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ABSTRACT
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merge visual features of faces from multiple input images into a single output image. At
the end of the thesis, all methods will be compared to each other.
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Diplomová práca sa zameriava na oblasť zaostrovania obrázkov tvárí. V teoretickej 
časti práce budú prezentované moderné metódy zaostrovania obrázkov pomocou 
jediného obrázku a metódy editácie obrázkov. Praktická časť sa zameria na prístupy 
rekonštrukcie obrázkov zo sekvencie poškodených obrázkov. Viaceré modely 
neurónových sietí so vstupom pre viacero obrázkov budú zhotovené a vyhodnotené. 
Alternatívny prístup v podobe balíka nástrojov na editáciu obrázkov bude taktiež 
predstavený. Tieto nástroje budú využívať najmodernejšie prístupy k editácii obrázkov 
s cieľom spojiť vizuálne prvky tvárí zo vstupnej sekvencie obrázkov do jedného 
finálneho výstupu. V závere práce budú všetky metódy navzájom porovnané. 

konvolučné neurónové siete, superrozlíšenie tváre, multi-frame superrozlíšenie, 
single-frame zaostrenie, U-Net, GAN, StyleGAN 

 

KĽÚČOVÉ SLOVÁ 

 



 

ROZŠÍRENÝ ABSTRAKT  

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Napriek súčasnej technicky pokročilej dobe mnohé bezpečnostné kamery stále 
zhotovujú snímky a video zábery v nízkom rozlíšení, a teda aj nízkej kvalite. Je to 
spôsobené buď obmedzenou veľkosťou lokálneho úložiska, alebo využitím zastaralej 
technológie pri výrobe bezpečnostnej kamery. V blízkej budúcnosti sa nevyrieši ani 
jeden z problémov, pretože by to vyžadovalo vynaloženie značných finančných 
prostriedkov. Avšak v prípade dopravnej nehody, lúpeže, vraždy alebo inej 
protizákonnej aktivity, záznamy z bezpečnostných kamier zhotovené v prinízkom 
rozlíšení neposlúžia v pátraní. Existujú prípady, keď sa páchatelia pozerajú priamo do 
šošovky kamery, avšak polícia ich nie je schopná identifikovať. 
     Vďaka nárastu výpočtovej sily sa dosiahlo v posledných dekádach  mnoho 
významných pokrokov vo viacerých vedných oboroch. Prístupy založené na strojovom 
učení sa využívajú v takmer všetkých oblastiach výskumu a ich popularita neprestajne 
narastá. Oblasť spracovania obrazu nie je žiadnou výnimkou a techniky využívajúce 
neurónové siete sú predmetom stáleho výskumu. Avšak, žiadne významné objavy sa 
k dnešnému dňu neuskutočnili v oblasti zaostrovania obrazu. Existuje viacero 
prístupov, ktoré ešte neboli preskúmané, no napriek tomu, len malá skupina vedcov sa 
venuje tejto oblasti. Táto diplomová práca vníma potenciál nepreskúmaných prístupov 
a dáva si za ciel ich preskúmať a rozšíriť. 
     Modely neurónových sietí využívané pri zaostrovaní obrázkov napr. parkov, budov 
a iných obecných scén môžu vniesť do spracovaného obrázku istú úroveň kreativity. 
Rozmazané časti obrázku môžu byť plne prekreslené ‘z pamäte’ neurónovej siete, ktorá 
sa vytvorila pri jej trénovaní. Avšak, pri obrázkoch tvárí sa tento mechanizmus stáva 
dvojšečnou zbraňou. Na jednej strane sa rozmazané oblasti tváre môžu dokonale 
prekryť zaostrenými záplatami, na druhej strane môže dôjsť k zmene identity tváre. 
Ľudské oko je veľmi citlivé na detaily ľudskej tváre, a preto aj drobný nesprávny zásah 
pri rekonštrukcii obrazu môže viesť k významnej zmene identity a znehodnotiť celý 
výstup. Z toho dôvodu sa táto práca nezameriava na vyhotovenie maximálne ostrého 
obrázka ľudskej tváre z rozmazaného obrázka. Zameriava sa na rekonštrukciu 
rozmazaného obrázka s cieľom zachovania pôvodnej identity.  
     Viacero príbuzných prác ukázalo, že z jedného obrázka tváre sa len sťažka zhotoví 
kvalitnejšia alternatíva so zachovaním identity. Nie je totiž možné vygenerovať 
informáciu navyše z ničoho. Preto sa táto práca zameriava na rekonštrukciu tváre zo 
sekvencie obrázkov. Predpoklad je taký, že sekvencia obrázkov je vyhotovená jednou 
bezpečnostnou kamerou. Nie je to však nutná podmienka. Rozostup medzi obrázkami 
sú stovky milisekúnd, a teda každý obrázok zachytáva inú časť tváre. Navyše, 
jednotlivé obrázky zobrazujú tie isté časti tváre rôznou kvalitou. V tejto diplomovej 
práci nie je preto nutné generovať informáciu navyše z ničoho, aby sa zaostrila tvár 
človeka. Stačí, ak sa vyextrahuje informácia zo všetkých vstupných obrázkov a využije 
sa pri generovaní jedného výstupného ostrého obrázka. 
 

 

 

 

 



 

  

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

     V teoretickom úvode práca preskúmava najmodernejšie architektúry neurónových 
sietí v oblasti spracovania obrazu, konkrétne GAN a U-Net. Zároveň približuje 
projekt StyleGAN, ktorý umožňuje generovať plne syntetický obrázok tváre zo 
vstupného vektora, teda aj sekvencie náhodných čísel. Praktická časť sa zameriava na 
implementáciu klasickej U-Net architektúry, novo-predstavenej BiO-Net architektúry 
a navrhuje novú sieť Feature-Merge U-Net. 
     Klasická U-Net architektúra typicky pracuje len s jedným vstupným obrázkom. 
Vstupný obrázok sa dekóduje a opätovne zakóduje spolu s rysmi, ktoré sa sieť naučila 
počas trénovania. Tým, že táto práca má ako vstup sekvenciu obrázkov, všetky 
obrázky sú spojené do jedného bloku a posunuté priamo do modifikovanej U-Net 
architektúry. Idea je taká, že U-Net dekóduje rysy tváre z každého obrázku a počas 
kódovania ich automaticky spojí. Predbežné testovania však ukázalo, že U-Net 
nepracuje v tomto duchu, a preto bola navrhnutá nová modifikácia U-Net architektúry 
nazvaná Feature-Merge U-Net. Daná sieť spracováva vstupné obrázky individuálne 
v dekódovacej vetve. Keď sú rysy tváre vyextrahované, manuálne sa spoja a nasledujú 
do kódovacej vetvy.     
     Architektúra BiO-Net pracuje rovnako ako U-Net s tým rozdielom, že tie isté 
vstupy sú iteratívne spracovávané a spájané s predošlými výstupmi. Teoreticky by 
mala dávať lepšie výsledky oproti U-Net na úkor dlhšej doby spracovania 
a trénovania. 
     Veľkým nedostatkom neurónových sietí je, že sa nedajú natrénovať na príliš 
komplexnú úlohu, ak kritik nie je dosť sofistikovaný počas trénovania. Z toho dôvodu 
táto práca tiež skúma úplne iný prístup. Namiesto podsúvania všetkých obrázkov do 
neurónovej siete naraz sa komplexná úloha neurónovej siete rozpadne na viacero 
elementárnych problémov. Každý tento problém sa vyrieši individuálnou sieťou alebo 
nástrojom. V diplomovej práci bol tento prístup nazvaný ako rekonštrukcia obrázkov 
pomocou súboru nástrojov. Pri rekonštrukcii prostredného obrázku z viacerých 
vstupných obrázkov je treba nájsť obrázok s najväčšou kvalitou očí, nosu, úst a pod.. 
V ďalšom kroku sa zdrojový obrázok zarovná do pozície cieľového obrázka. Následne 
sa prekopíruje príslušná časť zdrojového obrázka vo vyššej kvalite do cieľového 
obrázka v nižšej kvalite. Takto sa postupuje, kým sa neprenesú všetky rysy tváre vo 
vyššej kvalite do výsledného obrázka. Na záver sa spustí jemné zaostrenie pomocou 
U-Net architektúry. Takto navrhnutý systém vykonáva zhodné kroky explicitne ako 
by mali vykonávať U-Net architektúry implicitne. 
     Záver práce porovnáva všetky testované prístupy pomocou objektívnych 
a subjektívnych metrík. Diplomová práca spochybňuje výpovednú hodnotu 
objektívnych metrík v oblasti zaostrovania obrázkov. Výsledky objektívnych 
a subjektívnych meraní sa totiž nezhodujú. K rovnakému záveru prišli aj mnohé iné 
práce v tomto obore. 
      
 

 
 



 

  
 

 

     Všetky navrhnuté a naimplementované U-Net architektúry pracujú rovnako slabo. 
Aj keď na svoj vstup dostanú viacero obrázkov, nie sú schopné vstupnú informáciu 
zúžitkovať. Práca ukazuje, že modely majú tendenciu ignorovať ostatné vstupy okrem 
prostredného. Možné vysvetlenie je také, že kritik nie je schopný natrénovať sieť tak, 
aby extrahovala a spájala rysy tvárí. Jednoduchšia cesta je totiž vziať prostredný 
obrázok a zaostriť ho pomocou naučených znalostí. Ďalším problémom je 
pretrénovanie. Siete majú veľkú tendenciu pamätať si tváre, ktoré videli a násilne tieto 
rysy vkladajú do nových rozmazaných vstupných obrázkov. Istá miera dokresľovania 
je akceptovateľná, avšak spomenuté architektúry len dokresľujú črty, ktoré danej tvári 
nepatria a menia jej identitu. Tento problém sa dá čiastočne riešiť väčšou trénovacou 
množinou. To je však len záplata na skutočný problém – nedostatočný kritik. 
     Ďaleko viac sa osvedčil rekonštrukčný systém, ktorý zaostruje obrázky pomocou 
viacerých elementárnych explicitných krokov. Veľkou jeho prednosťou je možnosť 
vrátiť sa ku ktorémukoľvek bloku a prerobiť ho pomocou úplne inej technológie alebo 
zvoliť úplne iný prístup. Navyše, ľahko sa testujú a opravujú bloky, ktoré majú plniť 
len jednu jednoduchú úlohu. Najväčšou limitáciou rekonštrukčného systému sú 
obrázky, s ktorými je schopný pracovať. Tento systém dokáže pracovať len 
s obrázkami tvárí vyhotovenými spredu. Navyše tieto tváre musia vyjadrovať rovnakú 
emóciu a byť približne rovnako osvetlené. Všetky opísané obmedzenia spočívajú 
v bloku, ktorý zarovnáva tváre do jednej polohy tak, aby sa dali črty priamo 
prekopírovať. 
     Najväčšiu perspektívu do budúcna má práve spomenutý rekonštrukčný systém. Jeho 
veľkou výhodou je, že sa dá rozložiť ma menšie úlohy, na ktorých sa dá pracovať 
paralelne. Navyše vstupy a výstupy každého bloku sa dajú exaktne popísať, na rozdiel 
od U-Net modelov, kde sa požaduje zaostrený vstupný obrázok. Veľký prínos do 
rekonštrukčného systému by predstavoval lepší blok zarovnania tvárí. Schopnosť 
presúvať črty tváre medzi obrázkami z rôznych uhlov pohľadu je nesmierne dôležitá. 
Aktuálne je táto úloha príliš zložitá, ale časom, s príchodom nových nástrojov 
založených na StyleGAN projekte sa výrazne zjednoduší. Ďalší veľký prínos nesie 
návrh systému schopného posúdiť kvalitu obrázka tváre z pohľadu človeka. Takýto 
blok by mal aj obecné využitie. 
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Introduction
The increase in a computational power during the past few decades has paved the
way for significant advances in many scientific fields. Machine learning based ap-
proaches started being utilized in almost all the domains of research and their pop-
ularity is persistently on rise. The field of image processing is no different and the
techniques relying on neural networks are constantly being explored. Though, no
significant progress has been made in the image sharpening field and numerous ap-
proaches have not been tested yet. There is still a lot of room for research, but few
researchers focus on the development despite its practical application.

Despite current technologically progressed era, Closed-circuit Television cameras
still record video sequences in a low resolution. It is caused either by limited memory
storage (local or remote) or by use of an obsolete technology. Nevertheless, none
of the two will be solved within short period of time since it would require an
investment of considerably high resources. Though, in case of an accident, burglary,
murder or any other illegal activity, recordings in such low resolution are of little or
no use. There are even cases, when suspects look directly into camera lens, but the
police are still unable to track down the identity.

Generally, models used for sharpening for example images of forests, buildings
or other generic scenes can introduce certain level of creativity. Some areas of the
images can be fully inpainted based on the knowledge the models have learnt during
training. Though, this does not apply to images of faces. Human eye is sensitive
to the shape of human faces. Even the slightest incorrect feature added to such
an image can significantly change its meaning. That is why the primary focus will
be on restoring the images of faces without letting the model become too creative
and damage it. Instead, the model ought to use all possible input information to
sharpen the image that fully complies with the identity in an input sequence of
damaged images.

As of now, there is no working approach, which would provide a means of extract-
ing more information from low resolution images in a video sequence and reconstruct
them into a single high resolution image. Some related works been published in a
domain of SF super-resolution and generic MF video reconstruction. Though, none
of them have truly focused on human face sharpening and its reconstruction from
multiple images. Moreover, these related works have not presented any ground-
breaking approach so far and their results are poor or moderate. That is why this
thesis will focus on a research in the described field and try to seek and implement
a working solution.

Generally, the input for the system will be a video recording, which is just an
image sequence. Each image will by capturing different parts of the face. It can
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also be presumed, that each image will contain certain parts of the face relatively
sharper than the other images. The goal of the thesis will be to develop a system
able to reconstruct a face image from multiple similar damaged images.

The thesis is structured into a theoretical introduction, where related works in
this field will be explored and used as inspiration for the further development. The
second chapter describes the experiments carried out along with detailed dataset
and models’ description. Finally, in the third chapter, the achievements will be
presented and the experiments will be evaluated.
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1 Super-resolution
Super-resolution imaging (SR) is a set of techniques which enhances the resolution
of an image. They can be divided into single-frame (SF) and multi-frame (MF)
variants. while SF approaches attempt to increase the resolution of the image with-
out producing blur using just a single source image, MF methods are based on
sub-pixel shifts between multiple source images in a low resolution. The improved
high-resolution image is thus created after fusing information from all source images.

1.1 Interpolation-based Approaches
An interpolation belongs to estimation methods in numerical analysis. It is a method
of creating new data points lying within a range of known data points. In the field
of image processing, interpolation is used to resample images to a higher resolution.
Nearest neighbor, bilinear and bicubic interpolation methods are applied in practice
the most [12].

Nearest-neighbor interpolation also called proximal interpolation is a multivari-
ate interpolation in single or multiple dimensions. When a non-given point in some
space is required, nearest-neighbor method picks value of the nearest point. It ig-
nores values of all other given points in the space resulting in a piecewise-constant
interpolant. This interpolation method is mostly used in real-time 3D rendering
thanks to its simplicity and fast speed of operation [12].

Bilinear interpolation is based on linear interpolation on 2D grid. Interpolation is
first performed in one direction and then again in the other. It is simple and belongs
to the fastest resampling techniques in image processing. Bicubic interpolation
interpolates data points on a two-dimensional regular grid. It can be computed using
either cubic splines, cubic convolution or Lagrange polynomials. The interpolated
area is much smoother and contains less interpolation artifacts compared to nearest-
neighbor or bilinear interpolation. That is why it is preferred in image processing
when speed is not a priority [12].

Generally speaking, interpolation methods compared to machine learning ap-
proaches in Super-resolution tasks suffer from smoothing and image information
loss [13].

1.2 Machine-learning Approaches
Artificial Neural Networks (ANN) are computing systems whose architecture was
loosely inspired by the biological neural networks which can be found in animal
brains. ANN is a collection of connected computation units called neurons, which
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vaguely model the neural networks in animal brains. AANs learn by processing
examples. Every example consists of an input and known result. During training,
the ANN produces a prediction by forwarding an input through its architecture.
The difference between the desired result and the prediction is then evaluated as
an error. In order to minimize the error value, network updates its parameters in
a process called backpropagation. The training is carried out in multiple iterations
and the successive adjustments are performed until the predictions are similar to
desired results [13].

1.2.1 Generative Adversarial Networks

The original idea behind Generative Adversarial Networks (GANs) was to use gen-
erator to replicate real-world content from noise. The critic then stated how much
the generated content resembled the real one. Though, as the generator was getting
better, the critic started improving as well. Hence, this competition made both the
networks improve until generator produced such good results that critic could not
distinguish what was real and what was generated [14].

Formula 1.1 describes the whole process more formally. A minmax game is
played between a generative network 𝐺 and a discriminative (i.e. critic) network 𝐷.
Noise sample 𝑧 ∼ 𝑝(𝑧) following normal or uniform distribution represents the input
and 𝐺(𝑧) stands for generator’s data output whose distribution 𝑝𝑔 is expected to
match distribution of the ground-truth data 𝑝𝑑𝑎𝑡𝑎. In the mean time, critic network
𝐷 learns to recognize the real data sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥) and generated data sample
𝐺(𝑧) ∼ 𝑝𝑔(𝐺(𝑧)).

min
𝐺

max
𝐷

𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
(𝑙𝑜𝑔(𝐷(𝑥))) + 𝐸𝑧∼𝑝𝑧(𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))) (1.1)

In 2017 it was presented a famous modification of GANs, so called Wasserstein
GANs [15] (WGANs). WGANs aim to solve stability problems of GANs and in-
terpretability problems of their loss function during training. In essence, GANs are
trying to learn the distribution of a real-world data by minimizing the difference
in probability distribution. And that is done by generating adversarial data. The
convergence can be interpreted as minimizing Jensen-Shannon divergence (JS) [15].

In [15] author shows the shortcomings of JS divergence when the two probabil-
ity distributions being compared do not overlap and proposes to use Wasserstein
distance instead [15].

In the field of image generation researches introduced Super-Resolution GANs
(SRGANs), [16]. The motivation behind SRGANs is to restore finer textures from
the picture when it is being upscaled. Their architecture relies on residual network
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[17] instead of deep convolutional networks because residual networks can be con-
siderably deeper and produce better results. Inside SRGANs there can be found 16
residual blocks and each block is built from 2 convolutional layers and a single skip
connection. The output of residual block is passed through batch normalization and
ReLU layer [16].

SRGANs generally produce outputs with unpleasant artifacts. In order to en-
hance the visual quality a group of researchers studied their architecture and a
loss function. They came up with Enhanced Super-Resolution GANs (ESRGANs)
and introduced them in the paper [18]. More specifically, they introduced so called
Residual-in-Residual Dense Block without a batch normalizatiton as a replacement
for a simple residual block. Moreover, they copied the idea from [19] to make the
critic predict relative realness and not the absolute value. Finally, they also en-
hanced the feature loss by reading features before the activation which provides
much stronger supervision for texture recovery and brightness consistency [18].

1.2.2 U-Nets

U-Nets are convolutional neural networks (CNNs) originally developed for biomed-
ical image segmentation in 2015. Their architecture and behavior are precisely
documented in [20]. U-Nets are the greatest rival of GAN architectures in the field
of image sharpening or, more generally speaking, image upscaling.

U-Net network is always built from two parts – an encoder and a decoder. En-
coder usually accepts high resolution input image with few channels and passes it
through multiple successive layers. These layers mostly include convolution, which
increases the number of channels and pooling operations, which decrease the reso-
lution. The activations at the output of encoder contain features of an input image
[20].

Once features are extracted, encoder is directly followed by a decoder. Decoder
also uses convolutional layers, but, this time, to decrease number of channels. Pool-
ing operations are replaced with upsampling operators, which increase the resolution
[20].

An important feature of U-Nets is the use of skip connections tied directly from
encoder to decoder. Features extracted from encoder are either merged or concate-
nated with features in corresponding decoder layer depending on an implementation.
This allows the network to propagate encoder’s context information to decoder’s
restoration layers. As a consequence, the resulting model is more or less symmetric
and yields a U-shaped architecture [20].

Despite U-Nets’ age, they still represent state-of-the-art deep learning based
approach in various computer vision tasks such as segmentation, sharpening, image
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denoising and inpainting. Only few better variants of this amazing architecture have
been published in recent years. One of those is V-Net [21]. V-Nets aim to extract
low-level features from the data as well as reduce the resolution at the end of each
block. Their encoder consists of multiple stages that operate at different resolution.
Every stage contains at least one convolutional layer using volumetric kernels of
size 5x5x5 voxels. As the input data passes through the network, the resolution is
reduced. This approach gives similar results as pooling layers. But its advantage is,
that it leaves smaller memory footprint while training. Moreover, convolutions with
an appropriate stride tend to reduce the size of the data[21].

Bi-directional O-shape network (BiO-Net) [1] represents another well designed
variant of U-Nets published in July 2020. BiO-Net is a novel approach because
unlike other variants, it does not increase its complexity and yet, it significantly
outperforms other state-of-the-art methods [1].

BiO-Net reuses U-Net’s building blocks in recurrent manner without adding extra
parameters. It introduces backward skip connections, which pass decoder’s features
back to an encoder to further improve network’s capabilities. Architecture is shown
in Figure 1.1.

Fig. 1.1: BiO-Net architecture. Source [1].

The uniqueness of BiO-Net architecture is use of bi-directional skip connections
which allow the decoder to evaluate the semantic features in the encoder and vice
versa. As it can be seen from the Figure 1.1, forward skip connections link encoder
and decoder at the same level and maintain the encoded low-level visual features.
Backward skip connections pass high-level semantic features back to encoder which
fuses them with its inputs. This way, high-level semantic features and low-level
visual features are flexibly aggregated [1].
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During- the first iteration BiO-Net behaves like a regular U-Net. Inputs are
passed through encoder, which extracts the visual features. Since decoder does
not contain any activations yet, encoded features remain intact. Features are then
decoded into high-resolution outputs in the decoder. In the following iterations, the
same inputs are provided to the encoder. Though, this time, decoder’s activations
from the previous cycle are merged with newly encoded visual features. Authors
of BiO-Net claim, the more iterations the network performs, the better results are
achieved. The only drawback is increasing computational time [1].

Recently, a great progress in medical image segmentation has been made thanks
to introduction of UX-Nets [2]. UX-Nets propose a novel neural architecture search
method (NAS) for image segmentation. UX-Nets search scale-wise feature aggre-
gation strategies and also block-wise operators in given encoder-decoder network.
Authors claim that UX-Nets greatly enhance the flexibility of a classical U-Net ar-
chitecture which just aggregates features of encoder and decoder in an equivalent
resolution. Moreover, relaxation of UX-Nets is thoroughly designed and enables its
searching scheme to perform in efficient manner. UX-Nets with their novel approach
to search of multi-level feature aggregation define current state-of-the-art method
[2].

Multiple studies demonstrating the aggregation of multi-level features have been
carried out so far. Even intuitively, merging low-level visual features and high-level
semantic features extracted from different model’s layers allows to capture more
detailed information and enriches semantic representation. However, all the previous
architectures designed their aggregation strategies manually. Fixed strategy may
result in loss of useful information or involve useless information [2].

The comparison between different models and their aggregation strategies is
presented in Figure 1.2. For example, original U-Net model performs feature fusion
among layers at the same level. U-Net with Res or Dense blocks merges features at
the same level and across 2 levels. Finally, deep aggregation counterparts perform
merging between almost all the layers. On the other hand, UX-Nets allow each layer
to select an optimum operation (e.g. dilated or traditional convolution) with proper
receptive field. This process is shown in Figure 1.2.

As depicted in Figure 1.3, searching strategy of UX-Nets for feature aggregation
is conducted to find more efficient merging method based on extracted features.
Moreover, scale-wise aggregations and block-wise operators can be searched through
relaxation in differentiable manner. The whole optimization process is driven auto-
matically without a use of any pre-fixed set of receptive fields [2].
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Fig. 1.2: Comparison of UX-Net and other architectures. Source [2].

Fig. 1.3: UX-Net’s multi-scale search architecture. Source [2].

1.2.3 StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks (Style-
GAN) represents one of the best generative models at this time. It is able to syn-
thetize realistic high-resolution facial images from noise. Many related works in the
field of image processing, such as PULSE, InterFace or StyleGAN editor, use it as
their backbone. Moreover, StyleGAN is currently a matter of extensive research and
numerous works clarifying its internal operation will be soon released [3].

Generally speaking, in the field of image processing style-based generators can
synthesize such outputs, whose look and feel, i.e. style, resembles the style of ground-
truth images. Thus, they can produce fully synthetic images resembling real-world
photos. Moreover, these generators are parametrized and expect some input tensor
to guide the synthesis. Not to mention the fact, that they also take advantage
of noise input in order to include variety in the generated predictions. The input
tensor is usually referred to as a latent code. In case of StyleGAN the latent code
represents the face features in some latent space. The mapping function between
the real images and latent codes is not provided, since the purpose of generative
models is to create new parametrized predictions and not to recreate the original
images [3].

In case of StyleGAN, the latent code is normalized and passed through a mapping
network comprised of fully connected layers as shown in Figure 1.4. That way, the
input latent code 𝑧 is mapped into a latent code 𝑤 inside an intermediate latent
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space 𝑊 controlling the generator though multiple adaptive instance normalizations.
The dimensions of vectors 𝑧 and 𝑤 are equal to 512. At the same time, Gaussian
noise is injected into the synthesis network 𝑔 to include more variety in the output
predictions. Remaining parts of the system were omitted for brevity, but they match
a typical GAN architecture [3].

Fig. 1.4: System overview of StyleGAN. Source [3].

So as to show an effect of latent code on the outputs of StyleGAN, an idea of
style mixing will be presented. In the Figure 1.5 Source A represents a latent code
input into the StyleGAN at the beginning of image synthesis. And in the middle
of the process, the latent code was switched to Source B. To be more specific from
the implementation’s point of view, two latent codes 𝑧1 and 𝑧2 were mapped into
corresponding codes 𝑤1 and 𝑤2. 𝑤1 was applied to synthesis network before given
crossover point and 𝑤2 after the crossover point. As it can be seen from the Figure
1.5, the predictions’ faces resemble Source A images but their hair (and some other
salient features) and copied from Source B images [3].

The limitation of StyleGAN for the image sharpening purposes is the fact that
it does not provide any explicit mapping function between input real-world images
and latent codes 𝑧. Thus, LR image cannot be simply fed it into the StyleGAN in
a hope StyleGAN would synthesize an appropriate HR image. This missing piece is
provided by other works such as PULSE [3].
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Fig. 1.5: Effect of latent source on StyleGAN. Source [3].

1.2.4 StyleGAN Editor

Although StyleGAN can synthetize any generic facial image from input latent vec-
tor, it cannot perform the inverse process, i.e. generate latent vector from given
facial image. This missing piece is provided by StyleGAN Editor. Formally speak-
ing, StyleGAN Editor is an algorithm able to embed input image into StyleGAN’s
latent space. This embedding operation may find numerous applications in semantic
image editing. Some of the editing operations, such as image morphing or style and
expression transfer are also implemented by StyleGAN Editor [4].

Fig. 1.6: Examples of StyleGAN Editor’s performance. Source [4].
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Figure 1.6 shows an example of input images in the top row and results of
embedding these images into StyleGAN’s latent space using StyleGAN Editor. In
order to study the implemented algorithm deeply, authors decided to not only use
images of human faces as inputs, but images of animal faces and a car as well. As it
can be seen in the figure, image of face was embedded with slight imperfections, thus
the goal of StyleGAN Editor was successfully reached. When it comes to images
of animal faces sharing the same overall structure with humans, embedded images
are the same as input images, though of lower quality. The surprising fact is, that
image of car could be embedded as well. Again, the quality is worse, but it clearly
depicts the generative power of StyleGAN [4].

StyleGAN has multiple latent spaces such as initial latent space 𝑍 and interme-
diate latent space 𝑊 as shown in Figure 1.4. Latent vectors 𝑤 ∈ 𝑊 in created by
passing latent vector 𝑧 ∈ 𝑍 through multiple fully connected layers. StyleGAN Edi-
tor aims to embed into latent space 𝑊 . It produces 18 vectors 𝑤 of 512 dimensions,
one vector for each AdaIN block of StyleGAN. AdaIN blocks represent input blocks
to generative network of StyleGAN and are shown in Figure 1.4 as well [4].

The embedding algorithm of StyleGAN Editor represents a basic optimization
framework. An input is represented by two-dimensional image of three channels and
pretrained StyleGAN generator. The output is a latent vector which, when passed
through StyleGAN, matches the original input image. The algorithm starts with
random latent vector. Each value of this vector is initialized independently following
uniform distribution in range [-1,1]. Such latent vector is then fed into AdaIN layers
of StyleGAN and generated image is compared with original input image using loss
function. Loss function takes advantage of VGG 16 perceptual loss and MSE loss.
Based on the loss, the value of latent vector is updated and algorithm performs
another iteration. The whole process is over, when such latent vector is found which
minimizes loss measuring similarity between the generated image and the original
input image [4].

1.2.5 Image2StyleGAN++

Year later, authors of StyleGAN Editor released set of new algorithms able to per-
form more semantic editing operations of input images using StyleGAN and named
it Image2StyleGAN++. New editing operations include image cross-over, image
inpainting, style transfer, image reconstruction and feature transfer. On top of that
Image2StyleGAN++ enhances original embedding algorithm which helps restore
high frequency features of embedded images and greatly improves their quality [5].

Unlike StyleGAN Editor, Image2StyleGAN++ optimizes two variables – latent
vector 𝑤 ∈ 𝑊 and noise vector 𝑛 ∈ 𝑁 . While 𝑤 encodes semantically meaningful
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Fig. 1.7: Comparison of ground truth, StyleGAN Editor and Image2StyleGAN++
prediction. Source [5].

information, 𝑛 stores high frequency component of input image in the Noise space.
The actual optimization algorithm is outside the scope of this brief introduction.
Rather, the results will be compared. Figure 1.7 shows comparison of embedded
images using StyleGAN Editor and Image2StyleGAN++. The first column is an
input image, the second column is StyleGAN Editor’s prediction and the last column
shows predictions of Image2StyleGAN++. As it can be seen, Image2StyleGAN
greatly enhances the quality of embedded images. It works not only for facial images,
but images of cars as well. Practically speaking, the quality of predictions increased
by 20 – 40 dB in PSNR scale according to authors [5].

The idea of image cross-over operation is to copy parts of one image into the
other image. Which parts should be copied are specified by a binary mask. In order
to perform this operation, Image2StyleGAN++ uses regular embedding algorithm
with some modifications. Instead of comparing the embedded image to a single
input image, it compares just some parts of embedded image to one input image
and remaining parts to the other input image. Input mask states which parts of
embedded image should be compared to which input image. In order for embedded
image not to contain sharp edges due to sharp edges in mask, mask is passed through
Gaussian filter before used by the algorithm. The rest of the algorithm remains the
same. Value of loss function obtained by evaluating embedded image is used to
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update latent vector and algorithm steps into next iteration. The process is over
when loss function is minimized below some specific threshold value [5].

Fig. 1.8: Inpainting using scribbles with Image2StyleGAN++. Source [5].

Image2StyleGAN++ supports local editing using scribbles as well, i.e. gener-
ating missing parts of an image based on scribbles included in that image. This
operation is again based on embedding optimization algorithm. Though, the ex-
planation would be too lengthy. Some example results are presented in Figure 1.8
instead. The first column shows original input image, the second column shows local
edits to input image, i.e. scribbles, and the third column shows image generated by
Image2StyleGAN++. As it can be seen, red line was turned into a scar, some hair
sketch was interpreted as regular hair and beard was fully removed as well. These
examples depict the robustness of Image2StyleGAN++ algorithm [5].

1.2.6 PULSE

Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Mod-
els (PULSE) represents current state of the art in the field of face hallucination.
Term face hallucination is used rather than sharpening since it more precisely de-
picts PULSE’s novel approach to this problem. While the vast majority of current
super-resolution systems rely on CNNs trained on pairs of LR and HR images,
PULSE represents a purely unsupervised approach. It explores the HR manifold
of StyleGAN and chooses such HR image which downscales correctly to original
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LR image. Unlike other systems which start with the LR image and gradually add
texture details [6].

PULSE traverses the latent space of the StyleGAN, downscales the generated
predictions and compares them to the input LR images. It operates in multiple
iterations, e.g. 100 iterations as authors recommend, with a specific learning rate
and gradually optimizes StyleGAN’s predictions. Thanks to StyleGAN being so well
trained, the PULSE’s results always belong to a natural image manifold. Moreover,
PULSE’s algorithm ensures its outputs once downscaled match the LR inputs. A
simplified diagram of PULSE system is presented in Figure 1.9. PULSE loads an
input LR image 𝐼𝑖𝑛𝑖𝑡, converts it into latent code 𝑧𝑖𝑛𝑖𝑡 and searches the latent space
𝐿. Once the optimization is successful, latent code 𝑧 − 𝑓𝑖𝑛𝑎𝑙 represents such image
𝐼𝑓 𝑖𝑛𝑎𝑙 which belongs to natural image manifold and at the same time downscales
correctly [6].

Fig. 1.9: System overview of PULSE. Source [6].

1.2.7 InterFaceGAN

InterFaceGAN network is a part of work trying to interpret StyleGAN’s latent space
and its latent vectors. It studies facial semantic properties encoded in StyleGAN’s
latent space. The main objective is to identify linear subspaces of StyleGAN, each
subspace representing a single facial attribute, and realistically manipulate chosen
attribute of given input image. As of now, InterFaceGAN has a precise control over
gender, expression, age, pose and presence of eye glasses [7].

InterFaceGAN implementation paper employs GAN inversion approach to edit
attributes of an input image. It trains encoder called InterFaceGAN network to
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reverse StyleGAN’s operation. Since InterFaceGAN paper aims control multiple
subspaces of latent space of StyleGAN, it needs to provide that many trained Inter-
FaceGAN networks [7].

Fig. 1.10: Example of InterFaceGAN operation. Source [7].

An example operation of InterFaceGAN is presented in Figure 1.10. Manipula-
tion of all attributes can be observed here. In case of 𝑃𝑜𝑠𝑒 image sequence, middle
image represents the input to InterFaceGAN and images on sides represent the out-
put. Input image is aligned and shows frontal face. Authors do not present the
outputs when input image is unaligned or shows side of the face. In case of 𝑆𝑚𝑖𝑙𝑒

image sequence, face without smile is the input and the two faces with smiles are
outputs. InterFaceGAN can again produce multiple results based on different level
of amplification of selected attribute. The same goes for images with glasses and
age. Identity in the input image can be made look younger by using negative am-
plification of age attribute or made look older by using positive amplification of age
attribute. Finally, InterFaceGAN has a control over gender as well. It can gradu-
ally turn female gender into male gender and vice versa. In case of 𝐺𝑒𝑛𝑑𝑒𝑟 image
sequence, image on left represents the input to InterFaceGAN, i.e. young female.
Image on the right to the input image shows the same identity having few salient
male features. Image on the right shows identity of male gender still resembling
the previous image. As the figure shows, InterFaceGAN seized precise control over
inspected five attributes [7].

1.2.8 PSFR-GAN

Most of the architectures presented so far are based on an encoder-decoder (U-
shaped) structure and get trained to learn a direct black-box mapping from low-
quality to high-quality images. These approaches represent current state of the art
and but just few of them give satisfactory results for real-world low-quality images.
Moreover, it is difficult to enhance their performance, because they literally operate
as black boxes. No works have been published so far discussing the effect of hidden
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layers of U-Net architectures on predictions. Up to this day, it is truly unknown
what they internally do.

Progressive Semantic-Aware Style Transformation for Blind Face Restoration
(PSFR-GAN) represents a novel architecture for SF super-resolution tasks. Unlike
other U-shaped networks, PSFR-GAN approaches the face restoration process as
semantic-aware multi-scale transformation. It uses semantic-aware style transfer
process to progressively restore the features of different scales [8].

Fig. 1.11: PSFR-GAN network architecture. Source [8].

The Figure 1.11 shows the PSFR-GAN network architecture. It begins with
learnt constant, i.e. latent code, and produces features at different scale using
multiple upsampling layers. It also expects two other inputs – low-quality image
and the corresponding face mask. The low-quality image provides information about
the color and the mask provides information about the shape and semantics. As
the input low-quality image progresses through the network’s layers, the details are
inserted in a coarse-to-fine manner. Another trick PSFR-GAN takes advantage of
is a Semantic Aware Style Loss which greatly helps to enhance the restoration of
the textures and limits the appearance of unwanted artifacts in the final prediction.
Semantic Aware Style Loss will be explored in the following chapters [8].

1.3 Loss Functions in Super-resolution
Generally, in decision theory and mathematical optimization, a loss function, also
known as cost function or fitness function is a function which maps value of a given
variable onto a real number. This number stands for some “cost” related to the
value. Optimization problems seek to minimize the “cost” of this loss function [13].

In machine learning models learn by means of loss function. It evaluates how
precisely the model models given data. If model’s predictions deviate from desired
results, loss function yields a large number. The “cost” is high. Gradually, loss
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function reduces its error value for predictions as the model learns to model data
better. Improvement is driven by an optimization function [13].

Loss functions can be generally categorized into two main groups depending
upon the task – classification and regression loss functions. In classification tasks,
the model is trying to predict a category coming from a finite set of categorical
values. On the other hand, in regression tasks, the model is trying to predict a
value coming from a continuous range. Image segmentation domain mostly deals
with regression tasks. That is why a closer look into them will be provided in the
following subchapters [13].

1.3.1 Mean Squared error

Mean Squared Error (MSE) also known as quadratic loss or L2 loss computes the
average of the squares of the errors. The error actually stands for the difference
between the predicted and actual value. MSE is strictly positive, it does not take
into account the direction of an error. It can be computed using Formula 1.2, where
𝑛 stands for the number of predictions in vector 𝑌 .𝑌 represents the vector of actual
values. Thanks to squaring operation, predictions which are less deviated from
actual values yield low error value but, on the other hand, predictions far away from
actual values get heavily penalized [13].

𝑀𝑆𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2 (1.2)

In the field of image segmentation, MSE is usually used to compare red, green
and blue (RGB) values of every single pixel of predicted image and ground-truth
image. That is why MSE is also known as the pixel loss. Moreover, MSE is also used
while comparing activations when predicted and target image are passed through
another model used for evaluation. More on that later.

1.3.2 Perceptual Loss

In 2016 it was published a novel approach for evaluating predicted images and it was
named perceptual loss [9]. It comes up with new ingenious loss function still used
up to this day thanks to having an amazing image quality evaluation performance.

Perceptual loss is based on comparison of high-level semantic features extracted
from a pretrained network of generated and ground-truth image. Since it compares
features, it is many times referred as a feature loss. In this work, these two terms
will be used interchangeably. Perceptual loss function can be used for training any
feed-forward network dedicated to image transformation task. Compared to other
optimization-based approaches, perceptual loss returns similar qualitative results
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but it is more than three orders of magnitude faster. In the domain of SR, perceptual
loss gives visually more pleasing results compared to a pixel loss. Thus, perceptual
loss measures similarities between predicted and ground-truth image more robustly
than a simple pixel loss [9].

Perceptual loss was tested on single-image SR task by its authors. As they
correctly state, it is an ill-posed problem. There does not exist a single correct
output image. Conversely, there are multiple high-resolution images which could be
generated from the same low-resolution input image. Success in this task requires
good semantic reasoning about the input picture. Fine details of a generated and
visually ambiguous low-resolution input image must be inferred similarly, ideally
equally. Theoretically, any high-capacity neural network could learn this kind of
semantics reasoning implicitly, however in practice an explicit loss function guiding
such training is required [9].

System overview of Perceptual loss function is shown in Figure 1.12. As a loss
network authors used VGG16 architecture pretrained on image classification task
using ImageNet dataset. As a generator network transforming low-resolution images
to high-resolution images authors used some arbitrary model. During the training of
a generator network, loss network remains fixed – its parameters do not get updated.
Predicted high-resolution image and ground-truth high-resolution image are passed
through the loss network and extracted high-level semantic features are compared
using feature reconstruction loss function. Optionally, extracted low-level visual
features can be compared as well [9].

Fig. 1.12: System overview of Perceptual loss. Source [9].

Instead of encouraging the pixels of predicted image 𝑦 to precisely match the
pixels of the ground-truth image 𝑦, perceptual loss encourages them to have similar
representations of features stated by the loss network 𝜑. In the Formula 1.3 𝜑𝑗(𝑥)
represents activations of the 𝑗th layer of the network 𝜑, when network process image
𝑥. 𝑗 stands for a convolutional layer and 𝜑𝑗(𝑥) is a feature map of a shape 𝐶𝑗 ×𝐻𝑗 ×
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𝑊𝑗. Feature reconstruction loss 1.3 then represents squared, normalized Euclidean
distance between feature representations [9].

𝑙𝜑,𝑗
𝑓𝑒𝑎𝑡(𝑦, 𝑦) = 1

𝐶𝑗𝐻𝑗𝑊𝑗

||𝜑𝑗(𝑦) − 𝜑𝑗(𝑦)||22 (1.3)

As an example of perceptual loss performance, authors present Figure 1.13. It
can be observed, that model trained with perceptual loss significantly outperforms
bicubic interpolation and models trained with a simple pixel loss function. Moreover,
as authors state, they did not beat Peak Signal-to-Noise Ratio (PSNR) or Structural
Similarity Index Measure (SSIM) of other approaches, but instead they achieved
much better visual results. This example greatly showcases incompetency of PSNR
and SSIM metrics for SR tasks [9].

Fig. 1.13: Comparison of outputs of different SR methods. Source [9].

1.3.3 Gram Loss

Gram matrix of a set of vectors, also known as Gramian, is a Hermitian matrix
of inner products. Typical application of a gram matrix is computation of linear
independence of given vectors. If the Gram determinant is non-zero, then vectors
in a given set are linearly independent [22].

In machine learning, gram loss is based on a computation of a Gram matrix
and mainly finds an application in image style transfer tasks. An example of style
transfer task is shown in Figure 1.14. The top left picture represents the content
picture, the bottom left picture is the style picture and the result is presented on
the right. Neural network takes in the content and style picture as inputs and with
the help of gram loss trains itself to produce the output blended picture [13].

Gram loss function computes MSE between gram matrices of feature represen-
tations of generated and ground-truth image. Feature representations of the images
are extracted by passing the images through a loss network presented in chapter
Perceptual Loss [9].

More specifically, to compute Gram matrix of a given image, the image needs
to be passed through a loss network. Loss network will generate activations at its
all intermediate layers. Activations from any layer are then considered as feature
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Fig. 1.14: Style transfer example. Source [10].

representations of a given input image. Usually, activations of multiple layers are
taken into account, but for the sake of simplicity, consider just a single feature ma-
trix. Feature matrix is then flattened and used for computation of a dot product.
The dot product characterizes image’s style, but completely loses information about
image’s spatial structure due to flattening. The result is the Gram matrix. When
Gram matrix of content image and style image are compared using MSE and back-
propagated, the network learns to regenerate content image with style of the style
image [9].

1.3.4 SER-FIQ Loss

A novel approach to estimation of image quality was published recently. It was
named SER-FIQ - Unsupervised Estimation of Face Image Quality Based on Stochas-
tic Embedding Robustness (SER-FIQ) [11]. This assessment mainly focuses on es-
timating the suitability of image for face recognition tasks. Hence, although this
approach can state quality of an input image, the quality does not fully correspond
to visual quality of the image. Rather, it states quality of an image from the point
of view of neural network performing face recognition task. Still, the two kinds of
quality are closely related [11].

SER-FIQ approach is based on determining variations in embeddings generated
by random subnetworks of a face network. Image quality is then represented by the
robustness of a sample representation. The whole concept is shown Figure 1.15.
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Fig. 1.15: System overview of SER-FIQ. Source [11].

As Figure 1.15 shows, high quality image (bottom left image) results in slight
variations in stochastic embeddings and thus high robustness (red areas on the right).
On contrary, low quality image (top left image) results in significant variations in
stochastic embeddings returned by random subnetworks and hence indicates low
robustness (blue areas on the right). In order to obtain random subnetworks of a
face network, face network needs to be trained with dropout on face recognition
task. Moreover, the dropout layer needs to be active even during inference. This
way, by forwarding the same input image through the same face network 𝑚 times, it
will be obtained 𝑚 different stochastic embeddings. The process is shown in Figure
1.16. The variations between these stochastic embeddings define the quality of the
image [11].

More formally, SER-FIQ predicts quality 𝑄(𝐼) of given image with face 𝐼 using
face network with dropout 𝑀 trained on face recognition task. Model 𝑀 needs to
excel at extracting embeddings which are well identity-separated. In order to make
the quality estimation of image 𝐼, 𝑚 stochastic embeddings need to be generated
by model 𝑀 with the help of different dropout patterns. The value of 𝑚 is always a
trade-off between stability of quality measure and time complexity. Authors recom-
mend using value 𝑚 = 100. All stochastic embeddings are collected in a set 𝑋(𝐼)
and the negative mean Euclidean distance between them is computed. The mean is
then forwarded through the sigmoid layer which ensures that the quality will be in
range <0, 1>. The whole formula is presented in Formula 1.4.

𝑞(𝑋(𝐼)) = 2𝜎(− 2
𝑚2

∑︁
𝑖<𝑗

𝑑(𝑥𝑖, 𝑥𝑗)) (1.4)

SER-FIQ’s approach and use of Euclidean distance is backed by [23]. Authors in
mentioned paper prove that repetitively applying dropout on network approximates
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Fig. 1.16: Stochastic embeddings generation. Source [11].

uncertainty of Gaussian process [24]. More significant variation in the stochastic
embeddings implies low robustness and thus, lower image quality [11].

An example of SER-FIQ’s quality estimation is presented in Figure 1.17. As it
can be seen, picture on left is evaluated by SER-FIQ as an image of high quality.
Picture on the right is of poor quality and SER-FIQ also rates it poorly. Though,
the three pictures in the center are also evaluated poorly despite having moderate
visual quality. This is caused because SEF-FIQ states image suitability for face
recognition model rather than visual quality. And since all the three pictures are
ambiguous in terms of face recognition, they were rated poorly too. The reason why
the images are ambiguous is because they either contain multiple faces in the same
picture or because they do not capture full face from the front. Face recognition
model would not be able recognize the identities with high level of confidence in
either case [11].

Fig. 1.17: Example of quality evaluation by SER-FIQ. Source [11].
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1.3.5 Semantic-Aware Style Loss

Simple gram matrix loss was first presented in super-resolution work [25] and has
shown that gram matrix loss function is not only useful in style-transfer tasks, but it
also positively affects texture recovery in super-resolution tasks. Authors of PSFR-
GAN enhanced it and introduced a Semantic-Aware Style Loss 𝑙𝑆𝑆 helping to achieve
better synthesis of texture details. It computes the gram matrix loss separately for
every single semantic region of the visual features extracted from VGG19 model.
More specifically, authors recommend reading layers relu1_1, relu2_1, relu3_1,
relu4_1 and relu5_1. Semantic-Aware Style Loss can be computed using formula
1.5:

𝑙𝑆𝑆 =
5∑︁

𝑖=1

18∑︁
𝑗=0

||𝑔(𝜑𝑖(𝐼𝐻), 𝑀𝑗) − 𝑔(𝜑𝑖(𝐼𝐻), 𝑀𝑗)||2 (1.5)

where
• 𝜑𝑖 - 𝑖-th feature layer of VGG19,
• 𝑀𝑗 - parsing mask with label 𝑗 (e.g. background is 𝑀0),
• 𝑔() - gram matrix,
• 𝐼𝐻 and 𝐼𝐻 - predicted and label image

and gram matrix 𝑔() can be computed using formula 1.6

𝑔(𝜑𝑖, 𝑀𝑗) = (𝜑𝑖 ⊙ 𝑀𝑗)𝑇 (𝜑𝑖 ⊙ 𝑀𝑗)∑︀
𝑀𝑗 + 𝜖

(1.6)

where 𝜖 avoids zero division, 𝜖 = 1𝑒 − 8.

1.4 MLFDB Dataset
Multi-frame Labeled Faces Database1 was primarily developed for multi-frame face
superresolution tasks. It includes a wide range of ethnical groups, and age. More-
over, the images were taken in a different scale, angles, various lighting conditions
and capture realistic background scenes. In total, the dataset provides exactly 12,200
training image sequences and 2,600 testing image sequences.

Each image sequence consists of seven images at resolution 32x32 representing
the damaged images to be restored and a single label image at high resolution. The
resolution of a label image varies in the dataset. It is either 64x64 or 128x128 or
256x256. Finally note that, the middle picture in the dataset matches the label
picture.

1Source: http://splab.cz/mlfdb/
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The dataset was built from around 300 youtube videos and includes roughly
7,000 unique identities. In order to ensure uniqueness between sequences, only such
sequences were included, which differ from the other sequences by SSIM 0.7 or less.
An example sequences are shown in Figure 1.18. These samples were randomly
chosen from the training set and they clearly depict dataset’s diversity. The first
seven images to the left represent input damaged images and the image on the
right represents a label image. Note that, since all images are displayed at a low
resolution, the difference between input and label images seems subtle. Though, the
figure is just misleading.

Fig. 1.18: MLFDB dataset examples.

1.5 Summary
Current state of the art in the field of image sharpening and superresolution has been
presented in the previous chapters. These domains have not been truly explored
yet for biometric purposes. Multiple works have tried to provide a solution for
superresolution problem, though, their priority was the highest output image quality
rather than preserving the original identity.

Nevertheless, promising novel approaches to image reconstruction have been ex-
plored in greater detail. U-Net and GAN networks still represent the leader in this
field and that is the reason why many related works have focused on enhancing
them. Multiple alternative networks have been presented recently and promise im-
provements in visual quality of sharpened images. It will definitely pay off to look
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into them deeper and reimplement them in the practical part of the work. Note
that, the greatest challenge to overcome will be to propose meaningful ways how to
feed multiple images into these networks. They have all been originally designed for
single image input.

StyleGAN and related works unarguably represent the most innovative approaches
to face modeling, sharpening and editing at this time. StyleGAN on its own can
generate fully synthetized images from input random vector. Other works, such as
StyleGAN Editor offer an understanding of this vector and are able to perform an in-
verse operation – create latent vector from synthetized image. InterFaceGAN is built
on top of StyleGAN Editor and it analyzes internal operation of StyleGAN. Thanks
to that it can easily change attributes of the synthetized face. Finally, PULSE pro-
vides a simple way how to sharpen input image using StyleGAN. Instead of gradually
increasing texture details of low-resolution image, PULSE returns fully synthetized
high-resolution image. This synthetized image matches the original low-resolution
input image when downscaled back to the original resolution. Mentioned works will
be analyzed and taken advantage of in the practical section of this thesis as well.
They can be utilized to build custom tools for image editing.

Finally, works such as SER-FIQ also present an opportunity to build custom
critics for U-Net and GAN architectures. Moreover, SER-FIQ algorithm seems
promising as metric as well since it is able to evaluate visual image quality. Though,
it has not been put into practice yet. Its performance is unknown yet valuable to
explore.
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2 Implementation
Image reconstruction from a sequence of images still represents a domain in the
modern science, which has not been fully explored yet. Few related works have been
published in a domain of SF super-resolution and generic MF video reconstruction.
Though, none of them have truly focused on human face sharpening and its recon-
struction from multiple images. Moreover, these related works have not presented
any ground-breaking approach so far and their results are usually poor.

The following chapters of this work will describe in detail multiple experiments
that will be implemented and evaluated. Experiments will be split into three groups.
The first group of experiments will present image sharpening approaches which rely
on U-Net architecture and its most recent alternatives such as BiO-Net. The idea
will be to propose new models and modify existing ones in such a way, that they
accept all input images from given sequence at once. This approach has never been
truly explored thus it is difficult to make any presumptions about its performance
in real world.

The second group of experiments will present novel approaches to single image
sharpening. New networks will be presented and compared with existing alterna-
tives. Single-frame sharpening is generally a valuable tool required by multiple other
tools presented in this thesis.

Last group of experiments will approach multi-frame sharpening from different
point of view. It will introduce a suite of tools able to recognize, adjust and merge
high-quality visual features of input images into a final image. The basic presump-
tion is, that every image in the sequence contains compression artifacts at different
locations. Moreover, different regions of each image have different quality. That is
why the idea of finding high-quality regions and merging them seems promising.

Fastai library [26] will be used in the whole thesis mostly because it provides
clear documentation, trainings and demo samples. The library is based on Pytorch
library and aims to provide simpler, more practical and easier to use API. Though,
fastai library does not contain implementations of the most recent or less known
models. It will be still necessary to implement them using papers published by the
authors. Some extra utility functions for masking and merging images will need to
be implemented as well. Another limitation of fastai library is the absence of multi-
frame dataloader, i.e. object being able to load multiple images from the disk as a
sequence, perform some transformations on them and feed them into the model. It
will be necessary to implement such dataloader which will fully comply with fastai
API.
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2.1 Multi-frame U-Net Based Sharpening
The following chapter with its subchapters will represent a group of experiments
trying to sharpen the middle image from input image sequence. All images will be
fed into U-Net based model at once. Although multiple networks will be presented,
general system architecture will remain the same and it is presented in Figure 2.1.
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Fig. 2.1: System overview of U-Net based experiments.

The dataset will consist of sequences of damaged images and a single label image
per sequence. Each image sequence is stored in a separated folder and before it is
passed to the model, some preprocessing is applied to it. Pre-processing includes
basic data augmentation techniques such as random zoom within a given range, ver-
tical flip, random brightness adjustment and, most importantly, resizing to a desired
resolution. All images are resized to a resolution 128x128 using bicubic interpolation
and normalized using Imagenet parameters (mean and standard deviation values for
RGB channels). Bicubic interpolation will be always performed before feeding im-
ages to the model. During the experiments it has proven that bicubic interpolation
is better than upsampling using convolutional layers in terms of loss of information.

Once a sequence of seven images is randomly augmented and normalized, images
are stacked along dimension 0 and put into a batch. Thus, in case of seven input
images each consisting of 3 channels (RGB) and resolution 128x128, the batch di-
mensions would be [𝑏𝑠, 21, 128, 128] where 𝑏𝑠 represents the number of sequences in
the batch.

Model produces normalized images at its output. In order to evaluate them, im-
ages need to be denormalized using Imagenet parameters. Evaluation will comprise
objective and subjective methods as well. For more information, refer to chapters
Objective Evaluation Methods and Subjective Evaluation Method.

Model’s normalized outputs are also used for computation of a total loss. Total
loss is a weighted sum of partial losses. 𝑤1, 𝑤2, 𝑤3, 𝑤4 in the scheme represent the
weights. Not all loss functions shown in the Figure 2.1 will be used for each model.
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Particular loss functions used for a given model will be discussed in appropriate
chapters. Generally, though, Feature loss described in chapter Perceptual Loss will
be taken advantage of as well as, Pixel loss described in Mean Squared error and
SER-FIQ loss discussed in SER-FIQ Loss. Note that, 𝑚 in Figure 2.1 represents the
number of generated stochastic SER-FIQ subnetworks through which the model’s
denormalized outputs will be passed.

2.1.1 Data Description

Two datasets will be utilized in the group of U-Net based experiments - MLFDB
and CelebA dataset. There are already two reasons why. At the time of heavy
experimentation, MLFDB had not been ready yet and the models implemented
needed some dataset - CelebA dataset was at hand with images of faces already
cropped out. The second reason why is that preliminary training on MLFDB has
revealed some imperfections of the dataset. Thus, this thesis will also state what
can be further improved about it in future.

CelebA1 belongs to the most popular datasets in the field of face recognition. It
contains around 200,000 SF aligned images of celebrities. Such size is big enough
even for a heavy training of the final model. Huge limitation of CelebA dataset is
the fact that it does not contain image sequences. This thesis solved the problem
by data augmentation.

First of all, the whole CelebA dataset will not be used for the training. It is
impractical since it would require lots of time spent copying the data and uncom-
pressing it. Instead a smaller subset will be used. The subset was created by copying
over the first 60,000 images from CelebA dataset and resizing and cropping them to
resolution 128x128. These images represent the labels. The input damaged image
sequences were created by applying seven different random transformations to each
label image. The transformations included warping, rotation, brightness change,
zooming and others. All transformed images were then resized to resolution 32x32.
The final step introduced quality diversity in the sequences. Each resized image was
saved at different quality from random range using JPEG compression. The whole
dataset preparation pipeline is presented in Figure CelebA dataset transformation
pipeline.

An example of an image sequence created from a single image is shown in Figure
2.3. The image on the right is the original label image. The greatest drawback of
this approach is the fact, that it does not allow to create images from considerably
different angles, e.g. picture of face vs. picture of the hair from behind. It is a huge
limitation, but for now, this dataset suffices.

1Source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Fig. 2.2: CelebA dataset transformation pipeline.

Fig. 2.3: Example sequence of transformed CelebA dataset.

2.1.2 U-Net

The model proposed in this section is based on a simple U-Net architecture with
ResNet34 encoder and it is presented in Figure 2.4. Although U-Net architecture
is generic and supports various encoders, ResNet34 has proven to be give the best
results during numerous experiments. Moreover, U-Nets with Residual blocks rep-
resents current state of the art.

Model’s input is represented by a sequence of seven images in the same resolution
cropped into a square. Before feeding them to the model, images are first randomly
augmented, normalized, stacked along dimension 0 and put into a batch. Batch size
of 64 is as much as could be reached while training on 15 GB of GPU memory.

ResNet34 encoder first passes the batch through initial basic layers. Beginning
2D convolutional layer of stride 2 reduces resolution to 64x64 pixels, BatchNorm
layer than performs batch normalization, following ReLU introduces non-linearities
and finally MaxPool layer further downsamples the batch to a resolution 32x32.
Moreover, beginning 2D convolution works with large kernels 7x7. It is a recom-
mended dimension for image resolution of 128 pixels.

Following layers are based on two basic building blocks, Res blocks and Down-
sampling Res blocks. While Res blocks only perform feature extraction, Downsam-
pling Res blocks reduce the resolution and increase the number of output channels.
Res block passes an input batch is through two series of 2D convolution, batch nor-
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malization and ReLU activation. At the end, the output batch is summed with its
original values. Downsampling Res blocks perform exactly same operation except
for the first convolutional layer, which further reduces resolution thanks to stride 2
step and increases the number of output channels. All the convolutions use kernel
size 3x3. Other related works have proven that such kernel size is a perfect for match
for batch sizes these layers need to work with.

The output of MaxPool layer is sequentially passed through groups of Res blocks
ended with a Downsampling Res block. Resolution of batch is gradually decreased
to 4x4 and the number of channels is increased to 512 at the end of the encoder.
As a last note to the encoder part, note that, the inputs of each Downsampling Res
block are stored in the memory for the further use by the decoder.

Encoder is not directly followed by the decoder. Extracted low level visual
features are first passed through two bottleneck layers. They sequentially increase
the number of channels to 1024 and decrease it back to 512. Their purpose is solely
to transform the representation of the same information, which suits the decoder
more.

The decoder follows a fixed architecture. For each skip connection coming from
encoder, i.e. for each operation changing dimensions of a batch in encoder, decoder
provides a decoder layer group which consists of an Upsampling block followed by
two convolutional layers separated and wrapped by ReLUs. Upsampling blocks
are simply a sequential module of 2D convolution, Pixel Shuffle layer, Replication
Pad, Average Pooling and ReLU. Furthermore, each output of decoder layer group
is upsampled in the following layer and concatenated with encoder’s features from
corresponding encoder block. Note that, before concatenating encoder’s features
with decoder’s feature, they are passed through BatchNorm layer which ensures
that activations are within a similar range. The idea of directly feeding features
from encoder to decoder greatly enhances the quality of generated pictures, though
it has a negative impact on memory usage. The last concatenation of activations of
the first convolutional layer and the last Upsampling block is not a part of U-Net
architecture. It is just a small enhancement suggested by authors of fastai library.

Output of the U-Net model is a single normalized image. In order to denormalize
it, an inverse operation to normalization needs to be performed using Imagenet
parameters.

Loss function comparing generated and target image is rather complex. It in-
cludes a Pixel loss, along with Feature loss and Gram loss. Pixel loss, as explained
in Mean Squared error, simply compares color of the pixels of the two images using
MSE. Feature loss is based on a pretrained VGG16 model presented in Figure 2.5.
Generated and target image are passed through the network individually and their
activations are compared using MSE. These activations are also used for Gram ma-
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trix computation and again compared image using MSE in order to obtain Gram
loss. All the mentioned loss values are weighted and summed. The mean value of
the whole batch is then returned as a final loss value.

Although many related works use a pretrained VGG19 model as a Feature loss
network, this thesis will work with VGG16 architecture. After a short comparison
it was revealed that VGG19 does help U-Net model train any better. Moreover, it
consumes significantly more memory and slows down the training since the batch
size needs to be reduced. It does not present limits in case of a simple U-Net
architecture, though it causes problems when used in combination with another
memory demanding loss function. Simply put, VGG19 is not perspective on limited
resources. The last important note is, that the VGG16 model was pretrained on a
face recognition problem.

2.1.3 U-Net with SER-FIQ Loss

The architecture described in this section fully matches the one presented in the
previous chapter U-Net. It is a pure U-Net model, which also uses SER-FIQ critic,
that is why will be referring to it as "U-Net with SER-FIQ loss". A theoretical intro
to SER-FIQ was provided in a chapter SER-FIQ Loss. This chapter will discuss the
implementation details.

SER-FIQ, as presented in its implementation paper [11], evaluates the quality of
a given image. As already explained, thanks to passing the image though stochastic
subnetworks pretrained on face recognition problem, SER-FIQ algorithm assigns a
high score to high quality images and low score to low-quality images. The returned
value is an output of a sigmoid activation and thus, theoretically, value zero stands
for a very blurry and damaged image while value one represents an absolutely clear,
sharp image.

In order to obtain SER-FIQ quality of an image a face recognition model with at
least one Dropout layer is required. After some testing, Arcface IR SE 50 model has
proven to evaluate image quality the best. The network architecture is presented
in Figure 2.5. It greatly relies on Squeeze-and-Excitation Res blocks, so called SE
Res blocks. These blocks work generally as Res block, but they also embed SE
module inside them. SE module passes the input through Average Pool and then
through two fully connected layers separated by ReLU. The output is forwarded into
a sigmoid activation and multiplied with the original input. The Downsampling SE
Res block operates in the same manner, except it decreases the resolution (such
as Downsampling Res block) and increases the number of output channels. As it
can be observed from Figure 2.5, IR SE 50 architecture contains quite a lot SE
Res blocks. In return, though, it provides accurate low level visual features at
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the end of the encoder’s body. The body is followed by the head, which is also
required for the purposes of the whole system. It contains a fixed Dropout layer,
which performs dropout operation even during evaluation. The 25088 activations
representing low-level visual features of the face are then remapped to a so called
emdedding vector representing identity features. Embedding vector could then be
remapped to individual identities using another fully connected layer. Though, that
is useless for quality evaluation and it is not even shown in the Figure.

Note that, due to use of pretrained IR SE 50 model, the input images need to
be in a resolution 112x112. That is why the U-Net model will be producing final
images in resolution 112x112. Theoretically, the system could generate images at
128x128 and then downsample them to 112x112 before passing them into SER-FIQ
critic, though, as of now, it causes failures during backpropagation.

Ten copies of an image generated by U-Net are passed into SER-FIQ for evalu-
ation. Thus, ten stochastic subnetworks of IR SE 50 model are generated and used
for quality estimation. The count of ten was chosen here, as it turned out to be the
best compromise between algorithm’s time complexity and estimation confidence.
Furthermore, memory usage of the SER-FIQ critic is huge and it was necessary to
decrease the batch size from 64 to 8 image sequences per batch which training on
15 GB of GPU memory.

Practically speaking, SER-FIQ quality evaluator returns values in a range from
0.78 to 0.84 for low-quality images and values in a range from 0.85 to 0.91 for high
quality images. Since this range is impractical, it was created a simple rescaler, which
rescales the values into a more practical range from 0.75 to 1.0. Once transformed
value is obtained, it is compared with desired value 1.0 using MSE. Final SER-FIQ
loss is weighted and summed with a Pixel loss, Feature loss and Gram loss.

2.1.4 BiO-Net

Figure 2.6 shows another architecture implemented and which will be used for train-
ing on the presented MF datasets. The figure is simplified since the architecture
greatly resembles U-Net already presented in Figure 2.4. As a matter of a fact, Bio-
Net architecture is identical to U-Net, but it also introduces back-skip connections
and recurrency. In the first iteration, back-skip connections are ignored since the
decoder layers do not contain any activation yet. In the following iterations, though,
decoder’s activations are read and summed with encoder’s activations. In order to
adjust decoder’s data before summing it with the encoder, a small computation is
performed. It includes double connection of convolutional layer, batch normaliza-
tion and ReLU. Multiple subnetworks inside back-skip connections were also tried
out, but they did not yield any better results compared to a simple U-Net. It is
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important to note that, the same input image sequence is passed to the BiO-Net
on each iteration. Passing into BiO-Net its own outputs would be possible only in
case of SF approach, but, more importantly, it would imply a different architecture.
Such architecture has been tested as well, but it did not prove to work well.

 
n 

ResNet  34 

 
Fig. 2.6: Simplified architecture of BiO-Net.

Finally, the 𝑛 in the Figure 2.6 symbolizes the number of iterations the network
is supposed to perform. It was chosen 𝑛 = 2. Larger values of 𝑛 increase time
complexity of the training over the reasonable amount and the results are almost
unnoticeably better.

2.1.5 Feature-Merge U-Net

As a pure experiment, another architecture named Feature-Merge U-Net is presented
now. As the name implies, this architecture will be merging features extracted from
the input images. Motivation behind this architecture is the temptation to try
out different approaches in merging input images. U-Net like architectures rely
on stacking the input images in the first layer or preprocessing them in a small
subnetwork. Feature-Merge architecture will demonstrate how merging low-level
visual features affects the resulting quality of a prediction.

The simplified architecture is presented in the Figure 2.7. First of all, a pre-
trained SF U-Net model is required ResNet34 encoder will be extracted. In case of
this thesis, the model was pretrained using the original SF CelebA dataset. Dur-
ing training the middle image from the input sequence will be passed through this
SF U-Net model. Remaining images will be passed through the frozen copy of ex-
tracted ResNet34 encoder. With the help of Pytorch hooks, the training will be
paused once the middle input image leaves the encoder and merge the activations
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Fig. 2.7: Simplified architecture of Feature-Merge U-Net.

with activations obtained from the copy of ResNet34 encoder. In order to adjust the
activations of remaining input images, they are passed through double convolutional
block including batch normalization and ReLU nonlinearities. Once the features are
merged, they are passed to bottleneck and decoder section of SF U-Net.

2.2 Single-Frame Finetuning
Preliminary results show that multi-frame U-Net based sharpening approaches are
not able to generate images at a high resolution. Although the predictions can leave
the U-Net model in any desired resolution, their quality always matches images
roughly at resolution 80x80. Some of the blurry areas in the predictions could be
easily further sharpened. It is just not in the capacity of the multi-frame models to
perform such final finetuning, because they act more as aggregators (or at least that
is how we want them to operate). The need to further enhance the resolution of the
predictions is the main motivation in this chapter. Multiple single-frame models will
be presented. Some of them will demonstrate custom implementation and others
will be download from online sources.

2.2.1 U-Net

The first SF finetuning model to be implemented is based on U-Net network as
presented in Figure 2.4. The architecture will remain the same except for the number
of input channels, which will be reduced to three. Moreover, the resolution of
predictions will increase to 144x144. CelebA dataset will be used during training.
Input images will be first downsampled to resolution 60x60 and fed into the model.
Labels will have resolution 144x144 so that they match the resolution of predictions.
Although it may sound promising to train this finetuning model on the prediction
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from MF U-Net models, it serves no purpose. It would not work at all. Because if
it was possible, then the MF U-Net models would have learnt it in the first place.

2.2.2 PULSE

PULSE algorithm presents another possibility as a SF sharpening model. Although,
multiple related works in the field of image sharpening imply that PULSE algorithm
tends to be extremely creative and produces results far from the ground truth, it will
be evaluated anyway. The operation of PULSE algorithm was briefly introduced in
the theoretical part of this work. It will not be reimplemented, rather, the source
code will be downloaded from an online source.

PULSE experiment does not need to be described in detail. PULSE will be
approach as a black box. Inputs will be represented by images sharpened by multi-
frame U-Net models and outputs will be presented in final comparison table. As
authors recommend, PULSE will perform 100 internal iterations before it produces
result. Moreover, even if PULSE fails to converge, its results will be presented.

2.2.3 PSFR-GAN

PSFR-GAN along with the pretrained model provided on GitHub is another SF
finetuning model to be evaluated. Preliminary testing shows that the pretrained
model works well enough for the majority of use-cases posed by this thesis. That is
why it will not be reimplemented nor retrained. Just some custom utility functions
will be implemented which will simplify model’s usage.

Preliminary testing has also shown that the model does not correctly sharpen
heavily damaged input images. The model becomes very creative and predictions
no more match the input images. That is the reason why it can only by utilized as a
finetuning model. Inputs to this model will be output of multi-frame U-Net models
further upsampled to 512x512 using bicubic interpolation.

2.3 Multi-frame Reconstruction
Reconstruction of a single image from a sequence of damaged images is a complex
task. Generally, it includes evaluating quality of images, finding the best facial
image, finding the image with sharpest eyes, nose, mouth and other facial parts,
aligning images and crossing over required visual features. While in the previous
chapter a single neural network was used to perform the whole reconstruction task,
this chapter will split the Multi-frame Reconstruction process into multiple simpler
tasks. Each task will implement a dedicated neural network specifically trained
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for given problem. This way, the reconstruction system will not need to rely on a
single neural network and hope it will learn to generalize well all the partial tasks.
Moreover, system comprised of multiple smaller subsystems is easier to modify and
to fix.

 

Upsampling & Artifact Removal 
 

Frontal Face Selector 
 

Eyes/Mouth/Nose Sharpest Image Selector 
 

Single-frame Super-Resolution 
 

Position & Expression Transfer 
 

Image Cross-over 
 

Visual Feature Transfer 
 

Fig. 2.8: Full pipeline of Multi-frame Reconstruction system.

High level overview of the system implemented in this chapter is presented in
Figure 2.8. The first subsystem called "Upsampling & Artifact Removal" is responsi-
ble for upsampling of input images from low resolution 32x32 to a higher resolution
required by the following subsystems. These systems will generally perform face
masking or face alignment task and require resolution at least 512x512. Further-
more, input image sequence will most probably contain some video-compression
artifacts. These artifacts need to be removed right in the first stage otherwise the
following subsystems will fail. Face alignment gives better results for clear images
than images damaged with dark pixels left after compression algorithms.

System "Frontal Face Selector" will be responsible for choosing frontal face image
from input sequence. Generally, input sequence may contain images from different
angles and it is advantageous to reconstruct the image showing frontal face rather
than image showing side or back of the head. This step will not be presented in this
chapter since there are no reliable metrics able to evaluate sharpness of parts of the
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damaged facial image. It will have to be performed manually.
System "Eyes/Mouth/Nose Sharpest Image Selector" will be designed to select

an image with sharpest eyes, mouth, nose or other facial part. Such image will be
used to inpaint corresponding blurry area in the frontal face image. Selected image
of higher quality will be called as source image in the following text and frontal
face image will be referred to as target image. Since input sequence will contain
multiple source images, they will need to be inpainted into target image in multiple
iterations. Note that, the task of selecting image with sharpest facial parts will also
have to be performed manually since it requires working evaluator of image quality.

"Visual Feature Transfer" block in the schematic represents a system able to
transfer specific parts of the face from one image to the other. It is a complex
system and needs to be split into smaller units. One unit "Position & Expression
Transfer" will ensure that the source image is aligned into the position of target
image. The other unit "Image Cross-over" will then perform physical transfer of the
pixels from one image to the other while respecting given mask.

Although no masking system is presented in the schematic, it will be an impor-
tant backbone of multiple subsystems. The purpose of masking is to select specific
facial parts. Mask will be represented by a separate three-channel PNG image hold-
ing values either 0 or 255. 0 will represent pixels to be transferred between images
and 255 will represent pixels not to be transferred between images. Masking system
will rely on a dedicated neural network performing face segmentation.

The last step in Multi-frame Reconstruction will be "Single-frame Super-Resolution"
performing final fine-tuning. It will be based on neural networks already presented
in the previous chapters. Ideally, this system should use some custom-trained net-
work not only able to enhance visual quality of the reconstructed image, but also
to remove undesired artifacts created in the process. Such artifacts will be intro-
duced by imperfect alignment followed by image cross-over or imperfect position
and expression transfer.

To summarize the process of Multi-frame Reconstruction – source images with
sharpest eyes, nose, mouth and other facial parts will be manually selected and
inpainted into a manually selected image. But the inpainting process itself will be
fully automated.

2.3.1 Face Alignment

Face alignment is an important step in almost every deep learning task working
with facial images. Its aim is to center facial images to a fixed position. That way,
all facial images cropped from generic pictures end up having eyes, mouth, nose
and other facial parts at the same position after alignment. It helps increase the
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performance of the neural network being trained. To name a few, PULSE, StyleGAN
and PSFR-GAN use alignment and even require testing images to be aligned as well.
Otherwise the quality of predictions is not guaranteed. In the task of Multi-frame
Reconstruction, face alignment will be used by almost every block. Though, it will
not be apparent to the outside world, because the aligned predictions will be aligned
back during post processing.

 

Shape Predictor 
 

Fig. 2.9: Operation of Shape Predictor.

The majority of works in the field of deep learning uses DLIB shape predictor2.
There are multiple versions of it differing only in the number of recognizable facial
parts. Otherwise, they perform the same alignment to the same fixed position. Most
used version of shape predictor recognizes 68 facial points, so called landmarks. Af-
ter these landmarks are recognized in an input image, affine transformations are
performed on each pixel in order to move, rotate and warp the image into stan-
dardized position. More sensitive versions of shape predictor define over 100 facial
landmarks, but it is useless in case of Multi-frame Reconstruction. This thesis ex-
pects to have input images in resolution 32x32 or less and thus, the quality of images
is too low for such sensitive detector. An example operation of 68-landmarks shape
predictor is presented in Figure 2.9.

2.3.2 Face Masking

The purpose of face masking is to select desired parts of the facial image. This
problem has already been solved in numerous related works and this thesis will
utilize a face segmentation network trained on CelebA dataset available on GitHub3.
The operation of face masking system is presented in the Figure 2.10.

As can be seen from the figure, an input image is fed into the neural network
performing face segmentation on it. The immediate output is a three-channel PNG
image containing values from 0 to 17. Value 0 at any position [𝑥, 𝑦] in the mask
represents background pixels at the corresponding position [𝑥, 𝑦] in an input image.
Value 1 represents face skin pixels, value 2 represents right eye pixels and so on.

2Source: http://dlib.net/intro.html
3Source: https://github.com/switchablenorms/CelebAMask-HQ/tree/master/face-parsing/
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Masking System 
 

Binary Mask 
 

Fig. 2.10: Operation of Face Masking system.

Though, other subsystems of the whole Multi-frame Reconstruction pipeline will
find it more useful if the masking system could return a mask only stating which
pixels in an input image contain given facial parts. That is why, the final output
of masking system will be a three-channel PNG image only holding values 0 and
255. Value 0 will state, that input image contains given facial pixel at corresponding
position [𝑥, 𝑦]. Value 255 will state, that given facial pixel is not present in input
image.

There is one prerequisite for face masking system to operate reliably – input
image needs to be in a good quality. This is not the case of many images which
multiple subsystems of Multi-frame Reconstruction system work with. Images are
often too blurry for masking system to confidently state which parts of the image
belong to eyes, mouth and so forth. That is why, PULSE prediction will be computed
from input image first, and passed as input to masking system. This is a bulletproof
approach which never fails. The only downside is that it takes long to perform
PULSE prediction just to reliably mask input image.

2.3.3 Image Crossover

The purpose of image cross-over system is to perform physical copying of pixels from
one image into the other. In order for this operation to be successful, the two images
need to be aligned. The process of alignment is not a responsibility of this system
and will not be provided here. Since there are multiple approaches available to this
problem, they will be examined and compared to one another.

The simplest approach to image cross-over is pure copying of specified pixels
from image 𝐴 to image 𝐵. Pixels to copy are specified using mask 𝑀 . Suppose 𝑃

stands for final crossed-over image, then cross-over operation can be expressed using
formula 2.1:

𝑃 = 𝐴𝑀 + 𝐵(1 − 𝑀) (2.1)

The greatest limitation of pure copying is the fact, that it creates clear, sharp
border around inpainted region. That is why this approach will be recognized as
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"Sharp Cross-over" in the rest of the thesis. Possible fix to this significant down-
side is application of Gaussian filter on the mask 𝑀 before the cross-over process.
Then, inpainted region will smoothly blend into target image. This approach will
be referred to as "Soft Cross-over".

Sharp and Soft Cross-overs do not contain any complex logic. They simply
copy pixels from one image to the other. Though, many times it is advantageous if
crossing-over system can reason and make some adjustments in the process. Some-
times images are not perfectly aligned or they show slightly different emotions. This
is the motivation why cross-over techniques based on neural networks will be eval-
uated as well. Related fields generally apply the idea presented in Figure 2.11.
Neural network accepts nine-channel input. Three channels are allocated for one
source image, another three channels are for target image to be inpainted and the
last three belong to mask. Alternatively, mask can be passed in in a single channel.
Neural network is trained to perform the copy operation from one image to the
other. In order for the training to be successful, it is supervised by the critic. Critic
evaluates the difference between pixel values of input image and prediction provided
that mask value is 255. In case mask value is 0, then critic evaluates the difference
between target image and the prediction. Since U-Net architecture will be used for
the neural network, this approach will be referred to as "U-Net Cross-over" in the
rest of the thesis.
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Fig. 2.11: U-Net based cross-over.

Last alternative to image cross-over methods is StyleGAN editor. As presented
in the theoretical part of this work, StyleGAN editor allows to turn input images
into the latent space of StyleGAN and cross them over by fusing their latent vectors.

More specifically, StyleGAN can synthetize facial images based on an input vec-
tor. As of now, the relationship between the input vector and synthetized image is
not clear and is a matter of research. It is a challenging task, because StyleGAN’s
(input) latent space is complex and simple neural networks struggle to find patterns
in it. Thus, finding input latent vector is an approximation task. Latent vector is
being guessed in multiple iterations. After each iteration, it is passed into StyleGAN
and generated image is compared to input image. The process keeps going until the
error falls below specific threshold.
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The cross-over process operates in a similar manner. Latent vectors are being
guessed from both input images. Generated latent vectors are then fed into Style-
GAN and synthetized images are compared to input images using provided mask.
The process keeps iterating until such latent vector is found which yields Style-
GAN image correctly crossed-over. In the rest of the thesis, this approach will be
recognized as "StyleGAN Cross-over".

2.3.4 Position and Expression Transfer

Position and Expression Transfer system is responsible for aligning source and target
image into the same position so that they can be crossed-over by Cross-over system.
Ideally, the source image will be rotated and warped into the same position as target
image and its expression will match the expression of face in the target image.
Practically, it is challenging to fulfill these objectives and systems presented in this
chapter will only respect some of the requirements. As already implied, there are
multiple solutions available for this task. They will be explored and compared to
each other.

The simplest approach to position transfer is presented in Figure 2.12. It only
targets to handle simplest use-cases possible, i.e. frontal face images showing very
similar facial expressions. In this approach, both input images are aligned to the
center, then the whole face of source image is inpainted into target image and the
inpainted image is aligned back to its original position. This way, the output image
shows source image in the position of target image and they can be easily crossed
over later on. Since both images are first aligned and then blended, this approach
will be referred to as "Align and Blend" in the rest of the thesis.

 Get Face Mask 
 

Center Align 
 

Center Align 
 

Cross-over 
 

Align Back 
 

Fig. 2.12: Position and Expression Transfer using Align and Blend approach.
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Very similar approach to Align and Blend has already been presented in GitHub
project4. It uses more sensitive DLIB face landmark detector and after inpainting
face from one image into the other, it also performs simple warping and color cor-
rection to enhance the outputs. This system can be thought of as a black box shown
in Figure 2.13. It has two input images, source and target, and one output image
showing face from source image inpainted into the target image. This system will
be referred to as "DLIB".

 

Shape-predictor 
 

Fig. 2.13: Position and Expression Transfer using DLIB approach.

Multiple works in the field of face reenactment train neural network on multiple
images taken from various angles of the same face. Such network is then used to
inpaint new image (showing any face) with the face the network was trained on.
Although they achieve good results, these approaches will not be explored in this
thesis. This thesis expects to have a sequence of few images on its input and such
number will not be high enough to train any face reenactment network. In practice
such networks get trained on long video sequences so as to learn all details of person’s
head.

There is one alternative to face reenactment networks which claims to be able to
inpaint target image from a single source image. It is called "Few-Shot" and it can be
obtained from GitHub5. Again, it can be pictured as a black box taking two source
images and returning source image in the position of target image. Moreover, it
promises to handle basic expression transfer and eye movement. Again, it is shown
as a black-box in Figure 2.14.

 

Few-Shot 
 

Fig. 2.14: Position and Expression Transfer using Few-Shot approach.

4Source: https://github.com/matthewearl/faceswap
5Source: https://github.com/shaoanlu/fewshot-face-translation-GAN
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Finally, last alternative to position and expression transfer is provided by In-
terFaceGAN algorithm. InterFaceGAN is also a group of utility functions built on
top of StyleGAN. It aims to modify input latent vector so that output latent vector
represents a face with some facial attribute aplified or attenuated. InterFaceGAN
managed to find patterns in the latent space of StyleGAN using neural networks
by examining the effects of changing attributes of facial images on latent vectors.
InterFaceGAN takes in a single input image and returns multiple output images
with some specific attribute amplified or attenuated. For the purpose of position
transfer, attribute pose will be altered. An input frontal face image will be fed into
InterFace and the output images will show the same face but from different angles.
This may be advantageous since no other presented system is able to fully synthetize
new views of the same face. "Best Angle Selector" will choose such output image,
whose view angle matches the other input image (target). Slight differences in head
position are removed thanks to the alignment block and the area of whole face is
swapped using soft cross-over technique. InterFaceGAN approach will be referred
to in the rest of the work as "InterFace". The system diagram is presented in Figure
2.15.

 

Get Face Mask 
 

Align 
 

Align 
 

Cross-over 
 

Align Back 
 

InterFace Predictor 
 

Best Angle Selector 
 

Fig. 2.15: Position and Expression Transfer using InterFaceGAN approach.
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3 Results and Discussion
This chapter will be devoted to a discussion of achieved results and a comparison
of the models implemented with related works. At the beginning, objective and
subjective methods used for model evaluation will be presented. The remaining
sections are split into the three groups corresponding to main experiment groups
introduced in the previous chapter. The first group aims to evaluate implemented
multi-frame U-Net models. All these models accept all input images from input
sequence and sharpen the middle image. Second group discusses achievements in
the field of single-frame image sharpening. Implemented models will be compared to
existing related works. Finally, the third group evaluates novel approach to image
reconstruction. It introduces a suite of tools able edit facial images. Thanks to these
tools, an arbitrary input image can be chosen and sharpened.

3.1 Objective Evaluation Methods
The following few subchapters will present methods used for objective evaluation
of generated images by the model. Peak Signal-to-Noise Ratio will be presented as
well as Structural Similarity Index Measure and SER-FIQ image quality estimation.

3.1.1 Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) represents a ratio between the maximum possi-
ble signal power and the power of noise degrading the fidelity of original signal. The
higher value of PSNR, the higher image quality. Since signals usually have a wide
dynamic range, PSNR is expressed in a logarithmic scale. PSNR can be computed
by Formula 3.1, where MAX stands for maximum possible value in RGB matrix of
a input images (i.e. typically 1.0 or 255) and MSE represents the Mean Squared
Error between generated image 𝑥 by the model and the target image 𝑦 [27].

𝑃𝑆𝑅𝑁(𝑥, 𝑦) = 10 · 𝑙𝑜𝑔( 𝑀𝐴𝑋2

𝑀𝑆𝐸(𝑥, 𝑦)) (3.1)

3.1.2 Structural Similarity

Structural Similarity Index Measure (SSIM) is an objective method for evaluating
the perceived quality of a given image. It measures similarity between the generated
𝑥 and target image 𝑦 using Formula 3.2:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)
(𝜇2

𝑥 + 𝜇2
𝑦 + 𝐶1)(𝜎2

𝑥 + 𝜎2
𝑦 + 𝐶2)

(3.2)
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where
• 𝜇𝑥 and 𝜇𝑦 - the average of 𝑥 and 𝑦 respectively,
• 𝜇2

𝑥 and 𝜇2
𝑦 - the variance of 𝑥 and 𝑦 respectively,

• 𝜎𝑥𝑦 - the covariance of 𝑥 and 𝑦,
• 𝐶1 and 𝐶2 - two variables helping stabilize the division.

The implementation of SSIM presented in this thesis will use the recommended
values for 𝐶1 = 0.012 and 𝐶2 = 0.032. Moreover, it will not compute SSIM from the
whole images directly, instead, they will be separated them into smaller chunks using
Gaussian windows of size 11x11 and the total SSIM will be computed by averaging
obtained partial SSIM values.

SSIM index extracts 3 key features from given image - structure, luminance and
contrast. Luminance can be computed by averaging all the pixel values, that is
why Formula 3.2 includes parameters 𝜇𝑥 and 𝜇𝑦. Contrast can be computed by
taking the standard deviation of all the pixel values. In the formula, 𝜎𝑥𝑦 represents
a comparison of the contrasts of the input images. Finally, representation of the
structure is hidden in the formula. It is not represented by any variable [28].

3.1.3 Blur Detection

A No Reference Image Blur Detection Using Cumulative Probability Blur Detection
(CPBD) represents no reference image blurriness metric [29]. Authors of this metric
studied human perception of images and utilized a model to state the probability of
detection of blurry areas in the image. Total CPBD is then computed by cumulating
the partial CPBD of all blocks of the image as shown in Formula 3.3:

𝐶𝑃𝐵𝐷 = 𝑃 (𝑃𝐵𝐿𝑈𝑅 ≤ 𝑃𝐽𝑁𝐵) =
𝑃𝐵𝐿𝑈𝑅=𝑃𝐽𝑁𝐵∑︁

𝑃𝐵𝐿𝑈𝑅=0
𝑃 (𝑃𝐵𝐿𝑈𝑅), (3.3)

𝑃𝐵𝐿𝑈𝑅 = 𝑃 (𝑒𝑖) = 1 − 𝑒𝑥𝑝(−| 𝑤(𝑒𝑖)
𝑤𝐽𝑁𝐵(𝑒𝑖)

|𝛽) (3.4)

where
• 𝑒𝑖 - edge of 𝑖-th block,
• 𝑤(𝑒𝑖) - width of an edge 𝑒𝑖,
• 𝑤𝐽𝑁𝐵(𝑒𝑖) - width of an edge with "Just Noticeable Blur",
• 𝛽 - output of least squares fitting.

The implementation of CPBD was obtained from online source in accordance
with the license terms.
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3.1.4 SER-FIQ

SER-FIQ algorithm has already been presented in chapter SER-FIQ Loss as a
method for image quality estimation. Later, in chapter U-Net with SER-FIQ Loss,
it was also used as a critic for the U-Net model presented in previous chapters. In
this short section it will be presented how to utilize SER-FIQ algorithm for quality
estimation of generated images.

At first, generated image needs to be denormalized using Imagenet parameters.
Unless image’s resolution equals 112x112, a bicubic interpolation needs to be applied.
SER-FIQ’s face recognition network requires that the input images are sampled to
resolution 112x112. Face network used matches exactly the one already presented in
Figure 2.5. It is a pretrained network with a single fixed Dropout layer in its head.
Thus, if the input image is passed through it 𝑚 times, it will be obtained 𝑚 different
embedding vectors. For quality evaluation this thesis will be using 𝑚 = 10. These
𝑚 embedding vectors are then evaluated by SER-FIQ algorithm and the returned
value represents the quality estimation. Since the values returned fall into a narrow
range, they will be automatically rescaled to a range from 0.75 to 1.00.

3.2 Subjective Evaluation Method
Subjective evaluation will be purely based on our opinion. The generated and target
images will be compared and judged based on which parts of the image were restored
well and where the model failed. The primary focus will be on blurriness in generated
images, unwanted artifacts which model left behind and how well the generated
image matches the identity in the target image.

3.3 Multi-frame U-Net Based Sharpening
Following sections evaluate U-Net model and its alternatives. These networks aim
to reconstruct a middle image from input sequence of damaged images. They should
extract all information possible from all input images and use it to reconstruct given
middle image. The ultimate goal is to restore damaged images to such extent, that
humans will not be able to recognize the difference between original and generated
images.

A sample of damaged test images will be loaded and they will be restored using
the trained models presented in previous chapters. Images will then be evaluated
both by objective metrics and by our subjective opinion. Some example pictures
will be presented as well in order to highlight where the models excel and in which
tasks they fail.
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3.3.1 Formal Comparison of Implemented Models

Table 3.1 and Table 3.2 represent a formal comparison of the implemented models.
All the model architectures have been described in the previous chapters. The
plus symbol in the name represents the fact that the outputs of the model were
also passed through another finetuning model described in chapter U-Net. Words
MLFDB and CelebA in the model names state which dataset was used during the
training.

Due to the limitations of MLFDB test dataset explained in Visual Comparison
of Implemented Models, it was found convenient to use new random 1000 images
from CelebA dataset downsampled to 32x32 using bicubic interpolation for test-
ing purposes. MF dataset from the SF images was created by applying random
transformations multiple times to the same image.

Although PSNR and SSIM metrics are generally known not to evaluate image
quality the way humans perceive it, their evaluations are accurate in this case.
Comparing the numbers with actual results presented in Figure 3.1 a simple U-Net
architecture trained with CelebA dataset with finetuning performs the best. On the
other hand, the same architecture trained on MLFDB performs the worst. More on
this matter in the Visual Comparison of Implemented Models section.

SER-FIQ algorithm as a metric fails. Its numerical results do match the visual
results. The models performing relatively worse are marked by SER-FIQ as the
better models.

MSE PSNR SSIM SER-FIQ
[-] [dB] [-] [%]

U-Net (MLFDB) 180.54 24.05 0.73 38.29
U-Net (CelebA) 80.32 26.42 0.82 38.21
U-Net+ (CelebA) 76.47 26.48 0.82 37.63
SER-FIQ+ (CelebA) 90.37 25.40 0.81 38.64
BiO-Net+ (CelebA) 105.20 25.27 0.78 38.27
Feature-Net+ (CelebA) 78.93 26.46 0.82 37.63

Tab. 3.1: Comparison of MSE, PSNR, SSIM and SER-FIQ metrics of implemented
models.

3.3.2 Visual Comparison of Implemented Models

The following section is devoted to a visual evaluation of the achieved results. For
the testing purposes a few images from the testing directory of MLFDB dataset were
chosen. The images were not chosen randomly, but purposely so as to show how
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CPBD before CPBD after CPDB diff
[-] [-] [-]

U-Net (MLFDB) 0.09 0.02 -0.07
U-Net (CelebA) 0.09 0.48 0.39
U-Net+ (CelebA) 0.09 0.55 0.46
SER-FIQ+ (CelebA) 0.09 0.52 0.43
BiO-Net+ (CelebA) 0.09 0.38 0.29
Feature-Net+ (CelebA) 0.09 0.54 0.45

Tab. 3.2: Comparison of CPBD Blur Detection metric of implemented models.

models perform on faces of different age, gender and race. Note that, the Figure
3.1 only shows the middle image from the input image sequence. Remaining images
were skipped to save up the space. Moreover, all the input images look similar
except for the last sequence 𝑔. In this sequence, the middle image is damaged the
most compared to other input images in the sequence. This image will be used to
show how well the models copy features from other input images while restoring the
middle image. Finally note that, input image sequence 𝑐 is damaged using video
compression while input images 𝑎, 𝑏, 𝑑, 𝑒, 𝑓, 𝑔 are damaged using JPG compression.

Rows in the Figure 3.1 start with a middle input picture in the resolution 32x32
– the same way as the models receive their inputs. Image on the right to the input
image is the label image. Remaining columns in the row represent outputs of the
models, i.e. their predictions.

Figure 3.2 show the level of details implemented models can generate. For com-
parison MF U-Net model with SF finetuning and MF Feature-Merge U-Net with
SF finetuning were chosen. As it can be seen from the figure, both the models per-
form the same. Though, it will be shown later, that Feature-Merge U-Net handles
MF input poorly and thus it implies, that U-Net model ignores other input images
except for the middle one.

3.3.3 U-Net

In the Figure 3.1 "U-Net (MLFDB)" represents architecture described in chapter
U-Net and trained on MLFDB dataset. This model performs the worst out of all
presented models. The predictions are still blurry and their quality actually matches
the quality of input images upsampled to 128x128 using bicubic interpolation. The
only task the model is good at is removing video compression artifacts (see prediction
𝑐). The reason why MLFDB fails to train the model is most probably because it
only contains around 6,000 unique identities. It seems that the model overfit and it
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Fig. 3.1: Examples of predictions of implemented models.

did not learn to generalize the sharpening task on an arbitrary input face image.
"U-Net (CelebA)" represents the same architecture but trained on the smaller

subset of CelebA dataset. The predictions look sharp and the model operates well
on the majority of input images which were tried out. The two obvious flaws of the
model can be observed in the figure. Once input images are damaged using other
compression techniques than the model was trained for, the quality of generated
predictions becomes worse than the input images. In case of this thesis, the model
was trained on images damaged using JPG compression, whereas input sequence 𝑐

was damaged using random video compression. This presents a good lesson, that
the training dataset needs to include a wide range of compression artifacts. The
second obvious flaw is presented in the prediction 𝑔. Although all input images were
in a good quality except for the middle one, the prediction’s quality is poor. More
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Fig. 3.2: Example of level of details of implemented models.

on t his in section Evaluating Models" MF Performance.
Finally, "U-Net+ (CelebA)" is identical to "U-Net (CelebA)", but predictions

were also passed through a finetuning model described in chapter U-Net. Thanks
to this approach it can be observed, that the finetuning really works. It slightly en-
hances the sharpness of predictions which gives them more realistic look. Though,
there is one caveat – finetuning also amplifies imperfections and mistakes in predic-
tions. Thus, in order to safely utilize finetuning, it is crucial to train the aggregator
model carefully.

3.3.4 U-Net with SER-FIQ Critic

"SER-FIQ+ (CelebA)" in Figure 3.1 stands for architecture presented in chapter
U-Net with SER-FIQ Loss and the predictions were also enhanced using finetuning.
Compared to U-Net model with finetuning, this model gives slightly worse results.
It is possible that it is not caused because of SER-FIQ critic. The culprit in this
case will most probably be a small batch size used during training because SER-
FIQ critic consumed lots of GPU memory. Though, the summary in this case would
be, that SER-FIQ as a critic is absolutely useless. It does not guide the model to
produce higher quality predictions.

A practical question may be what would happen if SEF-FIQ critic was used
without the help of pixel and perceptual loss? Such experiment was performed and
the results are presented in the Figure 3.3. Seven images on the left represent the
input to the model followed by model’s prediction on the right. This experiments has
clearly highlighted the greatest imperfection of SER-FIQ as critic. Since it utilizes
unsupervised approach and does not need label image to evaluate the prediction, the
model being trained on such critic learns to produce utterly anything that outsmarts
SER-FIQ. Thus, SER-FIQ critic cannot operate on its own. It needs to be combined
with other critics so as to produce meaningful predictions.
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Fig. 3.3: Example prediction of a model trained with SER-FIQ only.

3.3.5 BiO-Net

"BiO-Net+ (CelebA)" in Figure 3.1 represents architecture described in chapter
BiO-Net and the predictions were also sharpened using finetuning. All the BiO-
Net’s predictions imply the same – the model is almost not doing anything and even
after finetuning the predictions still require further sharpening. For some reason
BiO-Net does not operate well for MF input. On the other hand, when the same
model was trained for SF input, it definitely worked better than a simple U-Net.

3.3.6 Feature-Merge U-Net

"Feature-Net+ (CelebA)" in Figure 3.1 refers to architecture described in chapter
Feature-Merge U-Net and the predictions were also sharpened using finetuning. Al-
though this model used considerably different approach to merging input images
compared to other networks, its predictions do not look any different compared to
U-Net predictions. The greatest contribution of this network is the lesson it gives
us. It clearly demonstrates, that merging features ‘at the end’ of the encoder serves
no purpose, because the network is extremely insensitive to any input at such stage.
In order to explain this idea more visually, the noise was fed instead of input images
to the network except for the middle image. Middle image will be a regular image of
a face. This input is presented in Figure 3.4 by seven images on the left. The image
on the right is a final prediction. The noise did not distort the prediction at all.
The quality matches the prediction 𝑑 in Figure 3.1. This experiment reveals a big
concern – the models learn to ignore other input images and perform SF sharpening
on the middle image. More on this in the following section Evaluating Models" MF
Performance.

3.3.7 Evaluating Models" MF Performance

In the Figure 3.4 it can be seen that feeding noise instead of some input images did
not affect the quality of prediction. This gave the motivation to perform few more
tests to demonstrate how well MF models handle MF input.
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Fig. 3.4: Feeding noise into Feature-Merge U-Net.

The first test performed was an application of U-Net model on an inpainting task.
The subset of CelebA dataset was modified to contain white squares and circles at
random locations and trained the model on it. An example input and prediction is
presented in Figure 3.5. As it can be seen, the model easily learnt to restore the
original image.

Fig. 3.5: Training U-Net to inpaint random crops.

Further tests were carried out. This time CelebA dataset was used but with
random blurry sections instead of white patches and trained the model. Example
input and prediction is presented in Figure 3.6. Though, the performance is not as
good as previously. The original image was not fully correctly restored.

Fig. 3.6: Training U-Net to inpaint random blurry sections.

The conclusion is this case it that the models can learn to merge features from
multiple input images as long as the task is simple. For example, models can easily
learn to inpaint large white square in the input image. On the other hand, blurry
squares were not easy to recognize – the models needed to reason which parts of
input image to inpaint. And they fail at it. The explanation is simple – the critics
are not made for this. By looking more carefully at the distorted prediction in
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Figure 3.6, it becomes clear that the pixel loss of such prediction would be small,
because the colors of pixels match the label image relatively well. Feature loss would
be small too, because the prediction contains nose, mouth and other features which
face is supposed to have. Gram loss would be small as well, because the style of the
prediction and the label image is the same. Thus, the model believes it is doing a
good job. In order to convince it of the opposite, more suitable critic needs to be
found.

3.3.8 Summary

The greatest observation after comparing the models is that a simple U-Net architec-
ture can easily outperform its modifications. And even if the modifications would
yield better results, the improvements would be subtle. For this reason U-Nets
should be preferred to work with even in the future.

The discussion section mostly relied on a subjective evaluation of the imple-
mented models. It was found that objective metrics are often misleading and related
works have come to the same conclusion as well. It is not difficult to observe PSNR
and SSIM metrics evaluating an image of lower visual quality as superior to an image
of considerably higher quality. SER-FIQ metric seemed promising while performing
single-image evaluations, but statistically, it gives worse results than PSNR. Due to
unsatisfying image quality evaluation of the mentioned objective metrics, subjective
opinions were presented instead.

When it comes to the dataset, it was found that it is absolutely essential that
the dataset consists of numerous unique identities. For moderate training it is
recommended to use around 60,000 unique identities of different age, gender and
race. It is also crucial to damage the images using various compression algorithms.
A great help would be having dataset of faces from different angles. It would greatly
simplify training true MF models.

Finally, in order to build MF models, a better way of feeding input images into
the model needs to be found. Stacking the images and passing them into the net-
work directly performs poorly. This point also implies implementing a better critic.
Although MSE ensures that predictions resemble the ground-truth images, it has a
huge blurring effect. It smooths out the areas of high variance so that the predicted
image is, on average, more pixelwise correct. In fact, the ideal solution according
to MSE is a pixelwise average of a super-resolved input image which downscales
correctly to the LR input. The drawbacks of MSE are slightly compensated by
the feature loss. Though, a critic being able to evaluate how well the predictions
resemble a human face is still the key point to success.
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3.4 Single-frame Finetuning
The following chapter discusses results of single-frame finetuning models. Visual
comparison is presented in Figure 3.7 and formal comparison is presented in Table
3.3. LR input image sequences at resolution 32x32 were passed through MF U-Net
model and the prediction at resolution 128x128, "Input" image in the figure, was
then fed into SF finetuning model. In case of PSFR-GAN, the prediction from MF
U-Net model was first upsampled to resolution 512x512 and then passed into the
finetuning network. "Ground Truth" image in the figure represents original high-
resolution image from CelebA dataset.

 
 

? ? 

PSFR-GANPULSEInput Ground Truth U-Net

a

b

c

d

Fig. 3.7: Visual comparison of SF finetuning models.
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PSNR SSIM SER-FIQ
[dB] [-] [%]

U-Net 27.23 0.88 37.18
PULSE 14.97 0.66 47.57
PSFR-GAN 24.83 0.84 36.84

Tab. 3.3: Formal comparison of SF finetuning models.

3.4.1 U-Net

U-Net finetuning model slightly improves the visual quality of input images and
gives them more realistic look. It is important to note that, this architecture cannot
do much better. Trying to train it for higher resolution or using bigger training
dataset makes no significant difference. As a matter of the fact, due to increasing
resolution of labels, the batch size needs to decrease and it has negative impact on
the predictions. There is one caveat when using U-Net finetuning model – finetuning
also amplifies imperfections and mistakes in predictions. Thus, in order to safely
utilize finetuning, it is essential to train the MF aggregator models carefully so that
they do not include undesired artifacts in their predictions.

U-Net finetuning has reached the highest value of PSNR and SSIM metric out
of the models tested. The value of PSNR is high because the sharpened prediction
is not much different from the original input image. On one hand it is desirable
since it implies that U-Net does not change identity, though, on the other hand it
underlines the fact that U-Net does poor sharpening job. PSFR-GAN, giving much
sharper predictions of slightly different the identity results in worse PSNR rating.

3.4.2 PULSE

As can be seen in Figure 3.7, PULSE does produce images in a high quality with
lots of visual details. Though, they have nothing to do with desired ground-truth
images. Note that, PULSE first aligns input image and then performs prediction.
It explains why all PULSE predictions show different zoom level and view angle
compared to 𝐼𝑛𝑝𝑢𝑡 image. Further note, that PULSE would give better results if
it performed more iterations. Even after taking these facts into account, PULSE’s
predictions would almost always show different identity. The interesting fact is,
though, if such PULSE predictions were downsampled back to a resolution 32x32,
it would exactly match the input image also downsampled to 32x32. PULSE simply
demonstrates the ambiguity faced during sharpening process. This ambiguity is
even better demonstrated by the fact, that PULSE can generate 𝑛 unique images
at a resolution 1024x1024 for a single input image.
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PULSE is a leader in SER-FIQ metric rating. The reason for it is the fact, that
SER-FIQ does not take into account ground-truth image. SER-FIQ only evaluates
visual image quality regardless of the identity. And, PULSE truly produces images
at highest quality with resolution 1024x1024.

3.4.3 PSFR-GAN

"PSFR-GAN" in Figure 3.7 represents architecture described in chapter PSFR-GAN.
PSFR-GAN gives predictions in a very high quality. The textures are clear and do
not need any extra sharpening. All the salient features of the face hidden in the
blurry parts of the image are greatly amplified. Though, there is a significant draw-
back to this strong sharpening nature of PSFR-GAN. Input images which were not
sharpened enough by the MF U-Net model are finetuned by PSFR-GAN incorrectly.
All the mistakes introduced in the predictions produced by MF U-Net model are
greatly highlighted by PSFR-GAN. Note that, in case of image 𝑏, the "Input" image
was so damaged that PSFR-GAN preprocessor could not recognize any face in it
and terminated further sharpening process.

PSFR-GAN is a powerful SF sharpening tool, but it should be only used for
final "soft" finetuning. Alternatively, it could be retrained on a dataset with labels
in a lower quality. That way the sharpening nature of the whole model could be
adjusted.

3.4.4 Summary

Single-frame finetuning plays an important role in final image reconstruction step.
It does a good job in sharpening fine details of input image. Overall downside
which applies to all the tested methods is that finetuning has a tendency to amplify
imperfections and unwanted artifacts left in the images after previous reconstruction
steps. It is challenging to build such sharpening model which would reduce this
significant drawback. Such model would need to understand human perception of
the face perform sharpening accordingly.

3.5 Multi-frame Reconstruction
The following sections evaluate the whole Multi-frame Reconstruction system with
its subsystems. Multiple alternatives to image cross-over techniques and position
and expression transfer will be compared to each other. Since there are no tools or
metrics available for evaluation of image cross-over quality, only subjective opinion
will be presented. Note that, for testing purposes images of faces from HeadPose
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Annotations dataset [30] will be used as well. The dataset provides pictures of the
same identity taken from different angles.

3.5.1 Image Cross-over

The purpose of image cross-over is to transfer visual features from source image the
target image according to mask. Four different approaches have been tested and the
example results are presented in Figure 3.8 and Table 3.4. Both input images have
been aligned into the same position and target image always contains blurry region.
In case of target image in the first row it is an area of nose and in case of the second-
row image, it is an area of eyes and eye brows. Source image is generally expected to
show the same identity as target image, but for this comparison the identities were
chosen different. To be more specific, source image is PULSE prediction of target
image.

 
 

Target U-Net SharpMask StyleGAN SoftSource

Fig. 3.8: Visual comparison of Image Cross-over methods.

PSNR SSIM SER-FIQ
[dB] [-] [%]

U-Net 21.86 0.82 41.82
StyleGAN 19.07 0.78 40.73
Sharp 21.90 0.81 40.87
Soft 21.98 0.81 42.14

Tab. 3.4: Formal comparison of Image Cross-over methods.

"U-Net" column represents cross-over results when custom U-Net architecture
specifically trained for this task was applied. As can be seen, results are not sat-
isfactory. U-Net tends to inpaint areas specified by mask with generic shapes. It
does not really copy visual features from source image into the target. After more
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thorough testing, when, for example, eye color between source and target image
differs, the prediction always ends up having generic eyes. Generic eyes in a sense,
that color and the shape match the color and shape of the majority of eyes in the
training dataset. U-Net as cross-over system fails. The reason why again lies in
critics which cannot effectively evaluate the quality of cross-over image and do not
force U-Net to train well enough.

"StyleGAN" column represents cross-over results of a system based on StyleGAN
editor. I.e. latent vectors of both input images are created first and then fused in
multiple iterations. Finally, resulting latent vector is passed through StyleGAN and
new synthetized image is generated. This image is supposed to have visual features
of both the input images while respecting the mask. In case of inpainting large
regions, such as nose, the cross-over works relatively well. Though, in case of small
regions, inpainting fails completely. General conclusion is, that the bigger region
to inpaint, the better cross-over results. In case of small regions such as eyes or
eye brows, inpainting is fully ignored. More extensive testing has also shown, that
StyleGAN editors does not truly replace visual features of target image, it rather
inpaints it with some level of intelligence. For example, in case of crossing over eyes
(in large images of eyes), they are not fully replaced, just their color is transferred
instead. This makes StyleGAN editor good cross-over system for some use-cases.

"Sharp" column stands for simple copying process in order to transfer visual
features. It works well in terms of quality of transferred source features into target
image. Source pixels are transferred with maximum reliability. On the other hand,
very sharp and distinct edges are created around the border of inpainted area, which
makes the image look unreal and slightly changes the perception of the same identity.
Moreover, color difference between source and target image has a significant effect
on final image. The same negative effect has any imperfection in alignment of both
images and difference in facial expressions. Though, this cross-over system serves
well enough for many use-cases.

"Soft" column shows the results of the same system as sharp cross-over, but
Gaussian filter was applied on the mask before blending. It has the same advantages
as sharp cross-over system, plus it removes the undesired border around inpainted
area. Inpainted areas fit in correctly and do not change the identity. This method
serves well enough too provided that alignment and color of images is perfectly
matched. The slight downside of this approach is presented in case of crossing
over small areas, such as eyes. Gaussian filter should not operate with fixed kernel
value. It should be adjusted along with padding parameter according to the size
of inpainted area. Simply put, some type of intelligence is required to adjust the
Gaussian filter parameters before it is applied on the mask.

"Soft" image cross-over method has been rated by objective metrics as the best
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method. It gives the best results not only formally, but subjectively as well. More-
over, it is simple to implement and fast to run.

3.5.2 Position and Expression Transfer

The goal of Position and Expression Transfer system is to align the two source
images into the same position and adjust their expressions so that cross-over system
can then copy visual features between them. Multiple different approaches have
been tested and will be evaluated in this section.

The simplest approach presented under name "Align and Blend" aligns both the
images to the center, copies whole facial area from source image into the target and
aligns images back. This way face of target image is swapped with source image and
aligned to the original position. Images taken from internal stages of this system are
presented in Figure 3.9. "Source" image represents face having some specific area
sharper (e.g. nose in this case). "Target" image represents image to be inpainted with
visual features taken from source image. Both the images were cropped out from
different pictures. First step in position transfer is to align them to center, see "S-
Aligned" and "T-Aligned". Next step is to generate "Mask" of the whole target face
and perform soft cross-over between images. "Cross-over" represents blended image.
Since it is still aligned, it needs to be aligned back using inverse transformations
to the ones used for alignment of target image. Unaligned image is presented as
"C-Unaligned".

 
 

Source Target S-Aligned MaskT-Aligned Cross-over C-Unaligned

Fig. 3.9: Step by step operation of Align and Blend method.

Inner workings of "Few-Shot" and "DLIB" approaches cannot be presented since
they operate as black boxes. FSGAN [31], relatively new network for face reenact-
ment, seemed perfectly suited for this task as well. Though, the library contains
some bugs and it did not work at all. Moreover, it requires that the target image
is a video. It is not a big limitation but serves another reason why not to utilize
FSGAN as position and expression transfer system.

The operation of "InterFace" system is based on one of the first methods able to
modify StyleGAN’s output images in controllable manner. Given an input image,
InterFace generates image’s latent vector first. Then it modifies the latent vector
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in multiple iteration so that StyleGAN generates the same image but from different
view angle. Once numerous images of the same identity are generated, image with
the most suitable view angle needs to be picked manually (as of now). Chosen image
should perfectly match the view angle of target image. Generated and target image
are then aligned to the center, the area of whole face is crossed over and the blended
image is aligned back. The main advantage of InterFace is that it is the only system
able to synthetize new views of the same identity. Though, it is still very limited.
It works well enough only for images showing frontal face image, see Figure 3.10.

 
 

Source InterFace 

Fig. 3.10: Operation of InterFace method.

Images showing side of the face cannot be used for InterFace synthesis. Not
because image taken from side does not carry enough information to reconstruct
frontal face image. This limitation comes from InterFace algorithm directly. The
algorithm always tries to find a face in input image even if the image shows side
of the face. That is why it always fails in such scenarios. See Figure 3.11 as an
example of such failure.

 
 

Source InterFace 

Fig. 3.11: Operation of InterFace method when it fails.

Final comparison of position and expression transfer methods is presented in
Figure 3.12 and Table 3.5. First two columns in the figure show source image and
target image. The goal was to shape source image so that it is in the same angle as
target image and shows similar expression. "A & B" represents the result of Align
and Blend system. This system works well for input images which can be easily
aligned and show roughly same facial expressions. Typical use-case may be video
sequences. Note that, no expression transfer is performed here. Moreover, if any of
the input images shows side of the face, the system completely fails such as example
in the second row.
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Source A & B Few-ShotTarget DLIB InterFace

Fig. 3.12: Visual comparison of Position and Expression Transfer methods.

PSNR SSIM SER-FIQ
[dB] [-] [%]

A & B 20.86 0.78 40.11
DLIB 21.16 0.79 42.19
Few-Shot 18.96 0.77 43.08
InterFace 22.49 0.82 45.27

Tab. 3.5: Formal comparison of Position and Expression Transfer methods.

"DLIB" column represents predictions of DLIB system which promises to swap
faces using a single pair of images. This system resembles Align and Blend system,
but it also performs extra warping and rotating transformation. DLIB prediction
perfectly matches Align and Blend prediction if input images do not require any
complex rotations. In case they do, the predictions fail. As a clear example of failure
second row of DLIB column serves great purpose. Area of nose is not rotated at all,
it was simply copied over as for Align and Blend method. More extensive testing
has shown that DLIB system is not useful for position and expression transfer.

"Few-Shot" column shows prediction of Few-Shot system. It also promises to
perform face reenactment using two input images, but in practice it fails in absolutely
all testing images.

Finally, "InterFace" column represents prediction of InterFace system. It per-
forms equally well as Align and Blend system for simple use-cases. In case of more
complex use-cases, such as second row, InterFace is the only system able to perform
position transfer relatively well. It still has many limitations and faults, such as
glasses were removed from the face, birth mark on right cheek became considerably
bigger, some discontinuities can be found in the area of hair and identity is not
exactly the same as in source image. Finally, InterFace cannot change head pose in
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vertical direction, just along horizontal axis. For real use-cases, this may be con-
siderable limitation. Though, it is a matter of time, when authors further enhance
it.

InterFace method has reached the highest value of PSNR, SSIM and SER-FIQ
metric. Since other methods than InterFace cannot generate new view angles, In-
terFace beats them during testing. These metrics also show that Align and Blend,
DLIB and Few-Shot methods are only useful for use-cases when source and target
image show the frontal face taken from roughly the same angle.

3.5.3 Full Pipeline

The following text discusses the full pipeline of Multi-frame Reconstruction system
on a simple example. Input will be represented by three images taken from a video
sequence in resolution 32x32 showing frontal face. Generally, any number of input
images is acceptable. Moreover, each input image will contain some blurry areas.

The whole experiment is captured in Figure 3.13. The goal is to inpaint the
middle input image damaged with three blurry areas using visual features taken
from first and third input image, each containing a single blurry area. At the same
time, blurry areas from other images cannot be transferred into the target image.
The first step in this process is application of U-Net sharpening model trained on
MLFDB dataset annotated as "U-Net" in the figure. Although it poorly enhances
image quality, its main role is to remove video-compression artifacts. These artifacts
would have negative impact on the following systems if not removed. The third row
in figure shows cross-over process between target image (second input image) and
source image (first or third input image) according to mask. The forth row in
the figure shows another iteration of cross-over process. Note that, there can be
any number of these iterations. At the end of second cross-over iteration, input
image is inpainted will all sharper regions of other input images. Finally, single-
frame sharpening is performed. For this step PSFR-GAN was utilized. In both the
scenarios, it did not work perfectly. There is still lots of room for improvement.
Though, PSFR-GAN did not even try sharpening the first input image because it
could not find a picture of face.

Note that, masks in case of male image sequence were created manually. In case
of female image sequence, masks were created using automated process. As can be
seen from the pictures, manual masks capture larger areas than necessary. It has a
positive impact on final image quality.
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Input InputInput

U-Net U-NetU-Net

Source MaskTarget Cross-over

Source MaskTarget Cross-over

PSFR-GAN

Input InputInput

U-Net U-NetU-Net

Source MaskTarget Cross-over

Source MaskTarget Cross-over

PSFR-GAN

Fig. 3.13: Example operation of the whole Multi-frame Reconstruction system.

3.5.4 Summary

Multi-frame Reconstruction system presents new way of approaching task of image
restoration from multiple damaged images. Instead leaving this complex task to
a single multi-frame neural network, multi-frame Reconstruction system splits the
task into smaller processes and designs a dedicated subsystem for each process. This
way, it is easier to have control over each subtask and replace some module with
better alternative. Overall, multi-frame reconstruction works well only for simple
use-cases, i.e. input images showing frontal face with similar expression. The tools
required for this task still have not been developed and it is a challenging task for a
single person to develop and finetune each module.

Currently, there are multiple possibilities how to enhance Multi-frame Recon-
struction system. First of all, it has again proven advantageous to have a network
able to remove video-compression artifacts from input image. U-Net trained on
MLDFB works well, but it could be still greatly enhanced by training on much
larger dataset.

On the other hand, enhancing single-frame finetuning network used at the end
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of Multi-frame Reconstruction process is not needed. Numerous researchers are
working on this task and will soon introduce better solutions. When it comes to
manual steps in Multi-frame Reconstruction process, they all could be automated.
These processes are: choosing the most suitable image from input sequence for
reconstruction, choosing images with sharpest eyes, nose, mouth or other facial
parts and choosing the most suitable InterFace prediction. These have not been
automated yet, because they are simple for user to perform, but challenging to
implement in code.

Finally, the most challenging part of Multi-frame Reconstruction process is po-
sition and expression transfer. Methods presented in this thesis work poorly on
real-world scenarios. This step requires lots of research in the field of single image
face reenactment. Although, many papers claim to provide satisfactory results, real-
world testing fails. It is very likely that StyleGAN and tools built on top of it will
soon offer unique and finally working solution.

3.6 Multi-frame Models vs. Multi-frame Reconstruc-
tion

In order to compare multi-frame models and Multi-frame Reconstruction system,
new testing dataset will be used. It contains 90 image sequences at resolution 32x32
from MLFDB testing dataset. Each sequence was manually edited to include blurry
areas at different places of the face. The middle image from the sequence contains
at least three blurry areas while other input images contain just a single blurry area.
The idea is to successfully reconstruct the middle image from other input images.
Ideally, multi-frame models should extract all the visual features and encode them
into a sharp image. On the other hand, Multi-frame Reconstruction system will
perform the same operations explicitly. Resolution of reconstructed images will be
128x128.

An example input sequence and visual comparison of multi-frame models and
multi-frame reconstruction system is presented in Figure 3.14. As can be seen from
the figure, multi-frame U-Net model ignores other input images than the middle
one. That is why the prediction is blurry even though sharp visual features were
provided in the other input images. Multi-frame Reconstruction system does bet-
ter job. Though, final output image could be restored even better. The root of
imperfection in the male example is final finetuning stage. It negatively affects the
original identity. Details can be seen when the image is zoomed in. In case of the
female example, the root of imperfection is the masking system. Unlike for male
example, where masks were prepared manually, in case of female example an auto-
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mated computation of masks was applied. Thus, masks do not specify areas broader
than, for example, eye balls, which explains why the prediction looks patched up.
Still, Multi-frame Reconstruction system gives better visual results and it is more
suitable for image restoration from multiple images.

 
 

U-Net ReconstructionInput Ground Truth

Fig. 3.14: Visual comparison of MF U-Net and MF Reconstruction system.

Formal comparison of all the systems implemented is presented in Table 3.6. It
includes all the objective metrics presented before as well as results of subjective
questionnaire. 38 people were asked two questions – Which prediction out of all
implemented methods results in images of highest quality? Which prediction out of
all implemented methods matches the ground-truth image the most?

PSNR of all the methods implemented stays in range from 17 dB to 18.5 dB
which is low for image sharpening systems. It is caused by the fact that the cen-
ter image in the sequence was damaged to such an extent, that it could not be
used for facial reconstruction without other input images. SSIM metric with values
around 0.77 is also almost the same for all the tested methods. SER-FIQ assesses
reconstructed images with prediction quality of more than 36 % except for Multi-
frame Reconstruction system. It reached higher value 46.52 %. MSE measures pixel
differences between generated and ground-truth images. In case of Multi-frame Re-
construction system, MSE is high because final reconstructed image is a union of
other input images which are not aligned with the ground-truth image. The differ-
ence between sharpness (CPBD) before and after reconstructing input image results
in values in range from -0.0396 to 0.4166. Negative values were measured in case of
interpolation techniques, moderate values were measured in case of U-Net models
and the highest value was achieved in case of Multi-frame Reconstruction system.

Subjective survey shows, that Multi-frame Reconstruction system returns the
sharpest images and the identity in reconstructed image matches the ground-truth
image the most. U-Net model trained on a custom CelebA dataset was ranked as
number two in the survey. Finally, U-Net model trained on MLFDB dataset and
Bicubic Interpolation were also chosen as valid systems for image reconstruction.
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Remaining methods do not outperform already mentioned ones according to the
people who participated in the survey.

Results of subjective and objective metrics do not match. Multi-frame Recon-
struction system was chosen as the best approach when considering subjective opin-
ion of a group of people. Though, objective metrics except for SER-FIQ and CPBD
do not rate it any better compared to other implemented systems. Generally speak-
ing, based on the results presented in the table, objective metrics can only help
roughly categorize the quality of predictions. When the difference between two val-
ues is high, then the ‘better’ number correctly identifies superior approach. Though,
when the difference is small, it cannot be stated which approach is better based on
given metric.

3.7 Summary and Future Work
The following section will summarize the strengths and drawbacks of all presented
methods for image reconstruction from a sequence of damaged images. It will also
discuss how these methods could be improved in future works.

Implemented U-Net model and its alternatives generally perform the same and
the visual quality of the results is not surprising. The quality is slightly better
compared to simple upsampling using bicubic interpolation. Although, the models
could be trained to increase the quality considerably more, they would become
creative and start changing identity of person in the image. What these models
truly lack is the ability to extract information from other input images. Ideally, new
architecture should be introduced which would be able to perform semantic analysis
of the face in the input images and reconstruct final facial image. Though, no works
have focused on this domain yet and it requires lots of experimenting.

MLFDB dataset’s main strength is the variety of video-compression algorithms
it included in the images. It really helps the model train for real-world images.
Though, it could be greatly enhanced if the size of dataset raised to at least 60,000
sequences. Renowned datasets use typically around 200,000 to train models for real-
world application. Moreover, since testing dataset contains identities also included
in the training set, trained model’s performance cannot be objectively measured.
Unique identities should be used across the whole dataset. Another significant im-
provement would be including images from different angles. As of now, the dataset
shows faces taken from a short video sequence. Thus, models tend to align images
and merge them. In real world, the input to any multi-frame reconstruction system
will be images of some identity taken under different lighting conditions and con-
siderably different angles. MLFDB does not take this fact into account. Finally,
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MLFDB lacks picture-compression algorithms in image sequences. They should be
included as well.

Multi-frame Reconstruction system represents novel approach to image recon-
struction. Although it is suited for simplest use-cases, some of its subsystems such
as image cross-over and image masking operate flawlessly. The greatest bottleneck
is posed by position and expression transfer. It is absolutely essential to be able to
merge images taken from different angles under different lighting conditions. Cur-
rently presented implementations operate well only with facial images which are
roughly the same. Alignment block works well too, but it is only able to precisely
align images to the center. It would be advantageous to have a system able to align
one image into the position of the other. Systems presented here are able to do
it, but they need to center image first, which poses significant limitation. Finally,
Multi-frame Reconstruction system will never be fully automated unless a system
able to evaluate image quality is found. Such system would need to give the same
results as human would. Moreover, it would need to be able to evaluate parts of the
image, such as quality of eyes or hair.

Single-frame sharpening works well. Moreover, many more related woks are
released on regular basis and bring in considerable improvements. Still, there are
multiple improvements possible as well. For example, sharpening should be enforced
as much as possible as long as the identity in the prediction is not altered. This
also implies having a system able to sharpen some parts of the face more than the
others. Hair or eye brows affect the identity a little. Whereas eyes or mouth have
a significant effect on human perception of the face. Generally, when single-frame
sharpening model is being trained, large dataset should be used. Training on small
dataset always results in a model not able to work with real-world images. Finally,
the most important point. Better critics are needed. Pixel loss or perceptual loss
work well, but they are not able to finetune the model. Often, these critics return
small loss for images of poor quality. They are simply not able to recognize the true
quality of prediction well enough.
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Conclusion
The aim of this thesis was to increase the quality of facial images using image
sequences. The ideal goal was to restore given damaged facial image using multiple
different damaged facial images taken from different angles at a different point of
time. The presumption was that each input frame contained different facial parts
at different visual quality.

Although, few related works have presented novel approaches to single-frame
facial image sharpening, almost no works have focused on multi-frame techniques.
This missing part is provided by this thesis. The first contribution of this work lies
in the implementation of multiple multi-frame alternative architectures to U-Net.
These models accept all input images at once and sharpen the middle image. It was
found out, that all the models perform almost the same. Although they can learn
to slightly increase quality of the middle image, they all absolutely fail at extracting
information from other input images. No matter which critic was used and what
change in U-Net architecture was made, they always ended up ignoring the other
input images. Moreover, these models tend to inpaint blurry areas of middle image
instead of copying visual features from other sharp input images.

It is also important to note that, novel approach to image quality assessment
called SER-FIQ has been reimplemented and used as a critic and a metric. It failed
in both the roles. MLFDB dataset, on the other hand, has proven useful. There is
still room for improvement, though. It ought to considerably increase in size and
identities in testing and evaluation sets should not resemble the identities in the
training set.

Another important contribution of this thesis is a tool suite for multi-frame
image reconstruction. Multi-frame Reconstruction is a novel approach to sharpen-
ing images. Instead of feeding them to some pretrained network at once, it splits
this complex sharpening logic into multiple smaller tasks. For example: video-
compression artifact removal, position and expression transfer from image to image,
image cross-over based on the mask or final stage single-frame finetuning. Having a
dedicated tool for each subtask brings in more control over what is happening and
how it is performed. This is definitely the way the problem of multi-frame sharpen-
ing should be approached even in future. Though, as of now, the tools implemented
operate well only for the simplest use-cases. There is still considerable room for
improvement.

Multi-frame Reconstruction system is superior to multi-frame U-Net models and
has a huge potential. Image sharpening is an ill-posed problem, i.e. from single
input, multiple outputs can be produced. Though, just one output is correct. While
U-Net models try to guess how to produce such desired output, Multi-frame recon-
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struction system approaches it systematically. It also performs sharpening, but at
the very end after all information from other images was successfully included in
the target image.

There are two main domains of research which could push this work further in
future. Having a tool evaluating facial image quality from the human perspective is
absolutely essential. It is necessary as a critic, metric and a helper for automated tool
selecting the sharpest image in the sequence. Though, very few related works have
focused on this problem. The second domain is position and expression transfer.
It is the greatest challenge in Multi-frame Reconstruction process. It aims to align
images to such angle that visual features can be crossed-over. Once this problem is
solved, there is no other bottleneck in the whole system.
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List of Symbols, Quantities and Abbreviations
ANN Artifician Neural Network

BiO-Net Bi-directional O-shape Network

CNN Convolutional Neural Network

CPBD A No Reference Image Blur Detection Using Cumulative
Probability Blur Detection

ESRGAN Enhanced Super-Resolution Generative Adversarial Network

GAN Generative Adversarial Network

HR High-resolution

JS Jensen-Shannon

LR Low-resolution

MF Multi-frame

MLFDB Multi-frame Labeled Faces Database

MSE Mean Squared Error

NAS Neural Architecture Search

PSRN Peak Signal-to-Noise Ratio

PULSE Photo Upsampling via Latent Space Exploration

SF Single-frame

SR Super-resolution

SSIM Structural Similarity Index Measure

RGB Red, Green, Blue

SE Squeeze-and-Excitation

SER-FIQ Unsupervised Estimation of Face Image Quality Based on
Stochastic Embedding Robustness

SRGAN Super-Resolution Generative Adversarial Network

WGAN Wasserstein Generative Adversarial Network
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Content of the Attachment

/
sharpening

data
mframe_dl.py ................................... multi-frame data loader

metrics
github
metrics.py............objective metrics (PSNR, SSIM, SER-FIQ, others)

models
basic_blocks

blocks.py......................single and double convolutional layers
bionet

model.py.......................................BiO-Net architecture
face_align

utils.py.....................................tools for face alignment
face_seg

github
utils.py ............................... tools for masking facial parts

feature_net
model.py...........................Feature-Merge U-Net architecture

inpaint_net
model.py...............................Inpainting U-Net architecture

psfr_gan
github
utils.py......................... tools simplifying use of PSFR-GAN

pulse
github
pulse_transfer.py................... tools simplifying use of PULSE
utils.py ...................................... raw PULSE predictor

serfiq_net
github
ir_se_model.py .................................. IR-SE architecture
model.py................................SER-FIQ U-Net architecture

unet
model.py....................MF U-Net architecture and loss functions

utils
crossover_utils.py ........................... sharp and soft cross-over
face_seg_utils.py.....................helper functions for face masking
feature_transfer_utils.py ... transfer of visual features between images
image_utils.py.............................basic image editing methods
smoothing_utils.py ...................... Gaussian smoothing of images
test_utils.py .............................. functions for testing models
train_utils.py............................ functions for training models
unet_utils.py................................helper functions for U-Net
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