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Název: Populační biologie patogena borového jehličí Lecanosticta acicola (Thüm.) Syd. 

(Capnodiales, Ascomycota) 

 

Abstrakt:  

Lecanosticta acicola je vřeckovýtrusá heterotalická houba, která způsobuje hnědou 

sypavku borového jehličí na původních i nepůvodních borovicích v mnoha oblastech světa. 

Cílem této dizertační práce bylo objasnění původu populací L. acicola v Evropě a zjištění 

způsobu rozmnožování tohoto patogenu v zasažených oblastech. Jedenáct polymorfních 

mikrosatelitových markérů bylo vyvinuto pro jejich použití v populační genetice. 'Mating 

type' markéry, které amplifikují obě 'mating type' idiomorfy (MAT1-1 and MAT1-2), byly 

také navrženy a protokol pro jejich aplikaci byl optimalizován. Infikované jehlice byly 

získány ze 17 druhů borovic z Asie, Evropy a Ameriky. V součtu, 201 izolátů L. acicola 

bylo získáno z infikovaných jehlic borovic. Všechny izoláty byly charakterizovány pomocí 

mikrosatelitových markérů a 'mating type' idiomorfa byla určena pomocí 'mating type' 

markérů. Část Translation Elongation Factor 1-α genu byla sekvenována u 87 jedinců. 

Izoláty ze Střední Ameriky byly jedinečné, velmi různorodé a velmi pravděpodobně 

představují kryptické druhy. Izoláty z východní Asie vytvořili oddělenou skupinu. Dvě 

odlišné populace byly zjištěny jak v Severní Americe, tak v Evropě. Analýzy využívající 

koncept 'approximate Bayesian computation' zřetelně ukázaly, že v minulosti došlo 

k nezávislým introdukcím obou populací ze Severní Ameriky do Evropy. Z dat získaných 

z mikrosatelitů a 'mating type' markérů bylo zjištěno, že k pohlavnímu rozmnožování 

dochází jak v Severní Americe, tak v Evropě. Výsledky této dizertační práce ukázaly, 

že evropské populace L. acicola mají původ v Severní Americe. Toto je první studie 

populací L. acicola v globálním měřítku. 

 

Klíčová slova: approximate Bayesian computation, diverzita, haploidní, houba, invazní, 

Lecanosticta acicola, mating type, mikrosatelit, molekulární markéry, populační genetika  

  

 



Title: Population biology of the pine needle pathogen Lecanosticta acicola (Thüm.) Syd. 

(Capnodiales, Ascomycota) 

 

Abstract: 

Lecanosticta acicola is a heterothallic ascomycete that causes brown spot needle blight 

(BSNB) on native and non-native Pinus spp. in many regions of the world. The aim of this 

thesis was to elucidate the origin of L. acicola populations in Europe and consider the 

reproductive mode of the pathogen in affected areas. In order to study the population 

genetics of L. acicola, eleven polymorphic microsatellite markers were developed. 

In addition, mating type markers that amplify both mating type idiomorphs (MAT1-1 and 

MAT1-2) were designed and the protocols for their applications were optimised. 

Collections of diseased material were obtained from 17 host species in Asia, Europe and 

America. In total, 201 isolates from diseased pine needles were obtained. All isolates were 

screened with the microsatellite markers and the mating type idiomorph determined with 

the mating type markers. For 87 individuals, part of the Translation Elongation Factor 1-α 

gene was sequenced. The isolates from Central America were unique, highly diverse and 

most likely represent a new cryptic species. The isolates from East Asia formed a discrete 

group. Two distinct populations were identified in both North America and Europe. 

Approximate Bayesian Computation analyses strongly suggest independent introductions 

of two populations from North America into Europe. Microsatellite data and mating type 

distributions showed the presence of sexual reproduction in North America and in Europe. 

Results from this thesis have showed that European populations of L. acicola originate 

from North America. This is the first study of L. acicola populations on a global scale. 

 

Keywords: approximate Bayesian computation, diversity, fungus, haploid, invasive, 

Lecanosticta acicola, microsatellite, mating type, molecular markers, population genetics  
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1. Introduction 

Not available for publication reasons. 

 

2. Objectives of thesis 

The objectives of thesis were to elucidate the origin of European populations 

of Lecanosticta acicola and to determine the mode of reproduction of the pathogen 

in affected regions. Specific aims were: 

1) to develop polymorphic microsatellite markers for L. acicola (Appendix I.),  

2) to develop mating type markers for L. acicola (Appendix I.), 

3) to investigate the haplotypic diversity and phylogenetic relationships among different 

haplotypes (Appendix II.),  

4) to determine the genetic structure and diversity of populations (Appendix II.),  

5) to decipher the historico-demographical relationships between North American and 

European populations (Appendix II.),  

6) to determine and compare the reproductive mode in studied populations of L. acicola 

(Appendix II.).  

 

3. Materials and methods 

 

Not available for publication reasons. 

 

3.2 Development of microsatellite markers 

To determine the genetic structure and diversity of populations, polymorphic 

microsatellite markers have been developed. Microsatellite rich regions were obtained 

using the FIASCO technique (Fast Isolation by Amplified fragment length polymorphism 

of Sequences COntaining repeats; Zane et al. 2002). Enrichment of the amplified DNA 

was carried out using biotinylated probes (AC)8 and (GA)8 and DNA containing 

microsatellite repeats was captured with streptavidin MagneSphere paramagnetic particles 

(Promega, Madison, WI, USA). PCR amplicons were cloned using pT257RVector and 

JM109 competent Escherichia coli cells (Fermentas, Vilnius, Lithuania). The FIASCO 
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protocol and subsequent cloning were performed twice to increase the number of captured 

DNA regions containing polymorphic microsatellites. Eighteen primer pairs flanking 

microsatellite rich regions were designed using Primer3 Plus (Untergasser et al. 2007). The 

efficacy of the 11 labelled polymorphic microsatellite markers was tested on a population 

of 40 isolates of L. acicola obtained from diseased P. palustris needles collected 

in Mississippi, USA. 

 

3.3 Development of mating type markers 

Mating type markers were designed in terms of determination of mating type 

idiomorphs distribution in studied populations. Mating type markers were designed based 

on an alignment of DNA sequence of each idiomorph of nine species phylogenetically 

closely related to L. acicola (Cercospora beticola, C. zeae-maydis, C. zeina, 

D. septosporum, D. pini, Mycosphaerella eumusae, M. fijiensis, M. musicola and 

Passalora fulva). Two of the degenerate primer sets that worked well were further 

optimised and PCR products were sequenced to confirm correct amplification of the partial 

MAT gene. The primers were redesigned without degenerate nucleotides ('specific' 

primers). Multiplexing of specific primer sets for both MAT idiomorphs was optimised 

to decrease the number of reactions and time required for large scale population 

screenings. Amplification of both partial idiomorphs in a single PCR mix to which DNA 

of both mating types were added confirmed that there is no competition between the primer 

pairs.  

 

3.4 DNA sequencing and phylogenetic analyses 

Not available for publication reasons. 

 

3.5 Microsatellite genotyping 

Not available for publication reasons. 

 

3.6 Analyses of population structure 

Not available for publication reasons. 

 

3.7 Genetic diversity in populations 
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Not available for publication reasons. 

 

3.8 Migration scenarios 

Not available for publication reasons. 

    

3.9 Reproductive mode 

Not available for publication reasons. 
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4. Results 

 

4.1 Sample collection, isolations, DNA extractions and isolate identification 

Not available for publication reasons. 
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4.2 Development of microsatellite markers 

Eleven microsatellite markers have been developed that can be used for population studies of L. acicola (Table 2). 

 

Table 2. PCR-based microsatellite markers developed for Lecanosticta acicola. 

Locus 

name Primer name  Primer sequence (5´-3´) Panel Repeat motif 

Size of 

cloned 

allele (bp) 

GenBank 

Accession 

no. 

Ta 

(°C)† 

Alleles size 

range (bp) 

No. of 

observed 

alleles H (N=40)* 

MD1 MD1F GTTTGAGACACTGACTTGACC A (GA)9 148 KF246553 56 149 - 153 3 0.5212 

 MD1R-(PET) CACCACCATGGATGGATAGA         

MD2 MD2F-(FAM) CTTACTCCCGAGACTGGATTG A (TC)8 103 KF246554 56 97 - 105 4 0.2663 

 MD2R CCAGACCAAGAACGAAGAAA 
 

       

MD4 MD4F-(NED) ATCCGGATCTTGACCTCCT B (CT)14 169 KF246555 58 155 - 169 3 0.3038 

 MD4R CGGTAACTTCTCGCAACCT         

MD5 MD5F-(VIC) CAGGCACAAGGAGAAAGAGA B (CT)2 (TC)8T(TC)3T (TC)4 TT (TC)2 290 KF246556 57 286 - 288 2 0.095 

 MD5R TCCTCAAGACTCCTCACCTG          

MD6  MD6F-(VIC) AGAGTAAGGGAAAGGAAGAGA A (GA)7 AA (GA)9(GAA)13 169 KF246557 61 129 - 205 19 0.9270 

 MD6R CGGCTACCGTCCTAATCTAAC         

MD7 MD7F-(PET) CCAACCCGTCAATCAGAA A (CT)12 298 KF246558 56 296 - 328 11 0.8350 

 MD7R CGAGAGCGCGAGAAAGTA         

MD8 MD8F-(FAM) CACAGCACGGAAGACACGAG B (GA)20 337 KF246559 60 303 - 366 17 0.9307 

 MD8R TCTGTTTCTGAGCGGTAGGAG         

MD9  MD9F-(NED) GGGAACACACGCTCTTTG A (GT)9 220 KF246560 56 218 - 236 8 0.8213 

 MD9R GGGCAAGAAATCCAGGAC         

MD10 MD10F-(PET) CCTACCTACTTCCCTTTATATCTCC B (CT)3(TATAAC)13 224 KF246561 58 209 - 232 12 0.8638 

 MD10R TTAGGACGGTAGCCGTAGAG         

MD11 MD11F-(FAM) GTGGGATGTTTGTTGGGTAG B (TGG)3(GGGAAAT)10(GTT)3 195 KF246562 58 161 - 197 7 0.7622 

 MD11R GCCACCACAGATTGGATAAC         

MD12  MD12F-(VIC) AGTCATAAAGAACCAGGA B (GA)14 124 KF246563 48 119-133 7 0.7812 

  MD12R GCTATCTAGGCCATTGAA                 

*H – gene diversity (Nei, 1973) calculated on the population represented by 40 isolates. † - Annealing temperature. 



6 
 

4.3 Development of mating type markers 

Set of primers that amplify both mating type idiomorphs of L. acicola has been 

developed (Table 3). Correct amplification of each idiomorph of the MAT gene 

revealed that L. acicola is heterothallic ascomycete. 

 

Table 3 Mating type primers developed for Lecanosticta acicola.  

Primer name Primer sequence (5´-3´) Ta (°C) 

Md MAT1-1F CGC ATT CGC ACA TCC CTT TGT 58 

Md MAT1-1R ATG ACG CCG ATG AGT GGT GCG 58  

Md MAT1-2F GCA TTC CTG ATC TAC CGT CT 58 

Md MAT1-2R TTC TTC TCG GAT GGC TTG CG 58 

 

 

4.4 DNA sequencing and phylogenetic analyses 

Not available for publication reasons. 

 

 

4.5 Microsatellite genotyping 

Not available for publication reasons. 

4.6 Analyses of population structure 

Not available for publication reasons. 

4.7 Genetic diversity in populations 

Not available for publication reasons. 

4.8 Migration scenarios 

Not available for publication reasons. 

4.9 Reproductive mode  

Not available for publication reasons. 
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5. Discussion 

Not available for publication reasons. 

5.1 Phylogenetic relationships within L. acicola, population structure and genetic  

Not available for publication reasons. 

5.2 Evolutionary relationships between North-American and European populations  

Not available for publication reasons. 

5.3 Reproductive mode 

Not available for publication reasons. 
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6. Conclusion 

Not available for publication reasons. 
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Abstract Lecanosticta acicola is an ascomycete that causes
brown spot needle blight of pine species in many regions of
the world. This pathogen is responsible for a major disease of
Pinus palustris in the USA and is a quarantine organism in
Europe. In order to study the genetic diversity and patterns of
spread of L. acicola , eleven microsatellite markers and two
mating type markers were developed. An enrichment protocol
was used to isolate microsatellite-rich DNA regions, and 18
primer pairs were designed to flank these regions, of which
eleven were polymorphic. A total of 93 alleles were obtained
across all loci from forty isolates of L. acicola from the USA
with an allelic diversity range of 0.095 to 0.931 per locus.
Cross-species amplification with some of the markers was

obtained with L. gloeospora, L. guatemalensis and
Dothistroma septosporum , but not with D. pini . Mating type
(MAT) markers amplifying both idiomorphs were also
developed to determine mating type distribution in
populations. These markers were designed based on
alignments of both idiomorphs of nine closely related plant
pathogens, and a protocol for multiplex PCR amplification of
the MAT loci was optimised. The MAT markers are
not species specific and also amplify the MAT loci in
Dothistroma septosporum, D. pini , L. gloeospora and
L. guatemalensis . Both types of genetic markers developed
in this study will be valuable for future investigations of the
population structure, genetic diversity and invasion history of
L. acicola on a global scale.

Keywords Mycosphaerella dearnessii . Mating type
markers .Microsatellite . Cross-species amplification .

Fungi . Forest pathogen

Lecanosticta acicola (Thüm.) Syd. (syn: Mycosphaerella
dearnessii M. E. Barr) is a haploid ascomycete causing brown
spot needle blight of various pine species. L. acicola is
thought to be native in Central America where it occurs on
pine species growing in tropical and temperate zones (Evans
1984) and in the South-Eastern USAwhere brown spot needle
blight is the major disease on Pinus palustris Mill. (Sinclair
and Lyon 2005). L. acicola has also been found on other
continents including South America (Gibson 1980), Asia
(Suto and Ougi 1998) and Europe (Anonymous 2008).

The global movement and introductory pathways of
L. acicola are poorly understood (Huan et al. 1995).
Microsatellites are useful genetic markers to detect genetic
variation within and between populations and can be used to
infer migration pathways and histories of the invasions of
plant pathogens (e.g. Fontaine et al. 2013).
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The aims of this study were to develop polymorphic
microsatellite markers for L. acicola that can be used to
determine the genetic diversity of populations, as well as
mating type markers designed to determine mating type
distribution in populations. Cross-species amplifications of
the microsatellite and mating type markers were tested
on the phylogenetically related pine needle pathogens,
Dothistroma septosporum (G. Dorog.) M. Morelet, D. pini
Hulbary, Lecanosticta gloeospora H. Evans and
L. guatemalensis Quaedvlieg & Crous.

To screen for microsatellite rich regions in L. acicola, the
FIASCO technique (Fast Isolation by Amplified fragment
length polymorphism of Sequences COntaining repeats) was
used (Zane et al. 2002). Genomic DNAwas extracted from six
L. acicola cultures from Estonia, Italy, Japan, Slovenia,
Switzerland and the USA following the protocol of Smith and
Stanosz (1995) and quantified using a spectrophotometer.
Equal concentrations of DNA from each isolate were pooled
together and 250 ng of DNAwas used for one-step digestion-
ligation reaction with MseI and AFLP adaptors (Zane et al.
2002). This step was followed by PCR with an optimised
number of 23 cycles to avoid over-amplification that leads to
high clone redundancy. Enrichment of the amplified DNAwas
carried out using biotinylated probes (AC)8 and (GA)8. DNA
containing microsatellite repeats was captured with streptavidin
MagneSphere paramagnetic particles (Promega, Madison, WI,
USA) and washed 4× with SSC solutions for high and 2× for
low stringency (Arthofer et al. 2007). EnrichedDNAwas eluted
with pre-warmed sterile water and amplified by PCR using
adaptor primers. PCR amplicons were purified with
peqGOLD kit (PeqLab, Erlangen, Germany) and cloned using
pT257RVector and JM109 competent Escherichia coli cells
(Fermentas, Vilnius, Lithuania). The FIASCO protocol and
subsequent cloning were performed twice to increase the
number of captured DNA regions containing polymorphic
microsatellites.

In total, over two hundred transformed colonies were
inoculated onto master plates and transferred to Nylon
membranes (Roche, Mannheim, Germany) following the
manufacturers recommendations. This was followed by
hybridisation, washing steps and screening to identify
transformed E. coli colonies containing inserts with simple
sequence repeats. Approximately 60 colonies which were
expected to contain microsatellite regions were selected and
pre-screened with PCR containing (AC)8 and (GA)8
oligonucleotides as primers (Arthofer et al. 2007). Thirty-
nine plasmids showing positive reaction were sequenced and
sequence data analysed using BioEdit version 7.1.3 (Hall
1999). Eighteen primer pairs flanking microsatellite rich
regions were designed using Primer3 Plus (Untergasser et al.
2007).

To screen the microsatellite loci for polymorphisms, PCRs
were performed with DNA extracted from L. acicola isolates

from South Korea, Germany and the USA. PCRs were run in
20 μl reaction volumes consisting of 2 mM MgCl2, 100 μM
dNTPs, 0.2 μM of the forward and reverse primer for each
locus, 0.2 U Taq polymerase (Fermentas, Vilnius, Lithuania),
1× (NH4)2 SO4 buffer (Fermentas) and 2.0 μl of genomic
DNA. PCR cycling conditions consisted of 2 min denaturation
at 94 °C, 35 cycles including 94 °C for 30 s, 55 °C for 45 s and
72 °C for 60 s, and an extension step at 72 °C for 15 min. The
annealing temperature was decreased to 48 °C for the primer
pair MD12. Amplicons were sequenced to verify the presence
of the microsatellite repeat and to determine the polymorphism
of the repeat length. One primer of each of the eleven primer
pairs amplifying polymorphic regions was fluorescently
labelled (Table 1; Applied Biosystems, Cheshire, UK) for
fragment analyses.

The efficacy of the 11 labelled polymorphic microsatellite
markers was tested on a population of 40 isolates of L. acicola
obtained from diseased P. palustris needles collected in
Mississippi, USA. Single PCRs were performed in 8 μl
volumes (as above), and annealing temperatures were
optimised for each primer pair. PCR products were pooled into
two panels for fragment analyses according to Table 1. Pooled
PCR products were loaded on an ABI 3730XL (Applied
Biosystems) and sized with LIZ 500 standard. Alleles were
scored using programs GeneMapper 4.1 and PeakScanner
(Applied Biosystems). A total of 93 alleles were obtained
across all 11 loci ranging from between 2 and 19 alleles per
locus (Table 1). Allelic diversity (Nei 1973), calculated using
PopGene 1.31 (http://www.ualberta.ca/~fyeh/popgene.html),
ranged between 0.095 and 0.931 per locus with an average
heterozygosity of 0.65 over 11 loci. Pairwise linkage
disequilibrium (P <0.05) tested across all loci following 1,000
randomisations using Multilocus v1.3b (Agapow and Burt
2001) showed no evidence of linked loci.

Cross-species amplification of the 11 markers was tested on
other closely related species, including two isolates of
D. septosporum from the Czech Republic, one isolate ofD. pini
from Ukraine and one from the USA, four isolates of L.
gloeospora from Mexico and nine isolates of L. guatemalensis
from Guatemala. Amplification was successful with markers
MD2, MD6, MD7, MD9 and MD10 for D. septosporum ,
whereas none of the markers amplified in D. pini . All markers
except MD1, MD4 and MD8 amplified L. gloeospora.
L. guatemalensis was amplified with all markers except for
MD5, MD8, MD10 and MD12.

In order to develop markers that amplify the MAT regions
of L. acicola , the mating type DNA sequences for each
idiomorph of nine species phylogenetically closely related to
L. acicola (Cercospora beticola , C. zeae-maydis , C. zeina ,
D. septosporum , D. pini , Mycosphaerella eumusae ,
M. fijiensis ,M. musicola and Passalora fulva), obtained from
Genbank (http://www.ncbi.nlm.nih.gov/), were aligned, and
several different sets of degenerate primers were designed in
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the conserved regions of each idiomorph of the MAT gene.
Two of the degenerate primer sets that worked well (Table 2,
Online Resource 1) were further optimised, and PCR
conditions consisted of 7.25 μl H2O, 2.5 μl MyTaq™ Mix
(Bioline; MA, USA), 0.25 μl of each primer, 0.25 μl
MyTaq™ DNA Polymerase (Bioline) and 2 μl of gDNA in
a total volume of 12.5 μl. Cycling conditions consisted of
10 min denaturation at 94 °C, 40 cycles of 30 s at 94 °C, 45 s
at 56 °C, 45 s at 72 °C and a last extension at 72 °C for 10min.
PCR products were sequenced using forward and reverse
primers to confirm correct amplification of the partial MAT
gene, and sequence data were analysed using CLC Main
Workbench 6.0. The primers were redesigned without
degenerate nucleotides (‘specific’ primers) according to the
sequence results obtained (Table 2, Online Resource 1). PCR
conditions were the same as for the degenerate primers except
for the annealing temperature that was increased to 58 °C.

Multiplexing of specific primer sets for both MAT
idiomorphs was optimised to decrease the number of reactions
and time required for large scale population screenings.
Genomic DNA from two isolates of different mating types
was pooled and amplified in a single PCR tube to verify there
is no competition between the primers. Multiplexing was
optimised using Fast Start chemistry: 12.5 μl reaction mix
composed of 7.9 μl H2O, 1.25 μl FastStart PCR Buffer
(Roche, Mannheim, Germany), 0.25 μl 10 mM nucleotide
mix, 0.5 μl of each primer, 0.1 μl FastStart Taq DNA
Polymerase (Roche) and 2μl of gDNAusing the same cycling
conditions as described above. Amplification of both partial
idiomorphs was visualised on 2 % agarose gel under UV light
(Online Resource 2). The population of L. acicola from
Mississippi was screened using multiplex PCR. The MAT
primers were also tested for the amplification success on the

identical isolates of two species of Dothistroma, L. gloeospora
and L. guatemalensis as for the microsatellite markers.

The newly designed ‘specific’ mating type primers
amplified regions of both idiomorphs of the MAT gene and
were confirmed with sequencing. The MAT1-1-1 amplicon of
560 bp in length (GenBank accession no. KF688139)
showed 79 % nucleotide identity and 55 % amino acid
identity with D. pini MAT1-1-1. The 288 bp MAT1-2
amplicon (GenBank accession no. KF688140) showed only
66 % nucleotide similarity with that of D. pini. The correct
amplification of the MAT1-2 was, therefore, confirmed by
the presence of an intron in the conserved amino acid serine,
common to all ascomycetes (Online Resource 1; Arie et al.
1997).

Correct amplification of each idiomorph of the MAT gene
revealed that L. acicola is heterothallic. Amplification of both
partial idiomorphs in a single PCRmix to which DNA of both
mating types were added confirmed that there is no
competition between the primer pairs. The MAT markers
developed for L. acicola in this study successfully amplified
the respective mating type idiomorphs in all 40 isolates tested.
Results revealed the presence of 22 MAT1-1 and 18 MAT1-2
isolates in the collection of isolates fromMississippi, strongly
indicating a sexual mode of reproduction in this population.
Furthermore, both primer sets successfully amplified MAT
sequences from related fungi, including both species of
Dothistroma tested. All four isolates of L. gloeospora were
identified as having the MAT1-1-1 locus and L. guatemalensis
revealed the presence of both mating types (7 isolates possessed
theMAT1-1-1 locus and 2 isolates theMAT1-2 locus). Thus the
MATmarkers are not species specific and are likely to be useful
for identification of mating types in other closely related taxa,
such as the recently described species of Lecanosticta from
Central America (Quaedvlieg et al. 2012).

We have shown that the eleven microsatellite markers
developed in this study are robust and will be useful for future
population studies of L. acicola . In addition, we have also
provided a tool whereby the mating type and mating type
distribution of the isolates in a population can be determined.
This will be applicable for investigations of global population
diversity and structure of L. acicola .
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Table 2 Mating type primers developed for Lecanosticta acicola

Primer name Primer sequence (5′-3′) Ta (°C)

Degenerate primers:

MAT1-1 F1 CGC ATT YGC RCATCC CTT TGT 56

MAT1-1R2 ATGAYGCCGAYGAGTGGWGCGCA 56

MAT1-2 F1 GCR TTC MTG ATC TAY CGY CT 56

MAT1-2R2 TTC TTC TCG GAY GGC TTG CG 56

Specific primers:

MdMAT1-1 F CGC ATT CGC ACATCC CTT TGT 58

Md MAT1-1R ATG ACG CCG ATG AGT GGT GCG 58

MdMAT1-2 F GCATTC CTG ATC TAC CGT CT 58

Md MAT1-2R TTC TTC TCG GAT GGC TTG CG 58
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Online Resource 1 

 

Positions of the specific mating type primers. Primer positions are indicated (arrows) in full-

length idiomorphs of the putative MAT gene of D. pini (GenBank No.: DQ915449.1, 

DQ915451.1) as the complete L. acicola MAT region sequences are not available. Putative 

genes (alpha domain-containing and HMG domaincontaining) are represented by grey boxes; 

coding sequences are represented by black boxes.  

  



Online Resource 2 

 

 

PCR amplicons of parts of the MAT1-1-1 and MAT1-2 idiomorphs of Lecanosticta acicola 

obtained using the MAT primers in multiplex PCR. 



Appendix II. Sexual reproduction in Europe and multiple introductions from North America 

for an important pine needle pathogen 
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Supplementary material 

Table S1. Details for the Lecanosticta acicola isolates (N=201) obtained from needles of Pinus spp. used in this study including culture 

collection and GenBank accession numbers, mating type idiomorph, geographical origin and coordinates, description of site/stand type, host 

species, date of collection, collector/supplier and, where available, the altitude of the collection site. 

Not available for publication reasons. 



Table S2. Prior and posterior distributions of demographic, historic and mutation parameters estimated and used in the ABC analyses. 

Not available for publication reasons.  



Table S3.  Model checking using 26 summary statistics not used for the previous ABC 

model selection in Table S2. 

Not available for publication reasons.   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

  



Figure S1. Refined results of STRUCTURE analysis for K=2 of the blue cluster 

observed in Fig. 3. 90 L. acicola isolates are presented as bar plots (clone corrected data). 

Each isolate is represented by one vertical line. 

Not available for publication reasons. 

 

  



Figure S2. PCA results of blue cluster of L. acicola presented on two principal axes. Red 

squares represent European isolates and white squares north-east North American 

isolates. 

Not available for publication reasons. 

 

  



Figure S3. Graphical representation of 6 scenarios of the demographic history tested by 

the program DIYABC. 

Not available for publication reasons. 
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