
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

MULTI-FACTOR AUTHENTICATION IN WEB APPLI­
CATIONS USING PAM
VIAC-FAKTOROVÁ AUTENTIZÁCIA VO WEBOVÝCH APLIKÁCIÁCH POMOCOU PAM

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARIÁN KAPIŠINSKÝ
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
22370

Student: Kapišinský Marián

Programme: Information Technology

Title: Multi-Factor Authentication in Web Applications Using PAM

Category: Security

Assignment:
1. Study Pluggable Authentication Modules (PAM), focus on multi-factor authentication

setups. Configure the multi-factor authentication for a common service (e.g., sshd) and
analyse results. Study HTTP, focus on its state-less nature.

2. Investigate the possibility of using the full PAM stack in web applications, including multi-
step conversations.

3. After agreement with the supervisor, develop a solution which would allow the use of the
PAM conversation over the web. Create a prototype web application/setup to
demonstrate the usage of the solution using FreeOTP.

4. Provide the documentation of the project, evaluate the results and discuss future work.
Recommended literature:

• Andrew G. Morgan, Thorsten Kukuk. The Linux-PAM System Administrators'
Guide [online]. Version 1.1.2, 2010.
[http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html]

• Jan Humpolík. Webová aplikace využívající vícefaktorovou autentizaci [online]. Brno:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií.
2013. [http://hdl.handle.neV11012/20728]

• Liliana F. B. Soares, Diogo A. B. Fernandes, Mario M. Freire, Pedro R. M. Inácio. Secure
user authentication in cloud computing management interfaces. IEEE 32nd International
Performance Computing and Communications Conference (IPCCC), San Diego, CA,
2013. [https://doi.Org/10.1109/PCCC.2013.6742763]

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: October 16,2019

Bachelor's Thesis Specification/22370/2019/xkapis00 Strana 1 z 1

http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://hdl.handle.neV1
http://doi.Org/1
https://www.fit.vut.cz/study/theses/

Abstract
The a i m of this thesis is to implement multi-factor authentication using P A M for web appli­
cations. The thesis describes authentication and its modern trends, the related technologies
and their incompatibi l i ty, as well as the state of authentication i n web applications using
P A M before the solution, the solution itself, and its integration to an example applicat ion.
The thesis also provides relevant examples and guides.

Abstrakt
Cieľom tejto p r á c e je i m p l e m e n t á c i a viacfaktorovej au t en t i z ác i e vo webových ap l ikác iách
pomocou P A M . P r á c a popisuje a u t e n t i z á c i u a jej m o d e r n é trendy, súvis iace technológie
a ich nekompatibi l i tu , ako aj stav au t en t i z ác i e vo webových ap l ikác iách p o u ž i t í m P A M
pred r iešením, s a m o t n é r iešenie a jeho in tegrác iu do vzorovej apl ikác ie . P r á c a poskytuje aj
p r í s lušné p r ík l ady a návody.

Keywords
web, application, security, multi-factor authentication, H T T P , WebSocket, H T M L form,
JavaScript , Node.js, N - A P I , addon, P A M

Kľúčové slová
web, apl ikác ia , bezpečnosť , v iacfak torová au t en t i zác i a , H T T P , WebSocket, H T M L for­
mulá r , JavaScript , Node.js, N - A P I , addon, P A M

Reference
K A P I Š I N S K Ý , M a r i á n . Multi-Factor Authentication in Web Applications Using PAM.
Brno , 2020. Bachelor's thesis. B rno Universi ty of Technology, Facul ty of Information
Technology. Supervisor R N D r . Marek Rychlý , P h . D .

Rozšírený abstrakt
T á t o p r á c a sa z a o b e r á viacfaktorovou a u t e n t i z á c i o u vo webových ap l ikác iách pomocou
P A M . P r á c a popisuje b e z p e č n o s t n ú technológiu p o u ž í v a n ú v U N I X / U N I X - l i k e o p e r a č n ý c h
s y s t é m o c h pre overovanie (au ten t i zác iu) užívateľov - P A M a jej výhody . P r í k l a d konfig­
urác ie P A M pre S S H D ukazuje, aké možnos t i t á t o t echnológ ia poskytuje pre v iacfaktorové
overovanie. Ďa le j , p r á c a opisuje proces au t en t i z ác i e pomocou P A M na ú rovn i volaní funkcií
P A M - A P I . Najdôlež i te j š ím poznatkom je, že pr i k a ž d o m vy tvo ren í novej P A M transakcie
sa t a k t i e ž v y t v o r í nový proces v tabulke procesov o p e r a č n é h o s y s t é m u , k t o r ý drž í stav tejto
transakcie. P r á c a t iež popisuje i m p l e m e n t á c i u modulu u r č e n é h o na testovanie a d e m o n š t r á ­
ciu rôznych konfigurácií a s a m o t n é h o r iešenia , p r á c a poskytuje.

P r á c a ďalej popisuje a u t e n t i z á c i u vo webových ap l ikác iách a jej m o d e r n é trendy. P ô v o d n é
j ednofak to rové a u t e n t i z a č n é mechanizmy vyžadu júce meno a heslo, sa pr i čoraz poče tne j š ích
h r o z b á c h na Internete ukáza l i ako nedos t aču júce a bolo n u t n é vyvinúť novšie mechanizmy
pre bezpečnosť na webe, k o n k r é t n e v iac fak to rovú a u t e n t i z á c i u . P r á c a t ak t i e ž popisuje fak­
tory, k t o r é exis tu jú - užívateľ niečo vie, niečo má, niečo je alebo niekde je. Na jpouž ívane j šou
kombinác iu faktorov na webe je heslo a j edno rázové heslo (O T P) , k o n k r é t n e časovo závislé
j ednorázové heslo (T O T P) , k t o r é si užívateľ generuje loká lne pomocou mobilnej apl ikácie ,
napr. F r e e O T P alebo Google Authent icator . P r á c a t ak t i e ž popisuje p r o b l é m y s ap l ikác iami
t r e t í ch s t r á n a o d p o r ú č a n i a pre si lu hesla, resp. čo by mal i ap l ikác ie požadovať od užívateľov
pr i tvorbe hesla.

Dôlež i tou časťou pre pochopenie r iešeného p r o b l é m u je pochopenie zák ladne j webovej tech­
nológie H T T P a jej z á k l a d n é h o s p ô s o b u au t en t i z ác i e užívateľov. Ten spôsob m á však
niekoľko n e v ý h o d , pre k t o r é už vo väčš ine m o d e r n ý c h apl ikáci í nie je používaný . Miesto
neho sa zača la používať a u t e n t i z á c i a p o u ž i t í m formulárov , pomocou k t o r ý c h sa od užívateľa
získajú p o t r e b n é informácie (faktory) pre s a m o t n ú a u t e n t i z á c i u .

P r á c a ďalej predstavuje už ex is tu júce r iešenia au t en t i z ác i e vo webových ap l ikác iách pomo­
cou P A M . Tie to r iešenia sú však j ednofak to rové . Avšak, jedno z nich u m o ž ň u j e rozšírenie
na v iac fak to rovú a u t e n t i z á c i u . Toto r iešenie využ íva JavaScr ip tové prostredie pre vývoj
serverových apl ikáci í - Node.js, jeho knižnicu , k t o r á implementuje WebSocket protokol
a addon, node-linux-pam, imp lemen tu júc i P A M pre Node.js n a p í s a n ý v j azyku C .

Po vysve t len í nekompatibi l i ty technológi í H T T P a P A M , p r á c a poskytuje r iešenie d a n é h o
p r o b l é m u a jeho popis. Riešenie sa sk l adá z 3 čas t í - addon node-auth-pam, WebSocket
server a klient. A d d o n node-auth-pam je addon imp lemen tu júc i P A M pre Node.js. Avšak,
na rozdiel od už s p o m í n a n é h o addonu, node-auth-pam podporuje v iac fak torovú a u t e n t i z á ­
ciu. Poskytuje š tyr i funkcie - authenticate(), setResponse(), k i l l () a cleanUpO.
Server tieto funkcie nás l edne s p r á v n e využ íva a t ý m zabezpeču je k o m u n i k á c i u medzi klien­
tom a P A M . Kl i en t zobrazuje s p r á v y P A M u a nás l edne odosiela užívateľove odpovede
na d a n é správy, resp., na tie k t o r é odpoveď vyžadu jú . P r á c a tak isto poskytuje poskytuje
spôsob in tegrác ie tohoto r iešenia do ľubovoľnej webovej ap l ikác ie a p r ík l ad takej apl ikácie ,

poskytuje aj p r í s lušné p r ík l ady a návody.

Mult i -Fac tor Authenticat ion in Web Applicat ions
Using P A M

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of R N D r . Marek Rychlý, P h . D . The supplementary information was
provided by Jan Pazdziora , P h . D . I have listed a l l the l i terary sources, publications and
other sources, which were used during the preparation of this thesis.

M a r i á n K a p i š i n s k ý
M a y 26, 2020

Acknowledgements
I would like to thank my supervision R N D r . Marek Rychlý, P h . D . for support, feedback
and guidance mainly i n the formal aspect throughout the wr i t ing of my thesis. I would
also like to thank my consultant Jan Pazdziora , P h . D . for support, feedback and guidance
mainly i n the technical and language aspect throughout the wr i t ing of my thesis.

Contents

Introduction 3

1 Pluggable Authenticat ion Modules 4
1.1 P A M Framework 4
1.2 Configuring Mult i - factor Authent ica t ion for S S H D 6
1.3 P A M - A P I - E s s e n t i a l Structures and Functions 7
1.4 Authent ica t ion i n P A M - A w a r e Appl ica t ions 8
1.5 Example Authent ica t ion Modu le 9
1.6 Advantages of Us ing P A M 11

2 Authenticat ion in W e b Applications 13
2.1 Authent icat ion 13
2.2 Th i rd -Pa r ty Appl ica t ions 14
2.3 Password Strength 14

3 Authenticat ion Us ing Only H T T P 16
3.1 Hypertext Transfer Pro toco l 16

3.1.1 H T T P Messages 16
3.1.2 Session Management and Cookies 17

3.2 Basic Authent icat ion 18
3.2.1 Disadvantages 20
3.2.2 Example Configuration in Apache 20

3.3 Form-based Authent ica t ion 21

4 Current State of Authenticat ion in W e b Applications Using P A M 24
4.1 Ex i s t ing Solutions 24
4.2 Example Configurat ion in Apache 25
4.3 P A M Authent ica t ion Using WebSockets 26

4.3.1 Node.js 27
4.3.2 Example w i t h node-l inux-pam 27

4.4 A d d i n g More Factors 30

5 Mul t i -Factor Authenticat ion in Web Applications Using P A M 31
5.1 H T T P and P A M Incompatibi l i ty 31
5.2 The Basis of the Solution 32
5.3 P A M Authent ica t ion A d d o n for Node.js 34

5.3.1 Test App l i ca t i on 37
5.4 The WebSocket Server 38

1

5.5 The WebSocket Cl ient 39
5.6 Integration to a Web App l i ca t i on 42

5.6.1 Example Web App l i ca t i on 42

6 Conclusion 46

6.1 Future Work 46

Bibl iography 47

A H o w to setup S S S D 50

B H o w to set up Google Authenticator 51

C C D Content 5 2

2

Introduction

W i t h the increasingly advanced development of web technologies, there is also an increasing
amount of threats on the Internet. Therefore, the demand for security in web applications
is also rising. Single-factor authentication has rendered outdated, so new authentication
mechanisms had to be developed. The main mechanism that is now becoming more and
more popular, because of its higher security factor is multi-factor authentication. There
already is a good number of its implementations, but there is yet no implementat ion using
the Pluggable Authent ica t ion Modules for web applications. However, P A M and H T T P and
inherently not compatible, so the use of newer technologies is necessary, namely WebSockets.

The chapter 1 describes Pluggable Authent ica t ion Modules framework, demonstrates a mul t i -
factor setup for Secure Shell Daemon, describes the requirements for applications that use
P A M , describes how authentication using P A M works, shows a simple P A M authentication
module implementation, and describes the advantages of using P A M .

The chapter 2 describes authentication i n web applications, authentication factors, au­
thentication issues w i t h the third-party applications, and recommendations for password
strength, or what should web applications require from users when creating a password.

The chapter 3 describes the relevant basics of the Hyper text Transfer Pro tocol , basic au­
thentication and its disadvantages, and provides an example setup using the Apache web
server, and finally the form-based authentication.

The chapter 4 describes several already existing solutions for authentication i n web ap­
plications using P A M , provides relevant example configurations, describes the WebSocket
protocol and Node.js, and provides an example setup, and finally describes the incompati­
bi l i ty issue of the existing solutions and multi-factor authentication.

The chapter 5 describes the H T T P and P A M incompatibi l i ty, the basis of the solution,
the node-auth-pam addon, the server-side of the solution, the client-side of the solution,
the integration to a web application, and an example application.

The appendix A provides a guide for configuring the SSSD service.

The appendix B provides a guide for configuring Google Authenticator .

The appendix C describes the content of the attached C D .

This thesis uses Fedora 31 for all examples, the implementation, and its demonstration.

3

Chapter 1

Pluggable Authentication Modules

This chapter takes a look at the Pluggable Authent ica t ion Modules framework and its con­
figuration i n section 1.1, demonstrates a multi-factor authentication setup for S S H D i n sec­
t ion 1.2, describes the requirements for applications that use P A M and the authentication
process i n section 1.4, shows a simple authentication module implementat ion in section 1.5,
and the advantages of using P A M in section 1.6.

1.1 P A M Framework

Pluggable Authent ica t ion Modules (P A M) is a common framework (depicted i n Figure 1.1),
that allows choosing how applications authenticate users. It is a suite of shared libraries,
located i n / l i b / s e c u r i t y or /lib64/security, called P A M modules, wri t ten i n C . It can
be configured to either perform single-factor authentication or use more complex authenti­
cation mechanisms - multi-factor authentication, for a wide variety of applications. These
applications (also known as " P A M - a w a r e " applications) are wri t ten to be compatible w i th
P A M , i n C / C + + . It is typical ly used by many U N I X / U N I X - l i k e operating systems (e.g.
L inux , F r e e B S D and Solaris) for user authentication (OS-level security) [4].

P A M C o n f i g u r a t i o n

The P A M configuration is located i n a single central file at /etc/pam.conf or i n multiple
smaller files named after the applicat ion (service) they relate to i n /etc/pam.d/. It is
a stack (also known as the " P A M stack") of actions that must be evaluated for the user
to be given service. E a c h act ion is defined on a single line i n a single configuration file for
an applicat ion i n the following format:

module-type control-flag module-path module-arguments

M o d u l e types

• auth - an act ion related to user authentication and /or granting credentials, such as
group memberships

4

Linux-PAM I n t e r f a c e
L i b r a r y

PAM C o n f i g u r a t i o n i n
/etc/pam.conf or

/etc/pam.d/

A u t h e n t i c a t i o n

PAM Modules i n
/ l i b / s e c u r i t y or
/ l i b 6 4 / s e c u r i t y

Figure 1.1: P A M Framework

• account - an action related to non-authentication based account management

• password - an action related to updat ing users passwords

• session - an act ion related to session management or other tasks that need to be done
before/after the user can be given service

Contro l flags

• requisite - the action must be successful for the evaluation process of the stack to
continue. If not, no more actions of the stack or superior substack are processed.

• required - the act ion must be successful. If not, the rest of the actions are processed,
but the stack ul t imately fails.

• sufficient - if the action succeeds and no earlier required actions have failed, the stack
or superior substack results in success, and no further actions are processed.

• opt ional - result of this act ion is only important i f it is the only action i n the stack
associated w i t h the module type

• include - include a l l lines of given type from the configuration file specified as an ar­
gument to this control.

• substack - like include, but does not skip the rest of the P A M stack, but only of
the substack if an action forces the evaluation process of the stack to end.

T h e module path provides P A M wi th either the name of the module or a relative path
from the default module location (pam_unix, pam_sss, pam_deny, . . .) .

5

M o d u l e arguments are used to pass information to a module that can modify the mod­
ule's behavior.

Th is thesis only focuses on the auth module type. This section was wri t ten according to
The L i n u x - P A M System Adminis t ra tors ' Guide [1].

1.2 Configuring Multi-factor Authentication for S S H D

Configuring multi-factor authentication using P A M means including two or more auth type
modules i n the P A M stack in the configuration file for the service. For the demonstration,
we have chosen the S S H D service, which supports the keyboard-interactive authentication
that allows us to configure multi-factor authentication using P A M :

"Keyboard-interactive user authentication is intended primarily to accomodate
PAM authentication on the server side. It provides for a multiple challenge-
response dialog with the user in which the server sends a text query to the user,
the user types in a response, and this process can repeat any number of times. So
for example, you might configure PAM for SSHD with a module which performs
authentication using an RSA security token, or a one-time password scheme."
[6]

Firs t ly , we need to configure S S H D (/etc/ssh/sshd_conf ig) to use only the keyboard-
interactive authentication. F i n d and comment out a l l lines w i t h the ChallangeRespon-
seAuthentication keyword and add a new line w i th the Authent icat ionMethods key­
word followed by the keyboard-interactive value (by doing this, we prevented that only
the keyboard-interactive authentication w i l l perform). Also , make sure that U s e P A M is
enabled. The configuration file should look like this:

#ChallangeRe sponseAuthenti cat ion ye s
#ChallangeResponseAuthentication no
AuthenticationMethods keyboard-interactive
UsePAM yes

Now, we need to edit the P A M stack for S S H D at /etc/pam.d/sshd (backup the original
file). We use pam_sss, pam_reversed_login and pam_google_authenticator modules
in our example. The pam_sss module authenticates users against the System Security
Services Daemon (SSSD) . The advantage of using S S S D is that it has access to root p r iv i ­
leges, which comes useful later i n the chapter 4. The configuration file sssd.conf is attached
in appendix A . It authenticates local users against /e tc/shadow, but can be configured for
other authentication providers, e.g. Ac t ive Directory or L D A P . The pam_reversed_login
is an example module described in section 1.5. It requires the user to enter their re­
versed username (login). The pam_google_authenticator module supports H O T P 1 and
T O T P 2 algorithms and can be easily used wi th the Google Authent icator mobile applica­
t ion. The instal lat ion and configuration guide is attached i n appendix B .

1 learn more at RFC 4226 - HOTP: An HMAC-Based One-Time Password Algorithm
2learn more at RFC 6238 - TOTP: Time-Based One-Time Password Algorithm

G

Example configuration:

auth required
required
required
required
include

pam_sss.so
pam_reversed_login.so
pam_google_authenticator.so

auth
auth
account pam_sss.so

postlogin session

The last line of the configuration file has to be included for S S H D to work correctly. After we
restart the S S H service (systemctl restart sshd) and run the ssh command to connect
to a local user account w i t h the first verbosity level (ssh -v bob@localhost), we can see
how the authentication process proceeds:

debug1: Authentications that can continue: keyboard-interactive
debug1: Next authentication method: keyboard-interactive
Password:
Reversed login:
V e r i f i c a t i o n code:
debug1: Authentication succeeded (keyboard-interactive).

The first th ing we can see is that only keyboard-interactive authentication is enabled and
can be performed, which is because we removed any other. Then , we can see that it
asks us step by step for a password, our reversed login and an O T P token. This order
depends on the order the auth type modules are i n the configuration file. If we swapped
the pam_reversed_login module and the pam_google_authenticator module, we would
be asked for the O T P token before the reversed login.

1.3 P A M - A P I — Essential Structures and Functions

For applicat ion and module development, the pam-devel package must be installed.

$ dnf i n s t a l l pam-devel -y

It contains a l l necessary header files (mainly, <security/pam_appl .h> for the appl ica t ion 3

development and <security/pam_modules.h> for the modu le 4 development), from which
these structures and functions are essential for further reading:

• Structures

— struct pam_message { int msg_style; const char *msg; }
— struct pam_response { char *resp; int resp_retcode; }

3learn more in The Linux-PAM Application Developers' Guide
4learn more in The Linux-PAM Module Writers' Guide

7

— struct pam_conv { int (*conv)(int num_msg,
const struct pam_message **msg,
struct pam_response **resp,
void *appdata_ptr);

void *appdata_ptr; }

• Functions

— int pam_get_item(pamh, item_type, item)

— int pam_get_user(pamh, user, prompt)

• App l i ca t ion Development Functions

— int pam_start(service_name, user, pam_conversation, pamh)
— int pam_authenticate(pamh, flags)

— int pam_end(pamh, pam_status)

• Module Development Functions

— PAM_EXTERN int pam_sm_authenticate(pamh, flags, argc, argv)
— PAM_EXTERN int pam_sm_setcred(pamh, flags, argc, argv)

1.4 Authentication in P A M - A w a r e Applications

A P A M - A w a r e applicat ion is required to implement a conversation function, which is a cal l­
back that allows direct communicat ion between a module and the applicat ion. Th is function
is passed to a module i n the pam_conv structure along wi th void *appdata_ptr that can
pass any data defined by the applicat ion between the applicat ion and a module. The appli­
cation creates the structure and passes it to the P A M framework as the pam_conversation
argument of the pam_start() function [2].

The pam_start() function is called when the applicat ion requires user authentication.
It initiates the P A M transaction wi th passed service name, username (if defined) and
the pam_conv structure, loads the P A M configuration file for the service line by line i n the or­
der, they are specified and returns the P A M handle (pam_handle_t *pamh), which contains
the loaded information (P A M context). If the first step succeeds, the cal l ing appl icat ion calls
the pam_authenticate () function, which serves as an interface to the authentication mech­
anisms defined in the loaded modules. It calls every mechanism (pam_sm_authenticate()
function) from each module i n the order they were loaded from the configuration file.
These modules pass their prompt(s) to the applicat ion and obtain user's response(s) using
the passed conversation function. Each module either succeeds or fails, and the final result
of the authentication process depends on the set control flags. The only exception, where
not every module is called, is when a module w i th the requisite flag fails, then the authen­
t icat ion fails immediately. Lastly, when the authentication process finishes, the applicat ion
calls the pam_end() function to terminate the transaction, and the handle and the context
are no longer val id . The return value of the pam_authenticate () function cal l (or generally,
the return value of the last P A M A P I call) is passed as the pam_status function argument

8

of the pam_end() function, which i n case of error informs P A M to perform an appropriate
cleanup. The whole process is depicted i n Figure 1.2 [3]. A n example applicat ion can be
found in The L i n u x - P A M App l i ca t i on Developers' Guide [2].

Also , an important th ing to mention expl ic i t ly is that w i th the start of a new transaction,
a new process i n the O S process table is created. W h i l e the transaction lives, the P A M
handle structure is contained wi th in this process. Accord ing to [2], it is also possible for
an applicat ion to have mult iple transactions in parallel.

1.5 Example Authentication Module

The example authentication module described i n this section is a module used for testing
and demonstration purposes i n this thesis. It prompts the user for their reversed username,
so it is called pam_reversed_login.

Firs t ly , to be correctly ini t ial ized, PAMSMAUTH must be #deflne ' d before including
the <security/pam_modules .h> header file, which contains pam_sm_authenticate () and
pam_sm_setcred() function prototypes that must be defined i n the module's source code.

#define PAM_SM_AUTH
#include <security/pam_modules.h>

Lis t ing 1.1: Necessary Includes and Defines

Next , there are three helper functions: setMessages (), doPamConv() and authenticate ().
The first function sets a l l four styles of messages i n a given array of pam_message structures.
The second function validates a received response from the user against their reversed user-
name and returns either AUTH SUCCESS or AUTHFAIL on error. The th i rd function
uses the conversation function conv() from the pam_conv structure to send pre-configured
messages i n the pam_message structure to the P A M - A w a r e applicat ion and returns the re­
ceived response through the pam_response structure double pointer. To obtain the con­
versation function, it calls the pam_get_item() function.

int doPamConv(pam_handle_t *pamh, int num_msg,
const struct pam_message **msg,
struct pam_response **resp) {

struct pam_conv *conv;
int r e t v a l = pam_get_item(pamh, PAM_C0NV, (void *)&conv);
i f (retval != PAM_SUCCESS) {

return retval;
}

return conv->conv(num_msg, msg, resp, conv->appdata_ptr);
}

Lis t ing 1.2: Funct ion for Conversation w i t h the P A M - A w a r e App l i ca t i on

9

Final ly , there are the essential functions of the module. The pam_sm_authenticate () func­
t ion is the module's implementat ion of the pam_authenticate () interface, which performs
the authentication of the user. F i r s t , it gets their username using the pam_get_user()
function (also defined i n the P A M A P I) . If the username was specified at the beginning
of the transaction (pam_start()), it reads it from the P A M handle (pamh->user), oth­
erwise it prompts the user using the conversation function. Next , it creates array of four
pam_message structures and calls the setMessages () function to prepare the messages and
assigns them to the pam_message structure double pointer. The four message styles are:

• PAM_PR0MPT_ECH0_0FF - do not print text while obtaining the user's response

• PAM_PR0MPT_ECH0_0N - print text while obtaining the user's response

• PAM_ERROR_MSG - display error message, no response is obtained

• PAM_TEXT_INFO - display some text, no response is obtained

It also prepares a pointer to the pam_response structure, where user's responses w i l l be
stored. Next , it obtains the responses by cal l ing the do_pam_conv() and validates them wi th
the authenticate () function. If any step of the validat ion fails the PAMAUTHERR is
returned, otherwise the module finishes wi th the PAM_SUCCESS return value.

PAM_EXTERN int pam_sm_authenticate(pam_handle_t *pamh,
int flags,
int argc,
const char **argv) {

const char *login = NULL;
char *reversed_login = NULL;

i f ((pam_get_user(pamh, felogin, "Login: ")) != PAM_SUCCESS)
fp r i n t f (s t d e r r , "Can't get login\n");

struct pam_message msg[4];
const struct pam_message **msgp = NULL;
struct pam_response *resp = NULL;

setMessages(msg);

msgp = malloc(4 * sizeof(struct pam_message));

msgp[0] = &msg [0] ;
msgp[l] = &msg[l] ;
msgp [2] = &msg[2];
msgp[3] = &msg [3] ;

int r e t v a l = doPamConv(pamh, 4, msgp, &resp);

10

int status;
for (int i = 0; i < 2; i++) {

i f (retval != PAM_SUCCESS I I resp == NULL || resp->resp == NULL) {
fp r i n t f (s t d e r r , "Didn't get reversed login\n");
return PAM_SYSTEM_ERR;

} else {
reversed_login = resp->resp;

}

status = authenticate(login, reversed_login);
i f (status == AUTH_FAIL)

return PAM_AUTH_ERR;

resp++;
}

free(msgp);
return PAM_SUCCESS;

}

Lis t ing 1.3: The Module ' s Authent ica t ion Funct ion

The pam_sm_setcred() function is used to alter the credentials of a user. Th is function is
not important for this thesis and always returns PAM_SUCCESS.

Installation of the module is done by execution of the following commands (root privileges
are required):

$ gcc -fPIC -c pam_reversed_login.c
$ gcc -shared -o pam_reversed_login.so pam_reversed_login.o -lpam
$ cp pam_reversed_login.so /lib64/security/

The module was wri t ten according to the The L i n u x - P A M : Module Writers ' Guide [5].
The entire source code w i t h the instal lat ion script is attached i n the appendix C .

1.6 Advantages of Using P A M

P A M allows applicat ion developers to implement P A M authentication to many different
applications without creating or modifying P A M stacks. They can use the same stack for
wide variety of applications i f it suites their security needs. If not, P A M allows for high
flexibili ty and control over the authentication. It is very easy to modify a P A M stack by
adding, removing or edit ing one or several lines i n the configuration file. They can either
use already existing modules or develop a new one to suites their needs [7].

11

A p p l i c a t i o n
Linux-FÄM I n t e r f a c e

L i b r a r y Module

User
f i l l s i n h i s

username

User
f i l l s i n h i s

res p o n s e

p a m _ s t a r t ()

PAM_SUCCESS + pamh

p a m _ a u t h e n t i c a t e ()

pam->pam conv->conv()

PAM_SUCCESS + pam_response

pam_set_item(pamh->user)

FAP: SUCCESS
< o r PAM AUTH ERR

pam end()

< PAM SUCCESS

C r e a t e t h e
PAM c o n t e x t

p a m _ s m _ a u t h e n t i c a t e()

pam_get_user()

PAM_SUCCESS + pamh->user

pam_get_itern (pam_conv)

PAM_SUCCESS + pam_conv

pam_conv->conv()

PAM_SUCCESS + pam_response

PAM SUCCESS
o r ?AM AUTH ERR

C r e a t e pam_rnessage,
pam_response and

pam conv s t r u c t u r e s

V a l i d a t e
the

r e s p o n s e

Figure 1.2: P A M Authent ica t ion Process

12

Chapter 2

Authentication in Web
Applications

This chapter describes authentication i n web applications and authentication factors in sec­
t ion 2.1, authentication issues wi th the third-party applications i n section 2.2, and recom­
mendations for password strength, or what should web applications require from users when
creating a password i n section 2.3.

2.1 Authentication

Authent icat ion is the process of verifying a user's identity using the required authenti­
cation factors. In order for a user to be authenticated, they must provide a l l required
factors, (challenge-response dialog). A factor is validated by the authentication mecha­
nism that required i t . O n success, the user is authenticated and can use a l l the features
of the appl icat ion that they have access to. O n failure, an error message or a page is
displayed. The most common mechanisms are the password-based mechanisms (username
and password). These mechanisms were in i t ia l ly used alone for single-factor authentication.
However, now w i t h the increasing number of threats on the Internet and wi th the degra­
dation of the security of the single-factor authentication, it was necessary to develop new
authentication mechanisms, namely multi-factor authentication mechanisms [8].

These mechanisms mostly appear i n the form of two-factor authentication, where the second
factor is required after standard password authentication. The most common mechanisms
used as the second (or further) factor are one-time passwords (O T P s , also called O T P tokens
or just tokens) that are either H M A C - b a s e d (H O T P s) or time-based (T O T P s) . The pass­
word is generated by one of the algorithms and then delivered to a user v i a one of several
technologies, such as quick response (QR) codes, short message service (SMS) , trusted plat­
form (T P M) or near field communicat ion (N F C) , [8]. The most common technologies are
mobile applications (F r e e O T P 1 , Google Authen t i ca ted) or hardware devices (Y u b i K e y 3)
that generate O T P s locally.

1 download at FreeOTP's GitHub
2download at Google Authenticator's Play store page
3see the Yubico store page

13

A u t h e n t i c a t i o n Factors

A s already mentioned, the most common combination of factors for two-factor authentica­
t ion is a password and an O T P . Tha t is a combination of something we know and something
we have. There are four different types of factors - Something You Know (passwords, P I N s
or security questions), Something You Have (O T P s , certificates, S M S , . . .) , Something You
Are (face recognition, fingerprints, . . .) and Location (source IP ranges, geolocation). It
is possible to make various combinations of the factors, but using only one type is not
considered as multi-factor authentication [9].

2.2 Third-Party Applications

A problem wi th authentication comes w i t h third-party applications, where an applicat ion
(on desktop/mobile, other web applicat ion, . . .) wants to connect to a web applicat ion.
If we allowed the applicat ion to store our username and password, we would also pro­
vide it w i t h more attack possibilities. For this reason, some new authentication protocols
were developed, namely Open Author iza t ion (OAuth) , OpenID or the Universal Authen­
t icat ion Framework (U A F) protocol and the Universal Second Factor (U2F) protocol by
The Fast Identity Onl ine (F I D O) Al l iance , [10]. The single sign-on (SSO) is also a trend
i n authentication i n web applications, which allows users to use their identity in multiple
web applications without the need for providing any authentication information (password,
O T P , . . .) . The identity is validated and provided to applications by an Identity provider,
e.g. AuthO, Google or OpenAthens [11].

2.3 Password Strength

Password strength also must be mentioned i n connection wi th authentication. Passwords
should be at least 8 to 64 characters i n length. A l l printable A S C I I and Unicode characters
including the space character should by acceptable by the applications. Dic t ionary words,
repetitive or sequential characters (e.g. "password", "aaaaa", "1234abcd"), and context-
specific words, such as the name of the service or the username should not be allowed.
Randomly chosen secrets (e.g. P I N s or O T P s) should by at least 6 characters long [12].
M a n y applications also require the use of mix of upper-case and lower-case letters, numbers
and symbols, see Figures 2.1 and 2.2 for examples.

M a n y modern browsers, e.g., Google Chrome [13], Firefox [14], have the option to fill
in a randomly generated password when a user is choosing one. They also offer the advan­
tage of storing it to the user account i f the user is logged into the browser or locally, so
they does not need to remember i t , see Figure 2.3 for an example

14

Your password:

X must be at least 8 characters

X cannot contain some special characters

X cannot contain part o f your username

X cannot start or end with a space

X cannot use the same character 4 times in

a row

Figure 2.1: Password Requirements of A l b e r t a Student A i d

Go gle

Create your Google Account

to continue to Gmail

First name Last name

Username @g mail.com

YOJ can j se letters, numbers & periods

Password Confirm

Use 8 or more characters with a mix of letters, numbers &

symbols

Sign in instead

Figure 2.2: Password Requirements of Google

Use suggested password B-Zznbrjz7Z7#wP

Chrome will save this password in your Google Account, You won't

have to remember H.

Figure 2.3: Google Chrome's Password Suggestion

15

http://mail.com

Chapter 3

Authentication Using Only H T T P

This chapter describes the relevant basics of the Hyper text Transfer P ro toco l i n section 3.1,
basic authentication and its disadvantages i n section 3.2, and provides an example setup
using the Apache web server i n section 3.2.2, and finally the form-based authentication 3.3.
For further study of the Hypertext Transfer Protocol , see the R F C 2616 standard.

3.1 Hypertext Transfer Protocol

The Hyper text Transfer P ro toco l (H T T P) [15] is a generic stateless application-level re­
quest /response protocol, which allows transfer of resources accessible by an U R L (Uniform
Resource Loca to r 1) over the Internet, such as H T M L documents. It is mainly used for
web pages and applications, e.g. e-shops and internet banking. H T T P communicat ion is
client-server based and is mostly ini t ia ted by a client. Client sends a H T T P Request mes­
sage to the H T T P server, which parses the message, performs requested action, and sends
an H T T P Response back to the client. The communicat ion presumes a reliable connection,
so it usually takes place over T C P / I P connections. The default port for H T T P communi­
cation is T C P 80. Alternat ively, the T C P 8080 port is also frequently used, but other ports
can be used too.

3.1.1 H T T P Messages

A s already mentioned, H T T P is a request/response protocol and it uses two types of H T T P
messages - requests and responses. B o t h message types use the format of A R P A Internet
Text Messages for transferring entit ies 2 . E a c h message consists of a start-line, zero or more
header fields (headers), an empty line (blank line terminated wi th a C R L F) indicat ing
the end of the header fields and a message body (if any). E a c h line is terminated wi th
a C R L F .

1learn more at RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax
2learn more at RFC 822 - Standard for A R P A Internet Text Messages

16

Message Headers

The message header fields contain its name, followed by a colon (":") and its value. There
are four types of header fields:

• General - Connection, Date, Transfer-Encoding, etc.

• Request - Accept , Author iza t ion , Host, User-Agent, etc.

• Response - Accept-Ranges, Server, W W W - A u t h e n t i c a t e , etc.

• En t i t y - A l l o w , Content-Length, Content-Type, etc.

The focus of this thesis is authentication, so the only relevant headers are Request - Au­
thorization and Response - WWW-Authentication headers, because they carry the authen­
t icat ion information.

Message B o d y

The message body contains the enti ty-body of a request or response. Not every message
does include a message body. For authentication purposes, it serves no use, since a l l au­
thentication information is t ransmit ted i n the headers.

H T T P Request

H T T P Request is a message sent from client to server. The first line of the message specifies
the method to be performed on the target (G E T , P O S T , etc.), the target (absolute path
of an U R L) and protocol version separated wi th spaces. The network location of the U R L
is t ransmit ted in a Host header.

GET /example HTTP / 1 .l\r\n

H T T P Response

H T T P Response is a reaction to a H T T P Request. It informs the client about the result
of its request. The first line of the message consists of the protocol version, a status code
and its textural phrase (200 O K , 401 Unauthorized, etc.) separated wi th spaces.

HTTP/1.1 200 0K\r\n

This section was wr i t ten according to the R F C 2616 standard [15].

3.1.2 Session M a n a g e m e n t a n d C o o k i e s

Stateless behavior of H T T P means that every request is treated as a new one, independent
of any previous requests from the communicat ion partner. Neither the server nor the client
retain any information about each other.

17

To make H T T P behave as a stateful protocol, a state management mechanism had to
be developed. The R F C 6265 standard [16] implements Set-Cookie and Cookie headers.
The server creates cookies and sends them in the Set-Cookie header to the client i n a H T T P
Response, the client stores them and sends them back to the server in the Cookie header
i n its further H T T P Requests.

Cookies must be stored locally on the server so they are accessible for a l l server pro­
cesses, and not only for the process, that created i t . If there were more servers on which
the appl icat ion runs, the server which created the cookies must share them wi th other
servers. Otherwise, each server would create its cookies for the same user, and that is
inefficient. A l l cookies are val id un t i l they are deleted or un t i l they expire (defined wi th
the Expires=<date> field).

For example, for authentication purposes, after the user is authenticated, the server sends
the cookie named SID (session identifier) w i th the value 31d4d96e407aad42 to the client,
that uses it i n its further requests, so the user does not need to authenticate every time.

Set-Cookie (server to client):

Set-Cookie: SID=31d4d96e407aad42

Cookie (client to server):

Cookie: SID=31d4d96e407aad42

Set-Cookie w i th an expirat ion date (server to client):

Set-Cookie: SID=31d4d96e407aad42; Expires=Mon, 01 Feb 2021 12:34:58 GMT

To remove the cookie, the server can send a Set-Cookie header w i th the expirat ion date
i n the past:

Set-Cookie: SID=31d4d96e407aad42; Expires=Mon, 01 Feb 2020 12:34:58 GMT

The server can also instruct the client to return the cookie to every path and subdomain:

Set-Cookie (server to client):

Set-Cookie: SID=31d4d96e407aad42; Path=/; Domain=myexampleapp.com

3.2 Basic Authentication

W h e n a user accesses a web page or appl icat ion that requires authentication, the browser
creates a pop-up window (Figure 3.1). User fills i n their username and password and hits
the login but ton. The browser sends the credentials to the server, where they are validated.
O n success, the server responds wi th the page the user wanted to see and the client stores
the credentials for future requests un t i l the user closes the browser. Otherwise, the server
responds wi th an error status code and an error page. W h a t happens on the H T T P level
is described in the following example (depicted i n Figure 3.2):

18

Authentication Required

ß http:tflocalhost is requesting your username and password. The site says: "private area"

User Name:

Password:

Cancel OK

Figure 3.1: P o p - U p W i n d o w Displayed by a Browser

1. Cl ient sends an H T T P Request for the specified location:

GET /basic-auth HTTP/1.l\r\n
Host: localhost\r\n
\r\n

2. Server responds wi th "401 Unauthor ized" status code, what means authentication
in required:

HTTP/1.1 401 Unauthorized\r\n
WWW-Authenticate: Basic realm="private area"\r\n
\r\n

3. Client asks the user for a username and a password and sends the credentials in the A u ­
thorizat ion header back to the server i n another H T T P Request for verification:

GET /basic-auth HTTP/1.l\r\n
Host: localhost\r\n
Authorization: Basic bWFyaWFu0nBhc3N3ZA==\r\n
\r\n

Credentials is base64 encoded username:password, e.g. "mariampasswd" is encoded
as bWFyaWFu0nBhc3N3ZA==.

4. Server validates the credentials and responds wi th either success or failure:

HTTP/1.1 200 0K\r\n
\r\n

or

HTTP/1.1 403 Forbidden\r\n
\r\n

19

C l i e n t

Ask the user
f o r h i s username

and password

GET / b a s i c - a u t h HTTP/1.l\r\n
Host: l o c a l h o s t \ r \ n
\ r \ n

S e r v e r

—

HTTP/1.1 401 U n a u t h o r i z e d \ r \ n
WWW-Authenticate: B a s i c r e a l m = " p r i v a t e a r e a " \ r \ n

\ r \ n

GET / b a s i c - a u t h HTTP/1.l\r\n
Host: l o c a l h o s t \ r \ n
A u t h o r i z a t i o n : B a s i c bWFyaWFuOnBhc3N3ZA==\r\n
\ r \ n

^TTP/1.1 200 OK\r\n o r HTTP/1.1 403 F o r b i d d e n \ r \ n
\ r \ n

V a l i d a t e
the

c r e d e n t i a l s

Figure 3.2: H T T P - L e v e l Communica t ion of the Basic Authent ica t ion

3.2.1 Disadvantages

Firs t ly , i f a user requested the same page over and over, their credentials in the Autho­
rizat ion header would be validated wi th every request, which is inefficient. Th is problem is
solved by implementing session management 3.1.2.

Secondly, it does not support account creation, so a user can not create a new account and
it needs to be created on the server by its administrator. A l l usernames and passwords are
stored locally on the server in a text file. It also does not support the logout option.

The next disadvantage is that basic authentication is only a single-factor. Add i t iona l ly
to that, credentials are only base64 encoded and not encrypted. It is also possible to use
digest authentication instead. It uses hashes, which are stronger, but s t i l l vulnerable. Using
H T T P S (H T T P over T L S / S S L) provides for the best security, as the credentials are being
sent over an encrypted connection, but that 's not the subject of this thesis.

Furthermore, using basic authentication is not visual ly modern. Because the pop-up window
and native error page are not customizable, they are no longer used. The pop-up window
was replaced by a login page wi th a form, that in case of error shows a custom-made error
message wi th more user friendly information than the basic authentication's error pages
contains.

3.2.2 E x a m p l e C o n f i g u r a t i o n i n A p a c h e

Firs t ly , we need to create a file, that stores usernames and passwords. Tha t can be done
by using the htpasswd ut i l i ty. To create the file, specify its location and a username, for
example:

$ htpasswd -c /usr/local/apache/passwd/passwords marian

20

It w i l l ask us for a password. To add another user user the same command just without
the -c option:

$ htpasswd /usr/local/apache/passwd/passwords anotheruser

Then, we need to configure, which Loca t ion or Directory we wish to protect in Apache's
configuration file. We can either edit the /etc/httpd/httpd.conf file or create a separate
file i n /etc/httpd/conf .d/f ilename.conf. Example configuration [17]:

<Location /basic-auth>
AuthType basic
AuthName "private area"
AuthBasicProvider f i l e
AuthUserFile "/usr/local/apache/passwd/passwords"
Require valid-user

</Location>

Now, we have to restart Apache (systemctl restart httpd) and we can access the loca­
t ion v i a your preferred browser at localhost /pr ivate / . We can t ry to log in wi th correct and
incorrect username or password and for more information we can look at httpd access and
error logs. The access log (/var/log/httpd/access_log): contains information about a l l
requests done to the server, for example:

::1 - marian [30/May/2019:00:22:33 +0200]
"GET /basic-auth HTTP/1.1" 200 36 "-" "Mozilla/5.0
(X l l ; Fedora; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0"

The error log (/var/log/httpd/error_log): contains information about a l l errors, that
occured on the server, for example:

[Thu May 30 00:40:44.041772 2019] [auth_basic:error]
[pid 5356:tid 140020740441856] [client ::1:52312]
AH01617: user marian: authentication f a i l u r e for "/basic-auth":
Password Mismatch

3.3 Form-based Authentication

A s already indicated i n subsection 3.2.1, basic authentication is usually no longer used
i n modern web applications. It was replaced by the form-based authentication. T y p i ­
cally [18], when a user accesses an application's U R L , the browser sends a G E T request
to the server, that hands the request to the applicat ion. If the applicat ion does not find
a val id session cookie, the applicat ion redirects the browser to a login page wi th a login form
created by the applicat ion. The user fills in their username and password and hits the sub­
mit but ton. The browser submits the form (sends a P O S T request w i th user's credentials),

21

the server hands the credentials to the application, which typical ly calls an external appli­
cation for their val idat ion. O n success, the appl icat ion creates a session and return session
cookies. The browser requests the desired U R L again, but now the applicat ion sees a valid
session cookie and returns the desired page. O n failure, the appl icat ion returns the login
form and an error message.

P O S T request example w i t h user's username and password:

POST /example/login HTTP/1.1
Host: localhost
login=marian&password=passwd

Unlike the basic authentication, the form-based authentication can support account cre­
ation, does not have to store usernames and passwords i n local text files, and supports
the logout options and custom-made page design. Every th ing depends on the applicat ion
developer and can be configured to needs. However, i n terms of security, it also does not
use encryption, and it is the developer's responsibility to implement a safe solution, e.g.
H T T P S .

<form method="POST">
<dl>

«itxlabel for="login">Login:</labelx/dt>
<dd><input type="text" name="login" />

<dtxlabel for="password">Password:</labelx/dt>
<ddxinput type="password" name="password" />

<dtxinput type="submit" name="submit" value="Log i n " /></dt>
</dl>

</form>

Lis t ing 3.1: Example H T M L Code for a L o g i n Form

Login:

Password:

Log in

Figure 3.3: Log in F o r m Displayed i n a Browser

22

C l i e n t Server A p p l i c a t i o n

.GET /example

'GET /login?back=/example

User f i l l s i n
h i s username
and password

302 L o c a t i o n /login?back=/example

iHand the request

200 OK + l o g i n form

POST / l o g i n

302 L o c a t i o n /example
Set-Cookie: SID=31d4d96e4 07aad42

IGET /example

200 OK + the page

Hand the request

Login page r e d i r e c t i o n

Return the l o g i n form

Return the l o g i n form + e r r o r message

Hand the request

Return the sess i o n cookie

[Hand the request

Return the page

A p p l i c a t i o n
f i n d s no v a l i d
s e s s i o n cookie

No POST method
w i t h username

and l o g i n

On f a i l u r e

A p p l i c a t i o n
v a l i d a t e s the
username &

password and
c r e a t i o n a

s e s s i o n

A p p l i c a t i o n
f i n d s v a l i d

s e s s i o n cookie

Figure 3.4: H T T P - L e v e l Communica t ion of the Form-Based Authent ica t ion [18]

23

Chapter 4

Current State of Authentication in
Web Applications Using P A M

This chapter describes several already existing solutions for authentication i n web appli­
cations using P A M i n section 4.1, the example configuration using mod_au thnz pam and
mod_in te rcep t_form_submi t Apache modules i n section 4.2. Next , it provides the intro­
duct ion to the WebSocket protocol and Node.js, and an example setup using the Node.js
WebSocket l ibrary and node-linux-pam addon in section 4.3. F ina l ly , it describes the in ­
compat ibi l i ty issue of the existing solutions and multi-factor authentication in section 4.4.

4.1 Exist ing Solutions

There are already several solutions that br ing P A M authentication to web applications.
The first one to look at is the mod_authnz_pam Apache module that makes H T T P basic
authentication work wi th P A M by obtaining username and password from the Author iza t ion
header of an H T T P request and running them through a P A M stack. The password is
passed to a module in the *appdata_ptr member of the pam_conv structure. The module
sets either the REMOTE_USER environment variable on successful authentication, or
the EXTERNALAUTHERROR variable i n case of an error. So basically, this module
serves as an interface between the Apache web server and the P A M library. It can also
supplement authentication done by other modules. For P A M , the mod_au thnz pam is
a P A M - a w a r e applicat ion [19].

The next solution to look at is the mod_intercept_Jorm_submit Apache module that inter­
cepts submission of the application's login form, retrieves the username and password from
the P O S T H T T P request, and calls the mod_au thnz pam module wi th those credentials.
The applicat ion is expected to trust the REMOTE_USER value i f it is set and skip its own
authentication [20].

The final solution to look at is the node-linux-pam addon for Node.js. W i t h the use of
the WebSocket protocol, it is possible to send collected username and password from the ap­
plication's login form to a Node.js WebSocket server, run them through a P A M stack using
the addon and send back the appropriate response using the opened WebSocket connection.

24

Since a l l three mentioned solutions pass the handling of authentication to another indepen­
dent service (P A M) , we refer to it as the external authentication.

4.2 Example Configuration in Apache

This section provides guides for configuring authentication using mod_authnz_pam and
mod_intercept_Jorm_submit. Seeing these configurations work and understanding princi­
ples of related modules, described i n the previous section, is the first step to understanding
the incompat ibi l i ty of H T T P and P A M technologies. Just to remind, the Apache web server
calls the P A M authentication directly using the mod_au thnz pam module.

m o d a u t h n z p a m — example conf igurat ion

1. Install the module:

$ dnf i n s t a l l mod_authnz_pam -y

2. Enable S E L i n u x boolean httpd_mod_auth__pam:

$ setsebool -P httpd_mod_auth_pam 1

3. Configure Apache i n /etc/httpd/conf .d/mod_authnz.conf:

LoadModule authnz_pam_module modules/mod_authnz_pam.so

<Location /private>
AuthType Basic
AuthName "private area"
AuthBasicProvider PAM
AuthPAMService webapp
Require valid-user

</Location>

4. Create P A M stack for the webapp service i n /etc/pam.d/webapp:

auth required pam_sss.so
account required pam_sss.so

Now, the advantage of the S S S D service mentioned i n the section 1.2 comes useful,
because Apache does not run wi th the root privileges, so it could not access the /etc/
shadow file i f the pan^unix 1 module was used instead.

5. Restart Apache, access the http: //localhost/private location from a browser, and
t ry to login w i th a local user account

1 learn more in the pam unix module guide

25

m o d intercept f o r m s u b m i t — example conf igurat ion

1. Install the module and pe r l -CGI :

$ dnf i n s t a l l mod_intercept_form_submit perl-CGI -y

2. Set up the example app:

$ curl -Lo /var/www/app.cgi 'http://fedorapeople.org/cgitA
adelton/public_git/CGI-sessions.git/plain/app.cgi\
?id=intercept-form-submit'

$ chmod a+x /var/www/app.cgi
$ dnf i n s t a l l /usr/sbin/semanage -y
$ semanage fcontext -a - t httpd_sys_script_exec_t \

'/var/www/app\.cgi'
$ restorecon -rvv /var/www/app.cgi

3. Configure Apache i n /etc/httpd/conf .d/webapp_intercept.conf:

LoadModule intercept_form_submit_module modules/\
mod_intercept_form_submit.so

ScriptAlias /app /var/www/app.cgi

<Location /app/login>
InterceptFormPAMService webapp
InterceptFormLogin login
InterceptFormPassword password

</Location>

4. Restart Apache, access the app from a browser at http://localhost/app, and t ry
to login w i th a local user account

4.3 P A M Authentication Using WebSockets

W i t h the development of new web technologies, there is also a lot more new possibilities
for the web applicat ion development. The WebSocket protocol [21] provides for bidirec­
t ional , full-duplex communicat ion between client and server. Tha t means the client and
the server have an open connection and can send messages back and forth. So, it is possible
to collect username and password from a login form on a login page using the client-
side JavaScript, send them to the server v ia the opened connection, validate them using
P A M and send back the appropriate response. For better security, using WebSockets over
T L S / S S L (WSS) is recommended. The example in subsection 4.3.2 uses the WebSocket
l i b r a ry 2 and the node- l inux-pam 3 addon for Node.js.

2learn more in the Node.js WebSocket library repository
3learn more in the node-linux-pam addon repository

26

http://fedorapeople.org/cgit
http://localhost/app

4.3.1 N o d e . j s

Node.js is a free open source server-side JavaScript development and runtime environment
that uses asynchronous, event-driven, single-threaded, and non-blocking programming de­
signed for highly scalable network applications. W h i l e it supports the development of any
server executing any application-level protocol running over T C P / U D P , it found its biggest
use case in the web applicat ion development. It is used by many modern web applications,
such as P a y P a l , L i n k e d l n , or eBay [22].

Accord ing to [23], Node.js is highly advisable for bui ld ing modern web applications that use
dynamic page content. It can handle a much larger number of concurrent connections than
the Apache web server and is more memory efficient and better i n u t i l iz ing a l l available
processing power than P H P . However, it lacks i n serving static files using its bui l t - in H T T P
server.

Install the latest version at the t ime and a l l needed dependencies by executing the following
commands:

$ dnf i n s t a l l gcc-c++ make
$ curl -sL https://rpm.nodesource.com/setup_14.x | sudo -E bash -
$ dnf i n s t a l l nodejs

Node.js Addons

Addons for Node.js are dynamical ly- l inked shared objects wri t ten in C / C + + . There are
three options for implementing addons:

• N-API (or node-addon-api, which is a C + + wrapper for N - A P I) ,

• nan - Nat ive Abstract ions for Node.js,

• direct use of the internal V 8 JavaScript engine, l ibuv, and Node.js libraries.

The recommended option is using N - A P I as it newer, easier to use, and maintained by
the Node.js developers themselves. Other options should be used only in need for function­
ality that is not provided by N - A P I [24].

4.3.2 E x a m p l e w i t h n o d e - l i n u x - p a m

Firs t ly , we need to create the WebSocket server using the Node.js WebSocket library.
The server listens on a specified port and waits for a client to connect. W h e n a client con­
nects and sends a message, the server parses it to obtain username and password and hands
them to the node-linux-pam addon in the pamAuthenticate() function argument (an ob­
ject containing a l l necessary data). The addon runs them through the specified P A M stack.
The password is passed to a module in the *appdata_ptr member of the pam_conv struc­
ture. We use the webapp P A M stack from the previous section. W h e n the authentication
process finishes, the callback function of the pamAuthenticate () function is called. Using
the WebSocket library, the appropriate response is sent back to the client v i a the opened
connection. The message is expected to be i n the "username:password" format.

27

https://rpm.nodesource.com/setup/_14.x

// Load the WebSocket l i b r a r y and the node-linux-pam addon
const WebSocketServer = require('ws').Server;

const { pamAuthenticate, pamErrors } = require('node-linux-pam');

// Prepare the object for the authentication data

var options = { username: '', password: '', serviceName: 'webapp']-;

// Create the WebSocket server
const wss = new WebSocketServer({ port: '1234' });
// Callback function for "on connection" event
wss.on('connection', function(ws) {

// Callback function for "on message" event
ws.on('message', function(message) {

//Parse the data from the cl i e n t ' s message
var cred = message.split(':');
options.username = cred[0];
options.password = cred[l];

// C a l l the addon and send the appropriate response
pamAuthenticate(options, function(err, code) {

i f (e r r) {
ws. send(JSON. stringify({"message": err]-));

} else {
ws.send(JSON.stringify({"message": "OK"}));

}

}) ;
}) ;

}) ;

L i s t ing 4.1: Simple WebSocket Authent ica t ion Server Us ing node-linux-pam i n Node.js

Next , we need to create the WebSocket client using the client-side JavaScript . It initiates
a connection wi th the server, collects username and password from a login form, puts
them to the required format and sends them to the server. W h e n the response is received,
the client parses it and displays it to the user.

// Connect to the WebSocket server
var ws = new WebSocket('ws://localhost:1234');

// Callback function that parses the server's response,
// displays i t to the user and closes the connection
ws.onmessage = function(e) {

28

var status = JSON.parse(e.data);
$("#status").text(status.message);
ws.close ();

}

// Collect username and password, and send them to the server
function sendUserlnput() {

var cred = $('#login').val() + ':' + $('#passwd').val();
ws.send(cred);

}

Lis t ing 4.2: Simple WebSocket Client in JavaScript

Final ly , for the demonstration, we need to create a simple H T M L login page wi th a form.

<!D0CTYPE html>
<html>
<head>
<title>PAM Authentication</title>
<script src="https://code.j query.com/j query-3.5.1 min.j s"></script>
<script src="login.js"></script>

</head>
<body>
<hl>Log In</hl>
<form onsubmit="sendUserlnput(); return false;">
<input id="login" type="text" />
<input id="passwd" type="text" />
<button type="button" onclick="sendUserlnput();' >Send</button>

</form>
<h2 id="status"></h2>

</body>
</html>

Lis t ing 4.3: Simple H T M L Page wi th a Log in F o r m and the WebSocket Client Script

1. R u n the server script using the node command:

$ node main.js

2. P u t the login script and the web page inside /var/www/html/ directory to make it
accessible from a browser using Apache and restart it

3. Access the page from a browser, t ry to login w i th a local user account, and a response
message from the server should appear bellow the form

29

https://code.j

4.4 Adding More Factors

So far, each one of the solutions used the P A M stack configured only for single-factor
authentication using the pam_sss module. W h a t a l l these solutions have i n common, is that
they pass the password to a module i n the *appdata_ptr member of the pam_conv structure.
Therefore, they do not support multi-factor authentication, because only the first module
in a multi-factor stack would get the password, and other modules would return an error.
The reason is that the conversation functions of both mod_au thnz pam and node-linux-
pam cannot send any message to the user nor receive any response. For example, adding
the pam_reversed_login module to the stack and t ry ing to login again would, i n case of
the mod_au thnz pam or mod_in te rcep t_form submit configuration, cause the "Didn ' t
get reversed login" error message to appear i n the Apache error log. For the WebSocket
solution, the "Authent ica t ion failure" error message would appear below the form.

For a better understanding of how the password is passed to a module, List ings 4.4 and
4.5 show the relevant part of the mod_au thnz pam source code' 1, and List ings 4.6 and 4.7
show the relevant part of the node-linux-pam source code 0 . It is the same in principle; only
node-linux-pam uses its auth_context data type, which carries the authentication data
of the PamWorker class instance.

struct pam_conv pam_conversation = { &pam_authenticate_conv,
(void *) password };

Lis t ing 4.4: pam_authent ica te_wi th_login_password()

response [i].resp = strdup(appdata_ptr);

Lis t ing 4.5: pam_authent icate_conv()

const struct pam_conv local_conversation = {function_conversation,
reinterpret_cast<void *>(authContext)};

Lis t ing 4.6: PamWorker::Execute()

auth_context *data = static_cast<auth_context *>(appdata_ptr);
reply->resp = strdup(data->password.c_str());

Lis t ing 4.7: PamWorker: :function_conversation()

Due to the inherent incompat ibi l i ty of H T T P and P A M , it is not possible to extend
the Apache modules to support multi-factor authentication. Tha t is why the WebSocket
protocol was introduced i n this chapter. The explanation of the incompat ibi l i ty problem is
provided at the start of the next chapter.

4the mod authnz pam source code
5 the node-lixus-pam source code

30

Chapter 5

Multi-Factor Authentication in
Web Applications Using P A M

This chapter describes the H T T P and P A M incompat ib i l i ty i n section 5.1, the basis of
the solution i n section 5.2, the node-auth-pam addon i n section 5.3, the server-side of the
solution in section 5.4, the client-side of the solution i n section 5.5, and the integration to
a web applicat ion and an example applicat ion i n section 5.6.

5.1 H T T P and P A M Incompatibility

In section 1.2, the S S H D service was used as an example for multi-factor authentication us­
ing P A M . It is an S S H server running as a background process. Unl ike H T T P , S S H protocol
supports bidirectional full-duplex connection, so the client and the server have an opened
connection through which they can send data back and forth. W h e n the connection is
established, the client has to authenticate itself to the server [25]. Assuming the S S H D con­
figuration from section 1.2, the server starts a new thread for authentication against P A M .
W h e n a P A M module requires communicat ion w i t h the client for obtaining necessary in­
formation from the user, the conversation function uses the opened connection for both
sending messages and obtaining responses (if any is expected). W h e n the communicat ion
is done, the conversation function returns a l l responses (if any) to the cal l ing module [26].
Another difference between S S H D and H T T P is that both client and server randomly gen­
erate a session ID , which they keep for themselves and use it to identify a session uniquely.
In H T T P , the session I D is sent i n each request [25].

So, bo th S S H D and a P A M transaction are running processes, and S S H D uses an open con­
nection for t ransmit t ing a l l necessary data. However, i n H T T P , there is no open connection
between a client and a server because the protocol is request/response-based. So, it would
be necessary to send the current message to the client, store the transaction state, load it
back when the client sends a response to the message (in an H T T P request), and proceed
wi th authentication. Accord ing to [2], the P A M handle contains the state entirely, however
it is not absolutely true, because the pam_conv structure contains v o i d *appdata_ptr,
which is a pointer to any application-defined data. Therefore, it is not possible to serialize
the P A M handle structure, store it , and load it back.

31

However, it is possible to implement a P A M authentication addon for Node.js using N - A P I
and w i t h the use of the WebSocket protocol to synchronize the state of a P A M transac­
t ion wi th the content of a login page by t ransmit t ing a l l necessary data using the opened
WebSocket connection between the client and the server and dynamical ly adjust the page
content using JavaScript.

There are also other environments that support the WebSocket protocol, but after the agree­
ment with the consultant, Node.js will be used for the implementation of the solution due
to its advantages, popularity, and high accessibility.

5.2 The Basis of the Solution

The basis of the solution is to create an authentication thread for each client connected
to the WebSocket server. The thread starts the P A M transaction, calls for authentication,
and finally ends the transaction. W h e n a module calls the conversation function:

1. The conversation function passes the current message to the WebSocket client and
waits for a response (if any is expected),

2. the client displays the message on the login page to the user, collects and sends their
response back to the conversation function (if any is expected),

3. (a) if the module has more than one message defined, the conversation function sets
the next message as the current message and repeats the process from 1.,

(b) otherwise it returns a l l responses (if any) to the cal l ing module.

After the authentication is done, the server sends a message w i t h the return value to
the client. The client displays status information based on the return value. If the authen­
t icat ion was successful, a session cookie is also sent along wi th the return value. The client
sets the cookie and issues a redirect to the configured page. The cookie contains a session
ID (SID) and Expires date (the current date + one day). The session ID is a randomly
generated base64 encoded 16-byte string. The session I D is also stored i n a file along wi th
the corresponding username i n the "SID::username" format. E a c h session (a file line) has
a timeout set to one day. After the timeout, the session is deleted. The web applicat ion is
expected to trust this file and validate session IDs against i t . If the authentication failed,
the client allows the user to t ry to authenticate again.

The solution consists of three parts, namely the P A M authentication addon - node-auth-
pam, the WebSocket server, and the WebSocket client. T h e Figure 5.1 describes the solution
using a finite-state machine.

32

c l i e n t connects I P C o n n e c t i o n
e n s t a b l i s h e d

node-auth-pam

Thread
s t a r t e d

T r a n s a c t i o n
s t a r t e d

A u t h e n t i c a t i o n
s t a r t e d

C o n v e r s a t i o n
s t a r t e d

Message passed
to Node.js

Message sent
t o c l i e n t

W a i t i n g f o r
response

Response
o b t a i n e d

Response sent
t o s e r v e r

Response
passed back
from Node.j s

module has
another message

C o n v e r s a t i o n
e:".ded

another module
i s i n the s t a c k

A u t h e n t i c a t i o n
ended

Thread
f i n i s h e d

E r r o r message
d i s p l a y e d

E r r o r message
sent t o c l i e n t

A u t h e n t i c a t i o n
f a l i e d

success
A u t h e n t i c a t e d

S e s s i o n ID and
c o o k i e g e n e r a t e d

f S e s s i o n ID
s t o r e d

> f
(Cookie s e n t
t o the c l i e n t .
•

Cookie s e t

Con n e c t i o n
c l o s e d

Redirected I
Figure 5.1: The Solution Described by a Fini te-State Machine

33

5.3 P A M Authentication Addon for Node.js

The node-auth-pam addon accommodates P A M authentication in Node.js. It is wri t ten
in C using the N - A P I l ibrary for the Node.js addon creation. It provides the nodepamCtx
structure (referred to as "context" for the rest of this chapter) wrapped to a JavaScript
object and necessary getters for its members that need to be accessible from Node.js, and
several functions (also called bindings) that can be called from Node.js. It can be used by
any Node.js applicat ion that desires authentication against P A M .

The context is a structure that contains a l l the necessary data to authenticate a user
correctly:

• service - name of the service as defined i n /etc/pam.d/

• username - name of the user

• message - the current message

• msgStyle - the style of the message

• response - the user's response

• respFlag - the control flag - true, i f the user's response is set

• retval - the return value of P A M authentication, also used for addon constants -
NODE_PAM_JS_CONV and NODEPA MERR

• thread - the authentication thread

• mutex - the mutex protecting response and respFlag

• tsfn - the N - A P I thread-safe function

The bindings provided by node-auth-pam:

• authenticate(service, username, callback(nodepamCtx))

• setResponse(nodepamCtx, response)

• kill(nodepamCtx)

• cleanup()

The callback argument of the authenticate () b inding is a callback function that pro­
vides a way for the addon's conversation function to pass the handling of authentication
and the context to Node.js using the N - A P I thread-safe function. The thread-safe func­
t ion [27] is an asynchronous cal l of a given JavaScript function from addi t ional threads
of an addon. The c a l l _ j s _ c b argument of napi_create_threadsaf e_function() allows
for more control over the actual cal l of the JavaScript function. It is a callback function
invoked on the addon's main thread every t ime the thread-safe function is called from
a thread. T h i s callback function allows for wrapping the context structure to a JavaScript
object and passing it to Node.js. A l l necessary members of the context can be then accessed
by using getter functions defined by the addon:

34

• user - returns the username

• msg - returns the current message

• msgStyle - returns the style of the message

• retval - returns the return value or NODE_PAM_JS_CONV (there is no use case
for NODEPA M_ERR as it is only used internally)

The callback function of the authenticate() b inding must be defined and can implement
arbi t rar i ly complex logic depending on the state of the context. It is invoked one or multiple
times during the execution of the conversation function (depends on the number of modules
in the P A M stack and the number of module's messages), and lastly, after the transaction
is finished.

W h e n a Node.js appl icat ion requires authentication using the node-auth-pam addon, it calls
the authenticate () b inding. It creates a new context w i th the service name and the user-
name, creates a thread-safe function of the binding's callback, and starts the authentication
thread wi th the context set as its attr ibute. B o t h thread-safe function and the thread are
also stored i n the context. The thread creates the pam_conv structure wi th the addon's
conversation function and passes the context using *appdata_ptr, starts the transaction
and calls pam_authenticate().

W h e n a module calls the conversation function (nodepamConvO), it sets message to the cur­
rent message of the module, msgStyle to its style, and r e t v a l to NODE_PAM_JS_CONV
in the context and uses the thread-safe function from the context to invoke the callback,
passing the context to Node.js and waits for a response (the wait ing mechanism is shown
in the L i s t ing 5.1). The retval indicates that the conversation function is wai t ing for
a response to be set to the context. The callback function of the authenticate () b inding
can either display the message to the user, obtain a response (if any is expected) and cal l
setResponseO , or it can forward the message to a connected client, store the context to
a variable and cal l the setResponseO b inding outside the callback, when the client sends
the user's response. The first case is useful only for the test applicat ion (Lis t ing 5.3).

while(true) {
pthread_mutex_lock(&(ctx->mutex));
i f (!ctx->respFlag) {

pthread_mutex_unlock(&(ctx->mutex));
continue;

} else {
response[i].resp = strdup(ctx->response);
response[i].resp_retcode = 0;
pthread_mutex_unlock(&(ctx->mutex));
break;

}

}

Lis t ing 5.1: Wai t i ng Mechanism of nodepamConv()

35

The wait ing mechanism of the conversation function is not very effective due to the while ()
cycle as it unnecessarily consumes the C P U . It continuously checks respFlag un t i l it is set
to true, and sets the obtained response to the pam_response structure. It would be much
more effective if the thread would go to sleep and then be awakened by a SIGCONT signal.
However, after many attempts it d id not work due to undiscovered reason.

The setResponse() b inding protects the setting of the response (shown i n the L i s t ing
5.2) w i th a mutex, so response and respFlag cannot be accessed by the conversation
function unt i l they are both set. In case of PA M_ERR OR_MSG or PA M_ TEX TINFO
message styles, the setResponse() b inding must be called wi th an empty str ing due to
synchronization issues. Otherwise, it sets the obtained response to response and respFlag
to true.

pthread_mutex_lock(&(ctx->mutex));

i f (ctx->msgStyle == PAM_PR0MPT_ECH0_0FF ||
ctx->msgStyle == PAM_PR0MPT_ECH0_0N)

ctx->response = strdup(response);

ctx->respFlag = true;
pthread_mutex_unlock(&(ctx->mutex));

Lis t ing 5.2: Setting of the Response to the Context

W h e n retval i n the context is set to PAM_SUCCESS, the authentication was successful
and the applicat ion can implement a post authentication mechanism, e.g. session man­
agement, or pass the handling to another service. A n y other return value is an error that
the appl icat ion can handle according to its needs.

W h e n the authentication finishes, the authentication thread ends the P A M transaction,
sets the return value of pam_authenticate() to retval i n the context, calls the thread-
safe function for the last t ime to invoke the callback and pass the final return value to
Node.js, and releases the thread-safe function (napi_release_threadsafe_function()).
The release invokes a finalize callback, which can provided upon the creation of the thread-
safe function. It is invoked on the addon's main thread after the thread-safe function
is released and provides an opportuni ty for cleaning up after the thread(s). The addon
implements the ThreadFinished finalize callback, which terminates (pthread_join()) or
kills the thread, and frees the context.

The addon also provides k i l l () and cleanup () bindings. The k i l l () b inding can be called
from Node.js to k i l l the authentication thread, i f an error occurs during the authentication
process (connection error between the server and the client). The cleanup() b inding should
be called when the Node.js applicat ion is about to finish to prevent some memory leaks.

The addon was wri t ten according to the thread-safe function round-tr ip example provided
by one of the Node.js developers Gabr ie l Schulhof [28].The entire source code is attached
in the appendix C .

36

5.3.1 Test A p p l i c a t i o n

This section provides a test appl icat ion of the node-auth-pam addon. The example appli­
cation prompts the user for their username and runs the authentication. W h e n the call­
back function of the authenticate() b inding is invoked, it firstly checks i f retval is
NODE_PAM_JS_CONV. If it is, it checks i f the msgStyle is set to PA MERR OR_MSG
or PAMTEXTINFO, prints the message and calls setResponse () w i t h an empty string.
Otherwise, it prompts the user for a response according to message and sets the response.
If retval is set to PAM_SUCCESS, it gets the username from the context and prints that
the user was authenticated. Otherwise, it prints an error message.

const pam = require('bindings')('auth_pam'); // load the addon
const readline = require('readline-sync');

const PAM_SUCCESS = 0;
const PAM_ERR0R_MSG = 3;
const PAM_TEXT_INF0 = 4;
const N0DE_PAM_JS_C0NV = 50;

var username = readline.question('Username: ') ;

pam.authenticate('nodeapp', username, (nodepamCtx) => {
i f (nodepamCtx.retval === N0DE_PAM_JS_C0NV) {

i f (nodepamCtx.msgStyle === PAM_ERR0R_MSG I I
nodepamCtx.msgStyle === PAM_TEXT_INF0) {

console.log(nodepamCtx.msg);
pam.setResponse(nodepamCtx, ' ') ;

} else {
var response = readline.question(nodepamCtx.msg);
pam.setResponse(nodepamCtx, response);

>
} else i f (nodepamCtx.retval === PAM_SUCCESS) {

// Authentication succeeded, do something
console.log('User ' + nodepamCtx.user + ' authenticated');

} else {
// Authentication f a i l e d , do something
console.log('Authentication f a i l e d ') ;

}

}) ;

L i s t ing 5.3: Example of node-auth-pam Usage

The test P A M stack "nodeapp" uses pam_sss and pam_reversed_login modules.

37

5.4 The WebSocket Server

The WebSocket server serves as an authentication daemon and uses the node-auth-pam
addon to authenticate users against P A M . It listens on a given port and waits for clients
to connect. W h e n a client connects, the server declares a variable for storing the context
(ctx). W h e n the client sends its first message, the server expects it to be a username. Since
it is the client's first message, no context yet exists, so the server calls the authenticate ()
binding that starts the authentication thread. W h e n the callback of the authenticate ()
binding is invoked, the server sends the current message from the context to the client using
the opened connection and stores the to declared ctx variable. If the style of the message
is either PA MERR OR_MSG or PA M_ TEX TINFO it calls the setResponse () b ind­
ing w i th an empty string. Now, the server waits for another message from the client.
Since the client now has its context, a l l other messages received from now on are expected
to be responses. So every t ime the server receives a message from this client, it calls
the setResponse() b inding to set the response to the context, so the wait ing conversa­
t ion function access i t . W h i l e retval i n the context is set to NODE_PAM_JS_CONV
the process of sending messages and setting responses to them continues un t i l a l l modules
satisfy their needs.

W h e n retval changes, the authentication finished, the server sends the actual return value
to the client, and the ctx variable is cleared. If the authentication succeeded, the server
generates a session cookie and sends it to the client along w i t h the return value. It
also appends the generated session I D to a file (a sessions file) named after the service
in the "SID::username" format and sets a one-day timeout, after which the session is deleted
from the file. The file contains session IDs and corresponding usernames of a l l authenticated
users. It is located i n the sessions/ directory, which is located in the root of the package.
If the authentication failed, no session I D and cookie are generated, and another message
from the client is assumed as the first message, so the user can t ry again to authenticate.
Example session cookie:

SID=WS7ec7tws0ptU5aQ6zVEcQ==; Expires=Fri, 29 May 2020 19:20:01 GMT

If the connection between the client and the server closes due to any reason, the server
calls the k i l l () b inding to k i l l the running authentication thread. F ina l ly , when the server
is about to shutdown (due to an interrupt signal), it calls the cleanUpO b inding and
clears the sessions file. If the file had not been cleared, some inval id sessions could remain
in the file, because a l l t imeouts would be canceled. It would not cause any security issues
as a l l session cookies w i l l expire anyway. It is just a matter of avoiding the preservation of
invalid sessions.

Since the Node.js WebSocket l ibrary allows for mult iple concurrent connections, and it is
also possible to have mult iple P A M transactions i n parallel, the server provides authentica­
t ion for mult iple clients simultaneously. E a c h connected client has exactly one thread and
exactly one context.

The server supports two command line arguments:

• port - the port to run the server on (default: 1234)

• service - the service name as defined i n /etc/pam.d/ (default: login)

38

wss.on(,connection), (ws) => {

var ctx;

ws.on(' message', (message) => {
i f (! ctx) {
pam .authenticate(service, message, (nodepamCtx) => {

i f (nodepamCtx.retval === N0DE_PAM_JS_C0NV) {
ws.send(JSON.stringify({'msg': nodepamCtx.msg,

'msgStyle': nodepamCtx.msgStyle}));
ctx = nodepamCtx;
i f (nodepamCtx.msgStyle === msgStyle.PAM_ERROR_MSG I I

nodepamCtx.msgStyle === msgStyle.PAM_TEXT_INFO)
pam.setResponse(nodepamCtx, ' ') ;

> else i f (nodepamCtx.retval === PAM_SUCCESS) {
var cookie = generateCookie(cookieName, nodepamCtx.user);
ws.send(JSON.stringify({'msg': nodepamCtx.retval,

'cookie': cookie}));
ctx = undefined;

> else {
ws.send(JSON.stringify({'msg': nodepamCtx.retval}));

\

ctx = undefined;
s

});
} else {
pam

>
.setResponse(ctx, message);

j
});

});

Lis t ing 5.4: The WebSocket Server Core Funct ional i ty Code

The Figure 5.2 shows the sequence diagram of the server-side of the solution. The entire
source code of the WebSocket server is attached i n the appendix C .

5.5 The WebSocket Client

The WebSocket client is a client-side JavaScript that runs i n the browser when a user
accesses the login page of the web applicat ion. It handles the client-side of the solution,
which means it collects the user's input and modifies the login page according to messages
received from the server. If no session cookie for the applicat ion is set in the browser,
it contacts the server to establish a connection. W h e n the connection is open, it sets
the first/initial prompt to "Username:" and displays the form. If a session cookie already
exists, the client only displays the "Al ready authenticated" status i n the #status element,
and issues a redirect to the specified location.

39

W h e n the user fills in their username, the client sends it to the server, which starts the au­
thentication. Now, there are three types of messages (not P A M messages, but JSON strings)
expected from the server distinguished by the message content:

• msg (string), msgStyle (integer)

• msg is PAM_SUCCESS (integer), cookie (string)

• msg (integer)

In the first case, the message contains msg and msgStyle fields. It means this message con­
tains a message from a P A M module and its style. The client uses a switch-case statement
to decide how to display the message, and i f it is a "prompt" how to set up the input field.
If the style is PAM_PROMPT_ECHO_OFF, the client sets the type property of the in ­
put field to password, so the field's content (user's response) is hidden. If the style is
PAM_PROMPT_ECHO_ON, the client sets the type property of the input field to text,
so the field's content is visible. In case of PA MERR OR_MSG or PAM_ TEXTINFO,
the client appends the message to a div H T M L element w i th the #messages I D . After
each received message of the first two types, a one-minute timeout is set. W h e n the user
takes longer than a minute to provide a response, the connection between the client and
the server closes, and the "Connect ion t imeout" status is displayed. It prevents infinitely
running authentication threads on the server.

switch (message.msgStyle) {
case msgStyle.PAM_PR0MPT_ECH0_0FF:

$("#promptLabel").text(message.msg);
$('#prompt').prop('type*, 'password');
startTimer();
break;

case msgStyle.PAM_PR0MPT_ECH0_0N:
$("#promptLabel").text(message.msg);
$('#prompt').prop('type', 'text');
startTimer();
break;

case msgStyle.PAM_ERROR_MSG:
case msgStyle.PAM_TEXT_INFO:

i f (message.msgStyle === msgStyle.PAM_ERROR_MSG)
$("#messages").append('<p style="color:red">' +

message.msg + '</p>');
} else {

$("#messages").append('<p>' + message.msg + '
>

</p>');
j
break;

default:
break;

>

Lis t ing 5.5: Client-side Handl ing of the Conversation

40

In the second case, the msg field contains PAM_SUCCESS and cookie fields. It means
that authentication finished successfully, and the server has created a session and stored it
to the sessions file. The client closes the connection wi th the server, hides the form, display
the "Authent icated" status, sets the cookie (session cookie) using the cookie property of
document and issues a redirect to the configured page.

ws.close ();
$("#promptForm") .hideO ;
$("#status").text('Authenticated');
document.cookie = message.cookie;
setTimeout(() => {

window.location.href = '/';
}, 3000);

Lis t ing 5.6: Clients Behavior on Successful Authent ica t ion

In the final case, the msg field contains an error return value, so it is possible to display
the corresponding error message i n the #status element. However, it is only useful for
debugging of the P A M stack, because it is meaningless to display every error to the user.
The administrator/developer of the web applicat ion should verify that the configured P A M
stack is functional. For that reason, the client displays only the "Wrong username or
password, please t ry again" message, as that is the only error that P A M returns when
everything is configured correctly. It also deletes the stored username and sets the prompt
to the in i t i a l prompt, so the user can t ry to authenticate again.

user = undefined;
$("#status").text('Wrong username or password, please t r y again');
$('#prompt').prop('type', 'text');
$("#promptLabel").text('Username:');

Lis t ing 5.7: Clients Behavior on Authent ica t ion Er ro r

The L i s t ing 5.8 shows the necessary H T M L code for a login page. The Figure 5.3 shows
the sequence diagram of the client-side of the solution. The entire source code of the Web-
Socket client is attached in the appendix C.

<script type="text/javascript" src="login.js"></script>
<form hidden id="promptForm" onsubmit="sendUserInput(); return false;">

<label id="promptLabel" for="prompt"></label>
<input id="prompt" type="text" />
<button type="button" onclick="sendUserInput();">Next</button>

</form>
<h2 id="status"></h2>
<div id="messages">
</div

Lis t ing 5.8: Necessary H T M L Code For a L o g i n Page

41

5.6 Integration to a Web Applicat ion

The integration of multi-factor authentication to a web applicat ion using the solution pro­
vided in this chapter is fairly easy. It requires the content of Append ix C . It can also be
downloaded from the node-auth-pam 1 repository. The integration/ directory contains a l l
necessary files whose content must be included i n the web applicat ion. The login.html
file contains the necessary H T M L code for a login page. It can be edited to needs and taste
but included scripts, the form, and #status and #messages elements are mandatory, and
should not be deleted. If the applicat ion uses a templat ing language, it can also be slip
into several parts. The login, j s file contains the client-side JavaScript code for the login
page. O n l y the window.location.href pa th and the WebSocket server address should be
edited. It is expected from the applicat ion to trust the sessions file created by the Web-
Socket server and validate session cookies received i n a request against i t . W h e n a user logs
out, it should delete the appropriate session from the file.

5.6.1 E x a m p l e W e b A p p l i c a t i o n

The example applicat ion is wri t ten in Node.js using the Express web framework 2 and EJS
templat ing language 3 . There are two essential function that implement the integration wi th
the provided solution - getUserO and removeSIDO. The entire source code of the appli­
cation is attached in the appendix C .

The getUserO function validates the session ID received in a session cookie and returns
the corresponding username. Basically, it searches the sessions file for the given session
ID and returns the username associated wi th this session I D . L i s t i ng 5.9 shows the use
of the getUserO function. If the received request contains the session cookie, the appli­
cation calls the getUserO. Depending on its return value, the applicat ion then decides
further actions.

var user;
i f (req.cookies['SID']) {

const s id = req.cookies['SID'];
user = getUser(sid);

>
>;

Lis t ing 5.9: Val ida t ion of a Session Cookie

The removeSIDO function searches the sessions file for the given session ID and deletes
the corresponding session (line) from the file. L i s t i ng 5.10 shows the use of the removeSID ()
function for a logout page. If a user is logged in (has a session stored in the sessions file),
the appl icat ion calls the removeSIDO function and deletes the session cookie.

1 download here: node-auth-pam
2 learn more at the Express web page
3learn more at the EJS web page

42

i f (luser) {
res.locals.content = 'No user i s logged i n ' ;

} else {
removeSID(sid);
res.clearCookie('SID');
res.locals.content = 'User logged out';

}

Lis t ing 5.10: L o g out

Use the following commands to run the application:

$ npm i n s t a l l
$ node server.js

R u n the server on desired port using the desired P A M stack. For example:

$ node main.js -s webapp

The webapp stack:

auth required pam_sss.so
auth required pam_reversed_login.so
auth required pam_google_authenticator.so
account required pam_sss.so

Access the example applicat ion at localhost: 8080 and t ry to login w i th a local user
account. In a real use case, the pam_reversed_login module would be removed from
the P A M stack as it only serves the testing purposes.

The th i rd point of the assignment also required a demonstration using F r e e O T P . F r e e O T P
requires either configuration of the OATH toolkit and the pam_oath module 1 , or a running
FreelPA server. Setting up a F r e e l P A server requires a lot of unnecessary effort just for
test and demonstration purposes. Therefore, the first opt ion has been selected for these
purposes. However, it d id not work due to an undiscovered reason. So, after the agreement
wi th both supervisor and consultant, the Google Authent icator was used instead. It pro­
vides the google-authenticator applicat ion and the pam_google_authenticator module
that authenticates local users, and it is easy to configure and use. Runn ing a Node.js ap­
plicat ion that uses the node-auth-pam as root allows access to a l l user's configuration files
so that it can validate O T P tokens.

learn more in the pam oath guide

43

WebSocket S e r v e r node-auth-pain
Linux-PAM I n t e r f a c e

L i b r a r y Module

a u t h e n t i c a t e ()

a u t h e n t i c a t e () c a l l b a c k

pam.setResponse()

a m . a u t h e n t i c a t e () c a l l b a c k

C r e a t e the c o n t e x t
and s t a r t t h e t h r e a d

p a m _ s t a r t ()

PAM_SUCCESS + pamh

p a m _ a u t h e n t i c a t e ()

Set the response t o the
c o n t e x t

PAM SUCCESS
or PAM_AUTH_ERR

pam_end()

PAM SUCCESS

pam_sm_authenticate()

pam_get_item(pam_conv)

PAM_SUCCESS + pam_conv

pam_conv->conv()

PAM SUCCESS
or PAM AUTH ERR

V a l i d a t e
the response

Figure 5.2: Server-side of the Solut ion

44

L o g i n Page WebSocket C l i e n t WebSocket S e r v e r

U s e r f i l l s i n
h i s username

User f i l l s i n
h i s r e s p o n s e

Prompt f o r username

Username

D i s p l a y t h e r e c e i v e d
message (prompt)

Response

w s . c o n n e c t ()

ws.send()

ws.send()

ws .send()

ws .send()

successJ
D i s p l a y a s u c c e s s message

K

d o c u m e n t . c o o k i e ()

ws. c l o s e ()

<-
I s s u e a r e d i r e c t

fail J
D i s p l a y an e r r o r message

D e l e t e t h e p r e v i o u s

fail J

%.

D e l e t e t h e p r e v i o u s

fail J

%.

username and t r y a g a i n

Figure 5.3: Client-side of The Solut ion

45

Chapter 6

Conclusion

This thesis introduced the Pluggable Authent ica t ion Modules framework for those who
were not familiar w i th this technology. App l i ca t ion developers should be encouraged to
use P A M for its ease of use and high flexibility. It further described authentication i n web
applications and its modern trends. Then , it introduced standard methods of authentication
using H T T P and described the current state of integration of P A M and H T T P . After some
demonstration, examples that every interested person should t ry themselves to see them
work and break into the P A M and H T T P inherent incompatibi l i ty . F ina l ly , the contr ibution
of this thesis is a functional implementat ion of multi-factor authentication for Node.js using
the node-auth-pam addon. It can be used by any Node.js applicat ion, but this thesis
implemented an authentication server (daemon) w i th the use of the WebSocket protocol.
It also provided a client-side JavaScript, the necessary H T M L code, and the description
of what is expected from the web applicat ion for simple integration of the solution to
the applicat ion.

For example, a potential ly interested user could be a company or a university that runs
its company/univers i ty information system on their server, and each person has their user
account w i th which they can log in . Another possibil i ty is to use the SSSD service configured
to authenticate against an Act ive Directory or a F r e e l P A server that is configured for mul t i -
factor authentication.

6.1 Future Work

The a i m of this thesis was to implement multi-factor authentication i n web applications us­
ing P A M . However, there are three other module types whose support is not yet supported
by the node-auth-pam addon. It should be possible to provide support for account and
password modules. A session module would serve no use because web applications use
session management as defined i n R F C 6265. Another possible improvement is the imple­
mentation of a better wait ing mechanism of the conversation function of the node-auth-pam
addon. For the WebSocket server, the support for other cookie attributes could be added
(with its command-line options), mainly Pa th .

46

Bibliography

[1] M O R G A N , A . G . and K U K U K , T . The Linux-PAM System Administrators' Guide
[online], www.l inux-pam.org, 2010 [cit. M a y 26, 2020]. Available at:
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html.

[2] M O R G A N , A . G . and K U K U K , T . The Linux-PAM Application Developers' Guide
[online], www.l inux-pam.org, 2010 [cit. M a y 26, 2020]. Available at:
http ://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html.

[3] L I N U X - P A M . Linux PAM (Pluggable Authentication Modules for Linux) project
[online], www.l inux-pam.org, 2016 [cit. M a y 26, 2020]. Available at:
https: //github.com/linux-pam/linux-pam.

[4] G E I S S H I R T , K . Pluggable Authentication Modules: The Definitive Guide to PAM for
Linux SysAdmins and C Developers. 1st ed. Packt Publ i sh ing L t d . , 2007. I S B N
978-1-904811-32-9.

[5] M O R G A N , A . G . and K U K U K , T . The Linux-PAM Module Writers' Guide [online].
www.l inux-pam.org, 2010 [cit. M a y 26, 2020]. Available at:
http: //www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html.

[6] B A R R E T T , D . J . , S I L V E R M A N , R . E . and B Y R N E S , R . G . What the heck is keyboard
interactive" authentication [online], www.snai lbook.com, 2017 [cit. M a y 26, 2020].
Available at: http://www.snailbook.com/faq/keyboard-interactive.auto.html.

[7] R E D H A T , I N C . . Chapter 10. Using Pluggable Authentication Modules [online]. R e d
Hat , Inc., 2014 [cit. M a y 26, 2020]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
system-level_authentication_guide/pluggable_authentication_modules.

[8] S O A R E S , L . F . B . , F E R N A N D E S , D . A . B . , F R E I R E , M . M . and I N Ä C I O . , P . R . M .

Secure user authentication in cloud computing management interfaces [online]. 2013
I E E E 32nd International Performance Comput ing and Communicat ions Conference
(I P C C C) , San Diego, C A , 2013 [cit. M a y 26, 2020]. Available at:
https://ieeexplore.ieee.org/document/6742763.

[9] O W A S P F O U N D A T I O N . Multifactor Authentication Cheat Sheet [online]. O W A S P
Foundat ion, 2019 [cit. M a y 26, 2020]. Available at:
https: / / cheatsheetseries.owasp.org/Cheatsheets/
Multifactor Authentication Cheat Sheet.html.

47

http://www.linux-pam.org
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.linux-pam.org
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html
http://www.linux-pam.org
http://www.linux-pam.org
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html
http://www.snailbook.com
http://www.snailbook.com/faq/keyboard-interactive.auto.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
https://ieeexplore.ieee.org/document/6742763
http://cheatsheetseries.owasp.org/

[10] O W A S P F O U N D A T I O N . Authentication Cheat Sheet [online]. O W A S P Foundation,
2019 [cit. May 26, 2020]. Available at:
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html.

[11] A U T H O , I N C . . Single Sign-On [online]. AuthO, Inc., 2018 [cit. May 26, 2020]. Available
at: https : //authO.com/docs/sso/current.

[12] G R A S S I , P . A . , N E W T O N , E . M., P E R L N E R , R . A . , R E G E N S C H E I D , A . R . , B U F F ,

W . E . et al. Digital identity guidelines: Authentication and lifecycle management
[online]. N I S T Special Pub l ica t ion 800-63B, June 2017 [cit. May 26, 2020]. Available at:
https: //nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf.

[13] G A V I N , B . HOW to Use Google Chrome to Generate Secure Passwords [online].
www.howtogeek.com, 2019 [cit. May 26, 2020]. Available at:
https: //www.howtogeek.com/427007/how-to-use-google-chrome-to-generate-secure-
passwords/.

[14] M O Z I L L A C O R P O R A T I O N . New password security features come to Firefox with
Lockwise [online]. Mozilla Corporat ion, 2019 [cit. May 26, 2020]. Available at:
https: //blog.mozilla.org/f iref ox/password- security- features/.

[15] F I E L D I N G , R . , G E T T Y S , J . , M O G U L , J . , F R Y S T Y K , H . , M A S I N T E R , L . et al. Hypertext

Transfer Protocol - HTTP/1.1 [online]. Internet Engineering Task Force (I E T F) ,
June 1999 [cit. May 26, 2020]. Available at: ht tps: / / tools.ietf.org /html/rfc2616.

[16] B A R T H , A . and B E R K E L E Y , U . HTTP State Management Mechanism [online].
Internet Engineering Task Force (I E T F) , april 2011 [cit. May 26, 2020]. Available at:
h t t p s : / / t o o l s , ietf.org/html/rfc6265.

[17] T H E A P A C H E S O F T W A R E F O U N D A T I O N . Authentication and Authorization [online].

T h e Apache Software Foundation, 2018 [cit. May 26, 2020]. Available at:
https: //httpd.apache.org/docs/2.4/howto/auth.html.

[18] P A Z D Z I O R A , J . Typical Form-based Authentication [online]. Adel ton , 2013 [cit. May
26, 2020]. Available at: https://github.com/adelton/mod_intercept_form_submit/
blob/master/docs/typical_form_based_authentication.txt.

[19] P A Z D Z I O R A , J . Apache module mod_authnz__pam [online]. Adel ton , 2013 [cit. May 26,
2020]. Available at: https://www.adelton.com/apache/mod_authnz_pam/.

[20] P A Z D Z I O R A , J . Mod_intercept_Jorm_submit [online]. Adel ton , 2013 [cit. May 26,
2020]. Available at: https://www.adelton.com/apache/mod_intercept_form_submit/.

[21] F E T T E , I. and M E L N I K O V , A . The WebSocket Protocol [online]. Internet Engineering
Task Force (I E T F) , december 2011 [cit. May 26, 2020]. Available at:
h t t p s : / / t o o l s , ietf.org/html/rfc6455.

[22] B O J I N O V , V . , H E R R O N , D . and R E S E N D E , D . Node.js Complete Reference Guide. 1st
ed. Packt Publ i sh ing L i m i t e d , 2018. I S B N 9781789952117.

[23] C H A N I O T I S , I. K . , K Y R I A K O U , K . - I . D . and T S E L I K A S , N . D . IS Node.js a viable
option for building modern web applications? A performance evaluation study.
Computing. October 2015, vol. 97, no. 10, p. 1023-1044. Available at:
https://doi.org/10.1007/s00607-014-0394-9.

18

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
http://nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
http://www.howtogeek.com
http://www.howtogeek.com/427007/how-to-use-google-chrome-to-generate-secure-
https://tools.ietf.org/html/rfc2616
https://tools
http://ietf.org/html/rf
https://github.com/adelton/mod_intercept_form_submit/
https://www.adelton.com/apache/mod_authnz_pam/
https://www.adelton.com/apache/mod_intercept_form_submit/
https://tools
http://ietf.org/html/rf
https://doi.org/10.1007/s00607-014-0394-9

[24] O P E N J S F O U N D A T I O N . Node.js vlJ^.2.0 Documentation [online]. OpenJS Foundation,
2020 [cit. M a y 26, 2020]. Available at:
https: //node j s.org/dist/latest-vl4.x/docs/api/addons.html.

[25] B A R R E T T , D . J . and S I L V E R M A N , R. E . SSH, The Secure Shell: The Definitive
Guide. 1st ed. O'Reilly, 2001. ISBN 0-596-00011-1.

[26] M I L L E R , D . and T U C K E R , D . auth-pam.c [online]. OpenSSH, 2003 [cit. M a y 26, 2020].
Available at:
https: / / github. com/ openssh/openssh-portable/blob/master/auth-pam. c.

[27] O P E N J S F O U N D A T I O N . Asynchronous Thread-safe Function Calls [online]. OpenJS
Foundation, 2020 [cit. M a y 26, 2020]. Available at: https:
//nodej s.org/api/n-api.html#n_api_asynchronous_thread_saf e_f unction_calls.

[28] S C H U L H O F , G . and M I S S I N E , A . round_trip.c [online], gabrielschulhof, 2018 [cit. M a y
26, 2020]. Available at:
https: //github. com/gabrielschulhof/abi-stable-node-addon-examples/blob/
tsfn_round_trip/thread_safe_function_round_trip/node-api/round_trip.c.

49

Appendix A

How to setup SSSD

1. Install the sssd service:

$ dnf i n s t a l l sssd -y

2. Create the sssd.conf config file in the /e tc /sssd directory wi th following contents:

[sssd]
domains = PR0XY_PR0XY
services = nss,pam

[domain/PROXY_PROXY]
id_provider = proxy
proxy_lib_name = f i l e s
proxy_pam_target = sssd-shadowutils
pwfield = x

The pwfield = x is a bug i n the sssd-2.2.3-13.fc31.x86_64 package.

3. Restart the sssd service:

$ systemctl restart sssd

50

Appendix B

How to set up Google
Authenticator

1. Install the pam_google_authent icator module:

$ dnf i n s t a l l pam_google_authenticator -y

2. R u n the google-authenticator command and follow the configuration guide:

$ google-authenticator
Do you want authentication tokens to be time-based (y/n) y

— Scan the generated Q R code w i t h the Google Authent icator mobile applicat ion
and enter the code it generates

Do you want me to update your

"/home/mariankapisinsky/.google_authenticator" f i l e ? (y/n) y

— Other configuration settings are optional

3. Use O T P tokens generated by the mobile applicat ion for future authentication

51

Appendix C

C D Content

• integration/ - contains necessary files for a simple integration to a web applicat ion

— login.html - contains the necessary H T M L code for a login page

— login.js - contains the client-side JavaScript code for the login page

• node-auth-example/ - contains an example web applicat ion for node-auth-pam

• pam_reversed_login/ - contains an example P A M module for demonstration/test
purposes

• src/ - contains node-auth-pam addon source files

• binding.gyp - the binding file that describes the configuration to bu i ld the node-auth-
pam addon

• main.js - the WebSocket server for P A M authentication using node-auth-pam

• package .j son

• L I C E N S E

• R E A D M E . m d

52

