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Abstract
This thesis studies the problem of real-time football matches results prediction. It consists
of several steps, including the acquisition of suitable dataset and training of the prediction
model. The prediction model is represented by two types of neural networks: feedforward
and LSTM recurrent neural network. Different combinations of input features are tested
to achieve the best performing model. Both models achieved a classification accuracy of
about 67.5%, where feedforward network accuracy starts from 54% at the beginning of the
match and achieve 93.54% by the end of the match.

In addition to widely-used metrics such as categorical accuracy and log-loss, each model
is evaluated in the simulated betting environment. Experiments within betting evaluation
have shown that LSTM can’t compete with feedforward network, as in each betting run
LSTM network ended up with a balance, dropped by more than 90%. However, the feed-
forward network achieved an ROI (return on investment) of 0.39% in a betting simulation
run with one of the configurations. As a result, a neural network approach, especially the
feedforward network, has proved to be quite successful in terms of predicting real-time
football matches results. Moreover it allowed to build a profitable betting strategy upon it.

Abstrakt
Tato práce se zabývá problematikou predikce výsledků fotbalových zápasů v reálném čase.
Skládá se z několika kroků, včetně získání vhodného souboru dat a trénování predikčního
modelu. Predikční model je reprezentován dvěma typy neuronových sítí: dopředné a
rekurentní, která je představená LSTM. Různé kombinace vstupních parametrů jsou testo-
vány pro dosažení nejlepšího výkonu modelů, včetně dostupných sázkových kurzů. Oba
modely dosáhly klasifikační přesnosti přibližně 67,5%, kde dopředná neuronová síť začíná
od přesnosti 54% na začátku zápasu a dosahuje přesnosti 93,54% na konci zápasu.

Kromě široce používaných metrik, jako je kategorická přesnost, každý model je vyhodno-
cován v simulovaném sázkovém prostředí. Experimenty v rámci hodnocení sázek ukázaly, že
LSTM nemůže konkurovat dopředným neuronovým sítím, jelikož v každém sázkovém běhu
skončila LSTM s bilancí nižší než o 90%. Dopředná neuronová síť však dosáhla návratnosti
investic ve výši 0,39% při provádění simulace sázení s jednou z testovacích konfigurací.
Výsledkem je, že neuronové sítě, zejména dopředné, se ukázaly jako docela úspěšné řešení,
pokud jde o předpovídání výsledků fotbalových zápasů v reálném čase. Navíc, dopředná
neuronová síť může posloužit jako základ pro úspěšnou strategii sázení.
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Rozšířený abstrakt
Predikce výsledků sportovních událostí je pro mnoho výzkumných pracovníků poměrně
náročným a zajímavým úkolem. Tato práce se zabývá metodami pro predikci výsledků
fotbalových zápasů v reálném čase a na rozdíl od mnoha dalších studií na téma predikce
výsledků sportovních událostí využívá data, která jsou dostupná v reálném čase. K tomu
patří jednotlivé statistiky jednotlivých týmů jako počet útoků, střel na bránu apod., dos-
tupné pro danou minutu zápasu. Navíc jsou využity kurzy sázkových kanceláří poskytované
pro danou událost.

V dané práci jsou popsané postupy získání, předzpracování a rekonstrukce dostupných
dat, které byly nutné pro maximalizaci výsledku trénovaných modelů. Zpracování dat
zahrnovalo odstranění chybných či neúplných dat a irelevatních událostí. Důležitou část
ve zpracování datové sady hraje rekonstrukce minutových statistik, jelikož data obsahují
pouze minutu změny a hodnotu. Statistiky a sázkové kurzy byly rekonstruované na základě
dostupných minut tak, že chybějící data pro danu minutu byly doplněny validními daty
z předchozí minuty.

Celková architektura systému je reprezentovaná aplikací typu klient/server, kde klient se
může dotazovat na aktuálně běžící zápasy a vyhodnocení predikce specifikovaného zápasů.

Samotný server se dotazuje na dvě mikroslužby, kde jedna reprezentuje službu pro
přístup k datům a je napojená na API poskytovatele dat, druhá je reprezentovaná na-
trénovaným modelem, který provádí vyhodnocení jednotlivých zápasů a vrátí rozložení
pravděpodobnosti výsledků daného zápasu.

Pro vytvoření modelu na vyhodnocení predikce byly použité dva typy neuronových
sítí: dopředné a rekurentní, kde rekurentní síť je reprezentovaná LSTM (long short-term
memory). Každý model byl vyhodnocen pro různé kombinace vstupních parametrů, kde se
ukázalo, že nejvyšší přesnost predikce je zajištěna při využití jak statistik, tak i sázkových
kurzů na danu minutu. K tomu byly navíc přidané jednotlivé kurzy ze začátku zápasu.

Experimentování s architekturou jednotlivých modelů a vstupními daty dovolilo dosáh-
nout nejvyšší přesností 67.81% u dopředné neuronové sítě a 67.46% u LSTM. Následující
vyhodnocení modelů v simulaci sázkového prostředí prozradilo, že LSTM model má mno-
hem nižší výkonnost oproti modelu dopředné neuronové sítě. V nejlepším běhu evaluace
modelu bylo dosaženo pozitivní procento návratnosti investic ve výši 0.39%. Při vyhod-
nocení modelů v sázkovém prostředí se porovnávaly dvě strategie managementu velikostí
sázky: fixní sazka 3% z dostupného banku a procento vypočítané pomocí kritéria Kelly,
které bylo ještě limitováno na maximální sázku 10% z banku. Ukázalo se, že kritérium Kelly
způsobuje sázení větších sum a zvyšuje riziko ztráty velkého objemu při sérii neúspěšných
sázek.

Celkově tato práce ukazuje možnosti, které poskytují neuronové sítě v problému predikce
sportovních událostí, konkrétně fotbalu v reálném čase, a reprezentuje zajímavý směr
průzkumu, který může být využit pro vytvoření úspěšných sázkových strategií.
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Chapter 1

Introduction

Football is the most popular sport in the world. There are about 4 billion people globally
who consider themselves a football fan.[44] Furthermore, betting is a huge part of the
football industry. Many of them are interested in forecasting football matches outcomes to
gain profit or make watching the game even more exciting. As a result, football betting
takes about 70% of total sports betting market with an estimated worth of 500 billion
dollars a year, and it expects to keep growing.[31]

The betting industry has been developed dramatically over the last decades. Growth of
the internet and fast digitalization accelerated this process significantly. Websites and mo-
bile apps have replaced traditional betting offices, so gambling has become more accessible
than ever. Hundreds and thousands of different events are covered by bookmakers every
day, starting from common sports such as football or basketball, and to special events like
politics or TV shows. As sports events remain the most popular way to bet on, bookmak-
ers usually provide live streaming and detailed real-time statistics to provide better betting
experience and attract more customers, as it very competitive industry. So, as bookmak-
ers cover more matches each year, more data and statistics are being generated. Such a
massive amount of data becomes a subject of interest for many researchers and professional
gamblers who wants to build prediction models and betting strategies.

Predicting the outcomes of football matches is quite challenging. Many factors could
affect the result of the match: teams’ starting squads, tactics, physical and psychological
conditions of individual players, pitch and weather conditions, and others. Moreover, lots
of them are changing rapidly during the match. So, it is challenging for an average gambler
to analyze changing statistics and odds fast enough to make successful bets. Besides, many
matches take place simultaneously, so a person has to analyze multiple matches at the same
time. Moreover, a bettor should remain calm and not let emotions or personal preferences
affect betting.

This thesis aims to explore available historical data and apply machine learning algo-
rithms and techniques to build the prediction model, which will be able to make predictions
of football matches outcomes in real-time, based on available in-game statistics and book-
makers data. Also, different betting and money management strategies will be compared
in terms of maximization of profit from bets.
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Chapter 2

Online betting

2.1 Betting
Betting is an activity of predicting events’ outcomes and wagering some value on it to
get profit. History of betting comes from ancient times as the earliest concrete evidence
of betting was dated 2300 bc in ancient China. [7] Nowadays, betting is a complex and
developed industry. Bookmakers provide an enormous amount of different events that can
be bet, starting from sports such as football or basketball, horse races, and virtual sports,
or even politics. In general, any event that may have several possible outcomes, whether
sporting or not, could be offered by a bookmaker to make a bet.

Bookmaker, or the bookie, is a person or usually, an organization that sets odds for
events’ outcomes, accepts bets and pays out winnings. [20] Every possible outcome of the
event is defined by corresponding odds, which reflect the probability of a given outcome.
Therefore, odds setting is one of the most critical parts of the bookmaker’s business.

The odds setting process done by experienced and well-qualified people called odds
compilers. They should have a solid understanding of mathematics and statistics and a
good understanding of the related field. Using this knowledge and specific software, they
need to analyze available data related to the event and carefully set as accurate odds as
possible for each of the event’s possible outcomes. Furthermore, odds compilers have to
consider the latest news and unexpected changes to quickly react and change initial odds.
For example, if we consider a football event, the starting squads of teams usually become
available about an hour before the match start. However, if it turns out that one of the
key players is missing in the starting squad, odds can change significantly.

Typically, the probabilities of all possible outcomes of the event sum up to 100%, but
it is not valid for the betting market. To guarantee profits, bookmakers have to include a
margin in every odd they provide. For example, consider an event with two equally possible
outcomes, say a coin toss. In the fair market, the probabilities of both outcomes are 50%.
Odds calculated by dividing the sum of all probabilities (100%) by the probability of the
given output, so expected odds are 2.0 for each outcome. However, a bookmaker would
offer lower odds, such as 1.9 on each outcome. It means that a profit margin of about 5%
applied to odds. Having accepted one unit of value on each outcome, the bookmaker will
get a profit of 0.1 units regardless of the result. Profit margin varies depending on the type
of outcome. Simpler markets, such as match result, tend to have a lower margin as there is
a lower chance of unexpected outcome and bookmaker does not have to put extra effort to
keep the book balanced. Hence, margins for such markets are usually below 5%. The most
popular events also tend to have a lower margin as there is more information available, and
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bookmakers could set more accurate and competitive odds. Thus, the less information is
available about the event, the higher the margin, which is applied to odds as bookmaker
always tries to stay safe from unexpected loses. [8]

Profit margin helps the bookmaker not worry about the result of the event, but instead
about the amount of money placed on each outcome, a balanced book. It means that roughly
the same amount of money paid out as winning regardless of the outcome. Sometimes it
is quite obvious which outcome would be preferred by most bettors. Therefore bookmaker
needs to adjust odds a bit to keep it balanced. More money placed on favorite leads to
lower odds, as the bookmaker is trying to minimize payout and reduce the number of such
bets, as lower odds are not attractive for bettors. Accordingly, as the odds of the opposite
outcome rise, it becomes a better deal for a gambler to give a try and gain more profit. As
a result, the bookmaker is guaranteed to gain roughly the same amount in any case and
therefore stay in long term profit. [9] [12]

Due to the high profitability, bookmaking is a very competitive industry represented
by hundreds of different companies. Each of them is trying to have as many customers as
possible to maximize gains. Nevertheless, as most bookmakers provide their services online,
potential customers can compare odds across all available bookies and choose the higher
ones. Therefore, besides setting accurate odds with included profit margin, they should
also be competitive across the market, attracting more customers to make a bet with a
given bookmaker.

2.2 Live Betting
With the development of the internet and technologies, most bookmakers provide their
services online. Moreover, they provide real-time or so-called live betting so that bets could
be placed not only before the event start but also during it. The same rules are applied to
live betting, where odds should be set carefully and precisely keeping the balanced book
and including profit margin.

However, it is a quite challenging task from a technical perspective, as bookmaker has to
update odds in near real-time speeds to reflect what is happening. Moreover, odds compilers
by themselves cannot catch such a fast pace and operate in a matter of seconds. Usually,
it takes days or even weeks to set pre-match odds accurately enough, but here they do not
even close to having this amount of time. Therefore, different complex computer systems
used to help them manage to change odds. It follows some of the predefined patterns,
which automatically update the odds based on data during the event. Compilers’ work
boils down to supervising these systems, correct patterns, and respond to unexpected or
unusual situations that may occur during the event. As bookmaking is a private business,
the main goal is to make a profit. Therefore, the bookmaker dictates all the rules. If he
notices that there is a risk of incurring serious losses, odd could be dropped, or the entire
betting market could be suspended for a giving event. Otherwise, bets are suspended every
time an important or dangerous event occurred. It could be a clear scoring opportunity,
goal, penalty, red card, or other important events. Moreover, each time bet placed on the
live event, there is some delay, which can be up to 10 seconds, to process and accept a bet.
As a result, if the odds change or suspended during this time, the bet will not be accepted.
Live odds usually have a larger margin as odds compilers do not so accurately adjust it as
pre-match odds, so higher margins compensate possible inaccuracies. [10, 8]
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Many bookmakers use other services to get market odds and data feed. Betradar1is
the market-leading supplier of betting-related data services, including pre-match and live
odds. It also offers different betting stimulation tools such as betting widgets2, live match
trackers3, etc., which increase the level of entertainment and provide customers data they
are looking for, ensuring them stay longer and make more bets. [2] Opta4 provides a wide
range of options from historical data and stats to real-time data streams, covering a huge
number of competitions from around the world. [5]

Despite available data and information, average punters following their emotions, not
logic. The main way to stay in profit in the long term is to find value in bookmakers odds,
so the real probability of the event is higher then one reflected in the bookmaker’s odds.
So basically, punters are constantly competing with skilled and experienced teams of odds
compilers. However, they are only humans. Despite available resources, they are still liable
to make mistakes. Especially in real-time, where time requirements are tight, and even if a
computer program drives it, odds patterns are still manually updated and supervised by a
human. Therefore, the main goal of a punter is to find an incorrect line and to bet on these
outcomes, which are more likely to happen than the given odds reflect. Furthermore, even
if given lines are correct, as it set by odds compilers and algorithms, most of the betting
public is not as smart. Therefore if people place bets incorrectly, they could move the odds
line and create an edge for smart punters. However, even if incorrect odds are found, it is
not guaranteed to win such bet, but the probability of winnings increases. As a result, a
good betting strategy and careful money-management could lead to sustainable profit in
the long term. [3, 8, 6]

2.3 Related work
Betting is based on predictions of various outcomes, mostly sports events. Furthermore,
the sports prediction problem has been quite a popular field of research for a long time.
Many studies have tried to build a reliable prediction model with enough accuracy. Most of
them utilize pre-match data, such as team performance and statistics over the past matches.
Nearly any study has included real-time or in-play data or tried to predict the outcome
based on what is happening during the event.

One of the researches who utilized in-play data was Lin (2017) [34]. He was the first
who tried to apply real-time data in basketball matches outcome prediction. With selected
game-level and player-level features, a logistic regression model was able to predict the
correct outcome from 53% accuracy in early stages to 85% on the late stages of the game.
Weissbock et al. (2014)[48] designed a neural network model based on in-game statistics
of NHL matches resulting with an accuracy of 59.8%. He also found a theoretical up-
per bound of approximately 62% for single-game prediction in the NHL. Tax and Joustra
[47] achieved an accuracy of 54.702% predicting Dutch league football matches with Naive
Bayes and Multilayer Perceptron classifiers in combination with PCA (Principal Compo-
nents Analysis). In 2012, Odachowski [38] attempted to predict upcoming sporting events’
outcomes based on changes in bookmaker odds. Using the Bagging algorithm, his model
achieved the effectiveness of 70%. Buursma et al. (2011) [19] implemented a system for
predicting the results of football matches that beat the bookmakers’ odds. He concluded

1https://www.betradar.com
2https://www.betradar.com/wp-content/uploads/sites/4/2019/11/betting-widgets-betradar-4.png
3https://www.betradar.com/wp-content/uploads/sites/4/2019/11/LMT-Plus-Soccer.png
4https://www.optasports.com
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that with the classifier of accuracy about 55% and right betting strategy, which involves
betting on a match only when the probability given by the classifier is higher than the prob-
ability given by the bookmakers’ odds can lead to a profit at the bookmaker in the long
run. Peterson and Nyquist et al. (2017)[40] studied different LSTM architectures of recur-
rent neural networks for predicting outcomes of football matches. They achieved prediction
accuracy starting from 33.35% for many-to-one and 43.96% for many-to-many strategy,
with increasing accuracy as longer data sequence becomes available during the time, and
reached the maximum of 98.63% for many-to-one, and 88.68% for many-to-many strategy
prediction accuracy for full-time data sequence. Goddijn, Moshokovich, and Challa et al.
(2018)[24] compared various models, including logistic regression, a 3-layer neural network,
and LSTM recurrent neural network to predict outcomes of premier league matches based
on historical data. The highest classification accuracy of 51% has been achieved with the
3-layer neural network model.

According to previous studies, it is evident that the prediction of sports events outcomes
is quite a difficult task, and the average models’ performance is in the range of 55-65%. In
most cases, neural networks outperform other machine learning models in terms of predic-
tion accuracy and represent a state-of-the-art approach for sports outcomes prediction.

As a result, several neural network architectures, such as feedforward and LSTM, would
be utilized in this thesis to build a successful model for real-time football match outcome
prediction.
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Chapter 3

Deep learning

3.1 Machine learning
Machine learning is one of the most exciting fields in computer science nowadays. It at-
tempts to create computer programs that can improve their performance on a specific task
by learning from experience and data, without being explicitly programmed to perform the
task. Even though this field exists for quite a long time, significant popularity has come in
recent years with the development of computing power and the emergence of large amounts
of data.

Mitchell et al. (1997) [37] provides the following definition of machine learning:

”A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.“ In the context of this definition, the task is usually described as the
processing of a given example of data to get the desired output. The most common machine
learning tasks include classification, prediction, anomaly detection, etc.

From the perspective of the experience, machine learning algorithms could be cate-
gorized as supervised and unsupervised. Unsupervised algorithms used to learn useful
properties and find hidden patterns in unlabeled data. For example, dividing large data
set into clusters of similar examples, based on some features and similarities in data. On
the contrary, supervised learning algorithms learn from labels or targets provided by the
teacher. Each data point in the data set is labeled with the target value. Therefore, a
supervised learning algorithm’s task is to find some correlation in the data point’s features
and learn to predict the correct label from it. One of the most popular tasks for supervised
learning is classification. It could be either binomial, e.g., classifying whether a given email
is spam or not, or multi-class, predicting one of the several possible outcomes.

Evaluation of the machine learning model’s performance is also a critical part of the
overall model’s success. Different metrics could be applied to evaluate the quality of a
machine learning algorithm. The most common approach is to measure the accuracy of the
model or its error rate, reflecting the number of correct and incorrect outputs, respectively.
Other machine learning tasks require a different performance metric, which provides a
continuous-valued score for each example, e.g., an average log-probability. Moreover, a
good performing machine learning model must have the ability to generalize and perform
well enough on previously unseen data. It defines if it could be successfully deployed
in a real-world environment. Therefore, available data is usually divided into training and
testing sets. Training data is used for model training only, while testing set serves for model

7



evaluation and consists of data examples, which are different from those in the training set.
[25]

Machine learning has been proved to be a promising solution in the domain of sports
prediction. Many researchers have been trying to utilize different approaches from machine
learning to design successful prediction models. Some of them, such as Tax and Joustra
[47] and Weissbock [48], achieved relatively high accuracy results in predictions with the
use of neural networks. Others usually had a neural networks approach as one of the
best-performing, among other machine learning approaches.

3.2 Artificial neural networks
The growth in the popularity of machine learning in recent decades has been primarily
associated with increasing computing power and related development of neural networks.
However, the fundamental idea of mimicking the human brain appeared back in the 1940s.
McCulloch and Pitts et al. (1943) [35] proposed their version of a computational neuron.
It refers to biological neuron, a nerve cell consisting of several dendrites, cell body(or
soma), and axon. So the single neuron receives signals from other neurons via dendrites.
These signals are being processed in soma, where an electrochemical potential is created,
so neuron impulses, sending out signals via axon to other neurons. This allows neurons to
communicate with each other, perform different computations, and process information.

Figure 3.1: Structure of biological neuron.

Later on, in 1958, Rosenblatt [42] designed a perceptron, a simplified model of a biolog-
ical neuron. So perceptron is a function that maps several inputs to binary value output,
mimicking nerve cell’s all-or-none behavior. The output is produced by the linear combi-
nation of inputs and weights. Therefore, if the resulted sum is larger than some threshold,
perceptron outputs 1; otherwise, the output is set to 0. Mathematical representation of the
perceptron is the following:

𝑓(𝑥) =

{︃
1 if 𝑤𝑡 * 𝑥 > 0
0 if 𝑤𝑡 * 𝑥 ≤ 0

(3.1)

In general, perceptron output is being passed through a non-linear activation function,
like a sigmoid or rectified linear unit(ReLU). Therefore, the perceptron is usually repre-
sented as a function 𝑓(𝑥), such as:

𝑓(𝑥) = 𝜎(𝑊 · 𝑥+ 𝑏) (3.2)
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where 𝑊 denotes the matrix of weights, the input feature vector 𝑥, bias 𝑏 and 𝜎 is the
the non-linear activation function.

The learning algorithm of the perceptron is simple and based on the update of weights
and biases in response to an error between the output and the target value for given input
and weights configuration. Therefore, the perceptron is a supervised learning algorithm that
can learn the right weights and biases for a given input to produce the expected output.
However, this model has one notable limitation. It can only solve linear classification
problems, where classes could be easily separated with a straight line. So perceptron is only
a binary classifier and not able to solve non-linear or multi-class classification problems.

In 1968, Minsky and Papert et al. [36] proved that it is impossible to train a single
layer perceptron to learn an XOR function. Moreover, their work has shown that XOR
function could be trained with a multilayer perceptron (or MLP). Furthermore, multilayer
perceptron itself represents an artificial neural network consisting of at least three layers
of nodes. There are one input and one output layer, with one or more hidden layers. It
is a fully connected network, so each node in one layer is connected to every node in the
following layer.

Figure 3.2: Multilayer perceptron with one hidden layer.

Each layer, except the input, contains nodes with non-linear activation function, such
as sigmoid or ReLU. With an efficient learning algorithm called back-propagation, which
was described by Rumelhart et al. in 1986 [43], a multilayer perceptron is capable of
approximating any continuous function. The learning process itself involves repeated ad-
justments of the connections’ weights and biases in the network in order to minimize an
error between the actual and desired output of the model. As a result, unlike a single
layer perceptron, a multilayer perceptron can distinguish non-linear separable data. The
back-propagation learning algorithm and its different modifications remain the dominant
approach for the training of neural networks. The use of many hidden layers increases a
multilayer perceptron’s capabilities and makes it a premise for deep learning.

3.3 Deep learning
After the success of the back-propagation learning algorithm and multilayer perceptron’s
promising capabilities, neural networks have gained a boost in popularity, which initiated
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further development and research of multilayer neural networks. Deep learning itself refers
to deep neural networks (DNN), which are multilayer neural networks with more than one
hidden later. Moreover, deep learning’s fundamental concept is to provide an abstraction
above the representation of the complex data. So, DNN allows describing data as a compo-
sition of many more straightforward representations of the input. For example, an image
recognition process could be divided into several tasks, such as detecting corners, contours,
edges, and others, and then leading to the detection of the entire object.

Despite the apparent advantages of larger and more complex neural networks, several
technical problems slowed down the development of deep learning. The training of models
with lots of hidden layers was very complicated due to insufficient computational power.
Innovations in hardware over the last decades and utilization of GPUs (Graphics Processing
Unit), which provide parallel computing capabilities, made the training of complex networks
possible. With breakthroughs in computational power, the number of data has increased
dramatically, allowing to achieve state-of-the-art results in many applications, such as voice
recognition, computer vision, and natural language processing. For example, in 2014, a
research group at Facebook created a facial recognition system, called DeepFace, that was
able to identify human faces in images. A nine-layer neural network was trained on about
four million images and achieved 97.35% accuracy, which is as high as the human-level
performance [46]. Such success led to even more adoption and popularity of deep learning
and inspired many researchers to train deeper and more complex neural networks.

Nowadays, deep neural networks are represented by many architectures, consisting of
tens and hundreds of hidden layers with many millions of weights connections, and each of
them is particularly successful in specific types of applications. Due to consistently growing
computational power, massive data sets, and improvements in optimization algorithms and
model design, deep neural networks are expected to become larger and more powerful.

3.3.1 Feedforward neural networks

Feedforward networks are being a fundamental part of deep learning, as a multilayer per-
ceptron represents it. These models are feedforward because of the flow of computation,
which is always unidirectional: from inputs, through corresponding hidden layers, and to
the output. Therefore, the computational flow could be described as a directed acyclic
graph, which does not have any feedback connections. [25]

With genuinely designed network architecture, optimizations, and large enough data,
feedforward networks achieve high accuracy in many tasks, including classification and
regression problems. Some neural network architectures have been developed for specific
tasks. For example, the convolutional neural network(CNN) represents a specific type of
feedforward neural network that performs exceptionally well in computer vision field tasks.
When a feedforward network is extended with feedback connections, it forms a recurrent
neural network (RNN), which is especially successful in processing sequential data, such as
text or speech.

3.3.2 LSTM

Long short-term memory network, or LSTM, is an architecture of a recurrent neural net-
work, which was introduced by Hochreiter Schmidhuber et al. (1997) [28]. This architec-
ture design solved long-term dependency problems, which is the inability of recurrent neural
networks to learn dependencies in data when sequences become too long, e.g., predicting
next word in a giving sentence, based on the context of the sentence, which occurred in
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the text way before the actual one. This problem was studied by Bengio et al. (1994) [17],
who described several reasons why it might be difficult to learn such dependencies. The
fundamental problem is that propagated gradients tend to either vanish or explode while
performing on the long sequences. LSTM, on the contrary, provides gradients that neither
vanish nor explode and allow them to carry valuable information during long and short
sequence processing. Such types of networks belong to the group of RNNs with so-called
gated units, which outperform vanilla RNN architectures in the majority of tasks.

LSTM neural network includes several layers consisting of LSTM self-loop cells. A
single LSTM cell could be unrolled into the chain-like representation, where the output of
the given state is dependent on both the input and the output of the previous state. While
there are many structures of single LSTM cell, the most common version consists of several
gates and cell states, such as represented in Figure 3.3.

Figure 3.3: LSTM cell structure. (inspired by [11])

Corresponding gate functions work as a sort of control mechanism, which regulates the
flow of information inside the cell. All of the gates are perceptrons with corresponding
weights and biases that would be learned during the training.

The first gated unit is presented with the ”forget“ gate, which decides how much infor-
mation from the previous cell state would be forgotten.

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (3.3)

It is computed as a product of weights and result of concatenation between actual input
𝑥𝑡 and previous cell output ℎ𝑡, which is put through a sigmoid activation function 𝜎. It
outputs a real value from the interval (0;1). Therefore, if the output is close to 0, the
previous cell state would be mostly reset, hence forgotten, and otherwise, if the output of
the forget gate is close to 1, the previous cell state would remain almost unchanged.

The ”input gate“ 𝑖𝑡 performs as a value filter of the new cell state value 𝐶𝑡. As well as
the ”forget“ gate, it is a perceptron with sigmoid activation function

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.4)

where the new cell state value is calculated by perceptron with tanh activation function

𝐶𝑡 = tanh(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3.5)
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The overall cell state is then updated by applying both ”forget“ gate output and new
cell value on the previous cell state

𝐶𝑡 = 𝑓𝑡 * 𝐶𝑡−1 + 𝑖𝑡 * 𝐶𝑡 (3.6)

When the cell state is updated, the actual output of the LSTM cell could be computed
by filtering the cell state 𝐶𝑡, which is already put through tanh function, by the ”output
gate“ 𝑜𝑡 output, in the same way, the ”input“ and ”forget“ gates do.

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.7)

ℎ𝑡 = 𝑜𝑡 * tanh(𝐶𝑡) (3.8)

Finally, when the LSTM cell output is produced, it is getting passed to the next LSTM
cell, and the actual cell state and computational flow continue. [25, 39]

Such architecture of the LSTM cell allows to remember long-term dependencies and
improve the performance of recurrent neural networks. It has been proven to be very
successful in many applications, such as speech recognition (Graves and Jaitly, 2014[27]),
machine translation (Sutskever et al., 2014[45]) and others. In terms of this thesis, LSTM
network seems to be a promising solution for processing a time-series data of football
matches.

3.4 Software tools
As machine learning popularity increased dramatically over time, so did the number of soft-
ware tools. Many open-source frameworks have been created to encapsulate implementing
details of different algorithms and provide a high-level application programming interface
(API) to create a machine learning and deep learning models faster and easier.

Between the most popular software libraries belongs Theano (Bergstra et al., 2010 [18];
Bastien et al., 2012 [16]), PyLearn2 (Goodfellow et al., 2013c [26]), Torch (Collobert et al.,
2011b [23]), Caffe (Jia, 2013) [29], Keras (Chollet, 2015) [21], and TensorFlow (Abadi et
al., 2015) [15].

Theano

Theano is a math expression compiler and library written in Python, which provides op-
timized processing of mathematical expressions, especially manipulation with matrices. It
could be compiled into optimized CPU and GPU instructions, which boost the processing
speed comparing to pure Python. Therefore, it can power data-intensive computations and
is being widely used by many researchers. [33]

Torch/PyTorch

Torch is an easy and efficient scientific computing framework developed by Facebook. It is
implemented in fast scripting language LuaJIt, with underlying C/CUDA implementation,
and has extensive GPU support. It provides high flexibility and speed in building scientific
algorithms, coming with large number packages for machine learning, computer vision,
signal processing, etc. It allows parallelizing computational graphs over CPUs and GPUs,
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increasing algorithms efficiency and speed. Torch is a continually evolving framework widely
used by companies such as Facebook, Google, Twitter, and etc.[22]

PyTorch is an open-source deep learning framework based on Torch library, which em-
phasizes strong GPU acceleration and full capabilities for deep learning. It also was devel-
oped by the Facebook AI1 research team and provides easy-to-use API, which enables fast
prototyping and experimentation possibilities, along with high-level efficiency and a rich
set of tools for debugging and optimizations. Furthermore, it allows scalable distributed
training and is a production-ready solution supported by major cloud platforms. Today,
PyTorch is one of the most popular deep learning frameworks that power many companies’
projects. For example, Tesla uses PyTorch for vehicle self-driving software. [41]

Caffe

Caffe is a deep learning framework developed by Berkeley AI Research (BAIR) and by
community contributors. It is especially fast and efficient in implementations of the convo-
lutional neural networks and computer vision tasks. Both CPU and GPU capabilities could
be utilized, and the model could be deployed both on cloud platforms and mobile devices.
It makes Caffe a perfect tool for academic research projects, startup prototypes, and many
large-scale industrial applications. [29]

Tensorflow

Tensorflow is an end-to-end open-source platform for machine learning developed by the
research team at Google. It offers multiple abstraction levels, so both high-level and low-
level APIs could be utilized to build and train state-of-the-art models without sacrificing
speed or performance. Tensorflow library has extensive support and rich infrastructure for
cloud training and deployment, supporting CPUs, GPUs, and even TPUs environments.

It allows us to set a full ML production pipeline with Tensorflow Extended (TFX),
enables support for mobile devices and web with TensorflowLite and Tensorflow.js, respec-
tively. Therefore, it suitable for almost any platform and supports multiple client languages,
such as C++, Java, and Go. Moreover, as the community of supporters is enormous, there
are many guides and tutorials available for different kinds of ML tasks.

It could be effectively used for both research and scalable production deployments.
And today, many large companies and industrial leaders, such as Airbnb, Qualcomm, Intel,
Twitter, etc., use the Tensorflow library to build or improve their products and services.[4]

Keras

Keras is a deep learning library written in Python and running on top of the Tensor-
flow machine learning framework. It provides a high-level API of Tensorflow, enabling
fast experimentation and an efficient way of developing machine learning solutions. Keras
takes advantage of Tensorflow back-end capabilities, which includes high scalability, cross-
platform support, and training on large GPU clusters, as well as TPUs, providing extreme
computing power for training and inference.

In 2019, Keras was ranked as the #1 framework for deep learning by Kaggle community
developers. As of early 2020, Keras has the strong support of community and researchers
with almost 400,000 individual users. As a result, Tensorflow and Keras are being the most

1https://ai.facebook.com
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popular solutions for deep learning nowadays. Ease of use and ecosystem with high-quality
documentation and many extensive examples in every machine learning task makes it an
excellent tool for both beginners and experienced machine learning researchers and experts.
It has been adopted by scientific organizations, such as CERN and NASA. Also, many large
companies built their features using Keras library, including Netflix, Uber, Yelp, Instacart,
Zocdoc, Square, and many others.[14]

Such a rich set of different frameworks provides the necessary tools for any machine
learning task and research. In this thesis, Keras library will be used for fast prototyping
and experimentation with different deep learning architectures, and Tensorflow has been
chosen for model serving.
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Chapter 4

System design

This chapter describes the proposed system design, presents baseline neural network archi-
tectures, and describes available data and input features for the corresponding models.

4.1 Architecture
Predicting football matches outcomes in real-time brings certain requirements on the sys-
tem’s performance. It includes both parts of data acquisition and data processing. The
system architecture is designed to be simple and robust, as well as effective. It is repre-
sented by the client-server application, where the server contains two microservices. Each
microservice is an independent service performing a specific function. One is dedicated
to data acquisition and requests the necessary information about football events from the
data provider’s API service. The second one includes a serving machine learning model,
in this case, a trained neural network. Its task is to predict one of the three possible out-
comes of the football match: home win, draw or away win. Therefore, the model outputs
a probability distribution of these outcomes.

Such architecture is easy to maintain, as each service is independent and highly main-
tainable. It could be containerized and deployed separately, considering different hardware
resources and scalability requirements. For example, a machine learning model could be
deployed in the environment which includes GPU or other processing units for model per-
formance acceleration. The complete client-server architecture is represented in Figure 4.1.

Figure 4.1: Client-server architecture, with two microservices on the server side.
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4.2 Input features
Probably, the most important part of the system is a serving model, as it takes care of
predictions. The quality of the model is highly dependent on the quality of the available
data set and input features. data set for this study was obtained from Betsapi1 paid service,
which provides historical, as well as live, data for many sports via RESTful API.

Available football data includes general information about the event such as teams and
league info, event status, etc. Odds data is represented by several odds markets, including
full-time result odds, asian handicaps, etc., provided by many bookmakers. Betsapi service
allows choosing between many popular bookmakers such as Bet365, WilliamHill, Pinnacle,
and others. In this study, bookmaker’s odds provided by Bet3652 are used, as it default
bookmaker and is one of the industry leaders with both pre-match and in-play odds. The
most important data, in terms of this project, is in-game statistics, which are provided by
Betsapi service with a Stats Trend endpoint. It consists of time-value stats for both teams
during the match and includes attacks, dangerous attacks, shots on target, shots off target,
corners, goals, substitutions, yellow cards and red cards. This set of features, extended with
pre-match odds and available odds in the given minute of the event, will be used as an input
features vector for predicting models.

4.3 Baseline models
Besides a high-quality data set, the neural network’s accuracy depends on the model archi-
tecture. It defines an overall structure of the network, its depth, and the width of single
layers. In this thesis, two kinds of neural network types are being compared: feedforward
neural network and recurrent neural network, represented by LSTM.

Feedforward network

The baseline model of the feedforward neural network consists of 3 fully-connected layers
with 16, 8, and 3 hidden units respectively. It accepts a one-dimensional array of features for
a given minute of the event as input. Each layer, except the output, has a ReLU activation
function, and the output layer has a softmax activation function, which normalizes the
output of the network into probability distribution between classes. Also, the baseline
model utilizes Adam optimizer [32], which implements an optimization algorithm based on
stochastic gradient descent, and cross-entropy loss function.

LSTM

LSTM baseline model, in turn, consists of 3 layers, where the first layer is represented
by the LSTM layer with 64 hidden units, followed by a single dropout layer with 0.5
dropout rate and an output layer with 3 hidden units with softmax activation function. An
important difference between these models is its input representation. LSTM layer input
has to be three-dimensional, where the dimensions define the size of the samples batch,
the number of time steps, and the number of features at a given time step respectively.
Therefore, available data should be reshaped accordingly to fit these requirements. As in

1https://www.betsapi.com
2https://www.bet365.com
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the case with the feedforward network, Adam optimization algorithm is used, as well as
cross-entropy loss function.

Baseline models’ architectures have been designed simple as such networks are less likely
to overfit and also have a lower training time. Therefore, such a model could provide fast
feedback about chosen features in terms of accuracy. After choosing the most successful set
of features for given baseline models, experiments with more complex architectures could be
done along with hyperparameters tuning to create the model with maximum performance.

4.4 Evaluation metrics
Evaluation is an essential part of building an optimal and successful machine learning model.
There are many kinds of evaluation metrics available, which allow measuring the quality
of the trained model. These include metrics as classification accuracy, confusion matrix,
log loss, and others. However, the use of a single evaluation metric may lead to a poorly
performing model, as a model that performs well on one metric does not have to perform
well on other metrics. Therefore, multiple evaluation metrics should be used as it ensures
more optimal and a better performing model.

In the process of training of proposed neural networks, classification accuracy and log
loss metrics are used as the primary evaluation metrics. Classification accuracy refers to
the ratio of the correctly classified examples among the total number of examples, and
logarithmic loss represents how far is a single prediction from an actual label class.

The entire available data set is divided into training and testing set in the 80/20 ratio.
The training set data is shuffled and divided into training and validation sets in the ratio
80/20, and as long as a sample of the data set represents data for a single minute of the
event, both training and validation sets have data points refer to the same event. So during
the training process, weights are learned from the training set, and a validation step is
performed using a validation set. After comparing several input features options, the best
performing model is chosen by the highest accuracy and the lowest loss on the validation set.
Model’s architecture and hyperparameters are later tuned to achieve the best performing
version of the model for given input features. The final evaluation of this model is done on
the testing set, which consists of previously unseen data and provides information about
how well the trained model generalizes.

In addition to traditional machine learning evaluation metrics, one custom metric will
be applied to measure the model’s prediction capabilities in terms of betting. The betting
evaluation includes simulation of a betting environment, where events are chosen randomly
from the test set. Bets are made if they meet conditions of the betting simulator and have
value. A value bet represents a bet where the probability of the outcome is higher than
that reflected by the bookmaker’s odds. Such a strategy allows to maximize profit from
bets in the long run. [13]

Besides, different stake methods are compared, including percentage stake and the Kelly
criterion. The percentage stake refers to staking a fixed percent of the available balance on
each bet. Kelly criterion staking method was described in 1956 by Kelly et al. [30], and
represents an algorithm for bet sizing, which is proved to lead to higher returns in the long
run. The Kelly stake is calculated as follows

𝑓 =
𝑝 * 𝑏− 1

𝑏
(4.1)
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where p is the probability of the win, and b is the decimal odds provided by the book-
maker. If the Kelly stake equals to zero or negative, then the criterion recommends betting
nothing. Otherwise, it represents the percentage of the actual balance to bet.

The overall betting efficiency of the model is represented in return on investment (ROI),
representing the expected return for each placed bet.
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Chapter 5

Implementation

This chapter describes implementation details of the components designed in Figure 4.1,
and training process the serving model.

5.1 Server
Application’s server side is implemented in the Go programming language with use of
high-performance gRPC framework, which is based on RPC protocol. It provides an easy
and efficient way to define a service with Protocol Buffers, supports many platforms and
generates an efficient client code for a variety of languages. [1]

The server provides two endpoints: listing all in-play football events and providing
prediction for the event, specified by its id. Internally server communicates with two mi-
croservices, which ensures general functionality. Data service represents an API wrapper for
Betsapi service and provides necessary endpoints for data acquisition. The serving model is
ensured by TensorFlow Serving1 and comes with a Docker container, which contains trained
models.

Each microservice is running separately and communicates with server via gRPC API
on corresponding port. As server starts, it connects to both microservices as a client and
then becomes ready to accept incoming requests on its own specified port.

The client has to generate client code for one of the supported languages from the
server’s .proto file, which defines all messages and RPC calls. After that, the client is ready
to connect and communicate with the server via gRPC methods calls.

5.2 Serving model
Process of creating a serving model includes several steps: data preprocessing, training,
hyperparameters tuning, and model evaluation.

Data preprocessing

Quality of data set plays an essential role in the resulting success of the model, as knowledge
is learned from provided data. As soon as raw data, retrieved from the Betsapi service,
does not meet project requirements, it should be preprocessed before feeding into a neural
network. Betsapi football events API returns data from many leagues around the world,

1https://www.tensorflow.org/tfx/guide/serving
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and, unfortunately, it contains several leagues irrelevant for a presented study, such as
beach soccer and e-sports tournaments. A list of inappropriate leagues was created, and
such events were filtered out. Besides, some events returned from the Betsapi service had
an inconsistent or wrong data, such as missing or abnormal values, and were removed from
the data set as well. Input features for the neural networks are represented by data available
at the given minute of the event, including event-related statistics and bookmakers odds.
However, Betsapi service provides a minute of the event when the change occurred and
value itself. Therefore, a full-time, minute-by-minute statistics data has been reconstructed
from the available data, so values for missing minutes were filled with values of the previous
minute with complete data. If data is missing for the first minute of the event, all features
are set to zero. As described in 2.2, bookmakers odds could be suspended or unavailable
due to many reasons at the given minute. Therefore unavailable odds in the dataset are
replaced with -1. As a result, such time-series reconstruction extends the training data set
for the feedforward network, where the state of the match at the given minute represents
each data point. Furthermore, it provides the necessary data set for the LSTM network,
which has a time sequence representation of the data.

Another critical part of data preprocessing is data normalization. Different data nor-
malization techniques are used to overcome model training problems, improve performance,
and reduce training time. Normalized data prevent exploding gradient problems in neural
networks and help to converge gradient descents more quickly. In this study, the feature
scaling approach used to fit input variables into the lower values range. This step is done
with the help of sklearn2 library and MinMaxScaler estimator, which scales and translates
each feature from the training set into the range between zero and one. Scaler parameters
for individual features are stored and applied later on both validation and testing set and
in a production environment.

The overall clean data set is represented by more than 86306 events distributed between
1067 leagues across 150 countries. Top 10 league distribution is represented in Figure5.1,
which shows that friendly matches belong to the most represented group across all leagues.

Corresponding outcome classes are distributed unevenly within dataset with 45.34% of
home win matches, 31.57% away win and 23.08% draw. Classes distribution is visualized
in Figure 5.2.

After all, the available data set has been split into training and testing set, with 69044
and 17262 matches accordingly. Moreover, the training set has been split again into training
and validation with 55235 and 13809 matches. The training set is used to update the
model’s weights during the training step, while the validation set is used to evaluate the
model’s performance at the given training step. The testing set consists of matches that
are not available during the training process and used to evaluate how well the actual
model generalizes previously unseen data. The betting evaluation part is performed on the
randomly chosen set of matches from the testing set.

Model training

Both LSTM and feedforward neural networks were implemented in Python programming
language with the use of Tensorflow framework and Keras. Several combinations of input
features were compared, which represented as follows: 1-stats, 2-stats and minute odds,
3-stats and start odds, 4-stats, minute odds, and start odds.

2https://scikit-learn.org/
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Figure 5.1: Distribution of top 10 leagues in the data set by the number of events.

In the case of a feedforward neural network, the base model training process consists
of 20 epochs with a batch size of 64. During the training process, the model with the best
validation loss value stored. In Table 5.1, results of training are compared for each input
features combination.

Input Training Validation Test
Loss Accuracy Loss Accuracy Loss Accuracy

1 0.7590 0.6525 0.7420 0.6647 0.7498, 0.6592
2 0.7262 0.6746 0.7108 0.6843 0.7221 0.0.6780
3 0.7306 0.6717 0.7137 0.6831 0.7411 0.6645
4 0.7251 0.6749 0.7104 0.6851 0.7217, 0.6781

Table 5.1: Comparison of the result of training feedforward neural network base models for
each combination of input features.

Based on the results of base models training with different input combinations, it is
evident that more data ensure higher accuracy and lower loss, including both validation
and testing set. Therefore, for further hyperparameters tuning a model with input features
representing 4th combination was chosen.

Hyperparameters tuning is done with Hyperas3 open-source library, which provides an
easy and powerful wrapper for experimentation with hyperparameters, such as the number
of model’s layers and hidden units for each layer, activation functions, optimization algo-
rithm, and batch size. For feedforward neural network optimization, hyperas configuration
was set to compare neural networks with two hidden layers, where each layer has one of

3https://github.com/maxpumperla/hyperas
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Figure 5.2: Classes distribution over the data set. (1-home win, 2-away win, 0-draw)

the predefined values for the number of hidden units and activation function. The output
layer always has an activation function and has three hidden units. The overall model is
compiled with one of the predefined optimizers and learning rates, and the training process
is done in batches of one of the predefined sizes. Configuration parameters for feedforward
neural network are represented in the Table 5.2.

Number of hidden units 8, 16, 32, 64
Activation function ReLU, sigmoid

Optimizer Adam, RMSprop, SGD
Learning rate 10−3, 10−2, 10−1

Batch size 32, 64, 128

Table 5.2: Hyperparameters configuration for feedforward neural network optimization.

After 30 different combinations of hyperparameters, a model with best validation accu-
racy with validation accuracy of 0.6854 and validation loss of 0.7100 was chosen as the best
performing one and its architecture is defined as follows 5.3

1st layer 16 hidden units (ReLU activation)
2nd layer 32 hidden units (ReLU activation)
Optimizer Adam

Learning rate 10−2

Batch size 64

Table 5.3: Architecture and hyperparameters of best-performing model of feedforward neu-
ral network.

The training process of LSTM base model was done in batches with 128 data samples
within 5 epochs. Low number of training epochs caused by large dataset and high require-
ments on the resources of the LSTM neural network. Best models of the training process
for each of the input features combinations are represented in the Table 5.4

Result of base models training for the LSTM network are very similar to the result
of feedforward network architecture. Best performance is achieved with combination of
all available data for given minute of the event. Therefore, this model was chosen for
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Input Training Validation Test
Loss Accuracy Loss Accuracy Loss Accuracy

1 0.7680 0.6485 0.7544 0.6603 0.7619 0.6537
2 0.7357 0.6701 0.7250 0.6793 0.7307 0.6716
3 0.7371 0.6687 0.7392 0.6713 0.7392 0.6689
4 0.7323 0.6705 0.7226 0.6796 0.7294 0.6725

Table 5.4: Comparison of the result of training LSTM base models for each combination of
input features.

hyperparameters tuning. However, due to the high requirements on the resources and time-
consuming training of the LSTM network, architecture optimization and hyperparameters
tuning was done manually on the small number of configuration on neural network with
two LSTM layers. Following model configuration were compared 5.5

Number of hidden units 32, 64
Optimizer Adam, RMSprop
Batch size 64, 128

Table 5.5: Hyperparameters configuration for LSTM neural network optimization.

LSTM network trained with Adam optimizer with batches of 128 samples and archi-
tecture represented with the first LSTM layer with 64 hidden units and the second LSTM
layer with 32 hidden achieved the highest performance with validation accuracy of 0.6848
and loss 0.7118.

Best performing models of both neural network types were later used for the final
evaluation in terms of classification accuracy and betting performance.

5.3 Evaluation
Betting evaluation simulates a real-world betting environment, where the event’s data
changes every minute. The betting simulator has several initialization parameters such
as minimum and maximum odds for the bets, staking method, and a value bet threshold.
A value bet represents a bet where the probability of the outcome is higher than the prob-
ability reflected by the bookmaker’s odds. Therefore a value bet threshold represents the
difference between two probabilities.

Events for betting evaluation are randomly chosen from the testing set and made up 1000
events. Each event data is sorted by minute in ascending order. Therefore, the algorithm
consequently iterating over the available data minute-by-minute and model produces a
probability distribution of the event’s outcome. These probabilities are converted into odds
and compared to the actual odds. A bet is placed if it meets the predefined conditions of
the simulator, such as minimum and maximum odds, and the difference between actual and
produced odds is higher than a specified value bet threshold. Due to the uneven distribution
of classes in the data set and default goal of each team is the win, draw bets are excluded
from the betting evaluation.

By default, betting simulator odds range is limited to the range between 1.5 and 2.5 to
minimize bets on outcomes with very low probability. Value bet threshold values evaluated
starting from 0.1 and up to 0.3 with the step of 0.05.
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Moreover, betting simulator includes two types of betting stake: percentage stake, which
is set to 3%, and the Kelly stake, which is calculated for each event based on available odds
and probability of the corresponding outcome, however, if stake amount suggested by Kelly
criterion is limited to 10% to avoid betting of large amounts.

As minutes of the event is ordered naturally and simulates real-world betting environ-
ment, the first bet opportunity is used to place a bet, and no more bets could be made
for the giving event later. If the outcome is predicted correctly, the stake multiplied by
given odds is returned as winning and added to the balance. Otherwise, the bet is lost, and
the stake amount is subtracted from the available balance. The starting balance of betting
simulator is 100 units. If the actual balance drops lower than 10% of the starting balance,
evaluation stops.
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Chapter 6

Experiments and results

This chapter presents results and experiments of implemented prediction models.

6.0.1 Classification

Accuracy is representing one of the available metrics of the prediction models and reflects the
rate of correct predictions among the total number of prediction for the provided dataset.
Result of best-performing models architectures for each type of network is represented in
the Table 6.1.

Model Loss Accuracy
Feedforward 0.7204 0.6781

LSTM 0.7248 0.0.6746

Table 6.1: Model evaluation for best performing feedforward and LSTM networks.

On the available testing set feedforward network outperformed LSTM model by less than
a half percentage, however, classification accuracy for both models is equally successful and
could be considered as a relatively good result, taking into consideration fact that average
performance of the sports prediction models varies in the range between 55% and 65%.

Moreover, classification accuracy changes during the match, as at the beginning of the
event, there is still much time left, however as the match coming to its end, classification
accuracy increasing. Corresponding minute-by-minute accuracy changes are represented in
Figure 6.1, and accuracies for 15-minutes windows during the match are shown in 6.2

0m 15m 30m 45m 60m 75m 90m
Accuracy 54.07% 57.20% 60.23% 64.80% 71.06% 80.1% 93.54%

Table 6.2: Accuracy for each 15m window of the event.

6.0.2 Betting evaluation

Another metric utilized in this study is betting simulation. It allows to test trained model in
a real-world problem environment and verify how well each model performs, as classification
accuracy may not represent an actual value of the model due to uneven representation of
the classes in a training set. All bets are placed either on home win or away win, and results
of betting evaluation for different configurations are represented in 6.3 and 6.4
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Figure 6.1: Feedforward neural network classification accuracy minute-by-minute.)

Value bet Stake N of bets Accuracy Lowest balance Highest balance ROI
0.1 3% 553 37.97% 77.43(-22.57%) 233.92(+133.92%) -1%
0.1 Kelly 553 37.97% 11.16(-88.84%) 210.39(+110.39%) -4%
0.15 3% 528 38.07% 100.00(-0.00%) 311.14(+211.14%) 0.39%
0.15 Kelly 528 38.07% 11.38(-88.62%) 218.49(+118.49%) -3%
0.2 3% 496 36.29% 84.41(-15.59%) 209.18(+109.18%) -0.79%
0.2 Kelly 326 36.50% 9.99 (-90.01%) 215.17(+115.17%) -4.02%
0.25 3% 467 35.33% 65.25(-34.75%) 144.66 (+44.66%) -2.40%
0.25 Kelly 300 35.67% 9.51(-90.49%) 250.22(+150.22%) -5.14%
0.3 3% 453 35.10% 58.99(-41.01%) 145.48(+45.48%) -3.05%
0.3 Kelly 290 35.52% 9.67(-90.33%) 264.26 (+164.26%) -4.60%

Table 6.3: Feedforward neural network betting evaluation for bookmakers odds in range
between 1.5 and 3.5.

Value bet Stake N of bets Accuracy Lowest balance Highest balance ROI
0.1 3% 411 39.42% 9.97(-90.03%) 109.39(+9.39%) -14.92%
0.1 Kelly 100 40.00% 9.63(-90.37%) 110.97(+10.97%) -16%
0.15 3% 424 39.62% 9.89(-90.11%) 109.39(+9.39%) -14.48%
0.15 Kelly 99 40.40% 9.20(-90.80%) 110.97(+10.97% -17%
0.2 3% 420 39.52% 9.76(-90.24%) 109.39(+9.39%) -15.17%
0.2 Kelly 99 40.40% 9.38(-90.62%) 110.97(+10.97%) -16.52%
0.25 3% 98 38.78% 9.91(-90.09%) 113.97(+13.97%) -16.50%
0.25 Kelly 142 41.55% 9.28(-90.72%) 127.36(+27.36%) -13.37%

Table 6.4: LSTM neural network betting evaluation for bookmakers odds in range between
1.5 and 3.5.
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Results of betting evaluation for both models reveal that the LSTM model has neg-
ative ROI and each time betting evaluation has stopped due to significant balance drop.
Feedforward network has shown better results with, but the ROI of most runs are negative.
However, for a run with a value bet threshold of 0.15, the model performed with 0.39% ROI
and remain profitable. Also, Kelly criterion stake limited to the maximum of 10% turned
out to be a quite ineffective staking method, as it manipulates with relatively high amounts
and bringing more risk into the betting strategy. It results in losing most of the available
balance in case of a series of unsuccessful bets.
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Chapter 7

Conclusion

In this thesis, two types of neural networks were implemented to predict the outcomes of
football matches in real-time. Feedforward neural network achieved a classification accuracy
of 67.81% on the testing set with input features represented by an actual minute, stats,
minute odds and odds at the start of the match. However, accuracy varies depending on
the minute of the event, and starts from 54.07% at the beginning of the match and achieves
up to 93.54% accuracy at the last minute of the event. Moreover, the feedforward network
proved to be successful in the betting environment with 0.39% ROI (return on investment)
in of the configurations.

LSTM neural network achieved similar results in terms of classification accuracy, but it
failed in the betting evaluation step, as soon as each betting evaluation run ended up with
the balance dropped by more than 90%.

As a result, a feedforward neural network provides the best performance for real-time
prediction of football matches and allows to build a profitable betting strategy.

Regarding the success of the implemented models, future improvements could be made
to achieve even better results. Pre-match data could be utilized and either produce a
separate prediction model or extend an existing one. Also, there is plenty of space for
experimentation with different betting strategies and betting markets in general.
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