
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY O F INFORMAT ION T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D MULTIMEDIA

ASISTENČNÍ A INFORMAČNÍ SYSTEM PRO ZRAKOVÉ
POSTIŽENÉ
ASSISTANCE AND INFORMATION SYSTEM FOR BLIND PEOPLE

DIPLOMOVÁ PRÁCE
MASTER 'S THESIS

AUTOR PRÁCE DAVID HNILICA
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. JAN ČERNOCKÝ,
SUPERVISOR

B R N O 2007

Abstrakt
Tato p r á c e řeší p r o b l é m implementace as i s t enčn ího s y s t é m u pro podporu z rakově pos t i žených
osob v p ros t ř edc ích h r o m a d n é dopravy. Jel ikož se j e d n á pouze o čás t vě t š ího celku (pro­
jektu R A M P E) , n e n í v t é t o p rác i pokry ta celá problematika, n ý b r ž pouze jej í čás t . P r á c e
je p s á n a z pohledu vývo já ře a sof twarového architekta. Zlepšuje architekturu dř íve vyv­
inu t ého projektu, navrhuje nové metody a techniky a p ř i d á v á do výs ledné aplikace nové
funkce. Toto však p l a t í pouze pro p ř í s lušnou čás t - p r á c e n e m ů ž e a ani si neklade za cíl
změn i t nebo navrhnout celý sy s t ém. To už bylo provedeno j i n ý m i autory v minulost i a tato
p ráce je na t ěch to p ředchoz ích výsledcích postavena.

Klíčová slova
R A M P E , z rakově pos t ižen í , h r o m a d n á doprava

Abstract
This work deals w i th the problem of implementat ion of the assistance system to support the
orientation of b l ind people i n the means of public transportat ion. Since it is only one part
of larger unit (the R A M P E project), it doesn't cover the whole topic, yet only implements
one part of i t . It is wri t ten from the point of view of a developer and code architect. It
improves the software architecture of existing project, suggests new methods and techniques
and adds new functions to the application. This is done only at the respective part - the
work is neither capable, nor takes any ambit ion to design or modify the whole system.
Tha t has been done already by other people and parties in the past and this work merely
continues those done i n the past.

Keywords
R A M P E project, visualy impaired people support, public transportat ion

Citace
D a v i d Hni l i ca : Assistance and Information System for B l i n d People, d i p l o m o v á p ráce , Brno ,
F I T V U T v B r n ě , 2007

Assistance and Information System for B l ind Peo­
ple

Prohlášení
I hereby declare, that I have created this work by myself under supervision of prof. Genevieve
Baudoin , Ol iv ier Venard and doc. Dr . Ing. J an Cernocky. I have also provided a l l reference,
that has been used.

D a v i d H n i l i c a
M a y 18, 2007

© D a v i d Hni l i ca , 2007.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4
1.1 Descript ion of R A M P E project 4

1.1.1 Introduction into the topic 4
1.1.2 Parts of R A M P E 4
1.1.3 K e y features of R A M P E 5

1.2 Posi t ion of this work wi th in R A M P E project 5
1.3 The role of the author and this work 6
1.4 Parts taken from the previous phases of the project 6
1.5 Structure of this work 7
1.6 L inks to any previous author's work 7

2 Specification and requirements 8
2.1 Hardware platform 8

2.1.1 P D A s 8
2.1.2 Network equipment 8

2.2 Software platform 8
2.2.1 Operat ing system 8
2.2.2 Programming language and environment 9

3 Goals and priorities 10

3.1 L o w coupling 10
3.2 Defini t ion of interfaces for important modules 10
3.3 One responsability per module 10
3.4 Complex i ty through s implic i ty 11
3.5 Ease over effectivity 11
3.6 Preserving the original man-machine interface 11
3.7 Documentat ion 11

4 M a i n modules of the project 12

4.1 Man-machine interface 12
4.1.1 Output methods 12
4.1.2 Input methods 13

4.2 Behavior controller of the Man-Mach ine Interface 14
4.2.1 Discovery of the stops 16
4.2.2 Stops survey 17
4.2.3 Guidance 18
4.2.4 Start of navigation 19
4.2.5 Navigat ion through available lines 19

1

4.2.6 Navigat ion through available stops 20
4.3 Processing of X M L 21
4.4 Text to speech synthetizer (T T S) 21

4.4.1 Integration of the T T S into R A M P E 21
4.5 Network (low level) controller 22

4.5.1 Network adapters in R A M P E 22
4.6 Network (high level) services controller 22

5 Support ing parts 24
5.1 Paral le l ism and mult i threading 24

5.1.1 Problems 24
5.1.2 Implemented solution 25

5.2 D a t a dis t r ibut ion inside the project 25
5.2.1 Design of data structures 26

5.3 Logging facility 26

6 O p e n issues 27
6.1 Processing of errors 27
6.2 Security 27

6.2.1 Current state 27
6.2.2 Possible targets 28
6.2.3 Rea l possibil i ty of attack 28

7 Conclusions 29
7.1 Current state of the project 29
7.2 Possible functional improvements for future 29

7.2.1 Ex tend ing of the configurability 29
7.2.2 Internationalization 29
7.2.3 Ava i l ab i l i t y for different platforms 29
7.2.4 A d d i t i o n a l improvements in man-machine interface 30
7.2.5 Navigat ion techniques 30

7.3 Licensing issues 30
7.3.1 Ex te rna l dependencies 31
7.3.2 Internal restrictions 31

7.4 Related works 31
7.4.1 Projects running on E S I E E 31
7.4.2 Ex te rna l projects 31

7.5 Summary of results 32
7.5.1 Achieved goals 32

7.6 Contr ibut ions of this work 32

8 Appendixes 33
8.1 Append ix 1. Mul t i th read ing in R A M P E 33

8.1.1 Implementation and usage 33
8.1.2 Sharing data amongst the threads 34
8.1.3 Us ing the C T h r e a d class as a general interface 34
8.1.4 Possible improvements 35

8.2 Append ix 2. Network adapter and W i F i structure 37
8.2.1 W i F i controller implementation 37

2

8.2.2 Possible future improvements 37
8.3 Append ix 3. T C P / I P connections management 40

8.3.1 Possible improvements 41
8.4 Append ix 4. X M L Parser structure 42
8.5 Append ix 5. Examples of the X M L Files used i n R A M P E 44

8.5.1 Configurat ion file 44
8.5.2 Language file 45
8.5.3 Borne informations 48

Chapter 1

Introduction

This work is part of the R A M P E project and has been done under the terms of Socrates/Erasmus
programme at the E S I E E Paris under the supervision and wi th k ind help from prof. G . B a u -
dion and M r . O . Venard from E S I E E Paris and pedagogical lead of doc. J . Cernocky from
F I T V U T . Whole R A M P E project is being developed by mult iple companies and inst i tu­
tions in France. Students work (this work) is supposed to improve and extend the work
done before at E S I E E (precise goals are specified further).

1.1 Description of R A M P E project

A s described i n [5] and [3], the R A M P E project aims to design, realize and experiment a
system for the assistance and information of b l ind people so that they can increase their
mobi l i ty and autonomy in public transport. It is intended to be deployed i n bus or tramway
stops or to be installed around the nodes of transport interactions. It is based on smart
hand-held Personal D i g i t a l Assistant (P D A) wi th embedded speech synthesis and it is able
to communicate pr imar i ly v i a a wireless W i F i connection (other types are considered for
future) w i th fixed equipment i n the bus or t r am stations.

1.1.1 Introduction into the topic

Orientat ion in the means of public transportat ion may prove to be difficult for b l ind people,
as most of the informations given to the passengers relies heavily on the visual information
channels.

In the past there had been several approaches taken i n order to solve this problem, yet
each of them had certain necessary flaws. In France it was main ly the project P R E D I T
(more in [7]), that had been taken i n order to test and evaluate of various systems related
to the problem. Amongst other things, it had been found, that one of the main problems
is the the lack of interactivi ty and adaptation of the assisting system to the user and the
environment. R A M P E has the ambit ion to fil l such a hole.

1.1.2 Parts of R A M P E

R A M P E project may be separated into three main parts:

A mobile device (client) carried by the user. The device needs to have a W i F i adapter
and must be running the the R A M P E applicat ion software.

4

Base stations (a.k.a. "Bornes") installed at the bus stops. Those act as servers providing
information to the client applications v i a W i F i l ink (so far - may change in the future)
and are also equiped wi th a loudspeaker to reveal their posi t ion to the b l ind persons.
They also need to have a l ink to the central system.

A central system synchronizing the vehicles, base stations and the information system
of the transportat ion company. The provided informations may change as the project
w i l l grow, but so far it is mainly informations about the available lines, their schedules
and certain exceptional events (e.g. delays, repairs, etc.).

1.1.3 K e y features of R A M P E

R A M P E introduces an exceptional adaptabil i ty by allowing a dynamic change of presented
informations instantly. B y periodic updates of the available informations it attempts to
match the difference i n amount of informations (related to the transportation), that is lost
by the visual impairment of the user.

W h i l e designing the application, special care has been given to the accessibility design
of the man-machine interface and to the priorities management of informations provided to
the user i n the real-time. The main characteristics of the (client) application on the P D A
are:

• it can present vocal messages

• it is able to adapt itself to the type of information system available at the part icular
station (if there are mult iple types available)

• it acts upon the actual informations sent by the station

The equipment installed at the stop point has data (in form of a X M L file) stored inside.
Those data are downloaded to the P D A and provide following informations to the user :

• destinations of the lines at this stop

• wait ing t ime for the bus arrival

• names of bus-stations on a line

• possible disturbances (repairs, temporary changes in schedule, etc.)

The typica l use of R A M P E can be demonstrated on picture 1.1.

1.2 Position of this work within R A M P E project

R A M P E is a rather large project (as described further), where many parties contribute.
Role of the work on E S I E E in the whole project is the implementat ion of the client ap­
plicat ion - the part, that is actualy being used by the b l ind person directly. Other parts
of R A M P E (like the structure of the whole network, details of the equipment used at the
stops or reasons and aims of the system specification) are at this work taken mostly as fixed
inputs to this work, and as such should not be affected (at least not direct ly i n this work),
therefore any mention of those parts, that is made here, is done only for the purpose of the
description of the larger context and to help the reader to understand the topic easier.

5

Figure 1.1: R A M P E project

1.3 The role of the author and this work

This part icular work was supposed to be improving existing code as follows (quoting infor­
mations given before the start of internship):

• improving the software architecture (priority)

• extending application rel iabil i ty

• adding new features and functionality

O n the place after determining the actual state of project, minor changes i n the ob­
jectives took place. A s the point " improving the architecture" would prove to be difficult,
while preserving the given code, it was decided, that as a first priority, the applicat ion needs
to be redesigned (and the code refactored), reaching the other goals either while doing so,
or later if possible.

The first th ing to do was redesigning the original concept (described further) and im­
plementing the design, so that the resulting applicat ion would be functionaly equivalent (or
better) to the original one.

1.4 Parts taken from the previous phases of the project

Due to the reasons stated further i n the respective chapters, it was difficult to reuse the
code from previous phases of the project.

It has been decided instead that the source code of the whole applicat ion should be
refactored according to the original specifications, wri t ten in the []. Therefore the only
things taken from the original code are ideas - not the code itself.

It has been discovered later dur ing development, that previous author's had sometimes
used the same sources of informations, as had the author now (e.g. code examples from

(i

M S D N -[2] and various other websites). Wherever such a code is used in larger scale (namely
X M L processing and W i F i driver handling), it is stated i n the code in the appropriate form
- usually a comment at the begining of the header (if whole class had been used), or at the
begining of the used part (if inside a function definition). It is not stated further i n this
document, since it is t ry ing rather to describe general ideas, than the code that implements
them.

1.5 Structure of this work

The structure of this work is keeping the standard defined for the Master Thesis at F I T
V U T .

Descript ion of the chapters follows.

Specification and requirements gives closer specification (software and hardware) of
the platform and development environment is given i n this chapter.

Goals and priorities is t ry ing to specify the goals of development and describe the re­
quirements for the application, its code and design. It also attempts to describe the
different priorities (from the common "professional" ones), that had to be kept, given
the possible varieties future developing community.

M a i n modules of the project is a brief description of the most v i t a l parts of project.
Given the size of this work, this is done only i n a very general matter, merely describing
what the part icular module does (skipping any more precise, yet overly too long
mentions about implementation).

Support ing parts is very similar to the previous chapter. The only difference is, that
this chapter covers those modules, that yet they do not have much influence on the
functionality, they are v i t a l from the developers point of view.

O p e n issues is t ry ing to summarize the biggest flaws of the project design.

Conclusions is the final chapter of this work. It summarizes the results reached and the
possibilities for future.

1.6 Links to any previous author's work

This work is a direct continuation of the previous semester project of the same name. There
is no other l ink between this work and any other previous work of the same author.

7

Chapter 2

Specification and requirements

2.1 Hardware platform

2.1.1 PDAs

R A M P E project (precisely - the client part developed at E S I E E) is supposed to able to be
used on as many kinds of P D A s and smartphones as possible. A t this phase however, the
only hardware available so far is a some smal l range of H P I P A Q (Pocket P C platform)
products (or iginály 41xx line, nowadays 24xx and newer).

A l though a l l the P D A s used i n the project so far have different characteristics, they
have to have some things in common (necessary for the successful usage in the R A M P E) .
They a l l have:

• W i F i connectivity

• Bluetooth connectivity (not used so far, usage is planned)

• A u d i o output

• OS : M S Windows C E (ver. 4.2 or higher) or Windows Mobi le (ver. 5.0 or higher)

2.1.2 Network equipment

For s imulat ion of the running R A M P E network the project uses commonly accessible W i F i
routers (namely those of L inksys W R T 54 X X series), connected to a P C that simulates
the software running at the stop point. So far it means tuning the H T T P server w i th the
X M L datasheet and a simulator for sending/receiving R A M P E - s p e c i f i c data (navigation of
the b l ind person to the stop, sending urgent messages, ...).

2.2 Software platform

2.2.1 Operating system

A s the only P D A s available in the project so far are those made by H P , the selection of
used software is del imited by this fact. A l though H P as a company is known for supporting
alternative operating systems (in the past even having its own U N I X - l i k e OS) , this applies
almost exclusively on their server (and applications) branch. In the hardware they sell to

8

the end customer, the si tuation is quite different. Specially i n the P D A product portfolio,
the only (officially) supported O S is the one provided by Microsoft .

In spite of the existence of an open-source project t ry ing to replace the proprietary OS
in the P D A wi th something based on a free license (namely L i n u x under G P L) , it has not
been chosen to be used (at the moment). So far it has too many drawbacks that effectively
prevent its deployment in R A M P E - namely that its considered reasonably stable only on
older P D A models and the newer P D A s (those used in the R A M P E project) are not yet
supported at a l l .

2.2.2 Programming language and environment

So far the project has been implemented in Microsoft embedded V i s u a l C + + wi th M F C
(Microsoft foundation class) extensions. It was chosen pr imar i ly for its good integration
wi th different versions of Windows C E - an operating system, that a l l the P D A s available
at E S I E E support (mostly the only O S they support).

A s M F C is not being developed anymore, there w i l l probably arise the need to switch
for some other environment in the future. It cannot be solved immediately, since it needs
to be approved by other parties of the project

9

Chapter 3

Goals and priorities

The main goal of this work has been determined by the fact, that the project is being devel­
oped at the university mostly by undergraduate students. Those can have different degree
of experience and understanding of programming techniques and the project managers may
not be able to review each and every piece of work done by the students.

That determined a lot about the work, that had to be done. G iven the fact, that the
original code had l i teral ly lacked any deeper thoughts of design, new design had to be done.
This also allowed to set some new goals. They had been set to correspond not just w i th the
immediate needs of project, but also wi th the (however relatively small) experience of the
author and according to available sources on the internet (for example at []) and literature
([6] or [1]). The description of goals follows in order of importance.

3.1 Low coupling

A modification in one part (module) has not to affect (if possible) any other parts.
This was a v i t a l rule - and the highest pr ior i ty one. This (together w i th some derived

sideeffects) allows dis t r ibut ing the work between mult iple students without a need for each
of them to consult every change wi th their peers and supervisors.

3.2 Definition of interfaces for important modules

This is t ight ly derived from previous "low coupl ing". Since the modules have to coexist
while h iding as much of internal informations as possible, the definition of their interfaces
needs to be done and kept.

A s a side effect, it also allows interchangeability between two modules wi th same re-
sponsability - e.g. network adapter interface, when implemented for two different physical
devices (e.g. W i F i and Bluetooth) may be used the very same way by the application
without any knowledge of its precise type whatsoever.

3.3 One responsability per module

Rule , that had perhaps became a mantra of every software designer from the very beginning
of this profession. To keep the design simple and easily understandable, it was necessary to
str ict ly set the responsability and scope of a module. N o module should do neither more,
nor less, than its interface says.

10

3.4 Complexity through simplicity

Again , motivated by the struggle to provide as easily understandable design as possible,
it was decided to separate more complex objects into simple parts (while s t i l l keeping the
previous rules), rather than t ry ing to bu i ld complex things at once. Things are done in the
manner, so that if there is no need to keep a large quanti ty of functions i n one module, it
is rather spli t ted to mult iple modules, that are simple inside - though put together, they
provide the desired complex functionality.

3.5 Ease over effectivity

"premature optimization is the root of all evil"
A s it might have been noticed already by the reader, none of those rules yields any

gain in getting a fast-running code. This is (again) determined by what was said at the
beginning of this chapter - the project is i n its early stage and it is more of a "proof of
concept" and a testbench for implementing new functions, rather than an "ready to use"
application for commercial (or s imply public) release.

In that case, famous Hoares quote from above can be effectively applied. The author
is not saying, that the code should not be opt imized at a l l - just that the opt imal izat ion
needs to come only when the project is mature enough and its behavior and functions don
not change too often.

3.6 Preserving the original man-machine interface

Since the original application had been tested already, it was crucial to start improving
the functionality at the point, where the original applicat ion ended. This determined most
of the work, that had to be done (from the functional point of view). Therefore the old
applicat ion was used as a specification of the behavior for the new one.

3.7 Documentation

Since the developers are likely to be changing often on the project, the good documentation
is a must i n the form of code comments (possibly improved by doxygen), as well as an
accompanying texts and reports.

11

Chapter 4

Main modules of the project

Since the old application has been used as a specification, lots of things had been determined
in advance. F r o m the functional point of view, the applicat ion could be spli t ted into a small
number of (relatively) independent parts, that cooperate together.

• Man-machine interface

• X M L Parser

• Text to speech synthetizer (T T S)

• Network control

For easier understanding of parts and their communicat ion wi th others the block dia­
gram had been made and is presented in 4.1.

The description of parts follows i n the respective sections.

4.1 Man-machine interface

A s R A M P E is not supposed to be used by other than b l ind people, usage of a classical
ordinary " G U I " would be pointless. R A M P E however has a G U I dialog of its own, but it
does not display other than testing informations and its usage is very l imi ted (practicaly
only for catching the keypress events and movement on the touchscreen).

Since the means of communicat ion w i t h the user are greatly reduced i n this case, the
design of man-machine interface had to be very thoroughful and had been done by a special
"ergonomy group", that worked only on the design of such interface (results can be found
i n [4]).

That is also the reason why this topic w i l l be covered only very briefly just to provide
an overview of how the system appears to the user (even though the usage of that word is
somehow inappropriate, since "appearance" may resemble something connected wi th vision
- sense that is not available for the user at all) .

4.1.1 Output methods

A s the a im of the project is to design an applicat ion for widely available hardware, perhaps
the only method for presenting output to the b l ind user remains the audio output.

A t the moment the sound in R A M P E is being used in two ways.

12

Acapela 1 TS engine

t

f
TTS interface

Dialog
User actions

Dialog

Connect, Disconnect
Get name of AP,
Set next/Previous AP

Data structures,
succesful parsing,
parsing error

Network Adapter Interface

Network adapter driver
[e.g. NDIS, 3rd party implementations, etc/ Local file Remote file

Figure 4.1: B lock diagram of R A M P E

• playback of short sounds (beeps, rings, etc.)

• text to speech synthetizer (T T S)

Short sounds are used for presenting to the user common events, that happen often and
do not require further specification (e.g. but ton press acknowledgement, discovering of a
new host for connection, error, etc.).

Text-to-speech synthesis (further referred as TTS) is then used for providing deeper
and more precise informations - e.g. names of lines, names of stops, urgent messages, etc.

4.1.2 Input methods

Since the application runs on a common P D A , it has no other methods for taking users
input than a few function keys, touchscreen (for gestures) and audio input.

Out of these, audio input is not used at a l l at the moment. It is planned for future, but
for now no suitable speech recognizing software had been found.

Touchscreen (however it may not seem so) has a great potential , since it can provide
the possibil i ty of "gesturing" the required action. It is not easy though, since b l ind people

13

are very special group of users and the design of such gestures can not be done i n a generic
way. Therefore the only usage of gestures at the moment is turning up /down the volume
by straight movement up /down . A t this part, there is a good potential to be revealed, yet
it s t i l l requires further research by other participants (the "design group") i n the project.

The most widely used input method so far are the hotkeys. Since there is only a very
l imi ted number of them and the ergonomy has to be taken into sight (which l imits the
number of possibilities even more), the design of their usage had to be very careful. Deeper
explanation can be found i n [4], but for a brief description it is enough to say, that their
behavior depends on the current state of the application (based on the motto: "Apple made it
possible to control the whole OS using a mouse with only one button. So we still have about
3 spare buttons..."). P ic ture 4.2 shows currently available (and used) scheme of keyboard.

But ton 4

Normal
Mode

<1 t>
V

But ton 1 But ton 2 But ton 3

Figure 4.2: usage of P D A hotkeys

4.2 Behavior controller of the Man-Machine Interface

The most popular model of today for a user oriented applicat ion is without any doubt some
form of visual dialog window. Using a window w i t h a l l its components (i.e. menu, buttons,
lists, etc.) the developers are able to model the control of any k ind of process.

However this approach works well for most of the cases, it fails in the case of inabi l i ty
of using any k ind of visual informational channel. Not just that i n this case we can not use
any windows, we can not even display any other information.

Therefore the design of the behavior of man-machine interface had to take a completely
different approach. It relies heavily on the fact, that a l l the R A M P E behavior can be
described by a simple finite state machine.

It acts upon the user actions (pressed keys) and internal events (messages from subsys­
tems) and depending on the state it is actually in , it does the required action.

The design of such a machine however had to be done and tested by a third-party
designing group.

14

Instead of dialog windows, the interface can be modelled by different stages, that the
application assumes. Different stages have different goals and different actions can be
performed. The stages can be described as follows:

Stop points survey - at this point the interface provides only informations about avail­
able stops (hosts to connect to - i n R A M P E , they are called "bornes"). A t first state
only an information about the number of the available stops is provided, later (after
users demand) the browsing of detailed list is allowed.

Navigation to the stop follows the survey. The user had now chosen one stop and the
application had made the connection. P D A is now connected to "Borne" and the user
can make the stop play sounds. This allows the b l ind person to get an idea of the
stops whereabouts. User can also decide to stay at this stage (if he already knows
the stop) and is already presented wi th actual urgent messages, broadcasted from the
Borne (e.g. bus arrivals, departs, delays, etc.)

Stop data browsing - A s the user is connected and physicaly present at the stop, the
application can provide h i m al l the detailed informations (those, that are usually
available to visual ly non-impaired person at a first glance - type of stop, available
lines, timetables, etc.). Browsing through the informations is also separated i n more
than one level (is modeled by different states).

A l l the stages consist of mult iple states. The most important ones (those, that are v i t a l
for description of behavior) are described further.

15

4.2.1 Discovery of the stops
This is a default in i t i a l state of R A M P E . In here the user is not presented wi th anything
else, but an periodic information (in form of a short sound) of how many stops are available
around. The precise number is not given, yet only three states are distinguished - no stops,
one stop and mult iple stops.

In case of a further interest, the user (by pressing a key) may get further informations
in the next state.

Pat tern of behavior is described in the diagram 4.3.

16

4.2.2 Stops survey
Right after the user acknowledges his /her interest in more information about the available
stops, this state is assumed.

In here the vocal synthesis comes to play its part. The stops are presented to the user
one by one by the name and direction periodicaly. Th is is done several times (defined by
the configuration) and the user either acknowledges one of the stops as the one, that he has
an imminent interest in , or doesnt do so and then the previous state is assumed.

The graphical description is given on picture 4.4:

AP Survey

repeats=3

Say actual APName/Diiectirai

FALSE

TRUE

Disci

Figure 4.4: State: Stops survey

17

4.2.3 Guidance
If the connection to the desired stop is successful, the state of guidance is assumed.

Here the user can either demand the Borne to play the sound (to reveal its position),
wait for messages coming from the Borne, or go further to the detailed informations - a l l
of that is described at the picture 4.5.

Guidance

beacans=5

Send U Frame

beacons-

Wait 10 s

TRUE

Busy (XML download

Figure 4.5: State: Guidance

18

4.2.4 Start of navigation
A s the user has expressed a wish to be presented w i t h more informations, the navigation
through the main data file is started.

A t the beginning only the presentation of the name of the stops is done. A s the Borne
data provide more informations (type of stop, presence of other b l ind persons, etc.), pre­
sentation of such informations is l ikely to be done here.

Proceeding from this state is automatic and no user action is required - therefore no
diagram is given.

4.2.5 Navigation through available lines
A s at one stop there may be several transportat ion lines available, a process s imilar to the
survey of stops is started - w i t h the difference, that not stops, but the available lines are
presented (by their identifier, direction and time to wait for the next one according to the
timetable).

User may either acknowledge one line to get more informations, wait un t i l the presenta­
t ion is over (it is repeated several times - again, it is configurable), or stop it and get back
to the guidance.

Diagram of behavior i n this state is at the picture 4.6.

Figure 4.6: State: Navigat ion through lines

19

4.2.6 Navigation through available stops
This is so far the deepest state available. Here the presentation of the stops starts. It has
two stages.

Firs t , only the so called "skeleton" stops are presented from the current stop further.
The "skeleton" stops are defined by the transportat ion company as somehow important
(they may have intersections, they are near some popular place, etc.).

If the user acknowledges, the mode is switched to presentation of a l l the stops.
Diagram is given at the picture 4.7.

Nav Lines Enumeration

browse Skeleton=TRUE

Set the current stop as active

TRUE

Say the stop name

Set next skeleton stop NavRoot Set next stop (all stops)

Figure 4.7: State: Navigat ion through stops

20

4.3 Processing of X M L

X M L is a very important part of R A M P E . Most of the data (not related to user actions)
is acquired into the running applicat ion i n this format. So far it means a need to process 3
types of files :

data acquired from Borne - the application gets the data from Borne by downloading
the file rampe.xml. In this file there is everything, that can be presented to the user
(bus timetables, informations about stop, etc.)

configuration data - a l l the configuration of R A M P E is stored local ly i n the file Conf i g . xml.
Anyth ing , that affects the behavior of the applicat ion and can be changed is placed
here.

language dependent data - although for now, R A M P E is developed only for franco­
phone environment, this may change i n future. Therefore a l l the messages, that are
presented to the user (via T T S) are stored i n a local file Lang-XX.xml (where X X is
the name of language) and can be easily changed by th i rd party.

A s for now, X M L processing in R A M P E is based on M S X M L Parser, running i n D O M
mode. Since working wi th M S X M L parser directly may prove to be t r icky for inexperienced
users, there is a wrapping mechanism buil t around that. Tha t mechanism takes care of a l l
possible issues (i.e. memory management, in i t ia l izat ion, loading of the data, etc.) and
provides the user only those functions, that are necessary for successful processing and
traversing through the X M L tree.

Processing of each part icular file then becomes only a straight-forward "mechanical"
work, not l ikely to introduce memory leaks or exceptions - exactly in accord wi th the goals
specified above.

4.4 Text to speech synthetizer (TTS)

A s the R A M P E project is supposed to provide informations to b l ind people using widely-
available equipment (P D A s , smartphones, etc.), it is unlikely to provide other output than
sound (since special equipment may not be available).

For the quali ty and easiness of use, it has been decided (in the previous phases of project)
to use a commercial Text-to-Speech synthetizer, provided by the company "Acapela group"
(enterprise created by fusion of three former companies - E l a n speech, Infovox and Babe l
Technologies).

The qualities of the product i n terms of functionality and provided user-experience are
excellent, but there is one major flaw - licensing. Since R A M P E is meant to be widely
available (possibly for free), this might be an issue (is discussed later).

4.4.1 Integration of the TTS into R A M P E

For R A M P E to keep the priorities (mentioned above), bui ld ing a general T T S module (as
a wrapper around Acape la A P I) was necessary.

Also although Acape la software has a very well designed interface, there is a good reason
not to use it directly. Since it is planned for the future to switch to (or just being able to use)
some other (possibly free) speech synthetizer, it would be unwise to b ind the application
too t ight ly wi th only a commercial A P I .

21

4.5 Network (low level) controller

Networking is the crucial part of R A M P E . Wi thou t the abil i ty to connect to some sort of
network, there is not much sense in running the applicat ion (at least at the current state
of project).

4.5.1 Network adapters in R A M P E

A s for now there is only one type of network adapter available and used (W i F i) , but i n the
future developement, this w i l l be one of the first things to change. Therefore the design of
architecture had to be very careful and thoroughful.

The whole interface of a general adapter (in this case called CNetworkAdapter) is
concentrated into one class. Such a class provides interface (but only interface, v i a its
v i r tua l members) for each and every function, that possibly may be required. Some of its
member functions are purely v i r tua l , since they calls are considered to be necessary for every
adapter (e.g. enabling, disabling, connecting, etc.), while others are kept only as v i r tua l ,
since some functions may be optional and possible to realize only at special hardware (e.g.
list of available hosts is l ikely to be used by W i F i or Bluetooth, but not by Ethernet or
U S B cable).

Dist inguishing between different types of interfaces is possible v ia provided data struc­
ture, but because there is no behavior defined in the specifications for such a scenario, the
implementation of such behavior is left to be done i n future.

4.6 Network (high level) services controller

There is a need for the R A M P E to be able to exchange data wi th the Borne (other than
the ma in X M L file).

So far the communicat ion is based on the special protocol, created for this purpose over
normal T C P / U D P . Development and testing of such a protocol is again done i n different
project (done by M r . A . Sirk so far), therefore w i l l be mentioned only briefly.

The protocol at the moment uses a simple A S C I I encoding to transfer a data structure
called F R A M E . There are generally 3 types of F R A M E s :

T y p e U T C P connections from P D A to Borne, i n order to make the Borne to play the
"ring" sound, necessary for the b l ind person to be able to locate the posit ion of the
Borne.

T y p e V U D P datagram, broadcasted from Borne to a l l the P D A s i n the range. It carries
inside some "urgent message" (e.g. informations about a bus arrival / departure,
delay, etc.).

T y p e R U D P datagram, broadcasted from Borne as a information for its client, saying
that the X M L data in the Borne have changed and the clients should refresh their
informations.

The underlying implementat ion is done at two places - class CRampePacket creates /
parses the F R A M E structure, while CRampeSocket is a wrapper around W I N S O C K socket.

A s the connections are inbound as well as outbound, R A M P E needs to behave as a
server, as well as a client. Therefore the "network services manager" had been created,

22

allowing the applicat ion to manage its connections and providing the higher level of ab­
straction.

23

Chapter 5

Supporting parts

In addi t ion to the parts, that are apparent at the first glance, there are some hidden, yet
s t i l l important parts, that are worth mentioning.

5.1 Parallelism and multithreading

In this k ind of project there is always need for mult iple processes (threads) to run at the
same time.

In the code taken over from the earlier phases one could easily see quite extensive usage
of mult i threading (necessary for keeping the delays of user actions reasonably low).

The original implementat ion however had its drawbacks. M a i n l y it was uncoordinated
spawning of the threads i n different parts of code, which made the code a bit harder
to understand and therefore prone to various k ind of mistakes, either caused by possible
false assumption of which code is part of which thread, or s imply unconsciously breaking
synchronization or sharing .

5.1.1 Problems

W h i l e designing a new mechanism for mult i threading i n the project, the biggest problem
has been found in the M F C .

In the M F C , there are two types of threads (called worker and UI thread). Difference
between them is, that the worker thread is supposed to be spawned for doing one time-
consuming action and then returning almost the same way as a regular function. It is just
executed on background i n different thread from the ma in applicat ion. U I thread on the
other hand is supposed to spend most of its t ime wai t ing for user actions (passed into the
thread as messages) and reacting accordingly.

A l though both seem to be sufficient for deployment "out of the box", they both have
common pain - they need to be called upon global or static functions. U I threads even
require hard-coded definitions of accepted messages. Those l imitat ions are O K for one­
time generic solution (such as the one, that had been used i n the past), but effectively
prevents the whole mechanisms from being used directly i n a class hierarchy.

In the refactored code, there have been steps taken to provide secure parallel envi­
ronment where necessary, while keeping the resulting code as simple (and close to the
non-parallel programing style) as possible

24

5.1.2 Implemented solution
W h i l e designing, generic M F C calls had to be wrapped inside (dynamicaly created) classes
to allow them to fit inside the designed class hierarchy. Do ing so also allowed further
improvements in the messaging system (namely adding the possibil i ty of using any type as
a message for a thread).

B o t h original types of threads were preserved, while some addi t ional features had been
added.

C T h r e a d replaces U I thread. It is able to send and receive messages (of user-defined type)
and ensures, that inside the inherited class the messages w i l l be processed sequentially
- therefore allowing the user to write a classical linear code, without having to care
about its parallel execution.

C W o r k e r T h r e a d replaces worker thread. It can be used i n the same fashion, as the
original (only wi th an obligation to inherit it as class, rather than ca l l it as a function),
when by overriding provided v i r tua l function Execute () it behaves the same way as
the original implementation. There is also another option - although it does not use
its own messaging system for accepting messages, it is s t i l l able to send - therefore a
message about successful finish or failure can be sent.

Since mandatory hard-coded definitions of messages had been taken as undesirable, new
mechanism had been created to replace i t . The design of a l l the classes for mult i threading
is based on templates, thus allowing the user to send any arbitrary message type (that has
the semantics of a value and can be fitted into S T L containers).

Whole mechanism is reasonably simple (about 500 lines of commented code) and easy
to understand (and use). Th is is a must under the presumptions, given at the beginning.

Also by hidding the actual details of parallel ism inside the implementation, it simplifies
the parallel-based environment into the linear execution, thus considerably lowering the
requirements to the future developers.

5.2 Data distribution inside the project

Since there is a great deal of informations, taken from outside (mostly X M L files), there is
also a need to distribute those informations around the application.

Doing so can be done in a generic way (e.g. by global variables), as it was done in the
previous code. A l t h o u g h it is very simple, this approach however has its drawback.

H i g h coupling - i n case of high number of variables, their usage i n the modules is prone to
become chaotic and not easy to understand. Modules might then depend on variables
defined i n different modules, which adds addi t ional level of dependency into the code.

Constant incorrectness - since (if not wrapped by a careful abstraction - case of the
previous code) a l l the data have to be accessible for wr i t ing at one point (at least
while parsing the data files), it is tempting to keep them writeable a l l the t ime and
possibly allowing modification (which might be sometimes desirable). Th is leaves the
fellow developers the obligation to take care of using the data properly.

Strong naming standards - if naming standards are not established and kept s tr ict ly
through a l l the process of development, reading of such a code w i l l soon turn into
searching for definitions of variables and their meanings

25

Being presented wi th such risks, it is clear, that however sharing the data through
put t ing them into global variables is an easy solution, it is a very t r icky one too (specially
under the premises given in the Goals and Priori t ies specification).

5.2.1 Design of data structures

The shared data (regardless of the type - language, configuration, downloaded X M L , etc.)
do always fit into following criteria:

• if it is not just one stand-alone variable, it is possible to structure it into a tree.

• most of the access w i l l be read-only (although write is sometimes also necessary, it
w i l l be done far less, than reading)

• they allways w i l l have (or it w i l l be possible to give them) a semantic of value (given
by the nature of what is about to be shared)

Those cri teria give us some clue about the problems - they can be spli t ted into two
types:

• Creat ing a reliable structure for storing data

• Creat ing an abstraction for protecting data

It can be clearly seen, that an ideal structure for storing such a k ind of data would be
either structured type, or S T L containers (in case of a need for more dynamic behavior).
However the data may be stored i n different structures, the protecting mechanism may stay
the same.

The general encapsulating class had been created, that contains the write-accessible
data. For protection, the C + + const mechanism had been chosen. B y giving the user a
default access, that returns constants, we can prevent a unintentional change, while s t i l l
keeping the possibil i ty to get write access expl ic i t ly (by enforcing the user to expl ici t ly ask
for permission to write we can safely suppose, that the user is aware of what is he doing).

5.3 Logging facility

A s the project is i n the development, there is a v i t a l need for a powerfull logging service.
Such a service is provided.

In the P D A , there are two means of logging output - either screen, or a logfile. B o t h
may be used under different circumstances for different types of messages. Therefore any
cal l for logging a text may be assigned wi th a pr ior i ty (or type, if preferred).

This not only reduces the amount of information outputted to the screen for purpose of
supervision (e.g. while t ra ining the user, or testing the application), but since each prior i ty
might define its own prefix (making it easier to find by means ouf automated processing),
it also improves readabili ty of the resulting logfile.

26

Chapter 6

Open issues

A s the code is s t i l l i n the beta stage, there are s t i l l some features (and enhancements)
missing. A brief list of such " T O D O s " follows.

6.1 Processing of errors

This problem is closely related to the nature of the project (and its code). A s it was
said earlier, the s implic i ty of the code is a very important goal. A l though C + + provides
exceptions as a very strong tool for handling various kinds of errors, the usage of such a
tool might be t r icky for unexperienced users.

To keep the design simple, the exceptions (if used) need to be kept wi th in the module,
that had thrown them. So far there is no global pol icy on handling the exceptions (and
there is not l ikely to be one i n this phase).

For now the goal of error processing is only to report the error into the debug file, so
that the developer can reveal what went wrong i n the application. Some parts of the code
are checked only wi th assertions - although these are being used only for the conditions
that should never occur under normal circumstances, it would be better for the stabil i ty of
the applicat ion to catch those errors w i th other means (e.g. exceptions).

6.2 Security

The whole design so far does not seem to take the security in account, so the following
section just summarizes author's opinions and suggestions.

The R A M P E project so far doesnt neither store, nor transfer any significant data (mean­
ing - nothing, that could cause any losses on finances or health). Therefore security is defi­
nitely not one of the top priorities. Nevertheless, as it is suggested to become a widespread
network, the security should be taken i n account i n the future.

6.2.1 Current state

A s for now, the only mechanism of security is W E P encryption of the W i F i communicat ion
between the client and the Borne. In the opinion of the author, this is insufficient. The
only th ing W E P is supposed to provide is privacy on the W i F i network, and even that is
done i n a very poor manner (it is not even close to the topic of this work - more can be
found at [8]).

27

6.2.2 Possible targets
The network so far has two possible objects of attack - the client P D A s and the network
infrastructure (Bornes and its controling mechanisms).

Network infrastructure - as is not a topic of this work, it w i l l not be covered in-depth.
Briefly said, the possible attacks may target either the availabil i ty of service (multi­
ple types of "Denial of Service" attacks), or placing a counterfeited Borne into the
network. Neither of them is covered by the specifications so far.

Clients A t the client side, the attackers options are quite small . The exchange of data
between Borne and P D A is so far l imi ted only to sending X M L files (may be prone
to errors i n X M L parser) and sending R A M P E frames (may be used for misguiding
the user).

6.2.3 Real possibility of attack

A s it has been said - R A M P E is not a v i t a l service and due to its nature (public service for
a smal l minor i ty i n the society), the motivat ion of possible attacker is a question to ask.
A l so the possible impact of an attack is (at the current scenario of usage) very l imited.

The security issues however w i l l need to be resolved, if the project w i l l be deployed in
mass scale, or for general public (or commercial) usage.

28

Chapter 7

Conclusions

7.1 Current state of the project

Right now the whole R A M P E project is i n its second phase - meaning, that it should have
a working implementat ion and should be only extended functionaly.

Due to the steps taken (refactoring, changes in the architecture), this is true only partly.
The progress i n terms of functionality was only minor.

In the common terms of software release cycle, the state of project might be marked as
"beta". There is no known major bug, that would cause the appl icat ion to crash repeatedly
or prevent the usage in most cases, yet the testing has not been finished yet and minor bugs
are expected.

The original functionality had been achieved and improved. The implementat ion is
working and tested lQth-27th of A p r i l , 2007 i n L y o n . Wr i t t en report and official conclusions
from the testing are not known at the t ime of wr i t ing this report, but prel iminary results
show only minor bugs (typical for the "beta" stage),

7.2 Possible functional improvements for future

7.2.1 Extending of the configurability

A s for now, the configuration relies on one local ly stored X M L file. Just like everywhere,
the possibilities of configuration are usually endless.

7.2.2 Internationalization

However the project is developed i n France and by French insti tutions, it is possible that
more parties w i l l be interested to contribute.

The project so far includes a separate local X M L file for storing language dependent
data, but the T T S software is so far available only i n French.

7.2.3 Availability for different platforms

Multiplatformnes had been asked by the supervisors to be one of the major concerns, the
environment chosen for development does not make it too easy.

A s the mobile devices market is notoriously known for neither having a leading player,
nor being well standardized, it w i l l be difficult to assure the por tabi l i ty of the applications.

29

Also as the market is changing rapidly, it remains unsure what platform w i l l be the best
one for future.

7.2.4 Additional improvements in man-machine interface

A s for now, the only way of taking user input is the keyboard of the P D A and a l imi ted usage
of gestures. Th is is surely enough for the application to perform its functions correctly, but
it can s t i l l be improved.

Improvements may focus on following topics:

Improvements of the statemachine, using the available means. However improving
the coordination between gestures on the touchscreen and keypresses may always take
place, the author personaly does not see much potential i n this field (or more pre­
cisely - the potential may soon reach the point, where further improvements bring
only doubtful value, while introducing costs on the developers t ime).

Introducing new input hardware. Th is may l ikely consist of modified external key­
board, that would be easier to use for the b l ind person. Such an action may greatly
simplify the usage of the application. Act ions , that are now bound onto a combination
(or a special mode) of keypresses may take bindings w i th only a single key.

Introducing voice recognition software. Last but not least - this option is i n author's
opinion the most promissing one, although it is also l ikely to come wi th the greatest
cost. The voice recognition may in practice remove a l l the problems, that the man-
machine interface may have now (e.g. ambiguity of actions). The problem is i n this
case likely to be the cost. Not only the implementat ion of such a software on given
platform is l ikely to be more complex (due to problems w i t h very noisy environment
and low compui ta t ion power of the machine), than the main project itself so far
(no freely available alternative is known at the moment), but also the performance
requirements may be too high to bear.

7.2.5 Navigation techniques

Since the users of the application are l ikely to have problems wi th orientation, while at
public (or unknown) space, increasing (at least part ly) their possibilities is highly desirable.

A s a l l the application is biased towards public transportation, the navigation possibilities
might be very well del imited by that fact. It does not have to use only global navigation
techniques (e.g. G P S) , but can also profit of a limited-range means. A t the moment, there
is a students project running, that is aimed to determine possibilities of local izat ion of the
person using W i F i (as this is already available). Further experiments are planned wi th
other means too.

7.3 Licensing issues

Al though it might not seem so at the first sight, R A M P E at the future phases might
encounter some troubles from the legal side. M a i n reason for that would be licensing of its
code and support ing parts.

30

7.3.1 External dependencies
Probably the major concern for future w i l l be an attempt to free the project of a l l the
unnecessary licensing fees and restrictions. For now the major issues are the usage of
proprietary text-to-speech synthetizer and proprietary development platform.

Al though both of these w i l l be painful to replace, bo th issues w i l l have to be settled
before the project is released for public usage. If it does not happen, the burden of the
licensing fees and legal problems might prove to be too difficult to cope wi th .

7.3.2 Internal restrictions

Problems might also arise from the cooperation of different parties inside the project. A l ­
though considerable part of work is being done by public institutions (universities and
technical university), major part is s t i l l being done by a private company. This might
prove to be l imi t ing factor i n the case, that the directors of the project would like to open
the development model.

7.4 Related works

Currently, there is only author working on the R A M P E code itself. There are nevertheless
several projects, that might be used i n R A M P E development later.

7.4.1 Projects running on ESIEE

Firs t one is a teamwork of E S I E E students, that is t ry ing to bu i ld a database of the city
environment sounds, recorded v i a the P D A . This should help later for possible development
of a speech recognizing system.

Second one is the work of M r . Andrej Sirk, who is at the moment working on testing
and development of a custom network protocol for the usage in the R A M P E project (for
communicat ion between different devices - stops, clients, etc.).

Next one is a students internship on E S I E E , whose main object is to explore the possibil­
ities of using W i F i as a mean of navigation. Th is should include exploring the possibilities
of available hardware, bui ld ing a test environment and measurements of the possibilities.
Out of the results of this work the potential of using local izat ion through W i F i should be
determined and the next heading of the project (merging into the R A M P E) should be set.

Last one is another E S I E E internship, that aims to implement module into the R A M P E
code, that could be used for controll ing the Blue tooth adapter. The code is prepared for
such an options and a general interface for a network adapter is implemented and used.
There is however lack of agreement on how precisely should such an adapter be used.
Meanwhile the possibilities of Bluetooth should be also explored.

None of those however had provided a publ ic ly available report, therefore their results
w i l l have to be incorporated into the project later.

7.4.2 External projects

This work is being done i n cooperation wi th external insti tutions. It is however out of
author's competence and authority so far to interview such parties. Thei r complete list and
roles can be found i n [4]

31

7.5 Summary of results

7.5.1 Achieved goals
A s for the goals set i n the beginning, it can be said that they were (more or less) achieved.

Wel l structured code - although the word "well" might be a matter of debate and is
very relative, the code now has an architecture and is separated into modules.

Interfaces for modules - done.

Independence of modules - there are always dependencies, but they have been min i -
malized.

N o overcomplex design - although it had been considered to design the structure ac­
cording to the established trends in modern object-oriented design, it had been re­
linquished. A l though there are perhaps more effective design approaches (generic
design, design patterns, etc.), their usage would make the code hard to understand
for unexperienced programmer, hence l imi t the impact of the work of short-term
developers.

Better functionality than the previous version

T h e parallel work of multiple developers - had been made possible

7.6 Contributions of this work

A s the original suggested description said, this work was supposed to "improve the design",
"add new functions", and possibly "add new hardware or software modules".

Out of those, the completing of the first one was more complicated, than or ig inály
expected, therefore somehow l imi t t ing the remaining two (the improvements from the func­
t ional point of view can be said to be only minor) .

The redesigning and refactoring of the original code, although painful and t ime con­
suming, was necessary and doing so had allowed adding some extra possibilities at almost
no addi t ional cost.

The main contr ibution therefore is improving the original flawed design and structuring
the refactored code accordingly. A s a side effect, the whole code had moved from the
original generic mixture of C and C + + into a object-oriented pure C + + .

Addi t ionaly , the readabili ty had been improved and the new code had been wri t ten so
that it takes the ease of modification in account.

B y introducing the relatively independent modules spl i t t ing the work amongst several
developers became quite a simple task (as long as each developer w i l l keep modifying just
his module, while preserving its interface).

Also a general toolset had been created, that encapsulates the platform-dependent code
(e.g. X M L parser, network driver, threading model, etc.). Th is might greatly reduce the
problems wi th possible portabi l i ty of the code to different platform (however the restrictions
caused by the usage of M F C and Microsoft V i s u a l C + + compiler might s t i l l cause troubles).

32

Chapter 8

Appendixes

8.1 Appendix 1. Multi threading in R A M P E

Since threads are used extensively through a l l the applicat ion (stated i n the main text),
their usage had to be unified.

Since the recommended way of usage i n M F C is complex and not always clear to un­
derstand, the wrapping mechanism had been used. The main idea follows the M F C . There
are two types of threads (worker and U I) . E a c h has its respective class, designed as an
interface to be inherited (spawning them empty does not make much sense, although it is
not expl ic i t ly prohibited).

The ma in ideas dur ing the design followed the policies set i n chapter "Specification and
requirements". The mechanism does not t ry to replace a l l the options, provided by M F C
classes. It rather provides an environment, that (although it is run as thread in a parallel
w i th others) behaves as a normal "serial" code. If there is a need to share data w i t h the
outer world, either the implemented messaging, or provided template for sharing variable
can be used.

8.1.1 Implementation and usage

B o t h classes (C T h r e a d and CWorkerThread) are designed as template base classes, yet
bo th are supposed to be used i n different scenarios.

C T h r e a d is a template class w i th a parameter representing the type of message, that the
thread accepts.

M a i n l y it provides purely v i r tua l function OnMessage (CMyMessageMsg). This func­
t ion needs to be defined by the user and represents the actions done after receiving
message. It also works as the main thread loop (any code that needs to be done in
the parallel mode belongs here).

Messages are sent by provided function SendMessage (CMyMessageMsg), that is called
in the execution t ime of the cal l ing thread (reason for this behavior being the possi­
bi l i ty of sendig the message into the queue even if the called thread is busy).

C W o r k e r T h r e a d is mainly simplification of the function above.

It doesnt accept any messages at a l l and provides one function to be overriden
Execute (). Th is function works as a main thread loop. Opt ionaly it provides the

33

user w i t h the function Done () , that may be called after the thread work is finished
to send a message about the result of a performed operation.

For deciding which class to inherit , a simple "rule of thumb" can be summarized:

• If there is a large part of a code (typicaly encapsulating one whole functionality -
networking, or speech synthesis for example), that needs interaction wi th the user or
other parts of application, it is to be encapsulated in a class, that (amongst others)
inherits the CThread class.

• If one only needs to perform one t ime consuming action that doesnt need any in­
teraction, but one can not allow the ma in thread to be blocked by it (for example
downloading and and parsing of an X M L file), usage of the CWorkerThread should
be considered.

8.1.2 Sharing data amongst the threads

For sharing variables for the outer world (other threads), there is a template class CSeria l -
izer provided. Every shared variale is then accessed using Get and Set method. Protect ion
of the access (using mutexes) is then done by the template itself.

8.1.3 Using the CThread class as a general interface

Since the provided CThread class is a template, it may be well used as a interface to any
general module (the type of module is defined by the type of message, that is passed). It
is in fact used so i n the main state-machine, where only the pointers to the base CThread
class (with an appropriate parameter for the template) may be stored. W h i l e ini t ia l ized
by the part icular implementation, the C + + polymorphism allows (and encourages) such a
behavior.

34

C M y T h r e a d

+ C M y T h r e a d Q

+ ~ C M y T h r e a d Q

T h r e a d F u n c d p P a r a m LPVO ID l : UINT

ExecuteQ : UINT

I T y p e :

CSer ia l i zer

Da t a : T ype

h Lo ck : HANDLE

CSer ia l i ze r ()

~ CSe r i a l i z e rO

Ge t ()

+ S e t p n p u t : T y p e) BOOL

I
; M e s s a g e T y p e

CThread

MsgT imeou t : c o n s t int

„Executing : BOOL

M e s s a g e Q u e u e : deque< M e s s a g e T y p e >

h M e s s a g e A c c e s : HANDLE

+ C T h r e a d f)

+ ~ C T h r e a d Q

+ S e n d M e s s a g e (M e s s a g e : M e s s a g e T y p e) : BOOL

+ S e a r c h M e s s a g e (M e s s a g e : M e s s a g e T y p e) : BOOL

I n i t T h r e a d O

OnMessagefMessage : MessageType) : BOOL
E x e c u t e d : UINT

R e s u m e E x e c ()

S u s p e n d E x e c ()

LückMessageQueue()

U n l o c k M e s s a g e Q u e u e Q

#pPar rent 0..1

; M e s s a g e T y p e i

C W o r k e r T h r e a d

pPar ren t : CTh r ead< M e s s a g e T y p e >*

D o n e M e s s a g e : M e s s a g e T y p e

+ CWo r ke r Th r e ad ()

+ C W o r k e r T h r e a d (p T h r e a d

+ ~ C W e r k e r T h r e a d O

Executed •' U I N T

tt Done f]

CThread*: M e s s a g e T y p e >*, P M e s s a g e : M e s s a g e T y p e)

Figure 8.1: Para l le l processing structures - class diagram

8.1.4 Possible improvements
The mechanism had been implemented as a sort of "naive" and easy wrapper. It does not
handle more complicated issues. Some possible improvements for future (if needed) are
described here.

Threads manager may be added. So far every thread is very autonomous and it 's only
up to the author of the code how w i l l he handle some exceptional situations (timeouts,
stalls, etc.).

The instance of general thread manager may be added, for possibilities such as check­
ing the state of thread (running, responding, blocked) and managing errors (e.g.
restart of the thread, that is blocked).

Improved messaging system Aga in , the messaging is only very basic. There is a queue
of messages, that are processed in the same order, as they have been received.

35

There is no code for handling things like message priorities, or messages filtering (both
can be avoided so far, but both may be useful for more complex scenarios).

Improved template for sharing The template for data sharing (CSerial izer) has only
two operations defined - Set () and Get (). Tha t may be extended to the "value
semantics" (either for usage inside S T L containers, or for easier usage).

36

8.2 Appendix 2. Network adapter and W i F i structure

General introduct ion about the network adapters and W i F i usage had been given above.
This appendix is therefore meant to give a bit closer insight into the implementation.

The need for a general interface for the network adapter control had demanded creating
of the CNetworkAdapter class. It has two main functions:

Definition of base class interface , which is motivated by the demand stated above.

Definition of general behavior , which is done using the parrent CThread class by defin­
ing reactions for defined messages.

For future developers an example is given i n the implementat ion of the W i F i adapter
control. The easiest way to fit any new adapter (that can roughly fit into the control
scheme, given i n CNetworkAdapter) into R A M P E is s imply inheri t ing the interface i n the
desired class.

Defining appropriate new behavior i n the state-machine may be necessary, if such an
adapter should be controlled while preserving the original W i F i possibilities (otherwise it
can s imply take its place without any modifications).

8.2.1 WiFi controller implementation

The W i F i controller is buil t upon the sample code, delivered by H P for the developers for
the I P A Q product line. The code itself is not public (at least not as far, as author of this
work is informed), therefore no quotation is made (except of an appropriate place i n the
code comments and doxygen generated documentation).

It relies upon two mechanisms - IPAQUtil l ibrary from H P , and N D I S A P I , provided
by Microsoft . However the IPAQUtil l ibrary provides (for the W i F i adapter) some similar
functions (subset, mainly for hardware control) as N D I S , it is supposed to be far more
reliable (given to the nature of variations i n the available hardware, those informations are
easy to belive).

The main burden of functionality lies on N D I S - or, more precisely, the N D I S U I O
layer. The available (meaning freely available) vendor informations about that are sparse
- the operations and abilities of the A P I is described well at [], meanwhile the reasons for
redundancy (compared wi th the N D I S , it brings similar functions) and the overall structure
of this part seems to be (specially i n the Windows Mobi le part) not documented by vendor
at a l l .

The N D I S / N D I S U I O wrapping mechanism is implemented in the CNdisuioWrapper
class. A l though the N D I S mechanism is wrapped into abstraction, it s t i l l keeps the N D I S ap­
proach. There are three main methods - SetValue (), QuerryValue () and GetLastError (),
that use a general (void pointer) parameters to set or get a specific structures. This ap­
proach, however functional and effective in practice, would not be much worth as an exam­
ple, therefore H P provided another wrapper (called CWiFiHelper) to implement commonly
used functions (e.g. connect, disconnect, scan, etc.), using the primitives of N D I S .

The functions from the provided CWiFiHelper class are then used in the implementat ion
of the W i F i adapter controller.

8.2.2 Possible future improvements

The W i F i adapter controller itself should be stable and not require any future change (apart
of those, resulting from adaptations to new hardware functions or software A P I s) .

37

W h a t may be subject of change however is the general handling of the adapter in the
main state-machine. So far it relies on maintaining one pointer to the base interface class,
that is ini t ia l ized by the part icular implementat ion instance. If there is more controlers
implemented, this provides control only over one of them at the given time.

It may be easily enhanced by adding one variable for each new type of adapter (pre­
suming, that each w i l l result i n slightly different behavior i n the state-machine), but it is
real only for reasonably smal l amount of the adapter types (over three it may become too
complex to deal wi th) .

Such an approach may be sufficient for testing (and given the absence of the definition
of behavior for the other, it is the only one possible), but i n the case of a need to keep
control over mult iple adapters, this might prove insufficient. In such general
implementation for the managing object for network adapter controlers may be required
(in similar fashion, as the one implemented already for network sockets, or the one suggested
for threads).

38

- m_b l n i t i a l i z ed : BOOL

* m _ s z A d a p t e r N a m e : L P W S T R

- m_Nd i su i o : C N d i s u i o W r a p p e r

t m _ d w L a s t E r r o r : D W O R D

t m_hIpaqUt i l : H M O D U L E

t m_bT r i ed IpaqU t i l : BOOL

t m _ b T r i e d W Z C S A P I : B O O L

* m _ h W Z C S A P I : H M O D U L E

C W i F i H e l p e r

I- C W i F i H e l p e r (p P a r r e n t : C N e t w o r k A d a p t e r *)

I- ~ C W i F i H e l p e r Q

I- Ha s I p aqU t i l Q : BOOL

I- I s R a d i o P r e s e n t O : BOOL

I- I s R a d i o E n a b l e d Q : BOOL

b E nab l eRad i o (bEnab l e : BOOL) : BOOL

b I s l n i t i a l i z ed () : BOOL

b In i t i a l i ze() : BOOL

I- F i n a l i z e d

I- G e t L a s t E r r o r O : D W O R D

I- G e t A d a p t e r N a m e O : L P W S T R

I- I s W i F i A d a p t e r (s z A d a p t e r N a m e : L P W S T R) : BOOL

h G e t B S S I D L i s t f) : P N D I S _ 8 0 2 _ 1 1 _ B S S I D _ L I S T

I- S can () : BOOL

I- S e t S S I D (s z S s i d

I- G e t B S S I D (m a c

I- S e t B S S I D (m a c

h- D i s a s s o c i a t eQ :

I- S e t I n f r a s t r u c t u r eMode (

I- G e t l n f r a s t r u c t u r e M o d e Q

: L P C W S T R) : BOOL

N D I S _ 8 0 2 _ 1 1 _ M A C _ A D D R E S S) : BOOL

N D I S _ 8 0 2 _ 1 1 _ M A C _ A D D R E S S) : BOOL

BOOL

:) : BOOL

N D I S _ 8 0 2 _ 1 1 _ N E T W O R K _ I N F R A S T R U C T U R E

I- S e t A u t h M o d e (m o d e : N D I S _ 8 0 2 _ 1 1 _ A U T H E N T I C A T I O N _ M O D E) : BOOL

I- G e t A u t h M o d e () : N D I S _ 8 0 2 _ 1 1 _ A U T H E N T I C A T I O N _ M O D E

I- S e t W E P S t a t u s (s t a t u s : N D I S _ 8 0 2 _ 1 1 _ W E P _ S T A T U S) : BOOL

b S e t W E P K e y (C K e y : CS t r i ng) : BOOL

b G e t W E P S t a t u s () : N D I S _ 8 0 2 _ 1 1 _ W E P _ S T A T U S

b H a s Z e r o C o n f i g O : BOOL

I- G e t Z e r o C o n f i g S t a t u s Q : Z e r o C o n f i g S t a t u s

I- E n a b l e Z e r o C o n f i q f b E n a b l e : BOOL) : Z e r o C o n f i q S t a t u s

CM d i s u i o W r a p p e r

C W i F i B S S I D

+ m_D i r e c t i on : C S t r i n g

+ m _ N a m e : CS t r i ng

- m _ M a c A d d r s s s : N D I S _ 8 0 2 _ 1 1 _ M A C _ A D D R E S S

- m _ p B S S I D : P N D I S _ W L A N _ B S S I D

- m_pBu f f s r : v o i d *

- m _ R s f s r s n c s s : int

- ~ C W i F i B S S I D ()

- C W i F i B S S I D (p I t e m : P N D I S _ W L A N _ B S S I D)

- C r e a t e F r o m N D I S (p I t e m : P N D I S _ W L A N _ B S S I D)

- C W i F i B S S I D (I n p u t : cons t C W i F i B S S I D &)

- o p e r a t o r = = (I t e m : cons t C W i F i B S S I D) : BOOL

- o p e r a t o r =(Inpu t : cons t C W i F i B S S I D ^) : C W i F i B S S I D ^

- A d d R e f e r e n c e Q

- R e m o v e R e f e r e n c e () : BOOL

- Ge tP t r () : c ons t P N D I S _ W L A N _ B S S I D

- Ha sRe f e r en c e () : boo l

- Ha sEnoughRe f e r en c e s () : BOOL

- M a m e F r o m S S I D (p B S S I D : P N D I S WLAM B S S I D) : CS t r i ng

+ D i r e c t i o n F r o m S S I D (p B S S I D : PMDIS W L A N B S S I D) : C S t r i n g

+ S s i d T o C S t r i n g (p B S S I D : PMDIS W L A N B S S I D) : C S t r i n g

+ M A C T o S t r i n g (m a c : N D I S _ 8 0 2 _ 1 1 _ M A C _ A D D R E S S) : CS t r i ng

+ R s s i T o L o n g (p B S S I D : P N D I S W L A N B S S I D) : L O N G

+ C h e c k R a m p e S S I D (p B S S I D : PNDIS W L A N B S S I D) : BOOL

- C W i F i B S S I D Q

CT h r e a d

Msg T i m e o u t : cons t int

_Exe cu t i n g : BOOL

M e s s a g e Q u e u e : d e q u e < M e s s a g e T y p e >

h M e s s a g e A c c e s : H A N D L E

+ C T h r e a d ()

+ ~ CTh r ead ()

-I- S s n d Mes sage (M e s s a g e : Mes sageType) : BOOL

+ I n i t T h r e adO

OnMessage(Message : MessageType) : BOOL

E x e c u t e d : U I N T

R e s u m e E x e c Q

S u s p e n d E x e c ()

L o c k M e s s a g e Q u e u e ()

U n l o c k M e s s a g e Q u e u e ()

C l e a r Q u e u e ()

QueueS i z e () : int

- S e a r c h M e s s a q e f Mes sage : M e s s a g e T y p e) : BOOL

C N e t w o r k A d a p t e r

+ A d a p t e r i n f o : S N e t w o r k A d a p t e r l n f o

+ C N e t w o r k A d a p t e r f)

+ « C N e t w o r k A d a p t e r ()

+ I n i t T h r e adO

+ InitQ

+ N D I S C o n n e c t e d ()

+ N D I S D i s o n n e c t e d O

+ Upda teAPL i s t ()

+ N e x t l t e m ()

+ P r e v I t e m Q

+ CortnectQ

+ DisconnectQ

+ Enabie(bEnabie : BOOL) : BOOL

+ IsEnabledQ : BOOL

+ O n M e s s a g e (M e s s a g e : T N e t w o r k M e s s a g e) : BOOL

C W i F i A d a p t e r

+ m _ B S S I D L i s t : C W i F i B S S I D L i s t M k 2

+ T e x t T o S p e a k : CS t r i ng

m_F i r s tRun : B O O L

m_WiF i : C W i F i H e l p e r

m_nAs so c i a t i n gT imeou t : int

m _ A s s o c i a t e d B S S I D M A C : NDIS_ _ 8 0 2 _ 1 1 _ M A C _ A D D R E S S

m _ p B S S I D L i s t : P N D I S _ S 0 2 _ 1 1 _ B S S I D _ L I S T

m_bL .ockAPL i s tRe f resh : BOOL

m b R o u t i n q W a s S e t : BOOL

+ Disconnect^)

+ P r e v I t e m Q

+ N e x t l t e m ()

+ Connec t ()

+ N D I S D i s o n n e c t e d O

+ N D I S C o n n e c t e d ()

+ l n i t ()

+ C W i F i A d a p t e r O

+ « CW i F i Adap t e r ()

+ Upda teAPL i s t ()

+ Enab l s (bEnab l e : BOOL) : BOOL

+ A s s o c i a t e (p B S S I D : P N D I S _ W L A N _ B S S I D) : BOOL

+ D i s a s s o c i a t e d : B O O L

+ C h e c k R a m p e I P (p A d a p t e r : P I P_ADAPTER_ INFO) : BOOL

+ I s Enab l e dQ : B O O L

C h e c k Rad i o S t a t u s Q

F o r c e D H C P (p A d a p t e r : P I P _ A D A P T E R _ I N F O , PRenew : BOOL) : int

S e t u p D e f a u l t R o u t i n q Q

+ m _ B S S I D L i s t

C W i F i B S S I D L i s t M k 2

_L i s t : s t d : : v e c t o r< C W i F i B S S I D :

i_Act ive : uns i gned int

+ C W i F i B S S I D L i s t M k 2 ()

+ " C W i F i B S S I D L i s t M k 2 ()

+ Load B S S I D L i s t (p B S S I D List : P N D I S _ 8 0 2 _ 1 1 _ B S S I D _ L I S T) : BOOL

+ P r e v i o u sO : B O O L

+ N e x t Q : B O O L

+ G e t A c t i v e Q : P N D I S _ W L A N _ B S S I D

+ G e t A c t i v e D i r e c t i o n Q : C S t r i n g

+ Ge tA c t i v eS t a t i o n () : CS t r i ng

+ S i z e d : int

- S e a r c h l t e m (l t e m : cons t C W i F i B S S I D) : int

- R e m o v e R e f e r e n c e s Q

Figure 8.2: Network adapter and W i F i structure

39

8.3 Appendix 3. T C P / I P connections management

A s the previous section handled the low-level control of network adapters (in I S O / O S I
model it would be layers 1 and two - "Physica l" and " D a t a / L i n k " layers), the sending of
the data itself is handled by a higher-level mechanism, described here.

A s the R A M P E data communicat ion is completely realized on T C P / I P (either using
H T T P protocol, or the R A M P E - d e f i n e d frames), Winsock had been used for implementa­
t ion of such a system.

Scheme of the posit ion of Winsock i n the I S O / O S I model is given below (as taken from
the official manufacturers documentation at [2]).

Application
layer Application

Presentation
layer

Sess ion
layer

Winsock API

Secure Unsecure

Transport
layer

Network
layer

TCP UDP TCP/IP

ICMP IGMP IP ARP
IrDA

Data-link
'aver NDIS

I—„ I „ < ,4
Token-
Ring

(802.5)

Ethernet
(B02.3)

Fast IR
(FIR)

Serial IR
(SIR)

Serial API

Serial device driver

Physi
la

cal
yer

Network
interface

FIR
hardware Serial port IR port

Figure 8.3: Winsock (official documentation from [2])

40

A s the crucial structure i n the Winsock is the SOCKET, the applicat ion encapsulates
each such a resource i n an appropriate object (there are only CTCPClientSocket and
CUDPServerSocket defined, since those are the only ones used so far). Those object handle
the management of their respective resources.

A s those objects require raw data to be sent, the R A M P E frames need transformation
to and from the A S C I I stream. This is done inside the CRampePacket class.

For working wi th H T T P , there is another separate component in the Windows Mobi le
environment, therefore it is handled separately by a CHttp class (not described here - the
techniques used there are on yet a different layer of I S O / O S I - level 7, "Appl ica t ion layer").

8.3.1 Possible improvements

A s for the sockets infrastructure, things are working fine. The possible improvements may
rely mainly on adding new sockets (missing are T C P server and U D P client) if necessary,
or developing new protocol, since the A S C I I frames are neither the most effective, nor most
reliable way.

I MessageType i

CThread C R a m p e P a c k e t
- Msg T imeou t : const int - m D a t a : str ing
- _Execut ing : BOOL - m C h e c k s u m : int
- MessageQueue : deque< MessageType > - m A d d r e s s : int
- hMessageAcces : HANDLE - m_Ti mes t amp : str ing
+ CTh readO - m T y p e : cha r
+ « CThread() - m Buffer : str ing
+ SendMessage (Message : MessageType) : BOOL + CRampePa cke t (T ype : cha r . Address : int r Data : char*)
+ In i tThreadO + CRampePa cke t (Da t a : char*)
OnMessage(Message : MessageType) : BOOL + ~ CRampePacke t ()
Execute() : UINT + GetBuf fer() : const cha r*
ResumeExec () + GetType() : const cha r
Suspend Exec() + Ge tAddress f) : const int
LockMessageQueue() + GetData() : const cha r*
Un lockMessageQueue() - CRampePacke t ()
C lea rQueue() - S e t T i m e s t a m p O : BOOL
QueueS i ze() : int - Se tDa taB lock f) : BOOL
- SearchMessaqe f Message : MessageType) : BOOL - Che c k sum fDa t a : const char* . S ize : const int) : int

CNetworkServ i cesManager
m_UDP : au to_pt r< C U D P S e r v e r S o c k e t >

+ CNe two rkSe rv i c e sManage r ()
+ « CNe two rkSe rv i c e sManage r ()
OnMessage f Msg : SNSMessaqe) : BOOL

CUDPServerSocket

- m_Rece ive From Add r : S O C K A D D R _ I N
- CUDPSe r ve rSo cke t ()
- Execute() : UINT
+ CUDPSe r v e rSo c ke t (P o r t : int, pManage r : Network Manager)
+ ~ CUDPSe r ve rSo cke t ()

CTCPCl ientSocket

- CTCPCI ientSocket ()
+ CTCPCI ien tSocke t (IPAddress : cons t char* , Port : int)
+ ~ CTCPC l i e n tSo cke t^

SZ SZ
CNetworkSocket

m_Socke t : S O C K E T
+ Send(Data : const char*) : BOOL
+ ~ CNe two rkSocke t ()
C N e t w o r k S o c k e t Q

Figure 8.4: Sockets management

41

8.4 Appendix 4. X M L Parser structure

X M L is used as a ma in format of data transfer i n R A M P E , therefore the X M L parsing
is used extensively through the code. Since there is plenty of available X M L parsers, the
implementation of the parser is relying on wrapping one engine wi th an abstraction, hence
allowing possible future change of the engine itself.

So far the M S X M L parser that is shipped wi th the system is used. The general parser
structure relies on two ma in classes [10].

C X M L E l e m e n t is the abstraction of one X M L element node. Its functions allow a l l nec­
essary operations inside the parsed X M L tree (e.g. getting the values and attributes,
i terating through the children nodes, basic types conversion, etc.). The main idea for
such an abstraction had been taken from .

C X M L D o c u m e n t is the basic class, that handles the ini t ia l izat ion of the parser and
parsing given input data. The browsed tree is saved in a form of its root element
(CXMLElement).

W h i l e implementing a part icular tool to retrieve desired data from the parsed X M L tree,
one needs to inherit the CXMLDocument class. B y loading it w i t h data the X M L parsing
is started and the result is stored i n the CXMLElement object. Us ing the methods of that
object yields the desired data, that are then processed as the author pleases.

W h i l e implementing such a tool , one may desire to separate it into different thread,
for its consumption of t ime. This may be done easily by inheri t ing the appropriate class
(since such a process does not usually require more interaction, than sending a message to its
owner about the result of its operation, usage of the CWorkerThread class is recommended).

A n example diagram of such a tool is given below. Note the usage of CHttp class. It
is used for retrieving the remote file. Such an action i n general (retrieving of the data) is
fully up to the newly created tool (or its owner).

42

CWo rice rTh read
pParrent : CThread< MessageType >*
DoneMessage : MessageType
Fa i ledMessage : MessageType
Fa i ledMessaqeSet : BOOL
+ CWorkerThread()
+ CWorkerThread(pThread : CThread< MessageType >*, OKMessage MessageType)
+ CWorkerThread(pThread : CThread< MessageType >*, OKMessage MessageType, ErrorMessage : MessageType)
+ ~ CWo rkerTh read ()
Done(Succesful l : BOOL)
- Executef) : UINT

CXMLEIement
nRoo t : CComP t r< IXMLDOMEIement >
nNodeL i s t : CComP t r< IXMLDOMNodeL is t >

nLen : long
1- CXMLEIement (e l ement : CComP t r< IXMLDOMEIement >)
1- CXMLEIement(node l i s t : CComP t r< IXMLDOMNodeL is t >)
)- CXMLE I emen t (J en : int)
1- CXMLEIement()
f- NodeName() : wstr ing
\- NodeText() : wstr ing
f- NodeTextNumber() : int

\- A t t r (name : const wstringfk, def : const boolfk) : bool
\- A t t rBoo l (name : const wstringfk) : bool
\- A t t r l n t (name : const wstringfk) : int
\- A t t r (name : const wstringfk, def : const intfk) : int
)- A t t r (name : const wstringfk) : wstr ing
\- A t t r (name : const wstringfk, output type : wstringfk) : wstr ing
t -Ch i ld(name : const wstr ing a) : CXMLEIement
\- Ch i ldText (name : const wstringfk) : wstr ing

f- Ch i ldAt t r (name : const wstr ing&, a t t r name : const wstr ing&) : wstr ing
\- Ch i ldAt t r (name : const wstringfk, a t t r name : const wstringfk, def : const intfk) : int
\- Ch i ldAt t r (name : const wstringfk, a t t r name : const wstringfk, def : const boolfk) : bool
\- empty() : bool
\- xml() : wstr ing
1- Begin() : CXMLEIement
1- End() : CXMLEIement
(-operator ! = (rhs : const CXMLEIementfk) : bool
I- ope ra to r ++() : CXMLEIement
f ope ra to r wstr ing()
t Ge tQ

_Root I

CXMLDocument
i_pXML : CComP t r< IXMLDOMDocument >
i_Root : CXMLEIement

+ CXMLDocument(input : const BSTR)
+ CXMLDocumen tQ
+ ~ CXMLDocument ()

LoadBSTR(input : const BSTR) : BOOL
LoadFi le(Path : LPCTSTR) : BOOL
SetRootE lement() : BOOL
Wstr ingToCStr ing(jnput : const wstr ing) : CStr ing
At t rBoo l (E lem : const CXMLEIement , At t r : const CStr ing) : BOOL
At t rCSt r inq(E lem : const CXMLEIement , At t r : const CStr ing) : CStr ing

+ Header : const SS topHeade r
+ Lines : const vec tor< SLine >

CRampeStopData

+ CRampeS topDa t a (PHeade r : SS topHeader , PLines : v sc to r< SLine >
+ ^ CRampeS t opDa t aQ

CXMLRampeStop P a r s e r

+ H e a d e r : SS topHeade r
+ Lines : vec tor< SLine >
- Se r ve rName : LPCTSTR
- Port : int
- Path : LPCTSTR
+ CXMLRampeStopPa r se r (. . . :)
+ CXMLRampeStopPa r se r ()
+ ~ CXMLRampeStopPa r se r ()
- Execute() : UirJT
- ParseL inesQ : vector< SLine >
- ParseL ineSchedu le(Schedu leNode : CXMLEIement) : vec tor< C R a m p e T i m e >
- ParseL ineHeader(L ineNode : CXMLEIement) : SL ineHeade r
- Parse Li neStat ions(Stat ions Node : CXMLEIement) : vec tor< SL ineStat ion >
- ParseHeader f) : SS topHeade r

CHttp
- Init ia l ize : HINTERNET
- Connect ion : HINTERNET
- File : HINTERNET
- hContro lMutex : HANDLE
- pFile : CS t r i ng*
- S e r v e r N a m e : LPCTSTR
- Port : int
- Path : LPCTSTR

- Init ia l ize : HINTERNET
- Connect ion : HINTERNET
- File : HINTERNET
- hContro lMutex : HANDLE
- pFile : CS t r i ng*
- S e r v e r N a m e : LPCTSTR
- Port : int
- Path : LPCTSTR
+ CHttp()
+ ~ CHttp()
+ HttpGetFi le(PpFi le : CS t r i ng* , PSe r ve rName : LPCTSTR, PPort : int, PPath : LPCTSTR) : BOOL
- Execu ted : UINT

Figure 8.5: X M L

43

8.5 Appendix 5. Examples of the X M L Files used in R A M P E

8.5.1 Configuration file
This file stores those values i n the application, that can be changed by user. Through this
file a l l the configuration is made possible.

<?xml version=" 1.0'' standalone="no' '?>
<RAMPEConfig Lang=''Francais''Version=' '1 .0 ' '>
<Global>
<IPAQVersion>2410</IPAQVersion>
<AckOnRight Value=''TRUE''/>
</Global>

<Languages DefaultLang=''FR''>
<FR Path=''\\RAMPE\\Lang-FR.xml''/>
</Languages>

<Network>
<HTTPTimeout>3000</HTTPTimeout>
<WEPKey UseWEP="TRUE">
CC74B5BE2BD30A533385339335
</WEPKey>
<RampeSSID Pref ix="RAMPE'' Separator="/''

MinSignal=''-10" MaxSignal=''-90''/>
<BSSIDList MaxReferences="5" Updatelnterval="5)'
MinReferences= ' ' 1 ' ' />
<HTTPServer Hostname= " 192.168.0.169''
Path= " /rampe. xml" Port="80"/>

<TCPServer IP= " 192.168.0.168''/>
</Network>

<FSM>
<S_Discovery WatchdogTimeout=''5'' PauseTimeout=''60''/>
<S_AP_Survey ShortWait="2)' AssociationTimeout="30)'
Repetitions=' '3"/>

<S_Navigation EnumerationWait="3 ,' StandartWait="3) '/>
<S_Guidance Beacons="5 ,) BeaconTimeout=" 10' '>
<!—The ''beacon timeout'' attribute i s not timeout for
the state as whole, yet only a period of time, that
each beacon gives to the user (is not added - only
the last one counts) —>

</S_Guidance>
</FSM>
</RAMPEConfig>

44

8.5.2 Language file
This file should theoreticaly store a l l the language-dependent data, that might be presented
to the user. In practice hovewer only the vocal messages are made translatable. The error
messages are printed only into the logfile and/or to the screen, therefore are not accessible
by the (blind) user.

<RampeLang Version=" 1 . 0 '' Name="FR">
<Errors>
<No_Bornes_Available>
Pas de Bornes disponible!
</No_Bornes_Available>

<No_Bornes_Available>
Pas d'arret disponible!
</No_Bornes_Available>

<No_Bornes_Available>
II n'y a pas d'arret i c i !
</No_Bornes_Available>

<No_Bornes_Available>
Aucun arret en vue!
</No_Bornes_Available>

<Connection_Retry>
1'arret ne repond pas, je reessaye
</Connection_Retry>

<Connection_Retry>
1'arret ne repond pas, patientez
</Connection_Retry>

<Error_Back_To_Discovery>
Je recommence.
</Error_Back_To_Discovery>

<Error_Getting_XML>
les informations de 1'arret sont defectueus
</Error_Getting_XML>

<Error_Getting_XML>
les informations de 1'arret sont i n u t i l i s a b l e s
</Error_Getting_XML>

<Error_Getting_XML>
1'arret ne me donne pas d'informations.
</Error_Getting_XML>

45

<Error_No_Bus_Going_Today>
Fin de service
</Error_No_Bus_Going_Today>
</Errors>

<Messages>
<Stop_Direction_2s>
Arret °/0s. vers, °/0s
</Stop_Direction_2s>

<Wellcome_at_Rampe>
Bienvenue a RAMPE
</Wellcome_at_Rampe>

<Wellcome_at_Rampe>
Bienvenue
</Wellcome_at_Rampe>

<Goodbye>
Au revoir
</Goodbye>

<Verlaine>
<!— message for testing the TTS —>
A vous ces vers, de par l a grace consolante.
De vos grands yeux ou r i t et pleure un reve doux...

De par votre ame, pure et toute bonne, a vous...
C es vers du fond de ma detresse violente
</Verlaine>

<XML_0K>
les informations de 1'arret sont disponibles.
</XML_0K>

<Skeleton_List_Done>
Liste des arrets principaux.
</Skeleton_List_Done>

<All_Stops_List_Done>.
C'est tout.
</All_Stops_List_Done>

<All_Stops_Prefix_ls>
°/.s
</All_Stops_Prefix_ls>

<Skeleton_Prefix_ls>
%s

46

</Skeleton_Prefix_ls>
<Stop_Name_Street_2s>

</Stop_Name_Street_2s>

<Line_Direction_2s>
ligne '/,s, vers %s
</Line_Direction_2s>

<Going_To_Discovery>
je recommence.
</Going_To_Discovery>

<Going_In_Time_ld>
<!— message, that i s appended behind the
line number/direction. States i n how many
minutes (%d parameter) the line goes —>

dans %d minutes
</Going_In_Time_ld>

<All_Stops_List_Starting>
Je commence tout les arrets.
</All_Stops_List_Starting>

<Skeleton_List_Starting>
Je commence skeleton.
</Skeleton_List_Starting>
</Messages>

<StateNames>
<Discovery>Decouverte des arrets</Discovery>
<Discovery>Recherche des bornes</Discovery>
<Guidance>Navigation vers borne</Guidance>
<AP_Survey>Decouverte des arrets.</AP_Survey>
<Nav_Root>Navigation</Nav_Root>
<Nav_Lines>Navigation</Nav_Lines>
<Nav_Stops>Navigation</Nav_Stops>
<Silent_Mode>Silencio</Silent_Mode>

<State_Message_lsld>
Vous etes a %s et vous avez %d bornes disponible.
</State_Message_lsld>
</StateNames>
</RampeLang>

47

8.5.3 Borne informations
This file is downloaded each t ime the user tries to retrieve detailed informations from the
stop. It includes global informations about the stop and al l the lines, that belong to the
stop w i t h their appropriate details.

<?xml version=" 1.0" encodings' ISO-8859-1' '?>

<arret update_time="300307182847'' valid_period=" 10 mois" etat_borne="ok'' amenagem

<lignes_habituelles>
<ligne_hab d e s s e r v i e = " o u i " numero="9" direction="SAXE GAMBETTA" valid_time="

<horaire_hab update_time="300307182847'' valid_time="06 a v r i l 2006" dernier_bu
<semaine>

<morning>6h33 7h05 7h23 7h41 8h04 8h20 8h37 8h50 9h03 9hl8 9h36 9h54 10h03 10
<afternoon>13hl2 13h30 13M8 14h06 14h06 14h24 14M4 15h03 15h21 15h39 15h57
<evening>18h07 18h30 18h53 19h24 19h58 20h28 </evening>

</semaine>
<WE>aucun bus</WE>

</horaire_hab>
<stations>

<station nom_station="BR0N HOTEL DE VILLE" squelette="oui"/>
<station nom_station="BR0N SALENGR0" squelette="non"/>
<station nom_station="BR0N JEAN JAURES" squelette="non">

<correspondance numero_correspondance=''25' ̂ SEPT CHEMINS</correspondance>
<correspondance numero_correspondance=''79''>CHASSIEU C0LLEGE</correspondance
<correspondance numero_correspondance=''28''>LAURENT B0NNEVAY</correspondance
<correspondance numero_correspondance=''34''>CHARPENNES</correspondance>
<correspondance numero_correspondance=''9">BR0N HOTEL DE VILLE</correspondan

</station>
<station nom_station="BR0N LIBERATION" squelette="non"/>
<station nom_station= "LUTHER KING" squelette="non"/>
<station nom_station="LES ESS ARTS'' squelette="oui"/>
<station nom_station="BR0N JULES FERRY" squelette="non">

<correspondance numero_correspondance=''79''>CHASSIEU C0LLEGE</correspondance
<correspondance numero_correspondance=''9''>BR0N HOTEL DE VILLE</correspondan
<correspondance numero_correspondance=''38''>CLINIQUE DU T0NKIN</correspondan </station>

<station nom. _station=' 'BERNARD VALL0T" squelette="non"/>
<station nom. _station=' 'PINEL-LAENNEC" squelette="non"/>
<station nom. _station=' 'A.PARE LAENNEC" squelette="oui"/>
<station nom. _station=' 'LONGEFER" squelette="oui"/>
<station nom. _station=' 'GRANGE BLANCHE" squelette="oui"/>
<station nom. _station=' 'FEUILLAT FRERES LUMIERES" squelette="non"/>
<station nom. _station=' 'PLACE AMBROISE COURTOIS" squelette= "non"/>
<station nom. _station=' 'ST MAURICE" squelette="non"/>
<station nom. _station=' 'ST GERVAIS" squelette="non"/>
<station nom. _station=' 'TCHECOSLOVAQUES" squelette=' 'oui"/>
<station nom. _station=' 'MANUFACTURE DES TABACS" squelette="non"/>

18

<station nom_station=<'GARIBALDI GAMBETTA" squelette=''oui"/>
<station nom_station=<'ABUNDANCE'' squelette=' <non"/>
<station nom_station=<'SAXE-GAMBETTA" squelette=''oui"/>

</stations>
</ligne_hab>

</lignes_habituelles>
</arret>

49

Bibliography

[1] A n d r e i Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.
I S B N 0-201-70431-5.

[2] Microsoft Corporat ion. M s d n library, http://msdn.microsoft.com.

[3] E S I E E . Rampe project homepage, http://www.esiee.fr/~rampe.

[4] O . Venard G . Baudoin . Rampe project - phase 1 final report,
http://www.esiee.fr/~rampe/.

[5] G . U z a n G .Baudo in , O.Venard . How can blinds get information i n public transports
using pda? the rampe auditive m a n machine interface,
http://www.esiee.fr/~rampe/05-05-16-rampe-aaate.pdf.

[6] A n d r e i Alexandrescu Herb Sutter. C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices. Addison-Wesley Publ i sh ing Company, 2004.
ISBN-10: 0321113586.

[7] C . Mar in-Lamel le t . Final Report of the BIOVAM project phase 1 (april 1999) and
phase 2 (January 2003). P R E D I T , 2003.

[8] D . Wagner N . Borisov, I. Goldberg . Security of the wep algorithm,
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html.

[9] various authors. C + + t i p s , http://cpptips.hyperformix.com/cpptips.html.

[10] L u c i a n Wisch ik . Us ing m s x m l to read x m l documents,
http://www.codeproject.com/soap/ce_xml.asp.

50

http://msdn.microsoft.com
http://www.esiee.fr/~rampe
http://www.esiee.fr/~rampe/
http://www.esiee.fr/~rampe/05-05-16-rampe-aaate.pdf
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
http://cpptips.hyperformix.com/cpptips.html
http://www.codeproject.com/soap/ce_xml.asp

