
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

DATA MINING BASED WEB ANALYZER OF JOB

ADVERTISEMENTS
WEBOVÝ ANALYZÁTOR PRACOVNÍCH INZERÁTŮ S VYUŽITÍM DATA MININGU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR AlexWittner
AUTOR PRÁCE

SUPERVISOR Ing. Marek Sikora
VEDOUCÍ PRÁCE

BRNO 2023

B a c h e l o r ' s T h e s i s

Bachelor's study program Information Security

Department of Telecommunications

Student: Alex Wittner ID: 230914
Year of

3 Academic year: 2022/23
study:

TITLE OF THESIS:

Data Mining Based Web Analyzer of Job Advertisements

INSTRUCTION:

The goal of this thesis is to extend functionalities of the existing web application for the analysis of job

advertisements. The application contains a form for inserting job advertisements into the internal database (the

sources are advertisements on various web portals, e.g. Linkedln). The student will create automation for adding

new advertisements to the database. The automation will work as follows. The administrator will want to add the

ad to the internal database. In the form, he enters a hyperlink to a web ad, the automation analyzes its content

and, based on that, pre-fills the form to add the ad to the internal database.

The first task of this thesis is to create a data mining method to search for keywords, set the parameters of the

job and test the accuracy on an existing database. Next task is the optimization of the search accuracy,

completing the missing data in the database, and integrating the final tool into the web application.

RECOMMENDED LITERATURE:

Podle pokynů vedoucího práce.

Date of project Deadline for
6.2.2023 26.5.2023

specification: submission:

Supervisor: Ing. Marek Sikora

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

WARNING:

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
The goal of this bachelor's thesis was to create an automated submission of new job
postings by inserting a U R L within an existing web appl icat ion (https://rewire.
informacni-bezpecnost .cz) that aims to collect job postings in the cybersecurity
field with a detailed job competency analysis. The job advert isements are analyzed us­
ing a mult i -pattern search algori thm, Aho-Coras ick , writ ten in Java . A Python script
using the Selenium library extracts information from job advertisements. The resulting
implementat ion and web page are created using P H P and the Reac tJS library using
JavaScr ipt .

KEYWORDS
Web Appl ica t ion , Job Ads Analyzer , Reac tJS , P H P , Java , Py thon , Selenium, cyberse­
curity, multi pattern search algori thm, Aho-Coras ick , Commentz -Wal te r , dictionary, job
ads, Rewire, web scraping, data mining

ABSTRAKT
Cílem té to bakalářské práce bylo vytvoření automatizovaného zadávání nových pra­
covních inzerátů pomocí vložení U R L v rámci j iž existující webové aplikace (https:
//rewire. inf ormacni-bezpecnost. c z) , jejíž cílem je shromažďování pracovních in­
zerátů v oblasti cybersecurity s podrobnou analýzou pracovních kompetencí. Pracovní
inzeráty jsou analyzovány pomocí více vzorového vyhledávacího algoritmu Aho-Coras ick ,
psaného v jazyce Java. K získávání informací ze zadaných pracovních inzerátů slouží
Python skript využívající knihovnu Selenium. Výsledná implementace a webová stránka
je vytvořena pomocí jazyka P H P a knihovny Reac tJS využívající JavaScr ip t .

KLÍČOVÁ SLOVA
Webová apl ikace, Analyzátor pracovních inzerátů, Reac tJS , P H P , Java , Py thon , Se­
lenium, cybersecurity, více vzorový vyhledávací algoritmus, Aho-Coras ick , Commentz -
Wal ter , slovník, pracovní inzeráty, Rewire

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz

https://rewire
http://informacni-bezpecnost.cz
http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Cílem t é t o bakalářské práce bylo vytvoření au tomat izovaného zadávání nových pra­

covních inzerá tů pomocí vložení U R L v rámci již existující webové aplikace (https:
//rewire. inf ormacni-bezpecnost. cz), jejíž cílem je shromažďování pracovních

inzerá tů v oblasti cybersecurity s podrobnou analýzou pracovních kompetenc í . Pra­

covní inzeráty jsou analyzovány pomocí více vzorového vyhledávacího algoritmu

Aho-Corasick, psaného v jazyce Java. K získávání informací ze zadaných pracov­

ních inzerá tů slouží Py thon skript využívající knihovnu Selenium. Výsledná imple­

mentace a webová s t r ánka je vy tvořena pomocí jazyka P H P a knihovny ReactJS

využívající JavaScript.

Motivace vzniku práce

Motivací k vytvoření tohoto projektu byl d louhodobý prob lém s nedostatkem kval­

ifikovaných pracovníků v oblasti IT /bezpečnos t i . Odhady p o č t u chybějících pra­

covníků se v Česku pohybuj í mezi 20 až 30 tisíci. Chybí také platforma/aplikace,

k t e rá by komplexně řešila a shromažďovala pracovní inzeráty z různých zdrojů a

zobrazovala požadované dovednosti pro uchazeče o zaměs tnán í více konkrétněj i a

přehledněji .

Webová aplikace poskytuje tuto možnos t s mnoha důleži tými funkcemi, jako jsou

např . filtrování podle mís t a nabídky, webu na k t e r ém je inzerát umís těn , a j iné.

Webová aplikace obsahovala funkci pro vk ládání nových pracovních inzerá tů , ale

pouze pomocí ručního zadání . Všechny položky tud íž musí zadat uživatel , včetně

požadovaných dovedností , k teré musí vyčíst z popisu pracovního inzerátu . A b y

uživatel nemusel složitě vyhledávat v textu požadované dovednost í a ručně vyplňovat

údaje z inzerá tu , je možné použí t automatizace sestávající z webového "scraperu"

napsaného v jazyce Py thon a hlavní části bakalářské práce tex tového analyzá toru ,

napsaného v jazyce Java. Jeho úkolem bude pomocí pokroči lého algoritmu Aho-

Corasick vyhledávat v textu slova, k t e rá jsou součást í slovníku. Vytvoření slovníku

je t aké úkolem bakalářské práce.

Teoret ická část

Teoret ická část se dělí na 2 části .

V p rvn í části se č tenář dozví více infromací o webech, webových aplikacích,

rozdílech mezi n imi a os ta tn ích webových nástroj ích. V rámci popisu webových ap­

likací dojde také k ukázán í výhod a nevýhod jejich použi t í . Zmíněn je t aké k rá tký

odstavec pojednávající o historii webů a podrobnějš ích detailech o použi tých we­

bových technologiích. V rámci webových technologií dojde k detai lnějšímu sezná­

mení jak tyto technologie fungují, jaké jsou jejich výhody a nevýhody a výtažek

z jejich historie. V rámci technologií budou popsány jak stat ické, tak dynamické

webové s t r ánky a aplikace, stejně tak zda fungují spíše na s t raně klienta, serveru, či

mohou běžet na obou s t ranách zároveň.

Další podkapitola se zaměřuje na použi té programovací jazyky netýkající se we­

bového vývoje. Konkré tně popis fungování j azyků Java, Python a v pros t ředí Py thon

navíc popis knihovny Selenium. Součást í kapitol bude zdůraznění p řednos t í jed­

notl ivých j azyků společně s jejich výhody, nevýhody, použi t í a p ř ípadné porovnán í s

os ta tn ími vývojovými jazyky. U knihovny Selenium použi té v rámci Python skriptu

dojde k předs tavení čeho je knihovna schopná, k čemu slouží a jak se využívá v

praxi.

D r u h á část popisuje stěžejní bod t é t o práce a t í m je zpracování dat. Dojde k

objasnění t e rmínů jako: "data mining, data scraping, pattern searching", vysvětlení

jednot l ivých a lgor i tmů pro vyhledávání a proč v rámci t é t o práce byl nejlepším

v h o d n ý m algoritmem, takový algoritmus, jenž se řadí do skupiny více vzorových

vyhledávacích algori tmů. V rámci více vzorových vyhledávacích a lgor i tmů dojde k

de ta i ln ímu popisu fungování a lgor i tmů Aho-Corasick a Commentz-Walter.

Implementace a Shrnut í

V další kapitole Implementace je vysvět leno a popsáno jaké kroky byly provedeny

pro vytvoření p rogramů, skriptu a jejich zprovoznění v rámci webové aplikace také

jak vznikaly slovníky po t ř ebné pro více vzorový vyhledávací algoritmus. Je možné

zde nalézt ukázky kódu, jenž byly použi ty a jaké problémy se při tvorbě t é to práce

objevili a jak byly vyřešeny.

V část i Shrnu t í dojde ke shrnu t í dosažených výsledků, p r imárně pak vysvětlení,

k te rý z nav rhnu tých více vzorových vyhledávacích a lgor i tmů je lepší a také proč a

jak proběhlo jejich porovnání , když se d ruhý algoritmus implementovat nepodař i lo ,

tak jak bylo původně zamýšleno. Stejně tak dojde k objasnění , k te rý ze slovníků

byl použi t a proč .

Závěr

V závěru jsou us tá leny dosažené výsledky a p ředpok ládané další kroky na tomto

projektu.

W I T T N E R , Alex. Dictionary search algorithm for job ads profiling. Brno: Brno Univer­

sity of Technology, Faculty of Electr ical Engineering and Communica t ion , Department

of Telecommunicat ions, 2023, 81 p. Bachelor 's Thesis. Advised by Ing. Marek Sikora

Author's Declaration

Author: Alex Wi t tner

Author's ID: 230914

Paper type: Bachelor 's Thesis

Academic year: 2022 /23

Topic: Dict ionary search algorithm for job ads

profil ing

I declare that I have writ ten this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibl iography at the end of the paper.

A s the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and /o r ownership rights.

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l .

of the Czech Republ ic, Sect ion 2, Head VI , Part 4.

Brno

author 's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank my thesis supervisor Ing. Marek Sikora and the thesis consultant

M .Sc . Sara Ricc i P h . D . , for professional guidance, consul tat ion, patience, and inspiring

suggestions for the thesis.

Contents

Introduction 21

1 Overview of Used Technologies 23

1.1 Wor ld Wide Web 23

1.2 Web Appl icat ion 24

1.2.1 Advantages and Disadvantages of Web Applications 24

1.3 Web Development Technologies 24

1.3.1 H T M L 25

1.3.2 CSS 26

1.3.3 P H P 27

1.3.4 SQL 28

1.3.5 JavaScript 29

1.3.6 React JS 30

1.4 Other Development Technologies 31

1.4.1 Java 31

1.4.2 Py thon 32

2 Data Processing 35

2.1 Data Min ing 35

2.1.1 Web Scraping 36

2.2 Algorithms Used for Pattern Search 36

2.2.1 Subdivision by Number of Patterns 36

3 Implementation 45

3.1 Dictionary 45

3.2 Java Program 49

3.2.1 Aho-Corasick Algor i thm 50

3.2.2 Commetz-Walter Algor i thm 57

3.3 Py thon Script 58

3.4 Web Implementation 60

Summary 65

Conclusion 67

Bibliography 69

Symbols and abbreviations 73

List of appendices 75

A Appendencies 77

A . l Installation Manual 77

A.2 Instructions For Work W i t h Java Program 79

B Content O f The Electronic Attachment 81

List of Figures
2.1 Suffix links for root 38

2.2 Beginning of B F S , starting wi th the letter "a" 38

2.3 Ent ry to parent node containing letter "t" 39

2.4 entry to root node through suffix 39

2.5 Search if root contains node child wi th the letter "a", if yes, enter. . . 40

2.6 Create suffix between found letters 40

2.7 Begininng wi th letter "t" from 4th row 41

2.8 entry to parent node containing the letter "a" 41

2.9 entry to the node containing the letter "a" through suffix link 41

2.10 Check if the black link contains the letter "t", if yes, create suffix link

between letters 42

3.1 Diagram of the automatic insertion of job adverts 45

3.2 A l l 31 R E W I R E Skills Groups and their connection wi th E N I S A and

the categories to which they belong 47

3.3 Example of words in dictionary 48

3.4 Example of filling in advert details 62

3.5 Example of filling in details of occurring Skills Groups 63

A . l Principle of communication wi th web server 78

Listings
3.1 Loading data from Excel to ArrayLis t structure 51

3.2 Sample of subprogram 54

3.3 Output of subprogram 54

3.4 Creating trie and usage of subprogram 55

3.5 Output of created program 57

3.6 Output of created program after rework 57

3.7 Sample of Selenium maping 59

3.8 U R L Check 60

3.9 Running a Python script and example of error handling 60

3.10 Entering information into the form 61

3.11 Results of Aho-Corasick and Commentz-Walter algorithm comparison

for one of the real job 66

A . l Structure of H T T P response data 78

Introduction
The motivation to create this project was the long-lasting problem of the need

for more qualified workers in the IT/securi ty sphere. Estimates of the number of

missing workers are between 20 and 30 thousand in Czechia [1]. There is also a

lack of frameworks on the Internet that would comprehensively handle the job of

advertisements from different sources and display the required skills for candidates

more precisely and clearly.

The web application provides this option wi th many essential features, such as

filtering by the location of the job, the site on which the ad is placed etc. The web

application currently includes a function for inserting new job adverts, but for this

moment, it is only possible to insert job adverts by manual input, i.e. all items

must be entered by the user, including the required skills, which must be read from

the job description. It is the job description that can give us information about the

required job skills that are not directly stated in the job requirements.

To prevent the user from having to search complexly in the text for the required

skills and manually fill in the data of the job advert, an automation consisting of

a web scraper written in Python and the main part of the bachelor thesis, a text

analyser written in Java was created. It wi l l use advanced algorithms to search the

text for words that are part of the dictionary. The creation of the dictionary is also

the task of the bachelor thesis. Different ways wi l l help to create it, for example,

individual definitions of the required skills according to N I S T (National Institute of

Standards and Technology).

The Python script using Selenium wi l l be used for web scraping, which is a tool

for automated work with web applications.

The algorithms considered in this thesis wi l l be Aho-Corasick and Commentz-

Walter. The first algorithm Aho-Corasick is one of the best dictionary search algo­

rithms. Thanks to working with the trie data structure, which can be thought of

as a sort of binary tree for characters. Another factor affecting its efficiency is that

the algorithm works wi th all the patterns from the dictionary at once, as opposed to

slower algorithms such as Knuth-Morr is-Prat t (KMP), which only works wi th one

pattern at a time.

The second algorithm is the Commentz-Walter algorithm, which is also a perfect

searching algorithm which consists of two very efficient algorithms, the Aho-Corasick

mentioned above algorithm and the Boyer-More algorithm, which is used for string

search. Commentz-Walter also works on the trie and multiple pattern search prin­

ciple, complemented by indexing.

21

The result of the Java program using one of the algorithms wi l l be the words

that match the given string wi th the dictionary and the number of words in each

skill group category to which they belong. This subsequent data wi l l be used and

displayed on the web.

22

1 Overview of Used Technologies
In this chapter, the reader wi l l be introduced in more detail to what web and web

applications are and the tools for creating web and web applications used in their

development.

1.1 World Wide Web

W W W (World Wide Web) is a system of public web pages and websites intercon­

nected through the Internet. A web page is a file or a group of files (typically

hypertext documents) that allows the user to view online content. It is mainly

displayed through the Wor ld Wide Web. For the user to be able to view this con­

tent, the user needs to have access to the Internet and a web browser. Files need

to be stored somewhere. This place is called a web server. A web server delivers

web content to the user when the user makes a request through H T T P (Hypertext

Transfer Protocol). Usually, it is provided by entering a domain name into the U R L

(Uniform Resource Locator) address in the web browser. This allows the user to

see the requested web page. A website is a collection of many web pages associated

under one domain name. [2]

History of World Wide W e b

World Wide Web (WWW) was created in 1989 by Bri t i sh computer scientist T i m

Berners-Lee at C E R N (European Organization for Nuclear Research). Initially, this

system was created as a document management system. A t the end of 1990, the func­

tion system was already implemented with the H T T P server and W W W browser.

A couple of months later, in January 1991, the W W W was provided to the other re­

search institutions by C E R N and in the summer of 1991, it was provided for general

public usage. After C E R N made the Wor ld Wide Web free to the general public in

1993, the W W W started to take off in a big way.

Wor ld Wide Web Consortium (W3C), which was created by T i m Berners-Lee,

made it possible to create X M L (Extensible Markup Language). T i m Berners-Lee

proposed to replace the original H T M L wi th stricter X H T M L (Extensible Hyper­

text Markup Language) in 1996. However, thanks to the fact that other developers

managed to find out the principle of XMLHt tpsReques t functioning, the web rev­

olution called Web2.0 started. Mozi l la , Opera and Apple formed a community of

people (W H A T W G) to develop H T M L 5 because they refused to use X H T M L . In

2019, X H T M L was abandoned and the W 3 C group started to participate in the

W H A T W G . [4]

23

1.2 Web Application

A web application is a software application which has the unique feature that, unlike

most software applications, it does not need to be installed on the user's device. This

is possible due to the fact that the internet browser handles this software. Web ap­

plications are visually the same as ordinary web pages. They even work on the same

basis and languages, namely H T M L {Hypertext Markup Language), CSS {Cascading

Style Sheets), JavaScript, P H P {Hypertext Preprocessor, originally Personal Home

Page), S Q L {Structured Query Language), etc. However, the difference compared to

web pages is that they have many more functions and options. The difference can be

seen to a lesser extent in their use. It is not necessarily the rule and considering how

new technologies and possibilities of both pages and web applications are changing.

It is possible that in the future, these differences wi l l partially disappear. Currently,

the differences are the following: Web pages nowadays serve as a preferred way of

presenting companies, individuals, a certain topic or a range of topics, or anything

that someone finds interesting or important. Web applications are used in the form

of interactivity/diversity. Their purpose is not only to share something wi th the

user but also to work with them and provide them with possible services and pos­

sibilities. Among this, it is possible to imagine, for example, the use of an online

form, a basket for online shopping, or the actual work wi th office packages in an

online form (Google Docs, Google Sheets, etc.). Web applications can therefore be

considered in part as computer programs. [2] [3]

1.2.1 Advantages and Disadvantages of Web Applications

Advantages:

• Removing compatibility issues because all users access the same version.

• Lower requirements for the end user's computer.

• Easier and more reliable security for paid sites from a piracy perspective.

Disadvantages:

• Worse optimization for S E O {Search engine optimization) [2].

1.3 Web Development Technologies

Various technologies are used for web development. The most common are H T M L ,

CSS, P H P , S Q L and JavaScript. These wi l l be discussed more in the following

subsections. In addition, the React technology used for the bachelor thesis web

application, which is one of the most advanced technologies in use nowadays, wi l l

also be described.

24

1.3.1 HTML

H T M L is a hypertext markup language designed to create simple web pages. H T M L

was created in 1993. It's the basic building block of most web pages or web appli­

cations. Since its creation, it has, of course, undergone many modifications and

improvements. Today it used a version called H T M L 5 . Individual versions wi l l be

discussed later. The original version had three primary purposes [5].

1. Creating,

2. formatting,

3. styling web pages.

Styling is no longer used because this feature has been replaced by cascading

styles, which have many more options for the visual editing of pages. Styling is still

possible within H T M L but is not recommended or welcomed.

H T M L uses so-called tags for its work. They are parts of the code located

mostly between < and > characters. Tags can be sorted into paired and unpaired.

Unpaired tags contain a single command between <> characters. Paired tags are

marked by starting as <command> and ending with the same command name wi th

the / character added, so the ending pair tag looks like </command>. Tags can

be combined, nested, and aligned wi th each other, which, together wi th cascading

styles, makes it possible to display practically anything. The code structure is partly

up to everyone, but when creating an H T M L document, it is necessary to respect

the basic syntax and logic. The international W 3 C consortium maintains these

rules. Each document must contain information about the document type, the root

element html, a header that contains the formal content of the document and the

content which is not the content of the page (not displayed on the page), then the

title that is in the header tag. The most comprehensive part of the code is the body

of the page itself, which contains the content that wi l l be displayed to the user. Tags

that must have every H T M L document a r e : ! D O C T Y P E html, html, head, title, and

body [5].

Also worth mentioning are the so-called W Y S I W Y G (What You See Is What

You Get) editors, which allow users who do not know H T M L syntax to create web

pages. A s the name suggests, the only task of the web designer is selecting, placing

and overwriting the objects that the user has in the menu. This is possible thanks

to huge libraries wi th already created objects. The content of the code is fully

automatically created in the background by the selected editor. [5] [6]

25

H T M L Versions

A brief overview of the most important versions that have been introduced for H T M L

over the years:

• Version 0.9 — 1.2 - not supporting G U I , created by T i m Berners-Lee and

Daniel Connolly, 1991-1993.

• Version 2.0 graphics support, adds interactive formulas and entirely de­

pends on S G M L (standard generalized markup language) syntax, released by

I E F T (Internet Engineering Task Force) community, 1995.

• Version 3.2 - added tables, stylesheets, text-alignment, simplified from ver­

sion 3.0, which was too complex, added by W 3 C community, January 1997.

• Version 4.0 - standardization of frames added, new elements added for tables

and forms, end of support for little used elements, some existing elements

modified, use of cascading styles for styling, W 3 C , December 1997.

• Version 4.01 - last version using H T M L before switching to X H T M L , bug

fixes for the previous version, W 3 C , December 1999.

• Version 5.0 - a lot of changes, the most significant include the addition of

new semantic elements, support for applications running without an Internet

connection, support for multimedia directly in the browser (video, audio, etc.),

fixing broken elements, large cleanup of unused tags, simplification of used

elements especially in terms of writ ing and use, W 3 C , October 2014 [7].

• Version 5.2 currently used version, fixed, added new features, simplified

and less error-prone Payment Request A P I , new features for better security,

W 3 C , December 2017 [8]. [9]

1.3.2 CSS

CSS is a stylesheet language used to style pages written in H T M L , X H T M L and

X M L markup languages. Like H T M L , it can be considered one of the basic building

blocks of web pages and applications. The reason for its creation was straightfor­

ward. Before CSS styles started to be used, editing visual elements of websites took

a lot of work and effort. Each element had to contain parameters of its appear­

ance, which made the code much longer and less clear. Another big disadvantage of

H T M L styling was that if the creator wanted to change certain appearance groups

for all tags (for example, h i headings), they had to access each such tag individually

and change the parameter for each. Therefore, CSS was created, which offered a

simple alternative instead of long and complex styling. [10]

26

History and Versions of the C S S

In 1996, the first version of CSS, CSS1, was written by Hakon W i u m Lie. Three

months later, in February 1997, a separate group was formed in the W 3 C to work

on and maintain CSS as well as H T M L . CSS2 was released by the W 3 C in Novem­

ber 1997, with features that CSS1 did not offer (the most important new features

could include outline parameters, max, min-height and weight, position, visibility,

etc.). The official recommendation for using CSS 2.1 came out in 2011 after many

modifications that were gradually taking place. Currently, a version of CSS without

version marking is used. There were also CSS3 and CSS4 versions in development.

The CSS3 version was expected mainly because of the new features associated wi th

the latest version of H T M L , H T M L 5 . However, after version 2.1, its developers

(W3C) decided that instead of releasing new versions, they would periodically cre­

ate snapshots describing the new modules that have been added for the reason of

easier language management. [11]

Advantages and Disadvantages of the C S S

Advantages:

• More comprehensive formatting options,

• faster page loading,

• faster and easier styling and changing styling within the whole document,

• possibility of advanced modifications in cooperation wi th JavaScript, for ex­

ample, changing the parameters on the runtime.

Disadvantages:

• Different browsers may display different content. [10]

1.3.3 PHP

P H P is an open-source scripting programming language. It creates mostly dynamic

web pages, web applications and other systems. It can also be used for creating desk­

top applications or command line scripting (e.g. for writ ing cron or Task Scheduler).

The P H P language can be embedded in H T M L , which in some cases, greatly

simplifies the code and opens up many new possibilities offered by the P H P language

functions. The reason for using it is straightforward, P H P provides more features

in creating web pages and web apps and sometimes faster page loading than static

pages. That is possible because the code is executed on the server side, and the user

receives the finished output. The user does not need to perform any installation and

does not know the difference in terms of availability. [12] [13]

27

Another advantage of the P H P language is that it is cross-platform, meaning it

can be run on any major operating system without compatibility problems. It is

considered one of the simplest languages in terms of syntax and learning. It has

a wide range of applications and, together wi th S Q L , works very well wi th most

of the well-known database systems (e.g. M y S Q L , PostgreSQL, M S S Q L and many

others).

Despite the fact that P H P seems to be on the way out, this is not necessarily the

case. It is st i l l a widely used language in the world, thanks to which some of the most

famous websites such as Wikipedia , WordPress and Facebook have been created and

run. According to the P Y P L (P o p u l a r i t y of Programming Language) website, it is

ranked 6th among used languages. Also, on the T I O B E website, according to the

popularity index, it is in the 10th position. The positions are current as of 15

November 2022. [12] [13]

1.3.4 SQL

S Q L is a standardized structured query language used to create, manage and ma­

nipulate relational databases and the associated data. Like a classic database, a

relational database stores a large amount of data wi th a fixed record structure. In

the case of relational databases, the data is stored as tables with rows and columns

representing different attributes. The main advantage of the S Q L language is that it

can be used very efficiently within other programming languages. The S Q L language

is very simple and intuitive. Rather than a complex programming/query language,

it is a k ind of "machine" English, more complex questions do not have to be so

simple. That is not due to the language itself but rather to the logical complexity

of the query.

Well-known database systems include, for example, M y S Q L , PostgreSQL, Ora­

cle and Microsoft S Q L Server. A l l these servers work wi th S Q L . Different advanced

commands and properties may vary from system to system, but basic S Q L com­

mands such as S E L E C T , C R E A T E , I N S E R T , U P D A T E , D E L E T E , D R O P , and

many others are the same in most if not all the systems [14].

Sorting According to Use

The S Q L language commands can be sorted according to their usage as follows:

• Data definition language (D D L) - Commands belonging to this group

allow to create, edit and delete objects in the database, for example, C R E A T E .

• Data manipulation language (D M L) - Commands belonging to this group

allow to create, edit and delete data in the database, for example, I N S E R T .

28

• Data query language (D Q L) - Commands belonging to this group can

retrieve data stored in the database, for example, S E L E C T .

• Data control language (D C L) - Commands belonging to this group al­

low you to manage access permissions for users to the database, for example,

G R A N T .

• Transaction control language (T C L) - Commands belonging to this group

allow to manage transactions in the database, for example, C O M M I T , R O L L ­

B A C K .

1.3.5 JavaScript

JavaScript is a scripting-programming language that allows the creation of dynamic

web pages and applications. It is mainly used on the client side. Thanks to tech­

nologies like Node.js and similar, it is possible to use JavaScript on the server side,

just like P H P . However, it is a k ind of JavaScript superstructure, so JavaScript itself

is used more on the client side.

Parts of JavaScript code are called scripts; they should be part of the H T M L

code or refer to it. Adding these scripts to an H T M L document opens up new possi­

bilities for interaction wi th the user. These interactions can be new page animations,

text visibil i ty adjustments, and more modern and nice-looking drop-down menus.

Pages without JavaScript have these capabilities, but only on the level of static

web pages, which are not so diverse. Unlike P H P , JavaScript does not burden the

server so much. Whi le P H P downloads and processes the whole page on the server,

JavaScript, which works on the client side, only sends a request to the server. The

server sends back H T M L and script, which is then processed by the browser and

displayed to the user. [15]

Advantages and Disadvantages of JavaScript

Advantages:

• Speed of loading - The user does not have to wait for the page to be reloaded

because it runs on their side. In case of an action, they do not have to reload

the whole page again, but only the changed part.

• Less server load - The request is checked on the client side (web browser)

before sending it. This point is also related to the loading speed point.

• Greater possibilities of interaction - Contains a lot of libraries dealing with new

functions, appearance and properties of pages and applications, and dynamic

structures.

• Extensibil i ty - Lots of frameworks, simplifying application development.

• Compatibi l i ty - Can work wi th different languages like P H P , Java and others.

29

Disadvantages:

• Browser compatibility - each web browser and its version can handle JavaScript

differently so that the resulting displays may differ, or JavaScript may be dis­

abled completely.

• Security - scripts can be displayed as part of H T M L , which can be a potential

danger for code abuse. [16]

1.3.6 ReactJS

React, or React.js, is an open-source JavaScript front-end library developed by Face-

book. It is used to create web applications and web user interfaces. React allows

you to bui ld websites quickly wi th more options and possibly shorter code than

JavaScript alone. Thanks to this, React is one of the most popular and most used

JavaScript libraries of the present. The fact that React is one of the best choices

for developing web applications and interfaces are proven by the fact that it is used

by some of the most famous companies in the world, such as Facebook, Instagram,

Netflix, Reddit , Uber, Ai rbnb and thousands of others [17].

The first mentions of React date back to 2011, when Facebook started developing

it for its own needs. In 2013 it was released by Facebook after previous testing and

use within its own platform. The emergence of React had a massive benefit because

of how creatively its approach and work wi th D O M (Document Object Model) were

handled.

D O M is an interface that turns an H T M L or X M L document into a tree-based,

logical structure, where each node represents a part of the document. In memory,

these parts are called objects [18].

React allows developers to interfere wi th the D O M without needing knowledge

of D O M operations. That is achieved thanks to the vir tual D O M , which React

itself creates based on the programmed code, the content of which is mainly how

the resulting document should look. It then compares the vir tual D O M with the

real D O M and, thanks to clever algorithms, modifies only the parts of the real D O M

that need to be changed in case of the differences. [19].

Benefits of using React

• Simple syntax, where it is possible to use H T M L tags.

• Extensive possibilities to create user environments.

• Large number of extensible libraries can be used to enliven applications.

• Faster rendering thanks to the use of vir tual D O M .

• A l l visible components can display their current data.

30

• Allows decomposition into components, which can be used to split the code

into smaller parts. That makes the code clearer and easier to manage.

• Possibility to create mobile applications.

React and Mode l View Controller (M V C) Architecture

Model View Controller is an architecture used mainly in web application develop­

ment. Its function is to divide the application into three components, model, view

and controller. Thanks to this, it is possible to work wi th the given components

independently. React works only wi th the view component, which, as the name

suggests, determines how the data wi l l be displayed and represented in the browser.

1.4 Other Development Technologies

This part wi l l focus on describing two programming languages: Python and Java.

It wi l l be shortly described how the languages work, what they can do and where it

is appropriate to use them and also their advantages and disadvantages.

1.4.1 Java

Java is a multiplatform object-oriented programming language created in 1995 by

Sun Microsystems. It is used for developing desktop, web and mobile applications.

Among the most common uses of Java are: game development, cloud computing,

big data analysis, artificial intelligence, and the internet of things (IoT) [20].

The great advantage of Java is that it is possible to use Java not only in any

operating system but also in hardware architectures without complex modifications.

That is possible thanks to the Java Vi r tua l Machine (JVM), which is a k ind of

intermediary between the code and the used system.

Java works on the principle of compilation, which means that the code written

using the Java language is then compiled into bytecode, which is further compiled

using the J V M into machine code that is required on the device/system where the

program runs. [21]

Advantages and Disadvantages of Java

Advantages:

• Platform Independent - Java uses a Java Vi r tua l Machine, which can be run

almost everywhere.

31

• Secured - Java doesn't use Expl ic i t pointers and runs inside the vir tual ma­

chine sandbox, separating class packages from the local file system from those

imported through the network.

• Memory Management - Java has a garbage collector that automatically frees

up memory that is no longer in use, which helps prevent memory leaks and

other memory-related issues.

• Mult i -Threaded - Java uses a multi-threaded environment where a larger job

can be divided into many threads and performed independently. The major

advantage of multi-threading is that it does not have to allocate memory to

each operating thread.

Disadvantages:

• Performance - Slower performance compared to lower-level languages like C

and C + + .

• Memory Consumption - Java uses more memory because it runs on a Java

Vi r tua l Machine.

• Poor G U I - G U I builders developed within the framework of Java does not

allow such a variety and possibility of creating complex UIs, as is the case wi th

other programming languages such as C # or Python. [22]

1.4.2 Python

Python is an interpreted, object-oriented, high-level programming language devel­

oped by Guido van Rossum in 1991. Interpreted means that the source code is

executed line by line by the interpreter, not compiled into machine code. When

you run a Py thon program, the interpreter reads the code and executes it directly

without needing a separate compilation step, but this is not always true. For the

most part, Python is an interpreted language, not a compiled language, although

compilation is one of the steps. Python code written in a .py file is first compiled

into byte code and stored in .pyc or .pyo format.

In terms of high-level functionality, its buil t- in data structures, together wi th

dynamic typing and dynamic binding, make it very attractive for quicker develop­

ment as well as usage as a scripting or glue language to connect existing compo­

nents. [23] [24]

Py thon is used for various applications, for example, web development, scientific

computing, data analysis, artificial intelligence, machine learning, automation or

scripting and many more.

32

Advantages and Disadvantages of Python

Advantages:

• Easy to Learn - Python has a simple syntax that is easy to read and write.

• Large Library - Python has a large and comprehensive standard library that

includes modules for a wide range of tasks.

• Mult iplatform - Python code can run on multiple platforms like Windows,

Linux, and macOS.

Disadvantages:

• Performance - Because Py thon is an interpreted language, it can be slower

than compiled languages like C + + .

• Mobile app development - Python is not suitable for mobile app development

as it can be slow and has l imited support for mobile app development.

• Memory consumption - Python programming language uses a large amount

of memory.

Selenium

Selenium is an open-source tool used to automate web browsers. It allows creation

automation that can simulate real user interactions wi th websites and web applica­

tions, reading content, clicking buttons, filling out forms and others.

Selenium can be used, for example, for scraping web pages. Together wi th the

Py thon language, it is possible to create scripts that automate web scraping tasks

and then use the collected data for various purposes, such as data analysis, machine

learning or creating web applications.

Selenium can also be used for a variety of other tasks, such as automating web

testing, generating screenshots of web pages, and performing stress tests on web

applications. [25]

33

2 Data Processing

This theory section wi l l discuss the data processes used in this thesis, specifically

data mining, pattern searching and web scraping, in more detail.

2.1 Data Mining

Data mining is an analytical process during which a large, sometimes even opaque,

amount of data is processed to obtain valuable data. Initially, it was used mainly

in commercial areas, the use of data mining was different, but the goal was the

same: to increase profits and related issues to them. In scientific research, it was

mainly used to analyze information related to genetics. Over time, it has found use

and scalability for various industries and is no longer seen as a tool primarily for

commercial use. After its generalization, data mining can be divided into 6 phases.

1. Determining the goal - Right at the beginning, it should be thought about

the goal of data mining, why to use it, the expected output, and how it wi l l

be handled.

2. Understanding the data - In this step, it is necessary to understand what the

input data of the process wi l l look like, how it should be handled and which

data can be useful and of quality and which not.

3. Data preparation - Determining where the data wi l l be collected from, its

subsequent editing, cleaning, and resolving incorrect inputs so that the data

can be well handled and analyzed.

4. Model building - Choose what kind of data mining wi l l be used based on the

expected results, create the model, edit, and test it.

5. Evaluation of results - Evaluate the results, whether the data obtained are

useful, and test that they are reliable and correct. Part of the evaluation

should be whether to implement the process or not.

6. Implementation and monitoring - When a process is approved, it is imple­

mented, and further steps are taken based on the information found. Over

time, it is necessary to check that the data collected is still up-to-date and

that the models are maintained.

For data mining, many different techniques and methods are used, which allow

to extraction of useful data from a large amount of data. It is certainly not possible

to list them all , but a few of them are worth mentioning: Decision trees, association

rules, neural sites, k-nearest neighbour (KNN), and clustering. [26] [27]

35

2.1.1 Web Scraping

Web scraping is a part of data mining because it is a technique of collecting data

from the web in order to perform data mining analysis.

Web scraping is the process of extracting data from web or web applications.

Software tools automatically extract data from websites and web applications ac­

cording to predefined parameters to obtain information. Nowadays, many sites are

aware of the use of these techniques, and to avoid server overload, they use vari­

ous restriction methods on their sites. One of the simplest scraping methods is the

c U R L library, which is part of almost every programming language. c U R L allows

downloading any part of the H T M L code on the requested web page for further

downloading. A major disadvantage of c U R L is the inability to work wi th sites

whose content is dynamic (for example, written in JavaScript).

Another tool used for web scraping is the Selenium library, which allows access

and retrieval of information from dynamic pages. Its disadvantage, however, is the

need for up-to-date mapping.

2.2 Algorithms Used for Pattern Search

A s the name suggests, algorithms used for pattern search are used to search for

a particular pattern, whether a word, a sentence or several sentences in another,

usually more comprehensive text. These algorithms have a wide range of applica­

tions. The most common use certainly includes online searches. Every reader of

this thesis has used the Internet and searched for something on it. Even this oper­

ation could be considered as a use of pattern searching, where based on the user's

input, words are searched for within the whole Internet, so a small number of search

words are found in a huge set of words and based on the best matches the result is

displayed. There may also be a large use of these algorithms in areas dealing wi th

analysis. Algori thms for pattern searching can be categorized according to several

parameters. [28]

2.2.1 Subdivision by Number of Patterns

Single Pattern Searching

During the comparison, only one pattern is worked wi th at a time. In the case

of a match, it is saved and work wi th the next pattern starts. The selection does

not necessarily have to be sequential. Some algorithms can prepare the patterns in

advance and start working wi th the longest ones, for example.

36

• Naive algorithm, also known as brute force algorithm, is the simplest but

most inefficient search algorithm. The way it works is that the pattern is

"scrolled" through the text, looking to see if all the characters match, and if

they do, it moves forward by one character (to avoid the end of the search)

and looks for more matches in the same way. The time complexity is at worst

(M(N—M+l)) , where N is the length of the text, and M is the length of the

search pattern. [29]

• The Knuth-Morris -Prat t algorithm (K M P) is more complex. In short,

it can be said that the algorithm first preprocesses the string containing the

patterns and creates an auxiliary field based on which it makes a decision.

Thanks to this step, when a mismatch is found, it is possible to know which

characters may follow the mismatch, and thus, there is no need to compare

characters that are already known to be mismatched. The time complexity is

at worst 0(N). [30]

• The Boyer-Moore string search algorithm also uses the same prepro­

cessing of the patterning as the K M P algorithm. However, it uses the best

case from the Naive algorithm and the best case from K M P , where based on

these two heuristics, smaller arrays are created for each heuristic using the

preprocessed array, where each pattern is shifted to the last possible position

(Naive shifts the pattern by one position, K M P shifts it by several positions,

Boyer-Moore shifts it by the maximum number of positions.) Then the best

heuristic is chosen, and a match is found by pairing from the end. The time

complexity is in the worst case 0 (M N) . [31]

Multiple Pattern Searching

During the looping, all the patterns (finite set) for which the step is searched are

worked on at the same time.

• Aho-Corasick algorithm abbreviated A C also works on the principle of pre­

processing of patterns. In the worst case, the time complexity is #(N+M+Z),

where Z is the number of words found. [32] The algorithm process can be di­

vided into four steps:

1. Creating trie - Trie is a data structure that stores the value information

and information about its children. A trie is a similar structure to a

binary tree, but the number of children of each node can be unlimited,

unlike a binary tree where the children can only be 2. The second differ­

ence is that it works wi th chars, not numbers. Thanks to the trie, storing

and searching data very efficiently is possible.

2. Creating suffix (failure) links - Links used by matcher when a charac-

37

ter cannot follow a trie edge occurs. Their creation is best explained

graphically. The images come from a presentation available at short-

ur l . a t /d lUZ2 [33]. For brevity, only the key states of suffix link creation

wi l l be highlighted.

In F ig . 2.1, there is a state slightly different from the rest of the algorithm:

after creating a trie, all followers of the trie wi l l automatically be assigned

suffix lines referring to the root. That is followed by a loop through the

second "row" of the trie. The trie is searched using a Breadth-first search

(BFS). That is followed by entering the node with the character "a" more

in F ig . 2.2.

t a
a t e
c 0 a t 1 s 1
s 0

I Strings

Fig . 2.1: Suffix links for root

Pattern Strings

t a
a t e
c 0 a t 1 s 1
s 0

Fig . 2.2: Beginning of B F S , starting wi th the letter "a

38

The F ig . 2.3, 2.4, 2.5, 2.6 show the algorithm flow. The algorithm asks

if it is possible to get to the given node faster at a higher position (on

the left in the picture). The node finds out that there is no way out of

it, and using the suffix link, it reaches the root. Here it is asked if there

is a node wi th the letter "a". It exists and lies in a higher layer than the

original one, so a suffix link is created to it. If the node does not contain a

follower with the letter "a", a suffix link would be created from the letter

"a" from the second row directly to the root since there is no other row

then the first.

Patter n Strings

t a
a t e
c 0 a t | s |
s 0

Fig . 2.3: Entry to parent node containing letter "t"

Patter n Strings

t a
a t e
c 0 a t I s l
s 0

Fig . 2.4: entry to root node through suffix

39

Fig . 2.5: Search if root contains node child wi th the letter "a", if yes, enter.

F ig . 2.6: Create suffix between found letters

If the letter "a" is in the thi rd row, searching the second row would also

be necessary. This wi l l be partially outlined in the figures 2.7, 2.8, 2.9

and 2.10.

40

Pattern Strings

t a
a t e
c 0 a 11 s |
s 0

Fig . 2.7: Begininng wi th letter "t" from 4th row

Pattern Strings ^

t a
a t e
c 0 a t 1 s
s 0

Fig . 2.8: entry to parent node containing the letter "a"

o
Pattern Strings

t a
a t e
c 0 a t | s |
s 0

Fig . 2.9: entry to the node containing the letter "a" through suffix link

41

Fig . 2.10: Check if the black link contains the letter "t", if yes, create suffix link

between letters

F ig . 2.7 refers to the state the automaton is in after performing the

operations mentioned above and the sequential looping. The following

figures show how the link between the letter "t" from row 4 and the letter

"t" from row 2 was created.

According to the previous theory, the assumed state would be the entry

into the root and, from there, the path to the letter "t" and the creation of

the suffix line. However, there are more specified and efficient solutions.

In this procedure, the algorithm would be swallowed, because of the long

traversal, since the link of the closest possible node (series 2 is closer than

series 1) is specified. Therefore, the first thing to do is always to use the

black line input, and only in case of a mismatch is the suffix used and

moved "higher".

3. Creating output links - Each node contains information whether it is final

or not, this value is assigned to it on a simple principle, at the moment of

adding a pattern to the automaton, the last character of each pattern is

final, but the others are not. For example, in F ig . 2.7, the final nodes are

marked as a double circle. Output lines are then created where a situation

occurs where the suffix link points to the end node. That allows faster

handling of patterns that are part of another pattern.

4. Implementing a matcher - Using sequential trie traversal, output al l

matches while using the output and suffix links. [32]

• Commentz-Walter algorithm consists of two very efficient algorithms, the

Aho-Corasick mentioned above and the aforementioned Boyer-More algorithm.

Commentz-Walter also works on the principle of trie and multiple pattern

searches, supplemented by indexing. However, unlike Aho-Corasick, the trie

42

is reversed. The matches in this algorithm are made using the principle on

which the Boyer-Moore algorithm works, which is end-to-end traversal, hence

the reverse trie. [34] Commentz-Walter consists of two phases:

1. Creating a reverse trie - The procedure is the same as a trie, but the

stamping works from "z" to "a" instead of from "a" to "z".

2. Matching phase - matching that works on the same principle as Aho-

Corasick wi th a shifting technique derived from the Boyer-Moore algo­

ri thm. The algorithm scans the input pattern of the backwards and looks

for when a mismatch occurs in the matching, and when it does, it stores

this value in an index that is later used to compare wi th a pre-computed

table created as part of the reverse trie creation. A n d thanks to it, it

finds the distance needed to move the pattern to find the match. After

this finding, the data and the index are saved. This data allows to find

further matches better, thanks to the fact that the algorithm learns the

positions of some characters. [34]

43

3 Implementation
This chapter wi l l describe how the individual parts of this thesis were created, the

problems and their solution and the final implementation. It wi l l mention the cre­

ation of dictionaries, web scraping, the creation of the dictionary search algorithm

in Java and the implementation of all these elements in the web application.

A diagram of how the automatic insertion of job ads wi l l work is shown in F ig . 3.1.

Client-side

I

Web Browser with
JS Application

Server-side

I

2. Shorter URL address without
useless information

Python Web Scraping program

3. File with job ad info and
file for Java algorithm analysis

4. Input file of job ad
description from Python

Java Dictionary Search algorithm

5. Data for Web
Application prefill

8. Adding a job advert
to the database

V
MySQL Database

Fig . 3.1: Diagram of the automatic insertion of job adverts

3.1 Dictionary

The first step of this thesis was to create a keyword dictionary. The easiest way to

create it was to use the Google Sheets web application. Google Sheets was chosen

for the following reasons:

1. Easy access for multiple users who can edit the table/dictionary in real time

after granting rights.

2. Access to data is possible anywhere and anytime, provided a functional internet

connection exists.

45

3. Compatibi l i ty wi th all major operating systems.

4. The ability to download and work wi th the data in the format needed for the

system.

What goes together wi th the advantage of working wi th data anytime and anywhere,

which is possible thanks to the storage of data in the cloud storage, a drawback is

the unavailability of data in the case of non-functional internet. In case of changes

in the dictionary, either editing or adding new words and groups, it is necessary to

download the dictionary and replace the old file with the new one. This problem

does not affect this thesis in any way because the program works with data that

have already been downloaded.

The dictionary is written horizontally to make the data easier to manipulate.

The first entry of a given row is always the name of the Competency/Ski l l Group,

and then within the row, the other keywords that fall into the category of the given

Competency are written. To the already created structure provided by the thesis

consultant and which contained the names of the Competencies and a couple of skills,

it was necessary to add other keywords/skills related to the given Competency. In

total, four ways were used to create the dictionary.

The first way was Expert input. R E W I R E partners [35] proposed a preliminary

dictionary wi th a few example words in every Competency and the table's basic

structure.

The 2nd way was to select words from the definition provided by the thesis

consultant at shorturl .at / jwAXO. This is based on the definition of the E N I S A

(European Union Agency for Cybersecurity) framework. Words were se­

lected from E N I S A key skills and knowledge descriptions. The terms were selected

based on two parameters: the expression is unambiguous, and its use is assumed

to correspond to the given Competency group; the word is likely to appear in the

written text. For instance, the E N I S A Cybersecurity Risk Manager profile contains

"maturity models", "mitigate risks", "risk management tool", and "risk sharing op­

tions" that specifically identify the profile and can be added to the dictionary. The

selected words were then bolded in the text for better orientation. The relationship

between the E N I S A competency framework and R E W I R E Skills Groups can be seen

in F ig . 3.2.

The third way was to select words, also from the material provided by the consul­

tant of the thesis, specifically from the table at s h o r t u r l . a t / z G K Q W . This is based

on the definition of Competencies framework, according to the N I C E (National

Initiative for Cybersecurity Education), which is part of the N I S T (National Insti­

tute of Standards and Technology). A s with the second way, the words were selected

based on two parameters: unambiguity and expected occurrence in the text. For

example, for group Data Security were found the words "confidentiality", "integrity",

46

I Rewire Skills' Groups l [EM1SA Profiles] [Rewire Skills' Groups |

^ ^ ^ ^ J Data Privacy L » S ^ B

^ ^ ^ J ^ Data SecuritvHjSHB

Asset and Inventory Management

g Da Database Administration

Digital Forensics

Education and Training Delivery

;hief IntorpnaUon Security Officer (C J S Q > |

^ ^ J C y b e r Incident R e 5 p o n d e r ™ j * J |

yber Legal , Policy & Compl iance Officer

• C y b e r Threat Intelligence Special ist K g

Risk Management

Software Development

igic Relationship Manage

• H Law, Policy, and Ethics H

gKu Network Management H

3 Operating Systems •

flj Physical Device S e c u r i t y ^ ^ ^ J

H Policy Development I

Problem solving and Critical Thinking

Enterprise Architecture and Infrastructure Des ign!

Identity Management I

Incident Management

Information Security Controls Assessment

Information Systems and Network Security

Intelligence Analysis

Cybersecur i ty Risk Manager

Digital Forensics Investigator

Fig . 3.2: A l l 31 R E W I R E Skills Groups and their connection with E N I S A and the

categories to which they belong

and "availability" in the related Competency definitions. The selected words were

then bolded in the text for better orientation.

The fourth and last way the keywords were selected and added was by invent­

ing the words by the author as an Expert knowledge. Here, the way the words

were created could be divided into subcategories, but the ways wi l l be only briefly

described for better readability. Some words were chosen according to the author's

experience wi th the given Competency. For example, in the "Database administra­

tion" competency, the words PostgreSQL and phpmyadmin were added because the

author knows them from previous years of studies. Different keywords were chosen

based on the judgment that they could be useful wi th the given Competency. Other

words were added on the basis of reading existing job ads. A n d last but not least,

synonyms were used to already existing added words.

After the dictionary was created, the task was to distinguish which data already

existed, which were added by the second, third method and which were created

by the fourth method. In the created dictionary available at: shorturl .at/ jvyP9,

according to the following criteria:

1. Words already created in the table wi l l be kept black.

2. Words created by method two wi l l have the red colour.

3. Words created by method three wi l l be blue.

4. Words created by the author, i.e. by method 4, wi l l be marked green.

47

" :e l gerce Ana yiis

Law, Policy, and Ethics GDPR

General Data
Protection
Regulation

national international
regulations regulations HIPAA

Fig . 3.3: Example of words in dictionary

Whi le working on the other parts of this thesis (Web scraping and Java program),

an updated version of E N I S A definitions was delivered. It was necessary to modify

this dictionary where a few old entries were deleted and new entries were added.

After the creation of the first dictionary, it was then necessary to test it wi th

a program written in Java, the creation and functioning of which wi l l be explained

more in the next chapter. Testing was performed on 110 job advertisements that

were already part of the database, and accuracy was established by comparing the

output of the program wi th the data that were filled in by a human. The accuracy

of this Two-word Dictionary was around 41%, which as an init ial test was not

the worst result, but st i l l not quite optimal.

Therefore, a different method of dictionary creation was chosen, and this was

a dictionary that consisted of only a one-word entry - One-word Dictionary.

For example, the entry Risk management produced two entries, namely risk and

management. However, from the init ial dictionary were not selected such words

that have meaning only in the case of their verbal name, such as data mining,

Where, if there was a split of these words mean either something else non-relative to

the group or such words do not exist at al l . After completing this dictionary, another

comparison was made on 110 job ads. Here the accuracy was much better, around

72%, but this accuracy was slightly misleading since its calculation only took into

consideration the so-called True Positive cases, i.e. it was calculated from a simple

relationship number of groups found/number of groups that should have been found

and the calculation d id not take into consideration the groups that were found by

the program but should not have been found.

It was, therefore, necessary to use the calculation:

where ACC stays for accuracy, TP for true positives, TN for true negatives, FP

for false positives, and FN for false negatives.

Using this formula, even the result of the first dictionary would not have been

so bad, i.e. the accuracy of 58.6% and for the newly created dictionary, it was a

slightly better value of 59.6%

ACC
TP + TN

TP + TN + FP + FN''

48

Based on the results, it was clear that working wi th the One-word Dictionary op­

tion would be better. The following dictionary had the task of refining this One-word

Dictionary and getting r id of cases where groups were found that should not have

been found. That was achieved by using the so-called "weights" of the dictionary.

W i t h i n the new Weighted Dictionary, the One-word Dictionary was divided into

two parts.

The first part contained words that, when found in the text, the group to which

the word belonged was automatically set to 1 (meaning that this category was

present in the text). The second part contained words that could mean the presence

of a given group in the text but did not have to. If more words from this group were

found, the occurrence of the assigned group would be more likely.

The essential element of this dictionary was the precision that the words from

the second dictionary (Not 100% certainty of occurrence of the group) had to meet.

In the first case, it was worked wi th the version that the number of words found

must be at least 50% of the number of words in the given working competency. This

idea was not wrong, but in categories where there were, for example, 14 or more

words, rarely more than seven words were found. Therefore, a second approach to

Weighted Dictionary was created, which was the method, if the total number of

words in a given competency is less than 6, it works with 50% as in the previous

case. If more words exist in a given Competency, only three are searched.

A comparison of these results can be seen in Tab. 3.1, which shows that the

most accurate dictionary is the last mentioned Weighted Dictionary 2b.

Name of Dictionary T P (%) A C C (%)

Two-word Dictionary 40.9 58.6

One-Word Dictionary 71.7 59.6

Weighted Dictionary la 53.87 63.17

Weighted Dictionary 2b 58.69 63.37

Tab. 3.1: Dictionaries results

match wi th half of the words in the group
b match wi th three words in the group

3.2 Java Program

Another task of this thesis was to create a program that can find words in a long

sequence of characters (sentences) that match the words from the dictionary, whose

creation was described in the previous chapter.

49

Thus, studying and searching for which algorithm to choose for this task was

necessary. Finally, thanks to the recommendation of the thesis consultant and

the information found, two algorithms were selected, namely the Aho-Corasick and

Commentz-Walter algorithms. These algorithms are some of the best search algo­

rithms and therefore are believed to be ideal for this thesis. Reasons for choosing

the Aho-Corasick algorithm:

1. Speed and efficiency - the main reason.

2. Ideal for dictionary-matching wi th long text.

The reasons for choosing the Commentz-Walter algorithm are similar:

1. Speed and efficiency - the main reason.

2. Ideal for dictionary-matching wi th a text.

Which algorithm to use in our case depends on several factors, namely:

1. The length of the dictionary.

2. The length of the text being scanned.

3. The number of hits found.

4. Their accuracy.

3.2.1 Aho-Corasick Algorithm

First , the focus wi l l be on the creation/implementation of the Aho-Corasick algo­

ri thm. To begin with, it is worth saying that the algorithm is definitely not t r ivial

and simple, and it may take more time to understand it than it seems. After its

theoretical understanding, its creation could be divided into four steps.

1. Creating trie.

2. Creating suffix (failure) links.

3. Creating output links.

4. Implementing a matcher.

The first step was to create a trie data structure. The content of this structure, in

this case, is the created dictionary. Originally the trie was made up of a few manually

inserted words. St i l l , since the base seemed to work, the question arose as to how

to efficiently get the individual words of the dictionary into the Java program and

then use those words to generate the trie data structure. The Apache P O I library

available at https://poi.apache.org/ was used to get the data from Excel . This

library allows working wi th columns, rows, and individual cells as needed, which is

necessary for this thesis. It was used mostly to browse individual records by rows.

Another handy feature is the ability to get the names of individual sheets. In the

case of this thesis, it is the first possible sheet, which is not a problem. However, the

problem could arise if the language of Excel was other than English. For example, in

50

https://poi.apache.org/

the Czech language, the sheet's name is "list", and if the path were entered directly

in the code, an error would occur, and the program would be broken.

After figuring out how to work wi th the library, it was possible to have the

words successfully converted into a program by browsing through the individual cells.

However, the words needed to be stored in some data structure in the program to

make them easy to work with. In order to maintain some sort of link between the first

word in the row, i.e. the name of the given Competency, and the other keywords, an

ArrayLis t data structure was chosen, which contained another ArrayLis t containing

the individual records. This more complex structure, however, is very efficient, and

thanks to its properties, it is possible to keep the required groups together while

accessing the records individually. Gett ing the data into the ArrayLis t of ArrayLis t

data structure was not so simple. The moment the program tried to create a new

record in the ArrayLis t for the cells that these contents were empty, errors occurred,

and the program was not working. Initially, this problem was solved by the try-

catch structure, but inserting empty cells was not at all convenient, so the problem

had to be solved another way. Eventually, a simple solution was found, and that

was to first save the loaded data into a helper variable, check if there are no empty

cells, and only if the condition is met, the record was inserted into the ArrayLis t

structure.

Lis t ing 3.1: Loading data from Excel to ArrayLis t structure

A r r a y L i s t < A r r a y L i s t < S t r i n g > > data = new A r r a y L i s t < ~ > () ;
//Can add any dictionary Excel f i l e name.

S t r i n g p a t h t a b l e = S t r i n g . v a l u e O f (P a t h s . g e t (a r g s [0])) ;
F i l e l n p u t S t r e a m f i l e l n p u t S t r e a m =
new F i l e l n p u t S t r e a m (p a t h t a b l e) ;
XSSFWorkbook xssfWorkbook =
new XSSFWorkbook(filelnputStream);
XSSFSheet sheet = xssfWorkbook.getSheetAt(0);
i n t rows = sheet.getLastRowNum();
i n t c e l l s = sheet.getRow(1).getLastCellNum();
f o r (i n t r = 2; r <= rows; r++) {

XSSFRow row = sheet.getRow(r);
A r r a y L i s t < S t r i n g > radek = new A r r a y L i s t < > () ;
f o r (i n t c = 3; c <= c e l l s - 1; C + +) {

XSSFCell c e l l = r o w . g e t C e l l (c) ;
S t r i n g value = c e l l . g e t S t r i n g C e l l V a l u e () ;
i f (! v a l u e . e q u a l s (" ")) {

rade k . a d d (v a l u e) ;

51

}

}

data.add(radek);
}

Thanks to the created structures, it was finally possible to create a trie structure by

browsing individual records. It was already clear that the algorithm would not be

simple, but the trie was finally created with the most significant probability based

on the loaded data.

The second step was to create suffix (failure) links. Here the biggest problem of

the thesis occurred due to the logical complexity and generality of the algorithm.

Studying the algorithm, together wi th studying how to create the suffix links, took

several days. Unfortunately, despite this, the author only achieved a theoretical

understanding of the algorithm because the practical solution was really complicated

and complex. Therefore, the author of the thesis could not create the algorithm.

That is why a new approach was chosen in the thesis. After consultation wi th

the supervisor and the consultant, the thesis was moved backwards. Due to the

impossibility of creating the algorithm, the method chosen was to use an algorithm

already created, and the a im was to transform the program into its own image.

After finding a few implementations of this algorithm, they were downloaded

and tested to see if working with them according to the goals would be possible.

Two implementations that looked really good were found.

T h e First Implementation

The first implementation, containing relatively short code, came from the geeks-

forgeeks.com website. Running this implementation was quite simple and intu­

itive. Changing and modifying it was, however, more complex. The implementation

worked only wi th keywords which were directly written in a simple string in the pro­

gram, and the keywords were not allowed to contain spaces, uppercase letters and

various special characters. It was, therefore, necessary to modify the algorithm im­

plementation to be able to use data from the already created ArrayLis t of ArrayLis ts

structure or to work directly with the trie that had already been created.

Even before choosing one of the options, it was necessary to solve the problem

wi th the l imited ability of the algorithm to work only wi th small letters of the

alphabet. This problem could be eliminated at the stage when the words from the

dictionary were loaded into the program. For this purpose, the regex function was

used, which allowed filtering according to the set parameters. After filtering, it was

possible to save the data so that only minor alphabet characters were worked with.

52

http://forgeeks.com

A s a first attempt, the option was chosen to try to work wi th the already created

trie in the implementation. The code was not functional, even wi th the various

changes that needed to be made in the code.

Therefore, the second option was chosen, which consisted in creating the trie

wi th the algorithm that was already part of the implementation and changing only

the data structure and the way of passing the keywords to other methods that

are responsible for creating the trie, suffix links, output links and the subsequent

matcher. However, this way of solving the problem did not work either.

So a third partial test option was offered, where the downloaded implementation

was restored to its original state. Only the position containing the keywords was

modified without code and structure modifications. To avoid inserting the words

manually, a part of the code created earlier was used, which originally had a different

purpose, but in the end, it worked perfectly for this purpose. After using the regex

function and then saving it to the ArrayLis t of ArrayLis ts structure, it was only

needed to display the resulting structure and format the output to match the same

formatting as the input for inserting the keywords. The interference to the code

was absolutely minimal, and from the point of logic view, it should be functional.

However, despite these steps, the downloaded implementation did not work correctly.

The downloaded algorithm worked correctly only unti l the limit of 500 characters

in the string containing the keywords was exceeded. This length was set as a constant

wi th which other parts of the code worked, but even after rewriting it from 500

characters to the number 9500, which is necessary for our dictionary (of course, even

wi th a margin-left), the algorithm did not work properly, and the implementation

was discarded. So the other option was to start the second implementation.

T h e second implementation

W i t h noticeably longer and more complex code, the second implementation comes

from https: //github.com/robert-bor/aho-corasick. The procedure of getting familiar

wi th the finished implementation was similar to the previous implementation but

also different in some points. The difference was, for example, that the second

implementation did not contain an executable part of the code. It was necessary

to create it, which was relatively easy, thanks to the knowledge acquired during

the reinterpretation of the first implementation and the instructions included in the

original work.

After studying the instructions, the main executable method was created, which

contains the executable part of the code. The first methods used were the ones that

are offered by the created code. These were used to determine what properties the

search algorithm should have, such as the ability to use multi-word keywords, work

53

http://github.com/

just wi th whole words, and not differentiate between upper and lower case, which is

very good for this bachelor thesis. Usage of these can be seen in List ing 3.3.

After the features for working wi th data were selected, it was necessary to test

the program. A few words from the dictionary were selected, these were manually

inserted, and then a test text was inserted in which the words matching the words

from the dictionary were to be found. The code did not contain any errors, so another

part of the code was added to list the found words. That was also successful, and

therefore it was possible to verify that the algorithm is indeed functional and finds

all the keywords in the text.

Now it was necessary to make the most tricky part of this process work again,

namely to make the algorithm be able to work with the whole dictionary, not just

partial data.

Again , two options were offered to solve the problem. The first and more de­

sirable option was to redesign the algorithm to be able to work wi th data from the

ArrayLis t structure. That was not achieved in the end because of how the program

works and reads data.

So the second option was used, which was to manually insert the words indi­

vidually using the .addkeyword("word from dictionary") function. Due to the large

number of words in the dictionary and the assumed possible expansion, manually

inserting each word would be very time-consuming. For this reason, a small sub­

program has been created to output the data loaded in the ArrayLis t of ArrayLis ts

structure together wi th the necessary syntax so that the output provided by this

subprogram can be used as input for the keyword addition part of the main program.

Lis t ing 3.2: Sample of subprogram

f o r (i n t r = 2 ; r <= rows; r++) {
XSSFRow row = sheet.getRow(r);
f o r (i n t c = 4; c <= c e l l s - 1; C + +) {

XSSFCell c e l l = r o w . g e t C e l l (c) ;
S t r i n g value = c e l l . g e t S t r i n g C e l l V a l u e () ;
i f (! v a l u e . e q u a l s (" ")) {

a r r . a d d (v a l u e) ;
}

}

}

f o r (i n t i = 0 ; i < a r r . s i z e () ; i++) {
Sy s t e m . o u t . p r i n t I n (" . a d d K e y w o r d (\ " " + a r r . g e t (i) + " \ ") ") ;
}

54

.addKeyword

.addKeyword

.addKeyword

.addKeyword

.addKeyword

.addKeyword

.addKeyword

.addKeyword

.addKeyword

List ing 3.3: Output of subprogram

e x e r c i s e s ")
courses")
l e a r n ")
l e a r n s ")
education")
educate ")
workshops ")
mentor")
guide")
course ") .addKeyword

This part has to be done manually, so whenever there is a change in the dictio­

nary, it is necessary to download it, replace the old dictionary, run the subprogram

and insert the generated output into the main program. The program works this

way because it is assumed that the changes in the dictionary wi l l not be persistent.

After the thesis is finished, it is possible that the dictionary wi l l remain the same,

and therefore not so much emphasis wi l l be put on these steps. The keywords were

successfully loaded, and it was possible to move on with the program.

Lis t ing 3.4: Creating trie and usage of subprogram

T r i e t r i e ;

t r i e = T r i e . b u i l d e r () . o n l y W h o l e W o r d s () . i g n o r e C a s e ()
. i g n o r e O v e r l a p s ()

addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword
addKeyword

BCP")
BCM ")
bus i n e s s ")
prevent")
i m p r o v i s a t i o n ")
prevent ion")
cont i n u i t y ")
improvise ")
p r o c e s s i n g ")
c l u s t e r ")
anomaly")

The program was finally functional, and therefore it was possible to start making

the modifications that would be needed to work with the program within the web

application. The program has so far only worked wi th a string (a sequence of

55

sentences) that was manually inserted. In order to implement the program and use

it for work in a web application, it is necessary to be able to read this data without

physical interaction with the program. For this reason, the program wi l l use the

reading from the file. The principle of operation wi l l be straightforward, using a

web scraper, the data wi l l be saved into a file, which wi l l then be passed to the

program to find the corresponding words. It wi l l read it, process it and then run

the matching algorithm.

The last necessary step of this program was to format the resulting data. That

wi l l allow better and easier manipulation of the data provided by the program in

the subsequent work. The data that wi l l be needed in the output are:

1. Words found matching the dictionary.

2. Position at which the found word starts and ends.

3. Names of Competencies and the number of matching words they contain.

The 1st and 2nd points are made possible by a data structure that was already

part of the algorithm when its implementation was downloaded, so it was only

necessary to list it.

Point 3 was achieved in the following way. To be able to work with words

individually and without the part containing their position, the regex function was

used to get r id of the part containing the position of the word. Then the split

function was executed, which split the resulting text string into individual words,

where the splitting element was the comma character.

Finally, the individual filtered words were stored in the array structure. The

init ial focus was to create several counters, and then in the process of browsing and

comparing the ArrayLis t , made up of words from the dictionary and an array made

up of words that match. When there is a match, the record representing the first

position of the given row (name of the given Competency) is always queried for what

position it is and on the basis of the switch structure, the given counters would be

raised by one. That would not be an optimal solution because it would be necessary

to create more than 30 counters, where each one would have a different name, and if

it were not used, it would take up memory space. Creating more than 30 conditions

in the switch structure would also be necessary, and the result would be printed as

30+ records wi th minimal changes.

This solution was replaced, in a much simpler way, by creating another array

wi th the size of the number of competencies and using the same index value in the

case of a match between the ArrayLis t and the array to increase the counter for a

given category - later this way of counting words a lit t le bit changed.

Due to the creation of new Weighted Dictionaries, the approach of counting the

number of words found has been changed to the logic: at least one word from the

category of 100 percent words occurs here, and the given group is set to 1.

56

In case a word from another dictionary (not 100%) occurs in the text, where it

works with percentage accuracy or a number of words, the value 0 and 1 is chosen

based on the given criterion.

Lis t ing 3.5: Output of created program

[0:12=improvisation, 25:31=cluster, ...]
Number of words from Business C o n t i n u i t y i s : 4

Number of words from Data A n a l y s i s i s : 1
Number of words from Data P r i v a c y i s : 5
Number of words from Data S e c u r i t y i s : 2
Number of words from D i g i t a l F o r e n s i c s i s : 1
Number of words from I d e n t i t y Management i s : 2
Number of words from I n c i d e n t Management i s : 2

List ing 3.6: Output of created program after rework

Number of words from Business C o n t i n u i t y i s : 1
Number of words from Data A n a l y s i s i s : 1
Number of words from Data P r i v a c y i s : 0
Number of words from Data S e c u r i t y i s : 0
Number of words from D i g i t a l F o r e n s i c s i s : 1
Number of words from I d e n t i t y Management i s : 1
Number of words from I n c i d e n t Management i s : 0

After completing these steps, it was only necessary to save these results to a file

so that they could be worked with in the web application. The most suitable format

for working within the web application was the json format. The step to save the

data in json format was easily achieved by the Gson library, which greatly facilitated

the work of formatting the output.

A . j ar file was then exported from the program, which can be run from the web

application using the command line.

3.2.2 Commetz-Walter Algorithm

For the Commentz-Walter algorithm, also due to the complexity of the algorithm,

the method of not creating the algorithm was chosen, and only the existing im­

plementation wi l l be downloaded and then modified. Unfortunately, there was an

even bigger problem here than wi th the Aho-Corasick algorithm. The author could

not find any working implementation of this algorithm anywhere. Only a program

written in Py thon and C was found. It is available at shorturl.at/nqZ29. Despite

this, an effort was made to get this program working. To see if the algorithm works.

57

After a little study, the program was finally able to run. Unfortunately, the purpose

of the program is not to list the words found but to compare the Aho-Corasick and

Commentz-Walter algorithms. Algor i thm Commentz-Walter, whose output would

be matching words like the Aho-Corasick algorithm, could not be created because

of its difficulty.

Therefore, at least the downloaded implementation was used to see which of the

two algorithms is faster. One random text from a real job advertisement was chosen

as the searched text. The words from the dictionary were all inserted successfully

using a file containing all the keywords separated by commas. However, the results

are rather indicative, as the algorithm used in the comparative implementation may

be different from the algorithm used in the bachelor thesis. Which algorithm is

faster wi l l be discussed in the summary of the thesis.

3.3 Python Script

After creating and testing the dictionaries, the Java dictionary search algorithm

Java, it was necessary to create the a Py thon script for web scraping.

Since the previous two tasks have already been completed and tested, it was

necessary to create a script that wi l l allow, after entering the U R L link, to download

the content of this web page or important parts of this content and save this data

to a file that wi l l serve as an input file for the Dictionary search algorithm.

In the beginning, there was an effort to do this task (Web scraping) without

using other scripts or tools and ideally to create it directly in P H P , which is a

part of the web application, but after several unsuccessful attempts to try methods

and tools such as c U R L , file get contents, Guzzle, Selenium, the option of using

Python script was chosen, because it was much easier to create and develop.

The first method to be considered was one that would use the " c U R L " library

for its work because of its speed and low error rate. However, there was a mis­

understanding of the functioning of the "cURL" library, which allows downloading

the source code of the page, wi th which further text modifications were planned

(stripping the text of unnecessary data) so that it was possible to make this method

globally for all web pages. St i l l , unfortunately, this method can only work wi th static

pages, i.e. the c U R L library downloads the page's H T M L code and then works wi th

it. However, if the embedded web page is written dynamically (using JavaScript,

P H P , etc.), the c U R L method does not see this content.

After a short research, the Selenium library was tried again, not in P H P code,

but as a Python script. After understanding how the library works in Python and

the init ial parameter settings, this way of scraping was tried and worked. Then it

was necessary to specify how to select the web elements in the script. Selenium

58

allows searching for parts of an element according to different criteria, such as the

element's class name, the element's id, the element, the name of the element, and

the X P a t h expression. The most promising for this task was the method of search­

ing by element id, the advantage of which would be that even if the web page of

the advertisement were changed, its id would probably remain the same. Unfor­

tunately, this method did not work in the final implementation or took too long.

Therefore, the X P a t h expression method was chosen, simplifying the whole path

to the element according to the site's structure. The xpath path can look like this:

/html/body/main/section[1]/div/div/section[1]/div/div/section/div. It has

one disadvantage: the moment the author of the web page from which the web ad­

vertisements wi l l be drawn changes the structure of this site, it wi l l be necessary to

perform the mapping again. The advantage of this method is that the search for

elements is faster and almost error-free.

W i t h i n the script, search methods by tag or class name were also used to au­

tomatically fill in data wi thin the web application, such as job ad name, company

name, location and others.

Lis t ing 3.7: Sample of Selenium maping

d r i v e r . g e t (u r l)
j o b _ d e s c r i p t i o n = driver.find_element(By.XPATH,
" / h t m l / b o d y / m a i n / s e c t i o n [1] / d i v / d i v / s e c t i o n [l] / d i v / d i v /
s e c t i o n / d i v ") . g e t _ a t t r i b u t e (" i n n e r T e x t ")
j o b _ t i t l e = driver.find_element(By.TAG_NAME,"hi").text
job_company = driver.find_element(By.CLASS_NAME,
" t o p c a r d _ _ f l a v o r ") . t e x t
c o u n t r y C i t y P r o v i n c e = driver.find_element(By.XPATH,
"/html/body/main/section [l] / d i v / s e c t i o n [2] / d i v / d i v [1]/
d i v / h 4 / d i v [1] /span [2] "
) .get_ at t r i b u t e (" inn erText") . s t r i p O
d r i v e r . q u i t ()

After creating these locators, it was also necessary to change the Selenium set­

tings so that the browser opened by this script has the parameters language=English

and is headless, which means that the browser is not opened on the screen. Sti l l ,

the action is performed in the background.

Then it was only needed to save the obtained files to a file and set the input

parameter to a variable that always contains the U R L address the user specifies.

Due to the different security of web pages and applications against server over­

loading and overloading, it was not possible to create a method that would be able

to get from any U R L the information necessary for the Dictionary search algorithm.

59

Therefore, creating a "mapping" wi thin a Python script for each page from which

advertisements wi l l be added to the web application is necessary. Currently, the

main source of job ads is Linkedin, which is also mapped.

3.4 Web Implementation

After completing a l l the tasks, using them in the web application was sufficient.

After familiarizing with the web application and performing the necessary changes

to get the application running on the localhost, modifications were made to the P H P

code, where a new file named analyze Job .php was created, which is invoked after

inserting the U R L within the web application and pressing the Analyze button. The

main part of this P H P code is in a function so that the return function can be used

here in case an error happens, allowing to return from the function back to the main

code. It simply allows not to continue the code when an error occurs, and at the

same time, this solution provides a simpler and clearer structure than if there was

a branch of nested i f else.
The first step is to check wi th php whether the embedded link belongs to a group

of mapped sites (in this thesis's case, only Linkedin) or not.

List ing 3.8: U R L Check

$ u r l = $obj->url;
Spattern = " / L i n k e d i n / " ;
i f (!preg_match($pattern, $ u r l)) {

$output->error = t r u e ;
$output->message = " S o r r y , u y o u u n e e d u a d d u y o u r u j o b

• • • • m a n u a l l y , u p l e a s e u i n s e r t u l i n k e d i n u j o b u t o u a n a l y z e u " ;
r e t u r n ;
}

List ing 3.9: Running a Py thon script and example of error handling

$command = " c d u " . $ s c r a p e _ p a t h . " u & & u p y t h o n u m a i n . p y u " . $ u r l ;
exec($command , SoutputText , $ r e s u l t C o d e) ;
i f (S r e sultCode != 0){

$output->error = t r u e ;
$output->message = " E r r o r : u E x e c u P y t h o n u e n d e d u w i t h

u u u u e r r o r u c o d e " . S r e s u l t C o d e ;
r e t u r n ;

}

60

Next, the redundant information in the embedded U R L link wi l l be removed more

in List ing 3.8. That is followed by running the Py thon script wi th the cleaned U R L

as an input parameter more in Lis t ing 3.9.

The output of the Python script is two files, one that serves as input for the

Java program, which contains the necessary information for analysis (Job Descrip­

tion), and the other contains information about the job advertisement, which wi l l be

needed in the automatic filling in the web application. In case everything goes well,

the Dictionary search algorithm wi l l be executed by running the .jar file. If there

is no error again, the result is a . json file containing the words found and a list of

workgroups with values 1 and 0 (whether the workgroups appear in the text or not).

These values are then retrieved wi thin the P H P code using the f ile_get_contents
method and converted into an array using json_decode. They are then processed

using simple indexing such as numbers [1]. A l l obtained information (information

about the job advertisement and individual values of given groups) is then loaded

into a formula displayed in the web application after running the analyze Job .php

file. Part of the final formula can be seen in Lis t ing 3.10.

List ing 3.10: Entering information into the form

$ j o b _ t i t l e = t r i m (s t r _ r e p l a c e (a r r a y (" \ r " , " \ n ") , "",
$i n f o s [0])) ;

SresultForm = a r r a y (
" t i t l e " => $ j o b _ t i t l e ,
"country" => $job_country,
" c s _ b u s i n e s s _ c o n t i n u i t y " => $numbers [0] ,
" c s _ d a t a _ a n a l y s i s " => $numbers [1] ,
" c s _ d a t a _ p r i v a c y " => $numbers [2] ,
)

After creating the part of the backend mentioned above, it was enough to

write/prefill the data wi thin the frontend written in ReactJS (JavaScript) into the

web form that is displayed to the user and was originally used for manual input.

The result of the successful analysis can be seen in the F ig . 3.4 and 3.5, where the

user just inserted the U R L link and pressed the "Analyze" button and all the data

was automatically filled in for him.

61

A d d a n e w j o b a d
The job has been analyzed.

https://www. I i n ked i n x o m/jo b s/view/3 S9 0316593/?a I tern ateC ha n n el = s ea re h &ref I d = I M m SGZI

General Cybersecurity Skills Other IT Skills Soft Skills

* Title Application Security Consultant

Source Linkedin

< Link https://www.linkedin.com/jobs/view/3S9031&S93/

* Company Twelve Sec

* Country Greece

: Date 2023-05-12

ENISA Profile

Partners

: Description Do you enjoy Threat Model ing Enterprise applications at scale? Do you

like assessing complex architectures for security design flaws? Do you

enjoy auditing cloud environments? Do you love working with

Ca-ice

Fig . 3.4: Example of filling in advert details

62

https://www
https://www.linkedin.com/jobs/view/3S9031&S93/

https://www.linkedin.com/jobs/view/3590316593/?alternateChannel=search&refld=UxtmSGZI

General Cybersecurity Skills Other IT Skills Soft Skills

Analyze

Business Continuity 1

Data Analysis 1

Data Privacy 1

Data Security 1

Digital Forensics 1

Identity Management 0

Incident Management 1

Information Systems and Network ^
Security

Information Security Controls ^
Assessment

Intelligence Analysis 1

Law. Policy, and Ethics 1

Cancel

Fig . 3.5: Example of filling in details of occurring Skills Groups

G3

https://www.linkedin.com/jobs/view/35903

Summary
The task of this bachelor thesis was creating automation for entering new job adver­

tisements wi th dictionaries, a program to search for keywords in a large text and a

web scraping script. The dictionary was created based on the definitions and ideas

successfully. Unfortunately, the program using at least two algorithms and then

comparing them has not been created.

Fortunately, at least one algorithm has been created and made operational, which

allowed continuing with the thesis in the following steps, thanks to the data provided

by the algorithm. Since it was impossible to create the second algorithm or find its

ready implementation on the internet, at least a theoretical comparison was made.

Algorithms can be compared on the basis of several criteria. One of the com­

parisons can be a comparison based on the worst-case algorithm, where the Aho-

Corasick algorithm has a worst-case complexity of ^ (M + N + Z) , where M is the length

of the dictionary, N is the length of the scrolled text, and Z is the number of matches

found. The Commentz-Walter algorithm has the worst case #(MN). In the case that

the worst case occurs, the Aho-Corasick algorithm is clearly faster. The average

values occurring in this thesis are M=8500, N=3000. In this thesis, the worst case

for Commentz-Walter should not occur. It occurs when all the characters of the

pattern and the text are the same. For example, a pattern of five characters "a" is

searched in a text containing 15 consecutive characters "a". Therefore, this indicator

is not completely informative.

Based on the study [36], Commentz-Walter is faster in cases where the length of

the patterns is longer. The span of a long pattern cannot be determined directly,

but patterns that contain more than 20 characters can be considered a kind of

breakpoint. The range of 20-120 characters per pattern is given as the span of

a long pattern. There is no guarantee that once the length of 20 characters is

reached, Commentz-Walter is automatically better. It is more of a break when its

superiority may start to be felt, but depending on the character of the work, this

may only become apparent, for example, when the pattern contains more than 40

characters.

Another critical point is the number of patterns, as the Commentz-Walter algo­

r i thm becomes less efficient when working wi th more than 13 patterns. That does

not mean that Commentz-Walter works efficiently with only 13 patterns. However,

rather than decreasing efficiency as the number of patterns increases, it is stil l a

perfect search algorithm.

This thesis has patterns wi th an average length of 8.2 characters (One-Word

Dictionary), and the current number of patterns is 515. According to theory, the

Aho-Corasick and Commentz-Walter algorithms should be approximately equally

65

fast. Perhaps the Aho-Corasick algorithm should be slightly faster. That can be

partially verified, thanks to the implementation mentioned in the section Implemen­

tation of the Commentz-Walter algorithm. See Lis t ing 3.11.

Lis t ing 3.11: Results of Aho-Corasick and Commentz-Walter algorithm comparison

for one of the real job.

AHO-CORASICK ####
ELAPSED TIME: 0 . 3 3 9 1 7 2 3 6 3 2 8 1 2 5

TOTAL MATCHES: 20

COMMENTZ-WALTER ####
ELAPSED TIME: 0 . 3 9 7 4 6 5 4 6 7 4 5 3 0 0 2 9 3

TOTAL MATCHES: 20

Therefore, the hypothesis that algorithms run for similar times and that Aho-

Corasick may be slightly faster is correct. It st i l l needs to be considered that the

comparison is only theoretical, and the implementations of the Aho-Corasick algo­

rithms may differ in each implementation.

In the dictionary selection, there were two options, the first was the Weighted

Dictionary 2b, and the second was the One-Word Dictionary. In case the user inter­

action was not considered anymore, probably the better option would be a Weighted

Dictionary 2b because of its highest accuracy of all the dictionaries tested, i.e. ac­

curacy 63.37% calculated from the relation

TP + TN
ACC TP + TN + FP + FN'

where ACC stays for accuracy, TP for true positives, TN for true negatives, FP

for false positives, and FN for false negatives.

In the context of this thesis, however, the possibility of highlighting the found

words when entering a new job advertisement in the given categories is envisaged,

where the better option is to find as many words as possible from the dictionary in

the text and leave it to the user to decide whether the found terms really match the

given job competency. This option is provided by the second One-Word Dictionary,

whose True Positive accuracy value is the highest of all at 71.7%.

After choosing to use Python scripts, the part dealing with web scraping was

also successfully completed. A n d the implementation itself, after tuning various

details, worked on several devices, which meant its functionality. In the scope of the

bachelor's thesis, it was not possible to test whether the finished automation is also

functional in the web application, as it is already running in live operation. The

implementation is currently planned for the summer.

66

Conclusion
In the scope of this bachelor thesis, it was successfully managed to create an automa­

tion for inserting new job advertisements containing the analysis of job competencies

in the framework of an existing web application.

Due to the requirement for fast searching, the Dictionary multipattern searching

algorithm Aho-Corasick was chosen as the most suitable for this thesis (due to the

large number of words in the dictionary and their shorter length).

One-Word Dictionary was chosen as input data for this program, although the

Weighted Dictionary 2b had better accuracy. This dictionary was chosen because its

True Positive accuracy was better than the other dictionary. This method is chosen

because it is desired to find as many Ski l l Groups as possible, and then the user can

easily choose whether the found Ski l l Group matches or not.

For the possibility of getting data from the embedded U R L of the link, a Py thon

script using the Selenium library was used, which allowed to get input data for the

Dictionary search algorithm and also information about individual advertisements,

which wi l l be automatically filled in after the link is inserted in the web application.

A l l these steps are then used/run by a P H P file that runs and is executed on the

server side.

A s part of further work on the thesis, it is planned to add highlighting of found

words in the web application, adding mapping for other pages containing web ad­

vertisements. A n d also implementation of the created thesis into a running website

during the summer holidays.

67

Bibliography
[1] D O U P A L , F . : Nedostatek zaměstnanců v ICT trvá. České uchazeče loví i

zahraniční firmy [online]. Last updated 14. 9. 2022. U R L : <https ://shorturl.
at/iVX15> [Visited 5.5.2023].

[2] K O Ď O U S K O V Á , B . : Web, webová stránka a webová aplikace, v čem je rozdíl?

[online]. Last updated 12.8.2020. U R L : <https://www.rascasone.com/cs/
blog/web-webova-aplikace-rozdil> [Visited 16.11.2022].

[3] Web application [online]. Last updated 31.9.2019. U R L :

<https://www.computerhope.com/jargon/w/web-application.htm> [Vis­

ited 16.11.2022].

[4] Word Wide Web [online]. Last updated 3.11.2022. U R L :

<https://en.wikipedia.org/wiki/World_Wide_Web> [Visited 16. 11.2022].

[5] K O Ď O U S K O V Á , B . : HTML PRO ZAČÁTEČNÍKY ANEB JAK ZAČÍT PSÁT

WEB [online]. Last updated 15. 7. 2021. U R L : <https : //www.rascasone. com/
cs/blog/html-pro-zacatecniky-jak-psat-web> [Visited 16.11.2022].

[6] HTML Standard [online]. Last updated 8.11.2022. U R L : <https: //html.
spec. whatwg. org/multipage/introduction. html#introduction> [Visited

16.11.2022].

[7] HTML5 Differences from HTML4 [online]. Last updated 9.12.2014. U R L :

<https://www.w3.org/TR/html5-diff/> [Visited 16.11.2022].

[8] HTML 5.2 IS DONE, HTML 5.3 IS COMING [online]. Last up­

dated 14.12.2017. U R L : <https://www.w3.org/blog/2017/12/
html-5-2-is-done-html-5-3-is-coming/> [Visited 16.11.2022].

[9] P E D A M K A R , P.: Versions of Html [online]. Last updated 2022. U R L :

<https://www.educba.com/versions-of-html/> [Visited 16.11.2022].

[10] CSS: Cascading Style Sheets [online]. Last updated 25.9.2022. U R L : <https:
//developer.mozilla.org/en-US/docs/Web/CSS> [Visited 16. 11.2022].

[11] B O S , B . : A brief history of CSS until 2016 [online]. Last updated

17.12.2016. U R L : <https://www.w3.org/Style/CSS20/history.html>
[Visited 16.11.2022].

[12] B O S , B . : What is PHP? [online]. Last updated 2022. U R L : <https:
//codeinstitute .net/global/blog/what-is-php-programming/> [Visited

16.11.2022].

69

http://www.rascasone.com/cs/blog/web-webova-aplikace-rozdil
http://www.rascasone.com/cs/blog/web-webova-aplikace-rozdil
https://www.computerhope.com/jargon/w/web-application.htm
http://en.wikipedia.org/wiki/World_Wide_Web
http://www.rascasone
http://www.w3.org/TR/html5-diff/
http://www.w3.org/blog/2017/12/html-5-2-is-done-html-5-3-is-coming/
http://www.w3.org/blog/2017/12/html-5-2-is-done-html-5-3-is-coming/
http://www.educba.com/versions-of-html/
http://mozilla.org/en-US/docs/Web/CSS
http://www.w3.org/Style/CSS20/history.html

[13] J A C K S O N , P.: What is PHP? Write your first PHP Program [on­

line]. Last updated 3.10.2022. U R L : <https://www.guru99.com/
what-is-php-first-php-program.html> [Visited 16.11.2022].

[14] WHAT IS SQL? [online]. 2022. U R L :

<https: //www. sqlcourse. com/beginner-course/what-is-sql/> [Visited

16.11.2022].

[15] K O Ď O U S K O V Á , B . : JAVASCRIPT PRO ZAČÁTEČNÍKY: CO TO JE A

JAK FUNGUJE [online]. Last updated 28.1.2022. U R L : <https://www.
rascasone.com/cs/blog/co-je-javascript-pro-zacatecniky?fbclid=
IwAR3zM5QvSfyl9T2YXZRwcNiDPWgvgFu291BRdS5_S76evIE4VYZR3JRwJpU>
[Visited 18.11.2022].

[16] J O R D Á N A , A . : What Is JavaScript? A Basic Introduction to JS for Beginners

[online]. Last updated 27.10. 2022. U R L :

<https://www.hostinger.com/tutorials/what-is-javascript#3_
Interactive_Behavior_on_Websites> [Visited 18.11.2022].

[17] H E R B E R T , D . : What is React.js? (Uses, Examples, & More) [online]. Last

updated 27. 6. 2022. U R L :

<https://blog.hubspot.com/website/react-js> [Visited 19. 11.2022].

[18] Introduction to the DOM [online]. Last updated 29.9.2022. U R L :

<https://developer.mozilla.org/en-US/docs/Web/API/Document_
Object_Model/Introduction> [Visited 19.11.2022].

[19] D E S H P A N D E , C H . : The Best Guide to Know What Is React [online]. Last

updated 23.10.2022. U R L : <https://www.simplilearn.com/tutorials/
reactjs-tutorial/what-is-reactjs> [Visited 19.11.2022].

[20] What is Java? [online]. U R L : <https://aws.amazon.com/what-is/java/>
[Visited 22.04.2023].

[21] F A S R I N , A . : Let's Understand Java [online]. Last updated

28.10.2021. U R L : <https://medium.com/nerd-for-tech/
Iets-understand-java-261b2e6bcf2e> [Visited 22.04.2023].

[22] Pros and Cons of Java / Advantages and Disadvantages of Java [online].

U R L : <https://data-flair.training/blogs/pros-and-cons-of-java/>
[Visited 22.04.2023].

[23] What is Python? Executive Summary [online]. U R L : <https://www.python.
org/doc/essays/blurb/> [Visited 22.04.2023].

70

http://www.guru99.com/what-is-php-first-php-program.html
http://www.guru99.com/what-is-php-first-php-program.html
https://www.?rascasone.com/cs/blog/co-je-javascript-pro-zacatecniky?fbclid=?IwAR3zM5QvSfyl9T2YXZRwcNiDPWgvgFu291BRdS5_S76evIE4VYZR3JRwJpU
https://www.?rascasone.com/cs/blog/co-je-javascript-pro-zacatecniky?fbclid=?IwAR3zM5QvSfyl9T2YXZRwcNiDPWgvgFu291BRdS5_S76evIE4VYZR3JRwJpU
https://www.?rascasone.com/cs/blog/co-je-javascript-pro-zacatecniky?fbclid=?IwAR3zM5QvSfyl9T2YXZRwcNiDPWgvgFu291BRdS5_S76evIE4VYZR3JRwJpU
https://www.hostinger.com/tutorials/what-is-javascript%233_?Interactive_Behavior_on_Websites
https://www.hostinger.com/tutorials/what-is-javascript%233_?Interactive_Behavior_on_Websites
http://blog.hubspot.com/website/react-js
https://developer.mozilla.org/en-US/docs/Web/API/Document_?Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_?Object_Model/Introduction
http://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
http://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
http://aws.amazon.com/what-is/java/
http://medium.com/nerd-for-tech/
https://data-flair.training/blogs/pros-and-cons-of-java/
https://www.python.?org/doc/essays/blurb/
https://www.python.?org/doc/essays/blurb/

[24] K A R A N I , D.: How does Python work? [online]. Last up­

dated 9.1.2020. U R L : <https://towardsdatascience.com/
how-does-python-work-6f21fdl97888> [Visited 22.04.2023].

[25] B H A M R A , P.: What is Selenium? Introduction to Selenium Automation Test­

ing [online]. Last updated 19.4.2023. U R L : <https://intellipaat.com/
blog/tutorial/selenium-tutorial/introduction/> [Visited 22. 04. 2023].

[26] T W I N , A . : What Is Data Mining? How It Works, Benefits, Techniques, and

Examples [online]. Last updated 2.8.2022. U R L :

<https: //www. investopedia. com/terms/d/datamining. asp> [Visited

19.11.2022].

[27] RŮŽIČKOVÁ, M . : Data mining Co? Jak? K čemu? [on­

line]. Last updated 14.5.2018. U R L : <https://medium.com/edtech-kisk/
data-mining-co-jak-k-ADemu-c5176179303b> [Visited 19.11.2022].

[28] Applications of String Matching Algorithms [online]. Last up­

dated 7.11.2022. U R L : <https://www.geeksforgeeks.org/
applications-of-string-matching-algorithms/?ref=gcse&fbclid=
IwAR3JztbCFHX6CPLElvfVp9GC_cC5C7B_HuJ_jcnLmzPd0Nz36-jnFLna2H0>
[Visited 20.11.2022].

[29] Naive algorithm for Pattern Searching [online]. Last up­

dated 22.8.2022. U R L : <https://www.geeksforgeeks.org/
naive-algorithm-for-pattern-searching/> [Visited 20.11.2022].

[30] KMP Algorithm for Pattern Searching [online]. Last up­

dated 18.11.2022. U R L : <https://www.geeksforgeeks.org/
kmp-algorithm-for-pattern-searching/> [Visited 20.11.2022].

[31] Boyer Moore Algorithm for Pattern Searching [online]. Last

updated 9.11.2022. U R L : <https://www.geeksforgeeks.org/
boyer-moore-algorithm-for-pattern-searching/> [Visited 20.11.2022].

[32] Aho-Corasick Algorithm for Pattern Searching [online]. Last up­

dated 14.6.2022. U R L : <https://www.geeksforgeeks.org/
aho-corasick-algorithm-pattern-searching/> [Visited 20.11.2022].

[33] Aho-Corasick Automata [online]. U R L :

<http://web.Stanford.edu/class/archive/cs/csl66/csl66.1166/
lectures/02/Slides02.pdf> [Visited 21.11.2022].

71

http://towardsdatascience.com/
http://intellipaat.com/blog/tutorial/selenium-tutorial/introduction/
http://intellipaat.com/blog/tutorial/selenium-tutorial/introduction/
http://medium.com/edtech-kisk/data-mining-co-jak-k-ADemu-c5176179303b
http://medium.com/edtech-kisk/data-mining-co-jak-k-ADemu-c5176179303b
http://www.geeksforgeeks.org/applications-of-string-matching-algorithms/?ref=gcse&fbclid=IwAR3JztbCFHX6CPLElvfVp9GC_cC5C7B_HuJ_jcnLmzPd0Nz36-jnFLna2H0
http://www.geeksforgeeks.org/applications-of-string-matching-algorithms/?ref=gcse&fbclid=IwAR3JztbCFHX6CPLElvfVp9GC_cC5C7B_HuJ_jcnLmzPd0Nz36-jnFLna2H0
http://www.geeksforgeeks.org/applications-of-string-matching-algorithms/?ref=gcse&fbclid=IwAR3JztbCFHX6CPLElvfVp9GC_cC5C7B_HuJ_jcnLmzPd0Nz36-jnFLna2H0
http://www.geeksforgeeks.org/naive-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/naive-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
http://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-searching/
http://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-searching/
http://web.Stanford.edu/class/archive/cs/csl66/csl66.1166/?lectures/02/Slides02.pdf
http://web.Stanford.edu/class/archive/cs/csl66/csl66.1166/?lectures/02/Slides02.pdf

[34] Commentz-Walter algorithm [online]. Last updated 19.10.2022. U R L :

<https: //en. wikipedia. org/wiki/Commentz-Walter_algorithm> [Visited

20.11.2022].

[35] R E W I R E - Cybersecurity Skills Alliance. REWIRE Project Results [online].

U R L :

<https://REWIREproject.eu/results/> [Visited 21.11.2022].

[36] D E W A S U R E N D R A , S., V I D A N A G A M A C H C H I , S.: Average time complexity

analysis of Commentz- Walter algorithm. Journal of the National Science Foun­

dation of Sri Lanka, Sri Lanka: 2018. U R L :

<http://doi.org/10.4038/jnsfsr.v46i4.8630> [Visited 23. 11.2022].

72

http://REWIREproject.eu/results/
http://doi.org/10.4038/jnsfsr.v46i4.8630

Symbols and abbreviations
U R L Uniform Resource Locator

W W W World Wide Web

H T T P Hypertext Transfer Protocol

C E R N European Organization for Nuclear Research

W 3 C Wor ld Wide Web Consortium

X M L Extensible Markup Language

H T M L Hypertext Markup Language

X H T M L Extensible Hypertext Markup Language

C S S Cascading Style Sheet

P H P Hypertext Preprocessor

S Q L Structured Query Language

S E O Search Engine Optimizat ion

D O M Document Object Mode l

M V C Model View Controller

K M P Knuth-Morr is-Prat t

A C Aho-Corasick

B F S Breadth-First Search

N I C E National Initiative for Cybersecurity Education

N I S T National Institute of Standards and Technology

E N I S A European Union Agency for Cybersecurity

IoT Internet of Things

J V M Java Vi r tua l Machine

73

List of appendices

A Appendencies 77

A . l Installation Manual 77

A.2 Instructions For Work W i t h Java Program 79

B Content O f The Electronic Attachment 81

75

A Appendencies

A . l Installation Manual

The first step to get started is downloading, running and configuring the X A M P P

bundle, that contains an Apache web server wi th P H P , a M y S Q L database server,

an F T P server and other components. This software allows you to easily install and

run all the necessary components in one step. Follow these steps:

1. O n the https : //www. apachef riends . org/download.html website, download

the version for the current OS. In the case of this thesis, L inux version 8.0.28.

2. After downloading, open the terminal, change the rights for this file and run

the program.

$ cd Downloads
$ chmod 755 xampp-linux-*-installer.run
$ sudo ./xampp-linux-*-installer.run

3. The installation file wi l l be started, continue wi th the Forward button, install

the " X A M P P Core Files" and the " X A M P P Developer Files", and continue the

installation by clicking Forward at the end Finish.

4. After the successful installation of X A M P P , run the following command:

$ sudo /opt/lampp/./manager-linux-x64.run
5. This wi l l open the graphical interface of X A M P P .

6. Under Manage Servers, click Apache Web Server and click the button on the

right Configure -> Open Conf File -> Yes.

7. A t lines 173 and 174, change user name and group from daemon to actual

user, for example, John (actual user is shown in the terminal command line in

front of "@" symbol, for example, johnOubuntu.
8. Save, close and start the localhost server using Start A l l button.

The second step wi l l be to update and install all necessary packages. Open the

terminal and add those commands:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt i n s t a l l python3
$ sudo apt i n s t a l l python3-pip
$ sudo pip i n s t a l l selenium
$ sudo apt i n s t a l l default-jdk
$ sudo apt-get i n s t a l l -y unzip xvfb libxi6 libgconf-2-4
$ sudo pip3 i n s t a l l requests
$ sudo apt-get i n s t a l l chromium-chromedriver

77

After completing the previous 2 steps, it is possible to add documents cre­

ated in this thesis, specifically to the /opt/lampp/htdocs folder. After inserting

the rewire_job_ads_analyser_server folder wi th all its contents, the algorithm

written in Java, the Web scraping in Python and the dictionaries are uploaded to

the server.

The next necessary step to make the web application work is the part that

secures the communication wi th the client. The principle of communication is shown

in the F ig . A . l .

1. Client is sending a P O S T request with a U R L parameter. U R L can look like

this: https://www.linkedin.com/jobs/view/9999999999/ (green arrow).

2. Backend Web Server prepares those data to acceptable format using web

scraper, dictionary search algorithm and P H P text (U R L) formatting (pur­

ple box).

3. Server is sending H T T P 200 O K response wi th text data formatted in J S O N

structure (shown in Lis t ing A . l) , that is ready to be displayed in the web

application (red arrow).

Preparation of data
from J S O N structure

into the form
displayed in the web

application

Fig . A . l : Principle of communication with web server

Lis t ing A . l : Structure of H T T P response data

" e r r o r " : f a l s e ,
"message": "ok",
"data": {

" a n a l y z e d _ r e s u l t s " : {...},
" j o b _ d e s c r i p t i o n " : {...},
"new_form_data": {

" t i t l e " => " C y b e r s e c u r i t y u s p e c i a l i s t " ,
"country" => " C z e c h i a " ,

78

https://www.linkedin.com/jobs/view/9999999999/

company" => "AAA",

}

}

}

In this thesis, the "Client" folder is dedicated to this, containing code written in

ReactJS language. W i t h i n this folder, running a web application in the localhost is

also possible. To run this task, it is necessary to download NodeJs version 14.17.5.

To install NodeJS version 14.17.5, follow these steps:

$ sudo apt i n s t a l l curl
$ curl -o- https://raw.githubusercontent.eom/nvm-sh/nvm/v0.39.l/
install.sh I bash
$ source /.bashrc
$ nvm i n s t a l l vl4.17.5
Verify the correct version is installed: $ node -v

After a successful installation, open the terminal in the opt/lampp/htdocs/client
folder and install the server using $ npm i n s t a l l command.

A n d that's the installation part done. The following command combination

should be sufficient to start the server.

Start X A M P P :

$ sudo /opt/lampp/./manager-linux-x64.run
In the opt/ lampp/htdocs/cl ient folder, launch the web application:

$ npm start
Useful commands:

When M y S Q L server is down and wont start do this:

$ sudo service mysql stop
$ sudo service mysql start

Python script isn't working in web app, there might be problem with permissions

use those commands:

$ sudo chown user:root opt/lampp/htdocs/rewire_job_ads_analyser_server/
sc_algorithm
$ sudo chown user:root opt/lampp/htdocs/rewire_job_ads_analyser_server/
sc_algorithm/main.py

A.2 Instructions For Work With Java Program

There are 2 folders in the appendencies. The first folder aho-corasick contains the

main code with the program and the second folder called KeywordGen contains the

79

https://raw.githubusercontent.eom/nvm-sh/nvm/v0.39.l/

subprogram for creating keywords. For these codes to work, you need to have J A V A

and M A V E N installed and have their paths set in System Path Variables. To make

aho-corasick work, you need to add 3 dependencies in the pom.xml file and then

load them using Maven.

<dependency >
<groupId>org.ahocorasick</groupId>
< a r t i f a c t I d > a h o c o r a s i c k < / a r t i f a c t I d >
<version>0.6.3</version>

</dependency >
<dependency >

<groupId>org.apache.poi</groupId>
< a r t i f a c t I d > p o i < / a r t i f a c t I d >
<version>5.2.2</version>

</dependency >
<dependency >

<groupId>org.apache.poi</groupId>
< a r t i f a c t I d > p o i - o o x m l < / a r t i f a c t I d >
<version>5.2.2</version>

</dependency >

Similarly, for KeywordGen you need to add 2 dependencies in the pom.xml file and

then load them using Maven.

<dependency >
<groupId>org.apache.poi</groupId>
< a r t i f a c t I d > p o i < / a r t i f a c t I d >
<version>5.2.2</version>

</dependency >
<dependency >

<groupId>org.apache.poi</groupId>
< a r t i f a c t I d > p o i - o o x m l < / a r t i f a c t I d >
<version>5.2.2</version>

</dependency >

80

B Content Of The Electronic Attachment
root directory of the attached archive

b c _ a h o c o r a s i c k main program w i t h sorting algori thm
s r c

— i n t e r v a l files al lowing mapping of keyword positions
- t r i e files al lowing to create trie, suffix and output links and matcher
. m a i n , j a v a the main file for starting the program

. g i t i g n o r e files that w i l l be ignored for upload to git
LICENSE.md the original license of the used program

— pom. xml configuration file
— README. md short description of the program

d i c t i o n a r y o n e l O O . x l s x dict ionary
d i c t i o n a r y o n e L o w . x l s x second dict ionary

KeywordGen subprogram for input creation
s r c
1— m a i n . j ava the main file for start ing the subprogram

— . g i t i g n o r e files that w i l l be ignored for upload to git
pom. xml configuration file
README.md short description of the subprogram
d i c t i o n a r y s h o r t . x l s x combination of 2 dictionaries

r e w i r e _ j o b _ a d s _ a n a l y z e r _ s e r v e r files placed on the server
a c _ a l g o r i t h m files needed for Java program
— a h o - c o r a s i c k . j a r executable jar file

. d i c t i o n a r y o n e l O O . x l s x input dict ionary

. d i c t i o n a r y o n e L o w . x l s x input dict ionary
s c _ a l g o r i t n m files needed for python program
— c h r o m e d r i v e r browser for opening by script
— m a i n . p y executable python file

— a n a l y z e J o b . php file that manages automation

81

