controller. It was developed starting in 2003 by Hernando Barragán.

The Wiring IDE is a cross-platform application written in Java which is de-
rived from the IDE made for the Processing programming language. It is designed
to introduce programming and sketching with electronics to artists and designers.
It includes a code editor with features such as syntax highlighting, brace match-
ing, and automatic indentation capable of compiling and uploading programs to
the board with a single click. The Wiring IDE includes a C/C++ library called
”Wiring”, which makes common input/output operations much easier. Wiring pro-
grams are written in C++. A minimal program requires only two functions:

setup(): a function run once at the start of a program which can be used to
define initial environment settings.

loop(): a function called repeatedly until the board is powered off or reset.
Project experts, intermediate developers, and beginners from around the world

share ideas, knowledge and their collective experience as a project community.
Wiring makes it easy to create software for controlling devices attached to the
electronics board to create various interactive devices. The concept of software de-
velopment implies writing a few lines of code, connecting a few electronic components
to the Wiring hardware. This process is called sketching with hardware.

8.5 Cart kinematics
In the framework of this study, we conducted experiments on a range of motors
utilizing various kinematic configurations. The results revealed that the controller
settings varied depending on the type of the motor employed (e.g. brushless DC
motors, DC motors with gearbox). To facilitate the experimental setup, special-
ized software was employed for each driver, incorporating automatic identification
capabilities. Additionally, we utilized the System Identification Toolbox for data
analysis. A visual representation of the experimental setup is available upon re-
quest. The vehicle described in this thesis has two driving wheels and four passive
casters. The IPAC model used in this paper is shown in the figure 8.9. To simplify
the kinematics model of the vehicle, it is assumed that casters are not active.

Parameters shown in the figure 8.9 have the following description: Ws – distance
between two sensors; Ww – distance between two wheels; Lsv – distance between
sensors installation line and wheels installation line; θwL, θwR – wheels rotation
angles; – direction angle; x0 , y0 – position of the vehicle in the world coordinates;
C0 – the middle point between the two powered wheels. Mathematical description
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Figure 8.9: Cart kinematics

of the control object is presented below.
Relation for linear and angular velocity:

v = wR (8.4)

where R is radius (distance between the point for which linear speed is calculated
and rotation axis).

The relation for linear and angular velocity is described by the following equation
8.5:

v∑ cart =
Dw

4
�(wwheel_left + wwheel_right) (8.5)

Velocity at C0(x0, y0) point is described by the equations 8.6 and 8.7 (Conversion
from polar to Cartesian coordinate system).

ẋ0 = v∑ cart� cos(ϕ) (8.6)

ẏ0 = v∑ cart� sin(ϕ) (8.7)
Dependency of powered cart angular velocity from angular velocity of the wheel:

Wheel linear velocity:
v = wcartL = wwheelR (8.8)

where L is the distance depicted in figure 8.9.
Cart angular velocity generated by one wheel:

wcart = wwheel�
R

L
(8.9)
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Figure 8.10: Angular speed conversion

Cart angular velocity at the point C0:

w∑
cart =

Dw

2Ww

· (wwheel_left − wwheel_right) (8.10)

Matrix form of the equations 8.5 and 8.9 is shown in 8.10. Control vector is
defined as Ẋ = [vcart_sum, wcart_sum]

T , rotational speeds vector is defined as θ̇ =
[wwheel_left, wwheel_right]

T .

Ẋ =

[
v∑ cart

w∑
cart

]
=

[
Dw

4
Dw

4
Dw

2Ww
− Dw

2Ww

]
×
[
wwheel_left

wwheel_right

]
= Jaco · θ̇ (8.11)

By differentiating the equation 8.11 we obtain an equation for the total linear
and angular acceleration:

Ẍ = Jaco · θ̈ + Jaco · θ̇ (8.12)
where Jaco is a Jacobian matrix which describes cart kinematics sized R2x2.
The second term on the right side has a insignificant impact on the acceleration

value compared to the first term and could be neglected.

Ẍ = Jaco · θ̈ (8.13)
In order to obtain equation for calculating the wheel angular accelerations, we

need to find the pseudo-inverse matrix J−1∗
aco .

θ̈ = J−1∗
aco · Ẍ (8.14)[

εwheel_left

εwheel_right

]
=

Dw

4
·
[
1 Ww

2

1 −Ww

2

] [
acart_sum

εcart_sum

]
(8.15)

Based on the kinematic model, we can determine the position and direction of
movement of the industrial cart from the rotation speed of the left and right wheels.
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The angular velocity of the wheels could be calculated based on the linear and
angular velocity of the cart, according to the equations 8.16 and 8.17.

wwheel_left =
2vcart +Wwwcart

Dw

(8.16)

wwheel_right =
2vcart −Wwwcart

Dw

(8.17)

8.6 Human operator interface
In case of controlling remote robots, the use of haptic technology can create a sense
of telepresence for the human operator and allow the performance of physical tasks
from a distance. This type of human-robot interactions presents complex and in-
terdisciplinary challenges, such as the need for a robot to be physically capable of
performing a task and safe for close proximity with humans while also being practi-
cal in size, and the need for both the human and robot to be able to communicate,
plan, and make decisions based on uncertain information. The current example of
this is the problem of a human and a robot working together to move objects up
to 500 kg, which has been partially solved but still requires further advancement in
the various aspects of human-robot interaction.

According to Okamura (2018) [59], haptic devices have the potential to facilitate
touch-based communication between humans and robots, allowing people to com-
municate in a noticeable but private way while leaving other senses free for other
purposes. Haptic communication can be achieved through direct physical interac-
tion between humans and robots, or through the use of specialized haptic devices
that allow for communication without requiring physical contact. In this latter case,
control interfaces and interactions based on touchless gesture tracking devices allow
users to interact with computers or other devices using hand gestures or other types
of body movements, rather than through physical touch.

These devices typically use sensors such as cameras or depth sensors to track
the user’s movements and interpret them as input commands. They can be used to
control a wide variety of applications, such as controlling the cursor on a computer
screen, navigating through menus or other user interfaces, and interacting with vir-
tual or augmented reality environments. Some touchless gesture tracking devices
are designed to be worn on the body, while others are stationary and designed to
be used in a fixed location. They can be used in a variety of settings, including
in homes, offices, classrooms, and public spaces. Touchless gesture tracking devices
have the potential to provide a more natural and intuitive way for users to interact
with technology, and can be particularly useful for people who may have difficulty
using traditional input methods such as a keyboard or mouse. An example of such
studies might be the research work carried by Giordano et al. in 2018 [60]. In order
for haptic devices to become widely used for this purpose, they must be easy to
use, not disruptive or obtrusive, able to be used comfortably, and socially accept-
able. Okamura’s criteria for successful application of haptic devices go in line with
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the criteria used in this thesis, namely, price (affordability), reliability, operator’s
comfort and relative incomplexity of the decision.

In case of the current test vehicle, the cart is equipped with two tensiometers
(see chapter 8.2). They are shown in the figure 8.11. They connect the handle
to the cart body and are are used to measure interaction forces and torques for
transnational and rotational motions correspondingly. They can measure the force
along one axis (push and pull motions), but it allows the operator to control all
degrees of freedom (DOFs) because the cart has only two DOF (one rotational and
one translational degree). The operator plans a handling task based on his own
desires and expectations as well as information from his sense organs (vestibular
and vision systems), and provides the information about the motion to the cart by
acting on the handle. Forces detected on the left and right sensors are resolved into
translational force and rotational torque in the cart coordinates.

Figure 8.11: Handlebar for PHRI

Transnational force for the motion in linear direction could be written as a simple
sum of the measured force values as described by the equation 8.18.

F∑
h = Fhr + Fhl (8.18)

Equation 8.19 presents a rotational torque for the motion around the axis that
goes vertically through the central point C0. See figure 8.9 for more details.

T∑
h = (Fhr − Fhl) ·W/2 (8.19)

where W is the width of the cart. According to the mechanical configuration,
the cart is equipped with tensiometers which measure two forces in the direction x,
perpendicular to the handle. The distance between two sensors equals to the width
of the cart. The values for cart width could be found in table 8.1. As the result,
the input for the controller of rotational motion is approximately two times higher,
however, it is compensated by the dynamics of impedance controller in order to
obtain the desired response.
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8.7 Impedance control
Impedance control (or admittance control) was developed by N. Hogan [12]. It
uses two basic laws of physics such as Newton’s second law (see eq. 8.20) and
D’Alembert’s law (see eq. 8.21). It can be described as a second order dynamic
system. Figure 8.12 represents the impedance control scheme using a mass-damper-
spring system. In this relationship, impedance is the passive reaction that a robot
performs when it is disturbed by external forces. In contrast, admittance control
is the active reaction of the robot to such external forces. The ”spring coefficient”
or stiffness parameter K defines the force output for a tension or compression of
the spring produced by a force F, its value is taken as 0 in order to eliminate
fluctuations and abrupt and unexpected stops of the platform to ensure safety for
the operators; and the ”damping coefficient” D is the force output for a velocity
input of the displacement x, ”mass coefficient” describing the inertia of the system.
The rationale for choosing this controller for the purpose of this research is that
this approach allows to control not only separate variables like force or position, but
changes the dynamics of the system.∑

Fext = ma (8.20)

∑
F = 0 (8.21)

Figure 8.12: Impedance controller representation

Equation 8.22 describes the impedance controller output for translational mo-
tion.

Mẍ(t) +Dẋ(t) +Kx(t) = F (t) (8.22)
Equation 8.23 describes the impedance controller output for rotational motion.

Jα̈(t) +Dα̇(t) +Kα(t) = T (t) (8.23)

In current application the ẋ(t) and α̇(t) velocity outputs of the impedance controller
are in focus. The parameter K is used to denote stiffness. In the context of ideal
position control, an infinite value of stiffness is desired, whereas in force control, zero
stiffness is desired. However, as stated by Katsura and Ohnishi (2006) [61], the use
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of K is not recommended as it does not have a positive impact on the interaction
experience. Furthermore, the use of this parameter has been observed to result in
undesirable outcomes such as an abrupt stop of the platform. The force applied
to the handle bar is fed to the input of the impedance controller. If this force is
constant and K does not equal to 0 (if M>0 and D>0), it could cause the cart to
stop at some point x>0. This behavior is not desirable, therefore, the value of K
should equal to 0. Impedance control methods comparison is provided below. There
are several different methods of implementing impedance control for manipulators
or other mechanical systems. Some of the most commonly used methods include
the following:

1. Voltage-controlled impedance was introduced in 1964 by Moog [62]. Their
work has been continued in many fields, particularly by Herr et al. [63] in 2009. In
this method, the impedance of the system is controlled by modulating the voltage
applied to the actuators. It can be suggested that the method is fast and easy to
implement, but it is sensitive to changes in the load and the environment and may
not provide consistent performance.

2. Current-controlled impedance was proposed by Marshak [64]. This method
involves modulating the current supplied to the actuators to control the impedance
of the system. It is generally more robust than voltage-controlled impedance, but
it requires more complex hardware and may be slower to implement.

3. Hybrid impedance control was mentioned in the research paper by e.g. Sartori
[65] in 1968. This method combines passive impedance control with active control
to provide a more flexible and robust system. The passive compliance of the system
is used to provide a baseline impedance, while active control is used to adjust the
impedance in response to changes in the load or the environment. This method can
provide good performance, but it may be more complex to implement and require
more computational resources.

4. Inverse dynamics impedance control was described in Petrov and Yuchanov
in 1980 [66]. This method involves estimating the forces and torques acting on the
system and using these estimates to compute the desired impedance. It is a model-
based approach that can provide good performance, but it requires accurate models
and may be sensitive to model errors.

5. Computed torque impedance control referred to by [67]. This method involves
estimating the desired torque at each joint and using this estimate to compute the
desired impedance. It is a model-based control method that requires an accurate
model of the manipulator dynamics and kinematics. It is useful for controlling ma-
nipulators with high precision and stability, but it may be sensitive to model errors
and require more computational resources. Computed torque impedance control is
often used in conjunction with impedance control methods such as hybrid impedance
control or inverse dynamics impedance control to improve the performance of the
manipulator. It is commonly used in robotic applications such as assembly, inspec-
tion, and medical procedures.

For the case of this research, inverse dynamics impedance control was selected
because it is generally believed to provide a reliable performance and does not require
extensive computational resources.
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List of variables
Hardware design

nw Desired wheel rotational speed in revolutions per minute (rpm).
vd Desired linear velocity of the wheel.
Dw Diameter of the wheel.
Gr Gear ratio between motor and wheel.
nm Rotational speed of the motor.
zw Number of teeth on the wheel gear.
zm Number of teeth on the motor gear.

Cart kinematics

v Linear velocity.
w Angular velocity.
R Radius (distance between the point for which linear speed is calcu-

lated and rotation axis).
v∑

cart Total linear velocity of the cart.
Dw Diameter of the wheel.
ϕ Angular orientation.
x0, y0 Coordinates of point C0.
ẋ0, ẏ0 Derivatives of x0 and y0 with respect to time.
wcart Angular velocities of the cart.
wwheel Angular velocities of the wheel.
L Distance in the kinematic diagram.
w∑

cart Total angular velocity of the cart.
Dw,Ww Diameter and width of the powered wheel.
vcart_sum Total linear velocity of the cart.
wcart_sum Total angular velocity of the cart.
wwheel_left Angular velocities of the left wheel.
wwheel_right Angular velocities of the right wheel.
Ẋ Control vector.
θ̇ Rotational speeds vector.
Jaco Jacobian matrix for cart kinematics.
Ẍ Total linear and angular acceleration.
J−1∗
aco Pseudo-inverse matrix of Jaco.

θ̈ Angular accelerations of the wheels.
εwheel_left Angular accelerations of the left wheel.
εwheel_right Angular accelerations of the right wheel.
acart_sum Total linear acceleration of the cart.
εcart_sum Total angular acceleration of the cart.

Human operator interface
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F∑
h Total horizontal force.

Fhr Horizontal force applied to the right side.
Fhl Horizontal force applied to the left side.
T∑

h Total rotational torque for the motion around the axis that goes
vertically through the central point C0.

W Width of the system.
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9 Human operator study

In the dynamic realm of industrial automation, the design and control of mobile
platforms play an important role in achieving efficient and seamless material trans-
portation. The accurate representation of these systems through mathematical
models is necessary to analyze their behavior, predicting their performance, and
ultimately optimizing their operation. The development of a comprehensive math-
ematical model for an industrial cart can be found in the appendix B. There we
aim to provide a framework to understand cart’s dynamics, control strategies, and
system optimization.

In this chapter we design a mathematical model of a human operator who is
pushing a cart with two hands. This model involves several factors, including the
mechanics of the human body, the dynamics of pushing, and the human-cart inter-
action. We will use the following steps in order to implement the model:

• Identify the variables involved in the system. For example, we might consider
the position, velocity, and acceleration of the cart, as well as the angles, forces,
and torques applied by each hand.

• Define the coordinate system that describes the position and orientation of
the cart and the human. This could be a 2D system for the sake of simplicity.

• Create a model of a human body using rigid segments, such as the torso,
upper arms, lower arms, and hands. Each segment can be represented as
a mass with inertia and connected by joints that allow movement. We use
simplified assumptions, such as assuming the arms are straight or including
joint constraints to limit their range of motion.

• Determine the forces and torques applied by each hand to push the cart. This
could involve considering factors like the grip force, body weight distribution,
and the interaction between the human’s hands and the cart’s handles. The
frictional forces between the cart and the ground were considered.

• Apply Newton’s laws to derive the equations of motion for the cart and the
human segments. This involves considering the forces and torques acting on
each body segment and integrating them over time.

• Use numerical methods or simulation software to solve the equations of motion.
This allows to simulate the system’s behavior and observe how the human’s
actions affect the cart’s motion.
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The concept of emotional and physical feedback in human-robot interaction
(HRI) was developed and studied by researchers in the fields of robotics, psychol-
ogy, and human-computer interaction and are described below. These researchers
set an example of recognising the importance of emotional and physical feedback in
HRI and conducted research to understand how these types of feedback can affect a
person’s overall experience of interacting with a robot in various disciplines. These
are just a few research papers published to date by researchers who have worked on
the concept of emotional and physical feedback in human-robot interaction (HRI).
The use of haptic feedback in HRI was discussed in Chotiprayanakul et al., [86],
social and emotional feedback was covered in e.g. Breazeal [87], Greczek et al. [88],
and Dautenhahn [89], and ethical implications were covered in e.g. Bröhl et al. [90],
affective and multimodal feedback in HRI was described in e.g. Moubayed et al.
[91] and Boudoin et al. [92].

The two types of feedback - emotional and physical - are considered in the
current research work because they are believed to be two of the main factors that
influence the feedback of an individual. There are various methods that can be used
to evaluate emotional and physical feedback in response to interaction with a robot,
for example:

1. Self-report measures, which are often subjective measures that rely on in-
dividuals to report their own emotional and physical responses. The examples of
self-report measures include surveys, questionnaires, and interviews.

2. Behavioral measures involve observing and recording an individual’s behavior
during interaction with a robot. The examples of behavioral measures include facial
expression, body posture, and gestures.

3. Physiological measures involve collecting data on physiological responses to
interaction with a robot, such as heart rate, skin conductance, and blood pressure.

4. Neural measures involve collecting data on brain activity during interaction
with a robot, such as using electroencephalography (EEG) or functional magnetic
resonance imaging (fMRI). In the case of the current research, we consider physical
impact as an influence of various factors on our neural system. Emotional feedback
is referred to as how this influence is evaluated by an individual.

9.1 Research workflow development

“That’s one small step for man,
one giant leap for mankind”

Neil Armstrong

In order to find a reliable solution for human-robot interaction we should un-
derstand the nature of human motion, individual motivation and stimulus. This
chapter starts with the explanation of the human step nature.

Several studies have been conducted to understand the methods and techniques
behind human locomotion. In order to study and investigate human locomotion,
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researchers propose modeling human locomotion as an easy and simple way to get a
clear picture of how human locomotion is performed. Modeling in terms of masses,
links, and joints could demonstrate the characteristics of human motion. Moreover,
modeling could provide theories and techniques for locomotion. The general method
for modeling the human walking gait is the inverted pendulum. The body is sup-
ported by the leg and rotated around the ankle joint 9.2. This modeled system
is considered to be a passive system, whereby the dynamic motion depends upon
the gravitational force and the body’s momentum. In order to complete a one-step
cycle, the momentum has to be sufficient to provide forward motion. Moreover,
the velocity must not be too large, because the normal acceleration could become
greater than the gravitational acceleration that acts in the opposite direction [68].

Two of the most commonly presented theories that address the nature of human
gait popular in our time. The first theory proposed by Saunders et al. defines six
major determinants of gait [69]. It states that the six major determinants are pelvic
rotation, pelvic tilt, knee and hip flexion, knee and ankle interaction, and lateral
pelvic displacement. The serial observations of irregularities in these determinants
provide insight into the individual variation and a dynamic assessment of normal
and pathological step.

The second theory of human walking describes the locomotion by using an in-
verted pendulum model. It states that the stance leg behaves like an inverted pendu-
lum, allowing for economical gait. The advantage of a pendulum is that it conserves
mechanical energy and thus requires no mechanical work to produce motion along
an arc. Observations of mechanical energy exchange and leg-length change during
a single-limb support provide a strong indication of pendulum-like behavior. The
figure 9.1 depicts the process of human walking.

Figure 9.1: Process of the dynamic walking [70]

We compared the two abovementioned approaches and selected the model of
an inverted pendulum as it allowed to study the effect of the human gait on the
interaction process. This model is fairly simple to implement and is not demanding
in terms of the computation power. It also helps to consider a number of important
characteristics, such as the mass of the human body, its height, length of the legs,
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Figure 9.2: Model of an inverted pendulum with a fixed length [68]

the walking speed. The results of the assessment of both models are combined into
the table. Inverted pendulum model can cover variations of body parameters that
might have a significant impact of human-cart dynamics while pushing, pulling or
turning the cart. From the perspective of human walking, there are two important
parameters that affect the process of human gait significantly. One parameter is
mass of the human body, because a body with the increased mass generates higher
kinetic energy while walking. As a result, this energy effects human acceleration and
forces that acts on the handlebar of the cart. Another important parameter is the
length of the human legs, because it affects the length of possible maximum step as
well as the amplitude of the human center of gravity (COG) oscillation. The length
of the step together with the rate at which an individual changes the legs affects the
overall speed of walking.

A mathematical model of inverted pendulum consists of equations that describe
the dynamics of the system. The ground reaction force of walking gait model in
terms of an inverted pendulum is determined by:

mg cos θ −ml cos θ̈2 = f (9.1)

where m is mass of the human body, g - gravity constant, θ - reaction force angle, l
- length of the leg, f - reaction force. Sometimes, the leg length changes during the
walking cycle. The dynamic equation of model system is different from the previous
model, as shown below:

mg cos θ +ml̈ −ml cos θ̈2 = f (9.2)

The walking human model was implemented using the Python programming
language. It is possible to adjust the mass of the human body, its height, length of
the legs, the walking speed. Visualization of walking process with different model
parameters is provided in the figure 9.3.

Another important factor that plays a great role in human - cart interaction is
a mechanical impedance of the human arm. It describes the motion ability of the
upper limb. This interaction imposes forces on the hand and can also destabilize
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Figure 9.3: Examples of human walking with different model parameters

motion. Alternatively, humans have excellent capabilities to manipulate objects.
This means that the central nervous system (CNS) is able to adapt to various task
dynamics. For instance, one may experience difficulties opening a door for the first
time due to an unknown friction. However, after many trials the appropriate force
to be exerted is learned, and one opens the same door without any difficulty and
even without thinking about it. This situation may be regarded as the impedance
control [12] which can been described as an effective strategy of the nervous system
to deal with the kinematic variability due to neuromuscular noise and environmental
perturbations.

Biologically, muscle comes with two sections which are thick (myosin) filaments
and thin (actin). This part is shown in figure 9.4. Myosin filaments slide against
actin which tend to shorten the activated muscle. Neural activation signals are
received when the muscle is activated. That signal consists of several spikes. The
amount of force it produces depends on the frequency and magnitude of spikes.

Figure 9.4: Myosin and actin filaments in a muscle [71]

In addition, muscle tension is counted on both muscle length and the velocity
of its extension. Experiment was made by Burdet [72] to measure stiffness (K) and
damping (B) for a cat’s muscle. As a result, when the length is equal to half of
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the initial length, the muscle cannot generate the force and the same is right for
the velocity. However, the force increases as the muscle length or the velocity of its
extension increases. Hence, the impedance of a single muscle changes with the force
it generates.

From the perspective of biomechanics systems, Burde’s [72] study introduced two
types of muscle models which are the Maxwell model and the Voight model. As it
can be seen from the figure 9.5, the Maxwell model consists of a spring in series with
a damper while the Voight model has the spring in parallel with a damper. From the
prospective of the input, it shows that the force step input test and the displacement
step input test from the Voight model are more realistic if compared to the Maxwell
model [73]. Even though the Voight model is more realistic, the limitation of both
models is that none of them is capable of modeling the active contractile property
of a muscle. In the following years, a number of researchers came up with a new
modeling based on Voight model in order to predict the mechanical impedance of a
human’s upper limb. It can help us to rationalise and use the model of simulating
the dynamics of upper limbs of the human operator.

Figure 9.5: Maxwell (A) and Voight (B) muscle models

Mechanical impedance modeling is an important stage in order to determine
the quantitative assessment of the system. Each element represents the function
of the real human arm. In this section, various modalities are elaborated. It can
be represented in two ways which are the structure model (see figure 9.6) and the
mathematical model.

Previous studies used the mass-spring-damping (MSD) systems to a great extent
in order to construct a mechanical impedance of human arm [73]-[74]. The mass-
spring-damper model is shown in the figure 9.6. This is the second order dynamic
system where me(t), be(t), and ke(t) are the impedance parameters which denote the
mass, damping factor, and stiffness of the arm, respectively; and fe(t) represents the
force exerted to the arm. These researchers performed a number of experiments on
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Figure 9.6: Mechanical impedance of the human arm. Structural model [73]. Arm
illustration is adopted from [71]

mechanical impedance of a human arm. Several independent mathematical models
are proposed for the representation of the human arm movement. Recently, the
MSD model has been improved to investigate mechanical impedance during the
movement of the arm [73]. The muscle activation was included as a dependent
parameter [75]. However, this model was developed assuming that the system had
simple joints and did not consider complex muscle mechanics and geometry because
dealing with a muscle is not easy as its shape can be changing and irregular. As
reported by Speich et al. [76] and Rahman et al. [77], a model with five parameters
with additional spring and damper to better approximate the dynamics systems
was developed. Then, Wang et al. [78] studied the mechanical impedance during
maintained posture and reaching movements in order to analyze human impedance
changes depending on the situation. Lagrangian approach is applied to develop the
mathematical model of human arm during movement. Tanaka et al.[79] proposed
an active-steering control method that uses human hand impedance properties.

9.2 Human Factors, Hazards and Limitations
The industrial cart manipulation is mainly performed by pulling backward and push-
ing forward with two hands. Pushing is preferable to pulling for several reasons.
Firstly, operator’s feet are often run over by the cart when pulling. It becomes
even more dangerous in case of powered vehicles. If a person pulls while facing in
the direction of travel, the arm is stretched behind the body, placing the shoul-
der and the back in a mechanically awkward position, increasing the risk of injury.
Alternatively, pulling while walking backwards may be called a recipe for an acci-
dent, because the person is unable to view the path of travel. Possible poses of the
human-operator during manipulation with industrial cart are shown in the figure
9.7.

The research of Lee [80] demonstrates that people can usually exert higher push
forces than pull forces. In some situations, pulling may be the only viable means of
movement, but such situations should be avoided wherever possible, and minimized
when pulling is necessary. Because of the complex nature of body motion during
pushing and pulling, no numerical standard has yet been developed that can be
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Figure 9.7: A few possible poses of the human operator during manipulation with
the cart

directly applied in the industry. The amount of force that a worker can develop in
case of transnational and rotational motion depends on many factors. A sample list
of factors is listed as follows:

• body weight and strength

• height of force application

• direction of force application

• distance of force application from the body

• different positions

• posture (bending forward or leaning backward)

• friction coefficient (amount of friction or grip between floors and shoes)

• duration and distance of push or pull

One of the earliest studies on the factors that influence manual handling capac-
ity was conducted by Banerjee and Chattopadhyay [81] in 1959. In their study,
the researchers found that the maximum force that a worker could exert while
pushing or pulling a load was influenced by the load’s weight, the angle at which
it was applied, and the worker’s body position. Other studies have also identified
factors such as the worker’s gender, age, and anthropometric dimensions as influ-
encing manual handling capacity. More recent research works focused on the role
of ergonomics and the design of the task and tools in improving manual handling
capacity and reducing the risk of musculoskeletal disorders. They identified factors
such as the height of the load, the grip size of the tools, and the presence of handles
or grips as important considerations in manual handling tasks. Some examples of
research on the role of ergonomics and the design of the task and tools in improving
manual handling capacity and reducing the risk of musculoskeletal disorders include
the following works, as stated in [82]: Lee et al. (1991) [83] investigated the effects
of handle height on lower-back loading in cart pushing and pulling. Haisman el al.
(1972) [84] examined the effects of different types of handles and grips on manual
handling performance and the risk of injury for seven male volunteers. Jäger et al.
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(1984) [85] analyzed the effects of different situations causing high postural stress
during the transport of dustbins.

These studies also provided recommendations for the design of manual handling
tasks and tools to improve manual handling capacity and reduce the risk of mus-
culoskeletal disorders. The table 9.1 contains the upper force limits for a variety of
pushing and pulling tasks. They indicate the amount of force that a worker should
not overcome. It is important to note here that the forces in the tables are not the
same as the weight of objects being pushed and pulled. This difference means that
we cannot use these upper force limits as recommendations for limits for wights that
can be pushed or pulled in the workplace.

The values in Table 9.1 show the upper limits of forces for horizontal pushing
and pulling. These limits should not be exceeded in work situations. In fact, it is
better and safer if pushing and pulling tasks require lower forces, particularly, if the
task requires:

• pushing or pulling an object when the hands must be above the shoulder or
below the waist level

• exerting a force for longer than 5 seconds

• exerting a force at an angle not directly in front of the body, e.g., not ”straight
on”

Higher forces (up to 675N or about 165 lbf or 75 Kgf) can be developed where
a worker can support his body (or feet) against a firm structure.
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Condition Force
limit(Newtons,
lbf, kgf)**

Examples of Activities

A. Standing
1.Whole body
involved

225 N (50 lbf or
23 kgf)

Truck and cart handling. Moving
equipment on wheels or casters.

2.Primary arm
and shoulder
muscles, arms
fully extended

110 N (24 lbf or
11 kgf)

Leaning over an obstacle to move
an object. Pushing an object at
or above the shoulder height.

B. Kneeling 188 N (42 lbf or
21 kgf)

Removing or replacing a compo-
nent from equipment while per-
forming maintenance work. Han-
dling in confined work areas such
as tunnels or large conduits.

C. Seated 130 N (29 lbf or
13 kgf)

Operating a vertical lever, such as
a floor shift on heavy equipment.
Moving trays or a product on and
off conveyors.

Table 9.1: Recommended Upper Force Limits for Horizontal Pushing and Pulling
[6]

** Units of force are: Newton (N), kilogram-force (kgf), pound-force (lbf); 10N
is about the same as 1 kgf or 2 lbf. The values in each unit system - Newtons,
kilogram force and pound force, respectively - are provided in the table because they
are used in the literature and while designing instruments, depending on the country
of origin.

Individual characteristics of the operator significantly affect emerging accidents
and hazards. The developed system has to consider individual characteristics of a
human operator and prevent the operator from exceeding the limits set by industrial
and occupational safety guidelines.

9.3 Emotional feedback
The goal of this chapter is to describe the test methods to estimate operator’s
individual perception in response to the motion of the powered vehicle.

In the current study emotional feedback of the human operator is considered
important and we had to find the method to evaluate subjective human emotions.
One way to estimate the operator’s feedback is to use the adjective measures in the
rating scale method [93].

This method is used to measure how people feel about various stimuli such as
sounds, colors or smells. Another application area of this method is ergonomics. It
allows to evaluate emotions about the task environment, machine and robot motion.
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The method is known as an evaluation tool based on several step-wise measures
in which adjective pairs are located at the opposite poles. In the experiment, the
person evaluates their emotions according to the adjective pairs. The goal of this
measure is to find suitable impedance controller parameters that allow to perform
comfort interaction based on subjective feeling.

Therefore, we selected six adjective pairs and a rating scale in order to perform
human factor analysis. The rating scale is shown in the figure 9.8. The selected
adjective pairs have the following statements:

1. ”comfortable − uncomfortable”: This adjective pair should express the
human operator feelings in terms of interaction comfort. It describes how
precisely the dynamics of the powered cart follows the desired motion of the
human operator.

2. ”reliable − unreliable”: The adjective pair characterizes trust of the human
operator in relation to the powered cart. It means that action of the powered
cart fits to the expectations of the human operator.

3. ”controllable − uncontrollable”: We work with the impedance controller
for two degrees of freedom. A change or adaptation of the impedance con-
troller parameters affects the ability of the human to control the system. This
adjective pair should give the feedback about the controller settings.

4. ”pleasant − unpleasant”: This adjective pair presents the motivation (will-
ingness) of the human operator to use the powered cart.

5. ”satisfactory − unsatisfactory”: Human estimation of the interaction task
results are characterized by this adjective pair.

6. ”light − heavy”: This adjective pair characterizes physical abilities of the
human operator in the load handling.

Figure 9.8: Rating scale for the emotional feedback of the human

The evaluation procedure was executed as follows. The operators expressed their
feelings by choosing one of seven options in between the opposite poles in each ad-
jective pair according to their impressions about the controller settings. Given the
example of the procedure outcome, we could see the test sheet with the following
answers, e.g.:”The controller’s setting is not comfortable, a little reliable, not con-
trollable, a little pleasant, very light”. ”Positive” feedback is defined as the mean

81



value located in the left position and ”Negative” feedback is defined as the mean
value located in the right part of the scale. In this subchapter we formed and anal-
ysed a list of parameters which are used to obtain emotional feedback from the
human operator.

9.4 Physical feedback

“The thesis target is to reach the
state where the operator
manipulates the heavy loaded cart
with minimal physical effort
(pleasant and comfortable
interaction). Iterative adjustment
of controller parameters with
continuous force measurement on
the operator-cart interface and
following recognition of the
human-operator intention is
expected.”

doc. Ing. Petr Tůma, CSc.

This subchapter is devoted to the measurement methods of biological features
and markers that help to define the health conditions of a person depending on
the interaction between the human operator and the industrial cart. There are
a few methods to choose from in this case. They are described below as follows.
The Borg scale is used to measure an individual’s level of physical exertion during
exercise, while the Likert Scale is used to measure attitudes, opinions, or behaviors.
Both scales are ordinal, meaning that they assign a numerical value to a person’s
response, but the interval between the values is not always equal. They are generally
used to measure a person’s subjective experience. However, the Borg scale is used
specifically for measuring only once construct, physical exertion, while the Likert
scale can be used for a wide range of topics. The Borg scale ranges from 6 to 20,
while the Likert Scale typically ranges from strongly agree to strongly disagree. The
advantages and disadvantages of both approaches are described in e.g. Chen et
al. in 2002 [94], and Hartley and MacLean in 2006 [95]. We decided to unify the
advantages and shortcomings of these approaches in the following chart 9.2 below:

Due to the fact that our goal was to find criteria for human interaction comfort
in real-time we used a Borg scale [96] shown in the table 9.3 as a tool for operator’s
comfort measurement.
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Advantages Drawbacks
Borg
Scale

Widely used in exercise
and sports science research.
Simple and easy to use,
making it accessible to a
wide range of people. Can
be used to monitor and ad-
just the intensity of exer-
cise.

Limited to measuring phys-
ical exertion. Relies on sub-
jective perception, affected
by factors like fatigue, mo-
tivation, and pain.

Likert
Scale

Can measure a wide range
of attitudes, opinions, and
behaviors. Widely used in
research, facilitating data
comparison across studies.
Easy to use, accessible to a
wide range of people.

Relies on subjective percep-
tion, influenced by factors
like social desirability bias.
Not always clear what the
person is agreeing or dis-
agreeing with, leading to
confusion.

Table 9.2: Comparison of Likert and Borg Scales

Score Description
6
7 Very, very light
8
9 Very light
10
11 Fairly light
12
13 Somewhat hard
14
15 Hard
16
17 Very hard
18
19 Very, very hard
20

Table 9.3: Borg scale (rate per exertion)
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The Borg scale [96] was originally developed by the scientist Gunnar Borg who
rated the scale from 6 to 20, which was basically built around a heart rate range.
This scale correlates with a person’s heart rate or how hard they feel they are
working. We use the Borg scale in our experiments to evaluate biological markers
of the human - cart interaction. The scales are shown in the table 9.3. In addition
to the Borg scale, we used No.1 F4 IP68 Waterproof Smartband for the heart rate
measurement. The device is shown in the figure 9.9.

Figure 9.9: No.1 F4 IP68 Waterproof Smartband

We are interested in such biomarkers as pulse, blood pressure, saturation and
the number of steps made. The standard use of the band involves the connection
to the mobile phone to read the statistical data through the bluetooth interface.
The statistics it receives can be visualized in a certain application. The idea was
to replace the mobile phone application backend with a custom program, so that
it could receive the information on the condition of biological markers and forward
this information to the high-level controller.

As a higher level controller a microcomputer Raspberry Pi, version 4 was used.
An application called ”GATTacker” was used as a tool to perform the task in order
to intercept bluetooth packages and carry out the data analysis. As a result, the
package structure was identified. This information allowed me to create a Python
script which could connect to the smart band from the high-level controller over
bluetooth. The script was able to read the pulse, blood pressure and blood oxygen
saturation in real time. The tool chain described above allowed me to follow the
biomarkers of a human operator during the interaction process with a powered
industrial cart. To measure the pulse, blood pressure, and saturation the band used
the sensor based on the photoplethysmogram principle.

A photoplethysmogram (PPG) is an optically obtained plethysmogram that can
be used to detect blood volume changes in the microvascular bed of tissue. A
PPG is often obtained by using a pulse oximeter which illuminates the skin and
measures changes in light absorption [97]. A conventional pulse oximeter monitors
the perfusion of blood to the dermis and subcutaneous tissue of the skin.
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With each cardiac cycle, the heart pumps blood to the periphery. Even though
this pressure pulse is somewhat damped by the time it reaches the skin, it is enough
to distend the arteries and arterioles in the subcutaneous tissue. If the pulse oximeter
is attached without compressing the skin, a pressure pulse can also be seen from the
venous plexus, as a small secondary peak.

The change in volume caused by the pressure pulse is detected by illuminating
the skin with the light from a light-emitting diode (LED) and then by measuring
the amount of light either transmitted or reflected to a photodiode [98]. Because the
blood flow to the skin can be modulated by multiple other physiological systems,
the PPG can also be used to monitor breathing, hypovolemia, and other circulatory
conditions [99]. Additionally, the shape of the PPG waveform differs from subject
to subject, and varies with the location and manner in which the pulse oximeter is
attached.

Smart band uses an accelerometer MC3413 to detect the number of steps. The
parameters of the sensors are demonstrated in the data sheet [100].

In order to design the adaptive interaction controller we have to find a depen-
dency between the emotional feedback of the human operator and a measurable
physical equivalent. In the current research, we use the following physical measures
per sample time period Tsample = 60s:

1. Mean and standard deviation of absolute interaction force value -
mean(|Finteraction|) and SD(|Finteraction|)

2. Mean and standard deviation of absolute interaction torque value -
mean(|τinteraction|) and SD(|τinteraction|)

3. Mean and standard deviation of absolute linear speed of the cart - mean(|vcart|)
and SD(|vcart|)

4. Mean and standard deviation of absolute angular speed of the cart -
mean(|ωcart|) and SD(|ωcart|)

5. Heart rate

6. Blood pressure

7. Oxygen saturation

In this subchapter we formed and analysed a list of parameters which are later
used to obtain feedback about the physical well-being.

List of variables
Human operator simulation

x(t) Cart position during walking motion.
ω Angular frequency, ω = 2π

T
.
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v Linear velocity.
T Period of the walking motion.
w(t) Weight distribution over time.
W Total weight.
F1, F2 Forces applied by the hands.
k1, k2 Force coefficients.
vhand, vcart Velocities of the hand and cart, respectively.
m Mass of the cart.
M Mass of the human’s upper body.
ẍ Acceleration of the cart.
θ Angular displacement.
l Length parameter.
I Moment of inertia of the upper body.
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10 Human-cart interaction

10.1 Procedure description
This chapter describes the process of human – industrial power assisted cart inter-
action. The process of moving goods by a human operator with the help of the
powered cart on the surface includes the interaction between the cart, the human
operator and the environment.

The task of moving cargo can be divided into five stages [7]. The task scheme
is shown in the figure 10.1. The first stage begins with the person’s intention to
carry out the act of moving goods using an industrial cart. The operators have
some knowledge about the start and end points of the trajectory, the state of the
environment. They can estimate the force needed to be applied in order to move the
load and the powered cart from the start to the end points of the trajectory. They
also may or may not have experience of interaction with a powered industrial cart.

The second stage is the initial impact. This stage starts the moment human
hands touch a mobile cart. The cart is at rest at the point P0 taken as a point of
origin. We take the time of the first touch as the task starting time in the system
of a mobile cart. From the point of view of the cart, the force applied by the
human is a stochastic variable, since the cart has no information about the real
world (knowledge about the weight of the load, the type of surface, the position
in space and the desires of a man). Operator’s force is divided into rotational and
translational components. Then, the desired dynamics of the interaction is set by
the relevant impedance controllers. On the output of the impedance controller we
obtain the desired linear and angular velocity. The obtained values become reference
setpoints for the differential drive system. The motors run in order to reach the
reference value and support the motion.

The third stage is the motion task. During this phase the process is about the
accumulation of the interaction experience. Human-operator and cart find out the
information about the response of the system (the change in the interaction force,
acceleration, speed, distance, heart rate, oxygen saturation and blood pressure). In
case of a mismatch of the expected response of the system obtained by a person
during the first phase with the reaction of the real system, the operator estimates
the correction of the applied force according to the new data and adapts to them.

The fourth phase is a positioning task. The operator performs the application
of forces to the cart in order to stop the motion and reach the desired position.
The fifth stage is the end of the interaction. This stage comes as soon as the person
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Figure 10.1: Moving cargo task

ceases to interact with the industrial cart. The point PN is the end of the interaction
and the endpoint of the path. The operator achieved the goal. The cart can perform
the analysis of the completed tasks.

In the phase of the positioning task, the distances to the target and the actual
traversed path are not equal. Over-reaching the target is influenced by the support
of a power assistance system. In this case, the operator must perform additional
manipulations to return to the target point. If power assistance is insufficient and
cannot go beyond the total value of friction forces that resist to motion, then the
distance to the target and the actual traversed path are equal, but the operator
spends additional effort to overcome the friction forces.

10.2 Raw data analysis and feature detection

“Measurement is the first step that
leads to control and eventually to
improvement. If you can’t measure
something, you can’t understand it.
If you can’t understand it, you
can’t control it. If you can’t control
it, you can’t improve it.”

H. James Harrington

Figure 10.2 shows force sensors information when the human assistance ratio is
bigger than the desired value and the mobile cart moves faster than the human-
operator wants it to move. Periodic oscillations around -40/-50N in the middle of
the curve demonstrate the human steps during the motion. Using this information
we can estimate the motion rate, the human step time, the number of steps, the
step length. Oscillations around zero in the beginning and at the end of the curve
characterize the noise caused by the powered cart motion.

According to the measures defined in the chapter 9.4 we developed a few feature
detection techniques to estimate them. In our application we detect human gait by
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Figure 10.2: Raw data sample from pHRI handlebar

processing the filtered signal that comes from tensiometers located at the handle bar.
At a later stage, the peak detection and error cancellation algorithm was applied
to the signal. At the pipe output we received the information about the amount of
steps per task, step time (mean+std), step length (mean+std). The example of the
processed data is shown in the figure 10.3.
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Figure 10.3: Human gait feature

The top line graph shows the fluctuations of the COG position. The red dotted
line depicts the moment at which the gait (a single step) was identified with the
use of feature detected technique. The middle histogram shows the time spent
by the operator to make this step in seconds. The bottom graph illustrates the
estimated step length in meters. This procedure of measuring the step, its time and
length helps to understand the individuality of an operator, thus making it possible
to identify operator’s parameters and better adapt to their gait. The fluctuations
of the center of gravity (COG) is used to estimate the step length of the human
operator for enhanced adaptation of the mobile platform.

10.3 Effect of the impedance control
We conducted several experiments with various settings of the controller. In each
experiment the operator cyclically performed a front and back motion with the
powered cart. A gradual increase of the virtual inertia (mass=2, 5, 10, 18) is shown
in the figure 10.4. As we can see, the operator’s applied force required to transport
the cargo is reducing (linws change from black to green). However, upon further
reduction of the ratio (red line), there was a situation in which the momentum
generated by the support system created uncomfortable interaction conditions and
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operator had to make significant efforts to implement the desired motion.

Figure 10.4: Change of interaction force with different settings of the impedance
controller [54]

The graph shows the standard derivative of the absolute value of the interaction
force using various settings of the impedance controller. We change the values of
the impedance controller, i.e. its mass component (virtual mass). The time lapse of
the sample is 60 seconds, the number of measurements is 120, which means we can
generate 3 data samples.

In these cases when the mass component of the impedance control provides
minimum or maximal value, the operator has to put a lot of effort to move the
loaded trolley. If we consider both the standard derivative and the mean value it
is noticeable that it requires a lot of effort from an operator. The reason for that
was described in the figure 10.4 - the operator applies force which is transferred
by the impedance controller into setpoints for the differential drive system. In case
of small mass component, the task for the motor appears to be large. The engine
works with a greater speed which means that the operator has to stop the trolley.
On the contrary, if the operator stops the trolley abruptly, the engine gets a large
task and start moving the trolley backwards, again, the operators have to stop it to
prevent their feet from being run over.

In case of a large mass component, vice versa, the initial force is high, but
the task for the engine is small, which means that the trolley does not help the
operator to a desired extent. As a result, none of these modes of mass component
seems to work well. The comfort of the human operator largely depends on the
impedance controller settings. The cart is usually pulled or pushed with two hands.
However, if the load is small (light), the cart could be handled with one hand or even
with fingers. Each human hand has its inertial, damping and stiffness component
(property) as described in the section 9.1. In the Figure 10.5, the change of the
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standard deviation of interaction force is demonstrated with the sampling time of
60 seconds using various mass coefficients of the impedance controller. As it could
be seen from the graph, the higher the mass parameter, the higher the force applied
by the operator. However, if the mass coefficient is relatively small, operator applies
significant force. It could be explained by the fact that the selected parameters
provide more support than needed which results in additional efforts of the operator
to complete the desired motion.

Figure 10.5: Change of interaction force with different settings of the impedance
controller [54] Tsamp = 60s

The force standard deviation (Operator force change difference) takes larger
values when the mass coefficients of the impedance controller are either too large,
or too small. Significant fluctuations of the interaction force are not desirable as it
leads to the discomfort of the human operator. However, it is visible from the graph
that there are specific settings of the impedance controller that allow to reduce the
range of fluctuations of the interaction force. These settings shown in blue lead
to comfortable interaction between the operator and the platform. It confirms the
findings from [77] and [36].

In the Figure 10.6 the change of the mean interaction force is demonstrated
with sampling time of 60 seconds using various mass coefficients of the impedance
controller. As it could be seen from the graph, the higher the mass parameter, the
higher the force applied by the operator. However, if the mass coefficient is relatively
small, operator still applies significant force. It could be explained similarly to the
case with the standard deviation described above.
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Figure 10.6: Change of interaction force with different settings of the impedance
controller [54] Tsamp = 60s

The interaction force mean takes larger values when the mass coefficients of
the impedance controller are either too large, or too small. Increase in the virtual
mass (corresponding coefficient of impedance controller) leads to an increase in the
applied force causing discomfort. On the other hand, decreasing virtual mass allows
the operator to reduce effort. With small values of the mass coefficient but significant
real mass (in our case, cart load should be over 50 kg), the operator needs to apply
extra effort to implement the desired motion. It is visible from the graph that there
are specific settings of the impedance controller that allow to reduce effort. These
settings shown in blue lead to comfortable interaction between the operator and the
platform. It confirms the findings from [77] and [26].

In the Figures 10.7 and 10.8 the change of the mean interaction force is demon-
strated with sampling time of 30 seconds using various mass coefficients (2, 5, 10,
18) of the impedance controller. As it could be seen from the graph, the tendency
is true for time period of 30 seconds as well. The higher the mass parameter, the
more force is applied by the operator.
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Figure 10.7: Change of interaction force with different settings of the impedance
controller [54] Tsamp = 30s

Figure 10.8: Change of interaction force with different settings of the impedance
controller [54] Tsamp = 30s
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Figure 10.9: Mean value of absolute interaction force for different settings of
impedance controller. Sample 1. Tsamp = 60s

In the Figure 10.9 the change of the mean value of interaction force module is
demonstrated with the sampling time of 60 seconds using various mass and damping
coefficients of the impedance controller. The interaction force values are shown in
the table below the figure where the first row represents values of damping coefficient
(20, 50, 100, 160) and the first column represents values of mass coefficient (2, 5,
10, 18). As it could be seen from the graph, the higher the mass parameter and
damping parameters, the higher the average value of the module of the interaction
force. If the damping and mass coefficients are too small, the operator applies a lot
of effort to complete the desired motion as there is more assistance supplied than
needed. For the first sample minimal value (62 N), the mean force module could be
reached with combination of parameters mass=2 and damping=50, or mass=5 and
damping=20.

For the second data sample shown in the figure 10.10 the minimal value of
the mean force module (64 N) was reached with the combination of mass=5 and
damping=20.
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Figure 10.10: Mean value of absolute interaction force for different settings of
impedance controller. Sample 2. Tsamp = 60s.

Figure 10.11: Mean value of absolute interaction force for different settings of
impedance controller. Sample 3. Tsamp = 60s.
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The dataset collected from another operator concludes the same trend, see Figure
10.11. The minimal value of the mean force module (61 N) was reached with the
combination of mass=2 and damping=50. In this subchapter we studied the effect
of the impedance control parameters and learned how they affect the interaction
process. It may be concluded that there is a specific setting for the impedance
controller that changes for each individual operator. Therefore, the personalised
approach is achieved, becuase each operator has a different setting of the impedance
controller which they can consider as comfortable.

10.4 Experiment design
This chapter describes the experiments carried out using the mobile platform during
the research project. In this chapter we would like to describe the set of performed
experiments to measure the interaction parameters between the human operator
and industrial cart. The goal of the experiments is to find the relationship between
the subjective operator’s estimation of the interaction process and the measured
physical quantities.

The experiments were executed in the laboratories of the Institute for Nanoma-
terials, Advanced Technologies and Innovation. The coefficients of static and kinetic
friction equal to 1 and 0.7 respectively, because of the fact that the floor material
is concrete. Therefore, the laboratory area allowed to simulate material handling
tasks related to warehouses, production area, offices and supermarkets.

The subject pool consisted of 5 human operators (three males and two females).
Two male operators out of the pool had some experience driving powered vehicles.
The other experiment members operated the vehicle for the first time. Both the ex-
perienced and inexperienced operators were needed to cover the variance of operator
expectations from their interaction with the powered cart. The basic anthropomet-
ric data for the operators is presented in the table 10.1.

Figure 10.12: Operator’s motion task

The participants had to push and pull a six wheeled powered cart on given
trajectories. During the experiment, five types of trajectories depicted in the figure
10.13 were used, such as the linear path with the length of 7m in order to estimate
the effect of the translational impedance controller parameters on human feelings
during the transnational motion, circular path was used to verify the effect of the
rotational impedance controller [101], eight-like trajectory to test the joint work of
the controllers and trajectory with the complex shape similar to a real production
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N Parameter Mean ± Standard Deviation
1 Age 28 ± 5.2 [a]
2 Weight 80 ± 20.8 [kg]
3 Height 180 ± 10.5 [cm]
4 Legs Length 90 ± 12.5 [cm]

Table 10.1: Operators parameters

scenario as shown in the figure 10.15. In the end of the experiment, human operators
could evaluate their feelings of the collaboration on the free-run trajectory.

Figure 10.13: Trajectory setups

A set of barrels to simulate the different load was used. The set consisted of five
30 [l], two 50 [l] barrels and two metal pipes that weighted of 50kg each. All the
barrels were filled with water. Their weight was measured before the experiment.
As a result, it was possible to change the cart load in a range mload ∈ [0; 340] kg.
The load set is shown in the figure 10.14 which was changed and adjusted for each
experiment and measured accordingly.

Figure 10.14: Load variation

In the current study, we performed the measurement of the emotional feedback.
Methods from the section 9.3 were used to estimate the individual feelings of a par-
ticular operator. The subjective impressions were documented with questionnaires
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and processed. In addition to the emotional feedback, the physical measures were
obtained. The readings of the interaction process values were recorded (respectively
translational and rotational components of position, speed, acceleration from wheel
encoders; orientation, angular velocities and linear accelerations form IMU unit,
motors currents form motors current sensors, interaction torque and force form ten-
siometers).

The developed system allowed to study the effect of different impedance con-
troller settings on the interaction process. The parameter’s values for translational
and rotational impedance controller settings are combined in the table 10.2, where
M is mass, J stands for the moment of inertia, Dtrn is the damping coefficient of the
translational motion, Drot - damping coefficient of the rotational motion. The oper-
ator’s feedback does not seem to cause instability of the platform as we have omitted
the configurations that could possibly lead to the unstable platform support. It was
carried out to ensure that the learning process could happen under any acceptable
load of the platform and would be safe for the operator. Based on the parameter’s
values, the experimental test sets were generated. We evaluated the effects of the
controller’ settings on the operator’s comfort. The results of the experiments were
collected in the chapter 11.

M Dtrn
2 20
5 50
10 100
18 160

J Drot
1 10
4 20
8 50
18 160

Table 10.2: Tested impedance controller settings for translational and rotational
motion

The linear 7m-long trajectory had the orthogonal lines to mark each meter so that
it is suitable for the odometry calibration. Based on this trajectory, we can check
if the internal calculated distance corresponds to the measured value. In addition,
it is convenient to verify the rotational motion of the cart around its central axis.
Trajectory layout including dimensions in cm is shown in the figure 10.16.

Circular trajectory shown in the figure 10.17 allows to evaluate human feelings
during the time of turning the industrial trolley around some pivot point.

Another type of track was the 8-shape trajectory. This trajectory brings a sig-
nificant benefit because it combines the linear and the rotary motions with certain
patterns that could easily be detected in the measured data. The path with dimen-
sions in cm is shown in the figure 10.18.

A free-run track 10.15 was designed to model typical logistics scenarios for ma-
terial handling tasks in the shop floor or warehouse. It combines linear and rotary
segments of different length. The detailed dimensions of the trajectory in cm are
provided in the figure 10.19.
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Figure 10.15: Predefined track. Setup for mload+cart = 103[kg]

Figure 10.16: Linear track
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Figure 10.17: Circular track

Figure 10.18: 8-like track
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Figure 10.19: Free-run track

102



11 Evaluating comfort by means of the
regression analysis

The regression analysis is a reliable method of identifying which variables impact
operator’s comfort, our topic of interest. The process of performing a regression
allows us to confidently determine which factors matter the most, which factors can
be ignored, and how these factors influence each other.

In order to describe the regression analysis in more detail, it is essential to
comprehend the following terms:

1. Dependent Variable or Predictor is the main factor that we would like to
understand and predict its future behaviour.

2. Independent/Input Variables or Regressors are the factors incorporated
into the regression model which are assumed to influence the dependent vari-
able according to the research hypotheses.

The multiple regression equation can be represented in the following form:

y = b0 + b1x1 + b2x2 + . . .+ bnxn + e (11.1)
where bi(i = 0, 1, 2…n) are the regression coefficients which denote the rate of change
of the criterion variable with respect to the predictor variable. The coefficient b0
represents the intercept of the trend line with the y axis. In this chapter, the
results of the regression analysis of data sets obtained from the experiments are
described, such as the human operator feedback and physical measures. The data
collected from the feedback surveys allows us to measure the human operator’s
feelings associated with various settings of the impedance control. We could also
identify what variables influence those feelings. In the linear regression model 11.1,
the sign of the coefficients b1…bn indicates the direction of the relationship between
the independent variable and the dependent variable. A positive coefficient implies
that as the independent variable increases, the mean of the dependent variable tends
to increase. Conversely, a negative coefficient indicates that as the independent
variable increases, the mean of the dependent variable tends to decrease. It is
important to note that the regression coefficients and their signs have no relation to
the settings of the impedance controller.

The first analysis reflects on the effect of the impedance controller parameters on
human comfort. We select operator’s comfort as a dependent variable and parame-
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Table 11.1: Regression analysis for comfort of the operator 1 using impedance con-
troller coefficients

ters of the impedance controller as the independent variables. The analysis results
are presented in the table 11.1.

If we look at the R2 (coefficient of determination) value 1, we could conclude that
for the 48 observations 2 almost 40% of change in the operator’s comfort was likely
caused by the impedance controller parameters. Significance value F is smaller
than 0.05, so regression results are statistically significant. When we check the
coefficients’ values, we can see that we have a negative relationship between human
comfort and the values of mass and dumping coefficients. In simple words, the
increase of mass and dumping coefficient leads to the decrease of the operator’s
comfort for the analyzed data set. If we look at the P-value for the coefficients,
we could say that P-values for mass and damping coefficients are lower than 0.05
that means these results are statistically significant, and as a result, both increasing
coefficients affect operator’s comfort in the negative way.

In the next step, we study the effect of independent variables, such as the mean
value of the absolute interaction force and its standard deviation as well as the mean
value and the standard deviation of the absolute linear velocity of the cart. The
results are collected in the 11.2. When we analyze R2 for the 48 observations, nearly
78% of change in the operator’s comfort is caused by the change of the interaction
force and linear velocity of the cart. The significance value F is smaller than 0.05,
so the regression results are statistically significant.

We can see that the mean and the standard deviation of absolute interaction
force and the cart velocity has a significant effect on the operator’s comfort, because

1R2=0 indicates that the model equation 11.1 does not explain any of the variability of the
response data around its mean and R2=1 indicates that the model explains all the variability of
the response data around its mean.

2These observations come from evaluating the interaction process of a single operator, with
specific mass and damping parameters of the impedance controller
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Table 11.2: Regression analysis for operator 1 comfort using mean value and stan-
dard deviation of interaction force and cart velocity

the P-value of each parameter is higher than 0.05. We apply the regression analysis
to data sets of all the operators, and as a result, we could confirm that the interaction
force and cart velocity have a significant effect on the operator’s comfort, however for
different operators the comfort state is reached with different impedance controller
settings.

In the third step, we study the relationship between the operator’s comfort and
the biological markers, such as pulse, blood pressure, and oxygen saturation. The
results were combined in the table 11.3. The value of R2 for the 48 observations, it
could be concluded that approximately 81% of the change in the operator’s comfort
is caused by biological markers. The regression results are statistically significant,
because the significance value F is smaller than 0.05. It could be observed that
the heart rate and comfort of the human operator have an inverse relationship. It
means that the human operator’s heart rate is decreasing when the comfort zone is
reached, while the heart rate is increasing when a lot of effort is applied to overcome
the friction force or return the cart to a desired position if the target was over-
reached. The oxygen blood saturation and the Borg scale estimations have positive
relation to the operator’s comfort. If we look at the P-value for the coefficients we
could say that only the P-value of oxygen blood saturation is lower than 0.05 that
means the regression results are statistically significant only for this parameter.

The results of the regression analysis of the data set that includes all the partic-
ipants are shown in the tables 11.4 - 11.6. The data set of all participants includes
240 observations. In the table 11.4 we analyze the effect of impedance controller
parameter’s change on comfort of different operators. The R2 for 240 observations
equals to 0.332. It means that only 33.2% of the operator’s comfort is caused by the
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Table 11.3: Regression analysis for operator 1 comfort using biological markers

change of the controller parameters. The regression results are statistically signifi-
cant because the significance value F is smaller than 0.05. The relationship between
the human comfort and the values of mass and dumping coefficients is negative.
The P-value for the coefficients shows that the regression results are statistically
significant.

Table 11.4: Regression analysis for comfort of all the operators using impedance
controller coefficients

The result of the regression analysis for comfort of all the operators using the
mean value and standard deviation of interaction force and cart velocity was col-
lected in the table 11.5. For complete data set of all participants the 79% of change
in the human comfort is caused by the mean value and standard deviation of the
measured interaction force and the cart’s velocity. The significance of the F value
is less that 0.05 demonstrates statistically significant results. The P-value of all the
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coefficients less than 0.05 shows that all the physical measures have an effect on the
operator’s comfort.

Table 11.5: Regression analysis for comfort of all the operators using mean value
and standard deviation of interaction force and cart velocity

Table 11.6 shows the effect of biological markers on the operator’s comfort. The
result of the regression analysis demonstrates that over 81% of the human comfort
is caused by biological markers. The significance of the F value is less than 0.05
demonstrates statistically significant results. The P-values of the heart rate and
oxygen blood saturation coefficients are less than 0.05. It shows that biological
markers influence the operator’s comfort.

Table 11.6: Regression analysis for comfort of all the operators using biological
markers

When we evaluated the participants separately, the output of the regression
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analysis was similar to the results demonstrated in tables 11.1 - 11.3. However, the
analysis of data for all operators yields a different result. As it could be observed
form the table 11.4, the R2 value is reduced by almost 7% in comparison to individual
approach. It means the impedance controller settings that could be evaluated as
comfortable are different from one operator to another. In fact, the dependency
between the comfort, the mean and the standard values of the interaction force and
the cart’s velocity, as well as the biological markers remains the same. It allows us
to conclude that the mean value and the standard deviation of the interaction force
and the cart’s velocity, the heart rate and the oxygen blood saturation could be used
as sufficient references to generate the rewards which can be used by the developed
reinforcement learning algorithm described in the following chapter.
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12 Q-Learning for human-cart interaction

”When you first start off trying to
solve a problem, the first solutions
you come up with are very
complex, and most people stop
there. But if you keep going, and
live with the problem and peel
more layers of the onion off, you
can often times arrive at some very
elegant and simple solutions.”

Steve Jobs

This chapter describes the control algorithm developed for the robust and safe
physical interaction between the human operator and the industrial cart. As demon-
strated in the chapter 3, the impedance control is an essential component of the
solution. It can be used as a part of the representation for the human operator
dynamics. Additionally, it helps us to control the supporting effort of the mobile
platform side during the collaboration. One of the possible physical collaboration
scenarios is presented in the figure 12.1.

Figure 12.1: Physical collaboration scenario

While performing the task the human operators learn based on their estimations
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and feelings. As a result, they adapt their arm impedance according to the required
effort for the task. As shown in some field tasks [102], human operators generally
combine two strategies to adapt their impedance to perturbations, thereby minimiz-
ing position error and energy consumption: 1) if perturbations are unpredictable,
subjects increase their impedance through co-interaction; and 2) if perturbations are
predictable, subjects learn a feed-forward command to offset the perturbation.

On the other hand, the mobile platform adjusts the interaction strategy by
changing the impedance parameters. The change occurs according to the correla-
tion between detected features and human feelings that was obtained in the chapter
11.

A Markov decision process (MDP) consists of the following items:

• S, a set of states of the world.

• A, a set of actions.

• P : S×S×A→[0, 1], which specifies the dynamics. This is written as P (s′|s, a),
where ∀s ∈ S; ∀a ∈ A;

∑
s′∈S P (s′|s, a) = 1. In particular, P (s′|s, a) specifies

the probability of transitioning to state s′ given that the agent is in a state s
and does action a.

• R : S×A×S→R, where R(s, a, s′) gives the expected immediate reward from
doing action a and transitioning to a state s′ from the state s.

Both the dynamics and the rewards can be stochastic; there can be some ran-
domness in the resulting state and reward, which is modeled by having a distribution
over the resulting state and by giving the expected reward R. The outcomes are
stochastic when they depend on random variables that are not modeled in the MDP.

A finite part of a Markov decision process can be depicted using a decision
network as in Figure 12.2.

Figure 12.2: Decision network representing a finite part of an MDP [14]

In order to include human feelings in the control system we implemented a
reinforcement learning algorithm. The textbook named ”Reinforcement Learning:
An Introduction” [18] provides the following definition to the reinforcement learning:

”Reinforcement Learning is an area of Machine Learning that can be considered
both a set of problems and solution methods to these problems. It is concerned
with finding the best possible behaviour strategy for an agent interacting with an
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Figure 12.3: Reinforcement learning flow diagram [18]

environment. The underlying idea is that similarly to how humans and other animals
learn by trial-and-error, so should also software agents be able to learn.”

Reinforcement Learning (RL) was originally inspired by the behavioural psychol-
ogy. Similarly to how humans are taught that some actions are good and others are
not by obtaining either a reward or a punishment, this class of algorithms reinforces
desirable actions while discouraging the undesirable ones. This trial-and-error ap-
proach to learning is simulated by giving a numerical reward as a feedback on the
performance of an algorithm. Thus, based on the result signal, a learning algorithm
can evaluate and update its parameters based on how good or bad a set of actions
were.

The following RL algorithms are built on the following main components and
assumptions, as stated in [103] and [104]:

• State. Set S of states the agent and environment can be in.

• Actions. Set A of actions the agent can invoke. This set can be restricted
depending on the current state.

• Reward. R is a function that provides numerical rewards for state transitions.
It is used to estimate the quality of action at in state st based on the state
change it causes.

• State Variables. The value map memorizes what outcomes an agent ex-
pects for given states

• Policy. A policy is a structure that maps states to actions. Roughly speak-
ing, it defines what action to take in a specific state.

• Model (Optional). A model of the environment and agent predicts the new
state s′ when action a is invoked in states. The model can be probabilistic or
unavailable.

The first task when designing a Q-Learning system is to define the environment.
The environment consists of states, actions and rewards. It is assumed that the
agent uses states and rewards as inputs and generates actions as outputs.
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12.1 States
It is assumed that the number of possible states is finite. The agent could be in
one fixed number of possible situations. In our case, we can think of each possible
setting of the impedance controllers as of a state. The agent could be located
at one state at a time. It means only one set of impedance controller settings
could be selected and evaluated in one step. Each component of the impedance
controller could switch among four states. According to the selected parameters
of the impedance controllers shown in the table 10.2, the set of 256 system states
was generated. It includes the states and the intervals between their set values
to be used in the process of Q-learning. In this study, four parameters for each
coefficient were used, resulting in a total of 256 possible combinations. This number
of combinations is believed to be sufficient to demonstrate the learning process of
the platform. However, it is important to note that this number is not limiting, as
researchers must consider the trade-off between the flexibility of the settings and the
time required for the learning process before determining the number of coefficients
to be used.

Figure 12.4: Set of states

12.2 Actions
It is assumed that the number of possible actions is also finite. The agent always
needs to choose from among a fixed number of possible actions as it was suggested
by the results of the regression analysis obtained in chapter 11. Therefore, four
parameters (Mtrn, Dtrn, Mrot, Drot) were selected as adjustable variables. We define
a set of possible actions in the following way: the agent could apply two actions
(increase or decrease) per each of the four parameters and carry out an additional
action ”do nothing” when no change is required, see the figure 12.5. The change of
inertial and dumping components of the impedance controller leads to the change
in the cart dynamics.

12.3 Rewards
In order to help the agent in the learning process we created a condition based re-
ward structure. The most important part is the reward definition for the state. The
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Figure 12.5: Set of actions

agent goal is always the same - to maximize its total rewards. In our case we mostly
use negative rewards (i.e. punishments) for the settings that could be recognized as
undesirable. The reason for the negative rewards is the following. Due to the fact
that the agent goal is to maximize cumulative rewards, if we used positive rewards
the agent could get stuck in switching between the first states and would accumu-
late a very large cumulative reward even if the comfortable impedance controller
settings were not found. In case of negative rewards, the agent tries to minimize
the punishment by searching for the most convenient set of impedance controller
settings. The result will be the set of impedance controller settings convenient for
the current operator.

The reward system works as follows, see figure 12.6. The agent checks if the
interaction dynamics is positive by comparing the values of the mean and the stan-
dard deviation for both the current step and the previous step. Additionally, the
agent checks if there is no emergency situation by analyzing the E-stop button state.
The peaks of the interaction force have to be avoided as well. If a human operator
thinks that the current settings are convenient for them, they might provide a posi-
tive feedback. In the end, we sum up the rewards for various criteria. If none of the
criteria were met, the reward is set to be the negative one.

Figure 12.6: Rewards

12.4 High-level control
The learning algorithm that is used in the context of this thesis is called Q-Learning,
which is a model-free Temporal-Difference (TD) algorithm created within a PhD
thesis of Watkins [103]. The further technical description is addressed in detail in
[104]. TD learning methods combine the ideas behind Monte Carlo and dynamic
programming methods. Therefore, a Q-Learning algorithm does not need a model
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unlike Monte Carlo methods. Furthermore, TD methods update the state value
directly after each step similar to the dynamic programming methods.

TD(st, at)︸ ︷︷ ︸
temporal difference

= r(st, at)︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1, at+1)︸ ︷︷ ︸
estimate of optimal future value

−Q(st, at)︸ ︷︷ ︸
old value

] (12.1)

The discount factor is settled between 0 and 1. The purpose of the γ is to provide
the mechanism to discount the future rewards. In other words, it allows to choose
a better option, because the value of receiving a particular reward in the future is
considered to be generally lower than receiving the same reward now. A discount
factor of 1 makes the agent prioritize long-term rewards, while a discount factor of
0 makes the agent only consider immediate rewards. A common value for γ is 0.9.

Another important equation is the Bellman’s equation 12.2. The Bellman equa-
tion demonstrates what Q-value has to be used as the value for the action that was
taken in the previous step. The equation includes a learning rate parameter α that
defines how quickly Q-values are adjusted. The learning rate can take any value
from 0 to 1, as the discount factor γ described above. The learning rate of 1 makes
the agent update its Q-values completely based on the new information, while the
learning rate of 0 makes the agent not update its Q-values at all. A common value
for α is 0.1. Both factors may help researchers to understand how the Q-table is
updated to ensure that the learning agent keeps trying out new actions to learn
from them and would not get trapped by ”thinking” that the current process works
perfectly well.

Qnew(st, at)︸ ︷︷ ︸
new value

= Qold(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

· TD(st, at)︸ ︷︷ ︸
temporal difference

(12.2)

Q-Learning works with MDPs only, because the values are calculated based on
the current state. Therefore, each state instance must represent the entire config-
uration of the agent and environment. The basic Q-Learning update is defined by
the equation 12.3:

Q(st, at)︸ ︷︷ ︸
new value

← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·[r(st, at)︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1, at+1)︸ ︷︷ ︸
estimate of optimal future value

−Q(st, at)︸ ︷︷ ︸
old value

]

(12.3)
where Q(st, at) represents the value for a cell in the Q-matrix that demonstrates

the choice of action a, from a state s at current time t, and r(st, at) is the reward
received for the choice of action a, from state s.

The following figure presents the specific form of the MDP implemented in the
current application of 256 states, where blue circles represent states, and black lines
represent actions or transitions between the states.

The diagram shown in the figure 12.7 presents the process of Q-Learning. The
process begins by initializing the Q-Table. This table represents the agent’s policy
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on how to behave in the environment. In the next step the action for the current
step has to be selected. There are two available options. One option is to choose
the action with the highest Q-Value. Another option is to take a random action
in order to explore the environment. The common strategy for resolution of the
trade-off between exploration and exploitation is the Epsilon-Greedy algorithm.

In the framework of this algorithm, for each step within an episode, we set our
exploration rate threshold to a random number between 0 and 1. This is used to
determine whether our agent explores or exploits the environment in this time-step.

If the threshold is greater than the exploration rate, which is initially set to 1,
then the agent exploits the environment and selects the action that has the highest
Q-value in the Q-table for the current state. If, on the other hand, the threshold is
less than or equal to the exploration rate, then the agent explores the environment,
and samples an action randomly.

As soon as the action is selected, the agent performs the action. When the action
is performed, the agent receives a reward. Based on the received reward and the
information about the current state, the TD is updated. While the Q-Value for the
current state is updated using the information about the current state, TD value
and the Bellman’s equation 12.2 and the agent switches to the next step.

Figure 12.7: Q-learning process diagram

The diagram of the Q-Learning process could be presented in the shape of a
pseudo-code shown in the table 12.1.

The Q-Learning algorithm was implemented inside the high-level controller
which is Raspberry Pi 4 in our case. Python language was used in the imple-
mentation process. The information about the process values (interaction forces,
odometry) is supplied to a high-level controller from a low-level controller by means
of the serial port. Using the same link information about the actual impedance con-
troller, the parameters are provided to the low-level controller. The protocol uses a
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Table 12.1: Learn function of the Q-Learning algorithm presented in a pseudo-code

cyclic redundancy check (CRC) data check. The data of biological markers is read
from a smart band using a bluetooth low energy (BLE) protocol. The console out-
put of the learning process is shown in the figure 12.8. The information consists of
the current episode number, the number of the step inside the episode, the selected
action, the obtained reward, and the new set of impedance controller parameters to
be tested.

The graphic visualization of the Q-table values during the learning process is
provided in the figure 12.9. The yellow color represents the areas with the high rating
and the blue color represents the areas with low rating. As we start the interaction
process, the values in the Q-Table are equal to one another. However, as soon as
the algorithm takes action, the system state is changed and the corresponding value
in the Q-table is updated according to the reward information. The quality and the
speed of the RL process partially depends on the teacher. If a human operator uses
a user button to give a positive feedback or the E-stop button to give a negative
feedback, it could significantly speed up the learning process.

When we observe the Q-Learning dynamics by considering the Q-Table changes
in time, the following information could be extracted. The Q-Table is visualized
by means of color map (heat map). In the first figure of the set of six (see figure
12.9) it is shown that in the first moments of the learning process, the Q-Values are
quite similar to each other. A significant area of the color map is colored in yellow.
However, with time the color map obtains darker spots by receiving the negative
feedback about the impedance controller settings. In the long run, it is depicted
that the major area of the color map is covered in dark blue and green colors that
demonstrate a negative effect of the impedance controller setting on the interaction
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Figure 12.8: Console output of the learning process

process. Only a tiny yellow line is presented in the color map. This line represents
the impedance controller settings that fully respond to the intention of the human
operator. It is possible to obtain the impedance controller settings by selecting the
state that corresponds to the maximum value of the Q-Table.

By observing and learning from the operator’s behavior, a mobile platform can
adapt its own behavior to match that of the operator. This can improve the plat-
form’s performance in the presence of disturbances and its ability to recover from
errors, as the platform will be able to respond in a similar way to the operator.
This mobile platform can learn to predict and avoid dangerous situations, such as
collisions with obstacles or other vehicles.

There are several scientific criteria that are used to determine if a mobile platform
is robust and safe. These criteria are typically based on the performance of the
platform in various scenarios, such as its ability to withstand external disturbances
and its ability to recover from errors. Here are a few examples of scientific criteria
that are commonly used to evaluate the robustness and safety of mobile platforms:

Performance in the presence of disturbances assesses the platform’s ability to
remain stable and perform its intended function in the presence of external distur-
bances, such as vibrations, noise, or changes in environmental conditions. Recovery
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Figure 12.9: Dynamic change of the Q-value during the learning process

from errors evaluates the platform’s ability to recover from unexpected events, such
as sensor failures or actuator malfunctions. Safety assesses the platform’s ability to
prevent accidents and minimize the potential for injury or damage. Passivity eval-
uates the platform’s ability to be controlled by an external force, ensuring stability
of the system. Efficiency assesses the platform’s ability to perform its intended
function with minimal energy consumption or other resources.

It is worth pointing out that these criteria have been developed and studied
by a number of engineers and scientists over time, and are formalized in various
research papers and industry standards. For example, such organisations as IEEE
1 and ISO 2 have developed standards for mobile robots and AGVs (Automated
Guided Vehicles) safety and performance. The specific criteria and standards used
to evaluate the robustness and safety of a mobile platform depends on the specific
application and environment in which the platform is used. Having specified these
criteria, we believe that the current mobile platform can be robust and safe due
to the following list of reasons: 1. the maximum speed is restricted to prevent
dangerous situations and unexpected behavior; 2. an emergency stop button (E-
stop) has been implemented to ensure additional safety; 3. moreover, the main
power switch is available to control the power supply to the system; 4. to further
prevent dangerous situations, an interlock has been implemented to avoid instant
changes in direction at high velocity setpoints. The system is also designed to slow
down, but not accelerate in the opposite direction without reaching a low speed to
prevent sudden changes in direction.

1Institute of Electrical and Electronics Engineers
2International Organisation for Standartisation
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13 Conclusion

“Perfection is achieved, not when
there is nothing more to add, but
when there is nothing left to take
away.”

Antoine de Saint Exupery

In the course of this work we have systematized the existing theory in the field
of PHRI related to human in-the-loop study while designing, developing, and inter-
acting with the powered mobile platform to evaluate the operator’s comfort. Both
the mathematical and the experimental models of the industrial power assisted cart
were developed. An extensive amount of work was performed in powered mobile
platform programming and control system implementation. Therefore, artificial in-
telligence (AI) methods were employed to adjust the controller settings in order to
achieve such controller settings in which an operator can manipulate a heavy loaded
industrial cart with minimum physical effort and ultimate comfort.

The objectives mentioned in the first part of the thesis were completed as follows:

1. The state of art information in the area of physical human-robot interaction
was collected up to 2022 and a promising fully adaptable algorithm was de-
veloped to deliver a new human-powered cart interaction control technique
which goes in line with state-of-art research and practical investigations.

2. A mathematical description for dynamics and kinematics of the human – cart
physical interaction model was prepared.

3. An experimental model of an industrial cart was developed, assembled and
described in the framework of this thesis.

4. A set of experiments including real people and modelled operators were per-
formed and the human feedback during the interaction process was evaluated.

5. The dynamic characteristics were analysed in order to search for criteria that
directly or indirectly determine a physical feeling of human comfort and oper-
ator’s expectations during the interaction with IPAC.

6. Human estimation criteria that characterize the satisfaction and comfort from
the human-powered cart interaction process were synthesised.
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7. Based on these synthesised criteria, the human – powered cart interaction
control algorithm was developed using AI methods (Q-learning).

8. The performance of the proposed solution for the developed industrial cart
was tested and verified.

The dissertation contributed the following theoretical input into the field of technical
cybernetics - the use of Q-learning algorithm in adjusting controller settings so that
the mobile platform could successfully and effectively adapt to the unique gait and
tasks of any operator it assists. To comply with this task, the models from Chapters
8-11 were derived and the model could be used in the future to estimate the quality
of control with the help of Markov processes. Markov processes are utilized to make
decisions on regulating the impedance control settings.

The work brings significant contribution to the area of PHRI by the developed
workflow that includes the experimental platform development, the experiment de-
sign and the evaluation of the results using the regression analysis and the devel-
opment of adaptive impedance controller that is suitable to perform collaborative
tasks. The personality-oriented scheme presented in this work results in efficient
physical interaction that responds to the intentions of the human-operator, as well
as it enhances the user comfort during the material handling process.

This work also brings a contribution to the area of the raw data analysis and
feature detection. We tested the interaction with different loads and on various types
of trajectories such as 7m-long strait drive, circular, the 8-like shape trajectory, a
complex predefined path, and a free ride. All the experiments were performed in
the indoor environment.

The control system with the impedance controllers of rotational and translational
motion was implemented in the experimental platform. It allowed to support the
human operator during the linear drive and turns. It helped to obtain the dynamics
relevant to the material handling task. The analysis of the interaction characteristics
allowed us to identify the physical measures, emotional feedback as well as biological
markers which were used as additional sources of information to improve the human-
cart interaction.

We evaluated the effects of the controllers’ settings on the operator’s comfort
and developed a system of automatic adjustment and tuning of the parameters.
One of the AI methods was applied to the developed powered industrial cart. The
method called Q-learning belongs to the area of reinforcement learning (RL). It al-
lows the powered cart to learn the desired intention of the human operator by means
of obtaining rewards for certain settings of impedance controllers. Consequently, it
was possible to find out the set of settings that refers to the highest comfort level
and sufficient performance for a particular operator. The RL algorithm was imple-
mented in the microcomputer Raspberry Pi using Python language. This controller
was called a high-level controller. The low-level control was implemented in the
microprocessor ATmega2560 (Arduino board). It includes the mathematical de-
scription of the cart;s dynamics and kinematics, as well as impedance controllers for
the translational and rotational motion of the cart and the PID controller for the
powered wheels.
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In addition, the applications for the load cell control and configuration software,
C-Sharp based hardware extension libraries for Rasberry Pi and Matlab were devel-
oped. They allow to run a real-time target-based simulation using math apparatus
of Matlab in combination with the low-cost embedded sensors and drives. More
information could be found in appendix to this research work.

The results obtained from the current research suggest a few promising impli-
cations for the future work. In particular, the number of involved experienced and
inexperienced human operators (males and females) could be increased. It would
allow to extend the number of observations used to assess the interaction process
and evaluate operator’s comfort to estimate the correlation (dependency) between
operator’s comfort and the impedance controller’s settings. Furthermore, a combi-
nation of the results with industrial PHRI scenarios, where human comfort is set
as a significant measure, allows to optimize operator’s tasks and logistic processes
in plant simulation. These optimized tasks and processes could be applied in a real
factory, which could bring a significant value to the end customer in the form of a
drastic reduction of sick leave requests caused by transportation hazards.

Lastly, I would like to express my gratitude to the people who supported me
during the research and acknowledged the importance of my work. I am pleased
that my research made a contribution to the future development of human-robot
co-existence and cooperation.
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14 Internship

I am grateful to the TUL International Office for granting me with an opportunity
to develop my skills and do my internship in the Linz Center of Mechatronics GmbH
at the Department of Sensors & Communication. This Austrian company is located
in the Since Park of Johannes-Kepler University in Linz. The LCM team has com-
prehensive experience in tendering for EU projects and other international project
plans. The project proposals for the following national programmes and structural
funds were submitted: European Technology Platforms: Initiative to support in-
ternational networking; Joint Technology Initiatives: public-private partnership to
support transnational research collaboration in selected technological fields; Future
and Emerging Technologies Art. 185-Initiativen, etc. Some of the results obtained
from these projects have since been successfully brought onto the market.

Figure 14.1: Linz Center of Mechatronics GmbH

As an intern, I participated in several research and commercial projects related
to the indoor navigation applications and human motion detection. By working with
outstanding professionals I developed a cross-platform application that allowed to
add a network interface to any USB (UART) device (USB - Universal Serial Bus).
I wrote some documentation including API (Application Programming Interface)
description and created an application sample, which was a significant part of the
work.

I was delighted to help modify and optimize UART(Universal Asynchronous
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Receiver-Transmitter) data transfer protocol in order to use DMA (Direct Memory
Access).

In the framework of another project, I was designing and implementing the
software for MEMS (Microelectromechanical systems) sensors reading. In addition, I
was among the developers to create a software program for MEMS data visualization.
At a later stage of the project we improved and extended the MEMS sensor library.

Implementing the algorithm for human motion detection was a project that
helped me to learn a lot. I transmitted features activation information to a base
station. Last but not least, I was able to design and implement a wireless network
sniffer to debug the indoor positioning systems (IPS) shown in the figure 14.2.

It was a priceless experience as it helped me to take my knowledge and skills to
a new level. I acquired competences in the areas of indoor navigation and digital
signal processing in the field of human motion detection. The internship deepened
my knowledge of python multi tasking and C++ in the field of embedded systems.

Figure 14.2: Developed indoor positioning system
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A Appendix

Figure A.1: Standard deviation of absolute interaction force for different settings of
impedance controller. Sample 1.

Figure A.2: Standard deviation of absolute interaction force for different settings of
impedance controller. Sample 2.
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Figure A.3: Standard deviation of absolute interaction force for different settings of
impedance controller. Sample 3.

Figure A.4: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 1.

Figure A.5: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 2.
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Figure A.6: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 3.

Figure A.7: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 1.

Figure A.8: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 2.

140



Figure A.9: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 3.
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B Mathematical Modeling of an Industrial
Cart

In the dynamic realm of industrial automation, the design and control of mobile plat-
forms play an important role in achieving efficient and seamless material transporta-
tion. The accurate representation of these systems through mathematical models
is necessary to analyze their behavior, predicting their performance, and ultimately
optimizing their operation. This chapter describes the development of a comprehen-
sive mathematical model for an industrial cart. We aim to provide a framework to
understand cart’s dynamics, control strategies, and system optimization.

Using the results from the chapter 7 we selected specific configuration commonly
found in heavily-loaded industrial carts. This configuration prominently features two
powered wheels and four casters, which serve as the primary components of the cart.
This carefully designed arrangement is important as it enables the cart to achieve
optimal mobility and stability during its operational tasks. By taking advantage
of the power coming from the two powered wheels, the cart can efficiently move
in both forward and backward directions, allowing for controlled and precise move-
ment. Complementing the powered wheels, the four casters play a significant role in
providing essential support and facilitating smooth steering of the cart. Together,
this configuration forms the foundation of the current research.

Due to the complexity of the system caused by several factor shown below we
explain the model step-by-step in the set of subchapters.

• Various friction types.

• Wheel spin dynamics.

• Wheel suspension.

• Load distribution.

B.1 Caster wheel
The mathematical description of a caster wheel can be quite complex due to its
swiveling action and the dependence on various factors such as the geometry of the
caster, the friction properties of the wheel and the surface, and the velocity and
direction of movement of the vehicle. A caster wheel is generally designed to align
itself in the direction of movement due to the offset between the point about which
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it swivels and the center of the wheel. This self-aligning torque depends on factors
such as the velocity of the vehicle, the load on the wheel, and the friction properties
of the wheel and the surface.

In a simplified 2D planar model, the kinematics of the caster wheel can be
described by the following equations:

dx

dt
= vc · cos(θc) (B.1)

dy

dt
= vc · sin(θc) (B.2)

dθc
dt

= wc (B.3)

where θc - the angle formed by the caster wheel’s direction makes with the x-axis
(the reference line); vc - the velocity of the caster wheel; wc - the angular velocity
of the caster wheel.

In addition, we need to consider self-aligning torque that aims to minimize the
angle θc.

dwc

dt
= −k · θc − d · wc (B.4)

where k is a spring constant that represents the self-aligning torque and d is a damp-
ing constant that represents the resistance to the change in the wheel’s direction.

Continuous differential equation B.4 could be written in the discrete form using
a simple forward Euler method, because it gives a sufficient precision for a simple
model, which is the damped harmonic oscillator in our case. For more complex
models we can use more advanced techniques, such as the Runge-Kutta method.

wc[n+ 1] = wc[n] + dt · (−k · θc[n]− d · wc[n]) (B.5)
where dt is the time step for the discretisation, n is the current time step, and

n+1 is the next time step. k and d are the spring constant and the damping constant,
respectively, wc is the angular velocity of the caster wheel, and θc is the angle of the
caster wheel.

The equation to adjust the angle θc could be written as:

θc[n+ 1] = θc[n] + dt · wc[n] (B.6)

Therefore, we used these equations to simulate the behaviour of caster wheels.

B.2 Numerical methods for solving ordinary
differential equations (ODEs)

Numerical methods are widely used to solve ordinary differential equations (ODEs)
when analytical solutions are not available or difficult to obtain. Two of the most
commonly used methods among the others are the Euler’s method and the Runge-
Kutta method.
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The Euler’s method is the simplest method for numerical integration of ODEs.
It works by using the derivative at the current point to estimate the value of the
function at the next point. The formula for the forward Euler method is:

y[n+ 1] = y[n] + h · f(t[n], y[n]) (B.7)

where h is the step size, f(t[n], y[n]) is the derivative of y with respect to t at the
point (t[n], y[n]).

While the Euler’s method is straightforward and easy to implement, it is only
first-order accurate, meaning that the error per step is proportional to the square of
the step size. This can lead to significant inaccuracies for larger step sizes or more
complex functions.

The Runge-Kutta method is a more sophisticated method for numerical inte-
gration that provides greater accuracy. The most common form is the 4th order
Runge-Kutta method, which takes four estimates of the derivative at various points
within the step size, and combines them to produce a more accurate estimate of the
function at the next point.

The formulas for the 4th order Runge-Kutta method are depicted in B.8-B.12.

k1 = h ∗ f(t[n], y[n]) (B.8)

k2 = h · f(t[n] + h

2
, y[n] +

k1

2
) (B.9)

k3 = h · f(t[n] + h

2
, y[n] +

k2

2
) (B.10)

k4 = h · f(t[n] + h, y[n] + k3) (B.11)

y[n+ 1] = y[n] + (k1 + 2 · k2 + 2 · k3 + k4)/6 (B.12)
where k1, k2, k3, and k4 are intermediate variables that are used to compute

the estimate of the derivative of the function at different points within the step.
These four estimates are then combined to compute a more accurate estimate of the
derivative of the function over the step, which is used to update the value of the
function at the next step.

• k1 is the estimate of the derivative at the beginning of the step. It is computed
in the same way as in the Euler’s method, using the derivative of the function
at the current point.

• k2 is an estimate of the derivative at the midpoint of the step, it uses the
derivative of the function at the point estimated by k1.

• k3 is another estimate of the derivative at the midpoint of the step, but this
time it uses the derivative of the function at the point estimated by k2.
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• k4 is an estimate of the derivative at the end of the step, it uses the derivative
of the function at the point estimated by k3.

In summary, the main difference between the Euler method and the Runge-Kutta
method is a trade-off between computational complexity and accuracy. The Euler
method is simpler and faster, but less accurate, while the Runge-Kutta method is
more accurate, but also more computationally intensive.

B.3 Direct current motor model
The industrial cart designed in this thesis is using DC motors for its movement. A
DC motor converts direct current electrical energy into mechanical energy. In this
chapter we show the mathematical model for a DC motor. The core idea is based
on Newton’s second law of motion and Kirchhoff’s voltage law.

The DC motor is characterized by the following set of parameters:

• V: input voltage to the motor.

• I: current flowing through the motor.

• R: resistance of the motor.

• L: inductance of the motor.

• w: angular velocity of the motor shaft.

• J: moment of inertia of the rotor.

• B: viscous damping coefficient.

• K: a constant that relates the input current and output torque, and also relates
the back-emf and speed of the motor, sometimes split into Kt (torque constant)
and Ke (back-emf constant).

Electrical equation (Kirchhoff’s voltage law):

V = L
dI

dt
+RI +Kω (B.13)

This equation states that the input voltage (V) to the motor is equal to the sum
of the voltage drop across the inductor (L · (dI

dt
)), the voltage drop across the resistor

(RI), and the back-emf (K�).
Mechanical equation (Newton’s second law):

τ = J
dω

dt
+Bω (B.14)

This equation states that the torque (τ) produced by the motor is equal to the
sum of the torque due to inertia (J · (dw

dt
)) and the torque due to damping (B · w).
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It is common to combine these two equations into a state-space form for control
design, B.15-B.16:

dI

dt
=

1

L
(V −RI −Kω) (B.15)

dω

dt
=

1

J
(KI − Bω) (B.16)

These are the fundamental equations that describe a DC motor’s dynamics. The
precise values of R, L, K, J, and B depend on the specific motor’s design. Note that
these equations are a simplification; real motors have many other effects such as
magnetic saturation, non-linear friction, and thermal effects that are not captured
in these equations.

Applying forward Euler discretisation to the state-space equations, we obtain:
The discretised electrical equation:

I[k + 1] = I[k] + T · 1
L
· (V [k]−R · I[k]−K · ω[k]) (B.17)

The discretized mechanical equation:

ω[k + 1] = ω[k] + T · 1
J
· (K · I[k]− B · ω[k]) (B.18)

where I[k] and w[k] are the current and angular velocity at the k-th discrete-time
instant, respectively. V [k] is the input voltage at the k-th discrete-time step. The
code obtained for this specific case can be demonstrated upon request.

B.4 Powered wheel
In this subchapter we describe mathematical model of a wheel connected to a DC
motor via a chain belt. This model typically involves several aspects, including the
motor characteristics, the gear ratio of the chain belt, the radius of the wheel, and
the load on the wheel.

For this mathematical model we make the following assumptions:

• The chain belt and gear mechanism is 100% efficient (this is usually not the
case in reality due to friction, slippage, etc.).

• The radius of the wheel is r and the load on the wheel is F (which opposes the
movement).

• The gear ratio is n (number of teeth on the wheel gear divided by the number
of teeth on the motor gear).

• The torque output of the motor is Tm, which depends on the current flowing
through the motor and the characteristics of the motor. The angular velocity
of the motor is wm.
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The torque on the wheel can be calculated as:

Tw = n · Tm (B.19)

The force exerted by the wheel on the ground, which propels the vehicle forward,
can be determined as:

Fw =
Tw

r
(B.20)

If there is a load on the wheel, we could assume that it opposes the movement.
Therefore, the net force can be calculated as follows:

Fn = Fw − F (B.21)

The angular velocity of the wheel is determined by the gear ratio and the motor’s
angular velocity:

ωw =
ωm

n
(B.22)

The linear velocity can be obtained by using the angular velocity of the wheel:

v = ωw · r (B.23)

We use this mathematical description from this subchapter to simulate the behaviour
of the powered wheels of the industrial cart, the torque generated by powered wheels,
its corresponding force, angular and linear velocity of the powered wheel.

B.5 Wheel suspension
The spring suspension system for a wheel can be modeled using Hooke’s Law and
Newton’s Second Law of Motion. Let’s assume that the wheel is connected to a
single spring that is attached to a fixed point above it. When the wheel moves up
or down, the spring exerts a force that opposes the motion and tries to bring the
wheel back to its equilibrium position.

The mathematical description of the spring suspension system is provided below.
The Hooke’s law states that the force exerted by a spring is directly propor-

tional to the displacement from its equilibrium position. Mathematically, it can be
expressed as:

F = −kx (B.24)
where F is the force exerted by the spring, k is the spring constant (stiffness), x

is the displacement from the equilibrium position. The negative sign indicates that
the force exerted by the spring is in the opposite direction to the displacement.

Newton’s second Law states that the net force acting on an object is equal to
the mass of the object multiplied by its acceleration. In the case of the wheel, the
net force is the sum of the force exerted by the spring and any other external forces
acting on the wheel. Mathematically, it can be expressed as:
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Fnet = ma (B.25)
where Fnet is the net force acting on the wheel, m is the mass of the wheel, a is

the acceleration of the wheel. By combining the Hooke’s law and Newton’s second
law, we can write the equation of motion for the spring suspension system:

ma = −kx (B.26)
This equation relates the acceleration of the wheel to the displacement from the

equilibrium position and the spring constant.
Solving this second-order ordinary differential equation yields the motion of the

wheel as a function of time. As the result, the accelerations and displacements
depend on the specific initial conditions and the properties of the system (mass,
spring constant, etc.).

B.6 Load distribution
When it comes to designing carts or analyzing their stability, understanding load
distribution on the wheels is of utmost importance. The distribution of weight
determines how the load is supported and impacts the performance and safety of
the cart. By employing the principles of static equilibrium, engineers and designers
can calculate the load distribution on cart wheels based on the position of the load.

In the static equilibrium state, a cart is assumed to be at rest with no net force
acting on it. This means that the forces applied to the cart must be balanced to
maintain stability. If we consider a cart with two wheels — one at the front and
another at the rear — the load distribution between these wheels can be determined.

To begin the analysis, the total weight of the cart and load needs to be known.
This weight, denoted as W, represents the force that needs to be supported by the
wheels. The next step involves identifying the position of the load with respect to
the front and rear wheels. These distances, denoted as x1 and x2 respectively, are
measured from the front wheel.

Once these parameters are established, the load distribution can be calculated
using the formulas derived from the static equilibrium principles. The key concept
is that the reaction forces exerted by the wheels, referred to as R1 and R2, must
balance the total weight of the cart and load.

To calculate the reaction force at the front wheel (R1), the following formula is
used:

R1 =
W · x2

x1 + x2

(B.27)

This formula takes into account the position of the load and the total weight.
It distributes the load between the wheels based on their distances from the load.
The closer the front wheel is to the load (smaller x2 compared to x1), the larger the
reaction force R1 it experiences.

Similarly, the reaction force at the rear wheel (R2) can be calculated using the
formula:
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R2 =
W · x1

x1 + x2

(B.28)

This formula follows the same logic as the previous one but considers the position
of the load in relation to the rear wheel.

It is important to note here that these formulas assume ideal conditions, such as
a level surface, identical and equally capable wheels, and the absence of other ex-
ternal forces or factors affecting load distribution. In real-world scenarios, however,
various factors, such as uneven terrain, wheel characteristics, and dynamic loads,
may require additional consideration to obtain a more accurate analysis.

By employing the principles of static equilibrium and utilizing these formulas,
engineers and designers can gain insights into load distribution on cart wheels based
on the position of the load. This knowledge is crucial to ensure stability, optimize
performance, and maintain safety in cart design and operation.

In conclusion, load distribution on cart wheels is a notable aspect to consider
in cart design. To understand the principles of static equilibrium and employ ap-
propriate formulas, we determined the load distribution between the wheels based
on the position of the load. This information enables us to design a cart which is
stable, efficient, and capable of safely carrying its intended loads.

B.7 Friction simulation
This chapter provides an in-depth understanding of friction and its role in the func-
tioning and efficiency of industrial carts. We discuss the different types of friction
forces that come into play in industrial carts. These may include static friction
(when the cart is at rest), kinetic or dynamic friction (when the cart is in motion),
rolling friction, and sliding friction. In addition, we explain how friction affects the
motion of industrial carts. The process of how static friction needs to be overcome
to set the cart in motion, and how kinetic friction influences the speed and accel-
eration of the cart is also addressed in this subsection. The following formulas are
used to calculate friction B.29 and B.30 and the corresponding coefficients for static
and kinetic frictions are depicted in tables B.1 and B.2. These coefficients can be
selected to adjust to the environmental parameters of the simulation model.

For static friction:
Fstatic = µstatic ·N (B.29)

For kinetic friction:
Fkinetic = µkinetic ·N (B.30)
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Table B.1: Coefficients of Friction for Material Handling Surfaces
Surface Combination Dry Condition Wet/Oily Condition

Steel on Steel 0.5 - 0.8 0.15 - 0.3
Steel on Concrete 0.6 - 0.8 0.1 - 0.3

Rubber on Concrete 0.6 - 1.0 0.3 - 0.6
Wood on Wood 0.25 - 0.5 0.1 - 0.2

Plastic on Plastic 0.2 - 0.4 0.1 - 0.2
Rubber on Asphalt 0.7 - 0.9 0.4 - 0.6

Table B.2: Coefficients of Friction for Material Handling Surfaces
Surface Combination Static

Friction
Dynamic
Friction

Rolling
Friction

Sliding
Friction

Steel on Steel 0.8 0.6 0.05 0.6
Steel on Concrete 0.7 0.5 0.04 0.5

Rubber on Concrete 1.0 0.8 0.02 0.8
Wood on Wood 0.5 0.4 0.06 0.4

Plastic on Plastic 0.4 0.3 0.08 0.3
Rubber on Asphalt 0.9 0.7 0.03 0.7

B.8 Kinematics
Let’s assume that the cart moves in a 2D plane (x, y) and is controlled by the
angular velocity of its two powered wheels. We can define the following variables:

x and y: the position of the cart in the plane theta: the orientation of the cart
with respect to the x-axis vl and vr: the linear velocities of the left and right powered
wheels, respectively R: the distance between the two powered wheels

The kinematic equations that describe the motion of the cart are:

vc = (vl + vr)/2 (B.31)

(vc - the average linear velocity of the two powered wheels)

ωc = (vr − vl)/R (B.32)
(ωc - the angular velocity of the cart)

ẋ = vc · cos(θ) (B.33)

ẏ = vc · sin(θ) (B.34)

θ̇ = ωc (B.35)
Using these formulas we obtained the linear speed of the cart and its angular velocity,
as well as its position and orientation in the 2D plane.
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B.9 Dynamics
To describe the dynamics of the cart, we need to consider the forces acting on it.
Let’s assume that the cart is subject to the following forces:

Fl and Fr: the forces exerted by the left and right powered wheels, respectively
Fc: the force exerted by the caster wheels

We can then write the following equations of motion for the cart:

m · ẍ = Fl · cos(θ) + Fr · cos(θ) + Fc · cos(ϕ) (B.36)

m · ÿ = Fl · sin(θ) + Fr · sin(θ) + Fc · sin(phi) (B.37)

I · θ̈ = (Fr − Fl) ·R (B.38)
where m is the mass of the cart, I is the moment of inertia of the cart about

its center of mass, and phi is the angle between the direction of motion and the
direction of the force exerted by the caster wheels.

The above equations can be solved numerically to simulate the motion of the
cart in time. We should note here that the forces Fl, Fr, and Fc depend on the
control inputs (i.e., the angular velocities of the powered wheels), as well as on the
friction coefficients between the wheels and the ground, and on the geometry of the
cart.

Let’s assume that each of the powered wheels is driven by a DC motor. The
dynamics of a DC motor can be described by the following equations:

V = Rm · i+ Lm ·
di

dt
+ Ve (B.39)

Tm = kt · i (B.40)
where V is the applied voltage, Rm is the motor resistance, Lm is the motor

inductance, i is the motor current, di/dt is the time derivative of the current, Ve is
the back electromotive force, Tm is the motor torque, and kt is the torque constant.

The back electromotive force can be modeled as:

Ve = ke · ω (B.41)
where omega is the angular velocity of the motor and ke is the motor’s back

electromotive force constant.
Assuming that the motor torque is transmitted to the powered wheel through a

gear train with gear ratio G, we can write:

Tw = Tm ·G (B.42)
where Tw is the torque applied to the powered wheel.
Finally, we can relate the torque applied to the powered wheel to the force exerted

on the ground by the wheel through the following equation:
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Tw = Fw · rw (B.43)
where Fw is the force exerted on the ground by the wheel, and rw is the radius

of the wheel.
Putting it all together, we can write the equations that describe the dynamics

of the powered wheels as:

Vl = Rm · il + Lm ·
dil
dt

+ ke · ωl (B.44)

Vr = Rm · ir + Lm ·
dir
dt

+ ke · ωr (B.45)

Tl = kt · il (B.46)

Tr = kt · ir (B.47)

Tlw = Tl ·G (B.48)

Trw = Tr ·G (B.49)

Flw =
Tlw

rw
(B.50)

Frw =
Trw

rw
(B.51)

where Vl and Vr are the voltages applied to the left and right motors, respectively,
il and ir are the currents through the left and right motors, ωl and ωr are the angular
velocities of the left and right motors, Tlw and Trw are the torques applied to the
left and right powered wheels, Flw and Frw are the forces exerted on the ground by
the left and right powered wheels, and rw is the radius of the powered wheels.

152



List of variables
Caster wheel

x Horizontal position of the caster wheel in the 2D plane
y Vertical position of the caster wheel in the 2D plane
θc Orientation or angular position of the caster wheel
vc Linear velocity of the caster wheel
wc Angular velocity or rotational speed of the caster wheel
dwc

dt
Rate of change of angular velocity with respect to time

k Proportional constant affecting the self-aligning torque
d Damping coefficient affecting the angular velocity

Numerical methods

y Dependent variable
h Step size or time increment
f(t, y) Function representing the rate of change of y with respect to t
t Independent variable or time
k1 First intermediate variable in the 4th order Runge-Kutta method
k2 Second intermediate variable in the 4th order Runge-Kutta method
k3 Third intermediate variable in the 4th order Runge-Kutta method
k4 Fourth intermediate variable in the 4th order Runge-Kutta method

DC motor model

V Applied voltage across the DC motor terminals
L Inductance of the motor winding
dI
dt

Rate of change of armature current with respect to time
R Resistance of the motor winding
I Armature current (current flowing through the motor winding)
K Motor constant related to back electromotive force (back EMF)
ω Angular velocity of the motor shaft
τ Torque generated by the motor
J Moment of inertia of the motor’s rotor
dω
dt

Rate of change of angular velocity with respect to time
B Viscous damping coefficient in the mechanical system
T Sampling or time step for discretisation

Powered wheel chapter

Tw Torque exerted by the wheel
n Gear ratio
Tm Torque generated by the motor
Fw Force exerted by the wheel on the ground
r Radius of the wheel
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Fn Net force accounting for external load
F Load force opposing wheel movement
ωw Angular velocity of the wheel
ωm Angular velocity of the motor
v Linear velocity of the wheel

Wheel suspension

F Spring force in the suspension system
k Suspension spring constant
x Displacement of the wheel from its equilibrium position
Fnet Net force acting on the wheel-suspension system
m Mass of the vehicle wheel
a Acceleration of the wheel in the suspension system

Friction simulation

Fstatic Static frictional force
µstatic Coefficient of static friction
N Normal force exerted on the object
Fkinetic Kinetic (or sliding) frictional force
µkinetic Coefficient of kinetic friction

Cart kinematics

vc Average linear velocity of the two powered wheels
vl Linear velocity of the left powered wheel
vr Linear velocity of the right powered wheel
ωc Angular velocity of the cart
R Radius from the center of the cart to a powered wheel
ẋ Cart velocity in the direction of x axis
ẏ Cart velocity in the direction of y axis
θ̇ Rate of change of the orientation of the cart (Angular velocity of

the cart)
θ Orientation or angular position of the cart

Cart dynamics

m Mass of the cart
ẍ Acceleration of the cart in the horizontal direction
ÿ Acceleration of the cart in the vertical direction
θ̈ Angular acceleration of the cart
I Moment of inertia of the cart
R Radius from the center of the cart to a powered wheel
Fl Force applied to the cart from the left wheel
Fr Force applied to the cart from the right wheel
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Fc Force applied to the cart from the caster wheel
θ Angle representing the orientation of the cart
ϕ Angle representing the orientation of the caster wheel
V Voltage applied to the DC motor
Rm Motor resistance
i Current flowing through the motor
Lm Motor inductance
di
dt

Rate of change of current
Ve Back electromotive force (EMF)
Tm Motor torque
kt Motor torque constant
ke Motor back EMF constant
ω Angular velocity of the motor
G Gear ratio
Tw Torque applied to the powered wheel
Fw Force exerted on the ground by the wheel
rw Radius of the wheel
Vl Voltage applied to the left wheel motor
Vr Voltage applied to the right wheel motor
il Current flowing through the left wheel motor
ir Current flowing through the right wheel motor
ωl Angular velocity of the left wheel
ωr Angular velocity of the right wheel
Tl Torque generated by the left wheel motor
Tr Torque generated by the right wheel motor
Tlw Torque applied to the left powered wheel
Trw Torque applied to the right powered wheel
Flw Force exerted on the ground by the left powered wheel
Frw Force exerted on the ground by the right powered wheel
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