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1 Introduction

Contactless smart cards and near-�eld communication (NFC) devices are used in
many modern applications worldwide. Most of these applications require high
level of security. Contactless cards are more convenient for the user to perform
transactions than contact cards; however, they yield new vulnerabilities due to the
radio interface. Proper use of these technologies provides high level of security;
however, some applications, especially for access control, may be developed by
developers that are not security experts, so they can contain vulnerabilities.

Development of secure hardware is very expensive and very slow compared to
development of software. Protocols used in security sensitive systems are usually
very secure and sometimes even formally veri�ed. The software implementation is
usually developed faster than hardware and is usually not formally veri�ed, which
makes it the weakest link. The software implementation is as important as other
parts of the system. The protocol must be carefully implemented using secure
hardware in proper way, which is very di�cult, thus there is space for potential
mistakes leading to vulnerabilities. People writing such applications have to be
perfectly aware of all weaknesses of the particular card type in order to implement
the system properly. An automated tool for vulnerability search in contactless
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communication applications would help them to verify their implementation on
particular device.

When designing and verifying security protocols using informal techniques,
some security errors may remain undetected. Formal veri�cation methods provide
a systematic way of �nding protocol �aws. The protocol is speci�ed in a formal
way and the correctness of security properties is proved or disproved using formal
methods and mathematics.

The motivation for this work is a massive spreading of new contactless technolo-
gies and development of many applications sometimes by developers that are not
security experts. Due to the high number of systems using contactless technology
worldwide and the possibility of gaining high �nancial pro�t from compromising
such a system, there are e�orts to �nd vulnerabilities in these systems on both
sides, attackers are trying to compromise a system, while developers are trying to
�x vulnerabilities and improve security.

2 Goals

The high level goal of this thesis is to investigate security of contactless smart card
protocols and to �nd methods of improving security of these protocols.

This thesis is concerned with contactless smart card protocols, which are pro-
tocols, such as payment protocols, that use contactless smart cards to store some
data, values, cryptographic keys, and to perform cryptographic operations. End
users usually use these personalized cards for payments, access control, loyalty pro-
grams, etc. The focus here is on contactless smart cards which di�er from smart
cards with contact interface mainly in two aspects. Firstly, the contactless smart
cards are usually simpler due to the power limitations, so they can be modeled
more easily. Secondly, the contactless interface introduces threats due to the fact
that all communication is wireless. These threats, which are not applicable for
smart cards with contact interface, must also be considered when investigating
security of contactless smart card protocols.

If we try to understand what security issues can occur in such a protocol, we
have to look not only at one level of the communication, such as the RF link, or
the high level protocol de�nition. We have to investigate possible vulnerabilities
at all levels.

The focus in this thesis is on the high level attacks on the protocol level.
Possibility of these attacks will be analysed and a method of semi-automated
vulnerability �nding using formal methods will be proposed.

The formal model can be created from the protocol de�nition or extracted
from the eavesdropped communication. Unwanted states that constitute an at-
tacks must also be speci�ed. After analysing the protocol and creating the model
including the attack states, the formal analysis methods, such as model checking,
can be used.

However, not all kinds of attacks are covered by the proposed method, such as
attacks speci�c to the contactless interface. One of the attack types that are not
covered by the method, the relay attack, is investigated separately. A minor part of
this thesis is therefore dedicated to relay attack investigation and countermeasure
proposal.
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Relay attack is one of the most dangerous attacks against contactless devices,
because there is no practical countermeasure to it. There are so called distance
bounding protocols; however, they are implemented only in some devices, keeping
the rest of devices unprotected. In this thesis the relay attacks will be investigated
and if possible, a countermeasure to relay attacks performed over network will be
proposed.

3 Vulnerability Finding Method

This chapter introduces a method of semi-automated vulnerability �nding in con-
tactless smart card protocols, which is the main contribution of the thesis.

The concept puts together a man-in-the-middle (MITM) attack with veri�ca-
tion methods to �nd vulnerabilities in a semi-automated way. Figure 1 shows the
scheme of the proposed system. The process consists of a cycle of several steps
that can be performed several times to make the protocol secure.

• The �rst step is a MITM attack that can be used to analyze the protocol. The
MITM hardware will communicate with both PCD and PICC, and eavesdrop
on the communication to extract the protocol. It can be also used to fuzz
test the protocol by altering commands and data in an unanticipated way.

• The next step is the formal model creation. Results from the analysis can
be used together with the protocol and smart card speci�cations to create a
formal model. The MITM at the beginning of the process can be theoreti-
cally used to create a formal model when analyzing a third party protocol
even without the precise protocol speci�cation, the protocol speci�cation can
be extracted by eavesdropping on real communication. The developer of a
protocol can skip the �rst step and create the model only from the protocol
and smart card speci�cations.

• The model will be veri�ed by the model checker. In this phase the potential
vulnerabilities can be found.

• The attack vectors found by the model checker will be used to execute the
attack on the device, using the MITM. If the attack is successful, the vul-
nerability is reported, otherwise the model is re�ned.

• The hardware for performing MITM is useful for trying to execute an attack
and to �gure out how the formal model should be re�ned after each run of
the model checker.

This cycle will be repeated multiple times until a vulnerability is found or the
model checker concludes that there is no attack on this model. When an attack is
found by a model checker and is not con�rmed using MITM on the real devices,
the model is re�ned and model checker is executed again. When a vulnerability
is found and con�rmed by MITM, the protocol should be improved to �x this
vulnerability. The model should be updated and model checker should be executed
again. Although the process is not yet fully automated, the model checking can
�nd a vulnerability in the model automatically. The following sections discuss
hardware for the MITM, protocol analysis, and formal veri�cation.
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Figure 1: Scheme of semi-automated vulnerability search system

3.1 Hardware

In this section the hardware used to perform a man-in-the-middle (MITM) attack
is discussed. In real environment, MITM can be done using relay attack. Our
device will act as the MITM between two legitimate parties of the protocol. As
mentioned earlier, there are two contactless devices needed for relay attack � a
fake PCD and a fake PICC. We have connected both devices to one PC, which is
the main hardware part of the system.

We have established a real relay attack using Proxmark 3, which is an open
hardware platform for RFID research purposes. This device was developed by
Jonathan Westhues for performing sni�ng, reading and cloning of RFID tags.
Proxmark 3 incorporates the FPGA unit, used for low level signal processing, and
the ARM processor, that implements the transport layer. It can be used as a
sni�er, as a reader or as a card, using various protocols. Proxmark 3 supports
both low frequency (125 kHz � 134 kHz) and high frequency (13.56 MHz) signal
processing.

The Proxmark 3 is connected to the PC via USB; however, the software devel-
oped by the community does not support realtime communication over USB, so we
had to add it. With the original software the PC sends a command to Proxmark,
which returns the result after processing it. We needed a realtime communication
with the device, because each data packet received by the device requires its imme-
diate transmission to the computer in order to get the response from the genuine
PICC. In order to establish communication with just one party � PCD or PICC �
we have implemented the anti-collision procedure.

Proxmark 3 acts as a fake PICC, communicates with the genuine PCD and
forwards data blocks to the PC. It also transmits data blocks in the opposite
direction. ACR122 acts as a fake PCD, doing the similar task with the genuine
PICC. The PC controls both devices and relays data blocks between them. Data
can be saved or altered in the PC.
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3.2 Protocol Analysis

The goal of this part is to create a formal model of the implementation of the
protocol. Smart card application issuers mostly don't publish their algorithms for
any scienti�c feedback, hence there could be bugs that might remain hidden for a
long time of using such a system. Furthermore, thanks to NFC, there are many
more new applications being developed, and there is a great potential for the future.
These applications also handle sensitive data and use contactless communication
as well as smart cards. In order to be able to �nd any vulnerabilities in these closed
source protocols, the wireless communication can be eavesdropped and the protocol
can be extracted by analysing the data being exchanged. With the knowledge of
the protocol, the formal model can be created. Limited knowledge of the protocol
should therefore not entail a problem, the data needed for creating the protocol
formal model can be extracted from the eavesdropped communication.

The eavesdropping of the protocol can be used to extract the protocol from
real communication and the MITM also allows us to alter arbitrary data, change
command order, communicate with just one of the legitimate parties and try var-
ious commands even with wrong parameters. In theory, the model creation and
re�nement could be done automatically from data gained by eavesdropping and
fuzz testing, which would make the whole process of vulnerability �nding fully au-
tomatic. Learning techniques allow automatic inference of behaviour of a system
as a �nite state machine. For example in [1] the authors showed that a Mealy ma-
chine representing a model of EMV smart card can be successfully extracted using
protocol fuzzing. However, we did not try to make automatic protocol fuzzing,
so the process of vulnerability �nding is only semi-automatic. Automatic Mealy
machine creation using protocol fuzzing was left for future work.

It is very bene�cial to have the protocol and smart card description when
creating the formal model of the system and not to rely only on data from MITM
eavesdropping. The protocol can be described for example as a sequence diagram
and the smart card as a Mealy machine. The information gained using MITM
together with the protocol and smart card speci�cation gives us an overall image
of the system being observed. The creation of formal model from the protocol and
smart card description is explained in chapter 4.

3.3 Veri�cation

The formal model of the protocol can be used to automatically �nd vulnerabili-
ties using formal veri�cation methods. These methods are used for proving secu-
rity properties of protocols such as authentication, integrity, con�dentiality and
anonymity. Not only they tell us whether the protocol meets these properties but
they can also �nd the counterexample. These counterexamples can be considered
possible attacks. Formal methods therefore provide us with the automated way of
�nding attacks and can also be used for proving that some attacks are not possible.
In this part a model checker will search for possible attacks, which will later be
evaluated on the hardware.
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3.3.1 Tool Selection

There are many papers describing and comparing various formal veri�cation tools,
such as NRL and FDR comparison [14], Casper/FDR, ProVerif, Scyther and
Avispa comparison [7], or OFMC, Cl-Atse and ProVerif comparison [13]. Vari-
ous tools have been studied and tested for the purpose of this thesis to �nd out
which one is the best for security veri�cation of protocols using contactless smart
cards. During the process of selecting the right tool, various aspects of the tool
had to be considered, such as performance, how di�cult it would be to model
desired features in the particular modeling language, and published results with
the tools.

The AVANTSSAR tool was chosen for the security veri�cation, mainly because
the fact that the high level ASLan++ language can be easily used to model the
desired features and because three di�erent back-end model checkers can be used
to verify the model. Also there are published papers suggesting that this tool
and its back-end model checkers have good results in the �eld of security protocol
veri�cation. The performance seems to be good and for example performance com-
parison [13] of ProVerif with AVANTSSAR back-end model checkers Cl-Atse and
OFMC shows better results of AVANTSSAR back-end model checkers; however,
the di�erence is not signi�cant. AVANTSSAR developed from AVISPA and both
tools seem to be proved and used by the community.

AVANTSSAR (Automated VAlidatioN of Trust and Security of Service-oriented
ARchitectures) is a follow-up project of AVISPA, introducing new languages for de-
scribing models, the AVANTSSAR Speci�cation Languages ASLan++ and ASLan.
ASLan++ [16] is a high level formal language similar to the HLPSL, used for
specifying security-sensitive service-oriented architectures, their associated secu-
rity policies, and their trust and security properties. The semantics of ASLan++ is
formally de�ned by translation to ASLan, the low-level speci�cation language that
is the input language for the back-ends of the AVANTSSAR Platform � OFMC,
CL-AtSe, and SATMC.

OFMC [5] combines a number of techniques to enable the e�cient analysis of
security protocols. First, OFMC uses lazy data types as a simple way of building
e�cient on-the-�y model checkers for protocols with very large, or even in�nite,
state spaces. A lazy data type is one where data constructors build data with-
out evaluating their arguments. Second, OFMC models the adversary in a lazy
fashion, where adversary communication is represented symbolically and solved
during search. Third, while OFMC performs veri�cation for a bounded number of
sessions, it works with symbolic session generation, which avoids enumerating all
possible ways of instantiating possible sessions. Fourth, OFMC exploits a state-
space reduction technique, inspired by partial-order reduction, called constraint
di�erentiation [15]. Constraint di�erentiation works by eliminating certain kinds
of redundancies that arise in the search space when using constraints to represent
and manipulate the messages that may be sent by the adversary. Finally, OFMC
also provides some limited support for handling di�erent equationally speci�ed
operators on messages [6]. [4]

Cl-Atse [18] represents protocol states symbolically as a collections of non-
ground facts, which record the states of di�erent threads, the messages sent to
the network, and the adversary knowledge. In particular, constraints are used to
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describe what the di�erent agents know and a constraint calculus is used to solve
for what they can know, from messages previously exchanged, i. e., the calculus
is used to solve a variant of the non-ground intruder deduction problem. CL-Atse
was designed to allow the easy integration of new deduction rules and operator
properties. [4]

SATMC [3] is an open platform for model checking of security services. SATMC
reduces the problem of checking whether a protocol is vulnerable to attacks of
bounded length to the satis�ability of a propositional formula which is then solved
by a state-of-the-art SAT solver. This is done by combining a reduction tech-
nique of protocol insecurity problems to planning problems and SAT-reduction
techniques developed for planning and LTL that allows for leveraging state-of-the-
art SAT solvers. SATMC provides a number of distinguishing features, including
the ability to check the protocol against complex temporal properties (e.g. fair
exchange); analyze protocols (e.g. browser-based protocols) that assume messages
are carried over secure channels (e.g. SSL/TLS channels). [17]

4 Formal Model

This chapter provides a description of the proposed method that can be used to
create a model of a contactless smart card and a terminal and to de�ne states
representing attacks. This model can be then used in model checking to �nd
attack traces in the protocol. The model takes into account the implementation
details of a particular smart card which could be possibly avoided in a high level
protocol veri�cation. These details are important because wrong use of smart card
commands may introduce a vulnerability even if the high level de�nition of the
protocol is secure. The ASLan++ language was chosen for protocol modeling, it
can be used as an input for multiple back-end model checkers of the AVANTSSAR
Platform.

A model of protocol in ASLan++ is de�ned by roles that can be played either by
a legitimate party or by an adversary called intruder. We establish two main roles
in the model description to represent the implementation � the �rst role represents
the smart card with its functionality and settings, the second role represents the
protocol. The protocol is executed by the terminal, the smart card only responds
to commands from the terminal. The protocol can be therefore identi�ed with the
terminal in our model. The intruder model that is used is the well-known Dolev-
Yao intruder model [8]. All communication is synchronous with the intruder, the
intruder intercepts the messages from the legitimate user and each legitimate user
receives messages only from the intruder. The intruder can be therefore identi�ed
with the network. Figure 2 shows the con�guration of subjects in the model. The
PCD executes the protocol and communicates with the PICC via the intruder,
who is a man-in-the-middle. The goal of our vulnerability �nding method is to
�nd out if the intruder would be able to perform some attack in this con�guration
and �nd an attack trace.

The state explosion problem has to be addressed. If we create precise model of
the smart card and the terminal functionality, the model will be too complex for
the model checker, the number of states will be so high that the model checking
execution time will be unacceptable. The goal of this thesis is to create modeling
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PCD
(terminal) intruder PICC

(smart card)
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Figure 2: Intruder model

method that will create models which can be computed using model checking
in acceptable time and which describe the functionality su�ciently. We create
simpli�ed models that are weaker than the precise model would be, so more attacks
can be found. Attacks that are found by the model checker can be tested and in
case of false positive the model can be adjusted to be more precise and not contain
the particular false vulnerability. The resulting model will be a trade-o� between
precision and model checker execution time.

Since smart cards are usually used in applications where high level of security
is required, con�dentiality, integrity and authentication should be provided by the
protocol to protect data that are being transferred between the smart card and the
terminal. Con�dentiality of data is achieved by encrypting the data using any of
the state-of-the-art ciphers, which are strong enough to be relied on. In this thesis
the strength of the cipher is supposed to be su�cient to resist attacks focused
merely on breaking the cipher rather than �nding vulnerabilities in the protocol.
We therefore consider all ciphers unbreakable for purposes of this thesis so that
we can focus on vulnerabilities in the protocol.

Integrity of messages exchanged between smart card and terminal can be en-
sured in multiple ways, such as computing the cyclic redundancy check (CRC) of
plaintext and encrypting it together with data, or by using message authentication
code (MAC), which is a cryptographic hash. MAC can be used to cryptographi-
cally secure the integrity of data even if these data are not encrypted.

Contactless smart cards usually require terminal authentication which ensures
that the data will not be revealed to unauthorized entities. Each �le in the smart
card has usually access permissions that are used to authorize operations on these
�les. The access rights are determined according to the symmetric key that was
used for authentication.

4.1 Modeling Tool

ASLan++ is the speci�cation language used in AVANTSSAR. It is a high-level
formal language for specifying security-sensitive service-oriented architectures. It
is easy for system designers to use, because it is close to the way in which they
think about systems. It can be used also by users who are not experts on formal
speci�cation language. The AVANTSSAR platform provides conversion from high-
level ASLan++ to ASLan, which is a low-level speci�cation language used by
back-end model checkers to perform veri�cation of security properties.

ASLan++ document consists of four parts: Entities, Declarations, Statements,
and Goals. General schematic architecture of ASLan++ is shown in �gure 3. An
ASLan++model is a hierarchical structure of entities. The top-level entity is called
Environment, its sub-entity is called Session. Sub-entities of Session are used to
describe characteristics of di�erent agents or roles. The entity contains a collection
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entity Environment{

    symbols Declarations

       entity Session (A, B: agent) {

           symbols Declarations

               entity PCD (Actor, B: agent) {

                   symbols Declarations

                   body { Statements }

                }

               entity PICC (A, Actor: agent) {

                   symbols Declarations

                   body { Statements }

                }

           body {

                Statements

               new PCD(A, B);

               new PICC(A, B);

            }

        }

    body {

        Statements

       new Session(pcd, picc)

    }

}

Figure 3: Schematic architecture of ASLan++

of declarations, starting with keyword symbols, and a series of statements, start-
ing with keyword body. Declarations are used to de�ne types, variables, constants,
and functions. They are the static part of the entity, while statements describe the
dynamic part of the entity. Goals are used to formalize the desired security prop-
erties. The most general way to formalize security properties is to use extended
Linear Temporal Logic (LTL) [2] formulas. Validation goals have a name and a
LTL formula that is checked by the validation back-ends. Another way to de�ne
a goal is to de�ne an assertion. Assertions are given as a statement in the body of
an entity. They are expected to hold only at the given point of execution of the
current entity instance.

The ASLan++ model can be checked by any of the AVANTSSAR back-ends.
The back-end model checker will then give a counterexamples when an attack
is found, which can be used to deduce the security �aw of the system. When
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no attack is found, it doesn't necessarily mean there is no vulnerability in the
protocol. The reason may be that the model checker explores the search space to
the maximal depth which was previously set in the back-end without �nding any
attack.

4.2 Smart Card Model

The PICC can be seen as a state machine. The PICC reads commands from
PCD, changes its internal state according to these commands, and responds back.
States of the machine are determined by the internal state of the PICC logic and
by the value of internal variables of the PICC, such as content of �les and used
cryptographic keys. Since the logic must have �nite number of states and the
�les and keys can only have �nite number of values, the number of states of the
machine will be �nite. The transition rules of the automaton are de�ned by the set
of commands and parameters of these commands. Although the set of parameters
will be high, it will be �nite, so the number of transition rules will be �nite as well.
We can therefore model the PICC behavior using a �nite-state automaton or, more
speci�cally, a Mealy machine, whose output is determined by the current state and
the current input. Another state machine concepts can be used instead, such as
UML state machine, which is an enhanced realization of the �nite-state automaton
mathematical concept with characteristics of Mealy machine. UML state machine
diagrams are convenient for describing contactless smart card behavior, because
they support enhanced methods for simple picturing of complex behavior, such as
extended states, hierarchically nested states, and orthogonal regions.

The automaton should describe behavior of a PICC in the level of detail suitable
for model checking, which means the simpler the better. It should be designed to
be simpler than the real implementation and allow false positives rather than false
negatives. It should be as simple as possible, because the model checking could
take unbearable amount of time due to the state explosion problem, if the number
of states was not kept low. The model can allow false positives because it can
be iteratively re�ned, but it should not allow false negatives, which would result
in false belief that the system is secure. The automaton can be re�ned if false
positives are found by the model checker.

Figure 4 shows a sample UML state machine diagram describing logic of the
Mifare DESFire MF3ICD40, which is one of the cards later used to demonstrate
the veri�cation method. Mifare DESFire is a memory card, so the logic is quite
simple. The card shown in the �gure has three applications, the default application
number 0 and two standard applications with numbers 1 and 2, and uses two keys
for authentication, so the user can be authenticated using key1, key2, or not
authenticated (noKey). Only basic commands needed for a payment protocol
are modeled, the authentication command (auth), select application command
(select), read �le (read), and write �le (write). Two actions of 1) putting the card
to the proximity of the reader which starts the communication and 2) taking the
card away from the reader to end the communication are represented by activate
and deactivate transitions respectively.

The model should represent the behavior of a personalized issued card that is
ready to be used in the protocol, which means that it does not have to support all
commands which are used for the smart card personalization or commands that
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active

application 1

noKey

key1

application 0

key0

auth(0)
auth(1)

auth(0)

auth(1)

select(1)

select(0)

application 2

noKey

key1

key0

auth(0)
auth(1)

auth(0)

auth(1)select(0)

select(2)

select(1) select(2)

activate deactivate

[denied][granted] /
memory[app,addr] = decrypt(data)

write(addr,data)read(addr)

[denied]

[granted] /
send(encrypt(memory[app,addr]))

select(0)

Figure 4: UML state machine describing basic Mifare DESFire behavior

are not enabled after the smart card is issued. This approach results in simpler
models and shorter model checking computation times. The Mifare DESFire smart
card supports more commands than the commands shown in �gure 4, but these
commands will not be used after the card is personalized in secure environment,
so they are useless in the model. Also the application 0 in the model does not
allow authentication, because it is used only during personalization for operations
related to creating and setting up other applications.

When the contactless smart card is put to the proximity of the reader, it is
activated and an anti-collision procedure is performed. The anti-collision proce-
dure is used to allow multiple cards to communicate with the terminal without
interference. After the anti-collision procedure, the terminal communicates only
with one smart card at a time, the order of smart cards is negotiated during the
anti-collision procedure. There is no reason for modelling the anti-collision proce-
dure, so in the model the card gets immediately into the active state. When the
card is taken away from the reader, the communication is terminated and the card
is deactivated.

The diagram in �gure 4 uses features of UML state machine diagrams to simply
picture complex behavior. The diagram uses nested states. If a system is in the
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nested state (called substate), it is implicitly also in the surrounding state (called
superstate). The state machine will attempt to handle any event in the context of
the substate, but if the substate does not prescribe how to handle the event, the
event is automatically handled at the higher level context of the superstate.

The �gure describes an extended state machine which uses extended states to
describe memory of the card. The extended state is a combination of the state and
the extended state variables. This feature is very useful, because state machines
without extended states need large number of states to implement variables. The
machine from �gure 4 can be pictured without extended states using orthogonal
region implementing memory, as shown in �gure 5. Each state can contain two or
more orthogonal regions and being in such a state means being in all its orthogonal
regions simultaneously. The number of states in the memory region is very large,
so only a couple of states are depicted to show the notion. We could de�ne the
state machine without orthogonal regions, such machine would have states from
the cartesian product of states in the current orthogonal regions.

The memory cards will result in very simple diagrams, while smart cards with
more complex logic like Java Cards or BasicCards, which allow execution of ar-
bitrary code, will result in more complex diagrams. Examples in this thesis are
based on Mifare DESFire, but models of other card types can be also created.

Although UML state machines are very useful for depicting behavior of con-
tactless smart cards, the behavior can also be described using simple �nite-state
automatons and Mealy machines. Such description is more formal and can provide
more detailed insight.

We can create the Mealy machine representing the PICC by combining an
automaton describing the PICC logic and an automaton representing the state of
memory (the two machines that were combined using orthogonal regions in �gure
5). The formal de�nition of the PICC Mealy machine will be provided later. We
can analyse the logic and memory automatons separately.

The PICC logic automaton should describe behavior of PICC as a response to
the commands sent by PCD. LetMlogic be a deterministic �nite automaton de�ned
as a quintuple (Qlogic,Σlogic, σlogic, qlogic0, Flogic), consisting of:

• a �nite set of states Qlogic

• a �nite set of input symbols Σlogic

• a transition function σlogic : Qlogic × Σlogic → Qlogic

• a start state qlogic0 ∈ Q

• a set of accept states Flogic = Qlogic (PICC may end in all states)

Figure 6 shows an example of Mlogic automaton describing logic of the Mifare
DESFire based on 4.

In this example the card has three applications and uses two keys for authenti-
cation. The states are denoted by a pair of application number and authenticated
key respectively. The initial state is the state where default application number 0
is selected and no authentication was performed � authenticated key 0. Only ba-
sic commands needed for a payment protocol are modeled, the select application
command (select), the authentication command (auth), the read �le command
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active

application 1

noKey

key1

application 0

key0

auth(0)
auth(1)

auth(0)

auth(1)

select(1)

select(0)

application 2

noKey

key1

key0

auth(0)
auth(1)

auth(0)

auth(1)select(0)

select(2)

select(1) select(2)

activate deactivate

lastMemoryState memoryState1

memoryStateNwrite(addr,data)

write(addr,data)

write(addr,data)

read(addr)/sendData()

select(0)

Figure 5: Mifare DESFire UML state machine with memory states

13



[0,0]

[1,0]

[1,1]

[2,0]
[2,1]

[1,2]

[2,2]

select

select

auth

select

auth

auth

auth

read, write

read, write

read, write

read, write

Figure 6: FSM describing smart card behavior for some basic commands

(read), and the write �le command(write). Read and write commands do not
change state of the automaton, for these operation the memory automaton will
be needed. The diagram does not contain description of all transitions, which are
same as in 4, and does not show �nal states. All states are potentially �nal, since
the communication with the card can be ended or interrupted in arbitrary state.

The automaton describing the state of the PICC memory has states determined
by the content of �les, values of cryptographic keys, and values of all other variables
that are persistent in the PICC memory and that can be changed during the life
of the card. It can be de�ned similarly as the Mlogic. Let A = a1, a2, ...an denote
all memory blocks (�les, keys, etc.), n is the number of memory blocks. Let D be
a set of all possible data that can be stored in a block. Let Cwrite = A × D
be a set of all write command parameters, which consist of memory address
and data to be written and let Cread = A be a set of read command param-
eters consisting of memory address and let cnoop be a command for no opera-
tion. Let Mmemory be a deterministic �nite automaton de�ned as a quintuple,
(Qmemory,Σmemory, σmemory, qmemory0, Fmemory), consisting of:

• a �nite set of states Qmemory = D1×D2× ...×Dn, where n is the number of
memory blocks

• a �nite set of input symbols Σmemory = Cwrite
⋃
Cread

⋃
{ cnoop }

• a transition function σmemory : Qmemory×Σmemory → Qmemory (commands for
writing data Cwrite change state appropriately, Cread and cnoop do not change
state)

• a start state qmemory0 ∈ Q (initial content of memory)

• a set of accept states Fmemory = Qmemory (PICC may end in all states)
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The automaton describing the PICC is the combination of the automaton de-
scribing the PICC logic and the automaton representing the state of memory.

Let M be a Mealy machine de�ned by a 6-tuple (Q,Q0,Σ,Λ, T,G) consisting
of the following:

• a �nite set of states Q = Qlogic ×Qmemory

• a start state Q0 = (qlogic0, qmemory0), which is an element of Q

• a �nite set of input symbols Σ ⊆ Σlogic×Σmemory; input alphabet will contain
only meaningful commands:
(write, ci), where write ∈ Σlogic, ci ∈ Cwrite

(read, ci), where read ∈ Σlogic, ci ∈ Cread

(ci, cnoop), where ci ∈ Σlogic\ {write, read}, cnoop ∈ Σmemory

• a �nite set called the output alphabet Λ = D
⋃
R, where R is a set of PICC

status responses and D will be used for read command responses

• a transition function T : Q× Σ→ Q mapping pairs of a state and an input
symbol to the corresponding next state

• an output function G : Q × Σ → Λ mapping pairs of a state and an input
symbol to the corresponding output symbol

An intuitive interpretation of a Mealy machine is following. At any point in
time, the machine is in some state q ∈ Q. It is possible to give inputs to the
machine by supplying an input symbol i ∈ Σ. The machine then responds by
producing an output symbol G(q, i) and transforming itself to a new state T (q, i).

The read and write commands will be processed only after correct authentica-
tion, which is determined by the state of the logic automaton. The read command
will return the �le content based on the state of the memory automaton, and write
command will change the state of the memory automaton. All other transitions
will return only status of the command execution.

4.2.1 States reduction

The model checking execution time strongly depends on the total number of states.
In order to keep the model checking time short, the number of states of the state
machine that simulates the smart card should be as low as possible, so some
optimization should be performed. To reduce the number of states in the state
machine we can reduce the number of states used for logic (Mlogic), or for memory
(Mmemory), or both.

To reduce the number of states that describe logic of the smart card, we can
keep only states that has any side e�ect, for instance send data to the reader (read
command) or make persistent changes in the memory (write command), and join
them with the supporting states that represent the chain of commands. We can
create optimized commands that are combination of multiple real commands. Each
combined command has a side e�ect. We simulate commands for data transfer �
read and write. This approach reduces execution time of the model checker.
Figure 7 shows the state machine from �gure 4 with reduced number of states.
There are only two commands:
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activeactivate deactivate

[denied] [granted] /
memory[app,addr] = decrypt(data)

write(addr,data)

read(addr) [denied] [granted] /
send(encrypt(memory[app,addr]))

Figure 7: Reduced number of states

• read: this command is a combination of select application, authenticate, and
read command

• write: this command is a combination of select application, authenticate,
and write command

This reduction is possible and has no impact on attack �nding results, because
the supporting commands for selecting application and authentication can be per-
formed multiple times and only the last performed command has impact on the
following read or write command. The internal state is determined by the last
select and authenticate commands, the previous commands are forgotten. The
read and write commands will contain parameters for selected application num-
ber, which will be consequently part of the memory address, and other parameter
for authentication and determining the authentication key. The �gure contains
the authentication token auth, which will be described later together with the
authentication mechanism.

To reduce the number of states in theMmemory, we have to reduce the number of
memory blocks that can be written to, and/or reduce the number of possible data
that can be stored. If the card supports addressing of data blocks by application,
�le ID, o�set and length, the number of possible write locations can be tremendous.
Better approach is to have only memory locations that the application is supposed
to write to or read from and one undesired location for each �le that will be used
to simulate writing or reading to bad location that will corrupt the result. Using
this approach the total number of states will be reduced dramatically, which will
also reduce the model checker execution time.

4.2.2 PICC Entity

When the PICC behavior is known and modeled for example using UML state
diagram, the PICC role in ASLan++ can be created. The ASLan++ general
schematic was shown in �gure 3, the PICC behavior is de�ned in the entityPICC,
which contains symbols declarations and body. The body of the PICC role can be
created based on the UML state diagram. The basic PICC functionality that is
created in the body is an in�nite loop that reads commands from PCD, processes
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them, and sends responses back to the PCD, as shown in �gure 8. The states of
the PICC (as de�ned in the UML state diagram) are determined by values of state
variables, that are de�ned in the symbols declarations part.

States can be de�ned in several ways. There can be one PICC state variable
or there can be multiple state variables. In the latter case the PICC state is
determined by values of all state variables together. The state variables may
represent for instance the selected application and authenticated key.

PICC response is based on the current state and the received command. Both
state and command variables are declared in the symbols part of the PICC entity.
ASLan++ allows new type de�nition, so the state variable may be of type state
and the command variable may be of type command. These types can be declared
in the symbols part of the Environment. These types should be declared as
subtypes of the basic type text. Variables could also be declared as text without
creating new types.

For creating a model of Mifare DESFire with reduced set of commands as
shown in 7 no states are necessary, because the model has only one state. The
PICC responses are then based only on the received commands.

This section is dealing only with the logic automaton and shows only the basic
structure of the PICC role. The PICC behavior is more complex when the memory
automaton is taken into account. The memory automaton is not created in the
same way by modeling its states, it is created in a more natural and straightforward
way by introducing variables that represent the memory of the PICC and the
state of the memory automaton is determined by the values of these variables.
In other words, the state of the memory automaton is determined by the content
of the PICC memory. The PICC will also have other variables for example for
authentication purposes as described later, and we will consider it as part of the
memory automaton.

The body part of the PICC entity can access the memory for read and write, so
the resulting model will be the combination of the logic and memory automatons.

4.2.3 Basic Concepts

There are some basic concepts that can be put together to form a smart card model.
These concepts are general and can be used to create a model of arbitrary smart
card with pre-de�ned set of commands. We describe modeling of the following
concepts:

• Applications

• Authentication

• Encryption

• Files and Permissions

• Personalization

• Integrity

17



entity PICC (A, Actor: agent) {

symbols

State: state;

Command: command;

...

body {

...

while(true) {

% read command

A -> Actor: ?Command;

select {

on(State = state1): {

select {

on(Command = command1): {

...

}

on(Command = command2): {

...

}

...

}

}

on(State = state2): {

select {

on(Command = command1): {

...

}

on(Command = command2): {

...

}

...

}

}

...

}

% send response

Actor -> A: ok;

}

}

}

Figure 8: PICC role in ASLan++
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The following sections describe the method of creating a PICC role in the
ASLan++ for these concepts, how to implement basic commands (commands of
the PICC automaton) and also how to implement the simpli�ed commands (com-
mands of the PICC automaton with reduced number of states).

Applications
Multi-application contactless smart cards support multiple applications even

from di�erent vendors on a single card. The application on cryptographic memory
card is not an executable program, it is rather a set of resources dedicated to
application outside the card. The application on the card can consist of �les used
to store data and symmetric keys used for authentication and data encryption.
The application outside the card can securely store data in the card and read
them back later. This can be used for instance for payment applications or loyalty
program applications, where some credit is stored on the card.

To simulate the application selection in the PICC role, we can use a state
variable which is set by the PCD using a select command. The value of selected
application is then used for �le access. If we use the automaton with reduced
number of states, the application selection is part of another command, such as
the read or write command.

Authentication
The authentication process between smart card and terminal is usually mu-

tual, both parties must prove possession of a common secret. In case of Mifare
DESFire contactless smart card, the three-pass authentication is executed and the
common secret is the DES/3DES key. When creating a model of a smart card, the
authentication does not have to have precisely three message exchanges, it can be
simpli�ed in order to keep the number of states low. The simple way of simulating
the mutual authentication process and modeling in ASLan++ is a fresh session
key generation performed by one of the parties and sending it encrypted using the
authentication key to the other party. The other party must check that the session
key is fresh and was never used before during the protocol run. This approach uses
a trick based on the fact that we can be certain of things that we cannot in the real
environment. We can have a secret key shared only by legitimate entities and we
can be sure that the intruder does not know the key. So if something is encrypted
using this secret key, such as the fresh random session key, the receiving party can
be sure that the message was encrypted by the legitimate counterpart, and also
the sending party can be sure that only the legitimate counterpart can decrypt the
message. The sending party generates the fresh session key to simulate new ses-
sion key generation performed during the three-pass authentication, the receiving
party must check that the key is really fresh and was never used before during the
protocol run. The fresh session key generation and checking by the other party
will prevent replay attack on the authentication. Figure 9 shows example of a
three-pass authentication. {A.B}K means concatenation of A and B encrypted
using encryption key K.

Thanks to the fact that in the model we can be certain of things that we
cannot in the real environment and that the PICC can remember all previously
used session keys and check that the new session key is really fresh, we can simulate
the authentication using only one message exchange, as shown in �gure 10.
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PCD

PCD

PICC

PICC

Authenticate using key K

{nonceB}K

{nonceA.nonceB}K

{nonceA}K

Figure 9: Three-pass authentication example

PCD

PCD

PICC

PICC

PICC and PCD share secret key K

Generate fresh session key S

{S}K

Check if S is fresh

Authenticated with key K

Figure 10: Simpli�ed authentication used in model
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After the one-pass authentication, PCD and PICC share the common session
key, which could not be eavesdropped by the attacker, because it was encrypted
with key not known by the attacker. The PICC knows which authentication key
was used and can grant access to �les accordingly. The authentication needs
to be implemented in both PCD and PICC roles. The PCD always starts the
communication and sends commands, so it will also generate a random session
key.

In case of the automaton with reduced number of commands, the authen-
tication can be part of another message. Figure 11 shows possible ASLan++
source of one-pass authentication, where the authentication token is part of the
readF ile command. The PCD generates fresh SessionKey and sends it in the
auth token with authentication key key1, which is not known by the intruder.
PICC checks that the session key was never used before (authentication result-
ing in fresh session key) or that it is the current session key, in which case the
protocol continues with the old session key (no new authentication). The current
session key is stored in variable SessionKey and the set of all used session keys is
UsedSessionKeys. In case of successful authentication, the current session key is
stored in UsedSessionKeys set for later use.

Encryption
The high level language ASLan++ already supports modeling of communica-

tion encryption, but it does not consider various modes of encryption algorithms.
In ASLan++ any data can be encrypted using symmetric or asymmetric cipher.
These ciphers are considered unbreakable for purposes of protocol modeling, there-
fore the intruder cannot learn the plaintext of the encrypted data unless he knows
the corresponding key. The complexity of breaking the encryption algorithm is
out of scope of this thesis. But there are di�erent modes of encryption that must
be taken into account when creating a model even if the cipher algorithm itself is
considered unbreakable. Symmetric ciphers are used in the following modes:

• ECB � Electronic Codebook

• CBC � Cipher Block Chaining

• CFB � Cipher Feedback

• OFB � Output Feedback

• CTR � Counter

The ECB mode encrypts each block of data in the same way independently
on the other blocks. The initialization vector is same for each block. The other
modes are more secure, because each block encryption depends on the previous
blocks, which makes the cryptanalysis more di�cult. The initialization vector of
the cipher is changed after each block encryption, so each block is encrypted using
di�erent initialization vector. Mifare DESFire MF3ICD40 speci�cation states that
DESFire uses CBC mode. Although each block of data is encrypted in CBC mode,
same initialization vector is used for each block, which means that for short data
blocks the data is encrypted using ECB and we will consider it as ECB mode
for purposes of this thesis. This mode is prone to replay attacks, because each
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entity PCD (Actor, B: agent) {

...

body {

% fresh session key generation

SessionKey := fresh();

% read name

Actor -> B: readFile(addressName, auth(key1, SessionKey));

B -> Actor: enc(SessionKey, ?Data);}

}

}

entity PICC (A, Actor: agent) {

...

body {

while(true) {

% read command

A -> Actor: ?Command;

select {

on(Command = readFile(?DataAddress, auth(?AuthenticatedKey,

?SessionKeyTemp))): {

% authentication

select {

on(!UsedSessionKeys->contains(SessionKeyTemp) |

SessionKey = SessionKeyTemp): {

% store current session key

UsedSessionKeys->add(SessionKeyTemp);

SessionKey := SessionKeyTemp;

% authenticated

...

}

}

}

}

}

}

}

Figure 11: One-pass authentication in ASLan++
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% ECB mode

encryptedECB := enc(SessionKey, Data);

% CBC mode

encryptedCBC := enc(SessionKey, nextIV(lastIV), Data);

Figure 12: ECB and CBC encryption modes in ASLan++

data block is encrypted using the same initialization vector and the same key. In
ASLan++ each block is encrypted using same key and there are no initialization
vectors, so we can consider it the ECB mode.

From the protocol modeling perspective, the CBC, CFB, OFB, and CTRmodes
do not di�er. They use the initialization vector which is di�erent for each block.
The strength of these modes is out of scope of this thesis. We can model these
modes by adding fresh number (not used before and not known by the intruder)
to the data being encrypted, simulating the changing initialization vector. This
approach will provide resistance to replay attacks.

Encryption in ECBmode can be written in ASLan++ as enc(SessionKey,Data),
a non-invertible function representing Data encrypted using key SessionKey.
Non-invertible means that although it may be overheard by the intruder, the in-
truder is not able to invert the function to get the SessionKey or Data.

In case of CBC, we can use initialization vectors that are chained using custom
function nextIV () so that fresh initialization vector is used each time. The �rst
initialization vector is custom vector zeroIV , the next one is nextIV (zeroIV ),
the next one is nextIV (nextIV (zeroIV )), etc. The encryption in the CBC mode
can then look like this: enc(SessionKey, nextIV (lastIV ), Data), where lastIV is
the last initialization vector. Other encryption modes can be modeled along the
same lines.

Figure 12 shows encryption in ECB and CBC modes.

Files and Permissions
Smart cards provide �le system with permissions that can control access to

each �le based on the key that was used for authentication. We can model �les
and permissions in ASLan++ either as variables or as facts. If the structure of
�les is static and will not change during the life of the smart card, it is possible
to model �les using variables in PICC role. Each �le would be a variable and
�le permissions would be variables as well. Better approach is to use ASLan++
facts. Facts are global and more �exible, so when using facts it is possible to
check content of PICC �les even from the PCD role, and it is possible to add new
facts and retract existing facts, which can be used to simulate �exible �le system
where �les can be created and deleted. Figure 13 shows how the �le system can
be declared in ASLan++ as fact �leSystem with four parameters for data address,
authentication keys to get read and write permission, and data itself.

The �rst parameter of the fact represents the address of the �le and is of
type text, which is the most simple type in ASLan++. The second parameter
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fileSystem(text, symmetric_key, symmetric_key, message): fact;

Figure 13: PICC �le system in ASLan++

represents authentication key that must be used to obtain read permission to this
�le and is of type symmetric_key, which is an ASLan++ type for symmetric keys.
Analogously, the third parameter is the authentication key for write permission.
The fourth parameter represents data stored in the �le and is of type message,
which is a compound type that can store any combination of data of any other
type.

Although address has a simple type, it represents a number of values that
constitute the address on a real card, such as selected application number, �le ID,
o�set, and length of data. We decided to have a separate fact for each data block
that can be addressed instead of one fact per �le, which results in more than one
fact per �le. Blocks of di�erent lengths and o�sets may overlap, so not all blocks
will contain meaningful data. Such blocks will contain the message corrupted to
easily recognize unwanted data.

Long �les will contain many fact de�nitions, but for modeling purposes we can
reduce the number of possible �le addresses by de�ning only the desired addresses
and one invalid address instead of all possible invalid addresses. Reading from
this invalid address will return corrupted and writing to this location will save
corrupted.

Personalization
Behavior of each smart card type can be modeled using basic principles of

applications, authentication, encryption, �les, and permissions. All cards of one
type has the same behavior. For using in a protocol, such as payment protocol or
loyalty program, the smart card must be personalized. Personalization is a process
when the smart card is initially populated with data of an intended smart card
user, such as the name or the account number. Consequently, each smart card
will contain di�erent data in �les. This process should be taken into consideration
when modeling the smart card protocol. The personalization process does not have
to be modeled, since it usually takes place in a trusted environment. The smart
card can be used in the modeled protocol only after the personalization, so we can
create the model of a card which is already personalized. To create the model of
a personalized smart card, all �les must be created and populated as they would
be during the personalization process.

Integrity
Integrity of data exchanged between the PCD and the PICC is important, but

it is not always possible for the PCD or the PICC to check the integrity. The
attack de�nitions described later will cover these attacks so that any attack on
integrity will be reported by the model checker.

There are situations in which the PCD or the PICC can check the integrity of
data to avoid an attack, such as if some mechanism providing integrity assurance
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is used or if the integrity of data is protected by itself. The integrity protecting
mechanisms can be for example message authentication code (MAC) or encryption
in CBC mode. The data with its own protection mechanism are for example cer-
ti�cates, which are digitally signed. For data with this property we can implement
integrity check in the ASLan++ source so that the PCD or PICC can �nd out
that the data has been altered and perform a response to such attack. Otherwise
the PCD or the PICC cannot distinguish between genuine data and forged data,
so the integrity assurance depends on the inability of attacker to send forged data.
The model checker may �nd an attack on integrity, in such case some integrity
mechanism should be implemented.

4.3 Application Logic Model

There are two interacting roles in the ASLan++ model, the PICC, representing
the card, and the PCD, representing the terminal. The PICC is only executing
commands sent to it from the PCD, so we model the application logic of the
protocol in the PCD role. The PCD role contains the application logic of the
terminal and of the back-end systems. It issues commands to the PICC and
decides what to do next when the response from PICC is received. The PCD
represents the protocol run.

During the development, the developer can use the sequence diagram of the
protocol or the �ow diagram of the application as the basis for the PCD model.
The PCD role should contain the logic (or simpli�ed logic) of the application. The
intruder can also play the PCD role, but he does not have to follow the logic in
the role de�nition, he can perform arbitrary actions. The role de�nition is good
only for the legitimate entity behavior.

Figure 14 shows the diagram of a sample payment protocol that will be used
to demonstrate the protocol logic modeling. The diagram shows only the com-
munication between two legitimate parties where no error occurs. A �ow diagram
can be used to better describe the logic of the PCD. The PCD role in ASLan++
should re�ect the PCD logic shown in the diagram.

The previously described states reduction of the PICC role will reduce the
number of commands by making them more complex. So for example the three-
pass authentication followed by the select command for selecting application and
then by the read command will result in only one command combining them
together. This fact must be taken into account when translating the model checker
results into the applicable attack paths.

Figure 15 shows how the PICC role implementation of the protocol may look
like when the number of Mifare DESFire commands is reduced only to read and
write in order to reduce model checking execution time. First two parameters
of both commands are same. The �rst parameter is in both cases the address
of data to be read or written. Mifare DESFire uses application number, �le ID,
o�set of data in �le, and length to address particular data block, so the address
will represent the combination of these values. For modeling purposes, each of
these combinations will be named according to the variable it will store. So for
example the cardholder's name will be stored in application number 1, in �le with
�le ID 1, with o�set 0 and length 20; this particular data block address will be
named addressName to indicate that this address is used to store the name. Other
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PCD

PCD

PICC

PICC

Authenticate using key1

(3-pass authentication)

Select application 1

Status

Read name (FileID: 1, Offset: 0, Length: 16)

Encrypted name

Read old balance (FileID: 2, Offset: 0, Length: 4)

Encrypted old balance

Subtract price from old balance

Write (encrypted) new balance (FileID: 2, Offset: 0, Length: 4)

Save new balance

Status

Figure 14: Sample payment protocol
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PCD

PCD

PICC

PICC

Generate fresh session key S

readFile(addressName, auth(key1, S))

{name}S

readFile(addressBalance, auth(key1, S))

{oldBalance}S

newBalance = oldBalance - price

writeFile(addressBalance, auth(key1, S), {newBalance}S)

ok

Figure 15: Payment protocol with reduced set of commands

addresses will be named in the same manner. Addresses not intended to store data
will also have some name.

The second parameter auth(key1, S) is an authentication token. It is a session
key S encrypted using private key key1 (key1 is shared between legitimate entities
and not known by the intruder). The PICC checks whether S is the current session
key (no new authentication) or S is a fresh session key (authentication using key1).
Every old session key (invoked by replay attack) is rejected by the PICC.

The third parameter in the write command is the data to be written encrypted
using the session key from the second parameter. The response of the read com-
mand is the data encrypted using the session key from the second parameter, the
response of the write command is only a status message. Symmetric encryption
of oldBalance using key S is denoted {oldBalance}S.

4.4 Attack De�nition

In the previous sections the model creation was described. The model is writ-
ten in ASLan++ language, which can be automatically translated to the ASLan
language, which is an input format for the back-end model checkers. The attack
de�nition must be provided for the model checker to �nd any attack traces. The at-
tack is de�ned as a condition that should never happen in normal protocol run and
that means that the intruder learned something that he should not have learned
(con�dentiality), or that he changed something that he should not have changed
(authentication, integrity). These conditions are de�ned in the ASLan++ model
and then translated to states that mean an attack. If the model checker �nds a
path to one of the attack states, a possible attack is reported. The attack trace
should be evaluated and in case of false positive, re�nements should be made to
the model. The model checker should be run again and this process should be
repeated until real attack is found or the model checker concludes that there is no
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attack.
Although there are means for de�ning security goals of con�dentiality and

authentication in ASLan++, these do not �t well for the purposes of our attack
de�nitions. We will use assertions that will always hold unless an attack is under
way. We can easily set goals that the protocol should achieve, covering all desired
security goals, by de�ning assertions in the PCD role that can contain information
from PICC which would not be available in real environment, such as content of
�les (because �les are modeled as global facts). Example in �gure 16 shows an
assertion that can be used at some point in the PCD or PICC role to check content
of some �le on the card.

assert ok: fileSystem(addressBalance,key1,key1,newBalance)

Figure 16: Attack de�nition in ASLan++

We can interpret this assertion as follows: if the �le at address addressBalance
contains the value newBalance, it is ok, otherwise the model checker will stop and
an attack will be reported.

5 Protocol Modeling Limitations

5.1 Attacks not Covered

Although formal veri�cation methods are useful for �nding vulnerabilities on the
protocol level, the usability of this technique on other attacks on contactless smart
cards is limited. Other attacks, such as physical attacks, side-channel attacks, and
attacks speci�c for contactless communication are out of scope of this method,
since this method is not suitable for them and there is no way how to model
properties that would be necessary to �nd such attacks.

In this chapter another method that can increase the security of contactless
smart cards is proposed. This method is focused on possible attack that is not
covered in the protocol modeling method and cannot be found using formal ver-
i�cation, because it is an attack on low level communication, where timing is of
importance.

This chapter is dedicated to preventing relay attacks, which is a type of attack
that cannot be prevented on the application level. Relay attacks are possible due
to the contactless communication link and were described in section ??. Two
countermeasures are proposed in this chapter. These methods can be used to
prevent real attacks that induce delays signi�cantly longer than the delay caused
by the time travelling longer distance. They can be used against most likely
attacks, which are not expensive and can be easily performed by attackers with
moderate skills, which makes them very dangerous.
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5.2 Relay Attack Mitigation

We propose a method to prevent real-world attacks that induce delays signi�cantly
longer than the delay caused by the time travelling longer distance. This method
is described in the �rst subsection. In the second subsection we show a method
that is a countermeasure to the overclocking attacks. The method is based on
overclocking the legitimate reader to the limit the communicating card can still
reliably operate, which reduces to minimum the time the attacker can gain by
overclocking the forged reader. We have implemented the overclocking method in
the reader and show the results. The signal was analysed on the oscilloscope. The
communication time was reduced while the card was still able to reliably operate.

5.2.1 Passive Detection

The reader can monitor the communication and detect anomalies. It does not make
any changes to the transmitted signal or data being sent, so we call it passive
detection. Alternatively, the reader monitoring can be provided by an external
device such as Proxmark 3, which can be used to eavesdrop on the communication
and which provides precise timing data.

This method can be used against relay attacks where signi�cant delays are
induced for instance by bu�ered communication link between attackers' devices.
The passive detection is based on precise measuring the responses of all commands.
Initially, the �ngerprint of each type of smart card is made, all response times are
measured and saved for later use. During the communication, all response times
are continuously measured and compared to the times saved in the smart card's
�ngerprint. In case of any anomaly, the possible attack is reported.

Additionally, the reader should have much shorter delay restrictions. The
Frame Waiting Time should be restricted to minimal values for which the smart
card can operate reliably, and the Frame Waiting Time Extension should be dis-
abled by default and allowed only in reasonable situations.

The relay attack over short distance performed with custom made hardware
would not be detected by passive detection. However, attacks over computer
network or attacks using o�-the-shelf USB readers could be detected, because they
induce much bigger delays, as discussed in the previous section. These attacks are
not expensive and can be easily performed by attackers with moderate skills, which
makes them very dangerous. This countermeasure is quite easy to implement
compared to distance bounding protocols. It can be worth implementing such
countermeasure even if it does not protect against all theoretical attacks, because
it protects against the most likely attacks.

5.2.2 Overclocking

As mentioned earlier, attackers can reduce the round-trip time by overclocking
the communication with the legitimate smart card, while communicating on the
normal frequency of 13.56 MHz with the legitimate reader. The result is that they
get the response from the card faster that the legitimate reader would get it, so
they can send the response back sooner than the reader expects and reduce the
delay caused by the relay attack. The distance bounding protocol could therefore
be circumvented.
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The proposed method is based on overclocking the legitimate reader to fre-
quency as high as possible, where the smart card is still reliably operating, which
reduces chances for the attackers to perform successful relay attack. The timing
is shown in �gure 17. The �rst row depicts the time the ordinary communica-
tion takes. This is the time the attacker must not exceed in order to keep the
relay attack undetected by the round-trip time measurements. The second line
shows the relay attack time, which consists of the delay caused by the relay at-
tack, which is the time of �ight of the signal and delays on intermediate devices,
and time needed by the attacker to execute the command, which is equal to the
time needed in the standard communication. In this case the total time exceeds
the time of the standard communication. The third line is the case of overclocking
attack, which reduces the time of the command execution by the attacker. In
this situation the total time is same as the time of the standard communication,
which will likely make the relay attack successful. The last line shows the pro-
posed method of overclocking the legitimate reader, which will result in reducing
the time of the standard communication, establishing new time limit. So even if
the attacker is overclocking the communication with the legitimate card as well,
he will exceed the new time limit.

Implementation with Proxmark
We have implemented the reader that communicates with the smart card on

the frequency 16 MHz using Proxmark 3. Figure 18 compares the response times
between standard communication at 13.56 MHz and communication of our over-
clocked reader running at 16 MHz. Mifare DESFire smart card was used and
the depicted command is the polling command, which is periodically sent by the
reader. By increasing the frequency, approximately 53µs was spared on this basic
command. The response is not clearly visible in the signal, because it is modu-
lated on a subcarrier 848 kHz, so all parts of the communication are marked in
the graph.

Figure 17: Time consumption
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Figure 18: Response times comparison

6 Conclusions

This thesis analyses contactless smart card protocol threats and presents a method
of semi-automated vulnerability �nding in contactless smart card protocols using
model checking. The high level goal of this thesis was to investigate security
of contactless smart card protocols and to �nd methods of improving security
of these protocols. The contribution of this thesis is twofold: 1) the method of
semi-automated vulnerability �nding using formal methods, which can be used
for �nding high level attacks on the protocol level, and 2) the countermeasures
to relay attacks performed over a network, which were created after relay attacks
investigation.

The focus in this thesis is on the high level attacks on the protocol level. Possi-
bility of these attacks was analysed and a method of semi-automated vulnerability
�nding using formal methods was proposed. The formal model can be created
from the protocol de�nition or extracted from the eavesdropped communication.
Unwanted states that pose an attacks are speci�ed. After analysing the protocol
and creating the model including the attack states, model checking can be used to
automatically �nd vulnerabilities.

AVANTSSAR platform is used for the formal veri�cation, the models are writ-
ten in the ASLan++ language. Examples demonstrate the usability of the pro-
posed method.

This thesis deals mainly with simple smart cards with �xed �le structure and
pre-de�ned set of commands. These smart cards provide authentication based
on symmetric keys, multiple applications and �le system with access permissions.
Access control is based on keys that are used for authentication, data may be
encrypted using some symmetric cipher. One of the most popular and widespread
contactless smart cards that uses this scheme is Mifare DESFire, which was used
in examples in this thesis. Other smart cards have more sophisticated operating
system and can execute applications on their chip, such as Java Cards, MULTOS
cards or BasicCards. Their application logic can be modeled as well, but this thesis
is focused mainly on smart cards with �xed �le structure and pre-de�ned set of
commands.
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The method presented in this thesis was used to �nd a previously unpublished
weakness of the Mifare DESFire MF3ICD40 contactless smart card. Some features
of the Mifare DESFire MF3ICD40 were found to be very dangerous and it may
be very di�cult to implement protocol using this card in a secure way. Although
these features are not considered vulnerabilities of the smart card itself, they help
to introduce vulnerabilities into the implementation.

We have shown how the inappropriate protocol implementation can yield new
vulnerabilities even if the protocol itself is secure and the communication with
the hardware is considered secure too. We have demonstrated a sample attack on
�ctional payment protocol implementation on Mifare DESFire smart card. There
is a potential for adversaries to perform similar attacks on real systems. We have
introduced a concept of automated vulnerability search using formal veri�cation
methods to �nd complex attack traces which are not likely to be found manually.
There is a possibility to use the source code to get an overall image of the protocol
and to create the model which is as close to reality as possible, or a man-in-
the-middle attack can be used to get information about the protocol from the
implementation.

Not all kinds of attacks are covered by the proposed method, so one type of the
remaining attack types � the relay attack � was investigated separately. A minor
part of this thesis was dedicated to relay attack investigation and countermeasure
proposal.

We have proposed a method based on passive detection to prevent real attacks
that induce delays signi�cantly longer than the delay caused by the time travelling
longer distance. It can be used against most likely attacks, which are not expensive
and can be easily performed by attackers with moderate skills, which makes them
very dangerous. This countermeasure is quite easy to implement compared to
distance bounding protocols. It can be worth implementing such countermeasure
even if it does not protect against all theoretical attacks.

We have shown a possible countermeasure to the overclocking attacks. The
method is based on overclocking the legitimate reader to the maximal limit where
the communicating card can still reliably operate. This method reduces to mini-
mum the chances of the attacker to gain time by overclocking the communication
with the legitimate card and hence to circumvent the time limit. We have imple-
mented the reader that communicates with a smart card on the frequency 16 MHz
and tested it with a real card.

Further research may be focused on �nding more automatic methods of creating
formal model from the analysed protocol. Learning techniques allow automatic
inference of behaviour of a system as a �nite state machine and can be used to
extract such formal models from software on smart cards or to extract the protocol.
Such automated reverse-engineering takes little e�ort and is fast. The �nite state
machine models obtained can be used in the method presented in this thesis. This
approach would improve this method by making it more automatic.

The results presented in this thesis were published in journal [10] with impact
factor and international conferences [11], [9], and [12].
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Abstrakt

Tato práce analyzuje hrozby pro protokoly vyuºívající bezkontaktní £ipové karty
a p°edstavuje metodu pro poloautomatické hledání zranitelností v takových pro-
tokolech pomocí model checkingu. Návrh a implementace bezpe£ných aplikací jsou
obtíºné úkoly, i kdyº je pouºit bezpe£ný hardware. Speci�kace na vysoké úrovni
abstrakce m·ºe vést k r·zným implementacím. Je d·leºité pouºívat £ipovou kartu
správn¥, nevhodná implementace protokolu m·ºe p°inést zranitelnosti, i kdyº je
protokol sám o sob¥ bezpe£ný. Cílem této práce je poskytnout metodu, která m·ºe
být vyuºita vývojá°i protokol· k vytvo°ení modelu libovolné £ipové karty, se za-
m¥°ením na bezkontaktní £ipové karty, k vytvo°ení modelu protokolu a k pouºití
model checkingu pro nalezení útok· v tomto modelu. Útok m·ºe být následn¥
proveden a pokud není úsp¥²ný, model je upraven pro dal²í b¥h model checkingu.
Pro formální veri�kaci byla pouºita platforma AVANTSSAR, modely jsou psány v
jazyce ASLan++. Jsou poskytnuty p°íklady pro demonstraci pouºitelnosti navrho-
vané metody. Tato metoda byla pouºita k nalezení slabiny bezkontaktní £ipové
karty Mifare DESFire. Tato práce se dále zabývá hrozbami, které není moºné
pokrýt navrhovanou metodou, jako jsou útoky relay.

Abstract

This thesis analyses contactless smart card protocol threats and presents a method
of semi-automated vulnerability �nding in such protocols using model checking.
Designing and implementing secure applications is di�cult even when secure hard-
ware is used. High level application speci�cations may lead to di�erent implemen-
tations. It is important to use the smart card correctly, inappropriate protocol
implementation may introduce a vulnerability, even if the protocol is secure by
itself. The goal of this thesis is to provide a method that can be used by protocol
developers to create a model of arbitrary smart card, with focus on contactless
smart cards, to create a model of the protocol, and to use model checking to �nd
attacks in this model. The attack can be then executed and if not successful, the
model is re�ned for another model checker run. The AVANTSSAR platform was
used for the formal veri�cation, models are written in the ASLan++ language.
Examples are provided to demonstrate usability of the proposed method. This
method was used to �nd a weakness of Mifare DESFire contactless smart card.
This thesis also deals with threats not possible to cover by the proposed method,
such as relay attacks.
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