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Elektrická pomoc pro průmyslové vozíky 

Abstrakt 

Tato výzkumná práce se zaměřuje na probádání fyzikální interakce, 
která vzniká mezi lidským operátorem a průmyslovým vozíkem 
s pohonem (IPAC). Cílem výzkumu je zlepšit spolupráci člověka 
a IPAC tím, že se nalezne správný mechanický design a způsob in
teligentní kontroly za účelem dosažení takového stavu, ve kterém 
vozík umí rozpoznat záměr operátora a je schopen nastavit svoje 
parametry tak, aby došlo k lepší interakci vozíku s člověkem a bylo 
zajištěno pohodlí a celkový výkon. 

V rámci této disertační práce byl vyvinut prototyp průmyslového 
vozíku, který byl vybaven sadou senzorů na měření parametrů in
terakce člověka s vozíkem. Tento vyvinutý průmyslový vozík je 
schopen rozpoznat záměr člověka na základě sledování parametrů 
procesu interakce. Na začátku této práce byla provedena analýza 
současného stavu techniky a byly vybrány nej slibnější kontrolní 
techniky. Analyzovali jsme součásti průmyslového vozíku a 
vytvořili jsme kinematický a dynamický popis modelu. Tento 
vyvinutý vozík má dva stupně volnosti a byly použity regulátory 
impedance tak, aby ovládaly oba stupně. 

Přesto je však tato disertační práce hlavně zaměřena na zpětnou 
vazbu a pohodlí člověka. Proto byl proveden soubor experimentů 
s cílem odhadnout účinky parametrů proměnné impedance, co se 
týče regulátoru translačních a rotačních pohybů. Za účelem vy
hodnocení emocionální zpětné vazby lidského operátora byl vyv
inut objektivní párový dotazník. Ve výsledku jsme našli vztah 
mezi nezávislými proměnnými, jako jsou například parametry kom
fortu obsluhy. Pomocí regresivní analýzy jsme zjistili, že ne všechny 
parametry regulátoru impedance mají významný vliv na interakci. 
Také jsme zjistili, že parametry impedance pro pohodlnou interakci 
se liší u různých operátorů. Zjistili jsme, že existuje významná ko
relace mezi průměrnou a standardní odchylkou absolutní hodnoty 
interakční síly a rychlostí vozíku a pohodlím člověka. 

Pomocí výsledků regresivní analýzy jsme použili algoritmus 
zesíleného učení, který mohl přepínat stavy regulátorů impedance 
podle záměrů operátora. V rámci této diplomové práce je před
staven proces vývoje vozíku a metodologie výzkumu. 



Klíčová slova: Inteligentní elektrická vozidla, adaptivní mecha-
tronika pro člověka, rozhraní člověk-vozidlo, řízení s posilovačem, 
řízení se snímáním síly, hodnocení lidského pohodlí, průmyslový 
vozík. 
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Adaptive assistance considering human 
factors for industrial carts 

Abstract 

The research work is focused on the study of physical interaction 
between the human-operator and an industrial power-assisted cart 
(IPAC). The research goal is to improve the cooperation between 
human and IPAC by finding a proper mechanical design and meth
ods of intelligent control in order to achieve a state in which the cart 
can recognize operator's intention and adjust its parameters for a 
better human-cart interaction, comfort and overall performance. 

In the scope of the thesis a prototype of an industrial cart was devel
oped and equipped with a set of sensors to measure the human-cart 
interaction parameters. Developed industrial cart could recognize 
human intention by observing interaction process parameters. In 
the beginning of the work the analysis of the state of art was per
formed and the most promising control techniques were selected. 
We analyzed the components of the industrial cart and created the 
kinematic and dynamic description of the model. The developed 
cart has two degrees of freedom and impedance controllers were 
implemented to manage both of these degrees. 

Nevertheless, The thesis is mainly focused on human feedback and 
comfort. Therefore, a set of experiments was performed to esti
mate the effect of variable impedance parameters for the controller 
of transnational and rotational motions. In order to evaluate emo
tional feedback of the human-operator an objective pair-based ques
tionnaire was developed. As a result, we found a relationship be
tween independent variables such as impedance control parameters 
and operator's comfort experience. Using regression analysis we 
found out that not all the parameters of the impedance controller 
have a significant effect on the interaction. We also learned that 
the impedance parameters for comfortable interaction are different 
for different operators. We learned that there is a strong correlation 
between the mean and the standard deviation of absolute value of 
interaction force and cart speed and human comfort. 

Using the regression analysis results we implemented the reinforce
ment learning algorithm that could switch states of the impedance 
controllers according to the operator's intention. The process of 
cart development and the research methodology is presented in the 
scope of the thesis. 
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1 Introduction 

In the rapidly developing landscape of industrial automation, the synergy between 
human operators and intelligent machines plays an important role in shaping the 
future of efficient and safe manufacturing environment [1]. 

According to a recent survey conducted by Fang et al. [2], a crucial aspect of 
this development is the physical collaboration between human operators and robots, 
which can be considered from two perspectives. On one side, human sensorimo
tor control models provide novel insights into the human response that robots can 
utilize to enhance human performance. On the other side, robots are becoming 
instrumental in quantifying the performance of the musculoskeletal system. Con
sequently, the combined use of human modeling and robotic methods in physical 
human-robot interaction (PHRI) [3] can lead to both improved understanding of 
human capabilities and functional assistance. 

Within the context of this thesis, we consolidate and integrate the knowledge of 
physics, control theory, reinforcement learning and emotional side of human being, 
such as comfort, to improve process of physical interaction. Dissertation contributes 
to the topic of PHRI on various levels from information collection and statistical 
analysis to software development and hardware implementation. 

The thesis consists of thirteen chapters. Chapter 1 provides the summary of the 
topics involved in the dissertation and explains how to navigate through the the-
sis's content. Chapter 2 contains problem definition, where risk factors in material 
handling process and their root causes were identified by evaluation of high-quality 
statistics and data provided by Eurostat [4], ergonomic manuals [5], [6], [7], risk 
assessment reports [8], [9] and epidemiological studies [10], [11]. 

Chapter 3 includes a critical review of existing control algorithms, considering 
classical techniques such as impedance and admittance control [12], [13], alongside 
contemporary machine learning-based methodologies [14] and model predictive con
trol [15], suitable for power-assisted vehicles (PAV). 

Chapter 4 derives motivation for conducted research, followed by chapter 5 that 
sets the goal and objectives of the project. In order to reach the research goal and 
fulfill the objectives, the description of used theoretical, mathematical and empirical 
research methods [16], [17] was combined in chapter 6. The concept of an industrial 
cart was evaluated in chapter 7. 

Chapter 8 reviews the process of the test platform development including the 
main requirement hardware (HW) design, software (SW) implementation, the de
scription of cart kinematics and dynamics. Appendix B contributes to the math
ematical description of industrial carts, by providing the reader with step-by-step 
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explanation of the PAV model. Chapter 9 presents the workflow of the human-
operator study starting with the description of the human motion and following 
description of applied methods to evaluate the operator's feedback. 

Chapter 10 describes the process of human - industrial cart interaction. It in
cludes the analysis of raw data and experiment design. In the chapter 11, the regres
sion analysis of the experiment results is performed in order to reveal dependencies 
between measured physical values from industrial cart and emotional feedback from 
the operator. 

Chapter 12 reinforcement learning [18] demonstrates the implemented algorithm 
that uses a rating system based on actions, states and rewards. Based on the rewards 
which are obtained for the actions b the learning system, the novel algorithm is able 
to change the system's state and adjust impedance controllers according to the 
intentions of the operator. Most chapters are concluded by a list of variables used 
in this particular chapter. 

The thesis is concluded by the collection of outcomes and technical solutions, 
highlights of the thesis, as well as suggestions for possible future research opportu
nities and the area of human-industrial cart interaction. 
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2 Problem statement 

"If you define the problem 
correctly, you almost have the 
solution." 

Steve Jobs 

In this chapter the statement of the problem is formulated to be resolved in the 
later workflow of the thesis. Firstly, it is necessary to define the key components of 
the human-robot interaction process. Secondly, the main factors in pushing/pulling 
tasks are described and classified. It goes on to overview the latest statistics coming 
from Eurostat to uncover the roots of the human-cart interaction problem. The 
following pages summarise the information about the factors that could affect the 
interaction process and lead to injuries or hazards. Some of the main potential 
injuries and hazards are joined up in a system. 

Human-robot interaction is a complex process that, in our view, should be ad
dressed from the perspective of multiple disciplines, such as physiology, ergonomics, 
robotics and machine learning. In the framework of the current thesis, the main 
components are defined and referred to as follows: Human-Robot Interaction (HRI) 
includes both physical aspects of helping a human being with some tasks, and socio-
emotional aspects, including but not limited to communication, social interaction, 
robot acceptance. Haptic interaction is based on studying the tactile interaction 
between a human and a robot. It can be viewed from two perspectives of a human 
and a robot, addressing the physical interaction feelings of the human, and the algo
rithms how a robot can define, classify, organise and apply the information about the 
surrounding environment. Power-assisted system (support system) is a system that 
allows to perform physical tasks. Examples of such systems include exoskeletons, 
manual vehicles (carts equipped with an electrical drive). Material handling tasks 
refer to logistical objectives of obtaining, moving, transporting, and handling mate
rials and goods to ensure the consistent operation of supply chains within a factory 
or a warehouse. The definition of a mobile robot is generally broader than the one 
of a mobile platform, but for the sake of simplicity, in the framework of this thesis 
these two concepts will be used interchangeably. Collaborative robotic environment 
is the type of environment that allows robots and humans operate efficiently and 
with minimal failures. Human operator is an individual who manipulates a mobile 
platform and performs material handling tasks. Mobile platform is in this case a mo
bile robot which can move in Cartesian space equipped with sensors and actuators, 
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it can help an operator to perform material handling tasks. Human-cart interac
tion describes the relationship between an operator and a powered industrial cart. 
Industrial cart is a special type of a cart used at factories and warehouses which 
can carry large volumes of freight. Manual pulling/pushing tasks involve applying 
force by an operator to push the cart forward, backward, or to perform rotational 
movement. Overexertion is a phenomenon of applying more force than needed to 
perform a certain task. It may occur due to a fault in estimating the weight of a 
load. 

Industrial cart manipulation is a physical activity of a human operator that 
involves exertion of considerable force in order to overcome the forces that resist 
motion and reach target position. When operators carry a loaded or empty industrial 
cart, they generate the force and transmit it to the cart through contact points. A 
few researchers [7] identified a number of key factors that have a considerable effect 
on the human - cart interaction process during manual pushing and pulling tasks. 
These key factors are organized into the table 2.1. 

Category Factors 
Human Factors Height 

Weight 
Size-weight Illusion (SWI) 
Age 
Gender 
Strength 
Posture 
Physiological Capacity 

Height 
Weight 
Size-weight Illusion (SWI) 
Age 
Gender 
Strength 
Posture 
Physiological Capacity 

Task Factors Distance Moved 
Movement Initiation Force Requirements 
Sustained Motion Force Requirements 
Direction and Nature of Movement 
Duration of Pushing/Pulling Task 

Cart/Equipment Factors Handhold Height 
Handhold Orientation 
Handhold Type 
Caster/Wheel Design Specifications 
Stability 
Size 
Weight 

Floor/Ground Factors Surface Characteristics (smooth, rough, inclined) 
Contaminants 

Table 2.1: Key Factors in Pushing/Pulling Tasks [7] 

However, there are certain material handling tasks performed with little assis
tance from PAVs, or without any assistance at all, which means that human op
erators tend to perform algorithms which might harm their physical health and 
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well-being. If such algorithms are continuously carried out, it can result in wors
ening physical conditions of human operators employed in various industrial fields. 
Several studies have reported a relationship between pushing/pulling and shoulder 
pain, such as increased shoulder pain from pushing/pulling wheeled equipment [9]; 
pushing/pulling heavy weights [19] and pushing against a high handle [20]. 

A review on pushing and pulling forces was carried out by Garg et al. [8], 
who provided definition and recommendations on maximum acceptable pushing and 
pulling forces applied by operators. Cross-sectional epidemiological studies often 
show that the cart manipulation activities are associated with the shoulder pain, low-
back pain, and musculoskeletal disorders [21] and [10]. Pushing and pulling of carts 
and objects exposes workers to two types of hazards: stresses to the musculoskeletal 
system from applied hand force, and accidents due to slipping or tripping [11]. 

Pushing, pulling, and maneuvering industrial carts involves some common haz
ards, such as overexertion. According to Eurostat data (2020), the most common 
injuries that result from cart operations are: 

• fingers and hands being caught in, on, or between the cart and other object 

• toes, feet and lower legs being bumped into or crushed by the cart 

• slips, trips, and falls, and strain injuries predominantly for the lower back, 
shoulder, and arm muscles and joints. 

These problems might be resolved with the help of adequate power-assisted ve
hicles used to help operators perform material handling tasks. 

2.1 Topic relevance 

Manual cargo transportation tasks, many of which require pushing, pulling and 
rotating are common in almost all industrial and warehouse environments. Nearly 
half of all manual materials handling consists of pushing and pulling activities [22]. 
The current research thesis focuses specifically on carrying activities while using 
industrial power assisted carts. These tasks often expose workers to musculoskeletal 
stresses as well as other related injuries, slipping and tripping hazards. 

Material handling exposes the worker to known risk factors for low-back disor
der, such as lifting, bending, twisting, pulling, pushing and maintenance of static 
postures. 

If we take a look at the fatal and non-fatal accidents statistics in Europe in 
2020 according to the Eurostat data shown in the figure 2.1, it becomes clear what 
activities are the most dangerous. A share of 11.1% of all non-fatal accidents at work 
is strongly connected to the activity "handling of objects", and 9.1% of accidents 
happened when the workers were in process of carrying something by hand. 

People who work in construction, transportation and manufacturing suffer from 
many injures. Nearly 40% of all non fatal injures come from these three fields. Nearly 
54% all deaths during working hours also happen in construction, transportation and 
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Accidents at work by specific physical activity and economic activity, 
EU, 2020 
(%) 
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included in the heading for no information. 

Source: Eurostat (online data code: hsw_ph3_04) eurostatH 

Figure 2.1: Accidents at work by specific physical activity and economic activity, 
E U , 2020, per cent [4] 

manufacturing. Risk factors related to transportation and manual handling tasks 
are placed second in the graph 2.2 of accidents at work by the injured body part 
for the individual economic activities. In 2020, non-fatal accidents at work that 
resulted in injuries of the upper extremities were particularly common in the E U 
within manufacturing (52.5%). For injuries of the lower extremities, there were few 
variations by activity, with the highest shares of injuries occurring in transportation 
and storage (35.7%), and mining and quarrying (34.9%). 

By analysing the job satisfaction level it was illustrated in figure 2.3 that people 
in the countries that may have more production and therefore, have more elementary 
occupation positions tend to be less satisfied with their jobs and lives. 

However, the existing statistics do not reflect the importance of maneuvering 
with industrial carts as potential risk factors causing injury at work in the full 
scope, because the injuries may often fall into different categories making them 
difficult to analyze. To conclude, human operators often do not obtain enough 
support from a cart and may suffer from a number of injuries at their working place. 
The imperfections of human-cart interactions may often put human operators at 
risk of compromising their physical health and overall well-being, thus leading to 
fatigue of their fellow colleagues. This results in a vicious circle of fatal and non-fatal 
accidents which occur in material handling in various industries. 
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Non-fatal accidents at work by part of body injured and economic 
activity, EU, 2020 
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Figure 2.2: Non-fatal accidents at work by part of body injured and economic 
activity, E U , 2020 (per cent of non-fatal accidents for each activity) [4] 
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Figure 2.3: Employment by low job satisfaction for 15-74 year-olds, elementary occu
pations, thousand workers, in 2021, Eurostat (online data code: LFSO 21JSAT03) 
[4] 
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3 State of art 

"A state-of-the-art calculation 
requires 100 hours of CPU time on 
the state-of-the-art computer, 
independent of the decade." 

Edward Teller 

The objective of this chapter is to review the existing information on human -
mobile robot physical interaction including hazards, problems and existing solutions 
in the area of physics, automation control theory, machine learning and psychology, 
namely, emotional feedback. This chapter is aimed to demonstrate the existing 
theories and approaches in the field of power-assisted vehicles. This topic is quite 
relevant nowadays, as over the last few decades there have been a large number 
of studies related to the physical human-robot interaction (between a man and a 
machine), see Figure 3.1. 

When analyzing the state of the art in the field of human - robot physical 
interaction, it is necessary to consider the problem from two perspectives, such as 
the point of physical interaction between the human operator and the industrial cart, 
and methods of emotional feedback evaluation during their interaction with the cart. 
This chapter describes the most promising power assisted techniques developed by 
previous researchers, as well as the works related to the evaluation of operator's 
characteristics. 

CO 
oo 

• • • • • • • • • • • u • u u u u u u u u 
;x 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023 

Year 

Figure 3.1: PHRI publications in web of science core collection [23] 
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3.1 Physical human-robot interaction 

In order to enable humans and robots to work together in close proximity, a learning 
framework was developed by Dinh et al. (2019) [24] that incorporates real-time ob
stacle avoidance. As a result, both legibility and safety issues are addressed within 
this framework. This implies that the task generalization strategy helps the robot 
adapt to new tasks more quickly, which cuts down on training time. The method 
was tested using both a real robot and an articulated K U K A IIWA robot in vir
tual reality (VR) and human operators. According to Wang et al. (2019) [25], 
utilizing robots' ability to learn by demonstrating examples increased the quality 
of collaboration between humans and robots. In this paper, techniques on human 
teaching and robot learning have been examined together with the relevant applica
tions. The researchers created two comparison charts of human teaching approaches 
and robot learning approaches, from which kinaesthetic-based teaching was applied 
in the current research. A method for postural optimization that considers task 
limits and acceptability while reducing the risk of MSDs was introduced in Busch 
et al. (2017) [5] who evaluated the operators' posture during the interaction process 
with 39 participants with the help of a motion tracking technology. A comprehen
sive study by Muller et al. (2018) [26] investigated differences between variable 
impedance controller and admittance controller finding that the participants im
proved their problem-solving time using the variable impedance controller. Another 
study (Kang et al., 2019) [27] confirmed that variable admittance control improves 
run time, accuracy, and operators' comfort. 

However, the success of HRI in material handling tasks depends on a number of 
factors, including the design of the robot and its user interface, the layout and or
ganization of the work environment, and the level of training and support provided 
to human workers. Studies have also shown that the effectiveness of HRI in ma
terial handling tasks is influenced by the level of collaboration and communication 
between humans and robots, as well as the level of trust that humans have in the 
robot's abilities. Namely, Capdepuy et al. (2015) [28] demonstrated that inversed 
kinematics approach (IK) improves interaction comfort. The results obtained by 
Herrera et al. (2016) [29] suggest that the system can overcome many common 
disturbance situations and adapt its behavior to different disturbance events over 
time using fuzzy logic methods. HRI has the potential to improve the efficiency and 
productivity of material handling tasks, while also reducing the risk of injury and 
fatigue for human workers. However, it is important to carefully consider the design 
and implementation of HRI systems in order to ensure that they are safe, reliable, 
and effective. A journal of HRI (vol.4) published in 2015 precisely focused on the 
ways in which haptic interaction can be used to enable cooperation and commu
nication between humans and robots, considering both the human perspective and 
the engineering challenges involved. The introduction made by its editors MacLean 
and Frisoli [30] stated that the development of robots that could potentially share 
physical space and work cooperatively with humans will require the use of haptic 
technology to facilitate communication and interaction during physical contact. 

The article published in 2019 by Oltean [31] describes a mobile robot platform 
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that has a fixed four-wheel chassis and is equipped with an electronic system based on 
Raspberry P i and Arduino Uno interfaces. The platform is designed to be low-cost, 
reliable, and flexible, making it suitable for use in teaching and research. Potential 
applications for this platform include serving as an autonomous guide robot for 
indoor environments, assisting patients in a medical setting, military use, organizing 
and transporting materials in warehouses, and transporting waste, laundry, food, 
pharmaceuticals, or mail. 

A great deal of research has been done on physiological and psychophysical as
pects of materials handling. Ciriello and Snook [32], [33] have published a large data 
base for designing lifting, lowering, pushing, pulling and carrying tasks. Ciriello's 
[34] study the maximum comfortable forces for pushing and pulling a cart. In addi
tion, there have been many contributions to the human-robot physical interaction 
area related to impedance and compliance control [35], [12], force/motion impedance 
control [36], model reference adaptive impedance control [37]. In parallel, adaptive 
control of robotic manipulators has advanced considerably in recent decades to re
duce dependency on a precise knowledge of the dynamics of the robot and the 
environment. It resulted in the increased interest in adaptive impedance control 
[38], [39]. 

These studies focused on design factors of carriers and their effects through kine
matic and biomechanical models. Despite researchers' effort on the carrier design 
improvement in terms of human factors, there are still various injuries because users' 
preferences and reactions were not considered in the studies. 

This dissertation proposes a systematic approach in development of a unified, 
flexible and inexpensive device developed for comfortable human-robot interaction 
that responds to the human operator expectations. The use of hand carts to trans
port loads instead of carrying them saves workers a lot of effort. It decreases the 
risk of overexertion injuries at work that include manual materials handling. 

3.2 Aspects of human comfort and expectations 

Within the topic of measuring comfort in human-robot interaction (HRI), user com
fort in material handling tasks can be measured through a variety of methods, in
cluding self-report surveys, physiological measures (such as heart rate and sweat 
gland activity), and behavioral observations. These techniques are described in the 
following paragraphs to reveal the research gap. 

Self-report surveys are a common method to assess user comfort, as they allow 
individuals to describe their experiences and perceptions directly. Surveys can in
clude questions about the overall comfort level with the task, the perceived level of 
physical strain, and the ease of the robot's use. Physiological measures can provide 
objective data on the body's response to the task and can be used to indicate levels 
of stress or discomfort. For example, an increase in heart rate or sweat gland activ
ity may indicate that the user is experiencing discomfort or strain during the task. 
In the study by Widdowson et al. (2017) [40] a multi-method approach incorporat
ing behavioural measurements, self-report questionnaires, and physiological data to 
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detect human arousal in a variety of predefined real-time scenarios and settings was 
applied. 

Behavioral observations involve observing and recording the actions and behav
iors of the user during the task. This can include measures such as the speed 
and smoothness of movements, the frequency of breaks or pauses, and the overall 
performance on the task. In the article published in 2021 by Liu et al. [41], a 
human-robot handover system was proposed based on human behaviour patterns. 
The results showed that the model can predict an object's transmission points that 
conform to human handling habits. It can potentially provide a more natural and 
smoother transmission experience with human operators. 

The choice of method to measure user comfort depends on the specific goals of the 
study and the resources available. It is important to use a combination of methods to 
obtain a comprehensive understanding of user comfort in material handling tasks. 
For this reason in the framework of this research, operator's comfort estimation 
methods are described in Chapter 9. 

To our knowledge, the aspects of human comfort and expectations during human 
- industrial cart interaction appear to be understudied. There are no studies related 
to the human comfort estimation during goods transportation process with help of 
industrial power-assisted cart (IPAC). However, Silva et al. present a cart built to 
move 500 kg net loads with friendly human perception [42]. The complete system 
is shown in the figure 3.2. 

Figure 3.2: Mechanical traction system for electrical load cart developed by Silva et 
al. [43] 

In their study, the mechanical structure and power elements were designed to 
aid in translational displacements of 500kg net load. The human command were 
measured by a 1300N side effort compensated load cell. The control system devel
oped by Silva et al. is based on emulated mechanical impedance that generates the 
speed setpoint. 

In order to evaluate the force controller performance, the authors compared the 
human force necessary to move the vehicle when the human aid system was enabled 
or disabled. As shown in figure 3.4, the average human force necessary to move the 
cart without help from the cooperative system is about 3.5 times greater than that 
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cell 

( guidance 
bar) 

Figure 3.3: Load cell mounting scheme for human force measurement [43] 

observed when the system is enabled. In order to summarise the algorithms that 
could be used to create a cooperative system, we will briefly describe the capabilities 
of each control algorithm to rationalise the choice of impedance control. 

Time [s] 

Figure 3.4: Human force with 120kg total load over a non-inclined surface [43] 

Impedance control focuses on controlling the stiffness and damping properties 
of a system. In the context of a powered cart, this would mean controlling how 
the cart responds to external forces. Admittance control is essentially the inverse of 
impedance control, emphasizing the relationship between the cart's motion and the 
applied force. Both the impedance and the admittance control can be effective for 
applications where the cart needs to interact with its environment in a compliant 
manner, adapting to varying conditions. This appears to be suitable in our case when 
the cart needs to navigate through environments with uncertainties and obstacles. 

Compliance control approach aims to make the system compliant or flexible, al
lowing it to absorb external disturbances without significant disruption. It might be 

27 



beneficial when the cart needs to handle dynamic and unpredictable environments, 
providing a level of flexibility to navigate through obstacles without causing damage. 

Model Reference Adaptive Impedance Control (MRAIC) combines the adapt
ability of model reference control with the impedance control strategy. It adjusts 
the impedance parameters based on the difference between the actual and desired 
system behavior. This type of control is suitable for systems with varying dynamics 
or environments. It can be effective in industrial applications where the cart may 
encounter different loads or operating conditions. 

First Order Lag controller introduces a time delay in the system's response to 
changes, providing a simple form of dynamic behavior. Such controllers are often 
used in systems where a gradual response to changes is acceptable. However, for ap
plications like powered carts that require more sophisticated and adaptable control, 
other methods like impedance control or compliance control may be more suitable. 

The most suitable control algorithm for an industrial powered cart depends on 
the specific requirements of the application. If the cart needs to navigate through 
dynamic and uncertain environments, impedance control, compliance control, or 
M R A I C may be more appropriate due to their adaptability. On the other hand, 
if a simpler response is acceptable, a first-order lag controller could be considered. 
The choice ultimately depends on factors such as the desired level of adaptability, 
precision, and response time in the given industrial context. In the case of the 
current research, we opted for the impedance control as we work with uncertain 
environment, which in this case, depends on the behaviour of the human operator. 

3.3 Impedance/Admittance control 

Theoretical concept of Impedance control was introduced in 1985 by Professor 
Neville Hogan from Massachusetts Institute of Technology (MIT) [12]. The ob
jective of impedance control is not to directly control position or force, but the 
relationship between them. This allows to reduce or increase apparent stiffness, 
damping, or mass depending on the task. The overall purpose of the impedance 
control creation was to develop an approach to control a manipulated object that 
would be suitable for a broad range of applications. General impedance control 
scheme is shown in the figure 3.5. 

Manipulation with the object of interest requires a physical interaction. In order 
to fulfill the task requirements, the user chooses a desired impedance that could be 
expressed by the following general equation 3.1: 

Md(x - xd) + Bd(x - xd) + Kd(x - xd) = fe (3.1) 

Where Md, Bd and Dd are positive constants that represent the desired iner
tia, damping and stiffness, respectively. From the equation 3.1 we could find the 
acceleration reference described by 3.2: 

xr = xd + Md-l[-fe + Bd(x - xd) + Kd(x - xd)} (3.2) 
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Figure 3.5: Example of a block diagram of an impedance controller form [36] 

For admittance control, the control force is a position-controller designed to track 
the trajectory x = xd. Trajectory tracking is implemented using a P D controller 
with positive gains Kp and Kd: 

fr = Kp(xd - x) + Kdx (3.3) 

The simplified impedance controller could be written in the following form: 

Md(x - xd) + Bd(x - xd) = fe (3.4) 

It was proved by previous researchers [39] that the spring component of the 
impedance controller does not have a significant impact on the process of interaction. 

The impedance controller is a virtual dynamic system. Along with the com
pliance controller it allows to set any desired system dynamics. By changing the 
settings of the virtual mass (Mass), a virtual damper (Damp) and virtual spring 
component we can obtain the desired system response to the control impact. In 
our work we will use two controllers. One controller will be used for translation 
motion in support of pushing and pulling tasks. The second controller will be used 
for rotational motion in order to support the human operator in the task of rotation. 

3.4 Compliance control 

The example of power - assisted control based on compliance controller was proposed 
by Nagami et al [35]. The author expresses his opinion regarding the conditions that 
should be taken into account by the operator when moving loads. The main idea 
of his work is the implementation of the operator's desired movement without the 
influence of external disturbances. 

Compliance controller makes it possible to perform the assist motion for the cart 
operator smoothly and improve the stability of the cart motion. The compliant 
controller with variable gain is shown in figure 3.6. 
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Figure 3.6: Block diagram of the compliant controller based on the applied force by 
Nagami et al [35] 

The variable compliant gain, and is adjusted so that the cart operator can move 
the platform smoothly independently of the loaded object. The variable compliant 
gain formula is expressed by the equation 3.5: 

Ch

v = tan(a^F h) (3.5) 

where Fh - human force, - adjustable coefficient. 
Compliance controller speed reference is listed in 3.6: 

vh

ref = ^-h{Ch

vFh - Dh

vvh) (3.6) 

The parameters of the compliance controller are chosen empirically, which does 
not allow to apply the developed solution for mobile carts with modified parameters 
without prior resetting. 

3.5 Model Reference Adaptive Impedance Control 
(MRAIC) 

Model Reference Adaptive Impedance Control (MRAIC) allows not only to track 
the response of the reference model but also to make the dynamics of the closed-loop 
system similar to the reference impedance model. 

The desired reference impedance model for the robot end-effector in Cartesian 
coordinates is generally defined by the equation 3.7. The reference model has two 
poles in each Cartesian coordinate direction as: 

n = - A i + i A 3 (3.7) 

r 2 = - A 2 + zA3 (3.8) 

where for the reference model stability, constants Ai and A 2 should be positive. 
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Figure 3.7: The structure of the Model Reference Adaptive Impedance Controllers 
[37] 

The model reference adaptive impedance controller for motor torque could be 
written in the following form: 

Tmotor = MqVX + CqV2 + Gq + Fq - JT'fext (3.9) 

where v\ and v2 are known vectors that do not contain any estimated parameters 
of the robot's dynamics. 

Vi = J 1 ( Xe ' eq (x — X 
rn <q) rn 

[x - xeq) + — fext + \3

2x - JJ 1xr ] (3.10) 
m ) 

Vi = r x x r (3.11) 

Linearly parameterized equation in joint space has the following formula: 

Tmotor = Yi6i — JT
 fext (3.12) 

where 8\ - estimation of actual parameters vector, Y\ - regressors matrix in joint 
space. 

= MgVi + Cqv2 + Gq + Fq 

The adaptation law is expressed by the equation 3.14: 

(3.13) 

0i = -TY^J-hi (3.14) 

where T is symmetric positive definite matrix. s\ is error dynamics. 

Si = x — x <<i (3.15) 
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where xeq is the reference velocity. 

xr = xm — Xix (3.16) 

x is the reference model position error. This method gives very promising results. 
However, it requires reference impedance model that is not available in our case due 
to the human factor. 

3.6 First order lag controller 

Power-assisted control based on the first order lag controller and fuzzy logic was 
introduced in the work of authors led by Terashima [44]. They introduced the 
methodology which allowed to estimate the operators' skill level and adjusted the 
controllers' parameters accordingly to influence the cart dynamics. Block diagram 
of skill assist system is shown in the figure 3.8. 

Operator 
>| 6 a x i s 

Force 
sensor 

Skill level evaluation with 
fuzzy reasoning system 

A i \ > \ 

12 l > 

ZZ A i\ i\ 

1st 
order 

controller 
D OMW 

: 
V 

-> 

Figure 3.8: Block diagram of skill assist system by Terashima et al. [44] 

In this work the author demonstrates his own developed methods to assess the 
level of operator's competence and configuration of a power - assisted controller 
using fuzzy logic. It is demonstrated in the figure 3.9. 

The author mentions that the developed system has a difficulty with adding 
support in rotational motion. Operator feels uncomfortable during the manipulation 
and fluctuations in the support system when vibration is caused by the operator 
force. For this reason, this paper considers the support for the backward and forward 
movement. First-order lag controller is used in order to convert the force applied by 
the operator's into the motor speed setpoint. The controller formula is provided in 
3.17. 

vx 

Vy 

w 

T 0 
0 
0 0 

0 
0 

Tvzs+1. 

fx 

fy 

m 
(3.17) 

Performance index evaluating operator's skill degree: 

n 

n 
i=i 

(3.18) 
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(a) example of beginner (b) example of expert 

Figure 3.9: Skill level estimation Terashima et al. [44] 

Skill level index: 

Svx(t) — Svx(t-i) + -pfr- (3.19) 
•L s 

where Ts - forgettable time. 
The author conducted a comparative experiment for two people and has pro

posed a formula to evaluate the skill of the operator. Later he conducted another 
experiment for four people and confirmed the correct operation methods for the op
erator's evaluation and the regulator setting when moving backward and forward. 
The implementation of presented methods for lateral, rotational and slant movement 
was suggested for further research. 

3.7 Alternative control strategies 

In the framework of the current research we have opted for impedance control as its 
suitability fits the specific requirements and constraints of the application, as well 
as the hardware and software available in the project. Additionally, we have con
sidered safety, human-robot interaction, and real-time performance when selecting 
and implementing a control algorithm. However, we acknowledge that alternative 
control strategies exist, they were described in Kouro et al. [45], Blaya and Herr 
[46], Beltran et al. [47], Dayan and Balleine [48], Guo et al. [49], Guerrero et al. 
[50], Sciarretta et al. [51], and Kiguchi et al. [52]. We attempted to summarize the 
literature in the following table 3.1. 
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Algorithm Description Advantages Drawbacks 
Model Predic
tive Control 
(MPC) 

M P C is a popular 
control strategy for 
systems with non
linear dynamics and 
constraints. It in
volves formulating a 
predictive model of 
the system dynam
ics and using an op
timization algorithm 
to compute the op
timal control inputs 
over a finite horizon. 

Can handle non
linear dynamics 
and constraints. 
Provides good 
performance 
and robustness 
in the presence 
of disturbances 
and uncertain
ties. 

Computationally 
intensive. Requires 
a good model of 
the system dynam
ics. Sensitive to 
modeling errors 
and parameter 
uncertainties. 

Adaptive Con
trol 

Adaptive control is 
a family of control 
algorithms that ad
just the control gains 
online based on the 
observed system re
sponse. This can im
prove the robustness 
and stability of the 
control system in the 
face of uncertainties 
and disturbances. 

Adjusts control 
gains online. 
Provides good 
performance and 
robustness in 
the face of un
certainties and 
disturbances. 

May require a large 
number of tuning pa
rameters. Sensi
tive to measurement 
noise and model un
certainties. May suf
fer from slow con
vergence and stabil
ity issues. 

Sliding Mode 
Control (SMC) 

SMC can pro
vide robustness to 
disturbances and un
certainties, and can 
be used for systems 
with nonlinearities 
or uncertainties. It 
is also relatively 
simple to implement 
and requires little 
tuning. 

Provides robust
ness to distur
bances and un
certainties. Can 
be used for sys
tems with non-
linearities or un
certainties. Rel
atively simple to 
implement, re
quires little tun
ing. 

Generates high-
frequency control 
inputs, which can 
be difficult to im
plement. May suffer 
from chattering and 
high sensitivity to 
modeling errors. 
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Algorithm Description Advantages Drawbacks 
Reinforcement 
Learning (RL) 

R L can learn opti
mal control policies 
through trial-and-
error interactions 
with the environ
ment, without the 
need for a model 
of the system dy
namics. It can also 
adapt to changes in 
the environment and 
disturbances. 

Learns optimal 
control poli
cies through 
trial-and-error 
interactions. 
Adapts to 
changes in the 
environment 
and distur
bances. 

Computationally 
intensive, may 
require a large 
amount of training 
data. May suffer 
from exploration-
exploitation trade
offs and overfitting. 

Fuzzy Control Fuzzy control can 
handle uncertainties 
and nonlinearities 
in the system, and 
can generate in-
terpretable control 
rules. It can also 
be robust to mea
surement noise and 
model uncertainties. 

Handles un
certainties and 
nonlinearities. 
Generates inter-
pretable control 
rules. Robust 
to measurement 
noise and model 
uncertainties. 

Difficult to tune, 
may require a large 
number of fuzzy 
rules. Sensitivity to 
the choice of mem
bership functions 
and rule aggregation 
methods. 

Neural Network 
Control 

Neural network 
control can learn 
the system dynamics 
and control policy 
from data, and can 
handle nonlinearities 
and uncertainties in 
the system. It can 
also provide good 
performance and 
robustness in the 
face of disturbances 
and uncertainties. 

Learns system 
dynamics and 
control pol
icy from data. 
Handles non-
linearities and 
uncertainties. 
Provides good 
performance 
and robustness. 

Computationally in
tensive, may require 
a large amount of 
training data. May 
suffer from overfit
ting and sensitivity 
to the choice of 
network architec
ture and training 
algorithm. 
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Algorithm Description Advantages Drawbacks 
Optimal Control Optimal control 

can minimize a 
given cost function 
subject to system 
constraints, and can 
generate optimal 
control inputs. It 
can also provide 
good performance 
and energy effi
ciency 

Minimizes a 
given cost func
tion subject 
to system con
straints. Gen
erates optimal 
control inputs. 
Provides good 
performance 
and energy 
efficiency 

Computationally 
intensive, may re
quire a good model 
of the system dy
namics. Sensitivity 
to modeling er
rors and parameter 
uncertainties. 

Robust Control Robust control can 
provide performance 
and stability guaran
tees in the presence 
of uncertainties and 
disturbances. It can 
also be used for sys
tems with nonlinear-
ities or time-varying 
dynamics. 

Provides per
formance and 
stability guar
antees in the 
presence of 
uncertainties. 
Can be used for 
systems with 
nonlinearities 
or time-varying 
dynamics. 

Computationally in
tensive, may require 
a good model of 
the system uncer
tainties. Conser
vatism and limited 
performance in the 
absence of distur
bances. 

Decentralized 
Control 

Decentralized con
trol can distribute 
the control task 
among multiple 
agents, providing 
scalability and fault 
tolerance. It can 
also be used for sys
tems with complex 
interactions and 
dependencies. 

Distributes the 
control task 
among multiple 
agents. Provides 
scalability and 
fault tolerance. 
Can be used 
for systems 
with complex 
interactions and 
dependencies. 

Difficult to design, 
may require coordi
nation among the 
agents. Limited per
formance compared 
to centralized con
trol. 

Table 3.1: Control Algorithms: Pros and Cons 

36 



List of variables 

Impedance/Admittance control 

Ma Positive constant representing the desired inertia of the impedance 
controller 

Bd Positive constant representing the desired damping of the 
impedance controller 

Ka Positive constant representing the desired stiffness of the impedance 
controller 

x Current position of the system 
x Current velocity of the system 
x Current acceleration of the system 
Xd Desired position of the system 
Xd Desired velocity of the system 
Xd Desired acceleration of the system 
/ e External force acting on the system 
Kp Positive gain of the proportional (P) controller in trajectory track

ing 
Kd Positive gain of the derivative (D) controller in trajectory tracking 
fr Control force in trajectory tracking 

First order lag controller 

vx Velocity component in the x direction. 
vy Velocity component in the y direction. 
w Angular velocity (rotation around the z axis). 
kvx Controller gain for converting force to velocity in the x direction. 
kvy Controller gain for converting force to velocity in the y direction. 
kvz Controller gain for converting force to angular velocity. 
Tvx Time constant for the first-order lag controller in the x direction. 
Tvy Time constant for the first-order lag controller in the y direction. 
Tvz Time constant for the first-order lag controller in the angular di

rection. 
fx Force component applied by the operator in the x direction. 
fy Force component applied by the operator in the y direction. 
m Moment (torque) applied by the operator (around the z axis). 
crvx Skill degree evaluation performance index for operator's velocity in 

the x direction. 
vxi Instantaneous velocity in the x direction. 
vx Mean velocity in the x direction. 
Svx(t) Skill level index at time t in the x direction. 
Svx(t-i) Skill level index at time t — 1 in the x direction. 
crvxs Standard deviation of skill degree. 
Ts Forgettable time. 
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Compliance control 

Compliant gain adjusted for smooth movement of the platform by 
the cart operator 

ph Human force applied to the system < Adjustable coefficient for the compliant gain 
vh

ref Speed reference for the compliance controller 
Mass of the platform 

Dh

v 
Damping coefficient of the platform 

vh Velocity of the platform 

Model Reference Adaptive Impedance Control (MRAIC) 

r x First pole of the reference model in Cartesian coordinate direction 
V2 Second pole of the reference model in Cartesian coordinate direction 
Ai ,A2 Positive constants for stability of the reference model. Real parts 

of the complex poles r-y and of the reference mode 
A3 Positive constants for stability of the reference model. Imaginary 

part of the complex poles r\ and r<i of the reference model 
Tmotor Motor torque 
Mq Estimated inertia matrix of the robot. Represents the resistance to 

changes in the robot's state of motion, influenced by the distribu
tion of masses in its links. 

Cq Estimated Coriolis and centrifugal effects matrix. Accounts for the 
forces and torques associated with motion and rotation, providing 
a more accurate representation of dynamic behavior. 

Gq Estimated gravitational torque vector. Describes the torques in
duced by gravity on each joint, influenced by the mass distribution 
and geometry of the robot. 

Fq Estimated additional external forces or torques. Accounts for exter
nal factors or disturbances not covered by inertia, Coriolis, centrifu
gal, or gravitational effects, such as friction or unknown external 
forces. 

« i , v2 Known vectors not containing estimated parameters of the robot's 
dynamics 

Tmotor Calculated motor torque. 
J Jacobian matrix. 
x'eq Desired acceleration. 
x Actual velocity. 
xeq Reference velocity. 
fext External force. 
x Position error. 
xr Reference velocity. 
m Mass coefficient, 
c Damping coefficient. 



k Stiffness coefficient. 
Y"i Regressors matrix in joint space. 
01 Estimation of the actual parameters vector. 
S ! Error dynamics, calculated as x — xeq. 
r Symmetric positive definite matrix. 
xm Measurement of the position. 
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4 Motivation 

In our work we would like to evaluate a new power assistance system with human 
comfort estimation, which sets up operator's pushing, pulling and rotational force 
to the comfortable level and decreases the risk of injury. One of the highlighted 
specific challenges of the research was to develop a cart that responds more flexibly, 
robustly and efficiently to the everyday needs of workers and citizens in professional 
or domestic environments. 

The motivation for this research is to reduce the number of injuries of people who 
work in the area of material handling by solving the problem of faulty interaction 
between human-operator and industrial cart. It is proposed to establish the system 
that recognizes and adapts to the human-operator intentions based on rewards and 
losses received for the quality of interaction process. 

One significant part of the research is to specify the requirements for the indus
trial cart, develop the proper mechanical design and equip the cart with required set 
of sensors. Another important part is to design the architecture of the control sys
tem and implement the elements of artificial intelligence that affect the interaction 
process. 

The objective is to establish a state in which the industrial cart seamlessly re
sponds to the intentions of the human operator, exhibiting the necessary dynamics 
for a harmonious and efficient interaction. As a result, human oriented study has 
to be performed. It is necessary to find the correlation between emotional feedback 
of the human operator and physical measures that could be obtained using sensors 
of industrial cart. 

In order to have a good overview on independent variables that affect human-
operator comfort, interaction process parameters have to be collected and evaluated 
using regression analysis. Using a questionnaire-based technique the emotional feed
back of the human operator will be obtained. The effect of found variables will be 
evaluated with the group of experienced and inexperienced human-operators. 

Based on this dependency the reward system will be defined. Using the meth
ods of artificial intelligence, the support system will adapt to the human operator 
intention by switching between different states and getting rewards for each single 
action. Finally, the set of impedance controller parameters will be selected based on 
the highest value of the interaction process quality for particular operator. It leads 
to adaptation of industrial cart dynamics according to the intention of the human 
operator. 
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5 Goal and Objectives 

The key point of the comfortable human - industrial cart physical interaction is 
the question how to include physiological and psychophysical aspects of the human 
operator in to the control system. Furthermore, as far as the author is concerned, 
no estimation criteria which would address both the operator's comfort level, and 
their subjective expectations from the interaction process have been developed to 
this day. 

The research goal is to employ artificial intelligence (AI) methods to adjust the 
controller settings in order to achieve a state where an operator can manipulate 
a heavy loaded industrial cart with minimum physical effort and ultimate comfort. 
Once the proper mechanical design and methods of intelligent control are discovered, 
the processing of measured forces at the human-cart interface with recognition of the 
desired behavior and following calculation of the control impact for electric drives 
is assumed. 

In order to achieve the goal, the following objectives are outlined as follows: 

1. Collect the state of art information in the area of physical human-robot in
teraction and the most promising existing algorithm that can be adapted to 
deliver a new human-powered cart interaction control technique through lit
erature analysis and practical investigations. 

2. Prepare a mathematical description for dynamics and kinematics of the human 
- cart physical interaction model. 

3. Develop and assemble an experimental model of an industrial cart. 

4. Perform a set of experiments including real people and estimate the human 
feedback during the interaction process. 

5. Analyze dynamic characteristics in order to search for criteria that directly or 
indirectly determine a physical feeling of human comfort and his expectations 
during the interaction with IPAC. 

6. Synthesize the human estimation criteria that characterize the satisfaction and 
comfort from the human-powered cart interaction process. 

7. Develop the human - powered cart interaction control algorithm based on the 
synthesized criteria using AI methods (Q-learning). 

8. Test and verify the work of proposed solution for the developed industrial cart. 
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In the framework of the current research, it is important to contribute the follow
ing theoretical input into the field of technical cybernetics - the use of Q-learning 
algorithm in adjusting controller settings so that the mobile platform adapts to the 
unique gait and tasks of any operator it assists. To comply with this task, the models 
from Chapters 8 and 9 will be derived and the model could be used in the future to 
estimate the quality of control with the help of Markov processes. Markov processes 
are utilized to make decisions on regulating the impedance control settings. 
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6 A Brief Summary of the Implemented 
Methods 

In this chapter we describe the way we would like to reach the goal and meet ob
jectives defined in the beginning of the research. Theoretical, empirical and math
ematical research methods are combined in this work in order to reach the goal 
formulated in chapter 5. The methods and objectives sorted by the research type 
and addressed by the current study are listed below. 

Theoretical methods: 

• Analysis and synthesis of existing information was performed to determine the 
state of the art and current research gaps. 

• Modeling was used for industrial cart simulation and development of kinematic 
and dynamic models. 

Mathematical methods: 

• Statistics method - regression analysis was performed to evaluate the experi
mental data and determine the dependency between human operator feedback 
and measured parameters of the interaction process. 

• Programming was used to implement control algorithm. 

Empirical methods: 

• Observation was used to detect interaction states and conditions that could 
have a positive or negative effect on the feelings of the cart operator. 

• Survey was used to collect the feedback from human operators after the inter
action process. 

• Experiment was used to collect the data of the interaction process with chang
ing conditions such as impedance controller settings, loads and operators. 
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7 Industrial cart concept evaluation 

7.1 A rationale for the current industrial cart 

An industrial cart is a useful and popular tool for transporting goods and freight. 
Strong and reliable carts may increase the efficiency of the workers, protect their 
health and the integrity of the load. The rationale for a specific design is described 
in this chapter. Such criteria as price (affordability), design simplicity, reliability go 
in line with the state-of-the-art research described in 8.6. This chapter addresses the 
design of carts, their types and functional features, the correct choice of a model for 
specific needs. There are many research groups and organizations that have worked 
on the problem of evaluating and selecting mobile platforms for material handling 
tasks. These organizations also addressed the issue of occupational safety in various 
industries. Therefore, a few notable organizations are worth mentioning: 

1. The National Institute for Occupational Safety and Health (NIOSH) in the 
United States, which conducts research and provides guidelines on the safe 
design and use of mobile platforms in the workplace. 

2. The European Agency for Safety and Health at Work (EU-OSHA), which 
provides information and guidance on the safe use of mobile platforms in the 
European Union. 

3. The International Organization for Standardization (ISO), which develops and 
publishes international standards for the design and use of mobile platforms, 
including ISO 3691-4:2015 for mobile elevating work platforms and ISO 3691-
5:2015 for self-propelled industrial trucks. 

4. The Industrial Truck Standards Development Foundation (ITSDF), which de
velops and publishes safety standards for industrial trucks in North America. 

5. The Center for Compact and Efficient Fluid Power (CCEFP) , which conducts 
research on the development of advanced power systems for mobile platforms. 

6. The Robotics and Mechatronics Laboratory (RoMeLa) at Virginia Tech, which 
conducts research on the development of advanced mobile platforms for various 
applications, such as search and rescue, mining, and construction. 

When evaluating construction and selecting a type of a mobile platform for 
material handling tasks, several criteria should be considered. These may include: 
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1. Load capacity: The maximum weight the platform can safely carry, as well as 
its weight distribution capabilities. This factor was chosen to be one of the 
most important ones for the current research as the platform is intended for 
carrying weight up to 500kg. 

2. Mobility: The platform's maneuverability, stability, and ability to navigate 
through the work environment. This factor was chosen to be one of the most 
important ones for the current research as the same mobile platform is intended 
to be used by multiple operators. 

3. Reach: The maximum height and distance the platform can reach, as well as 
its ability to rotate and pivot. We describe the specific configurations in the 
table 7.2. 

4. Speed: The platform's maximum and minimum speeds, as well as its acceler
ation and braking capabilities. In the current case, the maximum velocity of 
the cart was limited 5 km/h to suit the gait of a human operator. 

5. Durability: The platform's ability to withstand heavy use and harsh environ
ments, as well as its ease of maintenance and repair. The test platform was 
built to be easily maintained and repairable. 

6. Safety: The platform's ability to protect operators and other personnel from 
injury, as well as its compliance with relevant safety regulations. In our case 
the mobile platform is equipped with emergency stop button to ensure an 
immediate cut of the power supply to the drives. 

7. Power source: The platform's energy source, such as electric, hydraulic, or 
combustion, and the compatibility with the available power supply. To power 
the cart, 24V Lithium batteries were used. 

8. Ergonomics: The platform's design and features that can make the operator's 
task easier, more comfortable and less fatiguing. This factor was chosen to 
be one of the most important ones for the current research as the platform is 
intended for wider audiences of users. 

9. Compatibility: The platform's ability to work with other equipment and tools 
that are already in use in the facility. The prototype is equipped with wired 
and wireless interfaces suitable for Operation technologies(OT)/Information 
technologies (IT) integration. 

7.2 Constructing the industrial cart 

Creating collaborative robotic environment for safe human robot interaction was 
covered in multiple articles, including e.g. Pozo, Patel and Schroedel (2022) [53]. 
The researchers pointed out at the importance of creating safe environment to work 
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with robots for inexperienced users. Collaborative industrial robot safety require
ments are defined in ISO/TS 15066:2016 ISO (2016). Engineering of industrial cart 
is a complicated process. During the development phase it is necessary to estimate 
the required modifications to improve functionality for a specific task. Design pro
cess of any industrial cart considers the following requirements: cargo format (type 
of the load), ease of storage, carrying capacity, necessary ergonomics, safety mar
gin, potential risk factors. The following basic points form the structure of a typical 
industrial cart: 

• Chassis (wheels). The most important elements, supporting parts of the trol
ley. They consist of the wheel itself and the coating (tires). They could be 
fixed positioned or rotary. 

• Platform. The working surface, which is made in the form of a grid, a solid 
structure, a base with a flooring of metal, plywood sheets or rubber-plastic. 

• Handlebar (Control element). It can be single, double, folding, removable. 
Mainly made from metal pipes. In heavy-duty platform models that require a 
tractor for operation, the handle is replaced by the draw-bar. 

The exiting cart models could be classified according to the specific parameters: 

• Platform layout; 

• Wheels configuration; 

• Maximum carrying capacity; 

• Extra features and options (Power assistance, height regulation, color options, 
etc.) 

The total lifting capacity of of industrial carts depends on the configuration, 
model, type of structure and wheels, materials. The average load capacity of differ
ent carts is from 60 to 900 kg (heavy-duty carts carry up to 3 tons). 

The wheel configuration as a base has a considerable impact on the load capacity 
and the amount of force exerted to move the cart. The most common configurations 
for traditional rectangular cart are collected in the table 7.2. Each layout has its 
own benefits and drawbacks. 

Type, position and quantity of wheels impacts load capacity and maneuverabil
ity of the industrial cart. The industrial application adds a specific constraint on 
quantity and position of movable and fixed wheels of industrial cart. Each wheel 
needs to be as lightweight as possible compared to the weight of the cart, so that 
the kinetic energy goes into forward motion of the cart, not into the rotary motion 
of the wheels. That is an argument why fewer wheels are used in the current pro
totype. At the same time, larger wheels will have less rolling friction than smaller 
ones. The reason carts for heavy loads which travel on hard surfaces have more 
than four wheels to distribute the weight over six axles rather than just four. As a 
result, maneuvering with the cart becomes easier because of the reduced pressure on 
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the surface. A six wheel option has improved mobility when maneuvering in tight 
and confined spaces with the heavy load. The two center rigid casters and swivels 
on the end provide a tighter turning radius than the standard caster configuration. 
This configuration ensures the cart can pivot on its own axis and provides zero-turn 
maneuverability. 

The frictional force has three components: 

1. rolling resistance 

2. friction at the axles 

3. wind resistance 

We assume that wind resistance is not changed very much by a 4-wheel versus 
6-wheel design for indoor application, when the cart transportation speed is less 
than 5km/h. In addition, friction at the axles is probably not as big as rolling 
resistance. Therefore, we will now focus on the types of wheels which are described 
in the following table 7.1. 

Symbol Image Description 
Rotatable supporting wheel (swivel caster) - wheel that 
automatically aligns itself to the direction of travel. One 
major disadvantage of casters is a flutter. A common 
example of a caster flutter is in a supermarket shop
ping cart, when one caster rapidly swings side-to-side. 
This oscillation, which is also known as shimmy, occurs 
naturally at certain speeds, and is similar to speed wob
ble that occurs in other wheeled vehicles. The speed at 
which caster flutter occurs is based on the weight borne 
by the caster and the distance between the wheel axle 
and steering axis. This distance is known as trailing dis
tance, and increasing this distance can eliminate flutter 
at moderate speeds. Generally, flutter occurs at high 
speeds. 

** Fixed/Rigid supporting wheel (caster) - rigid casters 
are casters that remain in one position. They tend to 
restrict vehicle motion so that the vehicle travels along 
a straight line. For improved results, it is common to 
use a combination of swivel and rigid casters to achieve 
the most favorable mix of stability and maneuverability. 
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Symbol Image Description 
Mecanum wheel - the wheel consists of two rims and 
multiple free-running rollers, which are mounted at a 45 
degree angle. The wheels move independently of each 
other, which means that the vehicle can move not only 
forwards and sideways, but also diagonally and in a cir
cle. The entire wheel is driven by an electric motor. 

(TJTTp 

Omni wheel (poly wheel) - wheels with small discs 
(called rollers) around the circumference which are per
pendicular to the turning direction. The effect is that 
the wheel can be driven with full force, but will also 
slide laterally with great ease. These wheels are often 
applied in holonomic drive systems. 
Differential wheel unit - here are two main wheels, each 
of which is attached to its own motor. High precision 
servo control. Precise angle control (absolute position 
detection). Low center of gravity. Strong ground adapt
ability. 

Table 7.1: Review of available types of the wheels 

The following table 7.2 describes possible constructions of mobile platforms with 
our own analysis of their benefits and drawbacks. 

Wheels' 
configu
ration 

Application 
example DoF Application description 

w 

& -
c 1 

\ 
2 

Platform with two rotatable supporting 
wheels and two fixed supporting wheels. In 
case of powered industrial cart application 
fixed supporting could be equipped with the 
drives. This configuration is suitable for 
driving in a straight line with occasional 
turns (warehouse, shop, workshop). 
Benefit: This configuration turns easily and 
tracks very well when towed. Most popular 
configuration for casters on carts and trucks. 
Drawback: The cart cannot freely move in 
any direction. To make a 90° turn, the cart 
must be pulled around on a pivot of the rigid 
casters. 
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Wheels' 
configu
ration 

Application 
example DoF Application description 

& % 

& * 3 

Platform with four rotatable supporting 
wheels. In case of powered industrial cart ap
plication all wheels should be equipped with 
fraction and steering drives. This configura
tion is suitable for fast and short operations 
with a constant change of course/direction 
of motion, work with goods near the shelves 
(retail areas, shopping malls). 
Benefit: The cart can be moved in any di
rection without the need for turning around. 
Drawback: The cart can be hard to con
trol when moving in a straight line. Easy fix: 
Equip the casters with swivel locks. 

2 

Platform with one rotatable supporting 
wheel and two fixed supporting wheels. In 
case of powered industrial cart application 
there are two possibilities exist. One op
tion is to add fraction and steering drives to 
rotatable supporting wheel. Alternative op
tion is extending of the functionality of fixed 
supporting wheels in a way of differential 
drive. This configuration is suitable for driv
ing in a straight line with occasional turns 
(warehouse, shop, workshop, assembly line). 
Straight forward motion. Turning about rear 
axle. Preferred direction of motion is for
ward. 
Benefit: This is the lowest cost configura
tion for carts with very good maneuverabil
ity. 
Drawback: It cannot carry heavy loads, be
cause only three casters are in contact with 
the floor at one time and it cannot be pushed 
sideways. It is inconvenient to move the cart 
in a strait line with higher velocity because 
of the castor wheel shimmy vibration. 
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Wheels' 
configu
ration 

Application 
example DoF Application description 

+ m & 

+ m & 
2 

Platform with four rotatable supporting 
wheel and two fixed supporting wheels. In 
case of powered industrial cart application 
fixed supporting wheels are equipped with 
the drives. This configuration is suitable for 
transportation of heavy loads in a straight 
line with rare changes of direction (airport, 
station buildings, postal terminals). 
Benefit: Similar to the 4-wheel diamond 
caster patterns but can carry heavier loads 
and are better suited for very long carts. 
This caster pattern allows the cart to turn 
in its own length and the cart style can ei
ther by tilt type or non-tilt for even greater 
load capacity. 
Drawback: The cart cannot freely move in 
any direction. To make a 90° turn, the cart 
must be pulled around on a pivot of the rigid 
casters. 

h i * 
1 

Platform with four fixed supporting wheels. 
In case of powered industrial cart application 
fixed supporting wheels could be connected 
to the drive. This configuration is suitable 
for direct "runs" in a large area (shop, as
sembly line). 
Benefit: This is the lowest cost configura
tion for carts and trucks. It can also pivot 
on the center wheels to turn or do complete 
360° rotations. 
Drawback: It cannot carry heavy loads, be
cause only three casters are in contact with 
the floor at one time (tilt type cart) and it 
cannot be pushed sideways. 
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Wheels' 
configu
ration 

Application 
example DoF Application description 

3 

Platform with four mecanum wheels. Each 
wheel is connected to a separate motor with 
independent control. This configuration is 
suitable for maneuvers in a limited space. 
Motion in every direction on a surface. 
Benefit: The cart could freely and instantly 
move in any direction and turn in its own 
length. 
Drawback: Construction is complex in 
maintenance and expensive. 

3 

Platform with four mecanum wheels. Each 
wheel is connected to a separate motor with 
independent control. This configuration is 
suitable for maneuvers in a limited space. 
Motion in every direction on a surface. 
Benefit: The cart could freely and instantly 
move in any direction and turn in its own 
length. 
Drawback: Construction is complex in 
maintenance and expensive. 

ntmtrn 

• 1 
agi|D 

3 

Omni-directional robotic platforms have vast 
advantages over a conventional design in 
terms of mobility in congested environments. 
They are capable of easily performing tasks 
in environments congested with static and 
dynamic obstacles and narrow aisles. These 
environments are commonly found in factory 
workshops offices, warehouses, hospitals and 
elderly care facilities. Motion in every direc
tion on a surface. Install on the heavy-duty 
Omni moving platform to make the platform 
rotate to Omni directions. And it is mainly 
used in industry, workshops, A G V , and so 
on. It can even be used on stage show equip
ment. 
Benefit: The cart could freely and instantly 
move in any direction and turn in its own 
length. 
Drawback: Construction is complex in 
maintenance and expensive. 
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Wheels' 
configu
ration 

Application 
example DoF Application description 

Omnidirectional driving system can effort
lessly move through very narrow aisles. With 
four driving units, the platform is based on 
an omnidirectional driving concept that al
lows unrestricted freedom of movement. This 
enables standardized forward and backwards 
movements, as well as parallel, diagonal, and 
rotary movements around its own axis. Mo
tion in every direction on a surface. 
Benefit: The cart could freely move in any 
direction and turn in its own length. How
ever, the cart needs an extra time to make 
90° turn, because the change of wheel unit 
orientation cannot be done immediately. 
Drawback: Construction is complex in 
maintenance and expensive, because each 
wheel is a separate drive unit which is equipt 
with two servomotors. 

Table 7.2: Review of available wheel configurations 

The configuration selected for the experimental platform corresponds to a plat
form with four tilt wheels and two fixed supporting wheels. This construction is 
capable of handling heavy loads and allows the cart to turn within its own length. 
The fixed supporting wheels are suitable for the implementation of electrical drives, 
as they are more cost-effective than in the case of implementing active steering for 
the tilt wheels. This construction is more complex, less robust and more expensive. 
Of course, the proposed construction has only two degrees of freedom, however, it 
is believed to be a robust and cost-effective solution. 

52 



8 Test platform development 

8.1 Main requirements 

This section describes the main requirements for a mobile platform that was created 
for testing and verification of operator's comfort. This developed model consists of 
aluminum profile, the basis of the platform is set on the four cluster wheels. In the 
center of the platform there are two leading wheels that function according to the 
principle of a differentiated drive. 

The vehicle has been constructed to satisfy the following requirements: 

• to be easy-assembled, cheap, rapid prototyping oriented 

• to allow measurement of human-vehicle interaction characteristics 

• to hold the maximum load mass in the range of 500 kg 

• to attain the speed of a walking individual in a range of 5 km/h 

8.2 Hardware design 

The developed platform has the characteristics shown in the table 8.1. 

N Parameter Value 
1 Length 1.255 [m] 
2 Width 0.8 [m] 
3 Height 1.275 [m] 
4 Mass 53.535 [kg] 
5 Max. Load 500 [kg] 
4 Max. Speed 5 [km/h] 

Table 8.1: Cart parameters 

System actuators are presented by two 350W motors MY1016Z connected to the 
wheels via chain belts. The drive is shown in the figure 8.3. 

In the back of the cart there is a handle for the operator. The handle is con
nected to the body of the cart through the tensiometers which are located on the 
right and left side of the cart. The two tensiometers were selected as an optimal 
solution because more tensiometers may not guarantee considerable enhancement 
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Figure 8.1: Test platform [54] 

N Parameter Value 
1 Power 350 [W] 
2 Voltage 24 [V] 
3 Current 18 [A] 
4 Rotor Resistance 1.3 [Ohm] 
5 Rotor Inductance 0.001 [H] 
6 kV 500 [kg] 
7 Max. Speed 5 [km/h] 

Table 8.2: Motor parameters 

N Parameter Value 
1 Excitation 10 [Vdc] 
2 Load ±100 [KgF] 
3 In Resist 378.3 [Ohm] 
4 Out Resist 351.9 [Ohm] 
5 Sensitivity 2.9994 [mV/V] 

Table 8.3: Tensiometer parameters 

in the learning process to an extent to which the costs of construction and design 
may rise to. The accelerometer is located on the platform's body in a significant 
distance from drives and motor driver in order to avoid possible disturbances that 
might be caused by the effect of the electromagnetic field. For detailed information 
please see the visual 8.2. 

The leading wheels are connected to the drives by a chain belt. The drives are 
accommodated with encoders. In the chain of anchors of each drive there is a current 
sensor. 

The motors were selected based on reliability, price and low complexity criteria 

54 



Force sense 

C A R T frame 

Handle 

Figure 8.2: Tensiometer location 

and are equipped with zm = 9 teeth pitch 12.7 roller. The motors have to satisfy 
the dynamic parameters of the cart (mass and damping, see section 8.7). The 
desired linear speed of the powered cart Vd = 5[km/h] = 1.389[m/s]. Powered wheel 
diameter Dw = 200[mm] = 0.2[m]. Desired wheel rotational speed [rpm]: 

Gear ratio: 

60 vd 

7T D,„ 
(60 • 1.389)/(3.14 • 0.2) = 132.696 

— = 353/132.696 = 2.66 
Tin,) 

(8.2) 

Teeth number of the wheel gear: 

zw = Gr • zm = 2.66 • 9 w 24 (8.3) 

The final overview of the developed drive system is shown in the figure 8.3. 

Figure 8.3: Drive system overview 

Figure 8.4 demonstrate the layout of the drive system for a single wheel. The 
cart has two powered wheels. Each wheel is connected to the motor by means of 
spur and sprockets gears. 
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Figure 8.4: Single wheel drive system layout 

N Gears Gear ratio 
"1 Z1:Z2 9.78:1 

2 Z3:Z4 1:2.66 

Table 8.4: Drive gearing parameters 

Motor control is carried out with the help of a driver. The driver is controlled 
by a controller of a lower level. The controller of a lower level collects and partly 
processes the signals from peripheral areas (encoders, current sensors, tensiometers). 
The lower level controller is also connected to the extra controller that is responsible 
for collecting and processing the data from the inertia motion unit (IMU) that 
typically includes a magnetometer, an accelerometer and a gyroscope. 

Detailed description of the technical characteristics could be found in the tech
nical specifications [55], [56], [57], [58]. 

The second revision of the hardware consisted of HX711. Tensiometers are pro
cessed by a pair of 24bit analog-to-digital converters HX711. 

Inertia measurement unit is presented by HMC5983 and MPU6050 modules. 
The module HMC5983 is a temperature compensated three-axis integrated circuit 
magnetometer and MPU6050 is combining a M E M S 3-axis gyroscope and 
accelerometer. As for the lower-level controller, prototyping boards from the AR-
DUINO ecosystem were used. 

8.3 Arduino ecosystem 

Arduino board provides a set of significant benefits. Firstly, it has the minimum 
required amount of peripheral components such as frequency oscillator, capacitors, 
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resistors, transistors, a DC-DC converter, the USB-UART ttl converter and the USB 
port. The board should be selected based on system requirements. We define these 
requirements based on the amount, type and interface of sensors and actuators that 
we would like to connect to the control system. The equipment we used for the 
interfaces is presented in the Table 8.5. 

The Arduino Mega 2560 shown in Figure 8.5 is a microcontroller board based 
on the ATmega2560 (8-bit A V R Microcontroller). It has 54 digital input/output 
pins (of which 15 can be used as P W M outputs), 16 analog inputs, 4 UARTs (hard
ware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an 
ICSP header, and a reset button. It contains the compulsory components needed to 
support the microcontroller. It is possible to connect it to a computer with a USB 
cable or power it with a AC-to-DC adapter or battery. The Mega 2560 board is com
patible with most shields designed for the Uno and the former boards Duemilanove 
or Diecimila. 

The high-performance, low-power Microchip 8-bit AVR® RISC-based microcon
troller combines 256 K B ISP flash memory, 8 K B S R A M , 4 K B E E P R O M , 86 
general purpose I/O lines, 32 general purpose working registers, real-time counter, 
six flexible timer/counters with compare modes, P W M , four USARTs, byte-oriented 
Two-Wire serial interface, 16-channel 10-bit A / D converter, and a J T A G interface 
for on-chip debugging. The device achieves a throughput of 16 MIPS at 16 MHz and 
operates between 4.5-5.5 volts. By executing powerful instructions in a single clock 
cycle, the device achieves a throughput approaching one MIPS per MHz, balancing 
power consumption and processing speed. 

Another microcontroller board used in the project was the Arduino Pro Mini . 
This board is shown in the figure 8.6 based on the ATmega328P. It has 14 digital 
input/output pins (of which 6 can be used as P W M outputs), 6 analog inputs, an 
on-board resonator, a reset button, and holes for mounting pin headers. A six pin 
header can be connected to an FTDI cable breakout board to provide USB power 
and U A R T communication to the board. 

The board has a number of facilities for communicating with a computer, another 
Arduino, or other microcontrollers. The ATmega328P provides U A R T T T L serial 
communication, which is available on digital pins 0 (RX) and 1 (TX). The Arduino 
software includes a serial monitor which allows simple textual data to be sent to 
and from the Arduino board via a USB connection. 

Third important component of the platform control system was Raspberry P i 
4 Model B featured with high-performance 64-bit quad-core processor, dual-display 
support at resolutions up to 4K via a pair of micro HDMI ports, up to 8GB of 
R A M , dual-band 2.4/5.0 GHz wireless L A N , Bluetooth 5.0, Gigabit Ethernet, USB 
3.0, and PoE capability (via a separate PoE HAT add-on). 

This compact single-board computer is suitable for space-constrained environ
ments in mobile robots. Its small form factor allows for easy integration into robotic 
systems without taking up much space. Raspberry PI provides sufficient computing 
power for various robotic tasks such as image processing, sensor data fusion, and 
control algorithms. It can handle real-time processing demands of mobile robots 
effectively. 
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In our application shown in connection block diagram 8.8, interaction forces be
tween human operator and industrial cart are measured by two load cells. Analog 
values of the forces are converted to the digital format using HX711 24-bit ADCs 
and sent to the low-level controller (Arduino Mega board) over SPI. Using equations 
8.18 and 8.19, the translation force and rotational torque are calculated based on 
the forces measured from the right and left side of the handle bar. These calcu
lated values are supplied to the corresponding input of transnational and rotational 
impedance controller. The setpoints for linear and angular velocities of the cart were 
obtained at the outputs of impedance controllers. Based on the linear and angular 
velocities, the values for angular velocities of the left and right wheels were calcu
lated using equations 8.16 and 8.17. At the final stage, the setpoints were processed 
by the PID controllers of the corresponding wheels. Motors are controlled by the 
drive unit (MOD-035) using P W M and direction control. Information about the 
actual position and the current velocity of the wheels is received from the magnetic 
rotary encoders (AS5040). The parameters of impedance controllers 8.22 and 8.23 
could be changed remotely over the serial port of Arduino Mega board. 

Additionally, we installed one more micro-controller (Arduino Pro Mini) that was 
connected to IMU. Using the serial port the I M U controller passed the data through 
the low-level controller to the high-level controller. Actual information about the 
interaction process was recorded to an SD card with the time stamp. 

Device Qty. Description Interface 
HX711 2 A D C SPI 
HMC5883L 1 Magnetometer I2C 
MPU-6050 1 Accelerometer/Gyroscope I2C 

AS5040 2 Incremental encoder Digital inputs (SPI op
tional) 

MOD-035 1 Motor driver Digital Inputs/Outputs 
ACS712 2 Current measurement sensor Analog Inputs 

Table 8.5: List of sensors with interfaces 
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Figure 8.7: Raspberry P i Board 
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8.4 Software development 

In order to extend the number of ready-made modules and to decrease the time 
spent on programming and manuals, it was decided to merge libraries from AR-
DUINO open-source community with Matlab Simulink. To use the original Wiring 
language of A R D U I N O with RP i , the Wiring P i library was developed. Wiring is 
an open-source electronics prototyping platform composed of a programming lan
guage, an integrated development environment (IDE), and a single-board micro
controller. It was developed starting in 2003 by Hernando Barragan. 

The Wiring IDE is a cross-platform application written in Java which is de
rived from the IDE made for the Processing programming language. It is designed 
to introduce programming and sketching with electronics to artists and designers. 
It includes a code editor with features such as syntax highlighting, brace match
ing, and automatic indentation capable of compiling and uploading programs to 
the board with a single click. The Wiring IDE includes a C / C + + library called 
"Wiring", which makes common input/output operations much easier. Wiring pro
grams are written in C++. A minimal program requires only two functions: 

setup(): a function run once at the start of a program which can be used to 
define initial environment settings. 

loopQ: a function called repeatedly until the board is powered off or reset. 
Project experts, intermediate developers, and beginners from around the world 

share ideas, knowledge and their collective experience as a project community. 
Wiring makes it easy to create software for controlling devices attached to the 
electronics board to create various interactive devices. The concept of software de
velopment implies writing a few lines of code, connecting a few electronic components 
to the Wiring hardware. This process is called sketching with hardware. 

8.5 Cart kinematics 

In the framework of this study, we conducted experiments on a range of motors 
utilizing various kinematic configurations. The results revealed that the controller 
settings varied depending on the type of the motor employed (e.g. brushless DC 
motors, DC motors with gearbox). To facilitate the experimental setup, special
ized software was employed for each driver, incorporating automatic identification 
capabilities. Additionally, we utilized the System Identification Toolbox for data 
analysis. A visual representation of the experimental setup is available upon re
quest. The vehicle described in this thesis has two driving wheels and four passive 
casters. The IPAC model used in this paper is shown in the figure 8.9. To simplify 
the kinematics model of the vehicle, it is assumed that casters are not active. 

Parameters shown in the figure 8.9 have the following description: Ws - distance 
between two sensors; Ww - distance between two wheels; Lsv - distance between 
sensors installation line and wheels installation line; 0WL, 8WR - wheels rotation 
angles; - direction angle; xo , yo - position of the vehicle in the world coordinates; 
Co - the middle point between the two powered wheels. Mathematical description 
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Figure 8.9: Cart kinematics 

of the control object is presented below. 
Relation for linear and angular velocity: 

v = wR (8.4) 

where R is radius (distance between the point for which linear speed is calculated 
and rotation axis). 

The relation for linear and angular velocity is described by the following equation 
8.5: 

V^cart = {wwheel_left + W wheel _right) (8-5) 

Velocity at C0(x0, y0) point is described by the equations 8.6 and 8.7 (Conversion 
from polar to Cartesian coordinate system). 

XO = V^cart COs(0) (8.6) 

2/o = v^cart sin(0) (8.7) 

Dependency of powered cart angular velocity from angular velocity of the wheel: 

Wheel linear velocity: 
V = WcartL = WwheeiR (8.8) 

where L is the distance depicted in figure 8.9. 
Cart angular velocity generated by one wheel: 

R 
WCart = Wwheel ~J (8.9) 
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Figure 8.10: Angular speed conversion 

Cart angular velocity at the point CQ\ 

A , 
cart ' ^^w^ee^ 'e^' ^ wheel right; .10) 

Matrix form of the equations 8.5 and 8.9 is shown in 8.10. Control vector is 
defined as X = [vcart_sum,wcart_sum]T, rotational speeds vector is defined as 9 = 
\lV'wheel lefti^ wheel right] • 

X = cart — 

_Wj2cart_ 

Dw 
1 

2Wu. 
1 
Du 

X Wwheel_left 
wheel right 

Jo. (8.11) 

By differentiating the equation 8.11 we obtain an equation for the total linear 
and angular acceleration: 

X = Jn + Ja (8.12) 

where Jaco is a Jacobian matrix which describes cart kinematics sized R2x2. 
The second term on the right side has a insignificant impact on the acceleration 

value compared to the first term and could be neglected. 

X= Ja 9 (8.13) 

In order to obtain equation for calculating the wheel angular accelerations, we 
need to find the pseudo-inverse matrix J~ ' aco ' 

J, 1* 
aco X (8.14) 

(8.15) 

Based on the kinematic model, we can determine the position and direction of 
movement of the industrial cart from the rotation speed of the left and right wheels. 

^•wheel left _ Dw "1 Ww -
faw 

2 . 

^cart sum 
£wheel right 4 1 

Ww -
faw 

2 . E-cart sum 
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The angular velocity of the wheels could be calculated based on the linear and 
angular velocity of the cart, according to the equations 8.16 and 8.17. 

2 t w + Wwwcart , , 
Wwheel_left ~ ( O . l O j 

_ 2vcart -Wy/Wcart , f i 1 „ , 
u'wheel_right ~ y. 

8.6 Human operator interface 

In case of controlling remote robots, the use of haptic technology can create a sense 
of telepresence for the human operator and allow the performance of physical tasks 
from a distance. This type of human-robot interactions presents complex and in
terdisciplinary challenges, such as the need for a robot to be physically capable of 
performing a task and safe for close proximity with humans while also being practi
cal in size, and the need for both the human and robot to be able to communicate, 
plan, and make decisions based on uncertain information. The current example of 
this is the problem of a human and a robot working together to move objects up 
to 500 kg, which has been partially solved but still requires further advancement in 
the various aspects of human-robot interaction. 

According to Okamura (2018) [59], haptic devices have the potential to facilitate 
touch-based communication between humans and robots, allowing people to com
municate in a noticeable but private way while leaving other senses free for other 
purposes. Haptic communication can be achieved through direct physical interac
tion between humans and robots, or through the use of specialized haptic devices 
that allow for communication without requiring physical contact. In this latter case, 
control interfaces and interactions based on touchless gesture tracking devices allow 
users to interact with computers or other devices using hand gestures or other types 
of body movements, rather than through physical touch. 

These devices typically use sensors such as cameras or depth sensors to track 
the user's movements and interpret them as input commands. They can be used to 
control a wide variety of applications, such as controlling the cursor on a computer 
screen, navigating through menus or other user interfaces, and interacting with vir
tual or augmented reality environments. Some touchless gesture tracking devices 
are designed to be worn on the body, while others are stationary and designed to 
be used in a fixed location. They can be used in a variety of settings, including 
in homes, offices, classrooms, and public spaces. Touchless gesture tracking devices 
have the potential to provide a more natural and intuitive way for users to interact 
with technology, and can be particularly useful for people who may have difficulty 
using traditional input methods such as a keyboard or mouse. A n example of such 
studies might be the research work carried by Giordano et al. in 2018 [60]. In order 
for haptic devices to become widely used for this purpose, they must be easy to 
use, not disruptive or obtrusive, able to be used comfortably, and socially accept
able. Okamura's criteria for successful application of haptic devices go in line with 
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the criteria used in this thesis, namely, price (affordability), reliability, operator's 
comfort and relative incomplexity of the decision. 

In case of the current test vehicle, the cart is equipped with two tensiometers 
(see chapter 8.2). They are shown in the figure 8.11. They connect the handle 
to the cart body and are are used to measure interaction forces and torques for 
transnational and rotational motions correspondingly. They can measure the force 
along one axis (push and pull motions), but it allows the operator to control all 
degrees of freedom (DOFs) because the cart has only two DOF (one rotational and 
one translational degree). The operator plans a handling task based on his own 
desires and expectations as well as information from his sense organs (vestibular 
and vision systems), and provides the information about the motion to the cart by 
acting on the handle. Forces detected on the left and right sensors are resolved into 
translational force and rotational torque in the cart coordinates. 

Figure 8.11: Handlebar for PHRI 

Transnational force for the motion in linear direction could be written as a simple 
sum of the measured force values as described by the equation 8.18. 

F-£h = Fhr + Fhi (8.18) 

Equation 8.19 presents a rotational torque for the motion around the axis that 
goes vertically through the central point C 0 . See figure 8.9 for more details. 

T^h = {Fhr-Fhl)-W/2 (8.19) 

where W is the width of the cart. According to the mechanical configuration, 
the cart is equipped with tensiometers which measure two forces in the direction x, 
perpendicular to the handle. The distance between two sensors equals to the width 
of the cart. The values for cart width could be found in table 8.1. As the result, 
the input for the controller of rotational motion is approximately two times higher, 
however, it is compensated by the dynamics of impedance controller in order to 
obtain the desired response. 
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8.7 Impedance control 

Impedance control (or admittance control) was developed by N . Hogan [12]. It 
uses two basic laws of physics such as Newton's second law (see eq. 8.20) and 
D'Alembert's law (see eq. 8.21). It can be described as a second order dynamic 
system. Figure 8.12 represents the impedance control scheme using a mass-damper-
spring system. In this relationship, impedance is the passive reaction that a robot 
performs when it is disturbed by external forces. In contrast, admittance control 
is the active reaction of the robot to such external forces. The "spring coefficient" 
or stiffness parameter K defines the force output for a tension or compression of 
the spring produced by a force F, its value is taken as 0 in order to eliminate 
fluctuations and abrupt and unexpected stops of the platform to ensure safety for 
the operators; and the "damping coefficient" D is the force output for a velocity 
input of the displacement x, "mass coefficient" describing the inertia of the system. 
The rationale for choosing this controller for the purpose of this research is that 
this approach allows to control not only separate variables like force or position, but 
changes the dynamics of the system. 

^ Fext ma (8.20) 

(8.21} 

Trans la t i ona l iner t ia -spr ing-
d a m p e r s y s t e m 

Ro ta t iona l iner t ia -spr ing-
d a m p e r s y s t e m 

Figure 8.12: Impedance controller representation 

Equation 8.22 describes the impedance controller output for translational mo
tion. 

Mx(t) + Dx(t) + Kx(t) = F(t) (8.22) 

Equation 8.23 describes the impedance controller output for rotational motion. 

Já(t) + Da(t) + Ka(t) = T(t) (8.23) 

In current application the x(t) and a(t) velocity outputs of the impedance controller 
are in focus. The parameter K is used to denote stiffness. In the context of ideal 
position control, an infinite value of stiffness is desired, whereas in force control, zero 
stiffness is desired. However, as stated by Katsura and Ohnishi (2006) [61], the use 
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of K is not recommended as it does not have a positive impact on the interaction 
experience. Furthermore, the use of this parameter has been observed to result in 
undesirable outcomes such as an abrupt stop of the platform. The force applied 
to the handle bar is fed to the input of the impedance controller. If this force is 
constant and K does not equal to 0 (if M>0 and D>0), it could cause the cart to 
stop at some point x>0. This behavior is not desirable, therefore, the value of K 
should equal to 0. Impedance control methods comparison is provided below. There 
are several different methods of implementing impedance control for manipulators 
or other mechanical systems. Some of the most commonly used methods include 
the following: 

1. Voltage-controlled impedance was introduced in 1964 by Moog [62]. Their 
work has been continued in many fields, particularly by Herr et al. [63] in 2009. In 
this method, the impedance of the system is controlled by modulating the voltage 
applied to the actuators. It can be suggested that the method is fast and easy to 
implement, but it is sensitive to changes in the load and the environment and may 
not provide consistent performance. 

2. Current-controlled impedance was proposed by Marshak [64]. This method 
involves modulating the current supplied to the actuators to control the impedance 
of the system. It is generally more robust than voltage-controlled impedance, but 
it requires more complex hardware and may be slower to implement. 

3. Hybrid impedance control was mentioned in the research paper by e.g. Sartori 
[65] in 1968. This method combines passive impedance control with active control 
to provide a more flexible and robust system. The passive compliance of the system 
is used to provide a baseline impedance, while active control is used to adjust the 
impedance in response to changes in the load or the environment. This method can 
provide good performance, but it may be more complex to implement and require 
more computational resources. 

4. Inverse dynamics impedance control was described in Petrov and Yuchanov 
in 1980 [66]. This method involves estimating the forces and torques acting on the 
system and using these estimates to compute the desired impedance. It is a model-
based approach that can provide good performance, but it requires accurate models 
and may be sensitive to model errors. 

5. Computed torque impedance control referred to by [67]. This method involves 
estimating the desired torque at each joint and using this estimate to compute the 
desired impedance. It is a model-based control method that requires an accurate 
model of the manipulator dynamics and kinematics. It is useful for controlling ma
nipulators with high precision and stability, but it may be sensitive to model errors 
and require more computational resources. Computed torque impedance control is 
often used in conjunction with impedance control methods such as hybrid impedance 
control or inverse dynamics impedance control to improve the performance of the 
manipulator. It is commonly used in robotic applications such as assembly, inspec
tion, and medical procedures. 

For the case of this research, inverse dynamics impedance control was selected 
because it is generally believed to provide a reliable performance and does not require 
extensive computational resources. 
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List of variables 

Hardware design 

nw Desired wheel rotational speed in revolutions per minute (rpm). 
Vd Desired linear velocity of the wheel. 
Dw Diameter of the wheel. 
Gr Gear ratio between motor and wheel. 
nm Rotational speed of the motor. 
zw Number of teeth on the wheel gear. 
zm Number of teeth on the motor gear. 

Cart kinematics 

v Linear velocity. 
w Angular velocity. 
R Radius (distance between the point for which linear speed is calcu

lated and rotation axis). 
Vj^cart Total linear velocity of the cart. 
Dw Diameter of the wheel. 
4> Angular orientation. 
xoiVo Coordinates of point C 0 . 
XoiVo Derivatives of xo and yo with respect to time. 
Wcart Angular velocities of the cart. 
wwheei Angular velocities of the wheel. 
L Distance in the kinematic diagram, 
t y ^ c r t Total angular velocity of the cart. 
Dw, Ww Diameter and width of the powered wheel. 
vCart_sum Total linear velocity of the cart. 
Wcart_sum Total angular velocity of the cart. 
wwheei_ieft Angular velocities of the left wheel. 
wwheei_right Angular velocities of the right wheel. 
X Control vector. 
0 Rotational speeds vector. 
J a c o Jacobian matrix for cart kinematics. 
X Total linear and angular acceleration. 
Jaco Pseudo-inverse matrix of Jaco. 
0 Angular accelerations of the wheels. 
£wheei_ieft Angular accelerations of the left wheel. 
£wheei_right Angular accelerations of the right wheel. 
a>cart_sum Total linear acceleration of the cart. 
£Cart_sum Total angular acceleration of the cart. 

Human operator interface 
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F-^h Total horizontal force. 
Fhr Horizontal force applied to the right side. 
Fhi Horizontal force applied to the left side. 
Tj2h Total rotational torque for the motion around the axis that goes 

vertically through the central point Co-
W Width of the system. 
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9 Human operator study 

In the dynamic realm of industrial automation, the design and control of mobile 
platforms play an important role in achieving efficient and seamless material trans
portation. The accurate representation of these systems through mathematical 
models is necessary to analyze their behavior, predicting their performance, and 
ultimately optimizing their operation. The development of a comprehensive math
ematical model for an industrial cart can be found in the appendix B. There we 
aim to provide a framework to understand cart's dynamics, control strategies, and 
system optimization. 

In this chapter we design a mathematical model of a human operator who is 
pushing a cart with two hands. This model involves several factors, including the 
mechanics of the human body, the dynamics of pushing, and the human-cart inter
action. We will use the following steps in order to implement the model: 

• Identify the variables involved in the system. For example, we might consider 
the position, velocity, and acceleration of the cart, as well as the angles, forces, 
and torques applied by each hand. 

• Define the coordinate system that describes the position and orientation of 
the cart and the human. This could be a 2D system for the sake of simplicity. 

• Create a model of a human body using rigid segments, such as the torso, 
upper arms, lower arms, and hands. Each segment can be represented as 
a mass with inertia and connected by joints that allow movement. We use 
simplified assumptions, such as assuming the arms are straight or including 
joint constraints to limit their range of motion. 

• Determine the forces and torques applied by each hand to push the cart. This 
could involve considering factors like the grip force, body weight distribution, 
and the interaction between the human's hands and the cart's handles. The 
frictional forces between the cart and the ground were considered. 

• Apply Newton's laws to derive the equations of motion for the cart and the 
human segments. This involves considering the forces and torques acting on 
each body segment and integrating them over time. 

• Use numerical methods or simulation software to solve the equations of motion. 
This allows to simulate the system's behavior and observe how the human's 
actions affect the cart's motion. 
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The concept of emotional and physical feedback in human-robot interaction 
(HRI) was developed and studied by researchers in the fields of robotics, psychol
ogy, and human-computer interaction and are described below. These researchers 
set an example of recognising the importance of emotional and physical feedback in 
HRI and conducted research to understand how these types of feedback can affect a 
person's overall experience of interacting with a robot in various disciplines. These 
are just a few research papers published to date by researchers who have worked on 
the concept of emotional and physical feedback in human-robot interaction (HRI). 
The use of haptic feedback in HRI was discussed in Chotiprayanakul et al., [86], 
social and emotional feedback was covered in e.g. Breazeal [87], Greczek et al. [88], 
and Dautenhahn [89], and ethical implications were covered in e.g. Brohl et al. [90], 
affective and multimodal feedback in HRI was described in e.g. Moubayed et al. 
[91] and Boudoin et al. [92]. 

The two types of feedback - emotional and physical - are considered in the 
current research work because they are believed to be two of the main factors that 
influence the feedback of an individual. There are various methods that can be used 
to evaluate emotional and physical feedback in response to interaction with a robot, 
for example: 

1. Self-report measures, which are often subjective measures that rely on in
dividuals to report their own emotional and physical responses. The examples of 
self-report measures include surveys, questionnaires, and interviews. 

2. Behavioral measures involve observing and recording an individual's behavior 
during interaction with a robot. The examples of behavioral measures include facial 
expression, body posture, and gestures. 

3. Physiological measures involve collecting data on physiological responses to 
interaction with a robot, such as heart rate, skin conductance, and blood pressure. 

4. Neural measures involve collecting data on brain activity during interaction 
with a robot, such as using electroencephalography (EEG) or functional magnetic 
resonance imaging (fMRI). In the case of the current research, we consider physical 
impact as an influence of various factors on our neural system. Emotional feedback 
is referred to as how this influence is evaluated by an individual. 

9.1 Research workflow development 

"That's one small step for man, 
one giant leap for mankind" 

Neil Armstrong 

In order to find a reliable solution for human-robot interaction we should un
derstand the nature of human motion, individual motivation and stimulus. This 
chapter starts with the explanation of the human step nature. 

Several studies have been conducted to understand the methods and techniques 
behind human locomotion. In order to study and investigate human locomotion, 
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researchers propose modeling human locomotion as an easy and simple way to get a 
clear picture of how human locomotion is performed. Modeling in terms of masses, 
links, and joints could demonstrate the characteristics of human motion. Moreover, 
modeling could provide theories and techniques for locomotion. The general method 
for modeling the human walking gait is the inverted pendulum. The body is sup
ported by the leg and rotated around the ankle joint 9.2. This modeled system 
is considered to be a passive system, whereby the dynamic motion depends upon 
the gravitational force and the body's momentum. In order to complete a one-step 
cycle, the momentum has to be sufficient to provide forward motion. Moreover, 
the velocity must not be too large, because the normal acceleration could become 
greater than the gravitational acceleration that acts in the opposite direction [68]. 

Two of the most commonly presented theories that address the nature of human 
gait popular in our time. The first theory proposed by Saunders et al. defines six 
major determinants of gait [69]. It states that the six major determinants are pelvic 
rotation, pelvic tilt, knee and hip flexion, knee and ankle interaction, and lateral 
pelvic displacement. The serial observations of irregularities in these determinants 
provide insight into the individual variation and a dynamic assessment of normal 
and pathological step. 

The second theory of human walking describes the locomotion by using an in
verted pendulum model. It states that the stance leg behaves like an inverted pendu
lum, allowing for economical gait. The advantage of a pendulum is that it conserves 
mechanical energy and thus requires no mechanical work to produce motion along 
an arc. Observations of mechanical energy exchange and leg-length change during 
a single-limb support provide a strong indication of pendulum-like behavior. The 
figure 9.1 depicts the process of human walking. 

Figure 9.1: Process of the dynamic walking [70] 

We compared the two abovementioned approaches and selected the model of 
an inverted pendulum as it allowed to study the effect of the human gait on the 
interaction process. This model is fairly simple to implement and is not demanding 
in terms of the computation power. It also helps to consider a number of important 
characteristics, such as the mass of the human body, its height, length of the legs, 
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Figure 9.2: Model of an inverted pendulum with a fixed length [68] 

the walking speed. The results of the assessment of both models are combined into 
the table. Inverted pendulum model can cover variations of body parameters that 
might have a significant impact of human-cart dynamics while pushing, pulling or 
turning the cart. From the perspective of human walking, there are two important 
parameters that affect the process of human gait significantly. One parameter is 
mass of the human body, because a body with the increased mass generates higher 
kinetic energy while walking. As a result, this energy effects human acceleration and 
forces that acts on the handlebar of the cart. Another important parameter is the 
length of the human legs, because it affects the length of possible maximum step as 
well as the amplitude of the human center of gravity (COG) oscillation. The length 
of the step together with the rate at which an individual changes the legs affects the 
overall speed of walking. 

A mathematical model of inverted pendulum consists of equations that describe 
the dynamics of the system. The ground reaction force of walking gait model in 
terms of an inverted pendulum is determined by: 

where m is mass of the human body, g - gravity constant, 9 - reaction force angle, I 
- length of the leg, / - reaction force. Sometimes, the leg length changes during the 
walking cycle. The dynamic equation of model system is different from the previous 
model, as shown below: 

The walking human model was implemented using the Python programming 
language. It is possible to adjust the mass of the human body, its height, length of 
the legs, the walking speed. Visualization of walking process with different model 
parameters is provided in the figure 9.3. 

Another important factor that plays a great role in human - cart interaction is 
a mechanical impedance of the human arm. It describes the motion ability of the 
upper limb. This interaction imposes forces on the hand and can also destabilize 

mg cos 9 — ml cos 92 = f 

mg cos 9 + ml — ml cos 92 = f 
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Figure 9.3: Examples of human walking with different model parameters 

motion. Alternatively, humans have excellent capabilities to manipulate objects. 
This means that the central nervous system (CNS) is able to adapt to various task 
dynamics. For instance, one may experience difficulties opening a door for the first 
time due to an unknown friction. However, after many trials the appropriate force 
to be exerted is learned, and one opens the same door without any difficulty and 
even without thinking about it. This situation may be regarded as the impedance 
control [12] which can been described as an effective strategy of the nervous system 
to deal with the kinematic variability due to neuromuscular noise and environmental 
perturbations. 

Biologically, muscle comes with two sections which are thick (myosin) filaments 
and thin (actin). This part is shown in figure 9.4. Myosin filaments slide against 
actin which tend to shorten the activated muscle. Neural activation signals are 
received when the muscle is activated. That signal consists of several spikes. The 
amount of force it produces depends on the frequency and magnitude of spikes. 

In addition, muscle tension is counted on both muscle length and the velocity 
of its extension. Experiment was made by Burdet [72] to measure stiffness (K) and 
damping (B) for a cat's muscle. As a result, when the length is equal to half of 

P e r i m y s i u m 

Fascicle 

Figure 9.4: Myosin and actin filaments in a muscle [71] 
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the initial length, the muscle cannot generate the force and the same is right for 
the velocity. However, the force increases as the muscle length or the velocity of its 
extension increases. Hence, the impedance of a single muscle changes with the force 
it generates. 

From the perspective of biomechanics systems, Burde's [72] study introduced two 
types of muscle models which are the Maxwell model and the Voight model. As it 
can be seen from the figure 9.5, the Maxwell model consists of a spring in series with 
a damper while the Voight model has the spring in parallel with a damper. From the 
prospective of the input, it shows that the force step input test and the displacement 
step input test from the Voight model are more realistic if compared to the Maxwell 
model [73]. Even though the Voight model is more realistic, the limitation of both 
models is that none of them is capable of modeling the active contractile property 
of a muscle. In the following years, a number of researchers came up with a new 
modeling based on Voight model in order to predict the mechanical impedance of a 
human's upper limb. It can help us to rationalise and use the model of simulating 
the dynamics of upper limbs of the human operator. 

B 
o-

Voight 
—O 

Figure 9.5: Maxwell (A) and Voight (B) muscle models 

Mechanical impedance modeling is an important stage in order to determine 
the quantitative assessment of the system. Each element represents the function 
of the real human arm. In this section, various modalities are elaborated. It can 
be represented in two ways which are the structure model (see figure 9.6) and the 
mathematical model. 

Previous studies used the mass-spring-damping (MSD) systems to a great extent 
in order to construct a mechanical impedance of human arm [73]-[74]. The mass-
spring-damper model is shown in the figure 9.6. This is the second order dynamic 
system where me(t), be(t), and ke(t) are the impedance parameters which denote the 
mass, damping factor, and stiffness of the arm, respectively; and fe(t) represents the 
force exerted to the arm. These researchers performed a number of experiments on 
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Figure 9.6: Mechanical impedance of the human arm. Structural model [73]. Arm 
illustration is adopted from [71] 

mechanical impedance of a human arm. Several independent mathematical models 
are proposed for the representation of the human arm movement. Recently, the 
MSD model has been improved to investigate mechanical impedance during the 
movement of the arm [73]. The muscle activation was included as a dependent 
parameter [75]. However, this model was developed assuming that the system had 
simple joints and did not consider complex muscle mechanics and geometry because 
dealing with a muscle is not easy as its shape can be changing and irregular. As 
reported by Speich et al. [76] and Rahman et al. [77], a model with five parameters 
with additional spring and damper to better approximate the dynamics systems 
was developed. Then, Wang et al. [78] studied the mechanical impedance during 
maintained posture and reaching movements in order to analyze human impedance 
changes depending on the situation. Lagrangian approach is applied to develop the 
mathematical model of human arm during movement. Tanaka et al.[79] proposed 
an active-steering control method that uses human hand impedance properties. 

9.2 Human Factors, Hazards and Limitations 

The industrial cart manipulation is mainly performed by pulling backward and push
ing forward with two hands. Pushing is preferable to pulling for several reasons. 
Firstly, operator's feet are often run over by the cart when pulling. It becomes 
even more dangerous in case of powered vehicles. If a person pulls while facing in 
the direction of travel, the arm is stretched behind the body, placing the shoul
der and the back in a mechanically awkward position, increasing the risk of injury. 
Alternatively, pulling while walking backwards may be called a recipe for an acci
dent, because the person is unable to view the path of travel. Possible poses of the 
human-operator during manipulation with industrial cart are shown in the figure 
9.7. 

The research of Lee [80] demonstrates that people can usually exert higher push 
forces than pull forces. In some situations, pulling may be the only viable means of 
movement, but such situations should be avoided wherever possible, and minimized 
when pulling is necessary. Because of the complex nature of body motion during 
pushing and pulling, no numerical standard has yet been developed that can be 
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Figure 9.7: A few possible poses of the human operator during manipulation with 
the cart 

directly applied in the industry. The amount of force that a worker can develop in 
case of transnational and rotational motion depends on many factors. A sample list 
of factors is listed as follows: 

• body weight and strength 

• height of force application 

• direction of force application 

• distance of force application from the body 

• different positions 

• posture (bending forward or leaning backward) 

• friction coefficient (amount of friction or grip between floors and shoes) 

• duration and distance of push or pull 

One of the earliest studies on the factors that influence manual handling capac
ity was conducted by Banerjee and Chattopadhyay [81] in 1959. In their study, 
the researchers found that the maximum force that a worker could exert while 
pushing or pulling a load was influenced by the load's weight, the angle at which 
it was applied, and the worker's body position. Other studies have also identified 
factors such as the worker's gender, age, and anthropometric dimensions as influ
encing manual handling capacity. More recent research works focused on the role 
of ergonomics and the design of the task and tools in improving manual handling 
capacity and reducing the risk of musculoskeletal disorders. They identified factors 
such as the height of the load, the grip size of the tools, and the presence of handles 
or grips as important considerations in manual handling tasks. Some examples of 
research on the role of ergonomics and the design of the task and tools in improving 
manual handling capacity and reducing the risk of musculoskeletal disorders include 
the following works, as stated in [82]: Lee et al. (1991) [83] investigated the effects 
of handle height on lower-back loading in cart pushing and pulling. Haisman el al. 
(1972) [84] examined the effects of different types of handles and grips on manual 
handling performance and the risk of injury for seven male volunteers. Jäger et al. 
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(1984) [85] analyzed the effects of different situations causing high postural stress 
during the transport of dustbins. 

These studies also provided recommendations for the design of manual handling 
tasks and tools to improve manual handling capacity and reduce the risk of mus
culoskeletal disorders. The table 9.1 contains the upper force limits for a variety of 
pushing and pulling tasks. They indicate the amount of force that a worker should 
not overcome. It is important to note here that the forces in the tables are not the 
same as the weight of objects being pushed and pulled. This difference means that 
we cannot use these upper force limits as recommendations for limits for wights that 
can be pushed or pulled in the workplace. 

The values in Table 9.1 show the upper limits of forces for horizontal pushing 
and pulling. These limits should not be exceeded in work situations. In fact, it is 
better and safer if pushing and pulling tasks require lower forces, particularly, if the 
task requires: 

• pushing or pulling an object when the hands must be above the shoulder or 
below the waist level 

• exerting a force for longer than 5 seconds 

• exerting a force at an angle not directly in front of the body, e.g., not "straight 
on" 

Higher forces (up to 675N or about 165 lbf or 75 Kgf) can be developed where 
a worker can support his body (or feet) against a firm structure. 

79 



Condition Force Examples of Activities 
limit (Newtons, 
lbf, kgf)** 

A . Standing 
1. Whole body 225 N (50 lbf or Truck and cart handling. Moving 
involved 23 kgf) equipment on wheels or casters. 
2. Primary arm 110 N (24 lbf or Leaning over an obstacle to move 
and shoulder 11 kgf) an object. Pushing an object at 
muscles, arms or above the shoulder height. 
fully extended 
B. Kneeling 188 N (42 lbf or Removing or replacing a compo-

21 kgf) nent from equipment while per
forming maintenance work. Han
dling in confined work such 
as tunnels or large conduits. 

C. Seated 130 N (29 lbf or Operating a vertical lever, such as 
13 kgf) a floor shift on heavy equipment. 

Moving trays or a product on and 
off conveyors. 

Table 9.1: Recommended Upper Force Limits for Horizontal Pushing and Pulling 
[6] 

** Units of force are: Newton (N), kilogram-force (kgf), pound-force (lbf); ION 
is about the same as 1 kgf or 2 lbf. The values in each unit system - Newtons, 
kilogram force and pound force, respectively - are provided in the table because they 
are used in the literature and while designing instruments, depending on the country 
of origin. 

Individual characteristics of the operator significantly affect emerging accidents 
and hazards. The developed system has to consider individual characteristics of a 
human operator and prevent the operator from exceeding the limits set by industrial 
and occupational safety guidelines. 

9.3 Emotional feedback 

The goal of this chapter is to describe the test methods to estimate operator's 
individual perception in response to the motion of the powered vehicle. 

In the current study emotional feedback of the human operator is considered 
important and we had to find the method to evaluate subjective human emotions. 
One way to estimate the operator's feedback is to use the adjective measures in the 
rating scale method [93]. 

This method is used to measure how people feel about various stimuli such as 
sounds, colors or smells. Another application area of this method is ergonomics. It 
allows to evaluate emotions about the task environment, machine and robot motion. 
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The method is known as an evaluation tool based on several step-wise measures 
in which adjective pairs are located at the opposite poles. In the experiment, the 
person evaluates their emotions according to the adjective pairs. The goal of this 
measure is to find suitable impedance controller parameters that allow to perform 
comfort interaction based on subjective feeling. 

Therefore, we selected six adjective pairs and a rating scale in order to perform 
human factor analysis. The rating scale is shown in the figure 9.8. The selected 
adjective pairs have the following statements: 

1. "comfortable — uncomfortable": This adjective pair should express the 
human operator feelings in terms of interaction comfort. It describes how 
precisely the dynamics of the powered cart follows the desired motion of the 
human operator. 

2. "reliable — unreliable": The adjective pair characterizes trust of the human 
operator in relation to the powered cart. It means that action of the powered 
cart fits to the expectations of the human operator. 

3. "controllable — uncontrollable": We work with the impedance controller 
for two degrees of freedom. A change or adaptation of the impedance con
troller parameters affects the ability of the human to control the system. This 
adjective pair should give the feedback about the controller settings. 

4. "pleasant — unpleasant": This adjective pair presents the motivation (will
ingness) of the human operator to use the powered cart. 

5. "satisfactory — unsatisfactory": Human estimation of the interaction task 
results are characterized by this adjective pair. 

6. "light — heavy": This adjective pair characterizes physical abilities of the 
human operator in the load handling. 

3 2 1 0 1 2 3 
i i neutral i i 

1— a little — 1 

' quite ' 
very 

Figure 9.8: Rating scale for the emotional feedback of the human 

The evaluation procedure was executed as follows. The operators expressed their 
feelings by choosing one of seven options in between the opposite poles in each ad
jective pair according to their impressions about the controller settings. Given the 
example of the procedure outcome, we could see the test sheet with the following 
answers, e.g.:"The controller's setting is not comfortable, a little reliable, not con
trollable, a little pleasant, very light". "Positive" feedback is defined as the mean 
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value located in the left position and "Negative" feedback is defined as the mean 
value located in the right part of the scale. In this subchapter we formed and anal
ysed a list of parameters which are used to obtain emotional feedback from the 
human operator. 

9.4 Physical feedback 

"The thesis target is to reach the 
state where the operator 
manipulates the heavy loaded cart 
with minimal physical effort 
(pleasant and comfortable 
interaction). Iterative adjustment 
of controller parameters with 
continuous force measurement on 
the operator-cart interface and 
following recognition of the 
human-operator intention is 
expected." 

doc. Ing. Petr Tuma, CSc. 

This subchapter is devoted to the measurement methods of biological features 
and markers that help to define the health conditions of a person depending on 
the interaction between the human operator and the industrial cart. There are 
a few methods to choose from in this case. They are described below as follows. 
The Borg scale is used to measure an individual's level of physical exertion during 
exercise, while the Likert Scale is used to measure attitudes, opinions, or behaviors. 
Both scales are ordinal, meaning that they assign a numerical value to a person's 
response, but the interval between the values is not always equal. They are generally 
used to measure a person's subjective experience. However, the Borg scale is used 
specifically for measuring only once construct, physical exertion, while the Likert 
scale can be used for a wide range of topics. The Borg scale ranges from 6 to 20, 
while the Likert Scale typically ranges from strongly agree to strongly disagree. The 
advantages and disadvantages of both approaches are described in e.g. Chen et 
al. in 2002 [94], and Hartley and MacLean in 2006 [95]. We decided to unify the 
advantages and shortcomings of these approaches in the following chart 9.2 below: 

Due to the fact that our goal was to find criteria for human interaction comfort 
in real-time we used a Borg scale [96] shown in the table 9.3 as a tool for operator's 
comfort measurement. 
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Advantages Drawbacks 
Borg 
Scale 

Widely used in exercise 
and sports science research. 
Simple and easy to use, 
making it accessible to a 
wide range of people. Can 
be used to monitor and ad
just the intensity of exer
cise. 

Limited to measuring phys
ical exertion. Relies on sub
jective perception, affected 
by factors like fatigue, mo
tivation, and pain. 

Likert 
Scale 

Can measure a wide range 
of attitudes, opinions, and 
behaviors. Widely used in 
research, facilitating data 
comparison across studies. 
Easy to use, accessible to a 
wide range of people. 

Relies on subjective percep
tion, influenced by factors 
like social desirability bias. 
Not always clear what the 
person is agreeing or dis
agreeing with, leading to 
confusion. 

Table 9.2: Comparison of Likert and Borg Scales 

Score Description 
6 
7 Very, very light 
8 
9 Very light 
10 
11 Fairly light 
12 
13 Somewhat hard 
14 
15 Hard 
16 
17 Very hard 
18 
19 Very, very hard 
20 

Table 9.3: Borg scale (rate per exertion) 
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The Borg scale [96] was originally developed by the scientist Gunnar Borg who 
rated the scale from 6 to 20, which was basically built around a heart rate range. 
This scale correlates with a person's heart rate or how hard they feel they are 
working. We use the Borg scale in our experiments to evaluate biological markers 
of the human - cart interaction. The scales are shown in the table 9.3. In addition 
to the Borg scale, we used No. l F4 IP68 Waterproof Smartband for the heart rate 
measurement. The device is shown in the figure 9.9. 

Figure 9.9: No. l F4 IP68 Waterproof Smartband 

We are interested in such biomarkers as pulse, blood pressure, saturation and 
the number of steps made. The standard use of the band involves the connection 
to the mobile phone to read the statistical data through the bluetooth interface. 
The statistics it receives can be visualized in a certain application. The idea was 
to replace the mobile phone application backend with a custom program, so that 
it could receive the information on the condition of biological markers and forward 
this information to the high-level controller. 

As a higher level controller a microcomputer Raspberry P i , version 4 was used. 
An application called "GATTacker" was used as a tool to perform the task in order 
to intercept bluetooth packages and carry out the data analysis. As a result, the 
package structure was identified. This information allowed me to create a Python 
script which could connect to the smart band from the high-level controller over 
bluetooth. The script was able to read the pulse, blood pressure and blood oxygen 
saturation in real time. The tool chain described above allowed me to follow the 
biomarkers of a human operator during the interaction process with a powered 
industrial cart. To measure the pulse, blood pressure, and saturation the band used 
the sensor based on the photoplethysmogram principle. 

A photoplethysmogram (PPG) is an optically obtained plethysmogram that can 
be used to detect blood volume changes in the microvascular bed of tissue. A 
P P G is often obtained by using a pulse oximeter which illuminates the skin and 
measures changes in light absorption [97]. A conventional pulse oximeter monitors 
the perfusion of blood to the dermis and subcutaneous tissue of the skin. 
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With each cardiac cycle, the heart pumps blood to the periphery. Even though 
this pressure pulse is somewhat damped by the time it reaches the skin, it is enough 
to distend the arteries and arterioles in the subcutaneous tissue. If the pulse oximeter 
is attached without compressing the skin, a pressure pulse can also be seen from the 
venous plexus, small secondary peak. 

The change in volume caused by the pressure pulse is detected by illuminating 
the skin with the light from a light-emitting diode (LED) and then by measuring 
the amount of light either transmitted or reflected to a photodiode [98]. Because the 
blood flow to the skin can be modulated by multiple other physiological systems, 
the P P G can also be used to monitor breathing, hypovolemia, and other circulatory 
conditions [99]. Additionally, the shape of the P P G waveform differs from subject 
to subject, and varies with the location and manner in which the pulse oximeter is 
attached. 

Smart band uses an accelerometer MC3413 to detect the number of steps. The 
parameters of the sensors are demonstrated in the data sheet [100]. 

In order to design the adaptive interaction controller we have to find a depen
dency between the emotional feedback of the human operator and a measurable 
physical equivalent. In the current research, we use the following physical measures 
per sample time period Tsampie — 60s: 

1. Mean and standard deviation of absolute interaction force value -
TTl€Cin(^\Finteraction\^ and SD(\Finferacfion |) 

2. Mean and standard deviation of absolute interaction torque value -
TnG(in{\Tinteraction\) and SD(\Tinteraction\) 

3. Mean and standard deviation of absolute linear speed of the cart - mean( \ vcart |) 
and SD(\vcart\) 

4. Mean and standard deviation of absolute angular speed of the cart -
mean(\ucart\) and SD(\ucart\) 

5. Heart rate 

6. Blood pressure 

7. Oxygen saturation 

In this subchapter we formed and analysed a list of parameters which are later 
used to obtain feedback about the physical well-being. 

List of variables 

Human operator simulation 

x(t) Cart position during walking motion. 
ijj Angular frequency, uu — 
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v Linear velocity. 
T Period of the walking motion. 
w(t) Weight distribution over time. 
W Total weight. 
Fi, F2 Forces applied by the hands. 
ki,k2 Force coefficients. 
•̂ hand•> ^cart Velocities of the hand and cart, respectively. 
m Mass of the cart. 
M Mass of the human's upper body. 
x Acceleration of the cart. 
0 Angular displacement. 
1 Length parameter. 
/ Moment of inertia of the upper body. 
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10 Human-cart interaction 

10.1 Procedure description 

This chapter describes the process of human - industrial power assisted cart inter
action. The process of moving goods by a human operator with the help of the 
powered cart on the surface includes the interaction between the cart, the human 
operator and the environment. 

The task of moving cargo can be divided into five stages [7]. The task scheme 
is shown in the figure 10.1. The first stage begins with the person's intention to 
carry out the act of moving goods using an industrial cart. The operators have 
some knowledge about the start and end points of the trajectory, the state of the 
environment. They can estimate the force needed to be applied in order to move the 
load and the powered cart from the start to the end points of the trajectory. They 
also may or may not have experience of interaction with a powered industrial cart. 

The second stage is the initial impact. This stage starts the moment human 
hands touch a mobile cart. The cart is at rest at the point PQ taken as a point of 
origin. We take the time of the first touch as the task starting time in the system 
of a mobile cart. From the point of view of the cart, the force applied by the 
human is a stochastic variable, since the cart has no information about the real 
world (knowledge about the weight of the load, the type of surface, the position 
in space and the desires of a man). Operator's force is divided into rotational and 
translational components. Then, the desired dynamics of the interaction is set by 
the relevant impedance controllers. On the output of the impedance controller we 
obtain the desired linear and angular velocity. The obtained values become reference 
setpoints for the differential drive system. The motors run in order to reach the 
reference value and support the motion. 

The third stage is the motion task. During this phase the process is about the 
accumulation of the interaction experience. Human-operator and cart find out the 
information about the response of the system (the change in the interaction force, 
acceleration, speed, distance, heart rate, oxygen saturation and blood pressure). In 
case of a mismatch of the expected response of the system obtained by a person 
during the first phase with the reaction of the real system, the operator estimates 
the correction of the applied force according to the new data and adapts to them. 

The fourth phase is a positioning task. The operator performs the application 
of forces to the cart in order to stop the motion and reach the desired position. 
The fifth stage is the end of the interaction. This stage comes as soon as the person 
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•^-+ - trajectory 

robot 

s P f c - t r a j e c t o r y p o i n t 

Figure 10.1: Moving cargo task 

ceases to interact with the industrial cart. The point P^ is the end of the interaction 
and the endpoint of the path. The operator achieved the goal. The cart can perform 
the analysis of the completed tasks. 

In the phase of the positioning task, the distances to the target and the actual 
traversed path are not equal. Over-reaching the target is influenced by the support 
of a power assistance system. In this case, the operator must perform additional 
manipulations to return to the target point. If power assistance is insufficient and 
cannot go beyond the total value of friction forces that resist to motion, then the 
distance to the target and the actual traversed path are equal, but the operator 
spends additional effort to overcome the friction forces. 

10.2 Raw data analysis and feature detection 

"Measurement is the first step that 
leads to control and eventually to 
improvement. If you can't measure 
something, you can't understand it. 
If you can't understand it, you 
can't control it. If you can't control 
it, you can't improve it." 

H. James Harrington 

Figure 10.2 shows force sensors information when the human assistance ratio is 
bigger than the desired value and the mobile cart moves faster than the human-
operator wants it to move. Periodic oscillations around -40/-50N in the middle of 
the curve demonstrate the human steps during the motion. Using this information 
we can estimate the motion rate, the human step time, the number of steps, the 
step length. Oscillations around zero in the beginning and at the end of the curve 
characterize the noise caused by the powered cart motion. 

According to the measures defined in the chapter 9.4 we developed a few feature 
detection techniques to estimate them. In our application we detect human gait by 

load 

human 
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Time [s] 

Figure 10.2: Raw data sample from pHRI handlebar 

processing the filtered signal that comes from tensiometers located at the handle bar. 
At a later stage, the peak detection and error cancellation algorithm was applied 
to the signal. At the pipe output we received the information about the amount of 
steps per task, step time (mean+std), step length (mean+std). The example of the 
processed data is shown in the figure 10.3. 
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Figure 10.3: Human gait feature 

The top line graph shows the fluctuations of the C O G position. The red dotted 
line depicts the moment at which the gait (a single step) was identified with the 
use of feature detected technique. The middle histogram shows the time spent 
by the operator to make this step in seconds. The bottom graph illustrates the 
estimated step length in meters. This procedure of measuring the step, its time and 
length helps to understand the individuality of an operator, thus making it possible 
to identify operator's parameters and better adapt to their gait. The fluctuations 
of the center of gravity (COG) is used to estimate the step length of the human 
operator for enhanced adaptation of the mobile platform. 

10.3 Effect of the impedance control 

We conducted several experiments with various settings of the controller. In each 
experiment the operator cyclically performed a front and back motion with the 
powered cart. A gradual increase of the virtual inertia (mass=2, 5, 10, 18) is shown 
in the figure 10.4. As we can see, the operator's applied force required to transport 
the cargo is reducing (linws change from black to green). However, upon further 
reduction of the ratio (red line), there was a situation in which the momentum 
generated by the support system created uncomfortable interaction conditions and 
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operator had to make significant efforts to implement the desired motion. 

Sample 2. Tsamp = 60s 

Sample 1. Tsamp = 60s 

Sample 4. Tsamp = € 

Sample 3. Tsamp = 60s 

M l | n = 1 8 j 

Figure 10.4: Change of interaction force with different settings of the impedance 
controller [54] 

The graph shows the standard derivative of the absolute value of the interaction 
force using various settings of the impedance controller. We change the values of 
the impedance controller, i.e. its mass component (virtual mass). The time lapse of 
the sample is 60 seconds, the number of measurements is 120, which means we can 
generate 3 data samples. 

In these cases when the mass component of the impedance control provides 
minimum or maximal value, the operator has to put a lot of effort to move the 
loaded trolley. If we consider both the standard derivative and the mean value it 
is noticeable that it requires a lot of effort from an operator. The reason for that 
was described in the figure 10.4 - the operator applies force which is transferred 
by the impedance controller into setpoints for the differential drive system. In case 
of small mass component, the task for the motor appears to be large. The engine 
works with a greater speed which means that the operator has to stop the trolley. 
On the contrary, if the operator stops the trolley abruptly, the engine gets a large 
task and start moving the trolley backwards, again, the operators have to stop it to 
prevent their feet from being run over. 

In case of a large mass component, vice versa, the initial force is high, but 
the task for the engine is small, which means that the trolley does not help the 
operator to a desired extent. As a result, none of these modes of mass component 
seems to work well. The comfort of the human operator largely depends on the 
impedance controller settings. The cart is usually pulled or pushed with two hands. 
However, if the load is small (light), the cart could be handled with one hand or even 
with fingers. Each human hand has its inertial, damping and stiffness component 
(property) as described in the section 9.1. In the Figure 10.5, the change of the 
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standard deviation of interaction force is demonstrated with the sampling time of 
60 seconds using various mass coefficients of the impedance controller. As it could 
be seen from the graph, the higher the mass parameter, the higher the force applied 
by the operator. However, if the mass coefficient is relatively small, operator applies 
significant force. It could be explained by the fact that the selected parameters 
provide more support than needed which results in additional efforts of the operator 
to complete the desired motion. 

Figure 10.5: Change of interaction force with different settings of the impedance 
controller [54] Tsamp = 60s 

The force standard deviation (Operator force change difference) takes larger 
values when the mass coefficients of the impedance controller are either too large, 
or too small. Significant fluctuations of the interaction force are not desirable as it 
leads to the discomfort of the human operator. However, it is visible from the graph 
that there are specific settings of the impedance controller that allow to reduce the 
range of fluctuations of the interaction force. These settings shown in blue lead 
to comfortable interaction between the operator and the platform. It confirms the 
findings from [77] and [36]. 

In the Figure 10.6 the change of the mean interaction force is demonstrated 
with sampling time of 60 seconds using various mass coefficients of the impedance 
controller. As it could be seen from the graph, the higher the mass parameter, the 
higher the force applied by the operator. However, if the mass coefficient is relatively 
small, operator still applies significant force. It could be explained similarly to the 
case with the standard deviation described above. 
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Figure 10.6: Change of interaction force with different settings of the impedance 
controller [54] Tsamp = 60s 

The interaction force mean takes larger values when the mass coefficients of 
the impedance controller are either too large, or too small. Increase in the virtual 
mass (corresponding coefficient of impedance controller) leads to an increase in the 
applied force causing discomfort. On the other hand, decreasing virtual mass allows 
the operator to reduce effort. With small values of the mass coefficient but significant 
real mass (in our case, cart load should be over 50 kg), the operator needs to apply 
extra effort to implement the desired motion. It is visible from the graph that there 
are specific settings of the impedance controller that allow to reduce effort. These 
settings shown in blue lead to comfortable interaction between the operator and the 
platform. It confirms the findings from [77] and [26]. 

In the Figures 10.7 and 10.8 the change of the mean interaction force is demon
strated with sampling time of 30 seconds using various mass coefficients (2, 5, 10, 
18) of the impedance controller. As it could be seen from the graph, the tendency 
is true for time period of 30 seconds as well. The higher the mass parameter, the 
more force is applied by the operator. 
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Figure 10.7: Change of interaction force with different settings of the impedance 
controller [54] Tsamp = 30s 
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Figure 10.8: Change of interaction force with different settings of the impedance 
controller [54] Tsamp = 30s 
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Figure 10.9: Mean value of absolute interaction force for different settings of 
impedance controller. Sample 1. Tsamp = 60s 

In the Figure 10.9 the change of the mean value of interaction force module is 
demonstrated with the sampling time of 60 seconds using various mass and damping 
coefficients of the impedance controller. The interaction force values are shown in 
the table below the figure where the first row represents values of damping coefficient 
(20, 50, 100, 160) and the first column represents values of mass coefficient (2, 5, 
10, 18). As it could be seen from the graph, the higher the mass parameter and 
damping parameters, the higher the average value of the module of the interaction 
force. If the damping and mass coefficients are too small, the operator applies a lot 
of effort to complete the desired motion as there is more assistance supplied than 
needed. For the first sample minimal value (62 N), the mean force module could be 
reached with combination of parameters mass=2 and damping=50, or mass=5 and 
damping=20. 

For the second data sample shown in the figure 10.10 the minimal value of 
the mean force module (64 N) was reached with the combination of mass=5 and 
damping=20. 
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Figure 10.10: Mean value of absolute interaction force for different settings of 
impedance controller. Sample 2. Tt samp 60s. 
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Figure 10.11: Mean value of absolute interaction force for different settings of 
impedance controller. Sample 3. T< Kamp 60s. 
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The dataset collected from another operator concludes the same trend, see Figure 
10.11. The minimal value of the mean force module (61 N) was reached with the 
combination of mass=2 and damping=50. In this subchapter we studied the effect 
of the impedance control parameters and learned how they affect the interaction 
process. It may be concluded that there is a specific setting for the impedance 
controller that changes for each individual operator. Therefore, the personalised 
approach is achieved, becuase each operator has a different setting of the impedance 
controller which they can consider as comfortable. 

10.4 Experiment design 

This chapter describes the experiments carried out using the mobile platform during 
the research project. In this chapter we would like to describe the set of performed 
experiments to measure the interaction parameters between the human operator 
and industrial cart. The goal of the experiments is to find the relationship between 
the subjective operator's estimation of the interaction process and the measured 
physical quantities. 

The experiments were executed in the laboratories of the Institute for Nanoma-
terials, Advanced Technologies and Innovation. The coefficients of static and kinetic 
friction equal to 1 and 0.7 respectively, because of the fact that the floor material 
is concrete. Therefore, the laboratory area allowed to simulate material handling 
tasks related to warehouses, production area, offices and supermarkets. 

The subject pool consisted of 5 human operators (three males and two females). 
Two male operators out of the pool had some experience driving powered vehicles. 
The other experiment members operated the vehicle for the first time. Both the ex
perienced and inexperienced operators were needed to cover the variance of operator 
expectations from their interaction with the powered cart. The basic anthropomet
ric data for the operators is presented in the table 10.1. 

Figure 10.12: Operator's motion task 

The participants had to push and pull a six wheeled powered cart on given 
trajectories. During the experiment, five types of trajectories depicted in the figure 
10.13 were used, such as the linear path with the length of 7m in order to estimate 
the effect of the translational impedance controller parameters on human feelings 
during the transnational motion, circular path was used to verify the effect of the 
rotational impedance controller [101], eight-like trajectory to test the joint work of 
the controllers and trajectory with the complex shape similar to a real production 
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N Parameter Mean ± Standard Deviation 
1 Age 28 ± 5.2 [a] 
2 Weight 80 ± 20.8 [kg] 
3 Height 180 ± 10.5 [cm] 
4 Legs Length 90 ± 12.5 [cm]  

Table 10.1: Operators parameters 

scenario as shown in the figure 10.15. In the end of the experiment, human operators 
could evaluate their feelings of the collaboration on the free-run trajectory. 

Figure 10.13: Trajectory setups 

A set of barrels to simulate the different load was used. The set consisted of five 
30 [1], two 50 [1] barrels and two metal pipes that weighted of 50kg each. A l l the 
barrels were filled with water. Their weight was measured before the experiment. 
As a result, it was possible to change the cart load in a range mioad G [0; 340] kg. 
The load set is shown in the figure 10.14 which was changed and adjusted for each 
experiment and measured accordingly. 

Figure 10.14: Load variation 

In the current study, we performed the measurement of the emotional feedback. 
Methods from the section 9.3 were used to estimate the individual feelings of a par
ticular operator. The subjective impressions were documented with questionnaires 
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and processed. In addition to the emotional feedback, the physical measures were 
obtained. The readings of the interaction process values were recorded (respectively 
translational and rotational components of position, speed, acceleration from wheel 
encoders; orientation, angular velocities and linear accelerations form I M U unit, 
motors currents form motors current sensors, interaction torque and force form ten-
siometers). 

The developed system allowed to study the effect of different impedance con
troller settings on the interaction process. The parameter's values for translational 
and rotational impedance controller settings are combined in the table 10.2, where 
M is mass, J stands for the moment of inertia, Dtrn is the damping coefficient of the 
translational motion, Drot - damping coefficient of the rotational motion. The oper
ator's feedback does not seem to cause instability of the platform as we have omitted 
the configurations that could possibly lead to the unstable platform support. It was 
carried out to ensure that the learning process could happen under any acceptable 
load of the platform and would be safe for the operator. Based on the parameter's 
values, the experimental test sets were generated. We evaluated the effects of the 
controller' settings on the operator's comfort. The results of the experiments were 
collected in the chapter 11. 

M Dtrn J Drot 
2 20 1 10 
5 50 4 20 
10 100 8 50 
18 160 18 160 

Table 10.2: Tested impedance controller settings for translational and rotational 
motion 

The linear 7m-long trajectory had the orthogonal lines to mark each meter so that 
it is suitable for the odometry calibration. Based on this trajectory, we can check 
if the internal calculated distance corresponds to the measured value. In addition, 
it is convenient to verify the rotational motion of the cart around its central axis. 
Trajectory layout including dimensions in cm is shown in the figure 10.16. 

Circular trajectory shown in the figure 10.17 allows to evaluate human feelings 
during the time of turning the industrial trolley around some pivot point. 

Another type of track was the 8-shape trajectory. This trajectory brings a sig
nificant benefit because it combines the linear and the rotary motions with certain 
patterns that could easily be detected in the measured data. The path with dimen
sions in cm is shown in the figure 10.18. 

A free-run track 10.15 was designed to model typical logistics scenarios for ma
terial handling tasks in the shop floor or warehouse. It combines linear and rotary 
segments of different length. The detailed dimensions of the trajectory in cm are 
provided in the figure 10.19. 
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Figure 10.15: Predefined track. Setup for mioad+Cart = 103[/cy] 
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Figure 10.16: Linear track 



Figure 10.18: 8-like track 
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Figure 10.19: Free-run track 



11 Evaluating comfort by means of the 
regression analysis 

The regression analysis is a reliable method of identifying which variables impact 
operator's comfort, our topic of interest. The process of performing a regression 
allows us to confidently determine which factors matter the most, which factors can 
be ignored, and how these factors influence each other. 

In order to describe the regression analysis in more detail, it is essential to 
comprehend the following terms: 

1. Dependent Variable or Predictor is the main factor that we would like to 
understand and predict its future behaviour. 

2. Independent/Input Variables or Regressors are the factors incorporated 
into the regression model which are assumed to influence the dependent vari
able according to the research hypotheses. 

The multiple regression equation can be represented in the following form: 

y = b0 + 6 1 X 1 + b2x2 + • • • + bnxn + e (11.1) 

where bi(i = 0,1, 2...n) are the regression coefficients which denote the rate of change 
of the criterion variable with respect to the predictor variable. The coefficient bo 
represents the intercept of the trend line with the y axis. In this chapter, the 
results of the regression analysis of data sets obtained from the experiments are 
described, such as the human operator feedback and physical measures. The data 
collected from the feedback surveys allows us to measure the human operator's 
feelings associated with various settings of the impedance control. We could also 
identify what variables influence those feelings. In the linear regression model 11.1, 
the sign of the coefficients bi...bn indicates the direction of the relationship between 
the independent variable and the dependent variable. A positive coefficient implies 
that as the independent variable increases, the mean of the dependent variable tends 
to increase. Conversely, a negative coefficient indicates that as the independent 
variable increases, the mean of the dependent variable tends to decrease. It is 
important to note that the regression coefficients and their signs have no relation to 
the settings of the impedance controller. 

The first analysis reflects on the effect of the impedance controller parameters on 
human comfort. We select operator's comfort as a dependent variable and parame-
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Regression Statistics 
Multiple R 0.632 
R Square 0.400 
Adjusted R Square 0.359 
Standard Error 1.734 
Observations 48 

ANOVA 
df S S MS F Significance F 

Regression 3 88.090 29.363 9.771 4.65E-05 
Residual 44 132.222 3.005 
Total 47 220.313 

Coefficients Standard Error t Stat P-vaiue Lower 95% Upper 95% 
Intercept 2.726 0.786 3.467 0.001 1.141 4.311 
Mass -0.172 0.04 -4.332 8.42E-05 -0.252 -0.092 
Damping -0.012 0.004 -3.248 0.002 -0.019 -0.004 

Table 11.1: Regression analysis for comfort of the operator 1 using impedance con
troller coefficients 

ters of the impedance controller as the independent variables. The analysis results 
are presented in the table 11.1. 

If we look at the R2 (coefficient of determination) value 1 , we could conclude that 
for the 48 observations 2 almost 40% of change in the operator's comfort was likely 
caused by the impedance controller parameters. Significance value F is smaller 
than 0.05, so regression results are statistically significant. When we check the 
coefficients' values, we can see that we have a negative relationship between human 
comfort and the values of mass and dumping coefficients. In simple words, the 
increase of mass and dumping coefficient leads to the decrease of the operator's 
comfort for the analyzed data set. If we look at the P-value for the coefficients, 
we could say that P-values for mass and damping coefficients are lower than 0.05 
that means these results are statistically significant, and as a result, both increasing 
coefficients affect operator's comfort in the negative way. 

In the next step, we study the effect of independent variables, such as the mean 
value of the absolute interaction force and its standard deviation as well as the mean 
value and the standard deviation of the absolute linear velocity of the cart. The 
results are collected in the 11.2. When we analyze R2 for the 48 observations, nearly 
78% of change in the operator's comfort is caused by the change of the interaction 
force and linear velocity of the cart. The significance value F is smaller than 0.05, 
so the regression results are statistically significant. 

We can see that the mean and the standard deviation of absolute interaction 
force and the cart velocity has a significant effect on the operator's comfort, because 

1R2=0 indicates that the model equation 11.1 does not explain any of the variability of the 
response data around its mean and R2=\ indicates that the model explains all the variability of 
the response data around its mean. 

2These observations come from evaluating the interaction process of a single operator, with 
specific mass and damping parameters of the impedance controller 
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Regression Statistics 
Multiple R 0.882 
R Square 0.778 
Adjusted R Square 0.757 
Standard Error 1.067 
Observations 48 

A N O V A 
df S S MS F Significance F 

Regression 4 171.386 42.847 37.656 1.58E-13 
Residual 43 48.926 1.138 
Total 47 220.313 

Coefficients Standard Error tStat P-vatue Lower 95% Upper 95% 
Intercept 4.272 0.979 4.363 7.91E-05 2.297 6.247 
Mean Abs F -0.031 0.011 -2.935 5.34E-05 -0.052 -0.01 
Std Abs F -0.014 0.005 -2.73 9.13E-03 -0.025 -0.004 
Mean abs V 5.666 1.9 2.982 0.005 1.834 9.499 
Std abs V -5.419 1.497 -3.619 0.001 -8.438 -2.4 

Table 11.2: Regression analysis for operator 1 comfort using mean value and stan
dard deviation of interaction force and cart velocity 

the P-value of each parameter is higher than 0.05. We apply the regression analysis 
to data sets of all the operators, and as a result, we could confirm that the interaction 
force and cart velocity have a significant effect on the operator's comfort, however for 
different operators the comfort state is reached with different impedance controller 
settings. 

In the third step, we study the relationship between the operator's comfort and 
the biological markers, such as pulse, blood pressure, and oxygen saturation. The 
results were combined in the table 11.3. The value of R2 for the 48 observations, it 
could be concluded that approximately 81% of the change in the operator's comfort 
is caused by biological markers. The regression results are statistically significant, 
because the significance value F is smaller than 0.05. It could be observed that 
the heart rate and comfort of the human operator have an inverse relationship. It 
means that the human operator's heart rate is decreasing when the comfort zone is 
reached, while the heart rate is increasing when a lot of effort is applied to overcome 
the friction force or return the cart to a desired position if the target was over
reached. The oxygen blood saturation and the Borg scale estimations have positive 
relation to the operator's comfort. If we look at the P-value for the coefficients we 
could say that only the P-value of oxygen blood saturation is lower than 0.05 that 
means the regression results are statistically significant only for this parameter. 

The results of the regression analysis of the data set that includes all the partic
ipants are shown in the tables 11.4 - 11.6. The data set of all participants includes 
240 observations. In the table 11.4 we analyze the effect of impedance controller 
parameter's change on comfort of different operators. The R2 for 240 observations 
equals to 0.332. It means that only 33.2% of the operator's comfort is caused by the 
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Regression Statistics 
Multiple R 0.9 
R Square 0.81 
Adjusted R Square 0.797 
Standard Error 0.976 
Observations 48 

A N O V A 
df S S MS F Significance F 

Regression 3 178.378 59.46 62.39 6.87E-15 
Residual 44 41.934 0.953 
Total 47 220.313 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept -123.766 48.772 -2.536 0.015 -222 061 -25.474 
HR -0.072 0.04S -1.49 0.143 -0.17 0.025 
S P 0 2 1.3 0.482 2.696 0.01 0,329 2.273 
Borg Scale 0.25 0.387 0.S47 0.521 -0.529 1.03 

Table 11.3: Regression analysis for operator 1 comfort using biological markers 

change of the controller parameters. The regression results are statistically signifi
cant because the significance value F is smaller than 0.05. The relationship between 
the human comfort and the values of mass and dumping coefficients is negative. 
The P-value for the coefficients shows that the regression results are statistically 
significant. 

Regression Statistics 
Multiple R 0.576 
R Square 0.332 
Adjusted R Square 0.324 
Standard Error 1.727 
Observations 240 

AMOVA 
df S S MS F Significance F 

Regression 3 350.433 116.811 39.146 1 43E-20 
Residual 236 704.217 2.98 
Total 239 1054.65 

Coefficients Standard Error t Stat P-vaiue Lower 95% Upper 95% 
Intercept 2.386 0 3 5 6.808 8.12E-11 1.695 3.075 
Mass -0.147 0.018 -8.258 1.06E-14 -0.181 -0.112 
Damping -0.011 0.002 -7.017 2.39E-11 -0.014 -0.008 

Table 11.4: Regression analysis for comfort of all the operators using impedance 
controller coefficients 

The result of the regression analysis for comfort of all the operators using the 
mean value and standard deviation of interaction force and cart velocity was col
lected in the table 11.5. For complete data set of all participants the 79% of change 
in the human comfort is caused by the mean value and standard deviation of the 
measured interaction force and the cart's velocity. The significance of the F value 
is less that 0.05 demonstrates statistically significant results. The P-value of all the 
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coefficients less than 0.05 shows that all the physical measures have an effect on the 
operator's comfort. 

Regression Statistics 
Multiple R 0.87 
R Square 0,757 
Adjusted R Square 0,753 
Standard Error 1 044 
Observations 240 

AN OVA 
df S S MS F Significance F 

Regression 4 798.702 199.675 183.333 4.98E-71 
Residual 235 255.948 1.089 
Total 239 1054.65 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept 3 909 0.422 9.257 1.36E-17 3.077 4.741 
Mean Abs F -0 033 0.005 -6.945 3.67E-11 -0.042 -0.023 
Std Abs F -0,011 0.002 -4.SS8 1.SSE-06 -0.016 -0.007 
Mean Abs V 6,555 0.874 7.502 1.28E-12 4.833 8.276 
Std Abs V -5.79 0.696 -8.313 7.51E-15 -7.162 -4.418 

Table 11.5: Regression analysis for comfort of all the operators using mean value 
and standard deviation of interaction force and cart velocity 

Table 11.6 shows the effect of biological markers on the operator's comfort. The 
result of the regression analysis demonstrates that over 81% of the human comfort 
is caused by biological markers. The significance of the F value is less than 0.05 
demonstrates statistically significant results. The P-values of the heart rate and 
oxygen blood saturation coefficients are less than 0.05. It shows that biological 
markers influence the operator's comfort. 

Regression Statistics 
Multiple R 0.902 
R Square 0.814 
Adjusted R Square 0.811 
Standard Error 0.913 
Observations 240 

A N O V A 
df S S MS F Significance F 

Regression 3 858.052 286.017 343.341 9.14E-86 
Residual 236 196.598 0.833 
Total 239 1054.65 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept -134.406 20.212 -6,65 2 02E-10 -174.225 -94.586 
HR -0.067 0.02 -3.278 0.001 -0 107 -0.027 
S P 0 2 1.405 0.2 7.029 2 22E-11 1.011 1.799 
Borg Scale 0.235 0.163 1.446 0.149 -0,085 0.556 

Table 11.6: Regression analysis for comfort of all the operators using biological 
markers 

When we evaluated the participants separately, the output of the regression 
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analysis was similar to the results demonstrated in tables 11.1 - 11.3. However, the 
analysis of data for all operators yields a different result. As it could be observed 
form the table 11.4, the R2 value is reduced by almost 7% in comparison to individual 
approach. It means the impedance controller settings that could be evaluated as 
comfortable are different from one operator to another. In fact, the dependency 
between the comfort, the mean and the standard values of the interaction force and 
the cart's velocity, as well as the biological markers remains the same. It allows us 
to conclude that the mean value and the standard deviation of the interaction force 
and the cart's velocity, the heart rate and the oxygen blood saturation could be used 
as sufficient references to generate the rewards which can be used by the developed 
reinforcement learning algorithm described in the following chapter. 
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12 Q-Learning for human-cart interaction 

"When you first start off trying to 
solve a problem, the first solutions 
you come up with are very 
complex, and most people stop 
there. But if you keep going, and 
live with the problem and peel 
more layers of the onion off, you 
can often times arrive at some very 
elegant and simple solutions." 

Steve Jobs 

This chapter describes the control algorithm developed for the robust and safe 
physical interaction between the human operator and the industrial cart. As demon
strated in the chapter 3, the impedance control is an essential component of the 
solution. It can be used as a part of the representation for the human operator 
dynamics. Additionally, it helps us to control the supporting effort of the mobile 
platform side during the collaboration. One of the possible physical collaboration 
scenarios is presented in the figure 12.1. 

Estimation of human comfort 

Mobile 
platform 

Adjustment of interaction 
strategy 

Figure 12.1: Physical collaboration scenario 

While performing the task the human operators learn based on their estimations 
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and feelings. As a result, they adapt their arm impedance according to the required 
effort for the task. As shown in some field tasks [102], human operators generally 
combine two strategies to adapt their impedance to perturbations, thereby minimiz
ing position error and energy consumption: 1) if perturbations are unpredictable, 
subjects increase their impedance through co-interaction; and 2) if perturbations are 
predictable, subjects learn a feed-forward command to offset the perturbation. 

On the other hand, the mobile platform adjusts the interaction strategy by 
changing the impedance parameters. The change occurs according to the correla
tion between detected features and human feelings that was obtained in the chapter 
11. 

A Markov decision process (MDP) consists of the following items: 

• S, a set of states of the world. 

• A, a set of actions. 

• P : SxSxA^[0,1], which specifies the dynamics. This is written as P(s'\s, a), 
where Vs G S; Va G A; J2s'es P(s'\si a) = 1- I n particular, P(s'\s,a) specifies 
the probability of transitioning to state s' given that the agent is in a state s 
and does action a. 

• R : SxAxS^R, where R(s,a,s') gives the expected immediate reward from 
doing action a and transitioning to a state s' from the state s. 

Both the dynamics and the rewards can be stochastic; there can be some ran
domness in the resulting state and reward, which is modeled by having a distribution 
over the resulting state and by giving the expected reward R. The outcomes are 
stochastic when they depend on random variables that are not modeled in the MDP. 

A finite part of a Markov decision process can be depicted using a decision 
network as in Figure 12.2. 

Figure 12.2: Decision network representing a finite part of an M D P [14] 

In order to include human feelings in the control system we implemented a 
reinforcement learning algorithm. The textbook named "Reinforcement Learning: 
An Introduction" [18] provides the following definition to the reinforcement learning: 

"Reinforcement Learning is an area of Machine Learning that can be considered 
both a set of problems and solution methods to these problems. It is concerned 
with finding the best possible behaviour strategy for an agent interacting with an 
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state reward 
r, 

action 
a, 

Figure 12.3: Reinforcement learning flow diagram [18] 

environment. The underlying idea is that similarly to how humans and other animals 
learn by trial-and-error, so should also software agents be able to learn." 

Reinforcement Learning (RL) was originally inspired by the behavioural psychol
ogy. Similarly to how humans are taught that some actions are good and others are 
not by obtaining either a reward or a punishment, this class of algorithms reinforces 
desirable actions while discouraging the undesirable ones. This trial-and-error ap
proach to learning is simulated by giving a numerical reward as a feedback on the 
performance of an algorithm. Thus, based on the result signal, a learning algorithm 
can evaluate and update its parameters based on how good or bad a set of actions 
were. 

The following R L algorithms are built on the following main components and 
assumptions, as stated in [103] and [104]: 

• State. Set S of states the agent and environment can be in. 

• Act ions . Set A of actions the agent can invoke. This set can be restricted 
depending on the current state. 

• Reward. R is a function that provides numerical rewards for state transitions. 
It is used to estimate the quality of action at in state st based on the state 
change it causes. 

• State Var iab les . The value map memorizes what outcomes an agent ex
pects for given states 

• P o l i c y . A policy is a structure that maps states to actions. Roughly speak
ing, it defines what action to take in a specific state. 

• Model (Optional) . A model of the environment and agent predicts the new 
state s' when action a is invoked in states. The model can be probabilistic or 
unavailable. 

The first task when designing a Q-Learning system is to define the environment. 
The environment consists of states, actions and rewards. It is assumed that the 
agent uses states and rewards as inputs and generates actions as outputs. 
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12.1 States 

It is assumed that the number of possible states is finite. The agent could be in 
one fixed number of possible situations. In our case, we can think of each possible 
setting of the impedance controllers as of a state. The agent could be located 
at one state at a time. It means only one set of impedance controller settings 
could be selected and evaluated in one step. Each component of the impedance 
controller could switch among four states. According to the selected parameters 
of the impedance controllers shown in the table 10.2, the set of 256 system states 
was generated. It includes the states and the intervals between their set values 
to be used in the process of Q-learning. In this study, four parameters for each 
coefficient were used, resulting in a total of 256 possible combinations. This number 
of combinations is believed to be sufficient to demonstrate the learning process of 
the platform. However, it is important to note that this number is not limiting, as 
researchers must consider the trade-off between the flexibility of the settings and the 
time required for the learning process before determining the number of coefficients 
to be used. 

States[256] = generate 

M M 1 Dtrn 1 J 1 Drot 
2 20 1 10 

5 50 4 20 

10 100 8 50 
18 160 18 160 

Figure 12.4: Set of states 

12.2 Actions 

It is assumed that the number of possible actions is also finite. The agent always 
needs to choose from among a fixed number of possible actions as it was suggested 
by the results of the regression analysis obtained in chapter 11. Therefore, four 
parameters (Mtrn, Dtrn, Mrot, Drot) were selected as adjustable variables. We define 
a set of possible actions in the following way: the agent could apply two actions 
(increase or decrease) per each of the four parameters and carry out an additional 
action "do nothing" when no change is required, see the figure 12.5. The change of 
inertial and dumping components of the impedance controller leads to the change 
in the cart dynamics. 

12.3 Rewards 

In order to help the agent in the learning process we created a condition based re
ward structure. The most important part is the reward definition for the state. The 
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M Dt rn J Dro t acta 

Actions[9] = {0,1,2,3,4,5,6,7,8} 

Figure 12.5: Set of actions 

agent goal is always the same - to maximize its total rewards. In our case we mostly 
use negative rewards (i.e. punishments) for the settings that could be recognized as 
undesirable. The reason for the negative rewards is the following. Due to the fact 
that the agent goal is to maximize cumulative rewards, if we used positive rewards 
the agent could get stuck in switching between the first states and would accumu
late a very large cumulative reward even if the comfortable impedance controller 
settings were not found. In case of negative rewards, the agent tries to minimize 
the punishment by searching for the most convenient set of impedance controller 
settings. The result will be the set of impedance controller settings convenient for 
the current operator. 

The reward system works as follows, see figure 12.6. The agent checks if the 
interaction dynamics is positive by comparing the values of the mean and the stan
dard deviation for both the current step and the previous step. Additionally, the 
agent checks if there is no emergency situation by analyzing the E-stop button state. 
The peaks of the interaction force have to be avoided as well. If a human operator 
thinks that the current settings are convenient for them, they might provide a posi
tive feedback. In the end, we sum up the rewards for various criteria. If none of the 
criteria were met, the reward is set to be the negative one. 

If mean(Fh) > mean(Fh)' 
or STD(Fh) > STD(Fh)' 
If mean(Th) > mean(Th)' 
or STD(Th) > STD(Th)' 

If not_aus - false 
If fbd_btn - true 
If max(abs(Fh)) > 2.5*mean(Fh) 
If max(abs(Fh)) > 2.5*mean(Fh) 
If mean(Vsteps) != mean(Vcart) 

-1 else 

Figure 12.6: Rewards 

R e w a r d = -

-1 

-10 

+5 

2 

-5 

-5 

12.4 High-level control 

The learning algorithm that is used in the context of this thesis is called Q-Learning, 
which is a model-free Temporal-Difference (TD) algorithm created within a PhD 
thesis of Watkins [103]. The further technical description is addressed in detail in 
[104]. T D learning methods combine the ideas behind Monte Carlo and dynamic 
programming methods. Therefore, a Q-Learning algorithm does not need a model 
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unlike Monte Carlo methods. Furthermore, T D methods update the state value 
directly after each step similar to the dynamic programming methods. 

TD(st,at) = 7-(st,Qt)+ ^ 7 ^ • maxQ(st+1,at+1) -Q(st, at)] (12.1) 

temporal difference reward discount factor S v ' old value 
estimate of optimal future value 

The discount factor is settled between 0 and 1. The purpose of the 7 is to provide 
the mechanism to discount the future rewards. In other words, it allows to choose 
a better option, because the value of receiving a particular reward in the future is 
considered to be generally lower than receiving the same reward now. A discount 
factor of 1 makes the agent prioritize long-term rewards, while a discount factor of 
0 makes the agent only consider immediate rewards. A common value for 7 is 0.9. 

Another important equation is the Bellman's equation 12.2. The Bellman equa
tion demonstrates what Q-value has to be used as the value for the action that was 
taken in the previous step. The equation includes a learning rate parameter a that 
defines how quickly Q-values are adjusted. The learning rate can take any value 
from 0 to 1, as the discount factor 7 described above. The learning rate of 1 makes 
the agent update its Q-values completely based on the new information, while the 
learning rate of 0 makes the agent not update its Q-values at all. A common value 
for a is 0.1. Both factors may help researchers to understand how the Q-table is 
updated to ensure that the learning agent keeps trying out new actions to learn 
from them and would not get trapped by "thinking" that the current process works 
perfectly well. 

Qnewjst, at) = Qoid(st, at) + • TD(st,at) (12.2) 
new value old value learning rate t e m p 0 r a j difference 

Q-Learning works with MDPs only, because the values are calculated based on 
the current state. Therefore, each state instance must represent the entire config
uration of the agent and environment. The basic Q-Learning update is defined by 
the equation 12.3: 

Q(st,at) <r- Q(st,at) + •[r(s i,a <)+ 7 • maxQ(st+l,at+l) -Q(st, 
S v ' s v ' . s v ' S

 s

 a , s V " 
new value old value learning rate reward discount factor v old value 

estimate of optimal future value 
(12.3) 

where Q(st, at) represents the value for a cell in the Q-matrix that demonstrates 
the choice of action a, from a state s at current time t, and r(st,at) is the reward 
received for the choice of action a, from state s. 

The following figure presents the specific form of the M D P implemented in the 
current application of 256 states, where blue circles represent states, and black lines 
represent actions or transitions between the states. 

The diagram shown in the figure 12.7 presents the process of Q-Learning. The 
process begins by initializing the Q-Table. This table represents the agent's policy 
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on how to behave in the environment. In the next step the action for the current 
step has to be selected. There are two available options. One option is to choose 
the action with the highest Q-Value. Another option is to take a random action 
in order to explore the environment. The common strategy for resolution of the 
trade-off between exploration and exploitation is the Epsilon-Greedy algorithm. 

In the framework of this algorithm, for each step within an episode, we set our 
exploration rate threshold to a random number between 0 and 1. This is used to 
determine whether our agent explores or exploits the environment in this time-step. 

If the threshold is greater than the exploration rate, which is initially set to 1, 
then the agent exploits the environment and selects the action that has the highest 
Q-value in the Q-table for the current state. If, on the other hand, the threshold is 
less than or equal to the exploration rate, then the agent explores the environment, 
and samples an action randomly. 

As soon as the action is selected, the agent performs the action. When the action 
is performed, the agent receives a reward. Based on the received reward and the 
information about the current state, the T D is updated. While the Q-Value for the 
current state is updated using the information about the current state, T D value 
and the Bellman's equation 12.2 and the agent switches to the next step. 

Initialize Q-Table 

T 
Select an Act ion from Q-Table for the 

Current State 

I 
Perform the Act ion and switch to the 

New State 

I 
Rece ive Reward and compute the T D 

I 
Update Q-Value for the Previous State 

Figure 12.7: Q-learning process diagram 

The diagram of the Q-Learning process could be presented in the shape of a 
pseudo-code shown in the table 12.1. 

The Q-Learning algorithm was implemented inside the high-level controller 
which is Raspberry P i 4 in our case. Python language was used in the imple
mentation process. The information about the process values (interaction forces, 
odometry) is supplied to a high-level controller from a low-level controller by means 
of the serial port. Using the same link information about the actual impedance con
troller, the parameters are provided to the low-level controller. The protocol uses a 
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Q-learning: Learn Function Q : X X A —• K 
Require: 

Sates X = {l,... ,nx} 
Actioiifi A — {1 H Q }, A : X => A 
Reward function R : X x A —* M 
Rlack-box (probabilistic) transition function T : X x A —> X 
Learning rate a e [0,1], typically a = 0,1 
Discounting factor 7 e [0,1] 
procedure QLEARNING(.V, At R, T, a, ->) 

Initialize Q : -V x -4 —*• M arbitrarily 
while Q not converged do 

Start in state s £ X 
while s is not tKrmiiial do 

Calculate ty according to Q and exploration strategy [eg. ir(i) «-
argmax,, Q(jc.n)) 

a tt(s) 
t f— R[s,a) r> R e c e i v e t>ie r e w a r d 
s' T(s, a) t Receive the new state 
Q[s',a) i- (1 -a)-Q(a,a) + a- (r + 7 • maxa-
,s 4- s' 

return tJ 

Table 12.1: Learn function of the Q-Learning algorithm presented in a pseudo-code 

cyclic redundancy check (CRC) data check. The data of biological markers is read 
from a smart band using a bluetooth low energy (BLE) protocol. The console out
put of the learning process is shown in the figure 12.8. The information consists of 
the current episode number, the number of the step inside the episode, the selected 
action, the obtained reward, and the new set of impedance controller parameters to 
be tested. 

The graphic visualization of the Q-table values during the learning process is 
provided in the figure 12.9. The yellow color represents the areas with the high rating 
and the blue color represents the areas with low rating. As we start the interaction 
process, the values in the Q-Table are equal to one another. However, as soon as 
the algorithm takes action, the system state is changed and the corresponding value 
in the Q-table is updated according to the reward information. The quality and the 
speed of the R L process partially depends on the teacher. If a human operator uses 
a user button to give a positive feedback or the E-stop button to give a negative 
feedback, it could significantly speed up the learning process. 

When we observe the Q-Learning dynamics by considering the Q-Table changes 
in time, the following information could be extracted. The Q-Table is visualized 
by means of color map (heat map). In the first figure of the set of six (see figure 
12.9) it is shown that in the first moments of the learning process, the Q-Values are 
quite similar to each other. A significant area of the color map is colored in yellow. 
However, with time the color map obtains darker spots by receiving the negative 
feedback about the impedance controller settings. In the long run, it is depicted 
that the major area of the color map is covered in dark blue and green colors that 
demonstrate a negative effect of the impedance controller setting on the interaction 
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Episode 36 
Step 189 
Current action Mdown 
State_nuin S 
New state [2, 20, 1, 10] 
Reward -1 
Episode 36 
Step 190 
Current action Jup 
State_num 4 
New state [2, 28, U, 10] 
Reward -1 
Episode 36 
Step 191 
Current action Drup 
State_num 5 
New state [2, 20, h, 28] 
Reward -1 
Episode 36 
Step 192 
Current action Dtdown 
State_nuin 0 
New state [2, 20, 1, 10] 
Reward -1 
Episode 36 

Figure 12.8: Console output of the learning process 

process. Only a tiny yellow line is presented in the color map. This line represents 
the impedance controller settings that fully respond to the intention of the human 
operator. It is possible to obtain the impedance controller settings by selecting the 
state that corresponds to the maximum value of the Q-Table. 

By observing and learning from the operator's behavior, a mobile platform can 
adapt its own behavior to match that of the operator. This can improve the plat
form's performance in the presence of disturbances and its ability to recover from 
errors, as the platform will be able to respond in a similar way to the operator. 
This mobile platform can learn to predict and avoid dangerous situations, such as 
collisions with obstacles or other vehicles. 

There are several scientific criteria that are used to determine if a mobile platform 
is robust and safe. These criteria are typically based on the performance of the 
platform in various scenarios, such as its ability to withstand external disturbances 
and its ability to recover from errors. Here are a few examples of scientific criteria 
that are commonly used to evaluate the robustness and safety of mobile platforms: 

Performance in the presence of disturbances assesses the platform's ability to 
remain stable and perform its intended function in the presence of external distur
bances, such as vibrations, noise, or changes in environmental conditions. Recovery 
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actions actions actions 

Figure 12.9: Dynamic change of the Q-value during the learning process 

from errors evaluates the platform's ability to recover from unexpected events, such 
as sensor failures or actuator malfunctions. Safety assesses the platform's ability to 
prevent accidents and minimize the potential for injury or damage. Passivity eval
uates the platform's ability to be controlled by an external force, ensuring stability 
of the system. Efficiency assesses the platform's ability to perform its intended 
function with minimal energy consumption or other resources. 

It is worth pointing out that these criteria have been developed and studied 
by a number of engineers and scientists over time, and are formalized in various 
research papers and industry standards. For example, such organisations as IEEE 
1 and ISO 2 have developed standards for mobile robots and AGVs (Automated 
Guided Vehicles) safety and performance. The specific criteria and standards used 
to evaluate the robustness and safety of a mobile platform depends on the specific 
application and environment in which the platform is used. Having specified these 
criteria, we believe that the current mobile platform can be robust and safe due 
to the following list of reasons: 1. the maximum speed is restricted to prevent 
dangerous situations and unexpected behavior; 2. an emergency stop button (E-
stop) has been implemented to ensure additional safety; 3. moreover, the main 
power switch is available to control the power supply to the system; 4. to further 
prevent dangerous situations, an interlock has been implemented to avoid instant 
changes in direction at high velocity setpoints. The system is also designed to slow 
down, but not accelerate in the opposite direction without reaching a low speed to 
prevent sudden changes in direction. 

1 Institute of Electrical and Electronics Engineers 
2International Organisation for Standartisation 
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13 Conclusion 

"Perfection is achieved, not when 
there is nothing more to add, but 
when there is nothing left to take 
away." 

Antoine de Saint Exupery 

In the course of this work we have systematized the existing theory in the field 
of PHRI related to human in-the-loop study while designing, developing, and inter
acting with the powered mobile platform to evaluate the operator's comfort. Both 
the mathematical and the experimental models of the industrial power assisted cart 
were developed. A n extensive amount of work was performed in powered mobile 
platform programming and control system implementation. Therefore, artificial in
telligence (AI) methods were employed to adjust the controller settings in order to 
achieve such controller settings in which an operator can manipulate a heavy loaded 
industrial cart with minimum physical effort and ultimate comfort. 

The objectives mentioned in the first part of the thesis were completed as follows: 

1. The state of art information in the area of physical human-robot interaction 
was collected up to 2022 and a promising fully adaptable algorithm was de
veloped to deliver a new human-powered cart interaction control technique 
which goes in line with state-of-art research and practical investigations. 

2. A mathematical description for dynamics and kinematics of the human - cart 
physical interaction model was prepared. 

3. A n experimental model of an industrial cart was developed, assembled and 
described in the framework of this thesis. 

4. A set of experiments including real people and modelled operators were per
formed and the human feedback during the interaction process was evaluated. 

5. The dynamic characteristics were analysed in order to search for criteria that 
directly or indirectly determine a physical feeling of human comfort and oper
ator's expectations during the interaction with IPAC. 

6. Human estimation criteria that characterize the satisfaction and comfort from 
the human-powered cart interaction process were synthesised. 
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7. Based on these synthesised criteria, the human - powered cart interaction 
control algorithm was developed using AI methods (Q-learning). 

8. The performance of the proposed solution for the developed industrial cart 
was tested and verified. 

The dissertation contributed the following theoretical input into the field of technical 
cybernetics - the use of Q-learning algorithm in adjusting controller settings so that 
the mobile platform could successfully and effectively adapt to the unique gait and 
tasks of any operator it assists. To comply with this task, the models from Chapters 
8-11 were derived and the model could be used in the future to estimate the quality 
of control with the help of Markov processes. Markov processes are utilized to make 
decisions on regulating the impedance control settings. 

The work brings significant contribution to the area of PHRI by the developed 
workflow that includes the experimental platform development, the experiment de
sign and the evaluation of the results using the regression analysis and the devel
opment of adaptive impedance controller that is suitable to perform collaborative 
tasks. The personality-oriented scheme presented in this work results in efficient 
physical interaction that responds to the intentions of the human-operator, as well 
as it enhances the user comfort during the material handling process. 

This work also brings a contribution to the area of the raw data analysis and 
feature detection. We tested the interaction with different loads and on various types 
of trajectories such as 7m-long strait drive, circular, the 8-like shape trajectory, a 
complex predefined path, and a free ride. A l l the experiments were performed in 
the indoor environment. 

The control system with the impedance controllers of rotational and translational 
motion was implemented in the experimental platform. It allowed to support the 
human operator during the linear drive and turns. It helped to obtain the dynamics 
relevant to the material handling task. The analysis of the interaction characteristics 
allowed us to identify the physical measures, emotional feedback as well as biological 
markers which were used as additional sources of information to improve the human-
cart interaction. 

We evaluated the effects of the controllers' settings on the operator's comfort 
and developed a system of automatic adjustment and tuning of the parameters. 
One of the AI methods was applied to the developed powered industrial cart. The 
method called Q-learning belongs to the area of reinforcement learning (RL). It al
lows the powered cart to learn the desired intention of the human operator by means 
of obtaining rewards for certain settings of impedance controllers. Consequently, it 
was possible to find out the set of settings that refers to the highest comfort level 
and sufficient performance for a particular operator. The R L algorithm was imple
mented in the microcomputer Raspberry P i using Python language. This controller 
was called a high-level controller. The low-level control was implemented in the 
microprocessor ATmega2560 (Arduino board). It includes the mathematical de
scription of the cart;s dynamics and kinematics, as well as impedance controllers for 
the translational and rotational motion of the cart and the PID controller for the 
powered wheels. 
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In addition, the applications for the load cell control and configuration software, 
C-Sharp based hardware extension libraries for Rasberry P i and Matlab were devel
oped. They allow to run a real-time target-based simulation using math apparatus 
of Matlab in combination with the low-cost embedded sensors and drives. More 
information could be found in appendix to this research work. 

The results obtained from the current research suggest a few promising impli
cations for the future work. In particular, the number of involved experienced and 
inexperienced human operators (males and females) could be increased. It would 
allow to extend the number of observations used to assess the interaction process 
and evaluate operator's comfort to estimate the correlation (dependency) between 
operator's comfort and the impedance controller's settings. Furthermore, a combi
nation of the results with industrial PHRI scenarios, where human comfort is set 
clS cl SI gnificant measure, allows to optimize operator's tasks and logistic processes 
in plant simulation. These optimized tasks and processes could be applied in a real 
factory, which could bring a significant value to the end customer in the form of a 
drastic reduction of sick leave requests caused by transportation hazards. 

Lastly, I would like to express my gratitude to the people who supported me 
during the research and acknowledged the importance of my work. I am pleased 
that my research made a contribution to the future development of human-robot 
co-existence and cooperation. 

121 



14 Internship 

I am grateful to the T U L International Office for granting me with an opportunity 
to develop my skills and do my internship in the Linz Center of Mechatronics GmbH 
at the Department of Sensors & Communication. This Austrian company is located 
in the Since Park of Johannes-Kepler University in Linz. The L C M team has com
prehensive experience in tendering for E U projects and other international project 
plans. The project proposals for the following national programmes and structural 
funds were submitted: European Technology Platforms: Initiative to support in
ternational networking; Joint Technology Initiatives: public-private partnership to 
support transnational research collaboration in selected technological fields; Future 
and Emerging Technologies Art. 185-Initiativen, etc. Some of the results obtained 
from these projects have since been successfully brought onto the market. 

Figure 14.1: Linz Center of Mechatronics GmbH 

As an intern, I participated in several research and commercial projects related 
to the indoor navigation applications and human motion detection. By working with 
outstanding professionals I developed a cross-platform application that allowed to 
add a network interface to any USB (UART) device (USB - Universal Serial Bus). 
I wrote some documentation including A P I (Application Programming Interface) 
description and created an application sample, which was a significant part of the 
work. 

I was delighted to help modify and optimize U A R T (Universal Asynchronous 
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Receiver-Transmitter) data transfer protocol in order to use D M A (Direct Memory 
Access). 

In the framework of another project, I was designing and implementing the 
software for M E M S (Microelectromechanical systems) sensors reading. In addition, I 
was among the developers to create a software program for M E M S data visualization. 
At a later stage of the project we improved and extended the M E M S sensor library. 

Implementing the algorithm for human motion detection was a project that 
helped me to learn a lot. I transmitted features activation information to a base 
station. Last but not least, I was able to design and implement a wireless network 
sniffer to debug the indoor positioning systems (IPS) shown in the figure 14.2. 

It was a priceless experience as it helped me to take my knowledge and skills to 
a new level. I acquired competences in the areas of indoor navigation and digital 
signal processing in the field of human motion detection. The internship deepened 
my knowledge of python multi tasking and C++ in the field of embedded systems. 

Figure 14.2: Developed indoor positioning system 
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A Appendix 

Figure A . l : Standard deviation of absolute interaction force for different settings of 
impedance controller. Sample 1. 

Figure A.2: Standard deviation of absolute interaction force for different settings of 
impedance controller. Sample 2. 
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Figure A.3: Standard deviation of absolute interaction force for different settings of 
impedance controller. Sample 3. 

Figure A.4: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 1. 

Figure A.5: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 2. 
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Figure A.6: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 3. 

Figure A. 7: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 1. 

Figure A.8: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 2. 
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Figure A.9: Mean value of absolute cart velocity for different settings of impedance 
controller. Sample 3. 
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B Mathematical Modeling of an Industrial 
Cart 

In the dynamic realm of industrial automation, the design and control of mobile plat
forms play an important role in achieving efficient and seamless material transporta
tion. The accurate representation of these systems through mathematical models 
is necessary to analyze their behavior, predicting their performance, and ultimately 
optimizing their operation. This chapter describes the development of a comprehen
sive mathematical model for an industrial cart. We aim to provide a framework to 
understand cart's dynamics, control strategies, and system optimization. 

Using the results from the chapter 7 we selected specific configuration commonly 
found in heavily-loaded industrial carts. This configuration prominently features two 
powered wheels and four casters, which serve as the primary components of the cart. 
This carefully designed arrangement is important as it enables the cart to achieve 
optimal mobility and stability during its operational tasks. By taking advantage 
of the power coming from the two powered wheels, the cart can efficiently move 
in both forward and backward directions, allowing for controlled and precise move
ment. Complementing the powered wheels, the four casters play a significant role in 
providing essential support and facilitating smooth steering of the cart. Together, 
this configuration forms the foundation of the current research. 

Due to the complexity of the system caused by several factor shown below we 
explain the model step-by-step in the set of subchapters. 

• Various f r i c t i o n types. 

• Wheel spin dynamics. 

• Wheel suspension. 

• Load d i s t r i b u t i o n . 

B.l Caster wheel 

The mathematical description of a caster wheel can be quite complex due to its 
swiveling action and the dependence on various factors such as the geometry of the 
caster, the friction properties of the wheel and the surface, and the velocity and 
direction of movement of the vehicle. A caster wheel is generally designed to align 
itself in the direction of movement due to the offset between the point about which 
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it swivels and the center of the wheel. This self-aligning torque depends on factors 
such as the velocity of the vehicle, the load on the wheel, and the friction properties 
of the wheel and the surface. 

In a simplified 2D planar model, the kinematics of the caster wheel can be 
described by the following equations: 

°g = vc • cos(9c) (B.l) 

^ = vc • sin(9c) (B.2) 

d9r ,„ „ 

-s - w< ( R 3 ) 

where 9C - the angle formed by the caster wheel's direction makes with the x-axis 
(the reference line); vc - the velocity of the caster wheel; wc - the angular velocity 
of the caster wheel. 

In addition, we need to consider self-aligning torque that aims to minimize the 
angle 9C. 

^ = -k-9c-d-wc (B.4) 

where k is a spring constant that represents the self-aligning torque and d is a damp
ing constant that represents the resistance to the change in the wheel's direction. 

Continuous differential equation B.4 could be written in the discrete form using 
a simple forward Euler method, because it gives a sufficient precision for a simple 
model, which is the damped harmonic oscillator in our case. For more complex 
models we can use more advanced techniques, such as the Runge-Kutta method. 

wc[n + 1] = wc[n] + dt • (—k • 9c[n] — d • wc[n]) (B.5) 

where dt is the time step for the discretisation, n is the current time step, and 
n+1 is the next time step, k and d are the spring constant and the damping constant, 
respectively, wc is the angular velocity of the caster wheel, and 9C is the angle of the 
caster wheel. 

The equation to adjust the angle 9C could be written as: 

9c[n + 1] = 9c[n] + dt • wc[n] (B.6) 

Therefore, we used these equations to simulate the behaviour of caster wheels. 

B.2 Numerical methods for solving ordinary 
differential equations (ODEs) 

Numerical methods are widely used to solve ordinary differential equations (ODEs) 
when analytical solutions are not available or difficult to obtain. Two of the most 
commonly used methods among the others are the Euler's method and the Runge-
Kutta method. 
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The Euler's method is the simplest method for numerical integration of ODEs. 
It works by using the derivative at the current point to estimate the value of the 
function at the next point. The formula for the forward Euler method is: 

y[n + l] = y[n]+h-f(t[n],y[n]) (B.7) 

where h is the step size, f(t[n], y[n]) is the derivative of y with respect to t at the 
point (t[n], y[n]). 

While the Euler's method is straightforward and easy to implement, it is only 
first-order accurate, meaning that the error per step is proportional to the square of 
the step size. This can lead to significant inaccuracies for larger step sizes or more 
complex functions. 

The Runge-Kutta method is a more sophisticated method for numerical inte
gration that provides greater accuracy. The most common form is the 4th order 
Runge-Kutta method, which takes four estimates of the derivative at various points 
within the step size, and combines them to produce a more accurate estimate of the 
function at the next point. 

The formulas for the 4th order Runge-Kutta method are depicted in B.8-B.12. 

kl = h*f(t[n],y[n]) (B.8) 

h k~] 

k2 = h-f(t[n] + -,y[n] + Y) (B.9) 

h k9 

kS = h-f(t[n] + ^y[n] + ^) (BIO) 

kA = h-f(t[n] + h,y[n] + k3) ( B . l l ) 

y[n + 1] = y[n] + (kl + 2 • k2 + 2 • k3 + fc4)/6 (B.12) 

where k l , k2, k3, and k4 are intermediate variables that are used to compute 
the estimate of the derivative of the function at different points within the step. 
These four estimates are then combined to compute a more accurate estimate of the 
derivative of the function over the step, which is used to update the value of the 
function at the next step. 

• k l is the estimate of the derivative at the beginning of the step. It is computed 
in the same way as in the Euler's method, using the derivative of the function 
at the current point. 

• k2 is an estimate of the derivative at the midpoint of the step, it uses the 
derivative of the function at the point estimated by k l . 

• k3 is another estimate of the derivative at the midpoint of the step, but this 
time it uses the derivative of the function at the point estimated by k2. 

144 



• k4 is an estimate of the derivative at the end of the step, it uses the derivative 
of the function at the point estimated by k3. 

In summary, the main difference between the Euler method and the Runge-Kutta 
method is a trade-off between computational complexity and accuracy. The Euler 
method is simpler and faster, but less accurate, while the Runge-Kutta method is 
more accurate, but also more computationally intensive. 

B.3 Direct current motor model 

The industrial cart designed in this thesis is using DC motors for its movement. A 
DC motor converts direct current electrical energy into mechanical energy. In this 
chapter we show the mathematical model for a DC motor. The core idea is based 
on Newton's second law of motion and Kirchhoff's voltage law. 

The DC motor is characterized by the following set of parameters: 

• V : input voltage to the motor. 

• I: current flowing through the motor. 

• R: resistance of the motor. 

• L: inductance of the motor. 

• w: angular velocity of the motor shaft. 

• J: moment of inertia of the rotor. 

• B: viscous damping coefficient. 

• K: a constant that relates the input current and output torque, and also relates 
the back-emf and speed of the motor, sometimes split into Kt (torque constant) 
and Ke (back-emf constant). 

Electrical equation (Kirchhoff's voltage law): 

This equation states that the input voltage (V) to the motor is equal to the sum 
of the voltage drop across the inductor (L •(%)), the voltage drop across the resistor 
(RI), and the back-emf (K ). 

Mechanical equation (Newton's second law): 

This equation states that the torque (r) produced by the motor is equal to the 
sum of the torque due to inertia (J • (%)) and the torque due to damping (B • w). 

V = L 
dl 

+ RI + Ku (B.13) 

(B.14) 
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It is common to combine these two equations into a state-space form for control 
design, B.15-B.16: 

£ = CB.16) 

These are the fundamental equations that describe a DC motor's dynamics. The 
precise values of R, L, K , J, and B depend on the specific motor's design. Note that 
these equations are a simplification; real motors have many other effects such as 
magnetic saturation, non-linear friction, and thermal effects that are not captured 
in these equations. 

Applying forward Euler discretisation to the state-space equations, we obtain: 
The discretised electrical equation: 

I[k + 1] = I[k] +T-j- (V[k] - R• I[k] - K • u[k}) (B.17) 

The discretized mechanical equation: 

u[k + 1] = u[k] + T • - • (K • I[k] - B • u[k}) (B.18) 
u 

where I[k] and w[k] are the current and angular velocity at the k-th discrete-time 
instant, respectively. V[k] is the input voltage at the k-th discrete-time step. The 
code obtained for this specific case can be demonstrated upon request. 

B.4 Powered wheel 

In this subchapter we describe mathematical model of a wheel connected to a DC 
motor via a chain belt. This model typically involves several aspects, including the 
motor characteristics, the gear ratio of the chain belt, the radius of the wheel, and 
the load on the wheel. 

For this mathematical model we make the following assumptions: 

• The chain belt and gear mechanism is 100% efficient (this is usually not the 
case in reality due to friction, slippage, etc.). 

• The radius of the wheel is r and the load on the wheel is F (which opposes the 
movement). 

• The gear ratio is n (number of teeth on the wheel gear divided by the number 
of teeth on the motor gear). 

• The torque output of the motor is Tm, which depends on the current flowing 
through the motor and the characteristics of the motor. The angular velocity 
of the motor is wm. 
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The torque on the wheel can be calculated as: 

Tw = n-Tm (B.19) 

The force exerted by the wheel on the ground, which propels the vehicle forward, 
can be determined as: 

Fw = ^ (B.20) 
r 

If there is a load on the wheel, we could assume that it opposes the movement. 
Therefore, the net force can be calculated as follows: 

Fn = Fw-F (B.21) 

The angular velocity of the wheel is determined by the gear ratio and the motor's 
angular velocity: 

uw = — (B.22) 
n 

The linear velocity can be obtained by using the angular velocity of the wheel: 

v = uw • r (B.23) 

We use this mathematical description from this subchapter to simulate the behaviour 
of the powered wheels of the industrial cart, the torque generated by powered wheels, 
its corresponding force, angular and linear velocity of the powered wheel. 

B.5 Wheel suspension 

The spring suspension system for a wheel can be modeled using Hooke's Law and 
Newton's Second Law of Motion. Let's assume that the wheel is connected to a 
single spring that is attached to a fixed point above it. When the wheel moves up 
or down, the spring exerts a force that opposes the motion and tries to bring the 
wheel back to its equilibrium position. 

The mathematical description of the spring suspension system is provided below. 
The Hooke's law states that the force exerted by a spring is directly propor

tional to the displacement from its equilibrium position. Mathematically, it can be 
expressed as: 

F = -kx (B.24) 

where F is the force exerted by the spring, k is the spring constant (stiffness), x 
is the displacement from the equilibrium position. The negative sign indicates that 
the force exerted by the spring is in the opposite direction to the displacement. 

Newton's second Law states that the net force acting on an object is equal to 
the mass of the object multiplied by its acceleration. In the case of the wheel, the 
net force is the sum of the force exerted by the spring and any other external forces 
acting on the wheel. Mathematically, it can be expressed as: 
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F n e t = ma (B.25) 

where Fnet is the net force acting on the wheel, m is the mass of the wheel, a is 
the acceleration of the wheel. By combining the Hooke's law and Newton's second 
law, we can write the equation of motion for the spring suspension system: 

ma = —kx (B.26) 

This equation relates the acceleration of the wheel to the displacement from the 
equilibrium position and the spring constant. 

Solving this second-order ordinary differential equation yields the motion of the 
wheel as a function of time. As the result, the accelerations and displacements 
depend on the specific initial conditions and the properties of the system (mass, 
spring constant, etc.). 

B.6 Load distribution 

When it comes to designing carts or analyzing their stability, understanding load 
distribution on the wheels is of utmost importance. The distribution of weight 
determines how the load is supported and impacts the performance and safety of 
the cart. By employing the principles of static equilibrium, engineers and designers 
can calculate the load distribution on cart wheels based on the position of the load. 

In the static equilibrium state, a cart is assumed to be at rest with no net force 
acting on it. This means that the forces applied to the cart must be balanced to 
maintain stability. If we consider a cart with two wheels — one at the front and 
another at the rear — the load distribution between these wheels can be determined. 

To begin the analysis, the total weight of the cart and load needs to be known. 
This weight, denoted as W, represents the force that needs to be supported by the 
wheels. The next step involves identifying the position of the load with respect to 
the front and rear wheels. These distances, denoted as x l and x2 respectively, are 
measured from the front wheel. 

Once these parameters are established, the load distribution can be calculated 
using the formulas derived from the static equilibrium principles. The key concept 
is that the reaction forces exerted by the wheels, referred to as R l and R2, must 
balance the total weight of the cart and load. 

To calculate the reaction force at the front wheel (Rl) , the following formula is 
used: 

ft = ^ p - (B.27) 
xx + x2 

This formula takes into account the position of the load and the total weight. 
It distributes the load between the wheels based on their distances from the load. 
The closer the front wheel is to the load (smaller x2 compared to x l ) , the larger the 
reaction force R l it experiences. 

Similarly, the reaction force at the rear wheel (R2) can be calculated using the 
formula: 
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R-2 
W-X! 
Xi + x2 

(B.28) 

This formula follows the same logic as the previous one but considers the position 
of the load in relation to the rear wheel. 

It is important to note here that these formulas assume ideal conditions, such as 
a level surface, identical and equally capable wheels, and the absence of other ex
ternal forces or factors affecting load distribution. In real-world scenarios, however, 
various factors, such as uneven terrain, wheel characteristics, and dynamic loads, 
may require additional consideration to obtain a more accurate analysis. 

By employing the principles of static equilibrium and utilizing these formulas, 
engineers and designers can gain insights into load distribution on cart wheels based 
on the position of the load. This knowledge is crucial to ensure stability, optimize 
performance, and maintain safety in cart design and operation. 

In conclusion, load distribution on cart wheels is a notable aspect to consider 
in cart design. To understand the principles of static equilibrium and employ ap
propriate formulas, we determined the load distribution between the wheels based 
on the position of the load. This information enables us to design a cart which is 
stable, efficient, and capable of safely carrying its intended loads. 

This chapter provides an in-depth understanding of friction and its role in the func
tioning and efficiency of industrial carts. We discuss the different types of friction 
forces that come into play in industrial carts. These may include static friction 
(when the cart is at rest), kinetic or dynamic friction (when the cart is in motion), 
rolling friction, and sliding friction. In addition, we explain how friction affects the 
motion of industrial carts. The process of how static friction needs to be overcome 
to set the cart in motion, and how kinetic friction influences the speed and accel
eration of the cart is also addressed in this subsection. The following formulas are 
used to calculate friction B.29 and B.30 and the corresponding coefficients for static 
and kinetic frictions are depicted in tables B . l and B.2. These coefficients can be 
selected to adjust to the environmental parameters of the simulation model. 

For static friction: 

B.7 Friction simulation 

static /^static • N (B.29) 

For kinetic friction: 
kinetic /^kinetic N 
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Table B . l : Coefficients of Friction for Material Handling Surfaces 
Surface Combination Dry Condition Wet/Oily Condition 

Steel on Steel 0.5 - 0.8 0.15 - 0.3 
Steel on Concrete 0.6 - 0.8 0.1 - 0.3 

Rubber on Concrete 0.6 - 1.0 0.3 - 0.6 
Wood on Wood 0.25 - 0.5 0.1 - 0.2 

Plastic on Plastic 0.2 - 0.4 0.1 - 0.2 
Rubber on Asphalt 0.7-0.9 0.4 - 0.6 

Table B.2: Coefficients of Friction for Material Handling Surfaces 
Surface Combination Static 

Friction 
Dynamic 
Friction 

Rolling 
Friction 

Sliding 
Friction 

Steel on Steel 0.8 0.6 0.05 0.6 
Steel on Concrete 0.7 0.5 0.04 0.5 

Rubber on Concrete 1.0 0.8 0.02 0.8 
Wood on Wood 0.5 0.4 0.06 0.4 

Plastic on Plastic 0.4 0.3 0.08 0.3 
Rubber on Asphalt 0.9 0.7 0.03 0.7 

B.8 Kinematics 

Let's assume that the cart moves in a 2D plane (x, y) and is controlled by the 
angular velocity of its two powered wheels. We can define the following variables: 

x and y: the position of the cart in the plane theta: the orientation of the cart 
with respect to the x-axis vi and vr: the linear velocities of the left and right powered 
wheels, respectively R: the distance between the two powered wheels 

The kinematic equations that describe the motion of the cart are: 

vc = (vt + vr)/2 

(vc - the average linear velocity of the two powered wheels) 

wc = (vr - vi)/R 

(uc - the angular velocity of the cart) 

x — vc • cos{6) 

(B.31) 

(B.32) 

(B.33) 

sin{6) 

to. 

(B.34) 

(B.35) 

Using these formulas we obtained the linear speed of the cart and its angular velocity, 
as well as its position and orientation in the 2D plane. 
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B.9 Dynamics 

To describe the dynamics of the cart, we need to consider the forces acting on it. 
Let's assume that the cart is subject to the following forces: 

Fi and Fr: the forces exerted by the left and right powered wheels, respectively 
Fc: the force exerted by the caster wheels 

We can then write the following equations of motion for the cart: 

m-x = Ft- cos(9) + Fr • cos(9) + Fc • cos(0) (B.36) 

m • y — Fi • sin(8) + Fr • sin(8) + Fc • sin(phi) (B.37) 

I • 6 = (Fr — FL) • R (B.38) 

where m is the mass of the cart, I is the moment of inertia of the cart about 
its center of mass, and phi is the angle between the direction of motion and the 
direction of the force exerted by the caster wheels. 

The above equations can be solved numerically to simulate the motion of the 
cart in time. We should note here that the forces Fi, Fr, and Fc depend on the 
control inputs (i.e., the angular velocities of the powered wheels), as well as on the 
friction coefficients between the wheels and the ground, and on the geometry of the 
cart. 

Let's assume that each of the powered wheels is driven by a DC motor. The 
dynamics of a DC motor can be described by the following equations: 

di 
V = Rm • i + Lm • —+ Ve (B.39) 

at 

Tm = kt-i (B.40) 

where V is the applied voltage, Rm is the motor resistance, Lm is the motor 
inductance, i is the motor current, di/dt is the time derivative of the current, Ve is 
the back electromotive force, Tm is the motor torque, and kt is the torque constant. 

The back electromotive force can be modeled as: 

Ve = ke-uj (B.41) 

where omega is the angular velocity of the motor and ke is the motor's back 
electromotive force constant. 

Assuming that the motor torque is transmitted to the powered wheel through a 
gear train with gear ratio G, we can write: 

Tw = Tm • G (B.42) 

where Tw is the torque applied to the powered wheel. 
Finally, we can relate the torque applied to the powered wheel to the force exerted 

on the ground by the wheel through the following equation: 
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TW = FW- rw (B.43) 

where Fw is the force exerted on the ground by the wheel, and rw is the radius 
of the wheel. 

Putting it all together, we can write the equations that describe the dynamics 
of the powered wheels as: 

Vi = Rm • %i + Lm • ̂  + ke • ui 
at 

Vr = t i m • %r + L m • — h Ke • 0Jr 

at 

Ti = kf %i 

Tiw — Ti • G T — T • C 

T? — riw — 
^ 'ID 

T 
rp -1 rw 
"rw 

B.44) 

B.45) 

B.46) 

B.47) 

B.48) 

B.49) 

B.50) 

B.51) 

where V\ and Vr are the voltages applied to the left and right motors, respectively, 
ii and ir are the currents through the left and right motors, ui and ur are the angular 
velocities of the left and right motors, Tiw and Trw are the torques applied to the 
left and right powered wheels, Fiw and Frw are the forces exerted on the ground by 
the left and right powered wheels, and rw is the radius of the powered wheels. 
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List of variables 

Caster wheel 

x Horizontal position of the caster wheel in the 2D plane 
y Vertical position of the caster wheel in the 2D plane 
0C Orientation or angular position of the caster wheel 
vc Linear velocity of the caster wheel 
wc Angular velocity or rotational speed of the caster wheel 

Rate of change of angular velocity with respect to time 
k Proportional constant affecting the self-aligning torque 
d Damping coefficient affecting the angular velocity 

Numerical methods 

y Dependent variable 
h Step size or time increment 
f(t, y) Function representing the rate of change of y with respect to t 
t Independent variable or time 
fcl First intermediate variable in the 4th order Runge-Kutta method 
k2 Second intermediate variable in the 4th order Runge-Kutta method 
fc3 Third intermediate variable in the 4th order Runge-Kutta method 
k4 Fourth intermediate variable in the 4th order Runge-Kutta method 

D C motor model 

V Applied voltage across the D C motor terminals 
L Inductance of the motor winding 
^ Rate of change of armature current with respect to time 
R Resistance of the motor winding 
I" Armature current (current flowing through the motor winding) 
K Motor constant related to back electromotive force (back E M F ) 
U3 Angular velocity of the motor shaft 
r Torque generated by the motor 
J Moment of inertia of the motor's rotor 

Rate of change of angular velocity with respect to time 
B Viscous damping coefficient in the mechanical system 
T Sampling or time step for discretisation 

Powered wheel chapter 

Tw Torque exerted by the wheel 
n Gear ratio 
Tm Torque generated by the motor 
Fw Force exerted by the wheel on the ground 
r Radius of the wheel 
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Fn Net force accounting for external load 
F Load force opposing wheel movement 
UJW Angular velocity of the wheel 
ujm Angular velocity of the motor 
v Linear velocity of the wheel 

Wheel suspension 

F Spring force in the suspension system 
k Suspension spring constant 
x Displacement of the wheel from its equilibrium position 
Fnet Net force acting on the wheel-suspension system 
m Mass of the vehicle wheel 
a Acceleration of the wheel in the suspension system 

Friction simulation 

^static Static frictional force 
Mstatic Coefficient of static friction 
N Normal force exerted on the object 
•^kinetic Kinetic (or sliding) frictional force 
Mkmetic Coefficient of kinetic friction 

Cart kinematics 

vc Average linear velocity of the two powered wheels 
Vi Linear velocity of the left powered wheel 
vr Linear velocity of the right powered wheel 
UJC Angular velocity of the cart 
R Radius from the center of the cart to a powered wheel 
x Cart velocity in the direction of x axis 
y Cart velocity in the direction of y axis 
0 Rate of change of the orientation of the cart (Angular velocity of 

the cart) 
0 Orientation or angular position of the cart 

Cart dynamics 

m Mass of the cart 
x Acceleration of the cart in the horizontal direction 
y Acceleration of the cart in the vertical direction 
0 Angular acceleration of the cart 
/ Moment of inertia of the cart 
R Radius from the center of the cart to a powered wheel 
Fi Force applied to the cart from the left wheel 
Fr Force applied to the cart from the right wheel 



Fc Force applied to the cart from the caster wheel 
0 Angle representing the orientation of the cart 
<fi Angle representing the orientation of the caster wheel 
V Voltage applied to the DC motor 
Rm Motor resistance 
1 Current flowing through the motor 
Lm Motor inductance 
-j| Rate of change of current 
Ve Back electromotive force (EMF) 
Tm Motor torque 
kt Motor torque constant 
ke Motor back E M F constant 
UJ Angular velocity of the motor 
G Gear ratio 
Tw Torque applied to the powered wheel 
Fw Force exerted on the ground by the wheel 
rw Radius of the wheel 
Vi Voltage applied to the left wheel motor 
Vr Voltage applied to the right wheel motor 
ii Current flowing through the left wheel motor 
ir Current flowing through the right wheel motor 
UJI Angular velocity of the left wheel 
ujr Angular velocity of the right wheel 
Ti Torque generated by the left wheel motor 
Tr Torque generated by the right wheel motor 
Ttw Torque applied to the left powered wheel 
Trw Torque applied to the right powered wheel 
Ftw Force exerted on the ground by the left powered wheel 
Frw Force exerted on the ground by the right powered wheel 


