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Chapter 1

Introduction

1.1 Quantum physics

It is the everlasting desire to unravel nature’s mysteries that led our 19th cen-
tury predecessors to carry out a large number of real or gedenken1 experiments.
One of the fundamental questions to be answered at that time was the problem
of black body radiation. Although several theories existed, none of them was
able to fully describe the electromagnetic emissions coming out from a black
body [2–4].

It was on December 14, 1900, when a 42 years old German physicist Max
Planck proposed an innovative solution to the black body radiation enigma [5].
For the first time he employed the idea of non-continuous transfer of energy
between electromagnetic field and matter. His theory, presented that day at the
DPG2 meeting and published year later [6], suggested that energy is exchanged
by means of energy packets nowadays called energy quanta. This quantization
idea represented a complete revolution in physics leading to explanations of
phenomena that classical physics was unable to solve.

From that day on, physicists started to build a completely new theory to
explain the nature around us – the quantum theory [7]. The first steps in this
path have been laid out by the most important physicist of the beginning of the
20th century like Niels Bohr, Max Born, Louis de Broglie, Paul Adrien Maurice

1from German, can be translated as “thought”, often used to describe imaginary experi-
ments designed to illustrate a theoretical concept on a specific situation (e.g. Schrödinger’s
cat Gedenkenexperiment [1])

2Deutsche Physikalische Gesellschaft, translates as German Physical Society

11



12 CHAPTER 1. INTRODUCTION

Dirac, Albert Einstein, Werner Karl Heisenberg, Wolfgang Pauli or Erwin
Rudolf Josef Schrödinger and many others. Experiments, like for instance
the one by Walther Gerlach and Otto Stern [8], shaped the very fundamental
concepts of this theory making it quite different from what physicists were
used to. However strange may some of quantum laws seam, there has never
been performed any experiment that would contradict the quantum theory
and therefore we consider it to be the most advanced theory we have in these
days. Even though a century has past from the days quantum physics was
born, several fundamental concepts, like for instance the process of quantum
measurement, remain clouded by unanswered issues [4].

We do not study nature just because of our desire to understand its laws,
but also to gain the capability of using these laws for our benefit. Let us for
instance consider classical electronics. Since the first experiments with elec-
tromagnetic field [9], scientists sought the ways of how to use it in practical
life. It took years of intensive research until the first practical electronic de-
vices were invented [10], but today we can scarcely imagine life without means
of modern communications [11]. Similar situation can be observed in the do-
main of quantum physics. The idea of using quantum laws of nature opens
way to a wide range of possible innovations. Quantum metrology for instance
offers increased precision of measurements [12–16] that exceeds the capabili-
ties of classical instruments. Also in quantum lithography the improvement of
techniques is based on careful usage of quantum laws [17–19]. Another very
promising domain of quantum physics based applications is quantum informa-
tion processing.

1.2 Quantum information processing

Quantum information processing (QIP) is a field of physics and information
science trying to employ laws of quantum physics to improve the information
processing [20]. The theoretical and experimental research in this domain has
already accomplished to provide several important results.

By means of quantum information processing, one can for instance run
several practical algorithms faster then it would be possible with classical in-
formation processing devices [21]. A famous example of these algorithms is the
Shor’s algorithm to factorize products of large prime numbers [22, 23]. Using
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the so-called quantum Fourier transform, this algorithm is in principle capa-
ble of efficient factorisation which can even pose a threat to commonly used
classical cryptographic protocols. Several implementations of this algorithm
are known [24, 25], but none of them currently provides significant practical
applicability.

QIP however allows us to avoid the above mentioned security concerns by
offering quantum cryptography [26–32]. This technique makes use of funda-
mental properties of quantum states and measurements to provide uncondi-
tionally secure distribution of information over potentially insecure channel
(e.g. eavesdropping on the channel).

It is worth mentioning that also in the field of database algorithms QIP
can provide interesting improvement. Groover’s algorithm for efficient search
in unordered database [33] can be listed as an example.

There are several physical platforms on which QIP schemes can be built
including trapped ions, nuclear magnetic resonance, cavity quantum electrody-
namics and linear optics. The last one seams particularly suitable for many of
the above mentioned applications [34–40]. Namely because light is a very fast
and well controllable information carrier. Indeed, many quantum communica-
tion protocols and optical QIP circuits are being proposed and experimentally
implemented. Three of them, performed by the author, are presented in this
thesis.

1.3 Outline

The main contents of this thesis consists of three original QIP experiments
with photon pairs (chapters 3 – 5). These experiments were carried out in the
Joint Laboratory of Optics of Palacký University and Institute of Physics of
Academy of Sciences of the Czech Republic3. This workplace has a rich his-
tory of quantum information processing research [41,42]. External co-authors
include mainly those from the Department of Optics of Palacký University and
then also from Potsdam (Germany) and Poznań (Poland). Although all ex-
periments are dedicated to QIP, they target somewhat different specific areas.
For this reason detailed review of relevant research is provided separately at
the beginning of each chapter. The text used in chapters 3 – 5 is adopted

317. listopadu 50A, 772 07 Olomouc, Czech Republic



14 CHAPTER 1. INTRODUCTION

from author’s journal publications4 containing the original scientific results.
Co-authors’ statements confirming Karel Lemr’s contribution are attached in
the Appendix.

Second chapter of this thesis provides description of employed mathemat-
ical formalism. In this chapter, the reader can get familiar with the basic
mathematical concepts used to form theoretical framework of later presented
experiments. Laboratory equipment such as photon sources, detectors and lin-
ear optical components is also discussed in the second chapter to allow better
understanding of the experimental setups.

1.3.1 Experiment 1: Preparation of two-photon Knill-Laflamme-
Milburn states

Based on Karel Lemr, Antonín Černoch, Jan Soubusta and Jaromír Fiurášek,
Phys. Rev. A 81, 012321 (2010) [A1].

The first experiment presented (chapter 3) addresses the problem of quantum
state preparation. In order to function, any QIP protocol requires preparation
of particular input quantum state. Input states may also include somewhat
complex entangled states that are definitely not trivial to prepare.

This experiment aims on preparing the so-called Knill-Laflamme-Milburn
(KLM) states, more precisely their two-photon version. The form of these en-
tangled states was first proposed by Emanuel Knill, Raymond Laflamme and
Gerard J. Milburn in their seminal Nature paper discussing efficient quantum
computation with linear optics [34]. These authors showed how such a par-
ticular class of entangled states can be useful in QIP. Their paper however
did not provide any specific recipe for preparation of such states. First gen-
eral preparation method was derived by Franson et al. [43] and subsequently
improved by means of tunable controlled phase gates [A2]. A deterministic,
experimentally feasible scheme for preparation of two-photon KLM states was
first proposed in [A3] and also makes part of author’s master’s thesis [A4].

Experimental implementation of this proposal is the subject of the third
chapter. The experiment was performed in 2009 and published year later [A1].

4References to author’s publications are in the form [An] to distinguish them from other
references.
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Editors of Nature Photonics included this experiment to Research highlights
of the April 2010 issue [44].

1.3.2 Experiment 2: Experimental implementation of the op-
timal linear-optical controlled phase gate

Based on Karel Lemr, Antonín Černoch, Jan Soubusta, Konrad Kieling, Jens
Eisert and Miloslav Dušek, Phys. Rev. Lett. 106, 13602 (2011) [A5].

The second discussed experiment (chapter 4) is an example of a gate designed
for quantum computation. In this particular case the optimal linear optical
implementation of tunable controlled phase gate is presented. This two-qubit
gate is a quantum analogue to the classical CNOT gate.

Its importance lies in the fact that it belongs to universal set of QIP tools
[20]. The theoretical design was derived by our German colleagues Konrad
Kieling and Jens Eisert [45]. Subsequent experimental implementation [A5]
was performed in 2010 in our laboratory. The gate imposes a tunable phase
shift to the state of signal photon, when the control photon is set accordingly.
In contrast to previous experimental implementations, the phase shift imposed
by our gate can be set to any value in the range between 0 and π. Furthermore,
its operation is as much efficient as possible within the framework of linear
optics (without additional photon ancillae).

1.3.3 Experiment 3: Experimental linear-optical implementa-
tion of a multifunctional optimal cloner

Based on Karel Lemr, Karol Bartkiewicz, Antonín Černoch, Jan Soubusta and
Adam Miranowicz, submitted [A6].

The third experiment (chapter 5) demonstrates the procedure of quantum
cloning. Although it is impossible to perfectly copy an unknown quantum
state [46], one can still attempt to do this task approximately [47].

Previous implementations of quantum copying machines optimized their
functioning with respect to one specific class of copied states. The imple-
mentation presented in the fifth chapter performs symmetric 1 → 2 quantum
cloning optimal for various classes of copied states at once [A6]. The versatile
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nature of the experimental setup allows incorporating various types of a priory
information about the cloned state with the goal of maximising fidelity of both
output clones.

The theoretical framework was previously discussed in several papers by our
Polish colleagues (namely Karol Bartkiewicz and Adam Miranowicz) [48, 49].
Experimental implementation was accomplished in our laboratory by the end
of the year 2011 and currently the manuscript is submitted for publication.

During his Ph.D. studies, the author also published several papers not dis-
cussed in this thesis. Besides the above mentioned paper on KLM states gener-
ation via tunable controlled phase gates [A2], he also published a theoretical pa-
per on generation of atomic Dicke states [A7] and a study on two-photon state
analysis [A8]. His popularisation efforts aiming to present experimental QIP to
broad audience can be documented on two additional publications [A9,A10].



Chapter 2

Methods and tools

2.1 Quantum description of electromagnetic field

Prior to studying the quantum optical devices, we have to establish suitable
description of electromagnetic field. This section presents a simple intuitive
method to obtain such description using instruments of quantum theory. Note
that more systematic derivation can be found in literature [50, 51], but goes
beyond the scope of this thesis. Classical theory [52] gives the energy density
of electromagnetic field in free space expressed in the form of

H =
1

2

(
ε0| ~E|2 + µ0| ~H|2

)
, (2.1)

where ~E and ~H denote the vectors of electric and magnetic intensities. Con-
stants ε0 and µ0 are called vacuum permittivity and permeability. The Hamil-
ton principle [53] known in classical theoretical mechanics allows to construct
equations of motion using the energy expression as a function of generalized
coordinates. In the case of electromagnetic field, one can associate these gen-
eralized coordinates to the above mentioned electric and magnetic intensities.
Such association leads to the analogue between the electromagnetic field on
one side and the sum of independent one-dimensional linear oscillators on the
other side. Energy of these oscillators expresses in a similar form

H =
∑
j

1

2

(
P 2
j + ω2

jX
2
j

)
, (2.2)

where the generalized coordinates Pj and Xj are the momentum and position
of jth oscillator while ωj represents its angular frequency [54]. In quantum

17



18 CHAPTER 2. METHODS AND TOOLS

physics, the concept of linear oscillator is well known and its Hamilton operator
(operator of overall energy) takes the form of

Ĥ =
∑
j

1

2

(
P̂ 2
j + ω2

j X̂
2
j

)
, (2.3)

where we have replaced the generalized coordinates by the operators of momen-
tum P̂j and position X̂j . Inspired by the above mentioned analogue between
classical electromagnetic field and classical linear oscillator one can assume
that the quantum model for electromagnetic field would also be analogue to
the quantum linear oscillator. We therefore define the P̂j and X̂j quadrature
operators for light and use them to describe the electromagnetic field [7, 55].
Similarly to momentum and position operators the quadrature operators follow
commutation relations1 [

X̂j , P̂k

]
= ih̄δjk,[

X̂j , X̂k

]
=

[
P̂j , P̂k

]
= 0 (2.4)

with h̄ being the Dirac constant and δjk the delta function 2. For the purpose
of more convenient calculations, we usually rescale the quadrature operators

x̂j =

√
ωj
2h̄
X̂j , p̂j =

√
1

2h̄ωj
P̂j (2.5)

and accordingly also their commutation relations

[x̂j , p̂k] =
i

2
δjk,

[x̂j , x̂k] = [p̂j , p̂k] = 0. (2.6)

The form of the Hamilton operator composed of the sum of two squares
seams similar to the modulus square of a complex number that can also be
expressed as a sum of two squares (in this case real and imaginary part). It is
therefore convenient to define a new operator

â = x̂j − ip̂j (2.7)

called annihilation operator for the reasons soon to be revealed. Its conjugate
counterpart is called creation operator and it is defined as

â† = x̂j + ip̂j . (2.8)
1Commutation is a two-element operation defined as [a, b] = ab− ba.
2δjk = 1 for j = k, otherwise δjk = 0
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These operators can readily be used to express the Hamilton energy operator

Ĥ = h̄ωj

(
â†j âj +

1

2

)
= h̄ωj

(
N̂j +

1

2

)
, (2.9)

where number operator N̂j = â†j âj is introduced. The term 1
2 arises from

commutation relations and expresses the non-zero energy of the vacuum.

The number operator is important namely because it has the same eigen-
states as the Hamiltonian itself. Such states are often called Fock states and
follow the eigenvalue equation

N̂j |nj〉 = nj |nj〉, for n = 0, 1, 2, ...3 (2.10)

The eigenvalues of number operator nj are non-negative integers and represent
the number of photons in the mode in question. Additionally the eigenstates
of number operator form an orthonormal basis

〈nj |mk〉 = δnmδjk, (2.11)

which can be used to express other quantum states of light. Note also that the
eigenvalue of Hamilton operator corresponding to the eigenstate |nj〉 defines
the energy stored in such state (in this case h̄ωj

(
nj + 1

2

)
).

The role of annihilation and creation operators become apparent, when
considering their action on Fock states. It is easy to prove that

âj |nj〉 =
√
nj |(n− 1)j〉,

â†j |nj〉 =
√
nj + 1|(n+ 1)j〉, (2.12)

which explains the action of annihilation and creation operators. The annihi-
lation operator decreases the number of photons in a mode by one, whereas
the creation operator increases that number by one. Simple algebra reveals
the commutation relations for these two operators[

âj , â
†
k

]
= δjk,

[âj , âk] =
[
â†j , â

†
k

]
= 0. (2.13)

3The |•〉 is the standard notation for quantum state introduced by P. A. M. Dirac [56].
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2.2 Optical qubit

Having the mathematical instruments for quantum optics defined in previous
section, we can now focus on the instruments specific for quantum information
processing. In classical information theory the unit of information is a bit. The
information of one single bit is encoded into an object (information carrier or
memory) using two distinct logical values: 0 and 1. Any classical information
can be represented using a sequence of these logical values. The important fact
is that a bit can be found in either 0 or 1 logical state, nothing else [57].

Quantum physics offers what is known as the superposition principle. This
law states that if there are two possible states in which an object can be found,
the object can also be found in any linear superposition of these states. For
this reason we replace the classical bit by a qubit as the unit of quantum
information [58]. In contrast to classical bit, a qubit can be found in |0〉 and
|1〉 basis states or in any of their superposition (e.g. 2|0〉 − 3|1〉)4 [20].

It is evident that to physically encode a qubit we need an object that can
support two-level quantum system. Among other physical platforms already
mentioned in the introduction section, photons are very promising. A qubit can
be encoded into the state of photons in several ways. The following discussion
is limited to individual photon encoding often related to the so-called discrete
variables such as the number of photons. Note that also collective multiphoton
states can be used [55, 59], but such instrument is not employed in any of
the presented experiments. This collective multiphoton state encoding is often
related to the so-called continuous variables like for instance light quadratures.

Polarisation encoding belongs to one the most employed especially in bulk
optics (e.g. [60–62]). Figure 2.1 depicts mapping of the qubit state onto the
polarisation degree of freedom. Such mapping is quite straightforward, because
polarisation state “lives” also in a two-dimensional Hilbert space as the qubit
does. So for instance one just associates horizontal polarisation state |H〉 to
the |0〉 logical qubit state and vertical polarisation state |V 〉 to the |1〉 qubit
state. As any superposition of horizontal and vertical polarisation can be
implemented on a single photon, one can use such single photon to carry one
qubit of quantum information.

Besides polarisation, one can also encode the qubit into the spatial degree

4normalization omitted
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Figure 2.1: Schematic depiction of the Bloch sphere model for polarisation qubit

encoding. Horizontal polarisation state |H〉 is considered |0〉 logical qubit state

while the vertical polarisation state |V 〉 corresponds to logical state |1〉 of the

qubit. Since any linear superposition of the form [cos ϑ2 |H〉+ eiϕ sin ϑ
2 |V 〉] can be

implemented on individual photons, polarisation state is a good candidate for qubit

encoding. The depiction also includes positions of diagonal (|D〉) and anti-diagonal

(|A〉) linear polarisation states and right (|R〉) and left (|L〉) circular polarisation
states for more readability.

a) b)

Figure 2.2: Illustration of spatial encoding: a) selecting the upper or lower optical

mode (fibre) one can encode logical qubit state |0〉 and |1〉, b) using a general fibre

coupler FC (or beam splitter, see description in section 2.4.1) one can also achieve

general superposition of the two encoding paths.
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of freedom of individual photons (see figure 2.2). In this case the state of the
photon being in one mode is designated logical |0〉 state and being in other
mode as |1〉. Spatial encoding is particularly useful when dealing with fibre-
optical setups (e.g. [63,64]). This is mainly because of the fact that polarisation
state is not maintained while the photon is propagating in a standard fibre.
Note that there exist also polarisation-maintaining fibres, but these are not al-
ways suitable for quantum information experiments namely for their significant
polarisation dispersion.

In some cases the information is encoded both into the polarisation and
spatial degree of freedom. This way, one can transmit more then one qubit of
quantum information using single photon. An example of such mixed encod-
ing is the first presented experiment in this thesis on experimental preparation
of two-photon Knill-Laflamme-Milburn states [A1] or the generation of hyper-
entanglement by Barbieri et al. [65].

There are also other degrees of freedom, such as orbital angular momentum
(e.g. [66–68]) or time-bin (e.g. [69, 70]), that can be used for qubit encoding.
Although they offer some advantages and additional space to store quantum
information, they are not used in hereby presented experiments. Note that
spatial encoding also offers to store several qubits within a single photon, but
experimental demands on stability of the whole experimental setup increase
considerably [64].

2.3 Generating photon pairs

Preparation of suitable input photons is an evident prerequisite for experimen-
tal optical quantum information processing. In this section let us now focus
on brief description of the principle of photon sources that have been em-
ployed in later presented experiments. These sources are based on a second or-
der non-linear optical process called spontaneous parametric down-conversion
(SPDC) [71]. As depicted in figure 2.3, Kr+ continuous wave laser beam of the
wavelength of 413 nm impinges on a non-linear crystal that supports the pro-
cess of SPDC. Either LiIO3 or β-BaB2O4 (BBO) crystals are used depending
on the experiment.

With a little bit of simplicity the SPDC process is governed by Hamilton
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Figure 2.3: Simplified scheme of SPDC based source of photon pairs: pumping laser

beam impinges on the non-linear crystal (NLC) inside which some of the pumping

photons are converted to pairs of time correlated photons. These photons are

coupled to single mode fibres (SMF) using lenses (L). Spectral edge filters (SF)

in front of the lenses assure that the diffracted pumping photons do not enter

the fibres. Note that realistic experimental setup also consists of a number of

translation and rotation stages as well as pinholes to facilitate setup adjustment.

To increase the overall efficiency of the source, another lens can be added to focus

the pumping beam to the crystal.
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operator in the form of

ĤSPDC = κâLâ
†
S â
†
I + h.c., (2.14)

where κ represents overall efficiency constant. In the process of SPDC one
photon of the laser beam mode L is annihilated yielding a pair of new photons
that are created into two different modes called signal S and idler I. Note that
due to the spontaneous nature of the process, the exact moment in which one
specific photon pair is generated is unpredictable, but once the pair is gener-
ated, both photons are created within a narrow time window (typically 100 fs).
Detailed evaluation of the SPDC process has to take into account specific char-
acteristics of the used non-linear crystal and the setup geometry. These crystal
characteristics and configuration together with energy and momentum conser-
vation laws determine the spectral and spatial geometry of generated photon
pairs. These conditions are known in non-linear optics as phase matching con-
ditions. Such a profound discussion is however beyond the scope of this thesis
and the reader is encouraged to consult suitable literature [51, 71]. The bire-
fringence of the crystal represents additional degree of freedom defining several
types of the SPDC process based on polarisation configuration. Type I was the
only used in the hereby presented experiments. In this type, the extraordinary
polarised (with respect to crystal’s optical axis) pumping photon yields two
photons of ordinary polarisation (schematically: e→ oo).

For the purposes of majority of QIP experiments, one wishes to obtain com-
pletely indistinguishable photons. This requires that the energy of pumping
photon is split equally among the created photons. The wavelength of gen-
erated photons (in our case 826 nm) then doubles the wavelength of pumping
photons. To collect the photons emitted from the crystal, suitable photon cou-
plers have to be used (see figure 2.3). By precise adjustment of their position,
one can achieve collection of the individual photons into single mode fibres by
means of which the photons are transferred for further processing. Spectral
cut-off or interference filters together with single mode fibres assure selection
of spectrally and spatially indistinguishable photons.

2.3.1 Generating entangled photon pairs

The above mentioned strategy allows to prepare pairs of time synchronised
photons having the same polarisation (for instance horizontal). Their overall
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Figure 2.4: Configuration for generating entangled photon pairs using type I SPDC

in a pair of BBO crystals: polarisation of the laser beam is modified using half-wave

plate (HWP) and quarter-wave plate (QWP), subsequently by means of SPDC it

produces coherent superposition of |HH〉 state of photon pairs in one and |V V 〉
in the other crystal. Due to the indistinguishability of the source crystal and the

coherence of the pump beam, the effective generated state is an entangled state

of the form of (2.15).

polarisation state is in an ideal case a separable pure state |HH〉. For many
QIP protocols, such an input state would be sufficient, but there are QIP
schemes that require entangled photon pairs at their input. One can produce
polarisation entangled photons from originally separable state by post-selection
[72]. This technique is not suitable in cases where such a post-selection is
not compatible with the rest of the setup. Type II SPDC can be used for
direct generation of entangled photons [60] without the need for post-selection.
However polarisation dispersion and walk-off in type II SPDC has negative
impact on the purity of generated entangled states.

In the first presented experiment (chapter 3), an alternative strategy was
used. This strategy is based on the proposal by Kwiat et al. [73] and it em-
ploys two thin (0.6mm in our case) BBO crystals cut for type I SPDC. These
crystals, as depicted in figure 2.4, are rotated so that their optical axis lie
in mutually orthogonal planes and then the crystals are optically contacted.
One of the crystals therefore converts vertically polarised pumping photons
to horizontally polarised photon pairs (V → HH), the other one functions
in the opposite way (H → V V ). Note that if the crystals are pumped by
general elliptic polarisation, both crystals operate simultaneously and the out-
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going photons leave the crystals following almost identical paths. Because the
pumping polarisation state is pure and because the fibre couplers focused on
the crystals’ interface can not distinguish in which crystal the photons originate
we obtain coherent superposition of |HH〉 and |V V 〉 which yields an entangled
state in the form of

|Ψ〉two photons = sinα|HH〉+ eiβ cosα|V V 〉. (2.15)

In order to control the parameter α, one can rotate a half-wave plate inserted
to the pumping beam in front of the crystal. Similarly by tilting a quarter
wave-plate in from of the crystal, the parameter β is controlled. This experi-
mentally easy achieved tunability of the generated photon state is one of the
most important advantages of this approach. Another advantage of this tech-
nique is that there are no problems with polarisation dispersion and walk-off
as in the case of type II based sources.

2.4 Linear optical toolbox

The previous sections shed some light on the methods for generating suitable
photons and on encoding of quantum information into their states. Now the
task is to explain what tools are needed to manipulate the photons and thus
process the information stored in their states. To achieve this goal we employ
a series of linear optical tools [50,51,74] described in this section.

2.4.1 Beam splitter

The most important of all the tools is a beam splitter. Generalising the formal-
ism of this component, one can simply cover the description of other seemingly
very different components such as wave plates or filters.

The beam splitter exists under a variety of physical implementations amid
which the semitransparent glass plate (see figure 2.5) or fibre coupler are very
intensely used. The beam splitter combines two input modes and transforms
them into two output modes. Using the annihilation operators defined in (2.7)
we can write the transformation equation for input and output modes using
the convenient matrix formalism(

â1,out

â2,out

)
=

( √
T

√
R

−
√
R
√
T

)(
â1,in

â2,in

)
, (2.16)
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-

Figure 2.5: Semitransparent glass plate used as a beam splitter: modes 1 and 2

are coherently mixed according to the beam splitter (BS) transformation matrix

(2.19). Note that the splitting actually occurs on the plate’s surface. One of the

reflection changes sign due to boundary conditions. In ideal case, all interfaces

other then the splitting interface have 100% transmissivity.

where T and R stand for intensity transmissivity and reflectivity of the beam
splitter. In an ideal case the beam splitter has zero absorbency leading to the
energy conservation law expressed as

T +R = 1. (2.17)

Using this identity we can parametrise the beam splitter by a single parameter
θ given by

T = cos2 θ. (2.18)

The transformation equation (2.16) can be rewritten into the form of(
â1,out

â2,out

)
=

(
cos θ sin θ

− sin θ cos θ

)(
â1,in

â2,in

)
. (2.19)

It is evident that the condition for ideal beam splitter (2.17) also ensures that
the transformation matrix describes a unitary evolution.

2.4.2 Polarisation dependent beam splitter

Polarisation encoding belongs to one of the most densely used ways to encode
quantum information into individual photon states. In order to control this
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-

Figure 2.6: Polarisation dependent beam splitter (PDBS): specially designed glass

plate with polarisation sensitive reflection coating can be used to function as a

beam splitter having different splitting ratios for different polarisations. Note that

the orthogonal polarisations (horizontal H and vertical V ) do not mix together

and the beam splitter thus functions as two separate ordinary beam splitters on

one single plate.

degree of freedom in an experiment, polarisation sensitive optical components
has to be used. These also include the so called polarisation dependent beam
splitter (PDBS) depicted in figure 2.6. To describe such beam splitter, one has
to increase the number of both input and output modes to four: two spatial
modes for horizontal and two spatial modes vertical polarisation. Generalising
the equation (2.19) one can obtain matrix transformation of an ideal polarisa-
tion dependent beam splitter in the form of

â1H,out

â1V ,out

â2H,out

â2V ,out

 =


cos θH 0 sin θH 0

0 cos θV 0 sin θV

− sin θH 0 cos θH 0

0 − sin θV 0 cos θV




â1H,in

â1V ,in

â2H,in

â2V ,in

 ,

(2.20)
where indexes H and V denote horizontal and vertical polarisations. Note that
the splitting ratio parameters θH and θV for H and V polarisations are allowed
to be generally different.

Specially designed polarisation dependent beam splitters can be used for
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instance in quantum cloning experiments [75]. Another somewhat trivial case
of the polarisation dependent beam splitter is the polarising cube – an optical
tool for splitting horizontal and vertical polarisations. In this case the hori-
zontal polarisation is completely transmitted while the vertical polarisation is
completely reflected (θH = 0, θV = π/2).

2.4.3 Wave plates

To control the polarisation of light within one single spatial mode, one uses the
birefringent wave plates. Two prominent cases of these wave plates include the
so-called half-wave and quarter-wave plates. The first mentioned is designed
to impose a half-wave phase shift between polarisations along its fast and slow
optical axis. The later imposes quarter-wave phase shift. These wave plates
are sufficient to change the polarisation state of light. It can be shown that
any pure polarisation can be changed to any other pure polarisation by a series
of a quarter-wave, a half-wave and a second quarter-wave plate.

The beam splitter formalism is also convenient for describing the action of
wave plates. Matrix transformation imposed by a half-wave plate reads(

âH,out

âV ,out

)
=

(
cos 2α sin 2α

sin 2α − cos 2α

)(
âH,in

âV ,in

)
(2.21)

with α denoting the angle between plate’s fast optical axis and direction of
horizontal polarisation.

In a similar way the quarter-wave plate transformation equation can be
written in the form of(

âH,out

âV ,out

)
=

1√
2

(
1− i cos 2α −i sin 2α

−i sin 2α 1 + i cos 2α

)(
âH,in

âV ,in

)
. (2.22)

2.4.4 Phase shift

To complete the list of linear optical tools for QIP with individual photons,
let us now focus on the phase shifts. Formally a single mode phase shift is
described by the transformation

âout = eiϕâin, (2.23)

where ϕ denotes the imposed phase shift. Because the overall phase of a quan-
tum state can be neglected, the phase shift is observable only when comparing
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phase difference between two modes (spatial or polarisation). This is very of-
ten the case in interferometric experiments where photons in one arm of the
interferometer are subjected to different phase shift then photons in the other
arm.

Although the mathematical description of the phase shift seams fairly sim-
ple, its experimental implementation may become challenging. In the case of
spatial mode encoding, the phase shift is achieved by means of piezo driven
translation of a mirror or a pentaprism. The stability of such procedure often
requires active stabilisation using either parallel strong optical signal (laser
beam) [76] or, as used in our experiments, repeatedly interrupting the mea-
surement and stabilising on the individual photons themselves [A1,A5].

2.4.5 Neutral density filter

To demonstrate the versatile nature of the beam splitter formalism, let us
now describe the action of a neutral density filter of transmissivity T in an
optical scheme. One would expect the filter to be governed by a single mode
transformation equation

âout =
√
T âin. (2.24)

Although this equation is intuitive, it is in violation of the commutation rela-
tions for annihilation and creation operators (2.13). In order to describe the
filter consistently with quantum optics, one has to adopt the notion of ancillary
modes. In this case an ancillary mode is some sort of virtual spatial mode that
is originally in vacuum state and after being coupled to the filtered mode it is
no longer considered in the rest of the experiment. The filter can then be de-
scribed as a beam splitter coupling the filtered mode with the ancillary mode.
Matrix transformation (2.16) is a correct mathematical model for a neutral
density filter supposing the filter intensity transmissivity is T , the first mode is
the filtered mode and the second mode is the above mentioned ancillary mode.
Note that with respect to the description above, a beam splitter can also be
used as a single mode filter.

2.4.6 Beam divider assembly

Sometimes the experiment requires to implement polarisation dependent losses.
This can be achieved by a simple glass plate tilted by suitable angle so that
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Figure 2.7: Schematic representation of the beam divider assembly (BDA): general

input polarisation state containing both horizontal and vertical polarisation enters

the first beam divider (BD). There the horizontal polarisation continues following

the original path while the vertical polarisation is shifted due to walk-off and leaves

the BD 4mm above propagating in parallel direction. Two gradient neutral density

filters are positioned to act on horizontally polarised beam (FH) and vertically

polarised beam (FV) separately. To illustrate this effect, hereby depicted filters

have different optical densities. Half-wave plate (HWP) rotated at 45 deg. (with

respect to horizontal polarisation) follows the filters. Its action swaps horizontal

and vertical polarisations allowing them to be recombined on the second BD which

operates identically as the first one. To compensate for this swap, second HWP

is inserted at the output of the second BD. Additionally mounting one of the BD

on a piezo tilt one can also impose tunable phase shift between the polarisation

modes.

two orthogonal polarisations have different transmissivities. This approach
has however several limitations. Firstly it may affect the beam properties and
secondly the achieved losses can not be easily set to any value in the range
between 0 and 100 %.

Instead of using the glass plate, in the second and third experiment we em-
ploy a compact device called beam divider assembly (BDA). It is worth a brief
discussion since it proves to be a very useful tool for polarisation manipulation
including an efficient way to achieve polarisation sensitive filtering.

The scheme of this instrument is depicted in figure 2.7. It consists of two
beam dividers which separate horizontal and vertical polarisations similarly
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as an ordinary polarising beam splitter. The difference lies however in the
spatial geometry of output modes. In contrast to the polarising beam splitter,
beam dividers outputs both polarisations to two parallel beams separated by a
constant distance (in our case 4mm). In the beam divider assembly, the first
beam divider is used to split the two polarisations and the second beam divider
to rejoin them. In order to function inversely, the second beam divider has
to be preceded by a half-wave plate (set to 45 deg. with respect to horizontal
polarisation) which swaps horizontal and vertical polarisations. To cancel such
polarisation swap, another half-wave plate (also set to 45 deg.) has to be
placed behind the whole assembly. To impose polarisation dependent losses
one can position neutral density filters between the two beam dividers so that
each of the filters affect only one beam (one polarisation). This proves to
be a very efficient and stable way to introduce polarisation sensitive losses.
This technique does not burden the experiment by adding any polarisation
dispersion and the filtering is tunable in the whole range from zero to unity
transmissivity. The stabilisation requires to maintain a constant phase shift
between the two split beams. By building the whole beam divider assembly
using a compact “cage system”5, one can achieve very good phase stability of
λ/100 lasting for hours. Setting of the required phase shift can be achieved by
usage of a piezo tilt of one of the beam dividers.

2.5 Quantum state analysis

2.5.1 Single photon detection

In order to read the information stored in optical qubits, one has to be able to
detect individual photons. There is a variety of detectors that can achieve such
sensitivity including iCCD (intensified CCD), EM-CCD (electron multiplying
CCD), APD (avalanche photo-diodes), HPD (hybrid photo-detector), photo-
multiplier, TES (transition edge sensor) or nanowires [74,77].

In all of the experiments described in this thesis, APD based single pho-
ton counting modules (SPCM) were used as light detectors. Typical quantum
efficiency of these detectors is about 60% which prevents reliable vacuum de-

5See laboratory equipment manufacturer website for details http://thorlabs.com/

navigation.cfm?Guide_ID=2002

http://thorlabs.com/navigation.cfm?Guide_ID=2002
http://thorlabs.com/navigation.cfm?Guide_ID=2002
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tection (detection of no photons). APD detectors are also insensitive to the
number of impinging photons which limits their usage as photon number resolv-
ing detectors. Note that by means of time multiplexing achieved by specially
designed fibre loops, these detectors can be used to determine the number of
photons in a wave packet [78].

One can construct a formal description of the APD detectors using two-
component POVM composed of projection operators on Fock states. The
projection operator corresponding to no-detection (no-click) reads

Π̂NO CLICK =

∞∑
n=0

(1− η)n|n〉〈n|, (2.25)

where n stands for the Fock state number and η is the quantum efficiency
of the detector. The positive detection event (click) can be regarded as a
complementary event to the no-detection

Π̂CLICK = 1̂1− Π̂NO CLICK. (2.26)

In the case of two-photon experiments one needs to distinguish coincidences
– simultaneous detection events from two detectors at once. This is achieved by
means of coincidence logic – an electronic equipment capable of post-selecting
only the cases when two detectors detected photons within specified time in-
terval (in our case 1 ns).

2.5.2 Quantum state tomography

To fully characterize the photon state, one has to perform its tomography. This
procedure consists of a series of repeated measurements designed to gather
enough data to reconstruct density matrix of the quantum state in question.

In the case of two-photon polarisation encoded quantum states (which is
the case for all later presented experiments) the quantum state tomography
is achieved by measuring the coincidence rates for different polarisation pro-
jections on both photons (see figure 2.8). More specifically all mutual com-
binations of single photon projections onto horizontal, vertical, diagonal and
anti-diagonal linear polarisations and onto right and left circular polarisations
are implemented. In every case the corresponding coincidence rate is measured.
Subsequently using the method of maximum likelihood, one can estimate the
most fitting two-photon density matrix based on the registered coincidence
rates [79, 80].
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Figure 2.8: Two-photon polarisation tomography setup: photons in arm 1 and

2 gradually propagate through a quarter-wave plate (QWP) and half-wave plate

(HWP) mounted on motorised rotation stages. Together with polarising beam

splitter (PBS) the wave plates allow projection of individual photons to horizontal,

vertical, diagonal and anti-diagonal linear and right and left circular polarisation

states. Performing 36 two-photon projections consisting of all combinations of

above mentioned single photon projections, one can perform complete state to-

mography. Avalanche photo-diodes (APD) are used to detect individual photons

and coincidence logic (CC logic) then processes the signal to determine the coin-

cidence rates.



2.6. QUANTUM PROCESS TOMOGRAPHY 35

2.6 Quantum process tomography

A yet more complex strategy has to be used to fully characterize the whole QIP
device. A simple output state tomography is not sufficient because the device
generally functions differently for different input states. In this case one has
to implement complete process tomography. This procedure consists of setting
all combinations of the above mentioned polarisation states as input states and
performing output state tomography for every one of them. Similar estimation
based on the method of maximum likelihood can determine the Choi matrix
isomorphic to the complete positive map describing the action of the device at
hand [81–84].
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Chapter 3

Preparation of two-photon
Knill-Laflamme-Milburn states

Text adopted from Karel Lemr, Antonín Černoch, Jan Soubusta and Jaromír
Fiurášek, Phys. Rev. A 81, 012321 (2010) [A1].

3.1 Introduction

One of the major setbacks of QIP with light is the probabilistic nature of al-
most all of the QIP schemes. Typically, the success probability decreases with
increasing complexity of the scheme. However, as showed by Knill, Laflamme
and Milburn this disadvantage may be overcome by employing a specific class
of ancillary entangled multiphoton states (referred to as KLM states) that
may reduce the failure probability of linear optical quantum gates to arbitrar-
ily small value inversely proportional to the size of the multi-photon KLM
state [34]. Besides the capability of increasing success probability of complex
quantum computational schemes, the KLM states have been known to enhance
other QIP tasks as well. Even the two-photon KLM states can be employed
to perform quantum state teleportation and error correction [85].

This chapter describes the first experimental generation and full charac-
terization of the entangled two-photon KLM states. Our experiment follows a
recent theoretical proposal by Lemr and Fiurášek [A3], who showed that spon-
taneous parametric down-conversion (SPDC) along with linear optical com-
ponents is sufficient to prepare the two-photon KLM states in a more general

37
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Figure 3.1: Experimental setup for KLM state preparation is divided into three

main parts: a) source of entangled photon pairs, b) KLM state preparation and

c) KLM state analysis. Optical components are labelled as follows: HWP - half-

wave plate, QWP - quarter-wave plate, BBO - non-linear crystals, MT - motorized

translation, BS - beam splitter, PBS - polarising beam splitter, APD - set of cut-of

filter, single-mode fibre and avalanche photodiode. Spatial modes are labelled 1

and 2 respectively.

form put forward by Franson et al. [86],

|ψKLM〉 = γ|1100〉+ δ|1001〉 − γ|0011〉. (3.1)

Here γ and δ are real numbers satisfying the normalisation condition 2γ2+δ2 =

1 and “0” and “1” denote the number of photons in the first through fourth
spatial mode. It is easy to see that by means of polarising beam splitters
the state (3.1) can be transformed into state of two spatial modes and two
polarisation modes,

|ψKLM〉 = γ|H1V1〉+ δ|H1V2〉 − γ|H2V2〉, (3.2)

where |H〉 and |V 〉 denote state of a single photon with horizontal and vertical
linear polarisation, respectively, and subscripts 1 and 2 label the two spatial
modes.
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3.2 Experimental setup

Our experimental setup for generation and characterization of the states (3.2)
is shown in fig. 3.1. It can be divided into three main parts: source of entangled
photon pairs, KLM state preparation and KLM state analysis. To generate an
entangled two-photon state, we use a pair of BBO type I (e → oo) non-linear
crystals as proposed by Kwiat et al. [73] and introduced in section 2.3.1 (see
fig. 3.1a). The optical pumping is supplied by cw Krypton-ion laser at the
wavelength of 413.1 nm and about 200 mW of optical power. Before impinging
on the crystals, the pumping beam passes through a half-wave plate (HWP)
and quarter-wave plate (QWP) so that we can set arbitrary polarisation of the
beam. Non-linear processes of SPDC H → V V and V → HH are occurring
coherently and simultaneously in the first and the second crystal, respectively.
Because of the fact that these two processes are indistinguishable, the resulting
state of the emitted photon pairs can be expressed as a coherent superposition
of two terms,

|Φ1〉 = sinα|H1H2〉+ eiφ cosα|V1V2〉, (3.3)

where subscripts 1 and 2 label the spatial modes. Parameters α and φ can be
controlled by rotation of HWP and tilt of QWP in the pump beam.

Photons in the state (3.3) are transferred by two single-mode optical fibres
to the entrance of the second part of our setup - the KLM state preparation
(see fig. 3.1b). The single-mode fibres serve also as spatial mode filters allowing
us to reach high interference visibility. First of all, we swap the polarisation
of one photon of the pair by putting a diagonally rotated HWP into its path.
The resulting state reads,

|Φ2〉 = sinα|V1H2〉+ eiφ cosα|H1V2〉. (3.4)

Subsequently the photons are coherently superposed on the beam splitter BS1.
Both beam splitters BS1 and BS2 are attached to a micro-translation stages
and can be transversally shifted as depicted by the arrows. Path of the reflected
beam depends strongly on the beam splitter positioning, while the transmitted
beam is left almost unaffected. By shifting the beam splitter we are thus able
to tune its effective reflectivity/transmissivity ratio in the range from 50:50
to 0:100. This operation can be expressed as a linear transformation of the
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annihilation operators,

â1,out =
1√
2

(
â1,in + σâ2,in +

√
1− σ2 â1,vac

)
,

â2,out =
1√
2

(
â2,in − σâ1,in +

√
1− σ2 â2,vac

)
, (3.5)

where âj,vac denote annihilation operators of auxiliary vacuum modes. The
effective amplitude reflectance σ ∈ [0, 1] as defined by (3.5) is set by the po-
sition of the beam splitter on the micro-translation and can be adjusted as
needed. After the interference on BS1 the state conditioned on presence of
both photons in the signal output modes reads,

|Φ3〉 =
1

2

[
σ
(

sinα+ eiφ cosα
)

(|H1V1〉 − |H2V2〉)

+
(

sinα− σ2eiφ cosα
)
|V1H2〉

+
(

eiφ cosα− σ2 sinα
)
|H1V2〉

]
. (3.6)

To prepare the KLM state (3.2) one needs to nullify the amplitude of the
undesired term |V1H2〉. This can be achieved by setting φ = 0 and σ =

√
tanα.

This choice ensures that the resulting state (3.6) becomes equivalent to the
required KLM state (3.2) with real parameters γ and δ satisfying

γ

δ
=

√
sinα cosα

cosα− sinα
. (3.7)

From this equation we can determine α for any target ratio γ/δ that fully
specifies the KLM state (3.2).

We begin the experiment by performing the photon source adjustment.
Beam splitters BS1 and BS2 are shifted to the 0:100 position (σ = 0) dur-
ing this phase so that we can perform the quantum state tomography and
estimation [79] of the state |Φ2〉 generated by the crystals. This tomography
determines the values of α and φ which can be adjusted by rotation of the
HWP and the tilt of the QWP in the pump beam. We have obtained high
state purity of about 94-98% and fidelity about 94%. After the adjustment
of the photon source is complete, we put the beam splitter BS1 into position
so that σ =

√
tanα. Motorized translation MT is then used to balance the

lengths of photon trajectories to maximize the visibility of Hong-Ou-Mandel
interference (two-photon temporal overlap) [87] on the beam splitter BS1 where
the KLM state is created.
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Figure 3.2: Coincidence measurement with the beam splitter BS2 shifted out to

0:100 position. Plotted are the measured coincidences H1V1, H2V2, H1V2 and

H2V1 (markers) and their respective theoretical Gaussian fits (lines). Relative

position of the motorized translation MT has been set so that its origin corresponds

to the center of H2V1 dip. Error bars are smaller than used marker size.

3.3 State analysis and results

The state analysis is performed in three basic steps using the part “c” of the
experimental setup (fig. 3.1c). For the purposes of the first two steps the beam
splitter BS2 is tuned to the 0:100 position (it can be considered as effectively
removed). The third step of the analysis requires the beam splitter BS2 to be
placed into the 50:50 position (σ = 1).

In the first analysis step we verify that the undesired term |H2V1〉 vanishes
due to destructive two-photon interference on BS1. This can be achieved by
measuring the coincidences for different positions of the motorized translation
(see fig. 3.2). The experimental data clearly shows that the H2V1 coincidences
realize dip with typical visibility around 95% and they represent only about
0.45% of the sum of all coincidences at the dip. In order to confirm that the
prepared state is not contaminated by other unwanted contributions we have
further measured the coincidences H1H2 and V1V2 which turned out to be neg-
ligible (less than 150 coincidences per 30 s). Coincidence measurements have
also been performed in the diagonal linear polarisation basis. The observed
dips in coincidence clicks of two detectors monitoring the same spatial mode
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are consistent with the absence of any |2H, 0V 〉 or |2V, 0H〉 states. These
measurements and the high fidelity of the input state with state |Φ2〉, which
exhibits perfect anticorrelation of photon polarisations in the H/V basis, per-
mit us to restrict ourselves to a three dimensional Hilbert space spanned by the
basis states |H1V1〉, |H2V2〉, |H1V2〉 when characterizing the generated KLM
state.

In the second step of our analysis we verify the correct intensity ratios
of H1V1, H2V2 and H1V2 terms. We have performed a series of coincidence
measurements for different settings of parameter α to demonstrate the correct
behaviour of amplitudes γ and δ as functions of α. In fig. 3.3a we plot the
experimentally determined ratio of coincidences H1V1 and H2V2 showing that
it approaches well the theoretical value of 1 in all cases. In fig. 3.3b we plot
the experimentally determined ratio of coincidences H1V1 and H1V2 together
with the theoretical expectation γ2/δ2 given by eq. (3.7). One may observe
that the experimentally determined values correspond well to the theoretical
prediction.

To fully analyse the prepared KLM state and determine its purity and fi-
delity one needs to perform a complete state tomography. For this purpose
we employ the second beam splitter BS2 and thus form a Mach-Zehnder inter-
ferometer. The following three sets of coincidence measurements are carried
out: first we measure all coincidences (H1V1, H2V2, H1V2, H2V1) with beam
splitter BS2 in the 0:100 position (similar measurement as in the previous
step). Second we measure the same set of coincidences with BS2 in balanced
position 50:50 (σ = 1) and with zero phase shift between the two arms of the
interferometer. Finally we measure with BS2 again in 50:50 position but with
relative phase of π4 between the two arms. The correct phase can be set using
a piezo translation in one of the arms. This measurement requires performing
two stabilization procedures: one is the stabilization of the HOM dip on the
first beam splitter BS1 and the second is the active stabilization of the phase
in the interferometer. Dip stabilization is performed about every 30 s and MZ
interferometer stabilization is carried out about every 5 s.

The three sets of measured coincidences provide sufficient data to fully re-
construct density matrix of the generated KLM states. We have used the well
established maximum likelihood estimation method [79] and performed com-
plete state tomography for three different KLM states (see Tab. 3.1). Typical
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fidelities of prepared states are about 92% and purities about 90%. As an
illustration we present one of the reconstructed density matrices as well as

H
1V

1:
H

2V
2

a)

b)

Figure 3.3: a) Ratio of coincidences H1V1 and H2V2. b) Ratio of coincidences

H1V1 and H1V2. The experimental data with error bars are depicted by blue dots

and red squares and the theoretical prediction according to eq. (3.7) is plotted by

orange full line.
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α γ2/δ2 P F FC

0.17π 3.67 92.4% 93.5% 95.9%
0.11π 0.97 86.0% 91.1% 92.4%
0.08π 0.48 90.4% 92.9% 94.6%

Table 3.1: Purities and fidelities of three prepared KLM states (corresponding to

red squares in figure 3.3) with different parameters α. The purity P and fidelity of

reconstructed state F is shown together with the fidelity FC obtained after optimal

compensation of local phase shifts.

the related theoretical prediction in fig. 3.4. Non-zero imaginary parts of re-
constructed density matrix elements suggest that further improvement of the
fidelity F can by achieved by application of local phase shifts, i.e. by trans-
formation |H1V1〉 → |H1V1〉, |H1V2〉 → eiθ1 |H1V2〉, |H2V2〉 → eiθ2 |H2V2〉. We
have numerically determined the optimal phase shifts θ1 and θ2 that maximize
the fidelity for given reconstructed density matrix and target KLM state. We
present the resulting improved fidelities FC in the last column of tab. 3.1.

3.4 Conclusions

In summary, we have presented successful experimental preparation of two-
photon KLM states using only SPDC photon source and linear optical com-
ponents. The easy tunability of the entanglement source and of the splitting
ratio of the beam splitter allow us to prepare any two-photon KLM state with
fidelity about 92% at the expense of losses on the beam splitter BS1 and there-
fore requiring post-selection of cases when both photons arrive to detectors.
These losses can however be overcome by employing a custom unbalanced
beam splitter with splitting ratio calculated for some fixed value of α. That
way the scheme would not require any post-selection, but it becomes limited
to one specific KLM state corresponding to the splitting ratio of the chosen
beam splitter.
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a)

b)

Figure 3.4: a) Real and imaginary parts of reconstructed density matrix of KLM

state with α = 0.08π. b) Theoretically determined density matrix of corresponding

pure target KLM state (3.2).
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Chapter 4

Experimental implementation of
the optimal linear-optical
controlled phase gate

Text adopted from Karel Lemr, Antonín Černoch, Jan Soubusta, Konrad Kiel-
ing, Jens Eisert and Miloslav Dušek, Phys. Rev. Lett. 106, 13602 (2011) [A5].

4.1 Introduction

Linear-optical architectures belong to the most prominent platforms for re-
alising protocols of quantum information processing [34–40]. In small-scale
applications of quantum information, such as in quantum repeaters, they will
quite certainly play a key role. Unsurprisingly, a significant research effort has
been dedicated in recent years to experimental realization of universal linear-
optical quantum gates. Linear-optical quantum gates are probabilistic by their
very nature [34]. Therefore, the exact trade-offs between properties of a gate
and its probability of success are in the focus of attention.

In this chapter, we explore such trade-off for the first time experimentally
on a controlled-phase gate. We present data from an experimental realization
of an optimal linear-optical post-selected controlled phase gate implementing
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the following operation on two qubits:

|0, 0〉 7→ u0,0|0, 0〉 = |0, 0〉,
|0, 1〉 7→ u0,1|0, 1〉 = |0, 1〉,
|1, 0〉 7→ u1,0|1, 0〉 = |1, 0〉,
|1, 1〉 7→ u1,1|1, 1〉 = eiϕ|1, 1〉,

(4.1)

for an arbitrary given phase ϕ ∈ [0, π]. It is key to this experiment that this
angle can be chosen in a fully tunable fashion, hence adding a flexible scheme to
the linear optical QIP toolbox. Post-selected quantum phase gates themselves
can be used in order to realize non-demolition measurements, hence rendering
post-selected gates truly scalable [88].

Controlled phase gates are important members of the QIP toolbox. For
example, they play a key role in the circuit for quantum Fourier transform
[20] or quantum simulation tasks [89]. They are entangling quantum gates in
general and, together with single-qubit operations, they form sets of universal
gates for quantum computing. Notice that the controlled-NOT gate can be
obtained by applying a Hadamard transform to the target qubit before and
after a controlled phase gate with phase shift π. What is more, non-maximally
entangled states can be used in the non-local implementation of controlled
phase gates [90–92].

Previous experimental work was devoted to the linear-optical realization of
a special case of the controlled phase gate with the fixed phase ϕ = π [93–95].
Ref. [96] presents an experiment with phases different from π, but with a
non-optimal probability of success. The optimal success probability (without
additional photon ancillae) has recently been identified theoretically in ref. [45]
and takes the form of

PC(ϕ) =

(
1 + 2

∣∣∣sin ϕ
2

∣∣∣+ 23/2 sin
π − ϕ

4

∣∣∣sin ϕ
2

∣∣∣1/2)−2

. (4.2)

This optimum probability we have indeed reached in the described experiment.
We observe the quite remarkable trade-off between the phase shift applied by
the gate and its success probability, which is — surprisingly — not monotonous
in the phase on the interval [0, π]. The success probability decreases rapidly
for small phases, but remains almost constant for phases between π/4 and π.
This experiment is hence expected to be both interesting conceptually as well
as technologically.
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Figure 4.1: Scheme of the experimental setup for implementing a tunable controlled

phase gate (see text for details).

4.2 Experimental setup

As the starting point of this experiment, we generate a pair of photons in the
process of type I spontaneous parametric down-conversion. The laser beam
of 250mW of cw optical power emitted by Kr+ laser at 413 nm impinges on
the LiIO3 crystal. Pairs of photons at 826 nm are collected using single mode
fibres serving also as spatial filters. Subsequently, polarisation controllers are
employed to adjust the horizontal polarisation of the photons.

The half-wave plates (HWP) and quarter-wave plates (QWP) in the input
arms (see fig. 4.1) are used to set the input states. Subsequently, the photons
are superposed on the first polarising beam splitter PBS1 which transmits hor-
izontal and reflects vertical polarisation. Due to imperfections the transmis-
sivity for horizontal polarisation is only 95% (the remaining 5% are reflected).
Polarisation beam splitters also introduce parasitic phase shifts between verti-
cal and horizontal polarisation components. After leaving the PBS1 the pho-
tons in the upper arm are subjected to the action of half-wave plate HWP21.



50 CHAPTER 4. CONTROLLED PHASE GATE

When set to 22.5 deg it performs the transformation |H〉 7→ (|H〉 + |V 〉)/
√

2,
|V 〉 7→ (|H〉 − |V 〉)/

√
2, where |H〉 and |V 〉 denote horizontal and vertical

polarisation states, respectively. The lower arm is also equipped with a half
wave-plate (HWP11) but it is set to zero (its presence just guarantees the
same optical paths, dispersion effects, etc. in the both arms). Behind the wave
plates there are the beam-divider assemblies BDA1 and BDA2. They consist
of two beam dividers (BD) splitting and subsequently rejoining horizontal and
vertical polarisations. BDA2 is equipped with gradient neutral-density filters
F21 and F22 (see fig. 4.1). This way one can perform arbitrary polarisation
sensitive losses. BDA1 is used just to equilibrate the beam position and the
optical length of the both arms. It also avoids potential problems with dif-
ferent dispersion effects in the two arms and makes the setup more flexible.
After leaving the beam-divider assemblies the photons propagate through half-
wave plates HWP12 and HWP22. HWP22 is set to 22.5 deg reversing thus the
transformation imposed by HWP21. HWP12 is set to 45 deg to compensate for
the polarisation flip between the H and V polarisations performed by BDA1.
The lower arm is equipped with a gradient neutral density filter F1 to ap-
ply polarisation independent losses. The gate operation itself is completed by
overlapping the photons on the second polarising beam splitter PBS2. To be
able to perform complete state and process tomography we employ polarisa-
tion analysis in the both output arms. The analysis consists of QWPs and
HWPs followed by polarising beam splitters, cut-off filters and single mode
fibres leading to single photon detectors. The setup parameters are then ad-
justed according to theoretical proposal [45] to perform the gate operation (see
table 4.1). First we set filters F22 and F1 to introduce the required losses. Af-
ter that the wave plates HWP21 and HWP22 are set to 22.5deg. The phase
in the beam divider assembly BDA2 is set to maximize the visibility of the
interferometer formed by PBS1 and PBS2. The precise tuning of the gate is
then performed by switching between the inputs |H1, R2〉 and |V1, R2〉, where
indices 1 and 2 denote the input modes and R stands for the right circular po-
larisation. Using the circular detection basis in the second output arm we can
observe the phase applied by the gate when the polarisation of the first input
photon flips from |H〉 to |V 〉. In this configuration we also tune the phase shift
inside the beam divider assembly BDA2 and the phase shift between the two
arms of the Mach-Zehnder interferometer formed by PBS1 and PBS2.
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ϕ F1 F22

0 1.00 1.00
0.05π 0.59 0.37
0.125π 0.46 0.27
0.25π 0.37 0.29
0.5π 0.30 0.45
0.75π 0.30 0.69
π 0.33 1.00

Table 4.1: Theoretically calculated intensity transmissivity of neutral density fil-

ters F1 and F22 (as depicted in figure 4.1) for seven selected phases ϕ. The

transmissivity of F21 is always 1.

4.3 Results

Gradually we have adjusted the gate to apply 7 phases in the range between
0 and π. Each time we have performed complete process tomography and
estimated the process matrix using the maximum likelihood method. Fidelities
of the process lie in the range from 84% to 95% (see tab. 4.2). Figs. 4.2
and 4.3 show examples of experimentally obtained process matrices and their
theoretical counterparts for ϕ = π and π/2.

For each selected phase we simultaneously measured two-photon coinci-
dence counts between detectors D1H&D2H, D1V&D2V, D1H&D2V, and D1V&D2H,
each for 3 × 3 combinations of polarisation measurement bases in the out-
put arms. This amounts to measuring projections onto horizontal/vertical,
diagonal/anti-diagonal and right/left circular polarisations. The diagonal (|D〉)
and anti-diagonal (|A〉) linear polarisation states are defined as

|D〉 =
1√
2

(|H〉+ |V 〉), |A〉 =
1√
2

(|H〉 − |V 〉) (4.3)

and the right- (|R〉) and left-handed (|L〉) circular polarisation states read

|R〉 =
1√
2

(|H〉+ i|V 〉), |L〉 =
1√
2

(|H〉 − i|V 〉). (4.4)

The unequal detector efficiencies were compensated by proper re-scaling of the
measured coincidence counts [97]. Each measurement was done for 36 different
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ϕ Fχ Fav Fmin Pav Pmin ps,obs ps,th

0 0.939 0.956 0.835 0.960 0.873 0.859±0.013 1.000
0.05π 0.948 0.961 0.906 0.965 0.870 0.366±0.008 0.348
0.125π 0.910 0.903 0.770 0.954 0.866 0.190±0.005 0.210
0.25π 0.842 0.881 0.733 0.896 0.670 0.112±0.003 0.133
0.5π 0.863 0.888 0.815 0.903 0.759 0.090±0.002 0.090
0.75π 0.840 0.868 0.633 0.898 0.705 0.080±0.002 0.088
π 0.835 0.856 0.710 0.922 0.827 0.120±0.001 0.111

Table 4.2: Process fidelities (Fχ), average (Fav) and minimal (Fmin) output-state

fidelities, average (Pav) and minimal (Pmin) output-state purities and actually ob-

served (ps,obs) and theoretically predicted (ps,th) success probabilities for different

phases (ϕ).
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Figure 4.2: Matrix representation of the complete positive map characterizing the

operation of the controlled-phase gate with ϕ = π: a) the left panel shows the real

part of the reconstructed process matrix, b) the right one displays the real part

of the ideal theoretical CP map. Imaginary parts are small (maximal fluctuations

below 0.1). They should be zero in ideal case. The process fidelity Fχ = 84%.
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Figure 4.3: Choi matrices for the gate with ϕ = π/2: the top panel shows the

real (a) and imaginary (b) part of the reconstructed process matrix. The bottom

one displays real (c) and imaginary (d) part of ideal matrix. The process fidelity

Fχ = 86%.
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input product states. Namely, for 6 × 6 combinations of polarisation state
vectors |H〉, |V 〉, |D〉, |A〉, |R〉, and |L〉 of each input photon. This complex
measurement provided us with tomographically complete data enabling us to
fully characterize the implemented operation by quantum process tomography
[79,83,84,98,99] as well as to reconstruct density matrices of output states for
each used input state.

Each setting of an input and output polarisation basis was preceded by an
active stabilization. For the purpose of the stabilization the fixed input state
and output detection basis were always used. In this setting the visibility in
the interferometer formed by PBS1 and PBS2 was measured. If this visibility
was lower than a selected threshold (usually 94%) then the positions of MT1
(two-photon temporal overlap) and MT2 (equilibration of interferometer arms)
were optimized and the phase drift was compensated. Finally the required
polarisations were set and data were accumulated within 5 s.

Any quantum operation can be fully described by a completely positive
map and — according to the Jamiolkowski-Choi isomorphism — represented
by a positive-semidefinite operator χ on the tensor product of input and output
Hilbert spaces [81, 82]. In our case χ is a (16 × 16) square matrix. From the
measured data we can reconstruct χ for any setting of ϕ using maximum likeli-
hood estimation [79,80]. To quantify the quality of the operation we calculate
the process fidelity Fχ = Tr[χχid]/(Tr[χ]Tr[χid]). Here χid represents the ideal
transformation corresponding to the controlled-phase gate. Specifically,

χid =
∑

i,j,k,l=V,H

|i, j〉〈k, l| ⊗ U |i, j〉〈k, l|U †, (4.5)

where U stands for the unitary operator on two qubits defined by eq. (4.1).
We have also reconstructed the density matrices of output two-photon states
corresponding to all product input states |j, k〉, j, k ∈ {H,V,D,A,R,L}. This
was done for seven values of ϕ. An important parameter characterizing the gate
performance is the fidelity of output states ρout defined as F = 〈ψout|ρout|ψout〉,
where |ψout〉 = U |ψin〉 and |ψin〉 is the input state vector. Table 4.2 contains
the average and minimal values of state fidelities for different phases. Fidelities
Fav are averaged over all output states corresponding to our 36 input states;
Fmin denote minimal values. Another important characteristics is the purity
of the output state ρout, defined as P = Tr[ρ2

out]. If the input state is pure the
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Figure 4.4: Success probability of the controlled phase gate. Circles denote exper-

imental results, full line shows the theoretical prediction.

output state is expected to be pure as well. The average and minimal purities
of output states are also given in table 4.2.

4.3.1 Trade off in success probabilities

The most important result of this experiment — aside from the technological
implications — is the experimental verification of the trade-off between the
phase shift applied by the gate and the corresponding success probability of
the gate. We have estimated the success probability for each value of the se-
lected phase shifts. It was calculated as a ratio of the number of successful
gate operations per time interval and the number of reference counts during
the same interval (measured with no filters and with the wave plates set to 0).
We have determined the success probability for all the selected input states.
These probabilities were averaged and the standard deviations of the means
were calculated. Notice that the calibration measurements collect coincidence
counts behind the setup (using the same detectors as in the subsequent mea-
surements), thus all the “technological” losses in the setup (about 60%) and low
detector efficiencies are included in the calibration. Therefore the estimated
success probabilities are not burdened by these “technological” losses. They
can be compared with the theoretical predictions in tab. 4.2 and in fig. 4.4.
One can see a very good agreement with the theoretical prediction.
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4.4 Conclusions

We have built the first implementation of the tunable linear-optical controlled
phase gate which is optimal for any value of the phase shift. Changing the
parameters of the setup the gate can apply any phase shift from the interval
[0, π] on the controlled qubit. We have thoroughly tested the performance of
the gate using full quantum process tomography. Obtained process fidelities
range from 84% to 95%. We have determined that the main limiting factors
for the fidelities are imperfect two-photon spatial and temporal overlap and
birefringence of PBS causing partial distinguishability between different po-
larisation modes. We have also experimentally verified that all our controlled
phase gates are optimal in the sense that they operate at the maximum pos-
sible success probabilities that are achievable by linear-optical setups. The
experimental verification of this trade-off between the phase shift applied by
the gate and the corresponding success probability of the gate is the most
notable result of our work. It demonstrates the contra-intuitive fact that the
optimal success probability is not monotonous with the phase shift increasing
from 0 to π. It is the hope that the flexible tool established here proves useful
in devising further linear optical circuits for quantum information processing
and that ideas developed in this work find their way to realization in fully
integrated optical architectures.



Chapter 5

Experimental linear-optical
implementation of a
multifunctional optimal cloner

Text adopted from Karel Lemr, Karol Bartkiewicz, Antonín Černoch, Jan
Soubusta and Adam Miranowicz, submitted [A6]

5.1 Introduction

Quantum cloning is one of the most intriguing topics in quantum physics. It is
important not only because of its fundamental nature, but also because of its
immediate applications to quantum communications including quantum cryp-
tography. Similarly to other important quantum information processing proto-
cols, quantum cloning has witnessed a considerable development over the past
two decades. Although it is impossible to perfectly copy an unknown quantum
state [46], one can still attempt to do this task approximately. The first de-
sign of an optimal cloning machine was suggested by Bužek and Hillery [47].
The cloner is called optimal when it gives the best results allowed by quan-
tum mechanics. Moreover the universal cloning (UC) should operate equally
well for all possible qubit states [100–104]. In contrast, limiting cloning to a
specific subset of qubit states, one can achieve a more precise cloning oper-
ation. A prominent example of this situation is the phase-covariant cloning
(PCC), where only qubit states with equal superposition of |0〉 and |1〉 are
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considered [75,105–110].

This chapter addresses a question interesting from both conceptual and
practical points of view: how well can quantum state be cloned if some a priori
information about the state is known. Theoretical investigation of this issue led
to quantifying the information known about the cloned state in terms of axially-
symmetric distributions on the Bloch sphere [49]. This class of distributions
contains an important subclass of distributions which are mirror-symmetric
with respect to the equatorial plane. It is therefore convenient to define the
mirror phase-covariant cloning (MPCC) as a strategy for cloning states with
this kind of a priori information [48].

We hereby present the first implementation of the MPCC and we also
demonstrate that the same setup can be used for optimal cloning in other
prominent regimes such as universal cloning and phase-covariant cloning. To
our best knowledge, this makes our scheme the first multifunctional cloner ever
presented. The device discussed in this chapter represents a symmetric 1→ 2

quantum cloner.

5.2 Mirror phase-covariant cloning

In our experiment we cloned the polarisation state of a single photon given by

|ψ〉 = cos
θ

2
|H〉+ sin

θ

2
eiϕ|V 〉, (5.1)

where |H〉 and |V 〉 stands for horizontal and vertical polarisation state, respec-
tively. In accord with the original definition [48], we assume cos2 θeff = 〈σ̂z〉2

being the only a priori information known about the cloned state, where σ̂z
denotes the third Pauli operator. It has been recently demonstrated [49] that
the MPCC can also be applied to a wider class of qubit distributions g(θ, ϕ).
Consequently, the optimal cloner for a set of qubits given by a distribution
g(θ, ϕ) is an MPCC set for an axial angle θeff defined as 〈cos2 θ〉 = cos2 θeff ,
where the angle bracket stands for averaging over the distribution. More-
over, we note that the mirror-symmetry condition can be weakened and the
MPCC transformation can be used as an optimal cloning transformation for
other sets of qubits which are not axially-symmetric and do not exhibit the
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mirror-symmetry, but rather fulfil the following conditions:∫ 2π

0
[g(θ, ϕ) + g(π − θ, ϕ)]eiϕndϕ = 0,∫ 2π

0
g(θ, ϕ)dϕ =

∫ 2π

0
g(π − θ, ϕ)dϕ, (5.2)

where g is a distribution of qubits on the Bloch sphere and n = 1, 2. Therefore,
any MPCC optimal for some θeff is also optimal for a wider class of distribu-
tions which need to be neither axially-symmetric nor mirror-symmetric but
fulfil Eqs. (5.2). The above-mentioned arguments considerably broaden the
usefulness of the presented device.

5.3 Experimental setup

The experimental setup (as depicted in fig. 5.1) consists of a special unbalanced
polarisation-dependent beam splitter (PDBS) and two beam divider assemblies
(BDA1 and BDA2) placed in each of the output modes of the beam splitter.
The PDBS employed in this scheme has different transmittances for horizontal
(µ) and vertical (ν) polarisations. The transmittances should be given by

µ =
1

2

(
1 +

1√
3

)
, ν =

1

2

(
1− 1√

3

)
. (5.3)

Due to manufacturing imperfections the observed transmittances of our PDBS
are µ = 0.76 and ν = 0.18. Please note that this imperfection can be corrected
without the loss of fidelity through suitable filtering at the expense of a lower
success rate.

Beam divider assembly is depicted in more detail in fig. 5.1b. It is com-
posed of two beam dividers (BDa and BDb) used to separate and subsequently
combine horizontal and vertical polarisations. A neutral density filter (F) with
tunable transmittance τ is positioned between the two beam dividers so that
one of the paths (polarisations) is attenuated while the other remains intact.
Also a half-wave plate (HWPb) is placed between the beam dividers swapping
the polarisations and thus allowing them to be recombined at the output of
the second beam divider (BDb). To control attenuation of each polarisation
by the neutral density filter, we envelope the beam divider assembly by two
half-wave plates (HWPa and HWPc). Beam divider assembly is equivalent
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Figure 5.1: a) Scheme of the experimental setup for cloning as described in the

text. b) Detailed scheme of the beam divider assembly. Components as labelled as

follows: HWP - half-wave plate, QWP - quarter wave-plate, PDBS - polarisation

dependent beam splitter, BDA - beam divider assembly, F - neutral density filter,

PBS - polarising beam splitter, D - single photon detector, BD - beam divider.
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to a Mach-Zehnder interferometer and, by the means of a piezo-driven tilt of
one of the beam dividers, we can set an arbitrary phase shift between the two
paths (polarisations).

In the ideal case, having µ+ ν = 1, the setup operates as follows. A sepa-
rable two-photon state |H1H2〉 (indices denote the mode number) is generated
in the process of the type I spontaneous parametric down-conversion using a
LiIO3 crystal pumped by cw Kr+ laser at 413 nm of 150mW optical power.
These photons are brought to the input of the setup via single-mode fibres.
The parameters to be set for the PCC and UC regimes are just specific cases
of the MPCC setting as discussed later. For this reason we now concentrate
on the MPCC setting. The polarisation of the first (cloned) photon is set in
such a way that it belongs to one of the parallels of latitude on the Bloch
sphere with a given polar angle θ (see eq. (5.1)). The second (ancillary) pho-
ton remains either horizontally polarised or is randomly swapped in 50 % of
the cases to vertical polarisation. After this preparation stage the two photons
are coherently overlapped at the PDBS. Depending on the polarisation of the
ancillary photon, we perform subsequent transformation. If the ancillary pho-
ton remains horizontally polarised we set the half-wave plates (HWPa1 and
HWPa2) in front of the beam dividers to 45 deg. so that the vertical polarisa-
tion is attenuated in both beam divider assemblies. The level of transmittance
τ of the filters F is set according to the relation

τ =

(
1− Λ2

)
(1− 2µ)2

2µνΛ2
, where Λ =

√
1

2
+

cos2 θ

2
√
P
, (5.4)

and P = 2−4 cos2 θ+3 cos4 θ. Additionally we also set a phase shift π between
horizontal and vertical polarisation in both output modes. In the case of the
ancillary photon being vertically polarised we set the half-wave plates HWPa1
and HWPa2 to 0 deg. and this time subject the horizontal polarisation to the
same filtering as given by eq. (5.4). Also we set the phase shift between the
polarisations to zero and rotate the half-wave plates HWPc1 and HWPc2 to
45 deg., thus cancelling the polarisation swap exercised by the half-wave plates
HWPb1 and HWPb2 (inside the beam divider assemblies).

Finally, the two-photon state polarisation analysis is carried out by measur-
ing the rate of two-photon coincidences for all combinations of single-photon
projections to horizontal, vertical, diagonal, anti-diagonal linear, and right and
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left circular polarisation. We can then estimate the two-photon density matrix
using a standard maximum likelihood method [79].

In order to use the setup in the PCC regime for any latitude angle θ, one just
needs to set all the parameters as if performing the MPCC set for the latitude
angle θ = π/2. In case of the PCC there is no need to randomly swap the
horizontal and vertical ancillae. In this case we know the hemisphere to which
the cloned states belong so we can simply use the closer ancilla (horizontal for
northern and vertical for southern hemispheres).

Similar analysis can be carried out to determine, that the setup actually
performs the UC if set to the same parameters as for the MPCC with the
polar angle θ = acos(

√
3/3) ≈ 0.304π. In this regime a random swap between

horizontal and vertical ancillae is also required.

5.4 Compensating for imperfect transmittances

In our case the equation relating beam-splitter transmittances (µ + ν = 1)
does not hold and we have µ+ν 6= 1. Hence additional filtering operations are
required in order to maintain the maximum achievable fidelity of the setup.
This additional filtering manifests itself in two ways. First, one needs to un-
balance the ancilla-dependent filtering performed by filters F in both BDAs.
We require τ1 = τ and τ2 = ωτ for the BDA1 and BDA2, respectively, where

ω =
τ2

τ1
=

µν

(1− µ)(1− ν)
. (5.5)

Note that ω = 1 in the ideal case for µ + ν = 1 and ω = 0.695 for the
applied PDBS. Second, the realisation of the MPCC with the PDBS where µ+

ν 6= 1 requires applying an additional unconditional filtering. This filtering is
polarisation-dependent and is performed regardless of the state of the ancillary
photon. The polarisation dependent transmittances τH and τV for the H and
V -polarised photons, respectively, need to satisfy the following relation:

κ =
τV
τH

=
2µ− 1

1− 2ν
, (5.6)

where κ is a constant value fixed by the parameters of the PDBS, and both τH
and τV should have the largest possible values in order to maximize the effi-
ciency of the setup. Note that in an ideal case, when µ+ν = 1 is fulfilled, κ = 1.
In our case, we get κ = 0.813. Therefore, we apply an additional unconditional
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Figure 5.2: Experimental fidelity Fex for the PCC regime depicted against theo-

retical prediction Fth (solid curve). The short-dashed curve indicates the fidelity

drop to 97.5% with respect to the corresponding theoretical value. The theoretical

fidelity FUC
th for the UC is also depicted (long-dashed curve).

filtering only for the V -polarised photons since the optimal transmittances are
τV = κ and τH = 1. Please note that for our PDBS κ < 1, but in the opposite
case the best choice of the parameters would be τV = 1 and τH = 1/κ. More-
over, if there are any other systematic uniform polarisation-dependent losses τ ′H
and τ ′V we can compensate for them by setting κ = τ ′H/τ

′
V ×(2µ− 1)/(1− 2ν).

To summarise the above-mentioned corrections, the overall filtering opera-
tions in the first mode are described by

τ1,H = τ δV,s and τ1,V = κτ δH,s , (5.7)

and in the second mode by

τ2,H = (ωτ)δV,s and τ2,V = κ(ωτ)δH,s , (5.8)

where δV,s (δH,s) is Kronecker’s delta and is equal to 1 iff the polarisation s of
the ancillary photon is V (H).
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Angle θ Fex [%] Fth [%]

0 99.8 ± 0.4 100.0
π/12 99.3 ± 0.4 99.8
π/5 98.0 ± 0.8 98.8
π/3 95.7 ± 0.8 95.3
3π/8 92.4 ± 1.5 93.4
π/2.25 88.7 ± 1.1 89.4
π/2 84.1 ± 0.5 85.4
π/1.8 87.9 ± 0.7 89.4
5π/8 91.3 ± 1.0 93.4
2π/3 95.0 ± 0.8 95.3
4π/5 97.9 ± 0.7 98.8
11π/12 98.4 ± 1.0 99.8
π 99.8 ± 0.4 100.0

Table 5.1: Summarised data for the PCC regime. Fex denotes experimentally

estimated average fidelity for a given polar angle θ on the Bloch sphere and Fth is

the theoretical prediction. Note that the error estimated as RMS is just indicative

of the actual error, because it does not take into account the physical properties

of fidelity.
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Figure 5.3: Same as in fig. 5.3 but for the MPCC.
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Angle θ Fex [%] Fth [%] Pex [%] Pth [%]

0 99.6 ± 0.4 100.0 10.5±2.8 10.5
π/12 95.6 ± 1.7 97.0 10.6±1.9 10.5
π/5 86.1 ± 1.6 87.4 09.6±0.9 12.1
π/4 81.9 ± 2.0 84.1 14.0±2.9 14.4
π/3 80.2 ± 1.5 83.3 19.5±3.5 19.6
3π/8 82.3 ± 1.3 84.0 23.7±1.5 21.9
π/2 84.1 ± 0.5 85.4 24.8±0.1 25.0
5π/8 82.3 ± 1.3 84.0 23.7±1.5 21.9
2π/3 80.2 ± 1.5 83.3 19.5±3.5 19.6
3π/4 81.9 ± 2.0 84.1 14.0±2.9 14.4
4π/5 86.1 ± 1.6 87.4 09.6±0.9 12.1
11π/12 95.6 ± 1.7 97.0 10.6±1.9 10.5
π 99.6 ± 0.4 100.0 10.5±2.8 10.5

Table 5.2: Same as in Table 5.1 but for the MPCC regime. Moreover Pex and Pth

denote experimental and theoretical success probabilities.
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theoretical ones, this happens at the expense of lower fidelity of the cloning process.
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5.5 Results

In order to verify the versatile nature of the cloner, we performed a series of
measurements in three regimes: PCC, MPCC, and UC. These regimes differ
just in the amount of a priori knowledge about the cloned state. For the
PCC and MPCC we verified the theoretical prediction of maximally achievable
average fidelity as a function of polar angle θ. For all polar angles (except
the poles) we estimated the fidelities of both clones for four different equally
distributed input states. The observed values are depicted in fig. 5.2 and
summarised in table 5.1 for the PCC and similarly in fig. 5.3 and table 5.2 for
the MPCC regime. For UC we cloned six input states: horizontally, vertically,
right and left circularly, diagonally and anti-diagonally polarised states. The
average fidelity obtained in UC mode is 81.5±1.2%. The vast majority of the
experimentally obtained fidelities in all regimes reached or surpassed 97.5% of
its theoretical prediction leading only to a very small experimental error.

Additional measurement of success probability was performed for the case
of MPCC. The success probability as a function of polar angle θ is depicted in
fig. 5.4. Note that success probability strongly depends on the splitting ratio
of the beam splitter. Its theoretical prediction is given by

Pth = (1− 2µ)2/2 + µντκ, (5.9)

where κ = (2µ − 1)/(1 − 2ν). The presented theoretical value is therefore
calculated for the above-mentioned transmittances of the beam splitter used.
In order to determine the success probability of the scheme we measured the
coincidence rate of the setup set to perform MPCC and also the calibration
coincidence rate (all the filters were removed and the beam splitter was shifted
out so that the reflected beam is no longer coupled). The ratio of these two
rates determines the success probability calibrated for “technological losses”
(inherent losses due to back-reflection or systematic error of all the compo-
nents) [A5].

5.6 Conclusions

Our implementation presents a novel concept of multifunctional cloner opti-
mized for quantum communication purposes with respect to a priori informa-
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tion about transmitted states and communication channels. We have exper-
imentally verified the versatile nature of the proposed cloner. It performs at
about 97.5% of the theoretical limit for all three regimes tested (UC, PCC and
MPCC). Thus, in contrast to previous implementations, it can be used in at-
tacks against a variety of quantum cryptographic protocols at once [111]. Some
of its capabilities cannot even be provided by any previous cloners especially
for communication through the Pauli damping channels. Potential applica-
tions of our approach can also include practical quantum networks based on
state-dependent photonic multipliers or amplifiers. We therefore conclude that
this device can be an efficient tool for a large set of quantum communication
and quantum engineering applications requiring cloning.
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Chapter 6

Conclusions

Quantum information processing is a perspective domain of research that
would hopefully some day enrich our lives with its inventions such as faster
computing or unconditionally secure communications. It has already witnessed
an important development over the past decades. Several important results like
quantum teleportation or quantum cryptography have been accomplished both
theoretically and experimentally. There is however a lot yet to be done in or-
der to transfer this research from theoreticians’ desks and experimentalists’
laboratories to practical life.

This thesis presents three original QIP experiments with the ambition of
contributing to the above introduced field of science. These three experiments
share two major common characteristics. Firstly, the selected physical platform
for all of them is linear optics. This is the reason why the second chapter
discusses appropriate methods and tools of linear optics. Another common
property is the number of qubits involved which is two. Although that might
seam limiting, one can prove that single and two-qubit quantum gates are
sufficient for universal quantum computing.

The first experiment, presented in chapter 3, successfully achieved gen-
erating two-photon Knill-Laflamme-Milburn (KLM) states. These states are
known to have the capability of increasing success probability of QIP devices
and therefore improve their scalability. The procedure presented in the exper-
iment employs a tunable beam splitter to implement variable coupling ratio at
the expense of introducing losses. This can in principle be overcome by using a
specially designed beam splitter with preset splitting ratio suitable for specific
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KLM state generation. The scheme can therefore become deterministic in the
sense that it does not require any lossy transformation or post-selection which
makes it suitable for a large variety of QIP devices.

Chapter four discusses the second experiment dedicated to linear-optical
implementation of optimal tunable controlled phase (c-phase) gate. The c-
phase gate is a two-qubit quantum device that imposes a phase shift on signal
qubit conditionally if the control qubit is in logical state “1”. Implementation
presented in this thesis has two important qualities. First of all, the phase
shift imposed by the gate can be tuned just by the choice of parameters set on
employed optical components. Second major quality of this implementation is
that for every phase shift it performs at maximum success probability allowed
by linear optics (without additional photon ancillae). This is the motivation
for performing experimental verification of maximum success probability as a
function of imposed phase shift which is quite surprisingly non-monotonous.

The last experiment is presented in chapter five. In this case an opti-
mal linear-optical multifunctional quantum cloner is discussed. In contrast to
previous quantum cloners, this implementation allows to operate the device
in multiple cloning regimes such as universal cloning, phase covariant cloning
and mirror-phase covariant cloning. The specific a priory information about
the cloned state is used for appropriate setting of optical components. For
all of the above mentioned regimes, the device yields clones with maximum
achievable fidelity. This experiment is also the first ever introduction of ex-
perimental mirror-phase covariant cloning. In this case not only the fidelity of
the clones is studied but also the achievable success probability as a function
of the cloned states.

Besides the three presented experiments, the author of this thesis has con-
tributed to QIP by several other theoretical and experimental publications.
He would like to express his wishes to continue in this work. There is a lot of
interesting topics related to the performed experiments that are worthy further
research. These topics include useful applications of the implemented c-phase
gate or further investigation of the capabilities of multifunctional quantum
cloning.



Shrnutí práce

Kvantové zpracování informace je perspektivní oblast výzkumu, která, dou-
fejme, v budoucnu obohatí náš život o rychlejší výpočetní algoritmy nebo o
bezpodmínečně bezpečnou komunikaci. Během uplynulých desetiletí zazname-
nalo kvantové zpracování informace výrazný pokrok. Bylo dosaženo některých
klíčových výsledků v teoretickém i experimentálním bádání, jako jsou například
kvantová teleportace nebo kvantová kryptografie. I přes to však stále zbývá
mnoho úkolů, které je nutné splnit, než se výsledky kvantového zpracování
informace budou moci přenést ze stolů teoretiků nebo z laboratoří experimen-
tátorů do běžného života.

Tato práce představuje tři původní kvantově informační experimenty s cílem
přispět k výzkumu v této oblasti. Všechny tři experimenty spojují dvě zák-
ladní společné vlastnosti. Zaprvé všechny experimenty jsou postavené na plat-
formě lineární optiky. Z tohoto důvodu práce ve druhé kapitole popisuje
potřebné metody a nástroje lineární optiky. Druhým společným rysem je
použitý počet fotonů, který je dva. I přes to, že se tento počet může zdát
nízký, je možné dokázat, že jakékoliv optické kvantově informační zařízení lze
sestavit zřetězením jedno a dvou qubitových hradel.

V prvním experimentu, představeném ve třetí kapitole, jsme úspěšně dosáhli
generace tzv. Knillových-Laflammových-Milburnových (KLM) stavů. Tyto
stavy umožňují v principu výrazným způsobem zvýšit účinnost kvantově op-
tického počítání. To by dovolovalo sestavit ze základních hradel složitější vý-
početní celky. Popsaný experiment využívá posuvného děliče svazku a tím
dosahuje laditelného dělicího poměru za cenu ztrát. Principiálně je však možné
tento dělič nahradit speciálním děličem s předem nastaveným dělicím poměrem
vhodným pro přípravu požadovaného KLM stavu. S touto modifikací se schéma
stává zcela deterministické v tom smyslu, že nepotřebuje provádět žádné ztrá-
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tové transformace nebo post-selekci. Tím se stává vhodným pro širokou škálu
kvantově informačních zařízení.

Kapitola čtyři představuje druhý experiment zabývající se sestavením opti-
málního laditelného hradla pro podmíněnou změnu fáze (tzv. controlled phase).
Toto dvouqubitové hradlo změní fázi mezi logickým stavem „0“ a „1“ u signál-
ního qubitu podmíněně podle stavu kontrolního qubitu. Důležité je zmínit dvě
hlavní přednosti naší implementace tohoto hradla. Fáze, kterou hradlo vnáší,
je zcela libovolně nastavitelná v celém intervalu [0, π]. Navíc pro všechny
nastavené fáze pracuje hradlo s nejvyšší možnou pravděpodobností úspěchu,
které lze dosáhnout s využitím lineární optiky (bez nutnosti přidávat pomocné
fotony). Významným výsledkem tohoto experimentu bylo ověření průběhu
pravděpodobnosti úspěchu tohoto hradla v závislosti na nastavené fázi, který
je překvapivě nemonotónní.

Poslední experiment, zmíněný v páté kapitole, se zabývá problematikou
kvantového kopírování. Oproti předchozím kvantovým klonerům umožňuje
zde představené zařízení kopírovat kvantové stavy v několika významných
režimech, jako jsou univerzální klonování, fázově kovariantní klonování a zr-
cadlové fázově kovariantní klonování. Předem známá informace o kopírovaném
kvantovém stavu je využita k nastavení optických komponent. Zařízení pak
kopíruje kvantové stavy s maximální možnou věrností, které lze dosáhnout
v rámci zákonů kvantové fyziky. Tento experiment je navíc prvním, který
představil zrcadlové fázově kovariantní klonování. U tohoto režimu nebyla stu-
dována pouze věrnost získaných kopií kvantového stavu, ale také pravděpodob-
nost úspěchu kopírovací procedury.

Kromě výše uvedených experimentů publikoval autor této práce také něko-
lik dalších teoretických i experimentálních prací. V této výzkumné činnosti by
autor rád pokračoval i nadále. Lze nalézt celou řadu zajímavých témat sou-
visejících s uvedenými experimenty, které si zasluhují další výzkum. Zvláště
zajímavé je další studium vlastností a využití laditelného hradla pro podmíně-
nou změnu fáze nebo multifunkčního kvantového kloneru.



Résumé de la thèse

Le traitement de l’information quantique est un domaine de recherche per-
spectif qui peut en future enrichir notre vie par ses inventions comme les al-
gorithmes de computation plus rapides ou la communication sûre. Un progrès
important était déjà démontré au cours de quelques dizaines d’années. Un
nombre de résultats importants était accompli théoriquement et expérimen-
talement comme par exemple la téléportation quantique ou la cryptographie
quantique. Mais il y reste encore beaucoup de travail à faire pour transférer
cette recherche des table des théoriciens et des laboratoires des chercheurs à la
vie quotidienne.

Cette thèse présente trois expériences originelles sur le traitement de l’infor-
mation quantique avec l’ambition de contribuer à ce champ de physique. Ces
trois expériences ont deux points significatifs communs. Premièrement c’est
le cadre de l’optique linéaire sur lequel ils sont tous implémentés. Pour cette
raison le discours des méthodes et instruments de l’optique quantique linéaire
est présenté dans le deuxième chapitre. Le deuxième point commun de ces
expériences est le nombre de photons utilisés qui est deux. Même si ça pourrait
sembler limitant, il est possible de démontrer que chaque appareil quantique
peut être décomposé en composants mono et bi-qubit.

La première expérience, présentée dans le troisième chapitre, a réussi la pré-
paration des états quantique de Knill, Laflamme et Milburn (KLM). Ces état
sont connus pour avoir des propriétés utiles en ce qui concerne la computation
quantique. En augmentant la probabilité de succès des appareils quantique,
ces états permettent de rejoindre multiple appareils élémentaires en formant
un appareil quantique plus complexe. Le processus de génération de ces états
présentés dans ce chapitre utilise un séparateur de faisceau sur un montage de
translation qui permet de changer la rapport de séparation en introduisant des
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pertes. En principe ce séparateur peut être remplacé par un séparateur spécial
avec le rapport de séparation choisi pour permettre la préparation d’un état
KLM spécifique. Comme ça l’appareil présenté devient disant déterministe
puisqu’il n’a pas besoin de transformations avec pertes ou la post-sélection ce
qui le rendre utile dans un grand nombre d’applications.

Le chapitre numéro quatre discute l’implémentation optique linéaire d’un
circuit quantique (controlled-phase gate). Ce circuit à deux qubits impose une
phase entre les états logiques « 0 » et « 1 » d’un qubit signal si l’état du qubit
de contrôle est « 1 ». L’implémentation décrite dans cette thèse possède deux
qualités importantes. D’abord la phase imposée par le circuit peut être réglée
dans l’intervalle [0, π]. Ensuite pour chaque valeur de la phase, le circuit donne
la probabilité de succès maximale possible dans le cadre de l’optique linéaire
(sans photons additionnels). Celui-ci nous a motivé pour étudier la relation
entre la phase et la probabilité de succès qui est étonnamment non-monotone.

La dernière expérience est présentée dans le chapitre cinq. Il s’agit d’un
appareil d’optique linéaire multifonctionnel à cloner des états quantiques de
la manière optimale. En comparaison avec les cloneurs déjà existants, celui-
ci est capable de fonctionner en multiple régimes: cloneur universel, cloneur
phase-covariant et cloneur miroir phase-covariant. L’information sur l’état
cloné connue a priory est utilisée pour régler cet appareil. En tous les régimes
mentionnés, ce cloner fabrique des copies de fidélité maximale possible dans
le cadre de physique quantique. Pour la première fois, cette expérience a
démontrée le cloneur miroir phase-covariant. Pour cette raison on n’étudie pas
seulement la fidélité des copies, mais aussi la probabilité de succès de notre
appareil en fonction de l’état cloné.

À part des articles sur la recherche décrite ici en détail, l’auteur de cette
thèse a publié aussi quelques autres articles théoriques et expérimentals sur la
problématique du traitement de l’information quantique. Il veut exprimer son
désir de continuer ce travail. Il y a beaucoup de sujet proches aux expériences
décrites suffisamment intéressants pour constituer l’avenir de sa recherche. Ces
sujet contient par exemple les applications des circuits construits ou les capacité
du cloneur multifonctionnel.
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