Jihočeská univerzita v Českých Budějovicích

Přírodovědecká fakulta

Teoretické studium interakce derivátů helicenu s DNA

Bakalářská práce

Jiří Kubelka

Školitel: doc. Mgr. Martin Kabeláč, PhD.

Kubelka, J., 2018: Teoretické studium interakce derivátů helicenu s DNA. [Theoretical study of helicene derivatives interaction with DNA. Bc. Thesis, in Czech] 64 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Annotation

This thesis conducts a research on the field of interactions between ds-DNA and [6]helicene and its two derivatives using computational chemistry methods, PM6-D3H4X and DFT (BLYP functional). We focused on two main bonding motifs, i.e. intercalation and groove binding, and we evaluated their interaction energies via counterpoise method. The binding is weakly stereospecific and the intercalation is preferred to groove binding. Besides, we discussed applicability of used semi-empirical method for computing of such complexes.

Prohlašuji, že svoji bakalářskou práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své bakalářské práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce. Rovněž souhlasím s porovnáním textu mé kvalifikační práce s databází kvalifikačních prací Theses.cz provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů.

V Českých Budějovicích dne 18. 4. 2018

Tímto bych rád poděkoval svému školiteli za projevovanou ochotu při napomáhání a řešení problémů a pevné nervy s mou povahou. Mé druhé poděkování bych rád věnoval své sestře za trpělivost a za důvěru, kterou ve mě vložila.

Obsah

1	Seznan	n zkratek 1
2	Teoreti	cká část2
4	2.1 Úv	vod2
4	2.2 Не	liceny
	2.2.1	Historie a způsoby přípravy7
	2.2.2	Využití helicenů
	2.3 Те	oretická chemie10
	2.3.1	Úvod10
	2.3.2	Metody
	2.3.3	Bázové funkce17
	2.3.4	BSSE
3	Experin	nentální část
	3.1 Cí	l práce
	3.2 M	etodika
	3.2.1	Vstupní data
	3.2.2	Optimalizace systému
	3.2.3	Výpočet interakční energie
4	Výsled	ky a diskuse
4	4.1 Vý	ýsledky24
	4.1.1	Hel-DNA interakce
	4.1.2	iHel-DNA interakce
	4.1.3	FlavoHel-DNA interakce
4	4.2 Di	skuse
5	Závěr.	
6	Bibliog	grafie
7	Přílohy	<i>r</i>

7.1	Hel-DNA komplexy	46
7.2	iHel-DNA komplexy	52
7.3	FlavoHel-DNA komplexy	60

1 Seznam zkratek

PM6 – Parametrized Method VI; semi-empirická metoda 6

- DFT Density Functional Theory; teorie funkcionálu hustoty
- CD cirkulární dichroismus (analytická metoda)
- BOA Born-Openheimerova
- HF metoda Hartreeho-Focka
- SE Semi-Empirická metoda
- IR infra červené spektrum
- NMR nukleární magnetická rezonance (spektrum magnetické rezonance)
- NDO Neglect of Diferential Overlap
- SCF Self-Consistent Field
- CFA Central Fieald Approximation
- MP Moller-Plesset Perturbation Theory
- LDA Local Density Approximation

BLYP – označení funkcionálu v metodě DFT, sestávající z Beckeho výměnného potenciálu a korelačního potenciálu Leeho, Parra a Younga.

- STO Slater-Type Orbitals; orbital Slaterova typu
- GTO Gaussian-Type Orbitals; orbital Gaussova typu
- DZ Double Zeta
- TZ Triple Zeta
- MD Molekulární Dynamika
- dsDNA dvouvláknová DNA

2 Teoretická část

2.1 Úvod

Malé organické molekuly vážící se na strukturu DNA jsou v poslední době významnou skupinou látek studovaných zejména z farmakologického hlediska. Jedná se o látky, které svou přítomností vyvolávají změny v primární až terciární struktuře DNA jejím rozvolněním - tj. změnou vzdálenosti mezi bázovými patry, změnou torzních úhlů v cukr-fosfátové páteři, atp., mající za následek například omezené fungování proteinů v procesu transkripce (inhibice topoisomerasy I a II), inhibici kondenzace chromosomů. ^(1; 2; 3) Interakce mezi DNA a ligandem můžeme dělit podle typu vazby (na kovalentní a nekovalentní) a podle místa interakce ligandu s DNA (na žlábkovou interakci a interkalaci), viz obrázek 1 ⁽¹⁾.

Obrázek 1: Porovnání vazebných míst malých molekul ve struktuře DNA. Přejato a upraveno z (2).

Interkalace je implementace malé molekuly (nebo specifické části molekuly) do struktury DNA tak, že se tato molekula vmezeří mezi sousední páry bází. Tím se vzdálenost mezi těmito páry zvětší přibližně na dvojnásobek. Zároveň dojde i ke změně úhlů mezi jednotlivými páry bází a tím ke změně celkové struktury DNA ⁽¹⁾. Běžným

interkalátorem je molekula (nebo její část) obsahující obvykle tři šestičlenné cykly, které přibližně odpovídají svou velikostí páru bází (obrázek 2). Takováto interakce je pak případně dále stabilizovaná iontovými interakcemi – respektive ion-dipólovou interakcí, pokud je interkalátor nositelem kladného náboje (formálního i parciálního) v okolí cukr-fosfátové páteře (ta je nositelem záporného náboje), viz obrázek 3. ^(1; 3) Rozvolnění struktury DNA v místě jejich interakce s biomakromolekulou ⁽³⁾, může být důvodem pro zastavení procesu transkripce či jejímu nepřesnému průběhu a na interkalátory je tak běžně nahlíženo jako na potenciální karcinogeny,

Obrázek 2: Superpozice proflavinu a páru bází, demonstrující porovnatelnost jejich velikostí.

Obrázek 3: Molekula proflavinu, aminové skupiny pomáhají stabilizovat molekulu v interkalované pozici.

Vazba do žlábků DNA je interakcí, jež není nijak omezovaná typem interagující sloučeniny. Většina biologicky aktivních látek (proteinů) se váže právě pomocí žlábkových interakcí na molekulu DNA s převažující vazbou do velkého žlábku, v menší míře i do malého a eventuálně do obou zároveň ⁽⁴⁾. V případě interakce lokalizované ve velkém žlábku jsou těmito molekulami převážně dlouhé polyamidové řetězce, schopné rozlišování

bázové sekvence DNA ⁽¹⁾. Ligandů vážících se do malého žlábku je pak celá řada (například trabectidin – využívající se v protitumorové léčbě – dystamicin A a jeho deriváty) ⁽³⁾ Na rozdíl od interkalace je vazba do žlábků omezována solvatačními efekty ⁽¹⁾.

Některé molekuly mohou oba vazebné motivy kombinovat – jednou svou částí interkalují do struktury DNA a postranními řetězci se váží ve žlábku DNA (například actinomycin).

Obrázek 4: Vazba actinomycinu do struktury DNA. Jedná se o kombinaci interkalace a vazby do malého žlábku. Přejato z (1).

2.2 Heliceny

Mezi aromatické organické molekuly schopné interagovat s molekulou DNA patří i skupina látek nazvaná heliceny, i když se svými vlastnostmi a tvarem typickým zástupcům aromatických sloučenin poněkud vymykají.

Pro aromatické struktury platí tři pravidla, při jejichž splnění můžeme říci, že látka je aromatická. Prvním je konjugace dvojných a jednoduchých vazeb v cyklickém polyenu. Dalším je splnění takzvaného Hückelova pravidla, jež udává, že počet π elektronů musí být 4n+2, přičemž n je počet cyklů v sloučenině, jejíž aromaticitu zkoumáme. Poslední pravidlo hovoří o tom, že látky mají být planární. Výjimku z tohoto pravidla však tvoří heliceny, které mají aromatický charakter, přestože planární nejsou.

Důvodem pro jejich neplanaritu je sterický překryv. Tím je myšleno, že pokud bychom vzali již první člen homologické řady, tedy [4]helicen, tak bychom se při jeho planárním uspořádání dostali do situace, kdy by se vodíky vázané na koncových jádrech překrývaly. Proto dochází k deformaci původně planární molekuly, jinými slovy, příslušné torzní úhly budou odlišné od 180 °, a jejich hodnota bude závislá na počtu podjednotek ⁽⁵⁾.

Vzhledem k tomu, že se při názvosloví užívá dvojího způsobu pojmenovávání, zmíním ho již nyní, aby při dalším čtení nedocházelo k nedorozumění. Prvním způsobem je vypsání počtu podjednotek do hranaté závorky před název helicenu, tedy [n]helicen bude mít n nakondenzovaných benzenových jader a tvořících páteř helicenu. Druhým obdobným způsobem pojmenováním těchto sloučenin je jmenovité uvedení počtu podjednotek, např. tetrahelicen, pentahelicen. Ve své práci se budu držet pojmenování [n]helicen.

Heliceny, obdobně jako jiné organické sloučeniny, tvoří homologickou řadu. Nejmenším zástupcem je [4]helicen. Kondenzací dalších jader do *ortho* polohy ve směru otáčení se tvoří další homology. Na jeden závit (otáčku) helixu připadá šest nakondenzovaných podjednotek. Při využití jiných podjednotek (nemusí jít vždy o benzenové kruhy ale i o jiné sloučeniny mající aromatický charakter) dochází k témuž jevu, jen úhly budou (dáno stérickými důvody) pozměněny oproti helicenům tvořeným benzenem a jeho heteroatomárními deriváty.

Na obrázku 5 je možno vidět homologickou řadu helicenů tvořených benzenovými kruhy, počínaje [4]helicenem až po [16]helicen (vyjma [15]helicenu).

Obrázek 5: Homologická řada helicenů, seřazena vzestupně dle počtu nakondenzovaných benzenových kruhů, přejato a upraveno (5).

Z obrázku 5 lze vyčíst i další vlastnost těchto sloučenin. Obdobně jako některé biomakromolekuly spadají i heliceny do struktur chirálních s helikální stereogenní jednotkou. Helikální stereogenní podjednotkou se rozumí řetězec čtyř po sobě jdoucích atomů neležících ve stejné rovině, tvořících helix. Helix je definována třemi parametry, čímž se potvrzuje, že se jedná o chiralitu. Těmito parametry jsou chod, smysl závitu kolem osy a osa samotná. Pravotočivý helix je v názvech označována stereodeskriptorem *P*, plus, nebo (+), levotočivý pak *M*, minus, tedy (–) ⁽⁶⁾.

Heliceny jsou známy již 100 let, ačkoliv se netěší takové známosti jako jim blízké struktury planárních polycyklických aromatických sloučenin. Polycyklické benzenoidní látky jsou isomery lišící se pouze způsobem, jakým jsou vzájemně nakondenzovány benzenové podjednotky ⁽⁷⁾, a jejich sterickým uspořádáním, jež je dáno vzájemnou polohou podjednotek, viz obrázek 6.

Obrázek 6: Srovnání benzenoidních isomerů sestávajících z 6 podjednotek, zleva: [6]helicen, [6]acen a [6]phenacen.

Heliceny jsou sloučeniny mající všechny podjednotky, bavíme-li se pouze o helicenech tvořených benzenovými kruhy, nakondenzované do polohy *ortho* v jednom směru otáčení. Jim nejbližší příbuzné látky jsou phenaceny. Ty mají benzenové kruhy nakondenzované rovněž do polohy *ortho*, ovšem mění se strany s každým nakondenzovaným kruhem. To vyúsťuje v planaritu phenacenu. Třetí isomerní polycyklickou benzenoidní skupinou látek jsou aceny, které mají benzenová jádra nakondenzována v poloze *para* (do této skupiny patří např. naftalen, antracen aj.)⁽⁵⁾.

Tento rozdíl je demonstrován na obrázku 6, kde můžeme porovnat strukturu tří isomerů polyaromátů, [6]helicenu, [6]phenacenu a [6]acenu.

Jako ostatní organické látky můžeme i heliceny rozdělit dle složení na dvě základní skupiny, a to na karboheliceny (obsahují pouze uhlík a vodík ve své struktuře) a deriváty obsahující heteroatom ve své struktuře. Deriváty helicenů se potom dělí na ty, jež obsahují heteroatom vázaný v kostře helicenu (nahrazen je alespoň jeden uhlík podjednotky), – heteroheliceny, a na ty, jež mají heteroatom obsažený ve funkční skupině vázané na základní strukturu helicenu ⁽⁵⁾.

2.2.1 Historie a způsoby přípravy

První doložený záznam o přípravě helicenu je z roku 1913, kdy byl připraven nejmenší homolog ([4]helicen). Tento pokus byl po pěti letech, tedy v roce 1918, zopakován a byla potvrzena příprava polyaromatické látky, která není planární. V témže

roce byl vyprodukován i [5]helicen, ovšem pouze s malou výtěžností a ne zcela přesvědčivou čistotou, mající původ v přítomnosti planárního isomeru, jenž způsobil to, že nešlo sloučeninu dokonale purifikovat. Struktura tohoto helicenu byla podrobena i rentgenové strukturní analýze, ovšem až později, kdy se podařilo tento helicen připravit v čisté formě. Dalším velkým milníkem bylo vyprodukování [6]helicenu, který byl syntetizován a podroben RTG strukturní analýze na pomezí let 1955 a 1956. Díky této práci, jež přinesla několik inovativních přístupů na získávání některých dat, bylo započato širší zkoumání helicenů ⁽⁵⁾.

Způsoby přípravy helicenů se liší v závislosti na velikosti výsledného helicenu a na tom, zda chceme syntetizovat jeden konkrétní enantiomer, nebo racemickou směs. V průběhu historie studia helicenů se vyvíjely různé metody od fotochemicky iniciovaných reakcí po stereospecificky katalyzované reakce. Mezi tyto reakce patří cykloisomerace, fotoisomerace, Diels-Alderovy reakce aj. Vzhledem k nárůstu důležitosti přípravy opticky čistých látek se v poslední době výzkumy helicenů soustředí na přípravu čistých enatiomerů^(5; 8).

2.2.2 Využití helicenů

Chiralita helicenů se dá využít pro studium interakcí s chirálními látkami přirozeně se vyskytujících se v živých organismech. V případě helicenů byl ale od začátku jejich studia problém vytvořit heliceny v jiné formě, nežli jako racemickou směs, tedy směs obsahující oba enantiomery v poměru 1:1. Pro přípravu čistých enantiomerů nutné použít speciálních kolon pro LC, pomocí nichž mohly být tyto sloučeniny separovány ⁽⁸⁾. Díky neustálému vývoji způsobů přípravy helicenů a jejich derivátů lze dnes enantiomery získat o čistotě vyšší jak 99 % ⁽⁸⁾. Díky tomu, že tedy máme k dispozici sloučeniny s výše uvedenými vlastnostmi a v dostatečné čistotě, můžeme zkoumat sílu interakcí mezi opticky čistými heliceny a biologicky aktivními chirálními látkami, jako jsou například proteiny a DNA. Možnost kontrolovat pomocí malých chirálních sloučenin replikaci DNA či syntézu RNA by byl pozitivní krok při konstruování nových druhů léčiv ⁽⁹⁾.

Nižší homology helicenů patří do skupiny látek, které se mohou vázat nejen do malého žlábku, ale mohou i interkalovat. Karcinogenita se v případě helicenů studovala převážně u jejich derivátů, ovšem byly studované i samotné heliceny ⁽¹⁰⁾.

Interakce helicenů s přírodními látkami může být zkoumána jak *in vitro*, tak teoreticky (za pomoci metod výpočetní chemie). Při experimentech se využívá spektroskopických

vlastností helicenů, daných přítomnosti konjugovaného systémem π -vazeb. Při vazbě na biomolekulu dojde ke změně intenzity a posunu vlnových délek emitovaného nebo absorbovaného světla (například při metodě CD). Tyto změny jsou indikátorem síly interakce mezi helicenem a druhou látkou, respektive jsou indikací poměru vázaných látek ^(10; 11).

Mimo výše zmíněného využití v biochemii mají heliceny široké využití jako barviva, asymetrické katalyzátory, v oblasti elektroniky nebo například pro syntézu C_{60} ^(10; 12)

2.3 Teoretická chemie

2.3.1 Úvod

Pro studium interakcí biomolekul s různými, člověkem často vytvořenými, látkami je vhodné použít metod, kdy bude činidlo spotřebováno v minimálním množství, nebo nebude spotřebováno vůbec. A to například z důvodu složitosti nebo ekonomické náročnosti jeho výroby⁽⁸⁾.

Technikou, která tyto požadavky splňuje, jsou výpočetní metody teoretické chemie. Výpočetní chemie je relativně nový obor, mající základ ve fyzikálním popisu těles, přeneseným na chemické systémy (ionty, atomy, molekuly, atd.). Fyzikální základ pro výpočty se odvíjí od míry přesnosti jednotlivých použitých metod popisujících studovaný systém. V závislosti na velikosti systému je totiž třeba pro efektivní využití výpočetních kapacit (kvůli náročnosti matematických operací nutných pro získání výsledku) zavést jisté aproximace (od těch, které výsledek téměř neovlivní – například využití časově nezávislé Schrödingerovy rovnice – po ty, které jsou nutné pro reálné získání výsledku, kdy by jinak byla zátěž na výpočetní techniku příliš velká a výsledku bychom se tak nedobrali)⁽¹²⁾.

Při výpočtech v teoretické chemii vycházíme ze dvou základních předpokladů. Prvním z nich je studium systému ve stacionárním stavu, nebo se tomuto stavu blížícímu, kdy se systém mění velice pomalu vzhledem k rychlostem částic v tomto systému. Tento předpoklad vyústí v to, že se pro výpočty bude používat časově nezávislá Schrödingerova rovnice [1].

$$\widehat{H}\Psi = E\Psi$$
[1]

Operátor \hat{H} je tzv. Hamiltonův operátor (Hamiltonián), který nám udává, jak spočíst celkovou energii systému. Obsahuje ve svém předpisu jak kinetickou, tak potenciální energii, viz rovnice [2].

$$\widehat{H} = \widehat{T} + \widehat{V}$$
[2]

Operátor \hat{T} je operátor pro kinetickou energii částic ve studovaném systému a operátor \hat{V} je operátorem potenciální energie, v molekulách obvykle popsanou jen coulombickou interakci mezi nabitými částicemi.

Pro částici s jedním elektronem je ještě Hamiltonián analyticky řešitelný, ovšem již pro dvouelektronový systém je třeba použít aproximativní řešení, protože v členu \hat{V} bude zahrnuta

energie nejen pro interakci proton-elektron, ovšem bude zde i člen interakcí mezi elektrony, který způsobuje nemožnost řešit tento systém analyticky.

Druhou základní aproximací je pak Born-Oppenheimerova aproximace (BOA). BOA vychází z rozdílné rychlosti pohybu elektronů a jader. Elektrony se pohybují v poli mnohem těžších, a tudíž i pomaleji se pohybujících, jader. To umožňuje separaci jaderného a elektronového pohybu, tedy elektrony se budou pohybovat v poli nehybných jader.

Díky této aproximaci je pak možné geometricky optimalizovat strukturu systému, konkrétně změnou vzdáleností jader nebo vazebných úhlů (vazebních nebo torzních), které jsou brány jako parametry pro daný výpočet ^(12; 13).

2.3.2 Metody

Metodiku studia látek můžeme rozdělit podle velikosti studovaného systému, respektive počtu atomů v daném systému, anebo dle jevů, jež nás u studovaného systému zajímají. Pomocí teoretické chemie můžeme zjistit optimální rozložení atomových jader ve struktuře, takzvanou optimalizovanou strukturu, energii studovaného systému za konstantních geometrických parametrů, různé fyzikálně chemické veličiny, nebo třeba pro velké systémy i časovou závislost intermolekulárních nebo intramolekulárních interakcí. ⁽¹²⁾

Studium menších systémů (v řádu mezi několika desítkami až stovkami atomů) lze provést nejkomplexnějšími metodami, tedy těmi nejméně aproximativními, nazývanými *ab initio* (z latiny, znamenající "od počátku") metodami, jež jsou ovšem časově a výpočetně velmi náročné. Při studiu větších systémů (řádově přes sta atomů) se využívá semi-empirických (SE) metod, zahrnujících další aproximace pro matematické výpočty. Tyto metody se používají zejména pro optimalizaci struktur před použitím metod přesnějších ^(12; 13; 14).

Nejméně výpočetně náročné jsou metody empirické, které na rozdíl od ostatních nevychází z kvantové mechaniky, ale klasické, tedy z Newtonových pohybových zákonů a Coulombova zákona. Atomy se v této metodě berou jako koule, vazby pak jako pružiny. Z tohoto důvodu se tato metoda dá využívat jako vhodný prostředek pro studium časové závislosti chování velkého systému, neboť neobsahuje složité integrály popisující chování elektronů.

11

2.3.2.1 Ab initio

Termínem *ab initio* se označují metody výpočetní chemie založené na co nejméně aproximované Schrödingerově rovnici pro popis vlnové funkce, viz rovnice [1].

Nejzákladnější metodou je metoda Hartreeho-Focka (HF), která původní popis pomocí víceelektronové vlnové funkce nahrazuje součinem jednoelektronových (ten se označuje jako Hartreeho produkt). Interakce mezi elektrony v studovaném systému není brána explicitně, ale pouze jako interakce elektronu se zprůměrovaným polem ostatních elektronů. Tento model se nazývá aproximací centrálního pole (Central Field Approximation). Metoda HF funguje na základě variačního teorému, tedy energie získaná touto metodou je větší (tedy méně negativní) oproti skutečné energii systému. S použitím lepších bází atomových orbitalů spěje hodnota energie k limitní hodnotě energie, označované jako HF-limit, odpovídající výpočtu metody HF s nekonečně velkou bází ^(12; 13).

Molekulové orbitaly jsou popsány pomocí lineární kombinace atomových orbitalů, popsaných bázovými funkcemi (bázovými sety, popsány v kapitole 2.2.4), vedoucím k Roothaanovým-Hallovým rovnicím. Prvním krokem procedury je počáteční odhad rozvojových koeficientů a energie, vycházející z jednodušší (obvykle semi-empirické) metody. Následné řešení pak probíhá iterativním postupem, označovaném jako metoda self-konzistentního pole (z anglického Self-Consistent Field, SCF), kdy postupným vylepšováním rozvojových koeficientů v lineární kombinaci dochází ke zpřesňování hodnot výsledné energie. Metoda HF se občas, kvůli použití SCF metody označuje jako HF-SCF, či HF – MO-LCAO. Celá procedura SCF je ukončena, pokud v posledním kroku nedojde ke změnám hodnot koeficientů a energie o hodnotu větší než je námi, nebo standardně programem, nastavený limit^(13; 14).

K dalšímu zpřesnění výsledků (hodnoty energie, geometrie systému) je potřeba zavést korelaci na vzájemné působení elektronů, které ovlivňuje jejich pozici. Toto působení není bráno v potaz v metodě HF, ovšem v některých systémech jej není možné zanedbat pro dosažení kvalitního výsledku, tedy například správné geometrie, či spektroskopických vlastností. Tyto metody jsou označovány souhrnně jako metody korelační a patří mezi ně Møllerova-Plessetova perturbační teorie, zobecněná metoda valenční vazby, multikonfigurační SCF metoda, metoda konfigurační interakce, metoda vázaných klastrů a další. Tyto metody se vlivem zatížení výpočtu o další diferenciální počty, řadí mezi časově výrazně náročné metody, kdy časová náročnost roste s počtem bázových funkcí N

přinejmenším s faktorem N^5 , na rozdíl od metody HF, jež je škálována přibližně s faktorem $N^{3-4 (13)}$.

2.3.2.2 DFT

Density Functional Theory, tedy teorie funkcionálu hustoty, je alternativní přístup výpočetní chemie založený na myšlence získat data na základě elektronové hustoty. V principu jde tedy o vyřešení tvaru funkcionálu elektronové hustoty studovaného systému (při zpřesňování pak jejích derivacích).

Metoda DFT se někdy zařazuje mezi *ab initio* metody, ale běžně se uvádí samostatně vzhledem k fitování některých parametrů pomocí empirických dat (ve výrazně menším počtu, než je tomu u SE metod) ⁽¹³⁾. Tato metoda, v idee starší než vlnový model, se dostala do skutečného zájmu až s rokem 1965, kdy Kohn a Sham navrhli znovuzavedení orbitalů do procesu výpočtu. Původním přístupem bylo řešit problém bez zavedených orbitalů (Orbital-Free DFT), jeho využití však bylo vhodné pouze pro systém s rovnoměrným rozložením hustoty.

V případě zavedení orbitalů do metody DFT se pro výpočet energie systému aplikuje rovnice [3]:

$$\varepsilon[P] = v[P] + h1[P] + J[P] + Vxc[P]$$
^[3]

kde v je příspěvek vnějšího pole (obvykle brán jako 0), term h1 značí příspěvek kinetické energie a nukleární atrakce, term J je kulombická repulze mezi elektrony a poslední člen, tedy Vxc, je složený příspěvek výměnně-korelační ⁽¹⁴⁾. Ten je při výpočtech členem, který k SCF výpočtům přidává další krok, tedy výpočet tohoto členu P označuje elektronovou hustotu ⁽¹⁴⁾.

Pro výpočet výměnně-korelačního potenciálu (V*xc*[P]) bylo zavedeno několik postupů, například Local Density Approximation (LDA). LDA rozděluje výměnně-korelační potenciál na část výměnnou a na část korelační [4]

$$V_{xc}(P) = V_x(P) + V_c(P)$$
^[4]

kde V*x* je výměnný potenciál a V*c* je potenciál korelační. Hodnoty korelačního potenciálu bývají např. převzaty z výpočtu na základě metody Monte Carlo provedeném Voskem, Wilksema Nusairem ^(13; 14).

Protože je LDA metodou, která vychází z myšlenky popisu hustoty jako uniformního rozložení elektronového plynu, její pro popis molekul nutno vylepšit. V řešení navrženého Beckem (1988) ⁽¹⁵⁾ se přidává pro výměnný funkcionál závislost na gradientu hustoty, jak je vidět v následujících výrazech [5–7] ^(14; 16).

$$V_x^B = V_x^{LDA} + \Delta V_x^B \tag{5}$$

$$\Delta V_X^B = -\beta P^{\frac{1}{3}} \frac{x^2}{1 + 6\beta x \sin h^{-1} x}$$
[6]

$$x = \frac{|gradP|}{P^{4/3}}$$
[7]

Hodnota parametru β byla nastavena tak, aby výpočty odpovídaly hodnotám energií vzácných plynů. Obdobně jako Becke (1988) přidal do popisu výměnného funkcionálu gradient hustoty, tak trojice autorů Lee, Young a Parr (běžně zkracováno jako funkcionál LYP ⁽¹⁷⁾) upravila předpis pro funkcionál korelační. Tento přístup se souhrnně označuje jako GGA (generalized gradient approximation)⁽¹³⁾.

Mimo gradientu mohou být popisy funkcionálů rozšířeny i o vyšší řády derivací, které dále ovlivňují přesnost popisu (na úkor větší náročnosti výpočetního času). Tyto funkcionály pak nesou označení jako *meta*-GGA, *hyper*-GGA nebo hybridní GGA metody. Metody, vytvořené jako deriváty původních GGA metod, jsou (zejména pak hybridní funkcionál) velmi často používané při výpočtech. Typickým zástupcem je funkcionál B3, kombinující popis 3 výměnných funkcionálů (LDA, přesného a GGA – přesný funkcionál je spočten na základě metody HF)⁽¹⁶⁾.

2.3.2.3 Semi-empirické metody

Semi-empirické metody (SE) jsou založeny na obdobném principu jako metoda HF, ovšem jsou ještě dále podrobeny dalším aproximacím pro úsporu výpočetního času. Tyto aproximace se týkají zejména popisu vzájemných interakcí mezi elektrony, které představují při *ab initio* výpočtech nejnáročnější část. Vnitřní elektrony, mající výrazně menší vliv na chemické vlastnosti systému, se často berou jako součást jádra ^(12; 13).

Aby došlo ke kompenzaci zanedbávání některých integrálů či jejich aproximování, jsou tyto metody parametrizované na poskytnutí souladu s experimentálními daty nebo *ab initio* výpočty -typicky slučovací teplo, dipólový moment, geometrie systému, spektra IR či NMR a jiné ⁽¹⁸⁾.

Do skupiny SE metod patří celá škála technik založených na NDO aproximaci (Neglect of Differential Overlap), například CNDO, INDO a MNDO ⁽¹³⁾). Tyto metody jsou většinou použitelné převážně pro uhlovodíky a používají minimální bázový set Slaterova typu. Většina těchto metod je parametrizována především pro predikci geometrií nebo slučovacích tepel organických molekul. Některé z těchto metod se používají při zahájení *ab initio* výpočtů pro vstupní odhad tvaru vlnové funkce ⁽¹³⁾.

Jednou z nejpokročilejších SE metod je parametrizační metoda (PM3-7), která vylepšuje původní MNDO metodu. Metoda PM3 byla zpočátku parametrizována pro čtyři základní údaje o molekulách (geometrie, slučovací tepla, dipólový moment a ionizační potenciál), stejně jako většina předešlých semiempirických metod. Díky automatizovanému přístupu k parametrizaci jako takové bylo možné rozšířit cvičný set molekul na několik set molekul ^{(13;} ¹⁶⁾. Metoda PM6 (metoda PM4 a PM5 nebyla publikována) přinesla vylepšení popisu *corecore* repulze, viz rovnice[8]. *Z_i* odpovídá náboji jádra, člen $\langle s_A s_A | s_B s_B \rangle$ je dvoucentrický dvouelektronový integrál zahrnující orbitaly typu *s*, *x*_{AB} a α_{AB} jsou koeficienty a *R*_{AB} je vzdálenost mezi dvěma atomy. ⁽¹⁶⁾.

$$E_n(A,B) = Z_A Z_B \langle s_A s_A | s_B s_B \rangle (1 + x_{AB} e^{-\alpha_{AB} (R_{AB} + 0,0003 R_{AB}^\circ)})$$
[8]

S novějšími typy metody PM (metodou PM6, jejími deriváty a metodou PM7) byly přidány i další parametrizované charakteristiky (například polarizabilita), které dovolily zahrnout do cvičného setu i méně běžné prvky (například tranzitní kovy). Tímto způsobem byla použitelnost metody rozšířena na 70 atomů periodické tabulky. ⁽¹⁸⁾. Pro vylepšení popisu disperzních sil (důležitých zejména u systému s nekovalentní vazbou) byly zavedeny ještě dodatečné korekce k původním metodám (tyto vylepšení se netýkají pouze SE metod, ale je možné je použít i v *ab initio* popisu). Disperzní člen lze obecně zapsat v jednoduchém přiblížení rovnicí [9].

$$E_{disp} = \sum_{A < B} f(R_{AB}) C_{6,AB} \frac{1}{R_{AB}^6}$$
[9]

Člen $\frac{1}{R_{AB}^6}$ je vzdálenost dvou elektronů, člen C_{6,AB} je koeficient nezávislý na metodě, $f(R_{AB})$ je tzv. damping funkce, která koriguje hodnoty tak, aby odpovídaly reálnému chování (tzn., pro velké vzdálenosti se disperzní člen asymptoticky blíží nule a rovněž pro velmi malé vzdálenosti je tento člen potlačen) ⁽¹⁹⁾.

Dnes nejpoužívanější empirické zahrnutí disperzního členu je pomocí Grimmeho korekce D3 ⁽²⁰⁾, jež do popisu repulze/atrakce vnáší navíc člen závislý na r^{-8} .

Dále byl v modifikacích metody PM6 zlepšen popis vodíkové vazby, která v samostatné metodě dává příliš krátkou vazbu a tím přeceňovala energetickou stabilizaci komplexu. Obdobně jako existuje několik variant popisů disperzního členu, tak i popis vodíkové vazby doznal několika modifikací, přičemž nejnovější nese označení H4 ⁽²¹⁾. Zobecněný tvar takovéhoto popisu je pak následovný [10]:

$$E_{hb} = c f_{DHA} f_{damp} \tag{10}$$

I v případě vodíkové vazby je potřeba použít "damping funkci", která určuje, kdy se ještě jedná o vodíkovou vazbu a kdy se o ni už nejedná. Funkce f_{DHA} je funkcí vzdálenosti a úhlu mezi donorem (D), vodíkem (H) a akceptorem (A).⁽²²⁾

Kromě snahy o zlepšení popisu vodíkové vazby bylo, s ohledem na vzrůstající zájem o použití halogenovaných derivátů ve vývoji léčiv, nasnadě i zlepšení popisu halogenové vazby. Zlepšený popis je potom u metody označen písmenem X na konci označení metody ⁽²³⁾.

Pro metodu PM6-D3H4X byly jednotlivé vylepšení reparametrizovány pro poskytování shody s referenčními výsledky na úrovni CCSD(T)/CBS⁽²¹⁾.

2.3.3 Bázové funkce

Protože přesný tvar vlnové funkce pro molekulové orbitaly je pro výpočet příliš komplikovaný, je vlnová funkce molekulového orbitalu sestavena jako lineární kombinace vlnových funkcí atomových orbitalů. Z toho plyne, že přesnost popisu elektronů tvořících vazbu je úměrná popisu elektronových orbitalů atomů v molekule⁽¹⁴⁾.

Exaktní tvar bázové funkce je znám pouze pro atomy vodíkového typu, tedy pro jednoelektronové systémy (H, C^{5+} , U^{91+} , atp.). Pro všechny ostatní případy je třeba vzít do úvahy stínícího efektu ostatních elektronů na jádro za použití aproximací.

Pro matematicky správný popis atomových orbitalů je třeba použít exponenciální funkce s exponenty různícími se od typu popisu orbitalu. Pro orbitaly vodíkového typu je exponenciální člen ve tvaru $e^{-\zeta r/n}$, kde *n* je hlavní kvantové číslo a *r* je vzdálenost elektronu od jádra atomu, na němž je centrován. Pro popis chemicky zajímavějších systémů (multielektronových) Slater a Zener v roce 1930⁽¹⁴⁾ použili podobný předpis jako v případě orbitalů vodíkového typu, jen s úpravou zohledňující efekt stínění. Orbitaly tohoto typu se označují STO (Slater-Type Orbitals). Jejich orbitální exponent ζ má tvar [11]:

$$\zeta = \frac{Z - s}{n^*} \tag{11}$$

Tvar orbitální funkce zůstal v následujících letech nezměněn, ovšem hodnoty ζ se postupně zpřesňovaly. Matematický tvar STO je následovný [12]:

$$e^{-\zeta \frac{r}{a_0}}$$
[12]

Parametr *r* je vzdálenost elektronu od jádra, a_0 je tvz. Bohrův poloměr a ζ je orbitální exponent ^(14; 16).

Tato metoda byla dále vylepšena rozšířením počtu bázových funkcí pro popis jednotlivých orbitalů, tedy místo použití jedné funkce na jeden orbital bylo použito funkcí vícero. Tato metoda se označuje jako nZ báze (n=D, T, Q, 5, 6, ...), s ohledem na počet použitých funkcí na popis jednoho orbitalu.

Při tvorbě Hamiltoniánu pro výpočet energie systému a ostatních vlastností je potřeba spočíst velké množství jednoduchých a vícečetných integrálů. Pro usnadnění výpočetních nároků byl vyvinut popis orbitalu s takovým tvarem, aby byly integrály snáz řešitelné. Tento krok byl pozvolný, průlom se dostavil s publikací Boysova článku v roce 1950 ⁽¹⁴⁾. Na rozdíl od STO je orbital popsán Gaussovou funkcí ve tvaru [13].

$$e^{-\frac{\alpha r^2}{a_0^2}}$$
[13]

Tento popis orbitalu je pojmenován podle tvaru použité funkce jako Gaussian-Type Orbital (GTO), v němž se člen α se nazývá Gaussovým nebo orbitálním exponentem. Výhodou tohoto popisu orbitalů je snížení náročnosti výpočtů, ovšem za cenu jisté nepřesnosti, nejcitelnější při popisu chování elektronu v blízkosti jádra.

Pro zvýšení přesnosti se fituje několik GTO funkcí na původní tvar STO, takovéto báze pak nesou označení STO-*n*G, kde *n* je počet fitovaných GTO funkcí.

Obrázek 7: GTO fitování na STO (13).

Pro použití takovýchto orbitalů je pak třeba jen vypočíst nebo předem určit hodnoty rozvojových koeficientů d_n v následující rovnici [14]:

$$STO(\zeta) = d_1 GTO(\alpha_1) + d_2 GTO(\alpha_2) + \dots$$
 [14]

Tyto tzv. minimální báze se v dnešní době používají jen zřídka pouze při pilotních kvalitativních výpočtech.

Pro zlepšení popisu systému je třeba použít větších bázových funkcí (DZ, TZ, atd.), což vede k prudkému vzrůstu výpočetní náročnosti. Tento problém se vyřeší tím, že se orbitaly

rozdělí na dvě skupiny, *core* (vnitřní) a *valence* (valenční). Tato separace orbitalů je možná na základě toho, že vnitřní orbitaly se na tvorbě vazebných orbitalů prakticky nepodílí, na rozdíl od valenčních. S využitím této separace pak můžeme popsat vnitřní orbitaly pomocí jedné tzv. kontrahované funkce STO-*n*G a valenční orbitaly pomocí dvou či více kontrahovaných funkcí, podle kontrakčního schématu báze. V kontrahovaných funkcích vyjádřených jako lineární kombinace jednotlivých, tzv. primitivních Gaussových funkcí, jsou koeficienty primitivních Gaussových funkcí neměnné, zatímco zbylé jsou plně variabilní. Výsledný tvar tohoto kombinovaného popisu pro DZ báze je značen obvykle *X-YZ*G, kde *X* je počet GTO fitovaných na STO pro popis vnitřního orbitalu, *Y* a *Z* jsou koeficienty uvádějící počet GTO fitovaných na STO v popisu valenčních orbitalů v kontrahovaném schématu a písmeno G uvádí, že se jedná o kontrakci primitivních funkcí Gaussova typu ⁽¹⁴⁾.

Přesnost popisu systému můžeme dále zlepšit zahrnutím neobsazených orbitalů s vyšším momentem úhlové hybností (p, d, f, atd.). Tento postup se nazývá přidání polarizační funkce a zajišťuje lepší popis při nehomogenního rozložení elektronů v okolí jádra. V případě tzv. těžkých atomů (od druhé periody) se přidává funkce d a vyšší (podle druhu atomu) a u vodíku se přidává orbital p. V případě aniontů či částic s volným elektronovým párem je potřeba lepšího popisu elektronů i ve vzdálenějším okolí. K tomu se využívají difuzní funkce, tedy dlouhodosahové funkce s malým orbitálním exponentem. Tato funkce je vhodná i při studiu polarizability systému. ⁽¹⁶⁾

2.3.4 BSSE

Při studiu systémů skládajících se ze dvou či více molekul dochází při sestavovaní atomových orbitalů jednotlivých atomů k jejich ovlivnění blízkými atomy. Při vzájemném přibližování podjednotek komplexu (monomerů) se pro popis distribuce elektronů v monomeru využívá i bázových funkcí z monomeru druhého. Chybou jako takovou není ovšem použití bázových funkcí z druhého monomeru, tou je nestejnoměrný popis stabilizace celkového komplexu oproti izolovaným monomerům. Tato chyba ve výsledné energii komplexu se označuje jako Basis Set Superposition Error (BSSE) a její velikost se snižuje s použitím větší báze atomových orbitalů ^(16; 24). Vznik BSSE si ozřejmíme na příkladu dvoumolekulového komplexu.

V případě, že by k interakci mezi bázovými sety nedocházelo, byla by interakční energie mezi dvěma monomery, označenými *A* a *B*, spočtena podle následující rovnice [15].

$$E_{int} = E_{AB} - E_A - E_B \tag{15}$$

Hodnota interakční energie mezi dvěma monomery, látkou A a B, je dána rozdílem energie komplexu spočteného s bázovým setem A a B na souřadnicích komplexu a monomery spočtenými na jejich příslušných souřadnicích s pouze jejich bázovým setem použitým pro popis elektronové distribuce. Při využití některých metod je možné poslední dva členy nahradit členem, který bude mít hodnotu energie systému spočteného s bází obou monomerů v jejich dostatečné separaci, aby nedošlo k zlepšení popisu elektronové distribuce jednotlivých monomerů.

Při předpokladu, že BSSE bude mít jen stabilizační účinek (na oba monomery) můžeme rovnici [15] přepsat do jiné podoby [16]:

$$E_{AB}^{CP} = E_{AB}^{AB} - E_A^{AB} - E_B^{AB}$$
^[16]

Člen E_{AB}^{CP} je interakční, protivážně opravenou (z anglického Counterpoise correction), energií komplexu AB, první člen po rovnítku je energie spočtena pro geometrii systému spočtenou s použitím celého bázového setu, zbylé dva členy jsou energie systému, kdy je energie spočtena pro monomer za využití "ghost" atomů z druhého monomeru. Tím je myšleno, že například pro spočtení energie monomeru A na bázovém setu AB se vezme geometrie celkového systému a na atomových centrech monomeru B se nechají bázové sety tohoto monomeru, aniž bychom uvažovali hmotnosti a náboje částic monomeru B; odtud pak anglické označení *ghost* atom ⁽²⁴⁾.

3 Experimentální část

3.1 Cíl práce

Tato bakalářská práce si dává za cíl odhadnout sílu interakční energie mezi heliceny a dvouvláknovou DNA v závislosti na substituci a chiralitě helicenů, vazebném motivu (vazba helicenu v malém žlábku DNA nebo jeho interkalace) této interakce. Vzhledem k rozsáhlosti systému (obsahoval více než 300 atomů) není jeho optimalizace metodami *ab initio* možná, proto se rovněž zkoumala reproducibilita *ab initio* výsledků pomocí výpočetně levnější metody PM6-D3H4X.

3.2 Metodika

3.2.1 Vstupní data

Vstupním zdrojem geometrií komplexů byly trajektorie MD simulací dvouvláknové B-DNA o sekvenci 5'-AAC CCA GAT GTC CTA CAG GAT AGC TCG CAG-3' s heliceny, poskytnuté doktorem D. Řehou. Simulace byly prováděny pro obě chirální formy (*M-*, *P-*) [6]helicenu – označované dále v textu jako *HelM* a *HelP*. Pro každý enantiomer byly provedeny dvě simulace, jedna začínala s helicenem vázaným v malém žlábku DNA (dále značeno jako *groove*) a druhá byla zahájena s helicenem interkalovaným do struktury DNA (dále značeno jako *int*). Z každé ze simulací o celkové délce 100 ns byly po každé 1 nanosekundě extrahovány geometrie helicenu se 4 nejbližšími patry DNA o konstantní sekvenci 5'-GATA-3' pro kvantově-chemické výpočty, celkem tedy 101 struktur na helicen (struktury jsou tímto způsobem číslovány v dalším textu). Terminální atomy fosforu v místě přerušení vazby v DNA cukr-fosfátové páteři byly nahrazeny atomy vodíku pro doplnění chybějící valence.

Obdobným způsobem byly získány i příslušné vstupní soubory geometrií pro studované deriváty [6]helicenu: *1-butyl-3-(2-methyl[6]helicenyl)-imidazolium* (*iHel*) a *15,18-dimethyl-15H-[6]heliceno[2,1-g]pteridin-17,19-dion* (*flavoHel*). Pravotočivé isomery studovaných helicenů jsou znázorněny na obrázku 8.

Obrázek 8: Studované heliceny, pravotočivé isomery, seshora: 15,18-dimethyl-15H-[6]heliceno[2,1-g]pteridin-17,19-dion (flavoHel), [6]helicen (Hel) a 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium (iHel).

3.2.2 Optimalizace systému

Protože struktury získané pomocí MD simulací jsou často vzdálené od rovnovážných geometrií, což může u *ab initio* single-point výpočtů způsobovat problém s konvergencí SCF procedury, byla za pomoci metody PM6-D3H4X ⁽²¹⁾ zakomponované v programu MOPAC2016 ⁽²⁵⁾ provedena krátká optimalizace struktury (30 kroků), která původní vazebný motiv nechává bez výrazné pozorovatelné změny. Vliv rozpouštědla (vody) byl v tomto a všech následných výpočtech metodou PM6-D3H4X zahrnut implicitně (COSMO ⁽²⁶⁾ model s nastavením dielektrické konstanty na hodnotu 78,3).

3.2.3 Výpočet interakční energie

Interakční energie (IE) komplexů helicen-DNA byla vypočtena pro částečně optimalizované struktury jednak metodou PM6-D3H4X a jednak s použitím teorie funkcionálu hustoty (dále jen DFT). Hodnoty IE byly získávány podle vztahu [17]

$$IE = E(all) - [E(hel) + E(DNA)]$$
[17]

jako rozdíl energie celkové struktury E(all) a energií samotného helicenu E(hel) a DNA E(DNA). V případě DFT výpočtů pak byl vliv superpoziční chyby kompenzován "counterpoise" metodou Boyse a Bernardiho⁽²⁷⁾.

Výpočty pomocí metody DFT byly prováděny byly prováděny programem Gaussian09 ⁽²⁸⁾ s použitím funkcionálu BLYP ^(15; 17). Chybějící disperzní složka energie v DFT metodě byla doplněna o empiricky popsanou Grimmeho disperzi GD3 ⁽²⁰⁾. Vliv rozpouštědla byl opět zahrnut implicitně pomocí PCM modelu ⁽²⁹⁾. Výpočty IE byly prováděny na dvou úrovních, jednak za pomoci báze atomových orbitalů SVP a TZVP.

4 Výsledky a diskuse

4.1 Výsledky

Hodnoty interakční energie komplexů získané metodou PM6-D3H4X byly spočteny pro částečně optimalizované geometrie, které odpovídaly danému strukturnímu motivu. Pro 30 nejstabilnějších struktur byly hodnoty IE přepočteny metodou DFT s použitím bázového setu SVP. Pro komplex ihelP_int byl výpočet pro těchto 30 struktur zopakován s použitím stejného funkcionálu s větší bází TZVP (srovnání na obrázku 9). Pro nevelké rozdíly mezi hodnotami IE při použití metody DFT s bází SVP a TZVP (rozdíl IE v okolí 5 kJ/mol) byly hodnoty interakčních energií pro zbylé systémy spočteny na úrovni TZVP pouze pro tři nejstabilnější struktury. Hodnoty energií spočtených na dvou úrovních (PM6-D3H4X a DFT-SVP) spolu nekorelovaly natolik, abychom mohli výsledky získané pomocí SE metody použít jako relevantní hodnoty při vyhodnocování IE (viz obrázek 10).

Obrázek 9: Grafické porovnání interakčních energií pro systém iHelP_int v rámci jednotlivých metod. Hodnoty energií jsou seřazeny sestupně dle hodnot získaných na úrovni DFT-TZVP. Hodnoty energií jsou vyneseny v jednotkách kJ/mol. Příslušná data lze nalézt v sekci příloha (tabulka P XV).

Obrázek 10: Grafické srovnání IE systému FlavoHelP_int–DNA vypočtených na úrovních PM6-D3H4X a DFT-SVP ukazující na nesprávný popis IE pomocí SE metody.

Hodnoty průměrné a nejsilnější IE komplexů a velikost střední kvadratické odchylky jsou shrnuty v tabulkách I-XII. Pokud není uvedeno jinak, budou v textu diskutovány hodnoty IE získané na úrovni DFT/SVP. Průměrné a nejlepší hodnoty energií jsou v tabulkách uváděny v jednotkách kJ/mol. Střední kvadratická odchylka byla vypočtena pomocí funkcí SMODCHVÝBĚR v programu MS Excel 2007, viz rovnice [18].

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
[18]

N je počet vstupních dat, x_i je hodnota ze studovaného souboru a \bar{x} je průměrná hodnota ze vstupního souboru hodnot.

V příloze jsou pak uvedeny interakční energie komplexů pro každou geometrii zvlášť (tabulky P I–XXI).

Zatímco pořadí stabilit pro jednotlivé geometrie při srovnání výpočtů na úrovni DFT/SVP a PM6-D3H4X zůstává alespoň částečně zachováno, hodnoty IE jsou při použití semi-empirické metody systematicky výrazně podceněny oproti *ab initio* výpočtům (metoda DFT). Hodnoty IE jsou při užití SE metody třetinové až poloviční oproti metodě DFT,

přičemž větší podcenění bylo pozorováno pro komplexy, kdy byly heliceny vázány v malém žlábku (viz obrázek 11).

Obrázek 11: Porovnání interakčních energií FlavoHelM struktur v rámci použitých metod,na ose x je uvedeno pořadové číslo v křivce energetické stability seřazené dle hodnot spočtených na úrovni DFT-SVP. Hodnoty energií jsou vyneseny v kJ/mol.

Systém levotočivých isomerů nesubstituovaného helicenu (Hel) a imidazolového derivátu (iHel) vykázaly ještě třetí typ vazebného motivu, ten jsme označili jako částečnou interkalaci (označované v textu a obrázcích jako *partial*). Tato struktura se vyznačuje naorientováním tří terminálních podjednotek helicenového skeletu paralelně podél cukr-fosfátové páteře a částečným vnořením jeho centrálních podjednotek mezi patra bází (5'–AT– 3'). K této interakci dochází pouze u isomeru *M*. V případě komplexů iHelM jsou tyto struktury navíc stabilizovány naorientováním substituentu u helicenu tak, aby jeho imidazolový kruh (nesoucí kladný náboj) byl situován v co největší blízkosti elektronegativních atomů ve struktuře dusíkových bází. Částečně interkalované struktury jsou navíc energeticky výhodnější oproti jejich plně interkalovaným protějškům, viz tabulka III-V.

4.1.1 Hel-DNA interakce

Hodnoty průměrných hodnot IE kompexů *Hel – DNA* jsou uvedeny v tabulkách I–IV. Tabulky s hodnotami IE pro jednotlivé komplexy jsou uvedeny v přílohách P I–VII. Interakce mezi nesubstituovaným [6]helicenem a dvouvláknovou DNA je do značné míry ovlivněna nepolárním charakterem helicenu. Klíčovými interakcemi pro stabilizaci komplexu se jeví patrové interakce, do kterých se helicen zapojuje za pomoci konjugovaného systému π -elektronů. Díky těmto interakcím je tak stabilnější interkalace oproti vazbě do malého žlábku DNA. Struktura levotočivého helicenu je pak (právě díky své chiralitě) schopna se vhodně naorientovat vůči DNA tak, že se její centrální podjednotky vmezeří mezi bázová patra, zatímco terminální část helicenu (zhruba tři podjednotky) se naorientuje podél cukr-fosfátové páteře. Tyto struktury jsou pak díky π -interakcím energeticky výhodnější oproti vazbě v malém žlábku.

Rozdíl mezi IE interkalovaných struktur a struktur vázaných v malém žlábku činí u *P*-enantiomeru 91,5 kJ/mol ve prospěch interkalace, v případě *M*-isomeru jsou z důvodů uvedených výše rozdíly mezi IE motivů následovné: *partial* motiv je o 24 kJ/mol oproti *groove* motivu a *int* motiv je stabilnější o 22 kJ/mol oproti *partial* motivu. Obdobné rozdíly pak přibližně platí i pro hodnoty maximální interakční energie (nejlepších hodnot). Již u nesubstituovaného helicenu se tak projevuje stereospecifita vazby. Zatímco *P*-stereoisomer interkaluje silněji než *M*-isomer (rozdíl v průměrných IE 36 kJ/mol), do malého žlábku DNA se váže ochotněji *M*-stereomer, s rozmezím rozdílu mezi 14 a 34 kJ/mol (vzhledem ke snadnému přechodu mezi *groove* strukturou a *partial* (částečně interkalovanou) strukturou.

Tato skutečnost je pak zřejmá na číselných hodnotách v tabulce I–V, kde jsou vyneseny hodnoty interakčních energií motivů vazby *Hel-DNA*.

HelP_groove				
	Průměrná			
	hodnota	Ouchylka	hodnota	
PM-6	-26.1	11.2	-43.5	
DFT/SVP	-68.3	12.8	-92.7	
DFT/TZVP	-	-	-89.9	

Tabulka I: Hodnoty průměrné a nejpříznivější IE pro komplex HelP_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

Tabulka II: Hodnoty průměrné a nejj)říznivější IE pro kon	mplex HelP_int získané	na různých výpočetních
úrovních. Energie jsou uvedeny v kJ/mol.			

HelP_int				
	Průměrná		Nejlepší	
	hodnota	Ouchylka	hodnota	
PM-6	-108.7	5.5	-118.3	
DFT/SVP	-159.8	6.6	-170.9	
DFT/TZVP	-	-	-169.3	

Tabulka III: Hodnoty průměrné a nejpříznivější IE pro komplex HelM_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

HelM_groove				
	Průměrná			
	hodnota	Ouchylka	hodnota	
PM-6	-15.2	4.6	-26.1	
DFT/SVP	-82.3	4.8	-90.4	
DFT/TZVP	-	-	-88.7	

Tabulka IV:Hodnoty průměrné a nejpříznivější IE pro komplex HelM_int získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

HelM_int				
	Průměrná	Odchylka	Nejlepší	
	hodnota	Ouchylka	hodnota	
PM-6	-70.0	15.3	-103.7	
DFT/SVP	-124.4	13.8	-154.8	
DFT/TZVP	-	-	-156.3	

Tabulka V: Hodnoty průměrné a nejpříznivější IE pro komplex HelM_partial získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

HelM_partial				
	Průměrná			
	hodnota	Ouchylka	hodnota	
PM-6	-50.1	12.4	-76.4	
DFT/SVP	-106.3	13.3	-130.1	
DFT/TZVP	-	-	-122.3	

Na následujících obrázcích (12-16) jsou zobrazeny příklady komplexů Hel-DNA, zobrazující nejstabilnější konformace těchto komplexů.

Obrázek 12: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém HelM_groove z různých pohledů. Struktura DNA je vyznačena drátkovým modelem a helicen kuličkovým. Atomy uhlíku helicenu vyznačeny žlutou barvou, u DNA modrozelenou, dusíky znázorněny modře, kyslíky červeně a vodíky bíle.

Obrázek 13: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém HelM_partial z různých pohledů. Struktura DNA je vyznačena drátkovým modelem, struktura helicenu kuličkovým. Atomy uhlíku helicenu vyznačeny žlutou barvou, u DNA modrozelenou, dusíky znázorněny modře, kyslíky červeně a vodíky bíle.

Obrázek 14: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém HelM_int z různých pohledů. Struktura DNA je vyznačena drátkovým modelem, struktura helicenu kuličkovým. Atomy uhlíku helicenu vyznačeny žlutou barvou, u DNA modrozelenou, dusíky znázorněny modře, kyslíky červeně a vodíky bíle.

Obrázek 15: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém HelP_groove z různých pohledů. Struktura DNA je vyznačena drátkovým modelemm, struktura helicenu kuličkovým. Atomy uhlíku helicenu jsou vyznačeny žlutou barvou, u DNA modrozelenou, dusíky jsou znázorněny modře, kyslíky červeně a vodíky bíle.

Obrázek 16: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém HelP_int z různých pohledů. Struktura DNA je vyznačena drátkovým modelem, struktura helicenu kuličkovým. Atomy uhlíku helicenu vyznačeny žlutou barvou, u DNA modrozelenou, dusíky znázorněny modře, kyslíky červeně a vodíky bíle.

4.1.2 iHel-DNA interakce

Hodnoty IE komplexů iHel–DNA jsou uvedeny v tabulkách VI–X, energie jednotlivých struktur jsou pak uvedeny v příloze v tabulkách P VIII–XV. Nejstabilnější struktury každého motivu je možné najít na obrázcích 17-21.

Zatímco u nepolárního nesubstituovaného helicenu je pro interakci s DNA rozhodující disperzní energie, derivát iHel obsahuje navíc postranní řetězec obsahující imidazolový kruh, nesoucí náboj +1. Účelem této substituce je pro zlepšení rozpustnosti této látky ve vodě. Důsledkem je stabilizace komplexu iHel–DNA, a to v průměru nejméně o 60 kJ/mol oproti nesubstituovanému helicenu, v důsledku coulombických interakcí mezi kladně nabitým helicenem a záporně nabitou strukturou DNA. Nehledě na tuto modifikaci struktury, jsou výsledky kvalitativně obdobné jako pro nesubstituovaný helicen.

Stejně jako nesubstituovaný helicen, i struktura iHelM přecházela do částečně interkalovaného vazebného motivu (zejména patrné u iHelM_int, kdy v původním motivu zůstalo 7 struktur ze 101), v tomto případě výrazně stabilizovaného naorientováním imidazolového kruhu do blízkosti atomu s vysokou elektronegativitou (interakce ion-dipól).

Rozdíly mezi hodnotami IE různých vazebných motivů jsou následovné. Vazebný motiv částečně interkalovaného M-isomeru je stabilnější v průměru o 22 kJ/mol oproti motivu vazby do malého žlábku a v průměru o 40 kJ/mol oproti plné interkalaci. Interkalace P-stereoisomeru je 108 kJ/mol výhodnější oproti vazbě do malého žlábku. Enantiomer M se váže ochotněji do malého žlábku DNA než enantiomeru P o 48 kJ/mol. P-isomer se naopak ochotněji interkaluje (rozdíl 79 kJ/mol).

Tabulka VI: Hodnoty průměrné a nejpříznivější IE pro komplex IHelP_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

IHelP_groove				
	Průměrná		Nejlepší	
	hodnota	Ouchylka	hodnota	
PM-6	-48.9	6.8	-62.4	
DFT/SVP	-139.2	34.1	-217.4	
DFT/TZVP	-	-	-192.0	

Tabulka VII: Hodnoty průměrné a nejpříznivější IE pro komplex IHelP_int získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

IHelP_int				
	Průměrná		Nejlepší	
	hodnota	Ouchylka	hodnota	
PM-6	-150.0	6.8	-158.3	
DFT/SVP	-247.4	15.0	-280.1	
DFT/TZVP	-242.7	14.3	-274.6	

Tabulka VIII: Hodnoty průměrné a nejpříznivější IE pro komplex IHelM_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

IHelM_groove				
	Průměrná			
	hodnota	Ouchylka	hodnota	
PM-6	-67.1	5.0	-79.6	
DFT/SVP	-187.1	10.5	-205.5	
DFT/TZVP	-	-	-224.8	

IHelM_partial				
Průměrná Odebulka Nejlep				
	hodnota	Ouchylka	hodnota	
PM-6	-105.5	8.4	-121.3	
DFT/SVP	-208.8	16.5	-239.9	
DFT/TZVP	-	-	-231.8	

Tabulka IX: Hodnoty průměrné a nejpříznivější IE pro komplex IHelM_int získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

Tabulka X: Hodnoty IE systému iHelM_int vypočtené na různých výpočetních úrovních. Hodnoty v tabulce jsou uvedeny v kJ/mol.

IHelM_int						
	Průměrná	Odchylka	Nejlepší			
	hodnota	Ouchylka	hodnota			
PM-6	-95.8	18.8	-121.3			
DFT/SVP	-168.9	19.6	-193.5			
DFT/TZVP	-	-	-			

Hodnoty v tabulce pět vychází z pouhých 7 struktur (tabulka P XIII) v tomto vazebném motivu, které byly dostupné z MD simulace. Zbylé struktury v této simulaci odpovídaly vazebnému motivu částečné interkalace, která je energeticky výhodnější.

Obrázek 17: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém ihelM_groove z různých pohledů. Atomy helicenu zobrazeny pomocí kuliček, molekula DNA drátkovým modelem. Atomy uhlíku helicenu vyznačeny stříbrnou barvou, u DNA modrozelenou, dusíky znázorněny modře, kyslíky červeně a vodíky bíle.

Obrázek 18:Nejstabilnější struktura nalezená metodou DFT-SVP pro systém iHelM_int z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA jsou vyobrazeny drátkovým modelem. Atomy uhlíku v helicenu jsou zobrazeny žlutě, u DNA modrozeleně, atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 19:Nejstabilnější struktura nalezená pro systém iHelM_partial metodou DFT-SVP z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkový modelem, atomy DNA pak drátkovým. Atomy uhlíku ve struktuře helicenu jsou zobrazeny žlutou barvou, u DNA pak modrozeleně, atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 20: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém iHelP_groove z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA pak drátkovým. Atomy uhlíku u helicenu jsou zobrazeny žlutě, u DNA modrozeleně, atomy dusíku jsou vyobrazeny modrou barvou, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 21: Nejstabilnější struktura nalezená metodu DFT-SVP pro systém iHelP_int z různých pohledů. Atomy helicenu jsou zobrazeny kuličkový modelem, atomy DNA jsou zobrazeny modelem drátkovým. Atomy uhlíku jsou ve struktuře helicenu zobrazeny žlutou barvou, u DNA modrozelenou, atomy dusíku jsou vyvedeny barvou modrou, atomy kyslíku červenou a atomy vodíku bílou.

4.1.3 FlavoHel-DNA interakce

Hodnoty interakčních energií pro komplexy flavoHel–DNA jsou uvedeny v následujících tabulkách (tabulka XI–XIV). Hodnoty jednotlivých energií jsou uvedeny v přílohách (tabulky P XVII–XXII).

Stejně jako u iHel byla struktura helicenu modifikována polárním zbytkem na bázi pteridinu pro lepší rozpustnost. Kondenzace pteridinové části s fenylovým zbytkem helicenu vede ke vzniku sloučeniny s flavinovou strukturou, která je navíc fluorescenčním markerem. Tato struktura byla největším studovaným helicenem. Tato struktura je, na rozdíl od iHel,

méně flexibilní díky absenci jednoduchých C-C vazeb mezi atomy helikální části molekuly a pteridinovou částí.

V případě FlavoHelM_groove se vytvořila během MD simulace časově dlouhodobě stabilní struktura, kdy je flavinová část naorientována podél cukr-fosfátové páteře. Tento strukturní motiv je pak strukturně nejstabilnější ze všech možných uspořádání flavohelicenů vůči DNA. Pouze pro jednu strukturu z téte simulace byl nalezen motiv připomínající částečnou interkalaci u iHelM, viz obrázek 22.

Obrázek 22: Struktura s částečně interkalovaným FlavoHelM zobrazená ze dvou pohledů, kdy došlo k narušení sekundární struktury. Tato interkalace není pro tento systém typická díky rigiditě struktury flavoHelu. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA pak drátkovým. Atomy uhlíku u helicenu jsou vyobrazeny žlutě, u DNA modrozeleně. Atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Interkalovaný motiv je stejně jako u předešlých helicenů stabilnější oproti vazbě do malého žlábku, jak jepozorovatelné z rozdílu průměrných IE. V případě P-isomeru je rozdíl 68 kJ/mol, zatímco u enantiomeru M je rozdíl 19 kJ/mol. Při vazbě do malého žlábku je preferován M-isomer, a to o 19 kJ/mol, zatímco v případu interkalace je preferovaný isomer P (o 34 kJ/mol).

Tabulka XI: Hodnoty průměrné a nejpříznivější IE pro komplex FlavoHelP_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol

FlavoHelP_groove						
	Průměrná	Odchylka	Nejlepší			
	hodnota	Ouchylka	hodnota			
PM-6	-26.0	15.5	-55.3			
DFT/SVP	-119.8	26.1	-155.5			
DFT/TZVP	-	-	-155.2			

Tabulka XII: Hodnoty průměrné a nejpříznivější IE pro komplex FlavoHelP_int získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

FlavoHelP_int							
	Průměrná	Odchylka	Nejlepší				
	hodnota	Ouchylka	hodnota				
PM-6	-96.5	15.2	-128.6				
DFT/SVP	-187.7	7.7	-201.4				
DFT/TZVP	-	-	-200.7				

Tabulka XIII: Hodnoty průměrné a nejpříznivější IE pro komplex FlavoHelM_groove získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

FlavoHelM_groove							
	Průměrná	Odchylka	Nejlepší				
	hodnota	Ouchylka	hodnota				
PM-6	-22.9	19.0	-74.5				
DFT/SVP	-139.3 22.6		-187.6				
DFT/TZVP	-	-	-241.3				

Tabulka XIV: Hodnoty průměrné a nejpříznivější IE pro komplex FlavoHelM_int získané na různých výpočetních úrovních. Energie jsou uvedeny v kJ/mol.

FlavoHelM_int							
	Průměrná	Odchylka	Nejlepší				
	hodnota	Ouchylka	hodnota				
PM-6	-87.4	15.5	-107.9				
DFT/SVP	-154.3	25.1	-188.6				
DFT/TZVP	-	-	-186.6				

Na následujících obrázcích (24-27) jsou vidět energeticky nejvýhodnější struktury komplexů FlavoHel-DNA.

Obrázek 23: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém FlavoHelM_groove z různých pohledů. Atomy helicenu jsou vyobrazeny pomocí kuličkového modelu, atomy DNA modelem drátkovým. Atomy uhlíku u helicenu jsou zobrazeny žlutě, u DNA modrozeleně, atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 24: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém FlavoHelM_int z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA modelem drátkovým. Atomy uhlíku jsou zobrazeny žlutě v případě helicenu, respektive modrozeleně v případě DNA. Atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 25: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém FlavoHelP_groove z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA drátkovým modelem. Atomy uhlíku helicenu jsou zobrazeny žlutě, u DNA modrozeleně. Atomy dusíku jsou zobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

Obrázek 26: Nejstabilnější struktura nalezená metodou DFT-SVP pro systém FlavoHelP_int z různých pohledů. Atomy helicenu jsou vyobrazeny kuličkovým modelem, atomy DNA pak modelem drátkovým. Atomy uhlíku u helicenu jsou zobrazeny žlutě, u DNA modrozeleně. Atomy dusíku jsou vyobrazeny modře, atomy kyslíku červeně a atomy vodíku bíle.

4.2 Diskuse

Jak bylo uvedeno výše, z molekulové dynamiky i našich kvantových výpočtů vyplývá, že jak vazba do malého žlábku, tak interkalace, poskytuje stabilní vazebné motivy komplexu

helicen-DNA. Ve všech případech se z kvantově-chemických výpočtů jeví interkalace stabilnější oproti vazbě do malého žlábku.

Při našem studiu jsme dále zjistili, že ve vodném implicitním prostředí se pravotočivé heliceny v interkalovaném strukturním motivu váží silněji (pro všechny studované typy helicenů přibližně o ~40 kJ/mol). V případě vazby v malém žlábku ds-DNA byla naopak preferovaná konformace M, kdy se M-stereomer imidazolového derivátu a nesubstituovaného helicenu váží v obou případech v průměru o ~38 kJ/mol silněji než P-stereoizomer, Flavohelicen se jeví méně stereospecifický s energetickým rozdílem ~20 kJ/mol ve prospěch M-stereomeru.

Kromě úplné interkalace, kdy struktura skeletu helicenu je *celým* svým objemem vmezeřena mezi patra, tzn., že v rovině kolmé na hlavní osu helixu zcela vyplňuje, resp. i přesahuje plochu celého patra bází, byl nalezen vazebný motiv, kdy se do struktury DNA vmezeří helicen pouze částečně, a to svou centrální částí, zatímco krajní podjednotka/y helicenu jsou orientovány paralelně s cukr-fosfátovou páteří. Oddálení pater bází DNA je v tomto motivu mnohem méně výrazné než v případě úplné interkalace, navíc dochází k ohybu molekuly DNA v místě vazby helicenu, viz obrázek 28. Tento motiv pak odpovídá navrhované struktuře interkalovaného [4]helicenu podle skupiny autorů Kel, et al. ⁽⁹⁾. Částečná interkalace byla pozorována pouze pro *M*-stereoisomery nesubstituovaného helicenu (Hel) a imidazolového derivátu (iHel), což je patrně dáno stérickými důvody vyplývajícími z prostorové konfigurace stereoisomerů. FlavoHelM tento vazebný motiv prakticky neposkytuje až na jedinou nalezenou výjimku, což je patrně dáno rigidní strukturou flavinové části molekuly.

Obrázek 27: Porovnání struktur DNA v závislosti na vazebném motivu, zleva: *groove, částečná interkalace* a *úplná interkalace*. Atomy DNA jsou vyobrazeny drátkovým modelem, atomy uhlíku jsou zobrazeny modrozelenou barvou, atomy dusíku modrou, atomy kyslíku červenou a atomy vodíku bílou.

Skupina *Kel, et al.* bohužel experimentálně nezkoumala energetické rozdíly mezi vazebnými motivy. Určovala pouze vliv substituentu na sílu interakce na základě konstanty stability komplexu, přičemž bylo zjištěno, že nepolárně substituované heliceny jsou stabilněji vázány oproti polárním substituovaným. Pokusy této skupiny rovněž ukázaly, že vazba helicen-DNA je dobře rozlišitelná oproti nevazebnému stavu těchto dvou látek pomocí spektroskopie lineárního dichroismu ⁽⁹⁾.

Námi spočtené stabilizační energie v případě vazby helicenu do malého žlábku mohou být částečně podceněné. Flexibilita substituentů (zejména iHel, s větším počtem jednoduchých C-C vazeb) helicenů a polohy helicenu samotného vůči DNA vede k tomu, že v rámci našeho modelu tetrameru DNA se některé části helicenu nachází volně mimo náš model DNA, ačkoliv v původní DNA struktuře z MD mohou interagovat s dalšími sousedními patry DNA. Zvětšení modelu např. na hexamer by pomohlo tento nedostatek odstranit, ovšem za cenu značného nárůstu výpočetní náročnosti (jednalo by se o systém s téměř 500 atomy). Takové výpočty by se musely omezit pouze na vybrané nejstabilnější komplexy odpovídající menšímu, námi použitému modelu.

Dalším nedostatkem našich výpočtů je zanedbání vlivu entropie, kterou z našich *ab initio* výpočtů nelze přímo získat, neboť nepracujeme s plně optimalizovanými strukturami. Přesto alespoň kvalitativně lze odhadnout, že interkalace bude zřejmě entropicky méně výhodná než vazba helicenu do žlábku, z důvodu menšího počtu stupňů volnosti v případě interkalovaného motivu.

5 Závěr

Cílem této bakalářské práce bylo zjistit, do jaké míry je vazba helicenu s DNA stereospecifická, jak závisí interakční energie komplexu helicen-DNA na místě vazby helicenu a nakolik závisí celková stabilita systému na substituentu ve struktuře helicenu.

Při výpočtech bylo zjištěno, že dodatečnou substitucí se celková stabilita komplexu helicen-DNA výrazně zvyšuje, především implementací kladně nabitého řetězce (imidazolový derivát).

Hodnoty IE implikují, že pro heliceny vážící se do malého žlábku DNA je energeticky preferována vazba levotočivého (*M*) isomeru. Interkalace je naopak energeticky výhodnější pro pravotočivý (*P*)-isomer helicenu. Pouze levotočivé isomery nesubstituovaného helicenu a imidazolového derivátu jsou se schopny vázat v specifickém vazebném motivu, kdy došlo pouze částečné interkalaci molekuly helicenu (centrálními podjednotkami skeletu helicenu), terminální část helicenu je pak naorientována paralelně s cukr-fosfátovou páteří DNA.

Rovněž bylo zjištěno, že metoda PM6-D3H4X není vhodnou metodou pro určování interakčních energií námi studovaných systémů. Proto ji nelze použít jako hodnověrnou metodu při výpočtu IE větších a reálnějších systémů helicen-DNA, oproti původnímu očekávání.

6 Bibliografie

1. Neidle, Stephen. *Principles of Nucleic Acid Structure*. 1. edition. London : Elsevier Inc., 2008. stránky 132-195. ISBN 978-0-12-369507-9.

2. Jamali, Ali Akbar, Tavakoli, Afshin a Polatabadi, Jafar Ezzati Nazhad. Analytical Overview of DNA Interaction with Morin and its Complexes. *European Food Research and Technology*. 2012, 235, stránky 367–373.

3. **Rescifina, Antonio, a další.** Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. *European Journal of Medicinal Chemistry.* 2014, 74, stránky 95–115. Dostupné na: http://dx.doi.org/10.1016/j.ejmech.2013.11.029.

4. Cai, Xuemei, Gray Jr., Phillip J. a Von Hoff, Daniel D. DNA Minor Groove Binders: Back in the Groove. *Cancer Treatment Reviews*. 2009, 35, stránky 437–450.

5. Gingras, Marc. One Hundred Years of Helicene Chemistry. Part 1: Non Stereoselective Synthesis of Carbohelicenes. *Chemical Society Review*. 2013, 42, stránky 968–1006. DOI: 10.1039/c2cs35154d.

6. Liška, František. Konstituce, konformace, konfigurace v názvech organických sloučenin. Praha : VŠCHT, 2007. ISBN 978-80-7080-640-1.

7. Schulman, Jerome M. a Disch, Raymond L. Aromatic Character of [n]Helicenes and [n]Phenacenes. *Journal of Physical Chemistry*. 1999, Sv. A, 103, stránky 6669–6672.

8. Šámal, Michal, a další. An Ulimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes. *Journal of the american chemical society*. 2015. DOI: 10.1021/jacs.5b02794.

9. Kel, Oksana, a další. Chiral Selectivity in the Binding of [4]Helicene Derivatives do Double-Stranded DNA. *Chemistry, a European Journal.* 2013, 19, stránky 7173–7180. DOI:10.1002/chem.201203915.

10. Gingras, Marc. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. *Chem. Soc. Rev.* 2013, 42, stránky 1051–1095. DOI: 10.1039/c2cs35134j.

43

11. Xu, Yan, a další. (P)-Helicene Displays Chiral election in Binding to Z-DNA. *Journal of American Chemical Society*. 2004, 126, stránky 6566–6567.

12. Havlas, Zdeněk. *Metody a aplikace teoretické organické chemie*. Praha : VŠCHT, 1997. ISBN: 80-902130-6-5.

13. Young, David C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. Chichester : John Wiley & Sons, Inc., 2001. ISBN 0-471-22065-5.

14. **Hinchliffe, Alan.** *Modeling molecular structures.* 2nd edition. Chichester : John Wiley and sons Ltd., 2000. ISBN: 0-471-62380-6.

15. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. *Physical Review A*. 1988, 38, stránky 3098–3100.

16. Jensen, Frank. Introduction to Computational Chemistry. 2. edition. Chichester : John Willey and Sons, 2007. ISBN: 13 978-0-470-01187-4.

17. Lee, C., Young, W. a Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Physical Review B*. 1988, 37, stránky 785–789. DOI: 10.1103/PhysRevB.37.785.

Steward, James J. P. Optimization of parameters for semiempirical methods
 V:Modification of NDDO approximations and application. *Journal of molecular modeling*.
 2007, 13, stránky 1173–1213.

19. Řezáč, Jan, a další. Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. *Journal of Chemical Theory and Computation*. 2009, 5, stránky 1749–1760.

20. Grimme, S., a další. A Consistent and Acurate ab initio Paramtrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements (H-Pu). *Journal of Chemical Physics*. 2010, 132. DOI: 10.1063/1.3382344.

21. Řezáč, Jan a Hobza, Pavel. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. *Journal of Chemical Theory and Computation*. 2012, 8, stránky 141–151. DOI: dx.doi.org/10.1021/ct200751e.

22. Yilmazer, Nusret Duygu a Korth, Martin. Enhanced semiempirical QM methods for biomolecular interactions. *Comptutational and Structural Biotechnology Journal*. 201, 13, stránky 169-175. DOI: http://dx.doi.org/10.1016/j.csbj.2015.02.004.

23. Christensen, Anders S., a další. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. *Chemical Reviews*. 2016, 116, str. 5301–5337. DOI: 10.1021/acs.chemrev.5b00584.

24. Sherrill, C. David. *Counterpoise Correction and Basis Set Superposition Error*. School of chemistry and biochemistry, Georgia Institute of Technology. 2010. dostupné na adrese: http://vergil.chemistry.gatech.edu/notes/cp.pdf.

25. **Steward, James J. P.** *MOPAC2016*. Colorado Springs, CO USA : Stewart Computational Chemistry, 2016.

26. Klamt, A. a Schuumann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. *Journal of Chemical Society*. 1993, stránky 799–805.

27. Boys, S. F. a Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. *Molecular Physics*. 2006, 19:4, stránky 553–566. DOI: 10.1080/00268977000101561.

28. Frisch, M. J., a další. *Gaussian 16, revision A.03*. Wallingford, CT, USA : Gaussian, Inc., 2016.

29. Scalmani, G. a Frisch, M. J. Constinuous surface change polarizable continuum models of solvation. I. General Formalism. *Journal of Chemical Physics*. 2010, 132. DOI: 10.1063/1.3359469.

30. Alzoubi, Basam M. Designing Molecular Flip-Flops – DFT-Investigations on the Enantiomerization of Hetero Helicenes. *Z. Anorg. Allg. Chem.* 2014, 640, stránky 986–993.

7 Přílohy

Hodnoty v následujících tabulkách jsou uvedeny v jednotkách kJ/mol. Červenou barvou jsou v tabulkách vyneseny hodnoty interakčních energií, které neodpovídají stanovovanému vazebnému motivu (struktury se z ní odchýlily již v průběhu MD simulací).

7.1 Hel-DNA komplexy

HelP_groove							
1	7.78222	29	-9.70948	57	-99.4222		
2	9.64231	30	-11.4339	58	-83.4225		
3	18.2349	31	-19.178	59	-95.7183		
4	-26.1626	32	-87.7444	60	-105.163		
5	-30.7958	33	-105.698	61	-102.237		
6	-43.5356	34	-109.95	62	-100.522		
7	-30.0084	35	-91.4596	63	-97.7223		
8	-32.419	36	-102.856	64	-60.5218		
9	-30.6256	37	-114.602	65	-111.859		
10	-24.4805	38	-102.705	66	-75.0879		
11	-38.6889	39	-113.411	67	-100.69		
12	-28.1832	40	-100.724	68	-98.009		
13	-40.1584	41	-110.789	69	-83.0602		
14	-23.333	42	-104.839	70	-99.2991		
15	-41.9405	43	-99.1031	71	-91.0521		
16	-36.5201	44	-103.626	72	-98.7341		
17	-30.7222	45	-108.439	73	-107.459		
18	-23.2929	46	-103.972	74	-12.0319		
19	-21.8336	47	-106.916	75	0.79071		
20	-38.6215	48	-86.5482	76	-6.02516		
21	-37.1312	49	-85.3554	77	-13.3149		
22	-39.7754	50	-72.2378	78	-8.07753		
23	-31.8387	51	-95.6694	79	8.35942		
24	-3.31584	52	-92.602	80	-6.55579		
25	-11.5617	53	-97.4024	81	-9.7993		
26	-28.2586	54	-108.956	82	-9.49554		
27	5.56372	55	-102.477	83	11.5003		
28	-4.58701	56	-104.944	-	-		

Tabulka PI: Interakční energie HelP_groove-DNA, metoda PM6-D3H4X. Červenou barvou jsou vyznačeny hodnoty pro struktury, které neodpovídají uvedenému vazebnému motivu. Hodnoty jsou uvedny v kJ/mol.

HelP_int							
1	-79.6441	35	-117.729	69	-79.9137		
2	-94.5283	36	-99.359	70	-79.0163		
3	-99.0301	37	-76.1747	71	-0.95078		
4	-98.2493	38	-106.162	72	-0.93688		
5	-97.5941	39	-107.177	73	-5.0519		
6	-91.9183	40	-118.28	74	-3.7523		
7	-106.829	41	-101.934	75	-4.545		
8	-63.5401	42	-100.884	76	-8.9247		
9	-99.09	43	-82.1407	77	-10.5157		
10	-118.117	44	-92.1689	78	11.4217		
11	-113.062	45	-69.1934	79	-13.1313		
12	-94.8727	46	-104.044	80	3.03388		
13	-107.843	47	-102.451	81	-16.5551		
14	-76.368	48	-97.3271	82	-15.9278		
15	-94.976	49	-113.03	83	8.2281		
16	-107.268	50	-99.6566	84	-12.6099		
17	-110.901	51	-93.4119	85	-11.1072		
18	-93.5622	52	-94.6042	86	-2.85515		
19	-92.6888	53	-116.591	87	-4.59698		
20	-110.811	54	-115.173	88	-10.2825		
21	-97.5278	55	-106.208	89	-9.46008		
22	-72.6515	56	-80.3244	90	-5.58444		
23	-105.969	57	-99.5549	91	-7.42407		
24	-106.882	58	-97.5031	92	9.0456		
25	-109.226	59	-97.7168	93	-0.09101		
26	-96.2105	60	-91.9913	94	-25.4922		
27	-93.8567	61	-108.046	95	-25.3098		
28	-86.1891	62	-82.3777	96	0.71055		
29	-115.168	63	-96.5767	97	-12.1713		
30	-97.3765	64	-108.823	98	-13.7531		
31	-82.3363	65	-102.317	99	-12.1318		
32	-97.2306	66	-113.447	100	13.6047		
33	-81.937	67	-107.445	101	-14.1973		
34	-86.6803	68	-97.1384	-	-		

Tabulka P II: Interakční energie komplexu HelP_int-DNA spočtené na úrovni PM6-D3H4X. Červeně jsou uvedeny hodnoty neodpovídající vazebnému motivu. Hodnoty jsou uvedeny v kJ/mol.

Struktury z MD simulací se u komplexu HelM_groove-DNA vyznačovaly tím, že přecházely mezi částečnou interkalací a klasickou vazbou v malém žlábku. Hodnoty IE komplexů, kde je helicen částečně interkalován do struktury DNA jsou podtržené pro jejich snadné rozlišení.

HelM_groove				HelM_	partial
1	-6.583	47	-2.671	5	-36.049
2	11.290	48	-7.503	17	<u>-33.530</u>
3	-5.449	49	-13.031	18	<u>-33.492</u>
4	-3.140	61	-26.109	28	<u>-46.374</u>
6	-4.793	62	8.464	29	-40.788
7	-12.494	63	-6.427	30	<u>-61.948</u>
8	9.383	65	-18.990	35	<u>-28.1883</u>
9	-8.372	69	-9.71662	37	<u>-65.701</u>
10	-9.088	71	-5.688	38	<u>-35.623</u>
11	-5.229	72	-2.211	39	<u>-24.684</u>
12	-10.363	73	-11.760	42	<u>-44.997</u>
13	1.478	74	-1.790	43	<u>-57.047</u>
14	5.372	75	-3.640	50	<u>-76.391</u>
15	1.533	77	-10.818	51	<u>-69.110</u>
16	2.464	78	-7.803	52	<u>-53.531</u>
19	-11.889	79	0.947	53	<u>-60.682</u>
20	-6.789	84	-2.050	54	<u>-51.534</u>
21	7.425	85	5.754	55	<u>-55.268</u>
22	-0.065	86	-2.220	56	<u>-41.681</u>
23	-10.821	87	-17.979	57	<u>-42.186</u>
24	-21.183	88	-7.622	58	<u>-39.297</u>
25	-10.406	89	-4.233	59	<u>-32.563</u>
26	-22.791	90	3.794	60	<u>-56.898</u>
27	3.298	91	-1.852	64	<u>-59.259</u>
31	7.536	92	-16.169	66	<u>-52.955</u>
32	-1.398	93	-15.178	67	<u>-70.279</u>
33	9.854	94	-6.640	68	<u>-71.0369</u>
34	-0.643	95	-15.845	70	<u>-48.845</u>
36	-9.322	96	-2.668	76	<u>-49.729</u>
40	-15.426	97	-4.966	80	<u>-14.570</u>
41	-16.408	98	-10.492	81	<u>-34.896</u>
44	-11.611	99	2.290	82	<u>-53.664</u>
45	-17.103	101	-3.896	83	<u>-48.874</u>
46	-15.203	-	-	100	-34.259

Tabulka P III: Interakční energie komplexu HelM_groove-DNA a HelM_partial, vypočtená na úrovni PM6-D3H4X. Hodnoty jsou uvedeny v kJ/mol a hodnoty pro komplex HelM_partial jsou vyneseny podtrženě. Tabulka P IV: Interakční energie komplexu HelM_int-DNA, vypočteno na úrovni PM6-D3H4X. Hodnoty jsou vyneseny v kJ/mol.

	HelM_int							
1	-75.469	35	-62.110	69	-6.433			
2	-103.742	36	-65.350	70	-14.564			
3	-101.950	37	-55.388	71	-56.833			
4	-89.679	38	-43.349	72	-55.410			
5	-95.499	39	-53.544	73	-55.319			
6	-97.240	40	-56.150	74	-58.906			
7	-88.468	41	-13.712	75	-51.512			
8	-62.176	42	8.866	76	-46.944			
9	-88.731	43	-15.214	77	11.503			
10	0.186	44	-16.257	78	-24.752			
11	-20.420	45	-20.053	79	-22.190			
12	-50.214	46	-28.794	80	-55.710			
13	-66.231	47	-40.871	81	-50.305			
14	-45.370	48	-42.579	82	-3.209			
15	-15.262	49	-14.925	83	-3.591			
16	-30.351	50	-3.308	84	-48.792			
17	-51.066	51	-12.902	85	-33.040			
18	-65.246	52	-13.100	86	-73.166			
19	-44.782	53	-3.879	87	-13.477			
20	-38.875	54	-7.376	88	6.085			
21	0.689	55	1.948	89	-14.336			
22	-46.352	56	1.293	90	-3.061			
23	-41.080	57	1.285	91	-0.085			
24	-47.030	58	-13.496	92	-31.329			
25	-42.627	59	1.772	93	-26.807			
26	-23.387	60	-10.566	94	3.971			
27	-11.304	61	-63.137	95	2.322			
28	-41.734	62	-8.756	96	-8.482			
29	-8.414	63	-76.129	97	-8.470			
30	-30.317	64	-58.985	98	3.669			
31	-66.435	65	10.957	99	-16.085			
32	-42.362	66	-65.629	100	-3.614			
33	-57.382	67	-64.278	101	-7.199			
34	-58.319	68	-61.459	-	-			

	Interakční energie seřazná sestupně dle stability (PM6-D3H4X)						
HelP_	groove	He	lP_int	HelM	_groove	He	IM_int
6	-43.536	40	-118.280	50	-76.391	2	-103.742
15	-41.941	10	-118.117	68	-71.037	3	-101.950
13	-40.158	35	-117.729	67	-70.279	6	-97.240
22	-39.775	53	-116.591	51	-69.110	5	-95.499
11	-38.689	54	-115.173	37	-65.701	4	-89.679
20	-38.622	29	-115.168	30	-61.948	9	-88.731
21	-37.131	66	-113.447	53	-60.682	7	-88.468
16	-36.520	11	-113.062	64	-59.259	63	-76.129
8	-32.419	49	-113.030	43	-57.047	1	-75.469
23	-31.839	17	-110.901	60	-56.898	86	-73.166
5	-30.796	20	-110.811	55	-55.268	31	-66.435
17	-30.722	25	-109.226	82	-53.664	13	-66.231
9	-30.626	64	-108.823	52	-53.531	66	-65.629
7	-30.008	61	-108.046	66	-52.955	36	-65.350
26	-28.259	13	-107.843	54	-51.534	18	-65.246
12	-28.183	67	-107.445	76	-49.729	67	-64.278
4	-26.163	16	-107.268	83	-48.874	61	-63.137
10	-24.481	39	-107.177	70	-48.845	8	-62.176
14	-23.333	24	-106.882	28	-46.374	35	-62.110
18	-23.293	7	-106.829	42	-44.997	68	-61.459
19	-21.834	55	-106.208	57	-42.186	64	-58.985
31	-19.178	38	-106.162	56	-41.681	74	-58.906
77	-13.315	23	-105.969	29	-40.788	34	-58.319
74	-12.032	46	-104.044	58	-39.297	33	-57.382
25	-11.562	47	-102.451	5	-36.049	71	-56.833
30	-11.434	65	-102.317	38	-35.623	40	-56.150
81	-9.799	41	-101.934	81	-34.896	80	-55.710
29	-9.709	42	-100.884	100	-34.259	72	-55.410
82	-9.496	50	-99.657	17	-33.530	37	-55.388
78	-8.078	57	-99.555	18	-33.492	73	-55.319

Tabulka P V: Interakční energie systémů Hel-DNA, ve všech studovaných konfiguracích systémů, vypočteny na úrovni PM6-D3H4X. Vynesené hodnoty odpovídají 30 nejstabilnějším strukturám v každém systému a čísla v levé části sloupců odkazují na čísla struktur v MD simulaci (1–101). Hodnoty jsou uvedeny v kJ/mol.

	Interakční energie (DFT-svp)							
HelP_	groove	He	IP_int	HelN	A_groove	HelM_int		
1	-81.689	1	-170.875	1	-124.829	1	-149.857	
2	-79.123	2	-167.845	2	-113.475	2	-154.813	
3	-77.327	3	-161.141	3	-124.265	3	-142.048	
4	-78.657	4	-155.685	4	-130.084	4	-152.765	
5	-66.782	5	-154.793	5	-126.900	5	-149.730	
6	-59.068	6	-166.742	6	-113.613	6	-135.463	
7	-79.231	7	-161.174	7	-116.089	7	-139.663	
8	-68.868	8	-166.321	8	-110.759	8	-127.648	
9	-77.812	9	-158.237	9	-117.314	9	-117.625	
10	-71.460	10	-168.836	10	-119.413	10	-118.576	
11	-73.707	11	-157.859	11	-113.313	11	-116.284	
12	-67.240	12	-160.514	12	-107.966	12	-129.235	
13	-50.314	13	-154.585	13	-103.736	13	-119.718	
14	-73.056	14	-157.356	14	-112.639	14	-114.725	
15	-74.248	15	-149.245	15	-92.839	15	-117.958	
16	-74.726	16	-167.592	16	-99.258	16	-120.148	
17	-46.077	17	-166.573	17	-85.679	17	-131.613	
18	-50.751	18	-167.095	18	-107.122	18	-117.618	
19	-74.308	19	-161.441	19	-100.915	19	-123.501	
20	-44.382	20	-166.655	20	-106.627	20	-110.879	
21	-38.916	21	-144.962	21	-110.444	21	-122.022	
22	-61.312	22	-149.379	22	-113.542	22	-116.937	
23	-69.855	23	-161.960	23	-105.096	23	-110.453	
24	-62.208	24	-153.161	24	-102.344	24	-120.692	
25	-69.955	25	-158.381	25	-82.918	25	-117.369	
26	-61.408	26	-159.628	26	-97.995	26	-111.751	
27	-92.723	27	-154.730	27	-89.479	27	-108.830	
28	-65.796	28	-152.554	28	-94.063	28	-110.694	
29	-90.338	29	-163.220	29	-81.663	29	-110.305	
30	-66.424	30	-154.895	30	-84.983	30	-113.644	

Tabulka P VI: Interakční energie komplexu Hel-DNA, ve všech studovaných konfiguracích tohoto systému, vypočtené na úrovni DFT-SVP. Hodnoty jsou uvedeny v kJ/mol.

Tabulka P VII: Interakční energie Hel_DNA, ve všech konfiguracích tohoto systému, spočtené na úrovni DFT s bází TZVP. Hodnoty IE byly spočteny pro tři nejstabilnější struktury z úrovně DFT-SVP. Hodnoty jsou uvedeny v kJ/mol.

Interakční energie systémů Hel-DNA (DFT-tzvp)								
HelP_	HelP_groove HelP_int HelM_groov		1_groove	He	IM_int			
1	-73.933	1	-172.054	1	-121.337	1	-155.044	
2	-89.945	2	-166.396	2	-110.445	2	-151.480	
3	-80.665	3	-169.361	3	-122.332	3	-148.154	

7.2 iHel-DNA komplexy

Tabulka P VIII: Interakční energie systému iHelP	_groove-DNA vypočtena na úrovni PM6-D3H4X. Hodn	oty
jsou uvedeny v kJ/mol.		

	iHelP_groove						
1	-6.974	35	-37.112	69	-45.868		
2	-1.708	36	-41.447	70	-31.842		
3	-26.019	37	-41.101	71	-44.477		
4	-41.382	38	-41.242	72	-32.183		
5	-15.945	39	-35.931	73	-31.413		
6	-16.040	40	-20.697	74	-33.808		
7	-21.773	41	-62.389	75	-37.000		
8	-11.879	42	-19.442	76	-2.528		
9	-20.398	43	-38.046	77	-22.311		
10	-13.259	44	-34.872	78	-23.252		
11	-21.419	45	-11.841	79	-31.114		
12	-35.147	46	-45.993	80	-46.703		
13	-42.001	47	-24.709	81	-52.935		
14	-37.456	48	-32.596	82	-25.400		
15	-58.939	49	-47.450	83	-24.180		
16	-29.942	50	-22.429	84	-22.652		
17	-39.135	51	-18.245	85	-39.610		
18	-32.677	52	-33.316	86	-41.607		
19	-41.860	53	-32.539	87	-36.695		
20	-30.425	54	-30.642	88	-25.166		
21	-33.729	55	-18.563	89	-35.207		
22	-30.331	56	-39.041	90	-57.469		
23	-57.227	57	-51.309	91	-24.622		
24	-43.632	58	-31.045	92	-60.934		
25	-54.850	59	-33.664	93	-21.149		
26	-41.443	60	-33.723	94	-53.732		
27	-35.542	61	-26.872	95	-17.162		
28	-33.438	62	-30.821	96	-29.111		
29	-42.352	63	-24.314	97	-25.835		
30	-52.174	64	-16.790	98	-59.574		
31	-28.812	65	-17.851	99	-49.397		
32	-36.613	66	-25.613	100	-50.172		
33	-31.213	67	-51.909	101	-45.289		
34	-40.056	68	-39.790	-	-		

Tabulka P IX: Interakční energie systému iHelP_int-DNA vypočtené na úrovni PM6-D3H4X. Hodnoty jsou uvedeny v kJ/mol.

iHelP_int						
1	-119.128	35	-124.709	69	-118.139	
2	-107.918	36	-142.792	70	-151.758	
3	-136.550	37	-136.859	71	-138.935	
4	-136.739	38	-133.772	72	-142.940	
5	-156.342	39	-149.171	73	-139.599	
6	-140.392	40	-143.133	74	-125.863	
7	-128.541	41	-158.329	75	-133.941	
8	-135.813	42	-139.004	76	-132.582	
9	-131.167	43	-134.142	77	-130.378	
10	-131.328	44	-141.648	78	-85.879	
11	-146.917	45	-144.869	79	-147.639	
12	-140.390	46	-157.410	80	-142.277	
13	-132.818	47	-116.800	81	-141.547	
14	-147.343	48	-136.638	82	-143.719	
15	-143.875	49	-116.786	83	-148.268	
16	-126.792	50	-141.060	84	-127.801	
17	-151.022	51	-118.324	85	-136.872	
18	-145.755	52	-148.969	86	-135.455	
19	-139.306	53	-131.397	87	-152.139	
20	-150.683	54	-144.096	88	-148.191	
21	-154.306	55	-115.831	89	-134.110	
22	-134.850	56	-123.940	90	-150.841	
23	-137.649	57	-150.668	91	-136.538	
24	-126.770	58	-126.660	92	-145.020	
25	-105.256	59	-128.402	93	-110.813	
26	-129.822	60	-128.239	94	-157.866	
27	-156.906	61	-99.476	95	-134.977	
28	-134.224	62	-141.282	96	-130.621	
29	-136.440	63	-110.342	97	-144.818	
30	-137.951	64	-123.038	98	-150.434	
31	-132.600	65	-139.289	99	-131.880	
32	-156.653	66	-135.984	100	-138.571	
33	-126.707	67	-123.746	101	-142.062	
34	-153.757	68	-135.769	-	-	

Tabulka P X: Interakční energie systému iHelM_groove-DNA vypočtené na úrovni PM6-D3H4X. Hodnoty jsou uvedeny v kJ/mol.

	iHelM_groove					
1	-25.984	35	-35.683	69	-79.603	
2	-8.342	36	-41.820	70	-48.409	
3	-36.075	37	-57.388	71	-61.124	
4	-36.562	38	-60.064	72	-49.537	
5	-13.928	39	-62.856	73	-65.305	
6	-13.473	40	-39.680	74	-52.390	
7	-4.184	41	-55.561	75	-70.056	
8	-35.463	42	-64.643	76	-43.298	
9	-39.168	43	-55.607	77	-36.118	
10	-29.914	44	-64.982	78	-70.778	
11	-14.844	45	-75.158	79	-56.276	
12	-31.425	46	-70.367	80	-61.364	
13	-30.412	47	-44.853	81	-54.049	
14	-49.466	48	-43.389	82	-67.441	
15	-5.876	49	-38.685	83	-72.744	
16	-1.907	50	-44.314	84	-53.090	
17	-20.119	51	-63.659	85	-56.147	
18	-9.352	52	-72.146	86	-70.238	
19	2.112	53	-38.694	87	-72.778	
20	-0.064	54	-46.716	88	-48.949	
21	-16.155	55	-53.251	89	-68.337	
22	-1.447	56	-51.681	90	-59.323	
23	-56.831	57	-63.874	91	-70.555	
24	-55.281	58	-24.823	92	-58.491	
25	-65.947	59	-57.908	93	-54.073	
26	-31.901	60	-56.536	94	-45.253	
27	-26.921	61	-67.893	95	-54.903	
28	-58.427	62	-62.956	96	-53.289	
29	-52.395	63	-47.646	97	-29.207	
30	-41.118	64	-20.098	98	-39.769	
31	-53.139	65	-34.623	99	-56.538	
32	-47.040	66	-62.485	100	-62.806	
33	-59.021	67	-70.478	101	-52.886	
34	-62.337	68	-72.172	-	-	

Tabulka P XI: Interakční energie systému iHelM_int-DNA vypočtené na úrovni PM6-D3H4X. Hodnoty jsou uvedeny v kJ/mol.

iHelM_int						
1	-73.574	35	-87.705	69	-74.598	
2	-105.405	36	-86.638	70	-78.260	
3	-77.509	37	-77.534	71	-90.318	
4	-121.327	38	-82.067	72	-82.955	
5	-106.033	39	-75.640	73	-49.707	
6	-107.959	40	-33.174	74	-114.385	
7	-78.835	41	-82.025	75	-46.810	
8	-94.656	42	-72.313	76	-86.206	
9	-67.209	43	-119.159	77	-88.614	
10	-69.514	44	-80.207	78	-90.208	
11	-97.295	45	-47.665	79	-77.604	
12	-105.196	46	-96.163	80	-91.891	
13	-85.084	47	-84.183	81	-89.623	
14	-35.629	48	-78.970	82	-47.612	
15	-84.244	49	-114.299	83	-89.235	
16	-79.703	50	-99.451	84	-95.285	
17	-94.554	51	-91.960	85	-102.266	
18	-89.754	52	-73.617	86	-96.484	
19	-89.624	53	-91.339	87	-107.512	
20	-85.124	54	-92.366	88	-85.555	
21	-116.057	55	-88.461	89	-121.069	
22	-71.042	56	-103.628	90	-96.370	
23	-92.553	57	-58.230	91	-94.000	
24	-80.587	58	-42.715	92	-113.421	
25	-53.615	59	-65.528	93	-83.110	
26	-95.633	60	-34.272	94	-106.443	
27	-96.538	61	-89.282	95	-85.333	
28	-81.368	62	-110.109	96	-91.445	
29	-114.449	63	-27.149	97	-94.979	
30	-79.398	64	-78.798	98	-70.946	
31	-84.994	65	-91.411	99	-66.265	
32	-58.226	66	-103.471	100	-89.798	
33	-96.714	67	-97.586	101	-76.737	
34	-111.039	68	-94.015	-	-	

Interakční energie seřazná sestupně dle stability (PM6-D3H4X)							
iHelP_	groove	iHe	elP_int	iHelM	1_groove	iHe	elM_int
41	-62.389	41	-158.329	69	-79.603	4	-121.327
92	-60.934	94	-157.866	45	-75.158	89	-121.069
98	-59.574	46	-157.410	87	-72.778	43	-119.159
15	-58.939	27	-156.906	83	-72.744	21	-116.057
90	-57.469	32	-156.653	68	-72.172	29	-114.449
23	-57.227	5	-156.342	52	-72.146	74	-114.385
25	-54.850	21	-154.306	78	-70.778	49	-114.299
94	-53.732	34	-153.757	91	-70.555	92	-113.421
81	-52.935	87	-152.139	67	-70.478	34	-111.039
30	-52.174	70	-151.758	46	-70.367	62	-110.109
67	-51.909	17	-151.022	86	-70.238	6	-107.959
57	-51.309	90	-150.841	75	-70.056	87	-107.512
100	-50.172	20	-150.683	89	-68.337	94	-106.443
99	-49.397	57	-150.668	61	-67.893	5	-106.033
49	-47.450	98	-150.434	82	-67.441	2	-105.405
80	-46.703	39	-149.171	25	-65.947	12	-105.196
46	-45.993	52	-148.969	73	-65.305	56	-103.628
69	-45.868	83	-148.268	44	-64.982	66	-103.471
101	-45.289	88	-148.191	42	-64.643	85	-102.266
71	-44.477	79	-147.639	57	-63.874	50	-99.451
24	-43.632	14	-147.343	51	-63.659	67	-97.586
29	-42.352	11	-146.917	62	-62.956	11	-97.295
13	-42.001	18	-145.755	39	-62.856	33	-96.714
19	-41.860	92	-145.020	100	-62.806	27	-96.538
86	-41.607	45	-144.869	66	-62.485	86	-96.484
36	-41.447	97	-144.818	34	-62.337	90	-96.370
26	-41.443	54	-144.096	80	-61.364	46	-96.163
4	-41.382	15	-143.875	71	-61.124	26	-95.633
38	-41.242	82	-143.719	38	-60.064	84	-95.285
37	-41.101	40	-143.133	90	-59.323	97	-94.979

Tabulka P XII: Interakční energie systémů iHel-DNA, ve všech studovaných konfiguracích systémů, vypočteny na úrovni PM6-D3H4X. Vynesené hodnoty odpovídají 30 nejstabilnějším strukturám v každém systému a čísla v levé části sloupců odkazují na čísla struktur v MD simulaci (1–101). Hodnoty jsou uvedeny v kJ/mol.

Interakční energie iHelM_int							
PM6	-D3H4X	D	FT-svp				
1	-73.5742	1	-137.204				
2	-105.405	2	-168.028				
3	-77.5087	3	-157.749				
4	-121.327	4	-175.435				
5	-106.033	5	-193.535				
6	-107.959	6	-190.130				
7	-78.8354	7	-160.030				

Tabulka P XIII: Interakční energie systému iHelM_int vypočtené na úrovni PM6-D3H4X a DFT-SVP. Hodnoty energií jsou uvedeny v kJ/mol.

Interakční energie systémů Hel-DNA (DFT-svp)								
HelP	_groove	Не	IP_int	HelN	1_groove	Не	IM_int	
1	-149.808	1	-237.345	1	-200.170	1	-175.435	
2	-157.678	2	-246.589	2	-190.084	2	-226.125	
3	-165.715	3	-251.241	3	-189.037	3	-227.866	
4	-200.390	4	-254.205	4	-193.458	4	-225.828	
5	-136.334	5	-270.986	5	-188.448	5	-219.083	
6	-164.671	6	-244.474	6	-205.484	6	-234.625	
7	-154.444	7	-251.226	7	-188.316	7	-219.196	
8	-138.039	8	-241.884	8	-193.736	8	-239.864	
9	-162.273	9	-255.430	9	-199.680	9	-221.257	
10	-134.476	10	-247.229	10	-191.959	10	-213.155	
11	-150.882	11	-227.584	11	-204.865	11	-190.130	
12	-148.307	12	-280.141	12	-186.180	12	-223.444	
13	-84.590	13	-253.606	13	-189.634	13	-219.667	
14	-109.422	14	-247.110	14	-190.467	14	-193.535	
15	-156.646	15	-230.669	15	-188.684	15	-168.028	
16	-156.646	16	-270.839	16	-180.149	16	-204.005	
17	-126.634	17	-255.815	17	-172.278	17	-192.788	
18	-113.279	18	-240.406	18	-203.811	18	-206.245	
19	-142.252	19	-249.603	19	-190.316	19	-203.528	
20	-141.147	20	-254.795	20	-182.677	20	-208.530	
21	-217.384	21	-242.552	21	-187.064	21	-214.345	
22	-65.639	22	-264.280	22	-162.989	22	-218.480	
23	-135.442	23	-239.376	23	-168.033	23	-192.426	
24	-123.960	24	-253.422	24	-181.298	24	-198.198	
25	-47.493	25	-206.944	25	-172.957	25	-206.317	
26	-130.578	26	-231.826	26	-173.036	26	-203.114	
27	-127.088	27	-238.548	27	-179.427	27	-214.257	
28	-172.795	28	-245.964	28	-184.425	28	-204.825	
29	-122.950	29	-263.598	29	-180.980	29	-210.465	
30	-137.964	30	-224.323	30	-193.229	30	-190.405	

Tabulka P XIV: Interakční energie komplexů iHel-DNA, ve všech studovaných konfiguracích systému, vypočtené na úrovni DFT-SVP. Hodnoty jsou uvedeny v kJ/mol.

Tabulka P XV: Interakční energie komplexů iHel-DNA, ve všech studovaných konfiguracích systému, vypočtené na úrovni DFT-TZVP. Hodnoty jsou uvedeny v kJ/mol.

Interakční energie systémů Hel-DNA (DFT-tzvp)								
HelP	_groove	HelP_int		HelM_groove		He	elM_int	
1	-127.863	1	-274.617	1	-233.600	1	-134.303	
2	-192.037	2	-265.766	2	-224.837	2	-154.024	
3	-140.311	3	-263.036	3	-224.387	3	-194.640	

Tabulka P XVI: Srovnání energií komplexu iHelP_int-DNA v rámci 30 nejstabilnějších struktur z úrovně PM6-D3H4X, hodnoty jsou seřazeny podle klesající energetické stability (úroveň DFT-TZVP). Hodnoty jsou uvedeny v kJ/mol.

Interakční energie iHelP-int						
PM6	-D3H4X	DF	T-svp	DF	T-tzvp	
90	-150.841	1	-280.141	1	-274.617	
32	-156.653	2	-270.986	2	-265.766	
39	-149.171	3	-270.839	3	-263.036	
82	-143.719	4	-263.598	4	-258.767	
11	-146.917	5	-264.280	5	-258.040	
52	-148.969	6	-255.815	6	-252.762	
87	-152.139	7	-255.430	7	-251.310	
79	-147.639	8	-254.795	8	-249.724	
92	-145.020	9	-253.422	9	-249.435	
20	-150.683	10	-253.606	10	-248.045	
27	-156.906	11	-254.205	11	-247.906	
88	-148.191	12	-249.603	12	-244.545	
21	-154.306	13	-251.226	13	-244.501	
46	-157.410	14	-251.241	14	-244.200	
94	-157.866	15	-246.589	15	-243.850	
57	-150.668	16	-247.110	16	-242.559	
70	-151.758	17	-247.229	17	-241.058	
15	-143.875	18	-245.964	18	-240.979	
5	-156.342	19	-244.474	19	-239.897	
14	-147.343	20	-242.552	20	-238.706	
18	-145.755	21	-239.376	21	-238.182	
34	-153.757	22	-241.884	22	-235.571	
41	-158.329	23	-237.345	23	-235.479	
54	-144.096	24	-238.548	24	-235.017	
83	-148.268	25	-240.406	25	-233.855	
97	-144.818	26	-231.826	26	-228.604	
17	-151.022	27	-227.584	27	-226.228	
98	-150.434	28	-230.669	28	-225.410	
40	-143.133	29	-224.323	29	-217.832	
45	-144.869	30	-206.944	30	-204.816	

Hodnoty z této tabulky sloužily jako opora pro výpočty jen tří nejstabilnějších struktur z úrovně DFT-SVP v TZ bázi, tzn. na úrovni DFT-TZVP. K tomuto kroku bylo přikročeno vzhledem k malým rozdílům na těchto dvou úrovních, kdy se rozdíl hodnot pohybuje přibližně v rozmezí ±5 kJ/mol.

7.3 FlavoHel-DNA komplexy

	FlavoHelP_groove								
1	-4.757	35	-105.708	69	-98.101				
2	-41.591	36	-101.459	70	-104.459				
3	-18.753	37	-103.878	71	-93.410				
4	-11.160	38	-88.679	72	-64.853				
5	-11.795	39	-79.483	73	-94.484				
6	-41.323	40	-94.208	74	-58.809				
7	-32.229	41	-103.811	75	-104.241				
8	-24.017	42	-92.688	76	-103.175				
9	-23.657	43	-99.153	77	-99.646				
10	-41.568	44	-84.690	78	-98.270				
11	-13.232	45	-96.499	79	-102.006				
12	-44.638	46	-85.318	80	-71.479				
13	-45.062	47	-71.687	81	-72.108				
14	-37.946	48	-104.052	82	-125.641				
15	-34.174	49	-98.358	83	-95.615				
16	-21.519	50	-101.416	84	-88.129				
17	-41.599	51	-105.484	85	-91.866				
18	-26.265	52	-85.194	86	-88.811				
19	-38.543	53	-91.733	87	-82.182				
20	17.049	54	-62.191	88	-97.556				
21	-24.316	55	-87.567	89	-104.707				
22	-16.691	56	-81.761	90	-95.161				
23	-55.264	57	-91.269	91	-86.003				
24	11.586	58	-97.218	92	-101.227				
25	5.425	59	-113.385	93	-99.026				
26	-17.281	60	-77.074	94	-69.847				
27	-24.711	61	-80.859	95	-93.201				
28	-21.808	62	-106.189	96	-61.395				
29	-25.982	63	-99.362	97	-96.403				
30	-41.494	64	-102.613	98	-76.963				
31	-16.146	65	-99.743	99	-100.937				
32	-99.991	66	-88.027	100	-95.752				
33	-64.503	67	-102.864	101	-87.895				
34	-75.047	68	-94.753	-	-				

Tabulka P XVII: Interakční energie systému FlavoHelP_groove-DNA vypočtený na úrovni PM6-D3H4X. Červeně jsou vyneseny hodnoty, jež se neshodují s vazebným motivem komplexu. Hodnoty jsou uvedeny v kJ/mol.

Tabulka P XVIII: Int	erakční energie komplexu F	lavoHelP_int-DNA vypočto	ené na úrovni PM6-D3H4X.
Hodnoty jsou uvedeny v kJ	/mol.		

FlavoHelP_int							
1	-72.838	35	-95.347	69	-87.163		
2	-91.095	36	-110.470	70	-79.616		
3	-83.315	37	-101.537	71	-97.376		
4	-68.387	38	-96.204	72	-82.504		
5	-67.766	39	-70.586	73	-111.308		
6	-97.442	40	-107.767	74	-82.565		
7	-111.181	41	-102.516	75	-76.213		
8	-88.159	42	-101.767	76	-109.603		
9	-112.612	43	-96.589	77	-92.037		
10	-96.741	44	-93.888	78	-80.900		
11	-88.762	45	-99.970	79	-111.555		
12	-104.922	46	-112.426	80	-106.169		
13	-103.269	47	-75.894	81	-106.284		
14	-103.102	48	-85.279	82	-97.393		
15	-96.440	49	-91.966	83	-117.748		
16	-79.886	50	-82.007	84	-126.339		
17	-74.117	51	-84.888	85	-86.840		
18	-121.564	52	-116.787	86	-98.238		
19	-97.047	53	-100.758	87	-122.593		
20	-72.437	54	-100.323	88	-106.270		
21	-94.781	55	-120.125	89	-124.685		
22	-84.958	56	-67.387	90	-106.406		
23	-87.605	57	-108.109	91	-100.781		
24	-84.469	58	-102.969	92	-117.474		
25	-95.389	59	-90.276	93	-112.322		
26	-112.936	60	-97.832	94	-86.985		
27	-104.626	61	-61.789	95	-85.519		
28	-118.219	62	-82.972	96	-105.095		
29	-118.448	63	-101.190	97	-96.496		
30	-83.078	64	-83.209	98	-100.992		
31	-96.376	65	-84.525	99	-80.342		
32	-126.647	66	-110.981	100	-94.017		
33	-100.749	67	-128.615	101	-80.453		
34	-67.438	68	-102.255	-	-		

FlavoHelM_groove							
1	-13.537	35	-23.639	69	-48.311		
2	-6.623	36	-23.314	70	-23.039		
3	5.368	37	-22.444	71	27.603		
4	-1.009	38	-11.104	72	-38.948		
5	0.006	39	-18.800	73	-44.768		
6	-24.929	40	-1.288	74	-24.450		
7	12.946	41	-11.213	75	-43.647		
8	-4.913	42	-0.830	76	-41.792		
9	-16.448	43	-8.180	77	-46.874		
10	-6.212	44	-51.047	78	-19.137		
11	-11.605	45	-19.551	79	-41.379		
12	-15.386	46	-22.033	80	-24.629		
13	-5.326	47	-21.987	81	-42.024		
14	-15.909	48	-30.059	82	-52.277		
15	-36.963	49	-19.711	83	-18.985		
16	-14.878	50	-47.074	84	-23.839		
17	-0.296	51	-46.217	85	-62.444		
18	11.863	52	-4.210	86	-14.709		
19	3.476	53	-27.771	87	-37.582		
20	-7.986	54	-13.322	88	-38.581		
21	6.805	55	-30.490	89	-50.850		
22	-34.983	56	-36.942	90	-49.458		
23	-7.308	57	-38.103	91	-20.682		
24	-11.676	58	-43.781	92	-27.331		
25	-3.939	59	-34.704	93	-12.108		
26	-2.485	60	-49.669	94	-29.828		
27	-4.788	61	-19.661	95	-57.373		
28	-10.174	62	-11.345	96	-22.962		
29	-8.128	63	-33.672	97	-28.334		
30	-9.547	64	-53.345	98	-13.279		
31	-3.437	65	-52.534	99	-33.989		
32	-33.496	66	4.209	100	-74.534		
33	-3.863	67	-28.788	101	-15.161		
34	-40.712	68	-51.834	-	-		

Tabulka P XIX: Interakční energie systému FlavoHelM_groove vypočtené na úrovni PM6-D3H4X. Hodnoty v tabulce jsou uvedeny v kJ/mol.

FlavoHelM_int							
1	-89.1745	35	-7.408	69	3.325		
2	-101.943	36	-0.250	70	-16.367		
3	-107.852	37	-28.731	71	-0.482		
4	-104.047	38	-0.593	72	-3.173		
5	-97.792	39	-14.495	73	-14.954		
6	-86.1429	40	-14.100	74	-17.553		
7	-103.278	41	-34.499	75	-11.496		
8	-93.872	42	-6.099	76	-10.040		
9	-100.594	43	5.660	77	-11.507		
10	-51.6826	44	-15.856	78	-9.308		
11	-9.64631	45	5.832	79	-10.116		
12	-44.1533	46	-7.733	80	-18.807		
13	-90.8469	47	2.432	81	-27.581		
14	-62.005	48	-18.693	82	-29.207		
15	-73.3813	49	-5.374	83	-10.917		
16	-72.5921	50	1.952	84	-3.346		
17	-9.1531	51	-18.657	85	-10.593		
18	5.99535	52	-11.120	86	0.019		
19	17.7152	53	-1.050	87	-22.055		
20	-61.8619	54	-3.933	88	-4.425		
21	-68.2543	55	-4.471	89	-5.635		
22	-54.966	56	-9.081	90	-18.426		
23	-5.53776	57	-7.387	91	6.713		
24	-19.4363	58	3.053	92	-11.034		
25	34.9269	59	8.434	93	-21.074		
26	-26.6144	60	-0.901	94	5.995		
27	2.80926	61	-8.777	95	-20.756		
28	-9.65087	62	-9.402	96	-7.603		
29	-10.2515	63	-14.937	97	-24.687		
30	-9.9719	64	-5.265	98	-43.693		
31	6.41666	65	-6.307	99	-38.636		
32	-11.5096	66	-17.512	100	-12.878		
33	-84.1137	67	-7.453	101	0.141		
34	9.14527	68	-9.167	-	-		

Tabulka P XX: Interakční energie systému FlavoHelM_int, vypočtené na úrovni PM6-D3H4X. Červenou barvou jsou uvedeny hodnoty komplexů neodpovídající motivu. Hodnoty v tabulce jsou uvedeny v kJ/mol.

Interakční energie systémů FlavoHel-DNA (DFT-svp)								
FlavoHelP_groove		FlavoHelP_int		FlavoHelM_groove		FlavoHelM_int		
1	-153.042	1	-186.587	1	-187.608	1	-141.274	
2	-138.534	2	-186.282	2	-158.002	2	-158.982	
3	-155.508	3	-196.804	3	-151.300	3	-177.941	
4	-145.976	4	-188.583	4	-145.860	4	-188.641	
5	-115.566	5	-184.902	5	-143.442	5	-182.666	
6	-138.311	6	-183.007	6	-148.077	6	-170.564	
7	-139.362	7	-190.656	7	-157.017	7	-185.549	
8	-147.064	8	-201.093	8	-106.809	8	-148.938	
9	-141.317	9	-179.534	9	-152.658	9	-154.890	
10	-142.777	10	-181.901	10	-149.219	10	-158.761	
11	-144.495	11	-185.118	11	-146.006	11	-132.447	
12	-141.163	12	-199.503	12	-143.858	12	-154.509	
13	-138.472	13	-173.919	13	-141.473	13	-144.221	
14	-115.154	14	-174.044	14	-142.242	14	-127.584	
15	-107.478	15	-191.673	15	-149.195	15	-106.506	
16	-140.214	16	-188.763	16	-135.126	16	-113.338	
17	-73.977	17	-181.601	17	-134.975	17	-	
18	-128.108	18	-187.260	18	-144.003	18	-	
19	-123.004	19	-172.812	19	-162.028	19	-	
20	-124.961	20	-189.162	20	-134.928	20	-	
21	-116.247	21	-181.708	21	-152.635	21	-	
22	-113.279	22	-193.649	22	-95.278	22	-	
23	-109.030	23	-193.918	23	-144.396	23	-	
24	-81.252	24	-192.546	24	-136.877	24	-	
25	-98.151	25	-183.670	25	-140.000	25	-	
26	-105.129	26	-201.410	26	-147.181	26	-	
27	-60.434	27	-184.048	27	-90.441	27	-	
28	-91.809	28	-199.694	28	-137.916	28	-	
29	-78.460	29	-186.257	29	-70.628	29	-	
30	-84.289	30	-192.286	30	-131.233	30	-	

Tabulka P XXI: Interakční energie systémů FlavoHel-DNA, ve všech studovaných konfiguracích systému, vypočtené na úrovni DFT-SVP. Hodnoty v tabulce jsou uvedeny v kJ/mol.

Tabulka P XXII: Interakční energie komplexů FlavoHel-DNA, ve všech studovaných konfiguracích systému, vypočtené na úrovni DFT-TZVP. Hodnoty v tabulce jsou uvedeny v kJ/mol.

Interakční energie systémů FlavoHel-DNA (DFT-tzvp)								
FlavoHelP_groove		FlavoHelP_int		FlavoHelM_groove		FlavoHelM_int		
1	-155.22	1	-200.262	1	-181.751	1	-186.556	
2	-149.419	2	-200.748	2	-158.829	2	-184.123	
3	-144.257	3	-195.472	3	-152.496	3	-179.764	