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1 Introduction 
Natural Sciences is based on Experimental data, but the development of new branches 

has been greatly stimulated by theories, however, measurement and experimentation has 
always proven beyond doubt in different scientific disciplines. 

A s light of an Automotive headlamp is turns on, the air that circulates inside begins to 
heats up, this causes an expansion of the air, this dry air if further remove and replaced by 
the surrounding air by a micro-ventilation slit. Then in the reverse process, when the light 
bulb is turn off, the air of the inside gets cooled slowly, as this process causes a saturation 
of the 'humid air' from the surrounding environment to 'leaked' into the inside of the 
head lamp. This is due to the higher humid and the different in temperature between the 
inside air and the 'leaked' in air, this causes condensation on the inside and the 'glass', 
that covers the lens, therefore causes 'fogging', which in-turn reduces the brightness or 
efficiency of the Automotive-headlamp. "Nowadays, anti-fog coating is use to solve this 
problem, it involves painting of the inside of an Automotive headlamp wi th anti-fogging 
polymeric coating" [13] 

Figure 1: A picture of a fogged Automotive headlamp 

The lost of information has been a common phenomenon in many Scientific and Engi­
neering areas, just in the last years, there has been an increase demand on image data 
exploration and image miming. Medical imaging has also gained high attention, there has 
been proposed a "classification scheme" for medical images, but such solution needs image 
processing. 

These problems are caused by various reasons, such as, the failure of the machine in 
use, failing to maintain routine procedures, unfavourable environmental condition, and 
even human error, and there fore result to an incomplete data. The incomplete data 
set, could have a lot of negative effects on the further analysis of the observed dataset. 
The degree of this effects also depends on the deviation or the systematic difference 
between the measured data and the unmeasured data. The result of such deviation causes 
bias in the data processing. Hence, there need to come-up with a suitable mechanism to 
estimating missing values, this is very important, it ensures that the data that is analysed 
is representable and of a high quality. There are different methods employed in this study 
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to see which does what, and then decided base on efficiency and precision, we shall then be 
able to conclude on the one to use for the reconstruction of missing data of images obtain in 
a laboratory and the performance of each of the methods were compared [5]. It is always 
good to avoid incomplete data matrices, as it can cause problems, because incomplete 
dataset can leads to conclusion that is different from those that would have been obtained 
from a complete dataset. There are three main issues that could arise when handling an 
incomplete dataset. Firstly, there is always inadequate or loss of the information, and this 
reduces efficiency. Second, there are many difficulties when it comes to 'computations and 
analysis'[5], as a result of the irregularities that occurs in the data structure, in-relation 
to this is that, the "impossibility of using standard software" [5]. Th i rd , which is the most 
crucial, there may be bias as a result of the " systematic differences between observed and 
unobserved data" [5]. There exist an approach to solve the problem of incomplete data, 
which is to use "adoption of imputation techniques", therefore, this study discussed and 
compared the implementation and performance between different Numerical method for 
the reconstruction or restoration of missing values of laboratory images [5]. 

13 



2 Mathematical Background 
We selected some mathematical definition use in the field on image processing, partic­

ularly for missing data reconstruction, for which this study was based on. This definition 
were obtained in the following resources. [1], [5], [9], [13]. 

2.1 Vector spaces 

A vector space is a non-empty set V, whose objects are called vectors, equipped wi th 
two operations, call addition and scalar multiplication: For any two vectors u, v in V 
and a scalar c, there are unique vectors u + v and cu in V such that the following 
properties are satisfied. 

• Wu,v G V : u+v=w G V(other law) 
• Wu,v G V : u+v=v+u (commutative law) 
• Wu,v G V : u + (v + w) = (u + v) + w (associative law) 
• 30 G V : Wu G V : (u + 0) = (0 + u) (addition of a zero) 

• Wu G V3—u G V : u + (-u) = (-u) + u = 0 (additions of an opposite vector) 

Multiplications wi th a real number wi th the above properties. 

• Wu G V , Wa G R : a. u = w G V 

• Va G R, Vu,v G V : a.(u+v) = a.u + a.v 
• Va, (3 G R, Wu G V : (a + (3).u = a.u + (3.u 
• Va, (3 G R, Wu G V : a.fi.u = a.fi.u 
• Wu G V : l.u = u 
Let V = (V,+), is a linear Vector space in R n . Elements V we call the vectors and 

denote them in small bold letters: u, v,..., real numbers, we call scalars. 

The vector u - v is called the difference of vectors u and v and is defined by the 
relation. 

U - V = u + (-v) 

From the definition of vector space it is easy to see that for any vector u and scalar c. 

Definition 2 .1 . Let V and W be vector spaces, and W G V . If the addition and scalar 
multiplication in W are the same as the addition and scalar multiplication in V, then W 
is called a subspace of V . 

If H is a subspace of V , then H is closed for the addition and scalar multiplication 
of V , i.e., for any u, v G H and scalar c G R, we have. 

u+v G H, cv G H 

Theorem 2 .1 . Let H be a non-empty subset of a vector space V . Then H is a subspace 
ofV if and only if H is closed under addition and scalar multiplication, i.e. 

1. For any vectors u, v G H, we have u + v G H. 
2. For any scalar c and a vector v G H, we have cv G H. 
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2.2 Some special subspaces 
Nul l Space: Let A be an mxn matrix. The null space of A, denoted by NulA, is the 

space of solutions of the linear system Ax = 0, that is. 

NulA = X e Rn : Ax = 0 (2.1) 

column space: The column space of A, denoted by ColA, is the span of the column 
vectors of A, that is, if: 

A = [ a i , a 2 , . . . , a „ ] (2.2) 

then, 
ColA = Spanai, a 2 , ....an (2.3) 

row space: The row space of the row vector of A is the span of the row vectors oL4, and 
is denoted by Row A. 

Let T : Rn —> Rm,T(x) = Ax be a linear transformation. ThenNulA is the set of 
inverse images of 0 under T and ColA is the image of T , that is. 

NulA = T _ 1 ( 0 ) and ColA = T(Rn) (2.4) 

2.3 Independent sets and bases 
Definition 2.2. The Vectors vi,v2, • • • , fp of a vector space V are called linearly indepen­
dent if there are constants c i , c 2 , c p such that. 

c i ^ i + c2v2 + . . . + Cp-Up = 0 (2.5) 

we have 
c i = c 2 = . . . = cp = 0 (2.6) 

The vectors v2, vp are called linearly dependent if there exist constants c i , c 2 , c p , 

not al l zero,such that. 

c i ^ i + c2v2 + +c p Wp = 0 (2.7) 

Theorem 2.2. Vectors Vi, v2,Vk(k > 2) are linearly dependent if and only if one of 
the vectors is a linear combination of the others, i.e., there is one i such that. 

Vi = a i i ; i + . . . + a j _ i ? ; j _ i + ai+1 + vi+1 + ... + akvk (2.8) 

Theorem 2.3. Let S = Vi,v2, ...,Vk be a subset of independent vectors in a vector space 
V . If a vector v can be written in two linear combinations ofvi, v 2 , V k , say, 

v = CiVi + c2v2 + ... + ckvk = d1v1 + d2v2 + ... + dkvk (2.9) 

then 
c i = di,c2 = d2,ck = dk 

Definition 2.3. Let i f be a subspace of a vector space V . A n ordered set B = Viv2, ...,vp 

of vectors in V is called a basis for H if 

• B is a linearly independent se l ; t, and 
• B spans H , that is, H = Span (vi,v2, ...,vp ) 
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2.4 Dimensions of vector spaces 
A vector space V is said to be finite dimensional if it can be spanned by a set of finite 

number of vectors. The dimension of V , denoted by dimV , is the number of vectors of 
a basis of V . The dimension of the zero vector space 0 is zero.If V cannot be spanned 
by any finite set of vectors, then V is said to be in finite dimensional. 

Theorem 2.4. Let H be a subspace of a finite dimensional vector space V . Then any 
linearly independent subset of H can be expanded to a basis of H . Moreover, H is finite 
dimensional and dimH < dimV . 

Theorem 2.5. (BasisTheorem): Given a set S = {v\, i>2, vn } of n vectors of an n 
- dimensional vector space V. 

• If vi, V2,vn is linearly independent, then vi, i>2, vn is a basis of V . 
• If Span { v\,V2, ...,n} = V ,thenv\,V2, ....vn is a basis of vi, i>2, vn . 

2.5 Matrix and its inverse 
Definition 2.4. Matrix: A matrix is a two dimensional array of numbers or expressions 
arranged in a set of rows and columns. A n M x N matrix A has m rows and n-columns and 

Definition 2.5. Inverse of a Matrix: The inverse of a matr ix is the multiplicative 
inverse of a square matrix. If a matrix A has an inverse, then A is said to be nonsingular 
or invertible. A singular matrix does not have an inverse. To find the inverse of a 
square matrix A , you need to find a matrix _ 1 such that the product of A and A - 1 is the 
identity matrix. 

This is to say that for any square matrix A, and it is a nonsingular matrix, there exists 
an inverse matrix, wi th the property. AA-1 = A_1A = I 

where / is the identity matrix. 

2.6 Numerical Methods 
This is a Science and Engineering tool use to model a problem that is very difficult 

to solve mathematically, either it does not have solution or its very complicated to fine, 
Numerical methods develop an accurate and fast approximation to such a problem. 

2.6.1 I D Gaussian function 

Gaussian function, often simply referred to as a Gaussian distribution or the normal 
distribution, is a function of the form. 

where a, 6,are arbitrary constants and c is a non-zero constant . The graph of Gaussian 
is a symmetric wi th a "bel l curve" shape. The constant a represent the height of the peak, 
b represent the position of the centre of the peak and c, is the standard deviation, the 
width of the bell depends on the standard deviation. 

is written 

(2.10) 
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Gaussian function is use to show a probability density function of a normally dis­
tributed random variable, it is also use in signal processing to represent Gaussian filters, 
in image processing where a 2-dimensional Gaussian is use for blurring, with expected 
value (j, — b, and variance a2 = c2. We can represent it as [13]. 

1 1 (x-u,)2 

f(x) = —=e->— (2.11) 
<7V27T 

2.6.2 2D Gaussian Blurring 

Gaussian Blurs is also called Gaussian smoothing, it is normally used in "graphics ma­
nipulating software", mainly to decrease image noise. The Gaussian Blurs uses the idea 
of "convolution" a convolution kernel is a result of a Gaussian function, wi th the pixels 
of the image. The 2D Gaussian function,g(x, y), is represented as. 

9(x,y) 
a 

(2.12) 

where x and y are the horizontal and vertical space variables, sigma is the standard 
deviation of the Gaussian distribution, the sigma determines the degree of the blurring 
. The Gaussian distribution is approximated by a convolution kernel. Therefore , the, 
values of the distribution is used construct a convolution matrix which is applied to the 
original image. After this we obtain a square matrix whose highest value is at the centre, 
that is the original pixel's value as a result the process goes outwards, the neighbouring 
pixel values get smaller since their distance to the original pixel increases [13]. 

2X1 

1X1 

Li Li 

Figure 2: A surface plot of Gaussian convolution matrix 

The Gaussian convolution wi th a particular Gaussian kernel is a low-pass filter, it 
smooths the edges of an image by reducing its high frequency components. The Gaussian 
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kernel on a square support is a "linearly separable" [13]. Therefore it is computationally ef­
fective to decompose the two-dimensional Gaussian kernels into a series of one-dimensional 
kernel for rows and columns. The 2-Dimensional Gaussian filter produces an image convo­
lution where each pixel value of the image is merely dependent on the surrounding pixel 
values and based on the on the size of the kernel used for the the implementation. 

2.7 Convolution 

A Convolution is either discrete or continuous, is considered as a function that forms 
the "integral( that is continuous) or summation (that is discrete) of two component func­
tions" , and that measures the amount of overlap as one function is shifted over the other. 

convolution is the product of two functions. When doing a convolution between two 
functions, one function is changed wi th respect to the independent variable before shifting, 
and a transformation of variables say from t to r is used in the shifting operation. The 
mathematical definition of one dimensional convolution, in discrete and continuous time 
are indicated by the " *" operator. 

If / and g are functions that depends on t, then the convolution of / and g over an 
infinite interval is an integral given by [13]. 

where the minus sign indicates the change wi th respect to the independent function, 
t is the displacement that is required to slide one function and past the other, and T is a 
dummy variable that is integrated out. for simplicity we assume that the range of interval 
of the function extends from -oo to oo [2] 

However if the If the convolution is operated over a finite range [0, t], then we have 
the following expression. 

To understand these equations, we can make some simple observations.lt is clear to 
see that, the change-of-variables, / and g are functions of r under the integral, although 
f * g depends on t. we can see that the symmetric reflection of function p(x) is given by 
p(-x) If g(t — T) is a symmetric reflection of g(r), and which is shifted by a value t on the 
r axis. Then the integral wi th respect to r is computed, the amount that the function 
g(t — T) changes, rather, the function g "slides" from -oo to oo (or from 0 to t). 

2.7.1 ID-convolution 

The one-dimensional convolution are the most basic representation of a convolution 
operation. Thus, because images are naturally two-dimensional,the 2-D adjustment of 
the discrete convolution is needed for the convolution operation on images. The two-
dimensional and one-dimensional versions are very similar, as a result the two are identical 
save for an additional set of indices [2]. 

(2.13) 

(2.14) 
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If f[n] and g[n] are functions wi th respect to a single discrete n such as the digital 
signals, then convolution takes the following form: 

ria-l 

A[na] * B[nb] = C[nc] = £ A[r]B[nc - r] (2.15) 
r =0 

where 0 < nc < na + nb — 1 

2.7.2 2D-convolution 

A s we discussed previously, here too we can imagine that the two-dimensional case 
when one matrix "sliding" over the other at a unit time, wi th the sum of the element-wise 
products of the two matrices as a result. The complete convolution is found by repeating 
the process unti l the kernel has passed over every possible pixel of the source matrix, 
where these two matrices are a source image and a filter kernel respectively, "the result 
of convolution is a filtered version of the source image" [2]. 

ia-l ja-1 

A[ia,j a] * B[ib,jb] = C[ic,jc] = J2Y1 A[Ti,T2]B[i - T\, j - r 2] (2.16) 
Tl =0 T2 =0 

2.8 Differentiation and Integration 
In this section, we briefly introduce the notion of Numerical Derivatives and integra­

tion, as as a tool use in approximation of function. 

2.8.1 Differentiation 

We use the notion of Taylor's series expansion to derived finite divided difference 
approximation of derivatives. 

Note that, higher-accuracy can be obtain by addition of higher order terms from the 
Taylor's series expansion. 

Theorem 2.6. Taylor's Theorem: Let f be a function, where n+1 derivatives continuous 
on an interval containing a and x, then the value of the function at x is given by. 

/(*)(.) + / » ( * - «.) + t m i Z ^ l + .... + / » ( * - " > " + ^ (2.17) 

Where Rn is the remainder and it is given as. 

Rn= r ^ ^ r ^ m (2.18) 

Where t is a dummy variable. 
The above expression, can be written as. 

f(xi+1) = f(Xi) + f'(xi)h + f-^h2 + ... (2.19) 
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If we solve for the first derivatives , we have 

f(xi+1) - f(Xi) f"(Xi)h + 0(h2) (2.20) 
h 2 

If we truncate the above results, we have. 

/ ( X j + l ) - f{Xj) 

h 
+ 0{h) (2.21) 

2.8.2 Integration 

Integral is either finite (definite) or infinite (indefinite), of a function of one or more real 
variable, we discuss numerical method for approximating definite integrals, for example 
f(x, y) or f(x,y,z), we can compute integrals over a region of R2orR3. 

Let / be a continuous function and derivatives exists. 

The most common method of this is the interpolation. There are two ways of this. 
• Interpolation f(x) by a polynomial h(x) at some point (a,b) 
• Approximat ion Iff) by the exact integral of h(x). 

2.9 Interpolations 

Interpolation is a techniques that allows us to approximate the behaviour of true 
underline function. If you would like to estimate an intermediate value between data 
points, you had use interpolation techniques.There are different types of interpolation, 
Liner, polynomial, cubic, etc, depending on the degree of the function. Among these, the 
polynomial is the mostly use method for approximation. The general expression for an 
nth-order polynomial is[l],[2]. 

For n + 1 data points, there is one and only one polynomial of order n that passes 
through all the points. For example, there is only one straight line (that is, a first-order 
polynomial) that connects two points[l]. Similarly, only one parabola connects a set of 
three points. Polynomial interpolation consists of determining the unique nth-order poly­
nomial that fits n+1 data points. This polynomial then provides a formula to compute 
intermediate values [1]. 

There are many type of expression for polynomial There is one and only one nth-order 
polynomial that fits n+1 points, however, there are many formats in which this can be 
express mathematically. 

(2.22) 

(2.23) 

(2.24) 
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2.9.1 Linear Interpolation 

The simplest form of interpolation is to connect two data points wi th a straight line. 
This technique is called linear interpolation. 

fi(x)-f(x0) = fi(x)-f(x0) ^ 

X — Xo X\ — Xo 

the above equation can be rearranged to give this below. 

fi(x) = / ( x 0 ) + / l ( x ) ~ / ( X o ) ( x - x 0 ) (2.26) 
X — XQ 

The above expression is a linear-interpolation formula. The notation fl(x) denotes the 
first-order interpolating polynomial. It is seen that, besides representing the slope of the 
line connecting the points, the term [fi(x) — f(xo)/x — XQ] is a finite-divided-difference[1]. 

"where x is the independent variable, x\ and XQ are known values of the independent 
variable and f(x) is the value of the dependent variable for a value x of the independent 
variable" [2]. In general, the smaller the interval between the data points, the better the 
approximation. This is due to the fact that, as the interval decreases, a continuous function 
wi l l be better approximated by a straight line. 

2.9.2 Quadratic Interpolation 

The error associated by the use of linear interpolation, that is approximating a curve 
wi th a straight line can be minimize by quadratic interpolation. Consequently, a strategy 
for improving the estimate is to introduce some curvature into the line connecting the 
points. If three data points are available, this can be accomplished wi th a second-order 
polynomial (also called a quadratic polynomial or a parabola). A particularly convenient 
form for this purpose is. 

f2{x) = b0 + bi(x - x0) + b2(x - x0)(x - xx) (2.27) 

Note that although E q . (2.27) might seem to differ from the general polynomial [Eq. 
(2.25)],the two equations are equivalent. This can be shown by mult iplying the terms in 
E q . (2.27) to yield. 

f2{x) = b0 + b1x1 - &i£ 0 + b2x2 + b2xQx1 - b2xx0 - b2xx1 (2.28) 

or, collecting terms, 

where, 

f2(x) = a0 + a\x + a2x2 (2.29) 

«o = b0 - h x 0 + hxoXi (2.30) 

ai — bi — b2x0 + b2X! ( 2-31) 

a2 = b2 (2.32) 
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Thus, Eqs. (2.25) and (2.27) are alternative, equivalent formulations of the unique 
second-order polynomial joining the three points. A simple procedure can be used to 
determine the values of the coefficients. For bO, E q . (2.27) with x = XQ can be used to 
compute. 

bo = f(x0) (2.33) 

Equation (2.32) can be substituted into E q . (2.27), which can be evaluated at x = XQ 
for. 

h = fM - /(go) ( 2 3 4 ) 

Xi - XQ 

Finally, Eqs. (2.32) and (2.33) can be substituted into E q . (2.27), which can be eval­
uated at x = XQ and solved (after some algebraic manipulations) of 

Notice that, as was the case wi th linear interpolation, b l st i l l represents the slope of 
the line connecting points xO and xl. Thus, the first two terms of E q . (2.27) are equivalent 
to linear interpolation from xO to xl, as specified previously in E q . (2.26). The last term, 
& 2(x — XQ)(X — xi), introduces the second-order curvature into the formula. 

2.9.3 Newton divided difference Interpolation 

Suppose that fn(x) is the nth order polynomial that is consistent wi th the function / , 
at different values, XQ,X\, ...,xn. 

The divided difference of / wi th respect to x0, X \ , . . .x„is used to represent fn(x) in the 
form. 

fn{x) = &o + bi(x — xO) + b2(x — xO)(x — xl) + ... + bn(x — xO)(x — xl)(x — xn — 1) (2.35) 

where the constants: 

bo = f(x0) 

h = f[xi,x0] 

&2 = f[x2,Xi,Xo\... 

bn = f[xn,Xn-1...X1,X0] 

The above expression are finite divided difference are computed repeatedly. The fol­
lowing expression represent the 1st, 2nd and nth finite divided difference respectively. 

f M f { X l ! Z r X j ) (2-36) 
Jb ̂  Jb j 

f[xi,xjXk] = ft^-J^M (2_37) 

f[xn,Xn_1...X1,X0] = f[Xn,Xn-l,...,X1}-f[xn-1,...X1,X0} 

Xn XQ 
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The nth order Newton divided difference interpolation polynomial is given as. 

fn{x) = f{xo)+{x-Xo)f[x1,Xo]+{x-Xo){x-x1)f[x2,x1,Xo\+...+{x-Xo){x-x1)...(x-xn_1)f[xn,xn_1, 

(2.39) 

2.10 Polynomial regression approximation 
Polynomial regression is a regression technique which is used to model the relationship 

between a dependent variable (denoted by y) and an independent variable (denoted by x) 
to a polynomial over variable x in degree n. A polynomial regression equation of degree 
n can be represented using the following equation. 

Ui P0 + PiXi + fox\ + ••• + f3mx? + Ei{i = 1, 2, 
The goal here is to computes al l the coefficients (3 in this equation, and use it to approx­
imate an intermediate point. 

X\ x\ 
1 X2 x\ 

X3 x\ 

1 />•» / y» 2 

yi 

= 

JJn_ 

x l A ) 

X 2 Pi £2 
™m 
x 3 $2 + £3 

—m Pm £n 

y = X(3 + e. 
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3 Image and Image Matrix 
In the field of imaging and image processing systems, it is always suitable and most 

importantly ideal to categorized the image that is going to be processed mathematically. 
This categories are of two main point. The two main mathematical categories are of key 
values, that is, deterministic categories and statistical categories. For the deterministic 
categories, image representation is done by , a consideration of the mathematical image 
function and properties of a particular points of the image is considered. 

O n the other hand, the statistical image categorisation, the image is specified on the 
basis of average properties of the image inconsideration.The below sections discussed the 
deterministic and statistical categories of a continuous images. "Al though the analysis is 
presented in the context of visual images, many of the results can be extended to general 
two-dimensional time-varying signals and fields" [4]. 

3.1 Image Sampling and Image Quantization 

There are many different ways to obtain images, but the purpose remains the same, 
to create a digital image from an available identified data. The output of many sensors 
is usually a continuous voltage waveform whose amplitude and spatial characteristic are 
related to the physical phenomenon that is being identified. In-order to acquire a digital 
image, it is required to convert the continuous identified data into digital format. There 
are two procedures, involves in this, that is the "Sampling and Quantization".[2] The 
main Idea about is, given a continuous image, the idea is, we wish to transform it to a 
digital form, and this is term "sampling and quantization" [2]. 

A n Image may be continuous wi th respect to the coordinates x and y, also taking in 
to consideration of the amplitude, In-order to sampled the function in coordinates and in 
amplitude, there is need to convert it to a digital form. 

"Digi t iz ing the coordinates values is called sampling. Digi t izing the amplitude values 
is called Quantization" [2]. 

3.2 Image Representation 

Let (x, y) be the spatial coordinate that represents the spatial energy distribution of 
an image source of radiant energy, and at a wavelength A and at a time t.It is known 
that, the intensity of light is a real positive quantity, and that is to say, the intensity is 
directly proportional to the square of the modulus of the electric field, hence the image 
light function is always real and non-negative. 

Moreover, some quantity of light in the background is always present in many practical 
imaging systems, there are some physical Imaging system that causes reduction on the 
maximum intensity of the image, e.g file saturation the phosphor heating in Cathode 
ray tube [4],[2]. Sampling and Quantization techniques are used to convert the image 
function to a digital image, if we take into consideration, and sample the continuous 
function image into a 2D array, containing M — rows and N — columns, and(x, y) be the 
discrete coordinates. 

For the purpose of convenient, we use integer values for this discrete coordinates: 
x = 0 , 1 , 2 , . . . , M - landy = 0,1,2..., N - 1. The / (0 ,0 ) , / (0 ,1 ) are the values of the 
digital image at the origin and at the next coordinate value along the first row. 
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The notations (0,1) specify the second sample along the first row, but this does not 
ensures that these are actual values of the physical coordinates during in which the image 
was sampled. In general, the coordinate (x, y) is used to represent the values of an image 
function, f(x, y) at any coordinate, where x and y are integer numbers. The spatial domain 
where x and y are known to be the spatial variables and spatial coordinate, of the real 
plane which is spanned by the coordinate of the image [2]. Therefore we can consider 
that [4]. 

0 < E(x,y,t, A) < oo (3.1) 

The maximum image intensity of a physical image is l imited with respect to the 
imaging system and the image recording parameters. For mathematical point of view, all 
images are considered to be non-zero over a rectangular region, for which we have[4]. 

- Jx < x < Jx (3.2) 

~Jy <V < Jy (3.3) 

The observation of the physical image is only for a small amount of time interval, hence 
we have. 

-T <t<T (3.4) 

"The image light function E(x,y,t) is, therefore, a bounded four-dimensional function 
wi th bounded independent variables" [4]. For the final restriction, we considered that the 
image function is continuous over its domain of definition. The intensity perceived by a 
standard human observer to the image light function is usually measured in terms of the 
instantaneous luminance of the light field, as given below [4]. 

/•OO 

Y(x,y,t)= / E{x,y,t,X)V{X)dX (3.5) 
Jo 

where V(X) represents the relative luminous efficiency function, that is, the spectral 
response of human vision. 

Similarly, the tristimulus values is a set of values of a response of a colour of a standard 
observer that is linearly proportional to the amounts of red, green and blue light required 
to match a coloured light, it is also use to profile and calibrate output devices. For any 
arbitrary red-green-blue coordinate system, the instantaneous tristimulus values are given 
as [4]. 

/•OO 

R(x,y,t)= E{x,y,t,X)Rs{X)dX (3.6) 
Jo 

/•OO 

G(x,y,t)= / E(x,y,t, X)Gs(X)dX (3.7) 
Jo 

/•OO 

B(x,y,t)= / E(x,y,t,X)Bs(X)dX (3.8) 
Jo 

Where RsX, G5A, BSX are spectral tristimulus values for the set of red, green and blue 
primaries. The spectral tristimulus values are, in effect, the tristimulus values required 
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to match a unit amount of narrowband light at wavelength A In a multispectral imaging 
system, the image field observed is modelled as a spectrally weighted integral of the image 
light function. The ith spectral image field is then given as [4]. 

Fi(x,y,t) E(x, y, t, \)Si(\)d\ (3.9) 

where S^A is the spectral response of the ith sensor. For a representational simplicity, 
a single image function F(x,y,t) is selected to be an image field in a physical imaging 
system. 
For a monochrome imaging system, the image function F(x,y,t) usually denotes the im­
age luminance, or few converted or corrupted physical representation of the luminance, 
whereas in a colour imaging system, F(x,y,t) indicates one of the tristimulus values, or 
other function of the tristimulus value. The image function F(x, y, t) is also used to repre­
sent a general three-dimensional fields, for example, the time-depending noise of an image 
scanner. W i t h regards to the standard definition for one-dimensional time signals,the time 
average of an image function at a given coordinate (x,y) is defined as[4]. 

(F(x,y,t)h l im 
T-s-oo 

i rT 

— J f(x,y,t)J(t)dt 
(3.10) 

where L{t) is a time-weighting function, and the spatial average is use to denote the 
average image brightness for a given time, t [4]. 

(F{x,V,t)h l im 
¥OoJv-

1 
4:JxJy 

Jx 
f(x,y,t)dxdy (3.11) 

Image projection devices as applies to imaging systems that does a constant with the 
increase in time, and the time variable could be dropped from the image function.For 
other types of systems, such as movie pictures, the image function is time sampled . It 
is also possible to convert the spatial variation into time variation, as in television, using 
an image scanning process. In the next discussion, the time variable is dropped from the 
image field notation unless precisely required[4]. 

From the above paragraph is is known that an image can be represented in a most 
useful way. Image displays permits us to view a result of a processed image. Numerical 
arrays are used for processing and algorithm development, we write the representation of 
an MxN of a numerical arrays as [2]. 

/ (0 ,0 ) / (0 ,1) ... / ( 0 , J V - 1 ) 
f(x,y)= / (1 ,0 ) / (1 ,1 ) ... f(l,N-l) (3.12) 

_ / ( M - l , 0 ) / ( M - 1 , 1 ) . . . / ( M - 1 , 7 V - 1 ) _ 

Bo th the left and the right sides of the above equation are Identical way of representing 
a digital image quantitatively, the right side is a matrix of real elements. Each of this 
matrix is called an Imageelement,pictureelements, pixelsor'pel. the term image and pixel 
are used throughout this study to denote digital image and its elements [2]. 

A 

clearly, = f(x = i,y = j) 

«0,0 «0 ,1 

«1,0 ° 1 , 1 

Q M - 1 ,0 OjM-1,1 

= f(hj) 

O>O,N-I 

UI,N-I 

a>M-i,N-i 

(3.13) 
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3.3 Relationship Between Pixels 
There are many important relationship between pixels in a digital image, as we indi­

cated before, an image function is denoted by f(x, y). When we are referring to a particular 
pixel, we normally use a lowercase letters for example p and q [2]. 

3.3.1 Neighbors of a Pixel 

A pixel p at a coordinate (x, y) has four horizontal and vertical Neighbors whose 
coordinate are given as [2]. 

(x + l,y),{x- 1,y), (x,y + i),(x,y-l) (3.14) 

The set of pixels, called the 4-Neighbors of p, denoted by iV 4 (p) . Each pixels is a unit 
distance from (x, y) and some of the Neighbors location of p lies outside the digital image 
if (x, y) is on the border of the image [2]. 

the four diagonal Neighbors of p have coordinates given as. 

(x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1) (3.15) 

These above points and together with the 4-Neighbors are called the 8-neighbors of p, 
which is denoted by N8(p). A s indicated already, of the Neighbors location in Nc(p) and 
N8(p) falls outside the image when (x, y) is on the edge of the image[2]. 

3.4 Colour Models 
The importance of colour model (at times called colour space or colour system) is to 

enable the specification of colour in a standard, or in general accepted way. in essence, a 
colour model is a specification of a coordinate system and a subspace wi thin that system 
where each colour is represented by a single point [2]. 
Many of the colour models use today are focused either on hardware ( for example a colour 
monitors and printers) or on application where colour manipulation is a of an interest (for 
example in the creation of colour graphics for animation). 

Considering a digital image processing, the hardware oriented models most commonly 
used in practice are the R G B (red, green, blue) model for colour monitors and a broad class 
of colour video cameras. The C M Y (cyan, magenta, yellow) and C M Y K (cyan, magenta, 
yellow, black) model for colour printing, and the HSI (hue, saturation,intensity) model, 
which corresponds closely wi th the way human describe and interprets colour. The HSI 
model model also has an important features that its decouples the colour and Gray-scale 
mechanism developed, there are various colour models use today as a result to the fact 
that colour science is a large field that covers many areas of application it is important to 
venture on to some of these models here simply because they are interesting and revealing, 
especially in image processing [2]. 

3.4.1 The R G B Colour Mode l 

In the R G B model, each colour appears in its primary spectral component of red, green 
and blue. This model is based on the Cartesian coordinate system. The colour subspace of 
consideration, In which R G B Pr imary values are at three corners , the secondary colours 
cyan, magenta and yellow are on three other corners,and the black is at the origin, and 
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Subtractive Additive 

Figure 3: A picture of an subtraction and additive colour space respectively [13]. 

white is at the corner further away from the origin. In his model, the gray-scale (points of 
equal R G B values) extends from black to white on the line joining these two points. The 
different colours in this model are point on or inside the cube and are defined by vectors 
extending from the origin. For convenience , the assumption is that al l colours values have 
been normalized so that the cube is a unit cube. That is all values of R G B are considered 
to be on the range [0,1] [2]. 

Figure 4: A a pictures of R G B colour space [13] 

The pixel depth is the number of bit used to represent each pixel in an R G B space. 
If we take into consideration an R G B image in which each of red, green, and blue image 
is an 8-bit image, for these condition each of the R G B colour pixel(that is a triplet of 
values R G B ) is known to have a depth of 24-bit ( that is 3 image planes mult iply with the 
number of bits per each plane). The term full-colour image is normally use to represent 
a 24-bit R G B colour image. The maximum number of colours in a 24-bit R G B is ((2 8 ) 3 ) 
which is equals to, 16777216 [2]. 

Figure 5: A a pictures of the combination [13] 

3.4.2 The C M Y and the C M Y K colour model 

A s we discussed earlier, the cyan, magenta, and yellow are the secondary colour of 
light or on the other hand, the primary colours of pigment for example, when a surface is 
coated wi th cyan pigment it is usually il luminated wi th white light, and there is no red 

28 



light that is reflected from that surface[2]. These is to say that, cyan subtracts red light 
from the reflected white light, which it self is a collection of equal portion of the red, the 
green and the blue light [2]. 

Figure 6: A picture of C Y M colour model [13] 

Most devices that deposit coloured pigments on paper, for example, a colour "printer 
and copiers'[2]', this enables the C M Y data input to, or to help perform an R G B to C Y M 
conversion on the inside. This conversion is done wi th the help of a simple operation[2]. 

c 1 R 
M = 1 — G 
Y 1 B 

We are st i l l wi th the notion that all colour values have been normalized to the range 
[0,1].This conversion shows that the reflected light that is from the surface coated wi th 
pure cyan does not contain red ( which is given by the equation C = 1-R ). In the same 
way, the pure magenta does not reflects green, and the pure yellow, does not reflects blue. 
It does proves that the R G B value can be obtain easily from a set of C M Y values by 
subtracting the individual C M Y values by one (1). A s we mentioned earlier, in the field 
of image processing, this colour model is used in-relation to and obtaining a hand copy 
output, therefore the inverse operation, that conversion from C M Y to R G B is normally 
of very small practical interest [2]. 

A n Equal portion of the primary pigment, cyan, magenta and yellow when combined 
should produce a Black colour. In practice, combining those three colours for printing 
produces "muddy-looking black" [2], a techniques has been use in-order to obtain a true 
black (which is the predominant colour in printing), there has been need to a fourth colour 
'black' that is always added, and this give rise to a next colour component k, and the 
model becomes, the C M Y K colour model[2]. 

3.4.3 The HSI Color Mode l 

We have learned, making colour in the R G B and the C M Y model and converting them 
from one model to the other is a straightforward process. A s we also indicated earlier, 
these colours system are normally suitable for hardware implementation. Addit ionally, the 
R G B system matches appropriately considering the fact that, the human eye is strongly 
preceptor of red, green and blue primaries. 

It is unfortunate that, the R G B , the C M Y and other identical colour models are not 
suitable for explaining colour in a way that are more practical for human interpretation. 

Considering the example, we does not refer to the colour of an auto-mobile because of 
the percentage of each of the primaries constituting its colour. Moreover, we do not think 
of a colour image as being composed of three primaries images that mixed to form the 
single image, but rather, when we Human looks at a coloured object, we always described 
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Red 

Cyan 

Figure 7: A picture of HSI colour model 13]. 

it by its brightness, hue, saturation. The hue is a colour attributes that describes a pure 
colour (pure violet, orange, or blue) on the other hand, Saturation , gives the measure 
of the degree to which pure colour is diluted or concentrated by white light. Brightness 
is subjective descriptor that is not physically or experimentally impossible to quantify. It 
symbolises the achromatic idea of intensity and is one of the main factors in describing 
colour perception or sensation. 

It is know that the brightness or intensity (gra-level) is a most useful descriptor of 
monochromatic image (one coloured-image) . it is evident that, this quantity is measur­
able and easily interpretable. The next model we shall present and discuss is called the 
HSI model (hue, saturation, intensity) this type of a colour model, decouples the intensity 
component from the colour carrying information (hue, saturation, intensity) in a colour 
image. A s a result, the HSI model is an important tool for the development of image 
intuitive to humans, who are the developers and end users of this algorithms ( when an 
images captured by a colour camera or when an image is displayed on a monitor screen), 
its use for colour description but its much limited[2]. 

3.5 Image compression formats 
Images compression and image format are very important tools in image processing, 

at times there need for an Image to be compressed, and this is more or less depending on 
a particular purpose or ideally for another application. There are many different ways to 
perform this image compression algorithms, some are done in a lossless and keep the same 
information as the original image, and others in loss information during the compressing 
the image. 

most of this these compression methods are set-up for a particular type of images, and 
so they does not do well for other types of images. Many of these algorithms could even 
allow you to change the parameters that are used to adjust the compression appropriately 
to the image in-hand [10]. 

B M P format: One of the most basic image format is the, Bi tmap graphics format 
( B M P ) . Windows B M P is an image format operating system "Microsoft windows graph­
ics" (GDI) , it is compatible with images of 1,4 8,16, 32 bits per pixels. However, 16 and 
32 bit per pixel is very uncommon, as it always uses basic graphics file format and un­
compressed format. B M P is normally used wi th "large blockers" of the same colours, that 
is why it it is less applicable in compresses format. In-terms of storage data, the B M P 
format uses complete bytes, hence the ordering of the bit string is not a problem [10],[11]. 

P N G format:Portable Network Graphics ( P N G ) is one of the newest graphics for­
mat use for image compression, hence it is just beginning to receive popularity on the 
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internet, it also compatible wi th al l image viewing application frequently used [11]. It is a 
bitmap image format that is bui ld on lossless data compression format [10]. It came in to 
existence in-order to replace the G I F format additionally wi th a file format that do not 
need adjustment during replacement. 

There are some applications that does not requires J P E G , P N G is use as an alternative. 
Also, since it is a lossless data compression for 24-bit images, for an intermediate format 
for images that are repeated modified, P N G is better use than J P E G . [11] It is also very 
good for storing images wi th big field of a unique colour or wi th small difference of the 
colour [10] 

The storage order of the P N G formats stores multi-byte integers starting wi th the 
most important byte first, and the bit string are read from the least, then followed by 
most important bit. When a bit crosses a byte boundary, the bits that is in the second 
byte are more important [11]. P N G is of an advantage than the J P E G for storing images 
that contain text, line art, or other images with sharp transitions that do not transform 
well into the frequency domain [10]. 

J P E G format:The Joint Photographic Experts Group ( J P E G ) has been the most 
actively used format for storing photographic images, but wi th widely use, the working 
principle of J P E G for compression remains un-clear, because instead of defining the image 
file format, it defines the number of related image compression techniques[11]. It has a 
lossy compression algorithm, and this algorithm used to compressed images wi th 24 bits 
depth or a greyscale images. The algorithm is very flexible, this feature made it very 
useful for image compression, since the compression rate could be adjusted if needed [10]. 
However, if we compress a lot on the image, information would likely be lost, in the same 
way, the resulting image size could also be smaller, therefore, W i t h a smaller compres­
sion rate we obtain a better quality of the resulting image, and the size would be bigger. 
This compression techniques entails in making the coefficients of the quantization matrix 
bigger if we required to do more compression, and smaller if we want to less compression 
[10]. The advantages of the J P E G format is that for photographic images, it gives a better 
compression than of any Bi tmap format of the same use. A n image that needs 1 M B to be 
stored in a Windows B M P file can normally be compressed to 5 0 K B by J P E G format [11]. 
J P E G is computational costly, despite of that, it is st i l l used because of its outstanding 
ability of compression [11], making it the most used image compression format for storing 
and transmitting images on the Internet [10]. 

T I F F format:The Tagged Image File Format is a file format that is also use for 
storing images, this involves photographs and line art. "It is one of the most popular and 
flexible of the current public domain raster file formats" [10]. 

It was ini t ial ly made by the company "Aldus , jointly with Microsoft, for use wi th 
PostScript printing", T I F F is a very famous file format use for images with high colour 
of depth, besides J P E G and P N G . T I F F format has been widely applicable wi th "image-
manipulation applications, and by scanning, faxing, word processing, optical character 
recognition, and other applications" [10]. 

3.6 Image calibration 
The defect caused by the non-uniform il lumination of the observed sample,this causes 

change in the intensity of the optical system, and this term is said to be vignetting of the 
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optical system this could also cause impulse noise. 
There is a term in which this defects can be reduced, and that is called Calibration, 

thus improves the quality of the image [14]. 

3.6.1 Basic type of Image 

There are two parameters involves in describing an image, that is. Temperature: 
that is the temperature at which an image is obtained. 
Time: also called exposure time, this is the time duration at which the image was cap­
tured. 
Light Frame: This is the image that is suppose to be calibrated, it is denoted as L(T, t), 
it depends on temperature and time. 
Dark Frame: This is the image wi th temperature and time parameters, but taken in a 
complete darkness, wi th no light on the image, it is denoted a,sD(T,t) 
Bias-Frame: This is a form of a Dark-Frame image that was captured wi th zero-exposure 
time, D(T, 0). This is however not possible in real life situation. The Bias-Frame is denoted 
as5(T) 

B(T) = l im D(T, t) 

Flat-Field: This is the image wi th absolute homogeneous gray surface, that is there is 
no saturation of Pixels. It is denoted asF(T , t) [14]. 

3.6.2 Calibration method 

Here we discuss how best do we reduce the above mention problems. 
Dark-frame subtraction Dark-frame is needed to be form immediately after the 

light-image, so that the same temperature is retain. 
The calibration of this involves: 

A — L(T, t) — B(T) 

A calibration fora longer exposure time involves: 

A = L(T,t) - D(T,t) 

Flat-field correction. This method involve the correction of the irregular image-light, 
the different sensitivity of photodiodes, it also reduces vignetting, that is the light lost on 
the optical system due to increase in distance of the optical axis. 

F(T2,t2) - DF(T2,t2f 
where DF(T, t) is the Dark-frame of the flat-field, and c is a set of scaler values depending 
on the Dynamic range. 
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3.7 Digital Image Noise 
There is no precise mathematical definition of Noise, it is a random signal or component 

in a digital image, it can come from various sources. Some are physical, linked to the nature 
of light and some to other optical properties,oe even during the processing of acquiring 
the image, the conversion between electrical signal to digital data by the AD-converter. 
Image Noise reduces the quality of an image. [12],[14] 
image distortion is due to many different problems, there are many different types of 
noise, but we shall discuss few of them here[12],[14]. 

3.8 Multiplicative noise 
This can be cause by different in the properties of the photodiode and the AD-converter 

in C C D , C M O S chips, since some photodiodes are more effective than the other. It could 
be remove by image calibration. 

3.8.1 Mathematical model 

Let A denotes an absolutely perfect and S is an image wi th pixels and a realization of 
some random variable X . The final image B , is the product of A and S, given by 

B = A-S 

and we can say that, image B has a multiplicative noise, where the 'dot' is an operation 
between two function[14]. 

3.9 Additive noise 
Addit ive noise is the most difficult in-terms of filtration. This noise is mainly due to 

dark-current, adding electrons to pixels that were not generated b photodiode. This can 
be reduced by cooling, however this cooling destroys the image [14]. 

3.9.1 Mathematical model 

Let A denotes an absolutely perfect and S is an image wi th pixels and a realization of 
some random variable X . Where the property of this noise is the property of the random 
variable eg. mean, median,mode standard deviation, etc. If B is the sum of A and S, 
denoted as B = A + S, we can say image B contain an additive noise. This noise is 
cause mainly due to Dark-current, adding electrons to pixel which were not generated by 
photodiode. This can be reduce by cooling the chip, also by reducing the intensity of the 
light source[12],[14]. 

3.9.2 Additive noise filtration 

The additive noise has two parameters N(/x, a 2 ) , Gaussian \i is the mean value, and 
a is the standard deviation. The [/, value is the values of the Dark current and a is the 
amount of additive noise [14]. 

Low-pass filter: This filter that passes signal with a frequency lower than a selected 
cut-off frequency and attenuates signal wi th frequencies higher than the cut-off frequency. 
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Let B be an image which low-pass filter was applied. The most common low-pass filter is 
the Gaussian function. 

B = Jr~1(Jr(A) • u) 

where u is the Gaussian kernel, J7 is the Fourier transformation[14] 

3.10 Impulse noise 
This is a type of noise that is also call "data drop noise"because its drop the orig­

inal data statistically, however the image is not fully corrupted instead there are pixel 
values that are affected in the image, it could be cause dust particle, cosmic rays, dur­
ing the transmission of the image, or even change in the certain property of the optical 
axis[12],[14]. 

3.10.1 Mathematical model 

Let A denote an absolutely perfect image, and X is a random variable wi th alternating 
distribution(0,l) . X A(P) where P is the probability of random variable is 1. and Y is 
another random variable wi th a distribution, but often a uniform distribution, and x,y 
denotes a coordinate of pixel, image B is the final image, wi th impulse noise given by. 

3.10.2 Impulse noise filtering 

The filtering of impulse noise involves two steps: defective: The aim is to fine which 
pixel is defective, correction: This involve a process where defective pixel are replace by 
fixed value obtained from th neighbourhood. 
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4 Image Restoration 

The principal goal of image restoration techniques is to improve an image in some 
predefined sense[2]. Image restoration is an objective process, it attempts to recover an 
image that has been degraded or defective. 

4.1 Laboratory Image 

This is one of the images that were obtained in an experiment in a laboratory, the 
Automotive headlamp was made to fogged while a camera was projected taking pictures 
at defined intervals, while the headlamps in undergoing defogging. After the process, we 
obtained pictures of the whole set-up. A s a result there were some defective pixels on the 
images. There could be different reasons that would accounts for this, reflection of the 
surface of the Automotive headlamp, different in temperature or pressure gradient on the 
inside of the Automotive headlamp, the nature of the Camera used, light source, or even 
human error. It is important to know the the relations between each of these mentioned 
and the defective pixels in the entire image, but for this study we would rather consider 
how to reconstruct the defective pixel values and to fine an appropriate numerical tool to 
reconstruct missing (defective pixels) information. 

Figure 8: A picture of a laboratory image wi th defective pixels 

4.2 Goal of the study 

Part of the goal of this study, is to follow some underlaid guidelines in-order to de­
termine the most appropriate method for image date reconstruction. We highlighted and 
described different numerical tools used everyday in image processing to calculate missing 
data. 

Firstly, We created test-data that we applied the numerical tools on, some information 
was erased on the test-data, and texted the already identified numerical tools on the, upon 
knowing the best working tool, and wi th respect to the type of problem we have in-hand, 
we would know which tools to use finally for the image restoration. We used the numerical 
tools on the laboratory images to reconstruct missing image information. 
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4.3 Created testing data 
We created two different data-set on M A T L A B - R 2 0 1 8 a , on which we employed and 

tested numerical methods. These data-set were 2-dimensional of both linear and quadratic 
equations, that is zl = x + y and z2 = x2 + y2, for each of the data-set, we had a dimension 
corresponding to [x, y], of 201x201 data-points. This was chosen, as part of the procedures 
t be carried out in this study. We knew that we would have to load images at some point 
in M A T L A B to obtain image-matrix that we would finally do analysis on. In that light, 
we had to do the first procedures as part of the goals of this study. 

O n this data set, we applied all studied numerical tools, that is Polynomial interpola­
tion, Gaussian convolution, newton interpolation(divided difference) , Lagrange interpo­
lation, polynomial regression. 

We erased some known data point, and we used each of the this and approximated 
the erased data point, and recorded for each of the separated data-set, that the linear and 
quadratic data-points. It was shown that, for the linear data-set, linear interpolation gives 
better results in computing the missing data-point, which we would expect normally, it 
was seen that, the linear interpolation is the same as taking the average between 2 points, 
or simply fitting a straight line between two point, and guess that mid-point between 
them. 

Gaussian convolution also gave very good approximation for a smaller kernel, say 3x3, 
and for this kernel, we obtained the same results for Gaussian and linear interpolation. O n 
the other hand, this is not the same for a Gaussian of larger convolution kernel. We also 
investigated the effect by changing the kernel size and by varying the standard deviation 
(sigma). we read and recorded the effect. 

For the quadratic data-set, both Gaussian and linear interpolation were compared, but 
it has a small had deviation, however the Gaussian convolution was better in the approxi­
mation of data points, also which goes well facts, when applying a linear interpolation on 
a quadratic, there is always less accuracy, as the line of best-fit would not pass through 
all points, as a result, it would have a deviation from the actual points points, as a result, 
we only used the Gaussian convolution on the quadratic data-set, we also compared wi th 
varying the kernel size with and the standard deviation. 

4.4 Reconstruction on the image matrix data-set 
A t this point, we are able to proceed to the next procedures, after testing al l the 

numerical methods on the created data set. we loaded al l 113 images obtained from fluid 
flow laboratory, on M A T L A B - R 2 0 1 8 a , and first we split them in to RGB-channels, wi th 
the dimension of 2064x1082, where R-channel indicated totally fogged region, G-channel 
indicated totally defogged region, and B-channel indicated defective (missing pixel values) 
region. The R-channel and G-channel profile maps, has the same area, and the B-channel 
map remains the same. 

We combined al l these wi th a single Image-matrix, where al l the three features ap­
pears, that is R G B , this matrix has different pixel values, depending on when and where 
something changed from red to green, that is from fogged to defogged, and the missing 
pixel valued. A large portion of this matrix is know, the "defogged" areas, hence the 
missing areas are smaller compare to whole of the image, this is crucial, as it w i l l help in 
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the comparing and conclusion of the best method for the final restoration of the image. 
The R-channel and G-channel indicated known data, we applied this numerical tools, 

and here we added and extra tool, that is the polynomial regression, to substitute, the 
linear interpolation, since this data-set was generally not linear on some region, so a better 
too was to use Gaussian convolution and polynomial regression. 

4.4.1 Gaussian convolution approximation 

The Gaussian convolution kernel of 3x3, and wi th Mat r ix p of 3-Missing pixel Values 
is tabled below, where h is the convolution kernel and p is the matrix wi th missing pixel 
values. 

0.0944 0.1556 0.0944 
0.1556 0 0.1556 
0.0944 0.1556 0.0944 

"12 11 I f 
0 0 12 
12 0 0 

The table shows the approximation of using Gaussian convolution kernel of 3x3 wi th 
3-missing points wi th varying standard-deviation(sigma) for the reconstruction of known 
but erased to compare wi th the actual values. 

Table section 4.7.2 Ac tua l and approximated values using Gaussian convolution. 

Ac tua l Value sigma Approx. Value 

12 1 6.8826 
12 2 7.1564 
12 4 7.2266 

4.4.2 Gaussian convolution approximation 

Approximation of Gaussian convolution kernel of 7x7 and 9x9 respectively, in this 
case we erases 8-points from the matrix, and that simulates 8-Missing P ixe l values, wi th 
varying the standard-deviation (sigma), we were able to reconstruct missing values, the 
results is tabled below. 

Table section 4.7.2 Ac tua l and approximated values of 7x7 convolution kernel. 

Ac tua l Value sigma Approx. Value 

12 1 9.9585 
12 2 10.1768 
12 4 10.3334 

Table section 4.7.2 Ac tua l and approximated values of 9x9 convolution kernel. 

Ac tua l Value sigma Approx. Value 

12 1 10.243 
12 2 11.0662 
12 4 11.7954 
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4.5 Polynomial Regression 
The below figure shows the same approximation using regression polynomial of 7th 

order, knowing that the same missing data-point was used in the Gaussian convolution, 
so we need to compare the two. This was to fit a curve through each of the date-points, 
in doing so, the appropriated point is visible on the figure. 

The regression by polynom of 7th order. 

12 
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11.999999999996 

11.999999999994 

11.999999999992 
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X 

Figure 9: A figure of a regression polynomial fit 

4.6 Some Discussion 
We have used a Gaussian convolutions kernel of different size on known data, to 

estimate missing pixel value. It was evident that. . . 
• For a particular Gaussian convolution kernel, the more the number of missing pixel 

values the higher the deviation from the actual pixel value. 
• For a particular Gaussian convolution Kernel , the higher the Standard Deviation, 

the better the approximation. 
• For a particular Standard deviation, the bigger the Gaussian convolution kernel the 

better the approximation. 
The polynomial Regression approximated the missing pixel value, and it was recorded to 
be 12.00, which was exactly the same as the actual pixel value. However, this was done 
in only one(l) direction, to obtain the optimum value, we need to generalized to four(4) 
directions, then if we take the average of these four(4) values, we obtained 11.95, which 
is the approximated value obtained from regression polynomial. 
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4.7 Image Restoration process 
The restoration of the image was carried out by the programs that has already been 

texted on the test-data. A s we have shown before, we have applied both the Gaussian 
convolution and polynomial regression to reconstruct missing(erased) points during the 
testing of the numerical methods for a single missing point where the data was linearly 
distributed, that means defogging was in one direction. The data points were increasing in 
magnitude along a particular direction. We also tested on this methods on an area that, 
linearity does not happen, and that the data points were randomly displayed, and it was 
independent of direction, for a better choice of the decision of the reconstruction of the 
image, taking into consideration the type of data set and its distributing, and also the size 
of the missing area in-comparison wi th the known area. We came to the conclusion wi th 
the use of the Gaussian convolution in the reconstruction and restoration of the missing 
pixel values. 

The image matrix is the matrix of dimension 2046x1048, that combined al l the in­
formation of al l the 113 laboratory pictures, that is the known area and the unknown 
information (that is missing pixel values). We characterised earlier that the blue pixels 
represents the missing information, The red and Green pixels denotes the known informa­
tion (area). It was seen that the missing information was much less that the know data 
points, that is to say that there were less defective pixels when compared to the size of 
the image as a whole. A s result of that, we use the Gaussian for the final restoration of 
the image. 

The figure below shows an image with both known and missing information. 

Figure 10: A picture of an image wi th defective pixels 

The program was executed on M A T L A B R2018a, we scanned on the whole image, 
pixel-by-pixel to restore missing pixels, wi th specified parameters, a convolution kernel 
of 3x3 and 5x5 „ a percentage criteria between 19 to 99 percent in-order to obtain higher 
precision of the restoration. This allows us to apply Gaussian, only when there are enough 
data point in the sub-matrix that corresponds to the convolution kernel matrix. If there 
are no enough points to do the convolution, we move to the next, and finally wi th iterative 
Gaussian, al l pixels were refilled. W i t h the above mentioned parameters, the whole image 
was finally restored after 123rd iteration, for the 3x3 kernel size, and 155th iteration for 
the 5x5 kernel size. 
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The below 3x3 matrix was the kernel matrix that was used to filter the image matrix. 

h 

0.0183 
0.0821 
0.1353 
0.0821 
0.0183 

0.3679 
0.6065 
0.3679 

0.0821 
0.3679 
0.6065 
0.3679 
0.0821 

0.6065 
0 

0.6065 

0.1353 
0.6065 

0 
0.6065 
0.1353 

0.3679 
0.6065 
0.3679 

0.0821 
0.3679 
0.6065 
0.3679 
0.0821 

0.01831 
0.0821 
0.1353 
0.0821 
0.0183 

The figure below displays the restored image of. 

Figure 11: A figure of the restored image 

From the picture above, it is seen that al l the missing pixels of the laboratory has 
been successfully restored with the iterative scheme of a Gaussian convolution. We made 
a visualization of the original and the restored image, we computed the difference O F the 
two. 

A s it is mentioned above, the original image matrix wi th dimension of 2046x1082, 
that contains missing pixel values. The contour plot depicts the nature of defogging of 
the Automotive headlamp. The figures below shows the contour plot of the original image, 
the restored image and the difference between the two respectively. 
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Figure 12: A figure of Original Image 

We tried to compare the visualization of the restored image with the same dimension 
as the original, it is seen that the areas that had blue pixels on the original image, has 
been modified to yellow, following the restoration of the full image. 

200 400 600 300 1000 1200 1400 1600 1300 2000 

Figure 13: A figure of the restored image 

In the next plot, we highlighted the difference between the the Restored image and 
the original image, of a 5x5 Gaussian convolution kernel. 
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Figure 14: A figure of the error (missing pixel values) 

4.7.1 Gaussian on a known data 

Gaussian was used to reconstruct information and compared with a known data, that 
is we compare the original information and restored information. 

The Graph below is the contour plot of the difference between the Ac tua l value and 
restored information of an erased and restored area. 

1 1.5 2 2.5 3 3.5 4 4.5 5 

Figure 15: A figure of the restored data of a known region 
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4.7.2 Regression Polynomial 

A w we have describe in chapter 2, regression polynomial regression of 3rd degree was 
also use to reconstruct missing information. We erased a region of 5x5 on the Original 
matrix, and we reconstructed al l erased point, we observed that, values around the sur­
rounding were small than the the inside of the 5x5 reconstructed matrix, this was the same 
thing as for the Gaussian reconstruction. A s we did for the Gaussian, we also computed 
the difference between the original values and the reconstructed values. 

1 1.5 2 2.5 3 3.5 4 4.5 5 

Figure 16: A figure of the difference between the approximated and original values of 
Polynomial regression 

We shown below the difference between the original known value and the approximated 
using 3rd degree polynomial regression of a 5x5 matrix size. This data points were erased, 
and a reconstructed. 

section 4.7.2 The Error associated wi th the actual value and the approximated, using 
Polynomial regression. 

0.500 0.833 0.972 1.009 0.010 
0.500 0.833 0.977 1.009 0.010 
0.500 0.833 0.977 1.009 0.010 
0.500 0.833 0.977 1.009 0.010 
0.500 0.833 0.977 0.009 0.010 
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5 Conclusion 
We have described some of the mathematical tools that was used for the reconstruction 

of missing image information, registration, representation of image, methods of image 
processing and visualization of the reconstruction. 

The application was implemented on M A T L A B R2018a environment for restoration 
of the missing information of a digital image. There were 113 PNG-file-format images 
obtained from fluid flow laboratory experiment that simulates defogging process of an 
Automotive headlamp. This defogging was independent of direction due to the due to 
the the behaviour inside, temperature, air pressure, and due to the presence of local light 
reflection, we could not decide defogging on this areas, and hence there were Missing 
information on some areas of the obtained digital image. 

This PNG-f i le format of R G B colour scale images were al l loaded into M A T L A B 
R2018a environment and separated into RGB-colour channels of pixel values. Further­
more, we iterated on the al l images, to depict the nature of defogging , that is from Red 
colour to Green colour, while the Blue was the region of missing pixels. The obtained 
profile map has the same area of the missing pixels, This is the area that we are suppose 
to restore from the surrounding known values. 

This needed numerical algorithm , the iterative Gaussian convolution of 5x5 kernel 
size, was applied for the restoration, of missing pixel values. We set a high percentage 
criteria, such that there was enough data points on each step-size before the Gaussian is 
implemented. 

Finally, we were able to compare different numerical tools for image restoration, the 
iterative Gaussian convolution was use for the image restoration of al l the missing pixel 
values of the 113 images. However, there is a need for further studies to improve restoration 
of missing image information. 
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Abbreviations and List of Symbols. 

V , W Vector Spaces 

H subspace 

u,v vectors 

m,n M a t r i x 

(x,y) Spatial coordinate 

f(x,y) continuous image function 

I M a x i m u m image intensity 

E(x,y,t ,A) image function 

Y(x,y, t ) instantaneous luminance 

V(A) luminance efficiency 

L(T , t ) Light-Frame 

D(T, t ) Dark-Frame 

B(T, t ) Bias-Frame 

N( / i , a) Distr ibution function 

u Gaussian Kernel 

p or q pixel 

R G B Red-Blue-Green 

HSI Hue-Saturation-Intensity 

C M Y k cyan-Magenta-Yellow-Black 

B M P Bi tmap 

P N G Portable Network Graphics 

J P E G Joint Photographic Experts Group 

T I F F Tagged Image File Format 

G D I Graphics Device Interface 

AD-converter Analogue-to-Digital converter 

C C D Charged Coupled Device 

4G 



Appendix A 

Enclosed C D 
The C D contain the following files: 

• Source code of loading of pictures into M A T L A B to obtain image matrix with R G B 
components. 

• Source code of restoration using Gaussian Convolution kernel 
• Testing images obtained from fluid flow laboratory. 
• Program of regression Polynomial . 



Appendix B These are among the 113 images used for the study, there are missing 
information (the blue pixels) on the same area for al l the images. 

(a) Defogging of first image. . (b) Defogging of second image. . 

Figure 17: Images of defogging (from red to green) of Automotive headlamp, all images 
were obtained from fluid flow laboratory, Faculty of Mechanical Engineering, B U T . 

(a) Defogging of Fifty-sixth image. . (b) Defogging of Fifty-seventh image. . 

Figure 18: Images of defogging (from red to green) of Automotive headlamp, all images 
were obtained from fluid flow laboratory, Faculty of Mechanical Engineering, B U T . 
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