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Abstract 
Two-dimensional flow field measurement allows us to obtain detailed information 

about the processes inside the continuous casting mould. This is very important because 

the flow phenomena in the mould are complex, and they significantly affect the steel 

quality. For this reason, control based on two-dimensional flow monitoring has a great 

potential to achieve substantial improvement over the conventional continuous casting 

control. This conventional control relies on single-point measurements of selected scalar 

variables; typically, it is limited to mould level control. Two-dimensional flow field 

measurement provides large amounts of measurement data distributed within the whole 

cross-section of the mould. Such data can be obtained using process tomography or other 

sensors with similar distributed measurement capacity. 

A n experimental setup of the continuous casting process called M i n i - L I M M C A S T 

located in Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, is used 

for this thesis. The m i n i - L I M M C A S T facility is a small-scale physical model of a 

continuous caster working with a eutectic GalnSn alloy at room temperature. This thesis 

examines two alternatives of flow measurement sensors: Ultrasound Doppler Velocimetry 

(UDV) and Contactless Inductive Flow Tomography (CIFT). Both sensor variants can 

obtain information on the velocity profile in the mould. 

Available literature sporadically mentions the use of tomographic or similar sensors for 

real-time feedback control of various processes. However, the field of tomography-based 

control is still very young. Therefore, this thesis explores various approaches for utilizing 

the large amounts of data such sensors provide for automatic control. Generally, model-

based approaches were preferred for the design of controllers whose objective is to achieve 

optimal flow patterns in the mould. 

Two approaches were considered to create the process model needed for model-based 

control: a spatially discretized version of a model based on partial differential equations 

and computational fluid dynamics and a model obtained using system identification 

methods. In the end, system identification proved to be more fruitful for the aim of creating 

the model-based controller. Specific features of the flow were parametrized to obtain the 

needed controlled variables and outputs of identified models. These features are mainly 

related to the exiting jet angle and the meniscus velocity. The manipulated variables 
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considered are electromagnetic brake current and stopper rod position. Model predictive 

control in several versions was used as the main control approach, and the results of 

simulation experiments demonstrate that the model predictive controller can control the 

flow and achieve the optimum flow structures in the mould using U D V . CIFT 

measurements can provide similar velocity profiles. However, further technical 

developments in the CIFT sensor signal processing, such as compensating for the effects 

of the strong and time-varying magnetic field of the electromagnetic brake on CIFT 

measurements, are necessary i f this sensor is to be used for closed-loop control. 
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Abstrakt 
Za pomoci dvourozměrného měření pole proudění v krystalizátoru zařízení pro plynulé 

lití oceli lze získat podrobnou informaci o procesech, které tam probíhají. Tato informace 

je velmi důležitá, neboť složitá struktura proudění v krystalizátoru výrazným způsobem 

ovlivňuje kvalitu lité oceli. Z tohoto důvodu má zpětnovazební řízení založené na 

takovémto dvourozměrném měření velký potenciál k tomu, aby dosáhlo výrazného 

zlepšení oproti obvyklým postupům řízení procesu plynulého lití. Tyto postupy totiž 

vycházejí pouze z bodového měření vybraných skalárních veličin a základní regulační 

smyčkou je obvykle řízení výšky hladiny v krystalizátoru. 

Dvourozměrné měření pole proudění v krystalizátoru poskytuje velké množství 

naměřených hodnot, které jsou rozloženy v celém průřezu krystalizátoru. Technicky může 

být takovéto měření realizováno pomocí průmyslové tomografie nebo jiných snímačů, 

které jsou podobně jako tomografie schopné snímat veličiny rozložené v rámci celého 

průřezu krystalizátoru. V práci je jako zdroj experimentálních dat použito zařízení M i n i -

L I M M C A S T provozované v Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Toto 

zařízení představuje malý model procesu plynulého lití pracující s eutektickou slitinou 

GalnSn, která umožňuje provádění experimentů za pokojové teploty. K měření 

dvourozměrného pole proudění v krystalizátoru jsou alternativně používány snímače 

založené na dvou různých principech: ultrazvuková dopplerovská velocimetrie 

(Ultrasound Doppler Velocimetry - U D V ) a bezkontaktní induktivní průtoková tomografie 

(Contactless Inductive Flow Tomography - CIFT). Z obou variant snímačů lze získat 

informaci o rychlostním poli proudění v krystalizátoru. 

V dostupné literatuře lze najít občasné zmínky o použití průmyslových tomografických 

a obdobných snímačů pro zpětnovazební řízení různých procesů. Vcelku se však jedná o 

problematiku, jejíž výzkum je teprve v počátcích. V rámci práce bylo nutné se zabývat 

volbou a výzkumem vhodných metod automatického řízení, které umožňují využít 

rozsáhlé množství dat, které tyto snímače poskytují. Při návrhu metod řízení schopných 

zabezpečit, že proudění v krystalizátoru bude optimální z hlediska kvality výsledného 

produktu, byly v zásadě preferovány přístupy založené na modelu. 

Pro vytvoření modelu byly zvažovány dva základní přístupy: jednak prostorově 

diskretizovaná podoba modelu založeného na parciálních diferenciálních rovnicích a 
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výpočetní dynamice tekutin a jednak model získaný postupy identifikace systémů. Tento 

druhý přístup se ukázal pro realizaci řízení založeného na modelu jako výrazně vhodnější. 

Z dat byly extrahovány vhodné numerické charakteristiky proudění v krystalizátoru (úhel 

proudění z ponorné trysky, rychlost proudění na hladině krystalizátoru a další), které bylo 

možné použít jako regulované veličiny a výstupy modelů získaných identifikací. Jako 

akční veličiny byly použity proud elektromagnetické brzdy a poloha regulovatelné výpusti 

z mezipánve. Hlavním přístupem k řízení v práci jsou různé verze prediktivního řízení 

založeného na modelu. V e spojení s U D V snímači byly navržené prediktivní regulátory 

schopné dosáhnout v simulačních experimentech stanoveného cíle řízení a zabezpečit 

optimální struktury proudění v krystalizátoru. CIFT snímače jsou v principu schopné 

poskytnout podobná data, nicméně pro jejich využití pro řízení v uzavřené smyčce bude 

nezbytný další výzkum v oblasti vyhodnocení signálu z těchto snímačů, kde je otevřeným 

problémem kompenzace vl ivu silného proměnného magnetického pole elektromagnetické 

brzdy na signál z těchto snímačů. 
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1. Continuous Casting Process 

Continuous casting is a vital process that accounts for approximately 95 percent of 

global steel production [2]. Figure 1.1 depicts the main operation of a continuous caster in 

which liquid steel flows from the ladle to the tundish and then into the mould through a 

submerged entry nozzle (SEN). A stopper rod or a sliding gate regulates the flow rate [3]. 

A solid steel shell is formed in the water-cooled mould, and the partially solidified strand 

is transported on rolls and cooled by water sprays until it is completely solidified. 

Additionally, argon gas is injected into the S E N for several steel grades to prevent nozzle 

clogging and to float inclusions. If argon is used, the flow field in the mould must not 

obstruct the rise of bubbles to the free surface[4], [10], [11]. 

The flow regime in the S E N and in the mould has a significant influence on the final 

product's quality. Issues such as clogging, turbulent flow, deep penetration of the jet, and 

slag entrapment have been shown to have a detrimental effect on the quality of the steel 

[4]-[7]. There is a preference for the double roll flow pattern in the mould as opposed to 

the single roll flow (see Figure 1.2) because it allows for both argon gas bubbles and 

impurities to rise up to the surface and avoid being trapped in the steel [7]. Electromagnetic 

actuators (electromagnetic brakes or stirrers) are often used to control this flow [8], [9]. 

Non-ferrous alloy ingot Steel slab 

Figure 1.1. Schematic diagram of the continuous casting 
process [8] 
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Figure 1.2. a) Double roll flow pattern, b) Single roll flow pattern 

The continuous casting process is marked by several intricate phenomena that 

govern the process from beginning to end; these include turbulent fluid flow, 

electromagnetic effects, particle entrapment, and thermal-mechanical distortion [11], [12]. 

Creating mathematical models to describe the many coupled interactions that occur in the 

continuous casting process is one of the more difficult challenges when dealing with this 

process. Numerous advances have been made in the modelling of various aspects of the 

process; however, the topic remains open for further development. As more mathematical 

models are developed to describe the interactions in the process, the question of how to use 

these models to control the process arises. The following sections wi l l demonstrate that the 

challenge of controlling the continuous casting process is limited not only by the need to 

accurately model the process, but also by the sensors used in the process. This is where 

two-dimensional flow monitoring comes into play as these sensors are able provide us with 

richer data that can be utilized for control. 

1.1. Control of Continuous Caster 

1.1.1. Mould Level 

There is very little research on the use of two-dimensional flow field measurements 

in continuous caster control; most of the current research is based on conventional sensors 

and knowledge about the relationship between single measurable variables and product 

quality. The molten steel level in the mould has been shown to be one of the more important 

measurable variables [13]. To avoid potential defects, the fluctuation of this level must be 
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reduced. As a result, most of the published papers related to the continuous casting control 

are focused on mould level control. In many cases a reduced model is used to describe the 

fluctuations in the mould, and a simple mould level sensor is used for the control loop 

designed to control the mould level. 

A n example can be seen in [14] where a PI controller with a variable gain and dither 

signal was implemented to control the mould level. The quality of steel level stabilization 

is shown to be considerably better when compared to the referential steel stream and using 

correction vibrating signal (dithering) is significantly better. Comparison between different 

control strategies including PI with high frequency dither, linear cascade controller and 

non-linear cascaded controller was conducted in [15]. Similarly to [14], the authors also 

used a high frequency dither signal to deal with the non-smooth nonlinearities of the signal. 

It was concluded that the nonlinear controller had a better performance as it required less 

control action but was able to dampen the mould level oscillations more efficiently. 

Additionally, more advanced controllers such as H-infinity were designed and compared 

to the traditional PID controller in [13]. The H controller was created with four weight 

functions rather than the conventional two weight functions. This allowed for the controller 

to be designed based on disturbance rejection and robust stability at medium frequencies. 

In the end, it was shown that the proposed controller outperformed in both disturbance 

rejection and robust stability. 

Fuzzy logic has also been implemented for the control of the mould level in the 

continuous caster [16], [17]. In [16] the authors discuss the issue of nozzle clogging and 

unclogging which affects the performance of conventional PID controllers. Therefore, they 

suggest the use of a fuzzy controller that would utilize the expert knowledge of operators 

to control the mould level in order to deal with disturbances such as clogging. Similar to 

the previous work, a robust nonlinear adaptive PI control based on fuzzy logic was used to 

deal with various slow disturbances including erosion, clogging, and tundish level 

variations [17]. 
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1.1.2. Dynamic Bulging Disturbance 

A common phenomenon that is being observed on the mould level is the bulging 

disturbance; bulging disturbance is mostly created by the supporting rollers that tend to 

push the liquid steel upward periodically [18]-[20]. Various control methodologies were 

proposed to compensate for this disturbance such as an adaptive sine estimator-based 

disturbance observer [21]. This observer was combined with a phase lead adaptive fuzzy 

controller as shown in Figure 1.3. Both simulation and experimental results proved that the 

controller was able to reduce the bulging disturbance effect on the mould level. A similar 

attempt at suppressing the disturbance was done using a basic PI controller with an 

additional adaptive compensation that adapts the gain and prediction time to compensate 

for the disturbance [22]. 

Further attempts include a global observer that compensates for both bulging and 

the clogging/unclogging of the S E N [23]. In this case an online estimator tracks the effect 

of both external signals on the mould level. The control loop also uses the mould level, 

stopper position, and the flow rate as measurement signals. This allows for the fluctuations 

generated by the bulging to be drastically reduced. A similar approach is found in [24] 

where an observer is combined with a feed forward loop to reduce the mould level 

fluctuations. The author also mentions that further improvement needs to be done to take 

into account variations of bulging frequencies caused by changes in casting conditions. 

Additional attempts at compensating for bulging disturbance include utilising Particle 

Swarm Optimization (PSO) [25], [26]. In [25] a fuzzy PID controller with nonlinear 

compensation term is used as shown in Equation 1.1 where the parameters of the fuzzy 

controller are optimized by using PSO algorithm. The nonlinear compensation term N(e) 

compensates the output of the fuzzy PID controller, while in [26] a modified smith 

predictor based on PSO is developed to reject the bulging effect on the mould level. 

p ( t ) = kve(t) + kt ; Q

£ e ( T ) d r + kd ^ + N(e) (1.1) 
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Figure 1.3. Disturbance observer combined with phase lead adaptive fuzzy controller 
[21] 

1.1.3. Secondary Cooling 

Secondary cooling that occurs during the rolling out phase plays a critical role in 

the quality of the steel. The steel strand is pulled out of the mould through the support 

rollers as shown in Figure 1.1. This is where the secondary cooling occurs. The flow rates 

of the cooling water significantly impact the heat exchange efficiency during the 

solidification process [27], [28]. The modelling of the secondary cooling zone is usually 

done using through Finite Element Method (FEM) or Finite Difference Method (FDM) 

where the particular space is discretized, resulting in a distributed parameter system that is 

later on used for designing the controller [29]. 

Various controller techniques have been implemented to control the secondary 

cooling zones. One of these techniques include Internal Model Control (IMC) [30] where 

the temperature fields are described using partial differential equations, and a finite element 

method is used to solve these equations and model the process. The author was able to 

create a lumped-input/distributed output (LDS) based on the F E M modelling for the 

purpose of creating the controller. The main concept behind L D S is the decomposition of 

the control synthesis into time and space control tasks. A robust control system for the L D S 

was created using an I M C structure as shown in Figure 1.4. A similar approach can be 

found in [31] where a model based on nonlinear partial differential equations is used for 

the control of secondary cooling in the continuous casting process. The control synthesis 
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was also designed using the lumped input/distributed output method. In this case a single-

parameter constrained Model Predictive Control (MPC) was designed to generate the input 

signals into the secondary cooling zone. 
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Figure 1.4. Robust control system for the L D S was created using an 
I M C structure [27] 

Other techniques used to control in the secondary cooling process include 

decentralised PID controllers [32]; In this paper, the authors combine a one-dimensional 

F D M model in order to predict the slab temperature and solidification state. The model is 

updated in real-time using data from the caster, while a bank of decentralized PID 

controllers is used to achieve the optimum shell temperature and surface profile. 

Simulations show that this system can outperform the conventional control system already 

implemented on the caster. Additionally, fuzzy logic has been implemented for the optimal 

control of the secondary cooling process [33]. The control algorithm consisted of a 3D 

transient numerical model for the temperature distribution. F D M is used for the numerical 

solution of the model and various casting parameters are obtained such as the initial 

temperature distribution and the intensity of cooling. A fuzzy regulator operates as a 

supervision system and manipulated the casting parameters as seen in Figure 1.5. The fuzzy 

regulator can optimise the cooling intensities for different casting speed and casting 

temperature conditions. Furthermore, in [34] F E M is used for the discretisation, while the 
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control algorithm is done through a multi-criteria optimisation problem. In this case, the 

author uses a combination of Feasible Goals Method (FGM) and Interactive Decision Maps 

(IDM) to solve the optimisation problem. Lastly, neural networks have also been 

implemented for temperature control optimisation where a multimodal deep learning 

approach is utilised in the process [35]. 

í 
Casting 

parameters 

Fuzzy regulator 

Simulation of CC 
Numerical model — 

Temperature 
field 

Figure 1.5. Fuzzy regulator used to optimise the cooling intensities for different 
casting speed and casting temperature conditions [30] 

It becomes clear that the majority of the papers discussed above use variables 

measured at specific points of the process rather than taking into account what is going 

inside the process itself, especially when considering the flow structure inside the mould. 

Although the mould level provides some information on what is going on inside the mould, 

it provides limited information on the flow structures of the mould. Therefore, it becomes 

logically to consider sensors that would allow us to see into the mould and extract more 

information on the flow structures. A possible answer to this would be the use of two-

dimensional flow monitoring sensors that would allow us to visualize the flow structure in 

the mould. 
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1.2. Control Based on Multidimensional Measurement 
Data 
There is growing interest towards utilizing multidimensional measurement data in 

industrial control. The advantage of these sensors is that they can provide information on 

what is happening inside the process itself, allowing us to control variables that were 

previously not attainable. Many processes such as continuous casting lack control systems 

due to the inability of conventional sensors to be implemented. Non-invasive sensors, such 

as tomographic sensors, can be used to view into the opaque molten steel and collect 

information about the flow structure in the mould. This data can then be used to create the 

control loops that wi l l improve the process' efficiency. Prospective sensors based on 

multidimensional measurement in process control is numerous and although they share 

certain common features they differ in many aspects. 

As previously mentioned, control based on multidimensional measurement data in 

the process of continuous casting is extremely limited, mainly these sensors are used for 

monitoring of the process rather implementation in a control loop [36]-[39]. In this section 

we wi l l be concentrating on the general application of sensors based on multidimensional 

measurement data in controlling various processes and applications. These sensors are well 

suited for treating the controlled process as a distributed parameter system. Therefore, in 

principle the control can be based on or designed using distributed parameters model. There 

are several articles that provide theoretical treatment of the control of distributed 

parameters systems described by partial differential equations [40]. However, the real 

attempts to design a controller in the context described above (distributed parameter model, 

distributed sensing, lumped actuation) are rare and at the end they mostly conclude with 

lumped parameter approximation even i f they declare themselves as based on distributed 

parameter modelling. 

A n example for control based on distributed parameter model is reported in [41]. 

The objective was to control the moisture content in a batch fluidised bed dryer. A n electric 

capacitance tomography (ECT) was used to measure the moisture content. Also, in this 

case most aspects of the controlled plant behaviour were modelled using lumped parameter 

models based on mass and energy balances. This is then used to feed the permittivity model 

with the required moisture content variable as seen in Figure 1.6. The permittivity model 

26 



is a distributed parameter model that wi l l calculate the permittivity distribution. The 

controller is then designed to keep the distributed permittivity around a desired shape using 

optimal control tools. This approach, where distributed parameter modelling is used just to 

describe those aspects of the plant behaviour whose distributed parameter modelling is 

essential while the rest is modelled using lumped parameters, seems to be generally 

promising as such models can be tractable analytically and suitable for use in the context 

of model-based control. 

Figure 1.6. Moisture content is calculated by a lumped model and fed into the permittivity model 
to calculate the permittivity distribution [38] 

In many cases, sensors based on multidimensional measurement data are used in 

highly nonlinear and complex processes. This adds further difficulty when it comes to 

modelling the process and designing model-based controllers. A possible solution to this 

is using Neural Networks (NN) as seen in [42] where a N N is used to model the pellet flow 

and the formation of dunes that occurs in the process using E C T sensor. The E C T sensor 

provides information on the permittivity density of the cross-sectional area of the pipe. 

Using the permittivity density, a feedforward N N with a single layer is used to predict the 

dune level using previous applied voltage values that controls the air velocity, and previous 

dune levels values. Based on this N N , an NN-based inverse controller is implemented 

where the output voltage is predicted using previous voltage levels and dune levels. 

Simulations showed that the controller is able to react to the dune build up and increase the 

voltage therefore increasing the air velocity in the pipe. It was also shown that the controller 

reacts well to disturbances in the mass flow. However, it should be noted the difficulty of 

assessing the stability of NN-based controllers using conventional control theory. 

27 



Furthermore, in [43] the author proposes a feedback control system based on 

Electrical Impedance Tomography (EIT) designed to regulate the concentration 

distribution of a substance in a fluid flowing through a pipe. The reconstruction algorithm 

allows for state predictions given by the evolution model, this is updated with the 

information provided by the measurements. The evolution model was described as a 

convection-diffusion model as seen in Equation 1.2 where both the velocity field and the 

conductivity distribution were reconstructed using an extended Kalman filter using 

measurements coming from the EIT sensor. Therefore, the EIT sensor does not measure 

the velocity field directly, instead it uses the concentration distribution of the liquid to 

estimate the velocity field. 

A Linear Quadratic Gaussian (LQG) controller was applied using impedance 

tomographic measurements. The optimal values for the control input u are obtained by 

minimizing the quadratic cost function shown in Equation 1.3. Numerical simulations 

show that the control system was successful at obtaining the desired concentration on the 

output boundary. Furthermore, the state estimation and control strategies were shown to be 

relatively tolerant to misspecification of variables such as the velocity field which is 

important when it comes to more complex flows such as turbulent and multiphase flows. 

A further approach using EIT is seen in [44] where the authors propose using EIT 

in a system that is highly nonlinear, high order and ill-posed. In this case, an EIT sensor is 

used to determine the positioning of an object inside a liquid tank. The control objective is 

to move the object from one position to another. The model of the system plus the sensor 

is represented using a state space model for the linear dynamic and a nonlinear output map. 

In the end, the controller wi l l be mainly based on a linear state feedback controller and a 

nonlinear observer based on receding horizon principle. The state feedback linear 

controller wi l l stabilize the linear dynamic while the nonlinear estimator wi l l drive the 

estimation error to zero. By using the EIT sensor to measure the resistivity field the object's 

position is determined. Using this information, the controller is able to bring the object to 

the desired position. 

— = - v • V c + V • /cVc + q (1.2) 

j = E [l?Ifmf +1

2t/J0\ylQyyt + u [ R u t ) ] (1.3) 
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A similar approach was implemented in [45] where state estimation is used to solve 

the inverse problem using both Electrical Capacitance Tomography (ECT) and 

Electromagnetic Induction (EMT). The linearized Kalman filter is applied to improve the 

temporal resolution of the reconstructed images. In the end, the state-estimation approach 

appears to be more suitable for the task of designing a controller as the state space model 

can be utilised in the mathematical derivation of the controller. 

Another example of the use of sensors based on multidimensional measurement 

data in industrial control is shown in [46] where the author proposes a control system for 

an oil separator based on E C T sensors. E C T is used to distinguish between the different 

materials in the separator such as oi l , water and air. The author uses P C A and cluster 

analysis to design their knowledge-based control strategy as shown in Figure 1.7. In the 

end, the concept relies on using the different pixels in the E C T image to get information 

on the distribution in the separator. Afterwards this distribution is compared to a knowledge 

database using Euclidean distance in order to determine the appropriate control action as 

each dataset in the knowledge-base is assigned a specific control action. In the end, we can 

see here a different approach for dealing with the images; instead of using specific 

measurements obtained from the sensors, the full image is used for the basis of the 

controller. 

A n interesting example of physical implementation of a multidimensional 

measurement based controller can be seen in [47] where a pilot-scale solid-liquid 

separation plant. The main purpose behind this setup was for teaching various control 

strategies and electronics design to undergraduate students. A n EIT sensor is used to 

measure the air core size and position, therefore providing information on the separation 

status. Images from EIT show that the air core size can be measured and therefore a 

correlation can be determined with the angle of discharge and separation efficiency. The 

setup allows for multiple control strategies to be used for the control of the air core size. 

These range from PID controller, fuzzy logic and Kalman filters. 

Reviewing the available literature on control based on multidimensional 

measurement data illustrates that there is no one-size-fits-all approach on how to deal with 

the data coming from these sensors; it relies heavily on both the process and the type of 

sensor used. Moreover, it becomes clear the challenge of creating a process model for 
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simulation testing and model-based control design. Due to the nature of these sensors, 

variables have both spatial and temporal dependence. This creates a challenge when 

modelling the process as the majority of modelling techniques in the field of control rely 

on lumped parameters rather than distributed parameters. This is the case both in models 

created by physical equations or system identification. The next section wi l l go into depth 

on the various attempts of modelling the process when using multidimensional 

measurement data. 
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Figure 1.7. Knowledge-based control strategy using P C A and cluster analysis. The 
different pixels in the E C T image are used to obtain information on the distribution in 

the separator [44] 

1.3. Modelling in Continuous Casting 
Computational Fluid Dynamics (CFD) methods such as Finite-difference 

modelling has been proven to produce reliable mathematical models that are able to 

describe the interactions that occur in the continuous casting process. These models allow 

us to use model-based controllers such as Model Predictive Control (MPC) in order to 

achieve the necessary control objectives. However, due to the complexity of the whole 

process, it is not possible to model the entire process all together, instead the different 

phenomena are uncoupled, and assumptions are made to model them in isolation. 
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1.3.1. Electromagnetic Actuators 

Due to the importance of the fluid flow in the mould in improving steel cleanliness, 

it has become common practice to use electromagnetic actuators to somewhat control the 

flow in the mould. These actuators can be classified under the terms electromagnetic 

stirrers and electromagnetic brakes (EMBr) [48]-[50]. The concept behind electromagnetic 

stirrers is creating a rotating magnetic induction field to eventually create an 

electromagnetic force that is applied to the steel liquid. Electromagnetic brakes on the other 

hand generate a static magnetic field which creates Lorentz forces in order to brake the 

fluid motion. This phenomenon has been modelled frequently in various research; in [51] 

where a finite-volume model was implemented using theory of computational fluid 

dynamics and magneto-hydrodynamics. It was shown that both the magnetic induction 

intensity and the position of brake region affect the fluid flow in the mould. As the magnetic 

field is increased, both the recirculating flow velocity and the impingement intensity 

become weak. Similar results were achieved with an electromagnetic stirrer [52] showing 

that the stirrer position effects both the fluid flow and solidification process in the mould. 

In [7] the authors investigated the effects of varying the depth of the submerged entry 

nozzle and the electromagnetic brake field intensity to see the combined effect. It became 

clear that increasing the E M B r field strength at a constant S E N depth reduced the 

downward velocity of the jet and decreased the top surface velocity along with other 

effects. Increasing the S E N depth without E M B r has a similar effect as increasing the 

E M B r field strength. However, increasing the S E N depth with E M B r had an opposite effect 

as above. The resulting flow structures can be seen in Figure 1.8 where the velocities of 

both upper and lower vortices vary. 

Although various researchers have been conducted on the modelling and analysing 

the effect of electromagnetic actuators on the mould, it seems that there is gap when it 

comes to utilizing these actuators in a control loop. One of the few papers that attempt to 

incorporate an electromagnetic actuator [53] designed a control loop using an 

electromagnetic stirrer. The electromagnetic stirrer was used to both brake and accelerate 

the liquid steel in the mould to keep the flow speed at an optimal range. A sensor was used 

for the drag force to measure the flow at a certain point in the mould. System identification 

was used to model the process in which both a PI controller and a controller based on M P C 
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were designed for the control loop. In the end, it appeared that the M P C controller 

outperformed the PI controller, however, at a cost of much more aggressive control effort 

which may later lead to issues such as saturation and rate limiting. 

Figure 1.8. Various flow structures created varying the depth of the submerged entry 
nozzle and the electromagnetic brake field intensity in order to see the combined effect 

[50] 
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1.3.2. Temperature Field 

There has been significant interest in modelling the heat transfer and solidification 

process that occurs in continuous casting; models are used to predict to temperature 

distribution and the solidifying steel shell [48] in order to control the secondary cooling 

and achieve the optimum steel product. Typically, a mathematical heat transfer model is 

used to simulate the solidification process in the continuous caster using technical 

conditions from a steelmaking plant. In [54] the mathematical model formulation is based 

mainly on a two dimensional unsteady state heat transfer equation as found in Equation 

1.4. Several boundary conditions are applied, and the initial condition for the steel casting 

temperature is measured in the tundish from the steel plant. The model was verified by 

comparing the calculated slab surface temperatures with the measured temperature results 

which resulted in a relative error of less than 1.95%. In the end, the model concluded that 

the casting speed, pattern of spray cooling zone, and slab size have the largest influence on 

the temperature field of the slab. B y lessening the water flow rate and increasing the casting 

speed, the solidification process can be improved 

A further step was taken where a solidification model was combined with a model 

to analyse the bulging effect in the strand [19]. In this case the solidification analysis was 

performed by a one-dimensional finite difference model, while the building deformation 

was performed by two dimensional elasto-plastic and creep finite element model. The two 

models are combined by transferring the temperature field and shell thickness from the 

solidification model as an input to the bulging model. Similarly, to the previous paper, the 

result of this study showed the importance of casting speed and cooling conditions, but also 

considered the importance of roll pitch. Further research include the formulation of a three 

dimensional model for the temperature field and shell thickness [55]. The model was done 

using A N S Y S where 29,000 8-node three dimensional elements were used. The authors 

noted that the numerical analysis can only be done in three-dimensional space as the y 

component of the health flux density is not equal to zero. 

(1.4) 
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1.3.3. Argon Gas 

To prevent nozzle clogging in continuous casting, argon gas is frequently injected 

in the S E N . However, due to the two-way coupling between the bubbles and the turbulent 

fluid flow, the gas injection often affects the flow pattern. Argon bubbles are carried by the 

turbulent flow into the mould after entering the S E N , where they affect the flow pattern 

mould level fluctuations, and slag entrapment. Larger bubbles in the mould tend to either 

go up to the surface and escape into the atmosphere or get stuck in the meniscus and cause 

surface defects. Furthermore, smaller bubbles tend to go deeper in the mould and cause 

internal defects [56]-[58]. 

Hence, modelling argon gas bubbles in the mould becomes vital to improving the 

quality of the steel. In [59] a Eulerian-Lagrangian approach is used to model the 3D 

turbulent flow in the mould with non-metallic inclusions and argon gas bubbles. Two 

methods were applied in this study: one-way coupling where only the melt flow impact on 

the dispersed phases was considered, and two-way coupling where both flow impact and 

the dispersed phases influenced one another. The conclusion was that the two-way coupling 

is essential to correctly model the movement of the inclusion and bubbles in the mould as 

the one-way coupling could not accurately predict the dispersion of the particles and 

velocity profile. Another study utilised a combination of Large Eddy Simulation model, 

Lagrangian Discrete Phase Model, and V O F multiphase model [60]. Using this 3D coupled 

model, the flow and bubble distribution in the mould was investigated. As can be seen in 

Figure 1.9, the argon gas flow rate has a significant impact on the flow pattern. Lower 

argon gas injection rate correlates with a double roll flow pattern, while higher argon gas 

rates correlate with a single roll flow pattern. A similar approach can be seen in [61] where 

a Discrete Phase Model and a Two-Phase Model are used to model the argon gas effect. 
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Figure 1.9. Flow and bubble distribution in mould investigated using Large Eddy 
Simulation mode coupled with, Lagrangian Discrete Phase Model, and V O F multiphase 

model [58] 

However, in this study the casting speed was also changed to see the effect on argon 

gas flow. The study concluded that it is important to consider both argon gas flow rate and 

casting speed collectively when aiming for optimizing the steel product quality. 

Additionally, studies have taken the further step of coupling the effects of both the 

electromagnetic brake and the argon gas injection on the flow in the mould. In [62] a 3D 

model using both finite element and finite volume was simulated to study the coupling 

between electromagnetic brake and the argon gas. The electromagnetic force was modelled 

using a one-way coupling where it is assumed that the induced magnetic field is much less 

than the external magnetic field from the brake. Equation 1.5 and 1.6 indicate the induced 

current density equation. Equation 1.7 is used to satisfy the conservation law for steady 

state. B y substituting Equation 1.6 into Equation 1.7 and using Equation 1.8, we end up 

with the following Poisson Equation, where the resulting electromagnetic force equation is 

shown in Equation 1.9. 
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V2<p = V • (u xB0) 

F=j xB0 

(1.8) 

(1.9) 

Simulations result show applying both the E M B r and argon gas can affect the upper 

re-circulating molten steel by increasing the upward movement. Furthermore, argon gas 

can improve the removal of the inclusion particles, while E M B r has little effect on this. 

Similar work can be seen in [63] where fluid flow in the mould is modelled using Navier-

Stokes equations with electromagnetic force. The trajectories of the inclusion particles are 

calculated based on the computed velocity field. In the end, it was shown that the argon 

gas injection changes the trajectory of the inclusions resulting in re-entry into the upper 

recirculation zone and eventually floating out into the air. While the E M B r slows down the 

particles. The combination of the two improves the removal process of inclusions. 

It should be noted that many of the C F D models shown in the literature were not 

necessarily created for the purpose of controller design, but rather to understand the physics 

behind the phenomena in more depth. The task of designing model-based controllers based 

on these complex C F D models is challenging due to the nature of distributed parameter 

models; converting these C F D models to state space models could result in extremely large 

matrices that are not feasible to use in real time control, therefore these challenges must be 

addressed. Furthermore, it is common practice in the field of control to obtain a quick 

estimate of specific phenomena for the development of online control [48]. Although it 

might seem counter-intuitive to not take advantage of both the spatial and temporal 

information obtained from the sensors, it might be interesting to see i f a lumped parameter 

model wi l l be sufficient in controlling the loop. 
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2. Doctoral Thesis Objectives 

Based on the literature analysis, it becomes clear that the continuous casting process 

is a challenge when designing control systems due to the limitation of applying sensors. 

The existing control loops implemented in the continuous casting process are mainly 

limited to mould level control or temperature distribution control as these variables are 

currently readily available. However, many of the quality defects that occur in the end-

product of the steel depend on the flow patterns in the liquid steel while in the mould. 

Issues such as slug entrapment, meniscus freezing, and other problems heavily determine 

the quality of the steel. Therefore, it is natural to look for solutions where we can try to 

'see' inside the liquid steel before it is completely solidified. This is the point where two-

dimensional flow monitoring comes into play. Sensors based on multidimensional 

measurement data provide two or three-dimensional measurements that are much richer in 

information than single-point measurements. They can also look inside the continuous 

casting process in a non-invasive way without penetrating it physically. The literature 

review has shown us that such sensors can bring many benefits not only for continuous 

casting but also for many other processes. However, it is also evident that their use in 

industrial control is limited as there are still many challenges in utilising the information 

and images provided by these sensors in a control loop. 

The general objective of this doctoral thesis is to use two-dimensional flow 

monitoring sensors in a control loop to improve the control of a continuous caster. Two 

such flow monitoring sensors wi l l be considered: Ultrasound Doppler Velocimetry (UDV) 

and Contactless Inductive Flow Tomography (CIFT). U D V wi l l be mainly used in 

designing both the process models and controller structures in this thesis. The main reason 

for this is that the experimental data were obtained using a small-scale continuous caster 

M i n i - L I M M C A S T where the U D V sensors were finalised at the beginning of the research 

described in this thesis. On the contrary, CIFT sensors were and still are under development 

to some extent. It can be expected that it wi l l be possible to extend the techniques developed 

with U D V and transfer them into CIFT as both sensors can reconstruct the velocity profile 

in the mould. 
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The general objective of improving the control of a continuous caster can be 

naturally split into several sub-objectives. Firstly, a process model is necessary to design 

and test any at least somewhat advanced controller. The mould of a continuous caster is a 

distributed parameter system. It may seem natural to use Computational Fluid Dynamics 

(CFD) approach to obtain a model of this process. However, an open question is whether 

building a C F D model and space-discretising it using a finite element or similar method is 

viable for getting a useful control-oriented model. This question wi l l have to be answered 

in the thesis, and i f the answer is negative, it wi l l necessarily imply that the next objective 

is to find a more viable modelling alternative. 

Secondly, the general statement that the quality of the final product depends on the 

flow patterns in the mould is true, but by itself, it is not a sufficient basis for control. For 

this reason, the next objective must be to identify appropriate quantitative flow 

characteristics that could be used as controlled variables for efficient closed-loop control 

based on distributed data inside the mould. 

Thirdly, the central objective is to develop the controllers that wi l l use these 

quantitative characteristics as controlled variables while stopper rod position and magnetic 

field of the electromagnetic brake wi l l be manipulated variables. Since it is not clear in 

advance which control configurations and methods are the most promising ones, a part of 

this objective is to test different configurations (single-input, single-output, as well as 

multivariable control) and different control methods focusing mainly on model-based 

approaches. Since the availability of a model enables not only control but also other 

objectives like, e.g., fault detection, the thesis should also consider i f control functionalities 

can be extended by additional functions like online detection of faults or operational issues. 

Last but not least, the thesis should discuss the possibility of transferring the 

developed methods and techniques to CIFT sensors. In the end, there should be a clear 

analysis on what are the best approaches regarding processing the sensor data, modelling 

the process, and designing model-based controllers for the continuous casting process. 

In accordance with these objectives, the thesis is divided into seven chapters, 

including this chapter with objectives and the preceding chapter describing the continuous 

casting process and the state-of-the-art of its control. Chapter 3 shows the M i n i -

L I M M C A S T setup used to obtain experimental data for this thesis. Chapter 4 discusses 
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model-based control using computational fluid dynamics. In this chapter, Finite-Element 

Method is used to model the interaction between the fluid flow and the magnetic field from 

the E M B r . C O M S O L is used for simulations, and the challenges of utilising this model for 

model-based control are discussed. Chapter 5 focuses on several different variants of 

model-based control using models obtained by system identification. It also treats the 

question of fault detection, particularly clogging detection. Chapter 6 investigates the use 

of O F T in a control loop and the further improvements needed for the sensor. Chapter 7 

discusses the summary of the thesis and the conclusions and challenges derived from the 

results. 

The research done in this paper is a part of a European Training Network under the 

Marie Sklodowska-Curie Actions, under the name "Smart tomographic sensors for 

advanced industrial process control (TOMOCON)" . 
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3. Experimental Setup: Mini-LIMMCAST Facility 

The experiments included in this thesis were conducted on the Min i -LEVIMCAST 

facility located at Helmholtz-Zentrum Dresden - Rossendorf (HZDR) which is shown in 

Figure 3.1. The setup consists of a small-scale model of the mould and strand of a 

continuous slab caster. Gallium-indium-tin (GalnSn) eutectic alloy is used in place of the 

liquid steel because it is a liquid at room temperature. GalnSn is poured from the 'tundish' 

into an acrylic glass mould via the S E N as shown in Figure 3.2. The flow rate in the S E N 

is controlled by a stopper rod. In order to run the experiments continuously, the melt flows 

from the bottom of the mould into the storage vessel, from which liquid is pumped back to 

the tundish to repeat the process. The physical properties and dimensions of the setup can 

be found in Tables 3.1 and 3.2. A n electromagnetic brake is used to influence the flow in 

the mould as shown in Chapter 1. 

Figure 3.1. Min i -LEVIMCAST Facility in H Z D R . 
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Figure 3.2. Schematic of mould illustrating the position of the sensors and 
electromagnetic brake. 

Table 3.1. Physical properties of gallium-indium-tin [1]. 

Values 

Reference Temperature (°C) 20 

Density (p) 6353 

Kinematic Viscosity (u) 3.44 x 10-7 

Electrical Conductivity (a) 3.29 x 10-7 

Thermal Conductivity (A) 23.98 

Surface Tension 0.587 
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Table 3.2. Dimensions of the M i n i - L I M M C A S T setup [1]. 

Dimensions 

Mould Width (mm) 300 

Mould Thickness (mm) 35 

Mould Height (mm) 600 

Submerged Entry Nozzle Immersion Depth (mm) 35 + 10 

Submerged Entry Nozzle Inner Diameter (mm) 12 

Submerged Entry Nozzle Outer Diameter (mm) 21 

Submerged Entry Nozzle Port Width (mm) 11 

Submerged Entry Nozzle Port Height (mm) 13 

Submerged Entry Nozzle Port Angle (deg) -15 

Electromagnetic Brake Windings per Coi l 32 

Electromagnetic Brake Max. Current (A) 600 

Electromagnetic Brake Max. Magnetic Flux Density (mT) 404 

The majority of experiments conducted on the M i n i - L I M M S A S T wi l l be done using 

Ultrasound Doppler Velocimetry (UDV) . The data from U D V wi l l be used mainly in this 

thesis to create the process model and controller. The techniques used with U D V wi l l then 

be later extended to CIFT to investigate the feasibility of using the sensor for the purpose 

of control. Using the velocity profile measured by U D V , we can visualize the flow structure 

in the mould. This wi l l allow us to extract important features of the flow that wi l l be utilized 

by the controller. It should be noted that the described techniques to design the control loop 

can be utilized for other sensors based on multidimensional measurement data as well, 

assuming that sufficient information on the velocity profile of the mould is obtained. The 

presented concepts wi l l be extended to demonstrate that the flow structure obtained by 

U D V can be fully utilized for control. U D V is used during the experiments to reconstruct 

the flow in the mould by measuring the horizontal velocity component of the flow in the 

opaque liquid. 

Figure 3.2 shows the 10 U D V sensors placed vertically on the narrow face of the mould 

with 10 mm spacing in between. Each U D V sensor measures the velocity of small moving 
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particles in GalnSn and returns the velocity profile along the horizontal ultrasound beam. 

The measurements were conducted using the DOP3000 which is able to operate 10 

transducers [1]. The transmitters are activated sequentially, and this cycle is repeated so 

that the flow in the left half region of the mould is visualized. 

The electromagnetic brake wi l l be one out of two manipulated variables in the control 

loop. Generally, in continuous casting electromagnetic brakes and stirrers are used to 

stabilize the turbulent flow in the mould. However, due to the limitations of using 

conventional sensors during the process, the electromagnetic actuators are applied at 

specific pre-calculated strengths. In the M i n i - L I M M C A S T setup a static single ruler brake 

is used. Under the influence of the static magnetic field the velocity of the melt drives an 

electrical current in the melt. The current, in turn, generates the Lorentz force acting on the 

melt. It is assumed that the force is damping the velocities. The placement of the 

electromagnetic brake is critical for the control design as it has been shown that small 

variations in the vertical position of the brakes can significantly change the effects of the 

brake on the flow [1]. For the experiments, the optimal position for the electromagnetic 

brake is chosen where the pole shoes are right below the S E N . 

B y analysing the measured velocity fields gathered by U D V , it becomes clear that the 

brake moves the jet exiting the S E N upward so that it becomes more horizontal. In the 

experiments, the current of the brake is varied from 0 to 600 A . Chapter 5 concentrates on 

these experiments to create a model describing the relationship between the flow structure 

in the mould and the current using system identification. 

Finally, CIFT wi l l be applied to the M i n i - L I M M C A S T , where the reconstructed 

velocity profile wi l l be used in the control loop. CIFT has already been successfully 

implemented on the M i n i - L I M M C A S T setup [64] and was used to reconstruct the velocity 

fields. The main concept of the CIFT technique relies on the flow of the conductive liquid 

going through a magnetic field created by the CIFT transmitter sensors. This creates 

electrical currents in the mould which results in an induced magnetic field. The induced 

magnetic field is measured by the receiver sensors and is used to reconstruct the velocity 

field in the mould. 
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4. Model-Based Control using Computational Fluid 
Dynamics 

Two-dimensional flow monitoring can visualize what is occurring in the process in 

a manner that is non-invasive. In our case, both U D V and O F T provide information on the 

velocity profile inside the mould of the continuous caster. This process is considered a 

distributed parameter system since the controlled variables (the velocity fields) rely both 

on spatial and temporal factors. Therefore, conventional physical modelling based on 

lumped input-lumped output cannot be applied in this situation. This poses a challenge 

when it comes to creating a model-based controller for these types of processes. The ideal 

case would be to build the model-based controllers using partial differential equations 

(PDEs). As seen in Chapter 1, the usual approach to dealing with P D E models is 

approximating the infinite dimensional P D E system to a set of finite-dimensional ordinary 

differential equations (ODEs) [65]. A n important note is that although an O D E model can 

be derived using finite-dimensional modelling, it does not necessarily mean that the process 

wil l be controllable in the end. In this chapter we wi l l discuss the idea of approximating 

the P D E model needed for the continuous casting process using F E M , and the feasibility 

of applying it in a model-based controller. 

4.1. Governing Equations and Numerical Details 
As our controlled variable is the velocity field in the mould, and our manipulated 

variable is the magnetic field from the E M B r , we need to model the effect of the E M B r on 

the liquid steel in the mould. Therefore, we need to model an incompressible electrically 

conductive fluid that is affected by the imposed external magnetic field through Lorentz 

force. This relationship wi l l be described by the following Partial Differential Equations 

where the Lorentz force term is added to the Navier Stokes equations in order to model the 

effect of the magnetic field on the velocities in the liquid as shown below [66]. 

V-U = 0 (4.1) 

^-+{U- V)U = --Vp + vV2U + -J xB (4.2) 
at p p 

V2<p = V • (U x B) (4.3) 
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where U is velocity, p is pressure, v is the kinematic viscosity, p is density, J is the 

current density and B is the imposed magnetic field, which wi l l be the manipulated variable 

used by the controller to influence the velocity field in the mould. In addition to the velocity 

and pressure, also the current density (J) needs to be calculated. In the case of continuous 

casting, we can use the one-way approach of magnetohydrodynamics instead of the two-

way approach because the magnetic Reynolds number is much larger than 1 for the liquid 

metal flow. 

4.2. Finite Element Modelling using COMSOL 
Finite Element Method (FEM) is used to discretize the 3-D model so that later the 

discretized nodes can be converted to a state space model and utilized in a model-based 

controller. A similar approach was done in [65] where the concentration of a liquid in a 

pipe was modelled using the convection-diffusion equation. F E M was also used to obtain 

a state space model between the injectors in the pipe and the concentration in the liquid. 

The main goal for this step is to create a simplified model of the mould to decrease the 

number of nodes needed to accurately simulate the effect of the E M B r on the velocity 

fields. This is done to decrease the size of the matrices needed for the state space. 

Model-based controllers such as M P C need to repeatedly solve an optimisation 

problem to calculate the values for the manipulated variable. Having a state-space model 

with matrices that are too large become unrealistic to use in this scenario. However, it is a 

challenge to decrease the nodes needed in the 3D model due to many factors such as the 

turbulent flow in the mould, and the complex geometry of the S E N . Although model-

reductions methods can be applied, other steps can also be taken to simplify the complexity 

of the geometry. In our case, we wi l l be modelling one half of the mould to avoid modelling 

the S E N . Therefore, instead of the S E N we wi l l have a have a port opening where the liquid 

steel flows in. As the flow entering the S E N is constant, we can use experimental data to 

specify the velocity field at the port opening. 

C O M S O L Multiphysics is used for this step where toolboxes including the 

Magnetic and Electric fields and the Turbulent Flow toolboxes are utilised. For the 

turbulent flow, Large Eddy Simulation (LES) is used to resolve the three-dimensional 

unsteady eddies and model the effect of the smaller eddies. Figure 4.1 shows the results of 

the simulations where the double roll flow is visible in the mould with no applied magnetic 
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field from the E M B r . Figure 4.2 shows effect of applied magnetic field of 300 mT. The 

double roll flow is also visible, however now the exiting jet is now impinging higher on 

the narrow face wall. B y using the E M B r we can manipulate the exiting jet and avoid a 

deeper impingement into the mould. This effect is confirmed with experimental data 

measured by U D V . These experimental data wi l l be further discussed in Chapter 5. 
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s slice: Velocity magnitude (m/s) Streamline: Velocity field 

Figure 4.2. C F D simulation result with applied magnetic field of 300mT 

4.3. Extracting State Space Matrices 
The next step now is extracting the required state space matrices from this 

simulation so that we can develop our controller. A key feature of C O M S O L is its interface 

with M A T L A B using C O M S O L ' s API called LiveLink for M A T L A B . The feature of state 

space export allows us to create a linearized state-space model that corresponds to the 

C O M S O L model. The following representation is used to extract the matrices of the 

dynamic system. This form is used as it more suitable for large systems because matrices 

M c and M c A become much more sparce than A . 

Mcx = McAx + McBu (4.4) 

y = Cx + Du (4.4) 
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In the end, we are able to decrease the number of degrees of freedom of the model 

around 50,000 using the mesh shown in Figure 4.3. Less than this would not allow for the 

resolving of the P D E equations. Unfortunately, this would still result in matrices that were 

too large to be used for model-based control. Additionally, after analysing the matrices of 

the system it becomes clear that matrix M c has a high condition number. Therefore, we are 

dealing with an ill-conditioned problem which adds even more complexity when trying to 

utilise these state space matrices for control. There are a few reasons that we can contribute 

to the ill-conditioned nature of the problem; they include the high turbulence in the mould 

and the limited number of actuators we have to influence the flow in the mould. 

Figure 4.3. Three-dimensional mesh used to simulate the flow in half of the mould 
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It should be noted that using C F D simulation to create a distributed parameter 

model for the purpose of control is an option when it comes to more straightforward 

processes. A n example is [65] where the author is simulating the laminar flow in a pipe 

and is controlling the concentration of the liquid. Additionally, the author has a much 

higher number of actuators than in the case of the continuous casting process. Therefore, 

making the process more controllable. Another example of a process that has been 

successfully simulated and controlled is shown in [67] where an L Q R is designed to control 

the moisture distribution in an industrial microware drying process. The moisture is 

simulated using PDEs and F E M is then used to transform the PDEs into a system of 

ordinary differential equations. Similarly, to [65] the process is more straightforward and 

contains a higher number of actuators. In this case, six microwave sources with adjustable 

power levels were used to control the moisture in the foam. Additionally, these papers are 

examples of early-lumping methods that are used to approximate and reduce the P D E 

system into a finite dimensional system in order to utilize in controller design. Other 

reduction techniques include finite-difference, finite-volume, and modal approaches. It 

should be noted that the reduction of infinite dimensional models to finite dimensional 

models means that a part of the original dynamics of the system is lost. This might result 

in issues such as in inefficient control performance or closed loop instability. 

In the end, although one of the advantages of sensors based on multidimensional 

measurement data is the combination of spatial and temporal information, another main 

advantage is the fact that they are non-intrusive. Therefore, these sensors are able to look 

inside the process without needing to penetrate them. This is an important advantage when 

it comes to processes that contain opaque fluids such as the continuous casting process. 

This means that even in cases where the full potential of the multidimensional data is not 

utilised in a control loop, extracting important quantitative characteristics that can then be 

implemented in classical feedback control is still very effective as wi l l be seen in Chapter 

5. 
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5. Model-Based Control Using System Identification 

Chapter 4 shows the difficulty of using physical equations to create a model for our 

controller. The spatial dependence of the variables results in the need for PDEs to fully 

model the interaction between the liquid steel in the mould and the E M B r . Challenges such 

as solving the Navier Stokes equations make it very difficult to utilize these models in both 

simulation testing and control design. The needed time and complexity of the model means 

that the approach is not unfeasible for this purpose. In this chapter we aim to find 

quantitative characteristics of the flow that can be used to optimise the flow in the mould. 

System identification wi l l mainly be used to create the process models needed for the 

control loop. The M i n i - L I M M C A S T setup allows us to obtain large amounts of 

experimental data from the sensors which is beneficial when coming to system 

identification as this methodology is data-dependent. 

One of the main challenges in designing control loops for the continuous casting 

process is selecting the appropriate variables to achieve the optimum flow pattern needed 

in the mould. Now that sensors based on two-dimensional flow field measurements allows 

us to view into the mould and have an understanding on the flow structures, we need to 

decide on what are the optimum flow characteristics that would yield higher quality steel, 

and how to control it with our actuators. Section 5.1. introduces the exiting jet angle from 

the S E N as our controlled variable, and the E M B r as our manipulated variable. The exiting 

jet angle is crucial to the flow in the mould as it determines how easily impurities and slag 

are trapped in the mould, which significantly affects the quality of the steel. As shown in 

section 1.3.1, E M B r is frequently used in continuous casting to influence the flow in the 

mould and achieve higher quality steel. However, it is usually applied at pre-calculated 

values rather than being used in a feedback loop. In this section, we wi l l be using the current 

going to the E M B r achieve the optimum exiting jet angle during the process. Section 5.2. 

concentrates on the meniscus velocity as our controlled variable. Keeping the meniscus 

velocity between optimum values is crucial as too low velocities wi l l cause premature 

freezing, while too high velocities wi l l increase the chances of slug entrapment [6]. The 

manipulated variable wi l l be the current to the E M B r similarly to section 5.1. Lastly, 

section 5.3 extends the control loop in section 5.1. to a multiple input-multiple output by 
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using both E M B r and stopper rod to control the flow in the mould. The stopper rod allows 

us to control the flow rate in the S E N , therefore allowing us to influence the flow in the 

mould even further. In this section we are concentrating on the exiting jet angle rather than 

the meniscus velocity as there is a more direct effect on the exiting jet from our actuators; 

the reason for this is the proximity of the exiting jet to the position of the E M B r and the 

S E N port. This direct effect can also be seen in the models created for both controlled 

variables as wi l l be shown in section 5.1. and 5.2. For this reason, we are basing our M I M O 

controller on features related to the exiting jet including the jet impingement point and the 

jet velocity. 

5.1. Exiting Jet Angle 
The exiting jet angle from the S E N plays an important role in improving the quality 

of the steel produced in continuous casting. The deeper the jet impinges into the mould, 

the higher the probability of slag entrapment in the mould as the particles are unable to 

float to surface and avoid getting trapped in the mould [68], [69]. Hence, avoiding a deeper 

jet impingement is linked to higher quality steel; this concept wi l l be used to build our 

controller. Another question arises on the how to obtain information about the jet angle 

from the velocity profile in order to be used by the controller. One of the ways to achieve 

this is by parametrization of the two-dimensional flow field measurements rather than 

using entire velocity fields of the mould. This allows us to decrease the processing time by 

avoiding having the controller process large matrices in real-time. The results in this 

section are published in [70], [71]. 

5.1.1. Submerged Entry Noggle Clogging 

Nozzle clogging contributes heavily to quality issues seen during the process of 

continuous casting. The presence of clogging in the Submerged Entry Nozzle (SEN) can 

significantly affect the exiting jet and therefore impact the quality of the steel product. 

Also, there is a high risk of inclusions due to parts of the clogging material breaking off 

and entering the mould [10], [72]. Therefore, it would be beneficial if our controller would 

be able to detect the occurrence of clogging in the S E N using information about the angle 

of the jet and adapt accordingly. Two sets of experimental data from the M i n i - L I M M C A S T 
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wil l be analyzed; the first set was performed with no apparent clogging in the S E N [67], 

while the second set of experiments was conducted with clogging in the S E N as shown in 

In the following sections it wi l l become clear that the clogging changes the dynamic 

response of the angle of the jet to the applied current to the E M B r , and therefore different 

models are needed to describe the dynamic response with S E N clogging and without S E N 

clogging. The next step wi l l be to create an algorithm that allows us to detect clogging in 

the S E N by monitoring the angle of the exiting jet. Based on this clog detection setup, a 

switched M P C controller is used to keep the angle of the exiting jet between the optimum 

ranges using the E M B r . This allows the controller to keep the angle of the jet in the 

optimum range even when clogging occurs in the nozzle. 

Figure 5.1. Clogging in the S E N near 'tundish' outlet 

5.1.2. Parametrizing Jet Angle from Velocity Profile 

This section discusses the parametrization of the exiting jet angle as a single 

variable to be used as the controlled variable to avoid deep jet impingement. The measured 

velocity fields in the mould are used to obtain the angle of the jet flow exiting from the 

S E N . In the end, the control objective wi l l be to maintain the angle between the optimum 

ranges in order to prevent deep jet impingement during the process. Therefore, avoiding 

the entrapment of slugs and sustaining the double roll flow. The actuator used to change 

this angle is the varying magnetic field of the electromagnetic brake (EMBr) . 
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As mentioned in Chapter 3, 10 U D V sensors are used to measure the horizontal 

velocities at the positions of the sensors. In our setup we wi l l only concentrate on the left 

half of the region of the mould and assume that there is symmetry between the two regions. 

The direction of the velocity measured by the U D V sensors is identified by the sign of the 

velocity; negative velocities indicate that the flow is moving towards the sensors and mould 

wall, while positive velocities indicate that the flow is moving away from the sensors and 

mould wall (see Figure 5.3). Cubic spline interpolation is used to provide a finer resolution 

between the sensor positions. In order to track the movement of the jet, we compute the 

largest velocities with negative sign measured in the region surrounding the S E N outlet. 

During every frame captured by the sensors, the algorithm compares the interpolated 

velocities between the sensors and computes the y-axis position of the most negative 

velocities. After the most negative velocities have been computed, linear regression using 

least squares is used to fit a line that would represent the flow of the jet. The linear 

regression uses the quadratic loss function to calculate the error in the model (See Figure 

5.2). Figure 5.3 and 5.4 illustrate the reconstructed angle responses and shows that the 

algorithm can track the movement of the jet successfully. Using this methodology, we 

avoid using the entire velocity fields measured by the U D V and instead use a single 

variable to represent the movement of the jet during the experiments. 

150 
x [mm] 

Figure 5.2. Linear regression line to fit positions of largest velocities with negative sign 
with E M B r turned off 
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Figure 5.3. Reconstructed angle response with E M B r turned off 

x [mm] 

Figure 5.4. Reconstructed angle response with E M B r current of 450A 

5.1.3. Process Modelling 

A model is needed for both testing and designing the controller in the case of model-

based control. System identification requires uniformly sampled time or frequency-domain 

data with the required inputs and outputs of the system. In our case our input w i l l be the 

current to the E M B r , while the output i f the angle of the exiting jet angle. For continuous 

time models, Pseudo-Random Binary Signals (PRBS) are commonly used to excite the 

dynamics of the system as they are easily generated and have a straightforward auto

correlation function. However, for non-linear systems, binary signals are not well suited as 

they are unable to identify the non-linearities of the system. The binary signal needs to be 

expanded to cover the full input range [73]. Returning back to our process, it is difficult to 

predict whether the relationship between the manipulated variable and controlled variable 
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wil l be linear or non-linear as there is limited research on the behaviour of the exiting jet 

in response to changes of E M B r current. Therefore, in our case, we wi l l be varying our 

input range from 0 to 600A which is the full range of the E M B r and measure the angle of 

the jet as seen in Figure 5.5. 

5.1.3.1.Linear Model 

The first step wi l l be to create a model for the process without any clogging present 

in the S E N . Process model estimation is used to create a transfer function describing the 

linear system dynamics. Through a process of trial and error where parameters including 

poles, zeros, and time delays are varied, the end result show that the relationship between 

E M B r current and jet angle can be described by a linear model in the form of a first order 

model [70]. 

G(s) = 
1+sT, pi 

Kp — -0.0442 

Tpl = 1.44 

(5.1) 

(5.2) 

(5.3) 

Where Kp represents the static gain and the Tpl represents the time constant. 

Y(s) = G(s)U(s) + E(s) (5.4) 

Through Laplace transformation, Y(s), U(s), and E(s) represent the output, input, and output 

error of our system. The output error is modelled using a white Gaussian noise with 

variance X [74]. 
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Figure 5.5. Comparison of simulated model output with measured output 
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Comparison of the first order model output with measurement (where the angle was 

calculated from the U D V data using the procedure described above) is shown in Figure 

5.5. This figure gives the response to a series of random step changes of the E M B r current. 

It can be observed that there is a good fit between this first order model and measured data. 

Fast dynamics and relatively short time constant of model are due to the rapid responses of 

the velocity fields in the region of interest to the changes in the magnetic field produced by 

the brakes. It becomes clear that the relationship between brake current and jet angle can 

be described by a linear model in the form of the following first order model. Furthermore, 

second and third order models were created, and their performance were compared as 

shown in Table 5.1. 

Table 5.1: Performance Comparison using Fit Percentage 

Model Fit Percent 

1st Order Model 80.4% 

2nd Order Model 82.2% 

3rd Order Model 78.1% 

Fit percent represents the normalized root mean squared error: 

Fit Percent = 100 ( l - ^ i — z ^ z Z ^ m L ] ( 5 > 5 ) 

> Wymeasured VmeasuredW' 

Although the second order model slightly outperforms the first order model, there 

should be a trade-off between the complexity of the model and its accuracy. In the end, the 

added complexity of the second order model does not improve the fit percentage 

significantly, which is why the first order model was selected. 

5.1.3.2.Non-Linear Model 

As seen in Figure 5.6, it becomes clear that the linear model from the previous 

section is no longer sufficient to describe the dynamic response i f clogging occurs as the 

fit percentage goes down to 65.99%. There are two fundamental reasons for this; first, the 

oscillations of the angle are significantly higher with clogging. This is consistent with the 

results obtained by [75] where the author observed that flow turbulence increases with 

clogging very significantly. The turbulence kinetic energy may increase by 5 orders of 

56 



magnitude in the lower part of the nozzle. This increased turbulence is then the source of 

much increased jet angle oscillations and variance. Secondly, clogging evidently 

introduced some additional non-linearity to the response because some parts of the 

response are described well by linear model while the fit is unsatisfactory in other parts. 

This increased angle variance can be used to detect the appearance of clogging, and this 

wi l l be discussed in a greater detail in the subsequent sections. 
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Figure 5.6. Comparison of Wiener model output with measured output 

Therefore, non-linear models were investigated in order to improve the fit 

percentage. This led us to the Wiener model as we would like to keep the model as simple 

as possible while improving the fit percentage of the model. This approach is based on the 

concept of decoupling the linear behaviour from the non-linear behaviour. In a Wiener 

model the linear dynamic part is followed by a static non-linearity. In this case we are able 

to avoid expensive iterative optimisation methods which is an advantage of using this 

approach. The general Wiener model is represented as the following, where the linear 

difference equation is written with shift operator q'1, where y(k)q~'=y(k-i) [73]. 

A^q-^ytk) + A2(q-1)y2(k)+... +Al(q~1)yl(k) = c00 + 5 ( < T > ( / c - d) 

(5.6) 

The linear function and the static non-linearity are given as 

i4 1 (q _ 1 )x( fc) = 5 ( q _ 1 ) q - d M ( / c ) (5.7) 

y(k) = r0 + rtx{k) + r2x2(k)+ ... +rvxv(k) (5.8) 
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Where the static non-linearity is given as a polynomial of order p. When both are 

connected in series, we obtain the simple Wiener model. 

y(*) = ro + riBj£^u(k) + r2 (^f) u 2(fc)+ ... (5.9) 

We wi l l be utilizing the Wiener model for the second set of experiments; this set of 

experiments is used for modelling the dynamic response of the jet angle with clogging in 

the S E N as seen in Figure 5.8. The figure compares the response of the models to a series 

of random step changes to the E M B r current. The increased nonlinearity can be accounted 

for by adding a static nonlinearity to the linear model i.e. by using a Wiener model. The 

linear part of the Wiener model consists of a first order transfer function: 

" W = r 5 - <5-1 0> 

Kp = 0.063 (5.11) 

Tpl = 1.7 (5.12) 

The output of the linear function is fed into a static nonlinear block in order to 

model the output nonlinearity. In this case, the Wiener model allows us to build on the 

linear transfer function and improve the fidelity of the model by adding a static non-

linearity behaviour that has been introduced in the clogging state [71]. Both equations have 

similar absolute values for the time constant. The static nonlinear block in the Wiener 

model contains a piecewise linear function consisting of 2 breakpoints as seen in Figure 

5.7. Figure 5.8 shows that the added nonlinear function improves the performance of the 

model by 14.74%. 

0 5 10 15 20 25 30 
Input to nonlinearity at output 'y1 1 

Figure 5.7. Piecewise linear function consisting of two breakpoints 
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5.1.4. Controller Structure 

5.1.4.1. Clogging Detection 

The concept behind using the switched M P C is for the controller to modify its 

response depending on whether there is clogging or not in the S E N . S E N clogging changes 

the response of the jet angle to the changes to the current to E M B r as shown. The controller 

should be able to efficiently keep the angle of the jet between the optimum range in both 

cases of normal operation and during S E N clogging. In order to do so, the controller needs 

to detect i f clogging has occurred during operation using information obtained from the 

angle of the jet. Figure 5.9 shows us the angle of the jet for two cases: Case 1 is taken from 

the first set of experiments where there was no S E N clogging during the measurements. 

Case 2 is taken from the second set of experiments where the S E N was partially clogged 

during the measurements. In both figures the E M B r is turned off. In the case of clogging, 

the angle of the jet oscillates more significantly than in the normal operation case. The 

signal contains higher frequencies. By taking advantage of this behaviour, we can detect 

the occurrence of clogging during operation by calculating the standard deviation of the 

signal along a moving window. 
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Figure 5.9. Comparison of jet angle with and without clogging 

Varying the current to the E M B r results in sharp transitions in the angle of the jet. 

This can cause issues when calculating the standard deviation of the signal in periods where 

the current is changing. To tackle this issue a high pass filter is used to remove the low 

frequencies correlated to the changes in the current, so that the clog detection can be done 

while the E M B r is operational. A Finite Impulse Response (FIR) filter was used with a 

passband frequency of 0.1 radians/sample and stopband attenuation 60 dB. Figure 5.10 

shows how the sharp changes in the angle due to current changes are filtered out while 

maintaining the original frequency of the signal. 

< .5 I U 1 u 1 

150 160 170 180 190 200 210 220 230 240 250 
Time [s] 

Figure 5.10. Before and after using high pass filter for jet angle. Highlighted sections 
show the periods where the current to the E M B r is changed. 

B y analysing the standard deviations of both experimental sets, we can see that in 

the case with clogging the filtered angle exhibited an average standard deviation above 0.6 

degrees for 80% of the experimental data, while in the case with no clogging only 20% of 
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the experimental data exhibited this behaviour. Due to the fact that clogging in the S E N is 

a slow process, and that the signal from non-clogged system can exhibit a standard 

deviation of above 0.6 degrees at random moments, the decision on clogging should be 

done on multiple sequential windows to determine that the increase in standard deviation 

is constant, and thus confirming the presence of clogging. The controller wi l l only confirm 

the presence of clogging after 10 sequential windows have been determined with a standard 

deviation of 0.6 degrees and above. Figure 5.11 shows clogging detection using the above 

algorithm. The clogging is detected after 830s from the beginning of the clogging. In the 

end, clogging is a slow building process that in most cases remains constant until the 

process is over and the S E N nozzle is replaced with a new one. This allows us to use a 

larger number of windows in determining the clogging so that it can be confirmed that the 

increase in standard deviation is due to a constant clogging, rather than random events that 

have affected the angle. 
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Figure 5.11. Clog detection using standard deviation of filtered angle 

5.1.4.2.Model Predictive Control 

Although Proportional-Integral-Derivative (PID) controllers are used in the 

majority of industrial applications, certain limitations make it unfavourable to apply PID 

controllers in specific processes. These include the difficulty of expanding the controller 

for M I M O processes due to interactions between loops. Also, PID controllers themselves 

are unable to incorporate constraints on manipulated variables and controlled variables. A 

possible solution for these issues is the use of Model Predictive Control (MPC) . A n 
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additional advantage of M P C is their ability to predict the future effect of control actions 

and optimize them in order to achieve the desired behaviour. 

Model Predictive Control has been successfully implemented in many complex 

industrial applications due to its ability to incorporate constraints in its algorithm. 

Furthermore, Model Predictive Control algorithms can easily be expanded for 

multivariable control problems [76]-[78] which wi l l be beneficial for this thesis in later 

sections. The main theory behind this control technique is the iterative, finite-horizon 

optimization of an internal plant model using a cost function J over the receding horizon. 

In this paper, the cost function consists of the sum of three terms: 

/Ofc) = /yOfc) + /AuOfc) + / e ( z k ) (5.13) 

where Zkis the vector of the quadratic program decision variables. / y ( z k ) refers to 

the output reference tracking, J^u(zk) is for the manipulated variable move suppression, 

and 7e(Zfc) refers to constraint violations as seen below: 

Jy(zk) = Z%Ai$fMk +J\k)-yj(k (5.14) 

( Au \ ̂  

hu(zk) = Z ^ Z f r o 1 ! - ^ [uj(k + i\k) - Uj{k +j - l |fc)]j (5.15) 

/ e ( z k ) = P £ £ k (5.16) 

where k is the current control interval, p is the prediction horizon, ny and nu are the 

number of plant output variables and number of manipulated variables. y ;(/c + j\k) and 

ry (/c + j | k) are the predicted value and reference value of j -th plant output at i-th prediction 

horizon. syj and suj are the scale factor for j-th plant output and manipulated variable, 

respectively. wy

tj and wAu

tj are the tunning weights for the j-th plant output and 

manipulated variable movement at ith prediction horizon. ek is the slack variable at control 

interval k. pk is the constraint violation penalty weight [79]. The main control objective 

for the experiments conducted in this study is to maintain the jet angle in the range between 

optimum ranges during the operation of the casting process. The following constraints are 

applied on the manipulated variable to respect the limitations of the electromagnetic brake. 

0 < ut(k + i - 1) < 600 (5.17) 

- 1 0 0 < AUi(/c + i - 1) < 100 (5.18) 
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5.1.4.3.Switched MPC 

Following the formulation of the M P C , the next step wi l l be to design the Switched 

M P C in order to deal with the two scenarios of clogged and unclogged states. Switched 

M P C has been successfully implemented in processes that exhibit multiple modes [80], 

[81]. The main concept is that the controller is able to transition between multiple M P C 

controllers in real time based on the operating conditions. This is usually done by designing 

each controller based on a specific region of the operating space. By using a switching 

signal, the current operating region is detected and based on this the appropriate active 

controller is selected. 

Going back to our process; the control objective is to keep the jet angle in an 

optimum range. S E N clogging changes the response of the angle to the E M B r . Therefore, 

two different models are needed to describe the process with clogging and without 

clogging. B y using switched M P C we can have our controller switch between two implicit 

M P C controllers. First M P C wil l be based on the model of the system without clogging, 

while the second M P C wi l l be based on the model of the system with clogging. The 

switching signal wi l l be the calculated standard deviation of the angle of the jet. This wi l l 

allow us to select the suitable controller based on the state of the process. Each M P C wi l l 

then solve a quadratic program to determine the optimal current steps for the current input 

signals. There are also constraints on the input current to the electromagnetic brake. 

5.1.5. Testing and Results 

Two sets of simulations were implemented; the first simulation included the M P C 

based on the linear model. In this simulation we are performing set point tracking in the 

case where there is no clogging and analysing the controller's response to various changes 

to the set point (see Figure 5.12 and 5.13). The controller is able to successfully track the 

set point with an average settling time of t=5s. In the end, the controller performance is 

shown to be sufficient for controlling the exiting jet angle. The response of the controller 

is fast enough for the dynamics of the system. In the second simulation we are testing the 

switched M P C and simulating the clogging affect to see how the controller wi l l respond. 

Figure 5.14 shows that from t=0s to t=75s the model for normal operation is used, at t=75s 

the model is switched to the clogged model to simulate clogging in steel casters. We can 
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see that even without the clogging being detected by the controller, the M P C is able to 

perform the needed action to bring the angle of the jet to the required set point. At t=100s 

we simulate the clogging being detected and the switching to the second M P C that is 

designed for the clogging model. It is clear that the transition from the first M P C to the 

second occurs smoothly with the set point being tracked efficiently. At t=150s the 

controller is also able to effectively track the set point with the presence of clogging in the 

process. Figure 5.15 shows that the switched M P C is able to track the set point without 

exceeding the constraints on the manipulated variable which is the current in this case. 

However, it should be noted that the S E N clogging being analysed in this section is at a 

specific point between the tundish and S E N . Clogging can occur in other points in the S E N 

including the port nozzle. The next step should be to analyse the behaviour of the jet angle 

with clogging nearer to the nozzle port to see i f it exhibits similar behaviour to the one in 

this paper. 
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Figure 5.12. Closed loop response for set point tracking 
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Figure 5.14. Comparison of model output with set-point reference 
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Figure 5.15. Input current for set-point tracking 

5.2. Meniscus Velocity 
In this section, we move away from the exiting jet to the meniscus velocity as our 

controlled variable. Meniscus velocity in continuous casting is critical in determining the 

quality of the steel, it needs to be kept between a specific range; too high velocities create 

excessive turbulences that can increase the potential of slug entrapment. On the other hand, 

too low meniscus velocities result in excessive cooling which can cause various surface 

defects as well [6]. Due to the complex nature of the various interacting phenomena in the 

process, designing model-based controllers proves to be a challenge. Therefore, a N A R X 

neural network model is trained to describe the complex relationship between the applied 

current to an E M B r and the measured meniscus velocity. Adaptive Model Predictive 

Control (MPC) is used to deal with the non-linearity of the model by adapting the 

prediction model to the different operating conditions. The controller uses the E M B r as an 

actuator to keep the meniscus velocity within the optimum range and reject disturbances 

that occur during the casting process. The results in this section were published in [82]. 

5.2.1. NARX Neural Network Model 

As mentioned in Chapter 3 U D V sensors are used to measure the horizontal 

velocities at the position of the sensors to provide the same information about the velocity 

fields. In this section, we wi l l only concentrate on the top sensor near the surface of the 

mould to extract the meniscus velocity during the experiments. The measured velocities 

are first smoothed out using a median filter. A median filter is used in this case to maintain 

the fast transitions in velocity which are caused by the changes in the E M B r magnetic field. 

66 

<500 

c400 

200 

Clogging 
Detected 



The filtered velocities between 70 mm to 80 mm from the narrow mould wall wi l l be 

averaged to provide a more accurate representation of the meniscus velocity in the midpoint 

between the mould wall and the S E N . Using this experimental data, a dynamic neural 

network with feedback connections was designed using a nonlinear autoregressive model 

with exogenous inputs ( N A R X ) . The N A R X model is based on the linear A R X model but 

instead of using the weighted sum of its regressors to predict the current output, it uses a 

nonlinear mapping function fas can be seen in Equation 5.19. In our case the nonlinearity 

estimator wi l l be done using the neural network in Figure 5.16. The neural network time 

series toolbox in M A T L A B was used to design the model. 

y ( 0 = f(y(t -1), y(? - 2), . . . , y ( t - ny), u(t - 1), u( t - 2),..., u{t - n j ) 

(5.19) 

The N A R X network consists of a two-layered feedforward network. A sigmoid 

function is used in the hidden layer, while a linear transfer function is used in the output 

layer. The tapped delay line allows for previous input and output values to be stored. The 

input x(t) represents the current going to the E M B r , while the output y(t) represents the 

meniscus velocity. It is clear that a feedback connection is needed for the network to take 

in previous values of the meniscus velocity in order to create the dynamic model. In our 

case 10 hidden neurons were used, with the number of delays of 2. 

y ( 0 = f(y(t - 1), y ( t - 2), u( t - 1), u( t - 2)) (5.20) 

Hidden Layer Output Layer 

b 

Figure 5.16. Neural Network N A R X model 
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5.2.1.1.Testing and Validation 

The data set used to train the network was obtained through experiments using the 

M i n i - L I M M C A S T setup where the current going to the E M B r was changed per time step 

and the meniscus velocity was recorded using the U D V sensor. The experiment consisted 

of random current step inputs to the E M B r between 0 to 600A. This was done in order to 

cover the full dynamics of the system. The data set consisted of 2750 time steps for both 

the input and output; 70% of the data set was used for training, 15% for validation and 15% 

for testing. It is important to note that the network is trained in the open loop form rather 

than closed loop; it is more efficient to train the network with the accurate past output 

values rather than the feedback from the closed loop form. The training algorithm used for 

the network was Levenberg-Marquardt. 

Figure 5.17 illustrates the error autocorrelation which is typically used to validate 

the performance of the network. The best-case scenario should be that the only one nonzero 

value is at lag 0; this means that the prediction errors are completely uncorrected with each 

other. However, in most cases it is expected that the error falls within the confidence limits 

of 95% around zero. Furthermore, Figure 5.18 shows another performance validation 

which is to check the cross correlation of the errors with the input x(t). It is clear from 

Figure 6 that some lags do exceed the confidence limit, which shows that the network can 

be further improved. The number of hidden neurons and the number of delays were 

increased during the simulations, however it showed that the more complex structure did 

not significantly improve the performance of the model, and in some cases resulted in 

overfitting of the data. The better option for improving the performance is to use a larger 

data set, however in our case the data set was restricted to the size of the experimental data 

obtained from the M i n i - L I M M C A S T . On the other hand, Figure 5.18 shows that the 

correlation between the error and the input lie within the confidence limit. 
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Figure 5.19. Comparison of neural network output with experimental data for random 
current input 
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Figure 5.20. Comparison of neural network output with experimental data for step-wise 
current input 

Figure 5.19 compares the output of the N A R X neural network model with the 

measured velocities from the random current input experiment. The model is able to track 

the changes in meniscus velocity without overfitting the data, however it can be seen that 

the performance of the network can further be improved. In the end, the model was 

validated using a separate experimental dataset from the M i n i - L I M M C A S T as can be seen 

in Figure 5.20. In this experiment the current going to the E M B r was changed in steps of 

50A from 0 to 600A and back to OA. The model output is compared to the measured 

meniscus velocity, where it shows that it is able to track the changes in the velocity 

efficiently and is able to describe the nonlinearity in the relationship between the current 

to the E M B r and the meniscus velocity. 
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5.2.2. Adaptive M P C 

The main objective of the control loop is to maintain the meniscus velocity within 

the optimum range and to reject disturbances during the process. Besides minimum and 

maximum limits related to the optimum range of the meniscus velocity, there is also the 

maximum limit on the current of the E M B r . As it is evident from the previous section, the 

controlled plant is not only nonlinear but there are other issues as well. This nonlinearity 

is not well amenable to analytic description and it may be time varying. This would 

complicate the use of nonlinear M P C . We also regarded it as desirable to keep the 

beneficial features of M P C based on linear models and quadratic programming. For all of 

these reasons our approach of choice is to implement adaptive M P C where online model 

estimation is used to update the internal plant model in order to achieve a reasonable level 

of control performance with this nonlinear plant. This adaptive M P C is based on 

continuously updated linearized model. For this purpose, N A R X Neural network is 

linearized and converted to the discrete time state space. 

A recursive polynomial model estimator is used for the online model estimation. 

This is used to update the internal model of the M P C by linearizing the N A R X model. A n 

A R X model is estimated as the following: 

A(q)y(t) = B(q)u(t - nk) + e(t) (5.21) 

Where q is the time-shift operator x, u(t) is the input, y(t) is the output, e(t) is the 

error, and nk is the input delay. The values of u, y, na, nb, and nk are known beforehand 

so that the algorithm is able to estimate A and B at every time step. A Kalman filter is used 

for the recursive estimation algorithms, the general form of the infinite-history recursive 

estimation algorithm can be found below [83]: 

0(t) = 0(t - 1) + K(t)(y(t) - y( t ) ) (5.22) 

Where 9(t) is the parameter estimate at t, and "y(t) is the prediction of y(t) based on 

observations until time t-1. y(t) is the observed output at time t, while the gain K(t) defines 

how much the prediction error y(t)-"y(t) affects the update of the parameter estimate. 

Figure 5.22 shows the overall structure of the adaptive M P C ; the recursive polynomial 

estimator model linearizes the N A R X model per time step and updates the internal model 

of the M P C . By using this linearized model, we can avoid using a nonlinear M P C and use 

the quadratic cost function shown in Equation 5.13 in the optimizer. 
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Figure 5.21. Adaptive M P C connected with process model ( N A R X model) 

5.2.3. Testing and Results 

The first control experiments concentrate on set-point tracking where the 

controller's response to various changes to the set point is analysed (see Figure 5.22 and 

5.23), four different set points were used. Constraints on both the manipulated variable and 

the manipulated variable rate were implemented in the optimization problem, while the 

tuning weight for manipulated variable tracking was set to 0 to omit the term from the cost 

function. The controller was able to successfully track the set point with the settling time 

ranging from 50 to 100s. It is important to note that at the beginning of the simulation the 

Recursive Polynomial Model Estimator needs time to reach an adequate model. This 

explains the oscillatory behavior from 0 to 400s. In this case the constraints on the 

manipulated variable are applied after this period to allow the model estimator to reach an 

adequate model. 

The second set of control experiments concentrate on disturbance rejection (see 

Figure 5.24 and 5.25) which is the main objective of this study. One of the main 

disturbances in the continuous casting process is the changing of the casting speed. The 

casting speed is changed sporadically throughout the process; it would be valuable to see 

if an automatic control loop can keep the meniscus velocity in the optimum range and reject 
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the effect that might occur from changing the casting speed. The disturbance from changing 

the casting speed wi l l be applied at the output of the model; increasing the casting speed 

results in an increase in the meniscus velocity. 
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Figure 5.22. Closed loop response for set point tracking 
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Figure 5.23. Input current for set point tracking 
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Figure 5.25. Input current for disturbance rejection 

In Figure 5.24 we compare the performance of a conventional M P C with the 

adaptive M P C . The disturbance on the output was taken from [6]. Both the M P C and 

adaptive M P C respond to this disturbance in order to keep the meniscus velocity between 

the optimum ranges. In the case of the adaptive M P C , the velocity slightly goes beyond the 

range at T=2725s but it is then brought back to the optimum range at T=2860s. On the 

other hand, the conventional M P C goes beyond the optimum range at T=3100s and is 

unable to bring the velocity back to the optimum range for the remainder of the experiment. 

This is due to the saturation that occurs in the manipulated variable as shown in Figure 
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5.25. We can clearly see here that the adaptive M P C outperforms the conventional M P C 

due to its ability to deal with the nonlinearity of the system, especially at the higher current 

ranges of the E M B r where this non-linearity is even more present. It is important to note 

that the problem faced by the conventional M P C can be resolved by increasing the weight 

for the manipulated variable rate, therefore forcing the controller to use smaller increments. 

However, this results in a poorer controller response compared to the adaptive M P C . 

5.3. MIMO Control Loop 
Previous experiments have included only the E M B r as the manipulated variable; 

the next step wi l l be to extend the control loop to multiple input-multiple output by using 

both E M B r and stopper rod to control the flow in the mould. In this section, we are moving 

away from the meniscus velocity and concentrating once again on the exiting jet. Although 

section 5.2 shows that the meniscus velocity can be controlled and kept within optimum 

ranges using the E M B r , there is a more direct effect on the exiting jet from our actuators. 

For this reason, we are basing our M I M O controller on features related to the exiting jet 

including the jet impingement point and the jet velocity. The results in this section were 

published in [84]. 

5.3.1. Extracting Controllable Features 

In order to avoid using all velocity fields in the region, the concept of feature 

extraction is used to isolate the specific features of the flow that are the most useful for 

indicating whether the flow is optimal or not. For the case of the continuous caster, we 

need to determine the specific features of the flow in the mould that can help improve the 

quality of the steel, and at the same time can be controlled using our manipulated variables. 

The two features chosen in this paper for control are the jet impingement point on the 

narrow wall, and the velocity of the exiting jet. 

5.3.1.1. Jet Impingement 

The importance of the jet impingement point is analysed in [10] where a deeper 

impingement into the mould correlated with higher slag entrapment and argon bubbles 

being trapped deep in the mould. Furthermore, the importance of the velocity of the exiting 

jet is shown by Thomas [11] where the strength of the jet can affect the steel shell at the 
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impingement point on the narrow face wall where it impinges. Additionally, the strength 

of the jet influences the shape of the meniscus. The jet impingement point defines how 

deep or shallow the jet impinges into the mould. The optimum case is to keep the jet as 

close to the horizontal baseline as possible to ensure a shallow impingement. As shown in 

Figure 5.26, this feature can be quantified by calculating the mean value of the velocity 

field between U D V sensors 5 to 7 (-0.07 m to -0.09 m from the surface level). If the value 

increases, it is more likely that the exiting jet is oscillating in this region. The value of the 

mean velocity wi l l be used as the controlled variable. 

XAxis[m] XAxis[m] 

(a) (b) 
Figure 5.26. Reconstruction of velocity profile with identified shallow region to quantify 

jet impingement (a) t = 300 s, (b) t = 800 s. 

5.3.1.2 Jet Velocity 

The idea of using the velocity of the exiting jet is based on section 5.1 where a 

straight line is used to represent the exiting jet. The shape of the jet can be identified by 

scanning for every vertical line in the velocity map for the largest negative velocity and 

fitting a line using linear regression which would then represent the exiting jet. In this 

section, we wi l l be extending this concept to include a more realistic shape of the jet, which 

has sometimes a more 'banana' like shape. In order to model this adequately, a third-degree 

polynomial is used to fit the shape of the jet during each captured frame as shown in Figure 

5.27. It is clear that the polynomial can track the movement and shape of the jet efficiently. 

The controlled variable is the overall velocity of the jet and is the mean of the velocities 

along the polynomial. 
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Figure 5.27. Reconstruction of velocity profile with tracking of jet shape to quantify jet 
velocity, (a) t = 200 s, (b) t = 400 s, (c) t = 500 s, (d) t = 600 s, (e) t = 800 s, (f) t = 1050 

s. 
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5.3.2. State Space Estimation 

A black-box model is created based on both extracted features from the U D V 

measurements and applying system identification to determine the dynamic relationship 

between the inputs and outputs. A 2-input, 2-output model is created where the inputs are 

the current of electromagnetic brake and the stopper rod position, while the outputs are the 

jet impingement point and the jet velocity. The current of the brake was varied from 0 to 

600 A , while the lifting of the stopper rod position was between 5-10 mm. 

As seen in Fig 5.28 and 5.29, random input steps are applied to both the 

electromagnetic brake and stopper rod position to excite the full dynamics of the process. 

It becomes clear that both features have fast dynamic responses to the manipulated 

variables. Figure 5.28a shows that increasing the current of the brake significantly 

increases the jet impingement value which correlates to a shallow impingement point. 

Furthermore, increasing the current of the brake increases the jet velocity. However, this 

effect is less significant. On the other side, increasing the stopper rod position also lifts the 

impingement point, as shown in Figure 5.28b, but the effect is less significant in 

comparison with the strength of the brake, while the effect is more pronounced for the jet 

velocity. 

- O . 2 0 -I 1-
0 2 0 0 4 0 0 6 0 0 BOO 1 0 0 O 1 2 0 0 

T i m e [s] 

(a) 
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Figure 5.29. Measured response of jet velocity to both manipulated variables, (a) 
Electromagnetic brake current, (b) Stopper rod position. 

State space estimation using subspace method was applied to create a 4th order 

discrete state space model using subspace method in the form: 

x(kT + T) = Ax(kT) + Bu(kT) + Ke(kT) (5.23) 

y(kT) = Cx(kT) + Du(kT) + e(kT) (5.24) 

where A , B , C, D and K are the state-space matrices. Disturbance component K is 

set to 0, while the sample time T = 0.3 s. u(kT) represents the input to the system which 

are the current of the electromagnetic brake and position of the stopper rod, while y(kT) 

represents the output which are the jet impingement and velocity. The output of the state 

space model was compared with the measurement output in Figure 5.30 and 5.31. The 

model is able to track the deterministic part of the signal which is the dynamic response 

due to the changes to the manipulated variables. The stochastic part of the signal that is due 

to the turbulent nature of the flow [4] is not described by the model. However, it turned out 

that we do not need to describe this part of the signal to build the model-based controller. 
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Figure 5.30. Comparison of the output of identified model with the measured output for 
jet impingement. The deterministic part of the output relevant for model-based control is 

captured sufficiently by the model. 
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1200 

Figure 5.31. Comparison of the output of identified model with the measured output for 
jet velocity. The deterministic part of the output relevant for model-based control is 

captured sufficiently by the model. 

B y analyzing the pole-zero plot of the discrete system it becomes clear that we are 

dealing with a non-minimum phase system due to zeros outside the unit circle as seen in 

Figure 5.32. Although unstable zeros do not always result in inverse response in the case 

of discrete time systems, this system features inverse response and this poses an additional 

difficulty for control. One way to tackle this issue is to use predictive control such as Model 
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Predictive Control. In this way the controller can predict the future changes in the output 

and anticipate this initial change in direction before settling to the steady state value. 

1 

X 

x Pole 
0 Zero 

- x 

1 

X 

-1 -0.5 0 0.5 1 1.5 

Real Axis 

Figure 5.32. Pole-Zero plot for identified discrete model indicating a non-minimum phase 
system. 

5.3.3. M P C Based on MIMO Model 

As mentioned before, M P C algorithms can easily be expanded for multivariable 

control problems. The cost function J can be expanded to include multiple controlled and 

manipulated variables. Therefore, we wi l l be using the cost function shown in section 5.1.4 

and expanding it to our M I M O system. The main control objectives for the experiments 

conducted in this section are to achieve a shallow jet impingement and maintain the jet 

velocity within an optimum range. The first controlled variable y1(k + i — is the jet 

impingement, while the second controlled variable y 2(/c + £ — 1) is the jet velocity. The 

following constraints are applied on the manipulated variables to respect the limitations of 

both the electromagnetic brake and stopper rod: 
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0 < ut(k + i - 1) < 600 (5.25) 

5 < u2(k + i- 1) < 10 (5.26) 

- 1 0 0 < AWi(/c + i - 1) < 100 (5.27) 

- 1 < Au^k + i - l ) < 1 (5.28) 

where the first manipulated variable m x ( /c + i — 1) is the current of the 

electromagnetic brake, while the second manipulated variable u2 (k + i — 1) is the position 

of the stopper rod. The proposed controller parameters for the M P C are listed in Table 5.2. 

In this case, avoiding large increments in the manipulated variables is desirable in order to 

create a more robust performance from the controller. Although this wi l l compromise the 

reference tracking, increasing the manipulated variable rate weights wi l l help compensate 

for the changes in the velocities due to the turbulent flow that is not fully described by the 

internal model of the controller. 

Table 5.2. Model predictive control design parameters. 

Values 

Sample Time (Ts) 0.50 

Prediction Horizon (p) 10 

Control Horizon (m) 4 

Output Variable Reference Tracking Weight ( w y ) l 0.06 

M V 1 Reference Tracking Weight 0 

Manipulated Variable Increment Suppression Weight ( w A u ) l 1.68 

Output Variable Reference Tracking Weight (w y )2 0.06 

Manipulated Variable Increment Suppression Weight (wAu)2 1.68 

5.3.4. Testing and Results 

Figure 5.33 illustrates the control loop implemented in the following experiments. 

The algorithm starts by processing the raw data from the U D V and constructing the 

velocity profile in the desired region of the mould. The next step is to extract the necessary 

features from the velocity profile including the jet impingement and jet velocity. These 

features can then be processed by the controller where a set-point reference for both 

controlled variables are implemented. Lastly, based on the error between the set-points and 
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the controlled variables, the controller decides how to change both actuators utilizing the 

internal prediction model and cost function. 

In Figure 5.34 and 5.35 the dynamic response of the system to the changes in the 

set-points is presented. A stochastic signal is superimposed at the output to emulate the 

effect of turbulence seen in Figure 5.28 and 5.29. At t = 100 s a negative step input is 

applied to both set-points, while at t = 250 s a positive step input is applied. The figures 

show that the controller can track both set-points in the positive and negative step changes. 

Both dynamic responses have a settling time of -20 s, although the jet velocity overshoots 

the set-point before settling down. Furthermore, Figure 5.36 and 5.37 show the 

manipulated variables during the experiments. The controller can achieve the control 

objectives without exceeding the constraints on the manipulated variables. In the end, these 

optimal conditions promote the optimal double roll pattern by avoiding a deeper 

impingement into the mould. This allows for the formation of sufficient upper flow 

circulations as seen in Figure 2 that prevents the entrapment of impurities. Furthermore, it 

should be noted that the inputs and outputs of this system are coupled as shown in Figure 

5.28 and 5.29. Both manipulated variables influence both controlled variables. This should 

be taken in consideration when deciding the values for the set-points for the controller. 

Moreover, the optimal values for the jet impingement and jet velocity chosen for these 

experiments have been selected after a careful literature review and detailed analysis of the 

measured velocity fields from M i n i - L I M M C A S T . In the future, the ideal way to select 

these values for industrial application would be to observe the quality of the steel product 

after solidification to identify the optimum values needed to avoid defects in the steel. 

Set-Point f > t Error — • M P C 
MV Continuous 

M P C w Caster 

Jet Impingement 
Jet Velocity 

Pre-processing and 
Feature Extraction 

Velocity Profile 
U D V Sensors 

Figure 5.33. Control loop based on measured velocity profile from ultrasound Doppler 
velocimetry. 
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gure 5.34. Closed loop response of jet impingement for set-point tracking. 
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Figure 5.35. Closed loop response of jet velocity for set-point tracking. 
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Figure 5.36. Changes of electromagnetic brake current generated by the controller to 
track the jet impingement. The manipulated variable does not exceed the constraints of 

the brake. 

0 50 100 150 200 250 300 350 400 450 500 
Time [s] 

Figure 5.37. Changes of the stopper rod position generated by the controller to track the 
jet velocity. The manipulated variable does not exceed the constraints of the stopper rod. 
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6. Control Loop Structure Based on CIFT 

CIFT is a tomographic sensor that is able to measure the multi-dimensional velocity 

fields of conductive fluids; this is done by measuring the perturbations of an applied 

magnetic field caused by the flow of the conductive fluid. Similarly, to U D V , this sensor 

can be applied to the mould of the continuous caster in order to provide two-dimensional 

flow field measurements. While U D V is able to obtain velocity component in one direction 

of the ultrasound beam, CIFT is able to measure the three-dimensional velocity fields. 

The main concept of the CIFT technique relies on the flow of the conductive liquid 

going through a magnetic field created by the CIFT transmitter sensors. This creates 

electrical currents in the mould which results in an induced magnetic field. The induced 

magnetic field is measured by the receiver sensors and is used to reconstruct the velocity 

field in the mould. As shown in Figure 6.1, two excitation coils are placed, one above and 

one below the poles of the E M B r . To measure the flow-induced magnetic field, fourteen 

coils were placed, seven on each narrow side of the mould. The velocity field 

reconstruction depends on the inversion of the linearized integral equations shown in 

Equation 5.29 and 5.30 [85]. 

hM=t2lfff ( H r ' ) x B 0 ( r ' ) ) x ( r - r ' ) ^ <p(r)n(r')x(r-r') , 
UV) 4 n JJJV | r _ r , | 3

 u v

 4 j I

m S \r-r'\3 

(5.29) 

( n ( r ) = ^ M fr(r>Bb(rQ)(r-r') , _ ± r r r y (r )n(r ' ) . (r -r ' ) 
^ } 4np(r)))JV | r - r ' | 3 4n ™S | r - r ' | 3 

(5.30) 

From these set of equations, the flow induced field b(r) is computed outside of 

volume V of the fluid under the influence of the primary field Bo (r'). It is assumed that the 

boundary S= dv is insulating, and the conductivity rho of the liquid is homogenous. Phi 

represents the electric scalar potential, while v(r') is the velocity of the liquid, r and r' are 

vectors in the 3-D Euclidian space. While p(r) is a factor determined by the shape of the 

boundary surface [86]. The equations are solved by discretising the volume of the liquid, 

which leads to a system of linear equations containing the magnetic flux density and the 
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velocity field in the discretized volume. In the end, we are left with a linear inverse problem 

which is resolved in order to reconstruct the velocity field from the measured magnetic 

field. Figure 6.2 shows the reconstructed velocity profile from an experiment conducted on 

the M i n i - L I M M C A S T setup. The figure shows that we are able to reconstruct both sides 

of the mould, in this case we can see a clear double roll flow in the mould. 

In this chapter, we wi l l extend the techniques used for U D V measurements to CIFT 

measurements for the purpose of control. The exiting jet angle wi l l be obtained from the 

3-D velocity fields from the CIFT data. The feasibility of using CIFT in a control loop 

similarly to U D V wi l l be analysed. 
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Figure 6.1. M i n i - L I M M C A S T setup showing the placement of CIFT sensors and the 
two excitation coils of the E M B r 
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Figure 6.2. Reconstructed velocity profile from CIFT showing a double roll flow in the 
mould 

6.1. Parametrization of Jet Angle from Velocity Profile 
The previous section illustrates how we are able to obtain similar velocity profiles 

to the U D V measurements in Chapter 5. The next step is to investigate whether we are able 

to obtain the exiting jet angle from the velocity profile in order to use it as our controlled 

variable for our control loop. Again, we are using the jet angle for our controller to avoid 

deep jet impingement into the mould. Therefore, avoiding the entrapment of slugs and 

impurities. The actuator used to change the jet angle is the varying magnetic field of the 

electromagnetic brake (EMBr) . 

In the case of U D V measurements, we concentrated on the mid-region between the 

S E N and the narrow face wall. Velocities near the narrow face wall were avoided due to 

the turbulence affecting the accuracy near the wall. In the case of CIFT, we instead 

concentrate on the velocities near the narrow phase wall because it is more accurate than 

the velocities in the mid-region. This is due to the fact that velocities closer to the receiver 

sensors have a higher accuracy compared to the velocities in the mid-region. By 

concentrating on the narrow face wall, we are able to identify the impingement point of the 

jet and correlate this with the jet angle. 
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The first step of the algorithm is to average the z-axis velocities near the narrow 

face wall. The change in the sign of the z-axis velocity correlates to the impingement point 

as we can see in Figure 6.2, the exiting jet impinges upon the wall and splits into two 

vortexes, one above and one below. Therefore, the change in the sign of the velocity wi l l 

indicate where the jet has split against the wall. Cubic spline interpolation is used to provide 

a finer resolution between the sensor positions. In order to track the movement of the jet, 

we need to track the change in position of the impingement point. During every frame 

captured by the sensors, the algorithm scans through the velocities near the narrow wall to 

find the change in impingement point. Based on this the exiting jet angle is calculated by 

connecting the impingement point with the S E N nozzle. Using this methodology, we avoid 

using the entire velocity fields measured and instead use a single variable to represent the 

movement of the jet during the experiments. 

6.2. Preliminary Results from CIFT 

Figures 6.3 and 6.4 depict the angle of the jet in response to random changes to the 

E M B r current. Similarly, to section 5.1 the M i n i - L I M M C A S T setup is run in a continuous 

experiment. Random current steps are applied to the E M B r to record the full dynamics of 

the process, while the CIFT sensors measure the induced magnetic field. This induced 

magnetic field is used to reconstruct the velocity fields, where the angle of the jet is 

obtained from the impingement point on the narrow face wall. The figures show that it is 

difficult to conclude a clear relationship between the angle of the jet and the E M B r current. 

It is expected that the CIFT sensors would not produce equally clear results as U D V 

because U D V relies on the direct measurements of the ultrasound beams, while CIFT 

requires an added step of the linear inverse problem to reconstruct. Although the potential 

of using CIFT for control of the continuous caster is there as we can see in Figure 6.2, the 

double roll flow can clearly be seen; the accuracy of the reconstruction algorithm requires 

further improvement due to the effect of the E M B r applied magnetic field. This wi l l be 

further discussed in section 6.3. 
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Figure 6.3. Response of jet angle to current changes to the E M B r on left half of mould 
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Figure 6.4. Response of jet angle to current changes to the E M B r on right half of mould 

91 



6.3. Future Development 
The main challenge faced by CIFT in the process of the continuous caster is the 

applied magnetic field from the E M B r . The E M B r requires large ferromagnetic pole shoes 

in order to amplify the magnetic field of the brake, which has an effect on the excitation 

field. Therefore, in order to use the E M B r in a control loop, the magnetic field of the E M B r 

has to be readjusted accordingly. This can be clearly seen in Figure 6.5 where the author 

varies the current to the E M B r from OA to 600A, and then back to OA for several 

measurements. The author records the mean value change of the flow induced magnetic 

field at each current step for sensor 11. The y-axis depicts the starting current value, while 

the x-axis depicts the end current value. We can see here that going from one current level 

to another does not result in the same mean value of flow induced magnetic field as in the 

opposite direction of the current change (going from 0 to 50A results in a different value 

compared to 50 to OA). 

From these experimental results we can also assume that random current changes 

would result in larger discrepancies in the flow induced magnetic field. The main reason 

for this is due to the ferromagnetic parts of the E M B r which results in magnetic hysteresis. 

Figures 6.3 and 6.4 illustrate partially this issue with the spikes in jet angle occurring at 

some of the current change. This complicates the process of developing a controller as we 

would need to compensate for various current level changes in order to avoid constraining 

our controller to specific current level changes. 

In the end, CIFT has the potential to be used in a control loop similarly to U D V . 

The flow structures in the mould have been successfully reconstructed by solving the linear 

inverse problem. The challenge occurs with introducing changes to the E M B r current. 

Therefore, the next step would be to create a model to compensate the effects of the E M B r 

on the measurements and produce the correct measured flow induced magnetic field. This 

model with the CIFT setup would be used for controller similarly done in section 5.1 with 

U D V sensor. The benefit of CIFT is that we are able to obtain even more richer information 

on the flow structures of the mould and utilise this information for both modelling the 

process and designing the controller. 
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Figure 6.5. Mean value of flow induced magnetic field for transition 
from one current to another [85] 



7. Summary and Conclusion 
The general objective of this doctoral thesis was to use two-dimensional flow 

monitoring in a control loop to improve the control of a continuous caster. This objective 

was motivated by the fact that many of the quality issues occurring in the end product of 

the continuous casting process are related to the flow patterns in the mould. By utilizing 

two-dimensional flow monitoring, we can obtain information on the flow structure in the 

mould in a non-invasive manner. The control action can then be more direct than in the 

case of the conventional control based on indirect indicators like the fluctuations of the 

mould level. This thesis mainly used ultrasound Doppler Velocimetry (UDV) as the two-

dimensional flow sensor. In order to create the process model, both computational fluid 

dynamics (CFD) and system identification were used. 

Chapter 4 has shown the difficulty faced with using physical equations to create a 

model for our controller. Modelling the interaction between the liquid steel in the mould 

and the E M B r requires a P D E model because of the spatial dependence of the variables. 

Navier Stokes equation with Lorentz force was implemented using C O M S O L to model the 

effect of the magnetic field of the E M B r on the liquid steel. The complexity of the system, 

including the turbulent flow in the mould, meant that the number of degrees of freedom of 

the model could only be decreased to around 50,000. Less than this would not allow for 

the resolving of the P D E equations. This resulted in a model whose order would be too 

high to be used for model-based control. Furthermore, due to the limited number of 

available actuators, the system would end up being highly uncontrollable. For these 

reasons, the answer to the question of whether the space-discretized C F D model can be 

used for control is clearly negative in the case of the continuous casting process. Although 

this modelling approach has been used to build control-oriented models of some simpler 

processes in the literature, this is definitely not the way to go in the case of the continuous 

casting process. 

For this reason, it was necessary to look for a more viable modelling alternative. 

This alternative was found in Chapter 5, where the objective of creating a process model 

was achieved through system identification using data coming from U D V . The M i n i -

L I M M C A S T setup allowed us to obtain experimental data from the sensors and use them 

to create the models needed for control design and model-based control. However, 
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multivariable measurements from U D V sensors could not be used directly for identification 

because they cannot be considered controlled variables for which set points can be 

specified. It was necessary to find appropriate quantitative flow characteristics that could 

be used as controlled variables for efficient closed-loop control. 

At first, we considered E M B r as a manipulated variable, which means there should 

be just one controlled variable. The exiting jet angle was proposed as a first quantitative 

characteristic that could be used as a single controlled variable. Experimental data from the 

M i n i - L I M M C A S T setup was used to create a transfer function describing the relationship 

between the E M B r and the angle of the jet. A n M P C was designed to control this angle and 

keep it within optimum ranges under disturbance. This idea was extended in section 5.1.2. 

by using experimental data from a clogged S E N to design an algorithm that would detect 

S E N clogging by analyzing the oscillations of the jet angle. This information was then used 

to create a switched M P C that could control the system whether there was clogging or not 

in the S E N . 

A n alternative characteristic was investigated in section 5.2, where meniscus 

velocity was used as a variable controllable by the E M B r . In this case, it was found by 

analyzing the experimental data that the dynamic relationship between E M B r and meniscus 

velocity is nonlinear. For this reason, a N A R X neural network had to be employed to 

describe the relationship, and adaptive M P C had to be developed instead of standard M P C 

based on one fixed model. It has turned out that this adaptive M P C can cope with the 

system's nonlinearities successfully without violating the process constraints. 

Lastly, in section 5.3, the control was extended to the multivariable case by 

introducing the stopper rod position as another manipulated variable besides the E M B r . 

The investigation has shown that jet impingement point and jet velocity are the most 

suitable controllable flow characteristics in the case of this two-input, two-output control 

configuration. Similarly, as in the case of single-input, single-output control configuration, 

system identification was used to obtain the control-oriented model. A fourth-order discrete 

state-space model described the deterministic component of the process response with 

sufficient precision. However, there was also a significant unmodelled stochastic 

component resulting from the turbulent flow. Despite this, the model was precise enough 

to be used as a part of the model-based predictive controller, which could track both set-
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points without exceeding any constraints. In this way, optimal flow structures in the mould 

could be achieved. 

In the end, it can be stated that several characteristics can be extracted from the 

U D V measured velocity profiles in the region surrounding the S E N in the mould. These 

characteristics can be used by model-based controllers in single-variable or two-variable 

configurations to adjust the flow structure in the mould according to the specified set 

points. The techniques used for control loop design can be extended to other sensors based 

on multidimensional measurement data i f similar information on the velocity fields of the 

mould is obtained. In Chapter 6, we attempted to extend these techniques to CIFT, where 

we used the velocity profile to obtain the exiting jet angle. Although CIFT is able to 

reconstruct the flow structures in the mould successfully, an issue occurs when introducing 

changes to the E M B r current. The main reason for this is the effect of the E M B r magnetic 

field and especially of the magnetic hysteresis associated with the ferromagnetic parts of 

the E M B r on CIFT measurements. It is possible to build a model of these hysteretic effects 

and compensate for them. CIFT can then be utilized in a control loop similarly to U D V . 

However, correct compensation for continuous-valued E M B r current (and not only for one 

or several discrete values of this current) remains still an open research problem. 

Despite these remaining issues, it can be stated in conclusion that it has been shown 

that two-dimensional flow monitoring can be utilized in a control loop to control the flow 

structure in the mould of a continuous caster. The first objective of creating a process model 

was achieved mainly through system identification. Furthermore, by quantifying flow 

characteristics using the exiting jet, meniscus velocity, jet impingement point, and jet 

velocity, we could achieve our next objective of identifying characteristics that can be 

utilized as controlled variables for optimizing the flow in the mould. Lastly, through 

designing and testing various control strategies, we can achieve our third major objective 

of developing controllers using the necessary quantitative flow characteristics. 

A n interesting objective for future work would be to introduce more complex 

actuators to the process to achieve even better control over the flow in the mould. A n 

example of this can be an electromagnetic stirrer that creates a rotating magnetic induction 

field and corresponding electromagnetic force applied to the steel liquid. The combined 

actuators can potentially allow us to optimize the flow patterns on both sides of the mould. 
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