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Abstrakt: Hustotami rozděleńı pravděpodobnost́ı (angl. probability density fun-
ctions, PDFs) rozumı́me funkcionálńı data nesoućı relativńı informaci. Jejich
vlastnosti jako invariantnost na změnu měř́ıtka a relativńı měř́ıtko jsou zachy-
ceny pomoćı Bayesových prostor̊u měr; Bayesovy prostory tak představuj́ı zo-
becněńı Aitchisonovy geometrie pro kompozičńı data. Tyto prostory maj́ı struk-
turu Hilbertova prostoru, jehož počátek je dán referenčńı mı́rou, která může být
jednoduše změněna pomoćı známého řetězového pravidla. Algebraická struktura
Bayesových prostor̊u umožňuje PDFs vyjádřit jako reálné funkce ve standardńım
L2 prostoru vzhledem ke zvolené referenčńı mı́̌re použit́ım centrované logpod́ılové
(clr) transformace. Toto je kĺıčové pro možnost užit́ı metod funkcionálńı analýzy
dat (functional data analysis, FDA) pro statistické zpracováńı hustot, nebot’ tyto
metody jsou typicky navržené právě v prostorech L2. Protože výsledné trans-
formované PDFs maj́ı nulový integrál (vzhledem k dané referenčńı mı́̌re), jedná
se o prvky podprostoru L2, který je dále označen jako L2

0. Ćılem této disertačńı
práce je představit Bayesovy prostory jako prostory hustot na omezeném intervalu
s (i) Lebesgueovou a (ii) obecnou pravděpodobnostńı referenčńı mı́rou, a jejich
aplikace pro vybrané metody FDA. Podobně jako v FDA, vhodné statistické
předzpracováńı diskrétně pozorovaných PDFs je kĺıčové pro jejich následnou
analýzu. Nová metodika založená na principech Bayesových prostor̊u navrhuje
užit́ı (vyhlazovaćıch) splajn̊u nazvaných kompozičńı (vyhlazuj́ıćı) splajny. Je-
jich konstrukce je založena na vytvořeńı B-splajnového bázového systému př́ımo
v prostoru L2

0 vzhledem k Lebesgueově referenčńı mı́̌re. Následně mohou být
kompozičńı splajny implementovány do FDA metod pro statistické zpracováńı
PDFs, což je podrobně demonstrováno na př́ıpadu regresńı analýzy se závisle
proměnnou reprezentovanou PDFs. Disertačńı práce se věnuje i aspektu vážeńı
oboru hodnot hustot prostřednictv́ım referenčńı mı́ry. Vliv změny referenčńı mı́ry
na statistickou analýzu PDFs je demonstrován pomoćı funkcionálńı metody hlav-
ńıch komponent na souboru dat o př́ıjmech v Itálii. Pro jej́ı implementováńı, stejně
tak jako daľśıch metod FDA, je kĺıčové použit́ı nové clr transformace, která zob-
raźı Bayesovy prostory s obecnou referenčńı mı́rou do L2

0 prostor̊u s Lebesgueovou
referenčńı mı́rou.
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Introduction

Distributional data in their discrete form frequently occur in many real-world

surveys. For instance, frequencies of occurrence of observations from a continu-

ous random variable – aggregated according to a given partition of the domain

of observation – are typically represented by a histogram, which in turn appro-

ximates an underlying (continuous) probability density function (PDF). In gene-

ral, a PDF is a non-negative Borel measurable function constrained to integrate

to a constant, conventionally set to one. Several authors [9, 12, 42, 43] noted

that PDFs have a relative nature, in the sense that the meaningful information

is embedded in the relative contribution of the probability of any (Borel) subset

of the domain of the random variable generating the data to the overall pro-

bability, i.e. the measure of the whole set (so-called total). Changing the value

of the total by multiplying the PDF by a positive real constant results in a sca-

led density conveying the same relative information (which is known as the scale

invariance property). As a consequence, the actual total is in fact irrelevant for

the purpose of the analysis, as widely recognized in Bayesian statistics [19]. The

total used simply determines a representative of the equivalence class of propor-

tional density functions.

The relative nature of PDFs can be explained directly with an example:

the relative increase of a probability over a Borel set from 0.05 to 0.1 (2 mul-

tiple) differs from the increase 0.5 to 0.55 (1.1 multiple), although the absolute

differences are the same in both cases. This is known as the relative scale pro-

perty of PDFs. It motivates the use of the so-called logratio approach – a well-

established methodology for the analysis of compositional data. These are vectors

describing quantitatively the parts of some whole, and are frequently represented

as constrained data (e.g. proportions, percentages) carrying relative information

[1, 33]. PDFs can be then interpreted as the continuous counterparts of compositi-

ons, i.e., as compositions with infinitely many parts. This has recently motivated

the construction of the so-called Bayes Hilbert spaces, whose geometry results

from the generalization of the Aitchison geometry for compositional data [14]

to the infinite-dimensional case. While the pioneering work on Bayes spaces [12]

covers only the case assuming that densities are defined on a finite support, Van

den Boogaard et. al [43] extended this concept even for densities on possibly un-
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bounded support and introduced Bayes spaces in a more general setting, i.e. as

spaces of measures endowed with the Hilbert space structure. In general, Bayes

spaces can be defined only if a reference measure P has been set. In the pionee-

ring work, the reference measure was set by default to the Lebesgue (i.e. uniform)

reference measure, however, to deal with unbounded support, a non-uniform re-

ference measure P has to be considered as it shown in the latter work. Although

Bayes spaces allow to deal with both unbounded and bounded domains for the

PDFs, the latter case has been mainly considered so far in practice, and it will

be the main focus in this thesis.

Nowadays, we experience an increasing interest in the development of statis-

tical methods for the analysis of PDFs [4, 21, 22, 28, 30, 31, 34, 35, 37]. Although

functional data analysis (FDA) [36] may potentially provide a wide range of me-

thodological tools for this purpose, they are typically designed for data embedded

in the L2 space of square-integrable functions. As such, they can not be applied

directly to densities since the metric of L2 spaces does not account for their pecu-

liar properties (e.g., the aforementioned scale invariance and relative scale). The

key point in the analysis of PDFs is to map them from Bayes spaces to L2 spa-

ces where standard FDA methods (e.g., smoothing of functional data, clustering,

regression analysis, functional principal component analysis, etc.) can be applied.

The thesis aims to introduce the concept of Bayes space methodology which

turns out to be a relevant approach to statistical analysis of PDFs. Three par-

ticular novel approaches to statistical processing of PDFs will be presented such

as smoothing of PDFs [24], functional regression with the response variable re-

presented by PDF [41] and weighting in Bayes spaces with implications for di-

mensionality reduction of PDFs using simplicial functional principal component

analysis [40].

The first part of the thesis (Section 1) introduces Bayes spaces and, as a spe-

cial case, the Aitchison geometry for compositional data, both in the case of the

Lebesgue reference measure. The concept of these spaces will be considered in

a more general setting, that is as spaces of probability measures, discrete and

continuous, on a finite and bounded domain, respectively.

In Section 2, so-called centered logratio (clr) transformation is recalled. It

maps PDFs from Bayes spaces with the Lebesgue reference measure to L2 spaces
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with the same reference measure, so that PDFs can be processed statistically

in these L2 spaces instead of the original spaces while their relative nature is

still taken in account. Nevertheless, PDFs are represented through zero-integral

elements of L2 spaces. More precisely, they belong to L2
0 space that consists of

elements of the L2 space with zero-integral. This constraint cannot be neglected

in the statistical processing of clr transformed PDFs as well as in their prepro-

cessing. Accordingly, to estimate the underlying continuous density from (discre-

tized) distributional observations, the optimal smoothing splines using standard

B-spline basis functions from L2 spaces for clr transformed densities proposed by

Machalová et al. [23] will be recalled. Moreover, a novel approach which deals

with a new class of B-spline basis functions directly in L2
0 is proposed; it leads to

a definition of the so-called compositional B-spline basis system in Bayes spaces

[24]. The section contains also a construction of smoothing compositional splines

and possible orthonormalization of the compositional spline basis which might be

useful in some applications.

The resulting spline representation is used for regression analysis in the pre-

sence of a distributional response, and it is discussed in Section 3. The key point

of the proposed approach is to consider PDFs as elements of a Bayes space with

the Lebesgue reference measure, and accordingly to deal with them by respecting

the geometry of this space. The clr transformation is used to map the regres-

sion model from Bayes spaces to L2 spaces which then ease the computations.

A B-spline representation of clr transformed data is employed to express discre-

tely observed PDFs as smooth functions. On these bases, effective computational

procedures are proposed to perform the estimations and assess their uncertainty

using bootstrap methods.

A statistical tool for weighting of a (bounded) domain of PDFs is proposed

in Section 4. It is shown that a weighting scheme can be embedded into the Bayes

spaces by setting up a non-uniform reference measure P. In this section, Bayes

spaces are built upon the reference measure P on a bounded domain and their

properties are discussed in detail. The clear guidelines for the use of non-uniform

reference measures are given, and the consequences of changing the reference

measure from uniform to non-uniform one are explored. A particular interest

is devoted to the clr transformation for a general reference measure P, and to

a novel unweighting clr transformation which maps Bayes spaces with the general
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reference measure P into L2 spaces with the Lebesgue reference measure, so that

it allows an adaptation of FDA methods to the Bayes space setting when the

weighting of the domain of PDFs is considered.

In the final Section 5, the effect of the weighting on a statistical analysis

of PDFs is demonstrated in the context of weighted simplicial functional prin-

cipal component analysis (wSFPCA), which extends this statistical method de-

signed originally for distributional data in case of the Lebesgue reference [21] to

this more general setting. Its implementation is based on the mapping of the

wSFPCA model into L2 spaces with the Lebesgue reference measure via the pro-

posed unweighting clr transformation.

This dissertation thesis is based on the following papers that were pub-

lished, accepted or submitted during my Ph.D. study:

• M. Hošek, J. Pacina, J. Štojdl, O. Bábek, J. Sedláček, K. Hron, R. Talská,

S. Kř́ıženecká, J. Fikarová, T. Matys Grygar, Change in geochemistry of

fluvial sediments after dam construction (the Chrudimka River, the Czech

Republic). Applied Geochemistry, 98:94-108, 2018.

• J. Machalová, R. Talská, K. Hron, A. Gába, Compositional splines for

representation of density functions (under review).

• R. Talská, A. Menafoglio, J. Machalová, K. Hron, E. Fǐserová, Compositi-

onal regression with functional response. Computational Statistics and Data

Analysis, 123:66-85, 2018.

• R. Talská,, A. Menafoglio, K. Hron, J. J. Egozcue, J. Palarea-Albaladejo,

Weighting the domain of probability densities in functional data analysis

(Stat, accepted for publication).
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1 Bayes spaces

Bayes spaces represent an algebraic-geometric structure of equivalence classes

of proportional σ-finite measures, including probability measures. An arbitrary

σ-finite measure P can be selected as the origin of the space. Once such a measure

is stated, all measures can be identified with density functions with respect to the

measure P, resulting from considering densities as Radon-Nikodym derivatives.

Accordingly, P is referred to as the reference measure. Although the framework

of Bayes spaces of general measures (i.e. finite and infinite measures, with boun-

ded or unbounded support) has been introduced by [43], its construction for the

unbounded supports raises further issues – both methodological and practical –

which are still open. For this reason, in the following we restrict our attention to

measures on a bounded domain Ω = [a, b] ⊂ R, which was demonstrated to be

of broad applicability by several authors [7, 21, 29, 30, 31, 41, 40]. For restricted

domain Ω, both discrete and continuous probability measures can be considered.

In this setting, the reference measure is set by default to a uniform measure, i.e.

to the counting measure (discrete case) and the Lebesgue measure (continuous

case). The choice of the reference measure other than the standard uniform one

induces weighting effects on the domain of measures as we will see in Section 4.

Accordingly, Bayes spaces with the uniform reference measures are referred to as

unweighted Bayes spaces and those with the non-uniform reference measures to

as weighted Bayes spaces. The section aims to summarize the basics of the Bayes

space methodology and to familiarize the reader with its Hilbert space structure,

mainly in the case of the Lebesgue reference measure.

1.1 Unweighted Bayes spaces: sample space

We assume that the distribution of a continuous random variable is cha-

racterized by a σ-finite positive measure µ on a measurable space (Ω,A) with

a reference measure P, Ω = [a, b] ⊂ R and A being Borel σ-algebra B([a, b]).

In this setting, the reference measure P can be set to the Lebesgue measure λ,

restricted here to a bounded support. The reference density is then the reference

measure with respect to itself, i.e. dλ/dλ = 1 on Ω. Given two measures µ and ν

with λ-densities f = dµ/dλ and g = dµ/dλ, we say that two measures (densities)
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are B(λ)-equivalent, denoted by ν =B(λ) µ (f =B(λ) g), if they are proportional.

That is, in terms of measures, if there exists a positive real constant c such that,

for any subset B ∈ B([a, b]), µ(B) = c · ν(B). If µ(Ω) = 1 (i.e., µ is a probabi-

lity measure), we single out a particular representative within a B(λ)-equivalence

class of proportional measures (densities) which provides the same relative infor-

mation. Indeed, this is typically quantified through the (log-)ratios µ(B1)/µ(B2),

with B1, B2 in B([a, b]) (equivalently in terms of densities, i.e, f(t1)/f(t2), with

t1, t2 in Ω = [a, b]), which are clearly invariant within the B(λ)-equivalence class

(i.e. scale invariance is followed). Within the concept of Bayes spaces, the only

relevant information embedded into measures (densities) itself is the relative one.

This motivated the use of the log-ratio approach, already known from (multiva-

riate) compositional data analysis, to deal with density functions.

For a fixed reference measure P = λ, Bayes space B2(λ) is a space of

B(λ)-equivalence classes of σ-finite positive measures on Ω = [a, b] with square-

integrable log-density with respect to reference measure λ:

B2(λ) =

{
µ ∈ B2(λ) :

∫ ∣∣∣∣ln dµdλ
∣∣∣∣2 d λ < +∞

}
, (1)

where measures are identified with the corresponding Radon-Nikodym densities;

or, equivalently, we can say that B2(λ) consists of B(λ)-equivalence classes of

proportional density functions f = dµ
dλ

on Ω = [a, b] whose logarithm is square-

integrable w.r.t. λ. We note that B(λ) is a space for measures as well as for

densities since in both cases they are elements of this space. Nevertheless, whether

B(λ) is interpreted as space of densities or measures should be obvious from the

context.

In case of discrete random variables, σ-finite positive measure µ is conside-

red on measurable space Ω = {t1, . . . , tD} which consists of D possible values

(categories) of the variable, and the reference measure P is set to a counting me-

asure Pc on Ω. The reference density is again the measure with respect to itself,

pc = dPc/dPc = 1 on Ω. The reference measure Pc assigns to each subset B of Ω

number of elements of Ω contained in B. For instance, Pc({ti}) = 1 and measure

of whole Ω is D, i.e. Pc(Ω) =
∑D

i=1 P
c({ti}) = D. The measure µ assigns volume

12



xi to each ti from Ω, which identifies its density (i.e. probability function). The

density f = dµ/dPc, i.e.,

f(t) = (f(t1), . . . , f(tD))′ = (x1, . . . , xD)′ = x,

can be viewed as D-part compositional vector (or composition for short) with

strictly positive parts carrying relative information. That is, ratios between parts

of a composition capture the relevant information and log-ratio approach should

be applied for their statistical analysis. Bayes space B2(Pc) is now D − 1 di-

mensional Euclidean space known as the Aitchison geometry. The sample space

of compositional data consists of equivalence classes of proportional vectors (com-

positions) x with D parts summing up to a positive constant. If µ(Ω) = 1, the

proportional representation of the respective equivalence class is obtained, being

element of the unit simplex SD, defined as

SD =

{
x = (x1, . . . , xD)′ ∈ SD : xi > 0, i = 1, . . . , D;

D∑
i=1

xi = 1

}
. (2)

1.2 Hilbert structure of unweighted Bayes spaces

In this section, we focus on the Hilbert space geometry of unweighted Bayes

spaces B2(λ). The basic operations named perturbation (⊕) and powering (�)

represent addition and multiplication in B2(λ). Moreover, the first of them can

be interpreted as Bayes updating which gave the name to these spaces. The

operations are defined as follows,

(µ⊕ ν)(B) =B(λ)

∫
B

dµ

dλ
· dν
dλ

dλ, B ∈ B, (3)

and

(α� µ)(B) =B(λ)

∫
B

(
dµ

dλ

)α
dλ, B ∈ B; (4)

where µ and ν are measures in B2(λ) and α is a real number. The operations (3)

and (4) can be equivalently expressed using densities. That is, for f = dµ
dλ

and

g = dν
dλ

we have that

(f ⊕ g)(t) =B(λ) f(t) · g(t) and (α� f)(t) =B(λ) f(t)α, t ∈ Ω. (5)

13



(a) Perturbation (b) Powering

Figure 1: Comparison of basic operations in B2(λ) and L2(λ). In panel (a), f ⊕ g
indicates perturbation (grey line) and f + g addition of two densities f and g
(grey dotted line). In panel (b), α � f indicates powering (grey line) and α · f
multiplication of density f by real constant α (grey dotted line) with α = 3.

In [12], it is proven that B2(λ) equipped with the operations (⊕,�) is a vec-

tor space. Note that the neutral elements of perturbation and powering are

e(t) = 1
λ(Ω)

= 1
b−a (i.e., the uniform density), and 1, respectively. The operation

subtraction (	) between two densities f, g is obtained as perturbation of f with

reciprocal of g,

(f 	 g)(t) =B(λ) f(t)⊕ [(−1)� g(t)] t ∈ Ω. (6)

This operation is identified as the Radon–Nikodym derivative of µ with respect

to ν, that is dµ
dλ
·
(
dν
dλ

)−1
= dµ

dν
. The results of operations (3), (4) and (6) are

densities again, possibly rescaled to unit integral constraint using the closure

operation C(f) = f∫
Ω fdλ

. Nevertheless, any other representatives of equivalence

classes could be considered as well.

Figure 1 illustrates the effects of perturbation and powering compared to

the standard operations of sum and product by a constant in L2(λ). We recall

that the representatives of the equivalence classes of B2(λ) are densities which

integrate to unity. The perturbation of a density f by a density g (f ⊕ g) and the

addition of f and g (f + g) is represented in Figure 1a. We see that summation

operation according to the geometrical structure of L2(λ) is not a probability

density function, and therefore it is not appropriate as an operation in B2(λ),

whereas the perturbation operation results in a probability density function. The
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argument that supports this is that f and g are in fact (truncated) log-normal

densities and as such, they belong to the exponential family which is closed with

respect to the perturbation operation. More precisely, an exponential family is

a finite dimensional affine subspace of the Bayes space B2(λ) on Ω [42]. The

density f is updated by the information contained in the density g (i.e. Baye-

sian updating of the information), so that the resulting density f ⊕ g is more

concentrated and shifted towards g.

The second operation, powering of the density f by α (α� f) and multipli-

cation of f by α (α · f) with α = 3 is displayed in Figure 1b. Firstly, notice that

the multiplication in sense of the L2 geometry leads to a scaled f – function,

which is not probability density function – and as an operation in B2(λ), it only

changes the representative within the equivalence class. Accordingly, α · f as the

multiplication operation in B2(λ) does not make any sense in this setting. In-

stead, α � f results in a density which is more concentrated, thus having lower

variability: f is updated by f itself and subsequently density f ·f is updated by f

again. That is, it can be similarly linked to Bayesian updating of the information

as in the previous case.

Finally, to endow B2(λ) with the Hilbert space structure, an inner product

is required. Egozcue et al. [12] defined it for the Lebesgue reference measure on

Ω = [a, b] and van den Boogaard et al. [43] extended the definition to any finite

reference measure. Accordingly, the Bayes inner product on B2(λ) can be defined

[40] as

〈f, g〉B(λ) =
1

2λ(Ω)

∫
Ω

∫
Ω

ln
f(t)

f(u)
ln
g(t)

g(u)
dλ(t)dλ(u), t, u ∈ Ω, (7)

where λ(Ω) = b− a, and the corresponding norm and distance as

‖f‖B(λ) =
√
〈f, f〉B(λ) and dB(λ)(f, g) = ‖f 	 g‖B(λ) . (8)

In the discrete setting, P is set to counting measure Pc and the basic ope-

rations (3) and (4) read

f ⊕ g =B(Pc) (f(t1)g(t1), . . . , f(tD)g(tD))′ (9)
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and

α� f =B(Pc) (f(t1)α, . . . , f(tD)α)′ ; (10)

where f and g are compositions from SD and α is a real number. The output

of the operations (9) and (10) is a composition, possibly closed to unit sum via

closure operation, acting on the composition f as C(f) = f∑D
i=1 f(ti)

. The inner

product (7) reduces to

〈f, g〉B(Pc) =
1

2Pc(Ω)

D∑
i=1

D∑
j=1

ln
f(ti)

f(tj)
· ln g(ui)

g(uj)
, (11)

where Pc(Ω) = D, and the corresponding norm and distance to

‖f‖B(Pc) =
√
〈f, f〉B(Pc) and dB(Pc)(f, g) = ‖f 	 g‖B(Pc) . (12)

Although van den Boogaart et al. [43] has shown that the geometry on the sim-

plex SD is a particular case of Bayes spaces with the reference measure Pc,

the algebraic-geometric structure on SD was initially proposed simultaneously

already in [3] and [32], and it is commonly known as a Aitchison geometry.

16



2 First steps for a statistical analysis in unweigh-

ted Bayes spaces

As a first step of any data analysis, one needs to think about the sample

space for data embedding. Whereas the natural choice in the case of multivariate

observations is the Euclidean real space, Hilbert spaces are mostly employed for

functional data due to their geometric structure which allows an easier extension

of multivariate methods. In fact, the Hilbert space generalizes the concept of the

Euclidean space to spaces of any (even infinite) dimension. For instance, statis-

tical methods provided by the FDA are mostly developed under the assumption

that the data belongs to the Hilbert space L2(λ) of squared-integrable functions

with the reference measure defaulty set to the Lebesgue measure λ. Although

discrete density functions can be viewed as multivariate observations and conti-

nuous density functions as functional data, they both share the property of scale

invariance and relative scale which are not honored either by standard multivari-

ate methods nor by the FDA. Nevertheless, as long as the data are embedded in

a separable Hilbert space [12], an isometric mapping can be found which enables

to express elements of Bayes spaces as real vectors of the Euclidean space or real

functions of the L2(λ) space, respectively. In fact, all Hilbert spaces are isometric

to each other [44]. Subsequently, standard statistical analysis can be performed

via multivariate analysis or FDA, respectively, while accounting for the Bayes

space geometry. Such mapping can be provided by centered logratio (clr) trans-

formation and will be introduced and demonstrated in this section, mainly for

the continuous case. Moreover, this transformation is the key to propose smo-

othing splines designed for clr transformed density functions which will also be

introduced in this section.

2.1 Centered logratio transformation

Let us first focus on the continuous case, i.e. P = λ. The clr mapping repre-

sents an isometric isomorphism (i.e. a bijective map preserving distances) between

B2(λ) and L2(λ) spaces and it is defined in [43] for f ∈ B2(λ) as

f c(t) = clrλ(f)(t) = ln f(t)− 1

λ(Ω)

∫
Ω

ln f(u) dλ(u), t ∈ Ω. (13)
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Apparently, the clr representation allows to use the ordinary geometry of L2(λ)

to conduct operations of perturbation (3), powering (4) and inner product (7) for

the elements of B2(λ), while accounting for the specific features captured by the

Bayes space. Indeed,

clrλ(f ⊕ g) = clrλ(f)(t) + clrλ(g)(t), clrλ(α� f)(t) = α · clrλ(f)(t) (14)

and

〈f, g〉B2(λ) = 〈clrλ(f), clrλ(g)〉L2(λ) =

∫
Ω

clrλ(f)(t) · clrλ(g)(t)dλ(t), (15)

where 〈·, ·〉L2(λ) denotes the inner product in L2(λ). However, due to the con-

struction, the clr transformed densities are characterized by zero-integral con-

straint (w.r.t. λ),∫
Ω

clrλ(f)(t) dλ(t) =

∫
Ω

ln f(t) dλ(t)−
∫

Ω

1

λ(Ω)

∫
Ω

ln f(u) dλ(u) dλ(t) = 0, (16)

which needs to be taken into account when analyzing clr transformed densities.

As the clr space is clearly a subspace of L2(λ), hereafter it is denoted as L2
0(λ).

Note that clr transformation represents one-to-one mapping, so it is possible to

map densities in L2
0(λ) back to B2(λ) by using exponential transformation, i.e.

exp [f c] (t) = exp [clrλ(f)] (t). The resulting back-transformed density f can be

closed to the unit integral due to the scale invariance feature.

In the discrete case (P = Pc), the clr transformation (13) reads

f c(t) = clrPc(f)(t) = ln f(t)− 1

Pc(Ω)

D∑
i=1

ln f(ui) = ln f − ln(f(u1) · . . . · f(uD))
1
D

=

(
ln

f(t1)

gm(f)
, . . . , ln

f(tD)

gm(f)

)′
(17)

where gm(f) =
(∏D

i=1 f(ui)
) 1
D

stands for the geometric mean of D components

and t, u ∈ Ω. The discrete version of the clr transformation was initially proposed

by [1] and from the geometric point of view it corresponds to coefficients with
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respect to a generating system on simplex. Similarly, it translate basic operations

and metrics of the B(Pc) into the usual operations and metrics of a standard

Euclidean space. That is,

clrPc(f ⊕ g) = clrPc(f) + clrPc(g), clrPc(α� f) = α · clrPc(f)

and

〈f, g〉B2(Pc) = 〈clrPc(f), clrPc(g)〉2 , (18)

with 〈·, ·〉2 denoting inner product of a standard Euclidean space. Note that sum

of clr coefficients is zero, making the transformation (17) of limited use in many

statistical methods. The way out is to express a composition f via orthonormal

coordinates called balances [14], i.e. as Fourier coefficients of a basis in B(Pc).

The inverse mapping to the clr transformation to B(Pc) is obtained by using the

exponential, exp [f c] = exp [clrPc(f)], possibly closed to the unit sum of parts of

the resulting composition.

2.1.1 Effect of clr transformation

In order to examine the effects of the clr transformation (13), we simulate

densities from the exponential family, namely log-normal family of distributions.

We consider a set of (truncated) log-normal densities with the mean µ = 1.25

and standard deviations σj = 0.3+0.005 · (j−1) for j = 1, . . . , 50, on the interval

Ω = [1, 10]. Their representation with respect to the Lebesgue measure,

fλ(t;σj) =B(λ)
1

t · σj
exp

{
−(ln t− 1.25)2

2σ2
j

}
, t ∈ Ω, (19)

is displayed on colored scale (Figure 2a) together with their clr transforms (Figure

2b), obtained as

f cλ(t;σj) = − ln2 t

2σ2
j

+

(
−1 +

1.25

σ2
j

)(
ln t− 10

9
· ln 10 + 9

)
+

1

σ2
j

(
1 +

5

9
· ln2 10− 9

10
ln 10

)
, t ∈ Ω.

(20)

Since densities are functions characterized by their relative nature and this fe-

ature is followed by Bayes spaces, the main variability in data set is present on
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(c) Covariance function in L2(λ).
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(d) Covariance function in B2(λ).

Figure 2: Log-normal density functions w.r.t. the Lebesgue measure with para-
meters µ = 1.25 and σj = 0.3 + 0.005 · (j − 1) for j = 1, . . . , 9, Ω = [1, 10].

boundaries of the domain Ω, being more dominant in its left-hand side (see Figure

2a). It corresponds to the fact, that densities have larger relative differences in

their values here. This is well reflected by clr transformation in Figure 2b where

the variability is driven by absolute differences among curves. Note that densities

are mapped into L2
0(λ) via clr transformation, so that they can be interpreted in

agreement with the L2 space geometry considered therein. On the other hand, if

L2(λ) is chosen for processing of the original densities (Figure 2a), their relative

nature is completely ignored since the variability is exhibited for parts of the do-

main with higher absolute values of the curves. This is apparent when comparing

the covariance functions estimated in L2(λ) and in B2(λ) spaces (Figure 2c and

2d, respectively).
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2.2 Smoothing of density functions

As demonstrated in the previous section, as the first step of any data ana-

lysis, the sample space for the embedding data needs to be chosen correctly to

avoid misleading results which would not reflect the actual properties of data.

Since functional data rarely occur in practice in their continuous form, the se-

cond step in FDA is related to the estimation of the underlying N functions

f1, . . . , fN from discretized data (tij, yij), i = 1, . . . , N, j = 1, . . . , ni, where yij is

observation of fi at tij. In case of density functions, they are discretely sampled in

terms of histogram data. That is, for each density fi(t), t ∈ Ω, i = 1, . . . , N , one

usually observes a positive real vector Wi = (Wi1, . . . ,WiDi)
′, whose components

correspond to the (absolute or relative) frequencies of Di classes in which the

interval Ω is partitioned. Accordingly, the raw density data yij correspond to in-

terval midpoints tij of Di classes obtained by dividing (not necessary normalized)

components of Wi by the length of the respective classes. Note that data yi =

(yi1, . . . , yiDi)
′ , i = 1, . . . , N can be interpreted as discretized density functions,

that is, as compositions. Since it is convenient to perform preprocessing of density

functions in clr space L2
0, discrete clr transformation (17) is employed to express

compositional vectors yi, i = 1, . . . , N in a standard Euclidean space; this yields

clr transformed data denoted as zi = (zi1, . . . , ziDi)
′ , i = 1, . . . , N . Consequently,

the aim is to estimate (approximate) the underlying continuous clr density functi-

ons clrλ(fi), i = 1, . . . , N from raw given data (tij, zij), i = 1, . . . , N, j = 1, . . . , Di.

Spline functions are extensively used in FDA for an approximation of non-

periodical functions as they are flexible enough to cover a wide range of their

specific behavior, hence they are also a natural choice for density functions.

A first attempt of constructing a spline representation adapted for clr trans-

formed density functions was proposed in [23]. The problem is that B-splines

that form the basis system for the spline expansion come from L2, but not from

L2
0. Therefore, an important step ahead is made by constructing a B-spline basis

directly in the clr space L2
0. As a direct consequence, the B-splines can be expres-

sed directly in Bayes spaces leading to spline representation of density functions

in the original space; hereafter we refer to compositional splines. Apart from me-

thodological advantages, using compositional splines simplifies the construction
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and interpretation of spline coefficients that can be considered as coefficients of

a basis in Bayes spaces. Moreover, using splines for the representation of density

functions turned out to be the most appropriate approximative tool as the asso-

ciated basis coefficients can be directly used for further statistical analysis, i.e.,

for instance in functional regression as we will see in Section 3. Additionally, we

note that unlike to former approach (Approach I) which aims to develop splines

honoring the zero integral constraint using the standard B-spline basis, the later

one (Approach II) enables to implement the methods of FDA directly in Bayes

spaces.

Both methods are detailed in the following, and it is assumed that a single

density function clrλ(f) is being approximated.

2.2.1 Approach I

First, we recall some basics related to spline theory. To set the notation, call

values

∆λ := {λ0 = a < λ1 < . . . < λg < b = λg+1} (21)

a given sequence of knots, and denote by S∆λ
k [a, b] the vector space of polynomial

splines of degree k > 0, defined on Ω = [a, b] given the knots ∆λ. It is known that

dim(S∆λ
k [a, b]) = g+k+1. For the construction of all basis functions of S∆λ

k [a, b], it

is necessary to consider some additional knots. Without loss of generality, we here

assume that those additional knots are at the boundary, i.e.,

λ−k = · · · = λ−1 = λ0, λg+1 = λg+2 = · · · = λg+k+1. (22)

Then every spline sk(t) ∈ S∆λ
k [a, b] in the L2 space has a unique representation

as (see [6], [8] for details)

sk (t) =

g∑
i=−k

biB
k+1
i (t) , (23)

where the vector b = (b−k, . . . , bg)
′ is the vector of B-spline basis coefficients of

sk (t) and functions Bk+1
i (t), i = −k, . . . , g are B-spline functions of the same

degree k as spline function sk (t) forming basis in S∆λ
k [a, b]. They are defined for
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k = 0 (order 1) by

B1
i (t) =

{
1 if t ∈ [λi, λi+1)
0 otherwise.

and for k, k ∈ N, k ≥ 1, (order k + 1) by

Bk+1
i (t) =

t− λi
λi+k − λi

Bk
i (t) +

λi+k+1 − t
λi+k+1 − λi+1

Bk
i+1(t).

In [23], the optimal smoothing problem was represented as a trade-off between

smoothing and the least squares approximation. Assume that data (tj, zj), a ≤
tj ≤ b, the weights wsj ≥ 0, j = 1, . . . , D, D ≥ g+ 1 and the parameter α ∈ (0, 1)

are given. For an arbitrary l ∈ {1, . . . , k − 1} our aim is to find a smoothing

spline sk(t) ∈ S∆λ
k [a, b], which minimizes the functional

Jl(sk) = α
D∑
j=1

wj [zj − sk(tj)]2 + (1− α)

∫ b

a

[
s

(l)
k (t)

]2

dt, (24)

and fulfills the condition
b∫

a

sk(t) dt = 0, (25)

resulting from the clr transformation. The minimization problem (24) represents

a compromise between staying close to the given data and obtaining a smooth

function. The smoothness of the resulting approximation is affected by the smo-

othing parameters α and l, where l stands for lth derivative. Similarly, one can

minimize the following functional with respect to condition (25) for some positive

parameter α, i.e.

Jl(sk) =
D∑
j=1

wj [zj − sk(tj)]2 + α

∫ b

a

[
s

(l)
k (t)

]2

dt (26)

For the sake of brevity, we will focus on the minimization of the functional (26).

It was proven that the optimal smoothing spline for this task is the spline s∗k(t),

given by formula

s∗k (t) =

g∑
i=−k

b∗iB
k+1
i (t) , (27)
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with B-spline coefficients b∗ = (b∗−k, . . . , b
∗
g)
′ obtained as (see [23] for details)

b∗ = Vz (28)

with

V := DK
[
α (DK)′NklDK + (Bk+1(t)DK)′WsBk+1(t)DK

]+
K′DB′k+1(x)Ws.

(29)

Here A+ denotes the Moore-Penrose pseudoinverse of a matrix A, Ws = diag(ws),

ws = (ws1, . . . , w
s
D)′, t = (t1, . . . , tD)′, z = (z1, . . . , zD)′,

Bk+1(t) =

 Bk+1
−k (t1) . . . Bk+1

g (t1)
...

. . .
...

Bk+1
−k (tD) . . . Bk+1

g (tD)

 ∈ RD,g+k+1 (30)

is the collocation matrix,

D = (k + 1) diag

(
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

)
∈ Rg+k+1,g+k+1 (31)

and

K =


1 0 0 · · · −1
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1

 ∈ Rg+k+1,g+k+1.

The matrix Nkl = S′lMklSl is positive semidefinite, with

Mkl =


〈
Bk+1−l
−k+l , B

k+1−l
−k+l

〉
L2(λ)

. . .
〈
Bk+1−l
g , Bk+1−l

−k+l

〉
L2(λ)

...
...〈

Bk+1−l
−k+l , B

k+1−l
g

〉
L2(λ)

. . .
〈
Bk+1−l
g , Bk+1−l

g

〉
L2(λ)

 ∈ Rg+k+1−l,g+k+1−l,

(32)

where

〈
Bk+1−l
i , Bk+1−l

j

〉
L2(λ)

=

b∫
a

Bk+1−l
i (t)Bk+1−l

j (t) dt

stands for scalar product of B-splines in L2(λ) space. The matrix Sl is an upper

triangular matrix such that

Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1, (33)
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and Dj′ ∈ Rg+k+1−j,g+k+1−j′ is a diagonal matrix such that

Dj′ = (k + 1− j′) diag (d−k+j′ , . . . , dg)

with

di =
1

λi+k+1−j′ − λi
∀i = −k + j′, . . . , g

and

Lj′ :=

(−1 1
. . . . . .
−1 1

)
∈ Rg+k+1−j′,g+k+2−j′ .

As an element of innovation, we aim to find the necessary and sufficient

condition for the vector b = (b−k, . . . , bg)
′ to be the vector of B-spline coefficients

for spline with zero integral. The following Theorem 2.1 characterizes all the

splines with zero integral (not necessarily a smoothing spline) using a standard

B-spline basis system through a necessary and sufficient condition on b.

Theorem 2.1 For a spline sk(t) ∈ S∆λ
k [a, b], sk (t) =

g∑
i=−k

biB
k+1
i (t), the condi-

tion
b∫
a

sk(t) dt = 0 is fulfilled if and only if
g∑

i=−k
bi (λi+k+1 − λi) = 0.

The proof of Theorem 2.1 is provided in Appendix A. It is easy to see that

vector b is orthogonal to the vector (λ1−λ−k, . . . , λg+k+1−λg)′, that only depends

on the knot positions. The following algorithm describes the computation of co-

efficients of any B-spline representation that fulfills the zero integral constraint.

Algorithm for finding a spline with zero integral

To find an arbitrary spline sk(t) ∈ S∆λ
k [a, b] with zero integral

1. Choose g + k arbitrary B-spline coefficients bi ∈ R, i = −k . . . , j − 1, j +

1, . . . , g,

2. Compute

bj =
−1

λj+k+1 − λj

g∑
i=−k
i 6=j

bi (λi+k+1 − λi) .
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It can be easily checked that for these B-spline coefficients the condition

g∑
i=−k

bi (λi+k+1 − λi) = 0 (34)

is fulfilled, and, with respect to Theorem 2.1, the spline sk (t) =
g∑

i=−k
biB

k+1
i (t)

satisfies condition
b∫
a

sk(t) dt = 0.

Example 2.1 We consider cubic spline, that is k = 3, and knots λ0 = 0 = a <

2 < 5 < 9 < 14 < 20 = b = λ5. It is obvious that g = 4. Additional knots are

λ−3 = λ−2 = λ−1 = λ0 = 0, 20 = λ5 = λ6 = λ7 = λ8.

We set g + k = 7 B-spline coefficients, for instance

b−3 = −4, b−2 = −4, b−1 = −3, b0 = −3, b1 = −2, b2 = −1, b4 = −2

Then we compute

b3 =
−1

λ7 − λ3

4∑
i=−3
i 6=3

bi (λi+4 − λi) = 10.4

The spline with zero integral on interval [0, 20] is given by formula

s3 (t) =
4∑

i=−3

biB
4
i (t)

where b = (−4,−4,−3,−3,−2, 10.4,−1,−2)′ and B4
i (t), i = −3, . . . , 4 are B-

spline basis functions, see Figure 3.

The resulting smoothing spline can be back-transformed into B2(λ) using

an exponential to see the approximation of the underlying density function in

the original space. Nevertheless, we already mentioned that this methodology

uses the standard B-spline system that belongs to L2(λ), not to L2
0(λ). The next

subsection introduces so-called compositional spline functions which honor the

zero integral constraint in L2
0(λ) for both the B-spline basis functions and the

resulting spline function.
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Figure 3: Cubic spline function s3(t) with zero integral in S∆λ
3 [0, 20] (left) and

B-spline basis system of S∆λ
3 [0, 20] (right). Vertical dashed gray lines indicate

knot positions.

2.2.2 Approach II

Let the sequence of knots (21) is given. We define the functions Zk+1
i (t) for

k ≥ 0, k ∈ N, which are the first derivatives of the B-splines Bk+2
i (t) for k ≥ 0,

k ∈ N, as

Zk+1
i (t) :=

d

dt
Bk+2
i (t), (35)

i.e., more precisely for k = 0

Z1
i (x) =

{
1 if x ∈ [λi, λi+1)
−1 if x ∈ (λi+1, λi+2]

and for k ≥ 1

Zk+1
i (t) = (k + 1)

(
Bk+1
i (t)

λi+k+1 − λi
−

Bk+1
i+1 (t)

λi+k+2 − λi+1

)
. (36)

The functions Zk+1
i (t) have similar properties as B-spline functions Bk+1

i (t). They

are piecewise polynomials of degree k on local support for k ≥ 1,

supp Zk+1
i (t) = supp Bk+2

i (t) = [λi, λi+k+2],

with continuous derivatives up to order k − 1. From the perspective of L2
0 space,

a crucial point is that the integral of Zk+1
i (t) equals to zero. If we consider Curry-

Schoenberg B-spline Mk+1
i (t) [6], which are defined as

Mk+1
i (t) :=

k + 1

λi+k+1 − λi
Bk+1
i (t)
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with property ∫
R

Mk+1
i (t) dt = 1,

than it is clear that

Zk+1
i (t) = Mk+1

i (x)−Mk+1
i+1 (t) (37)

and ∫
R

Zk+1
i (t) dt = 0.

In Figure 4, an instance of piecewise linear, quadratic and cubic polynomials

Zk+1
i (t) is plotted; it visually confirms that zero-integral condition of these functi-

ons is fulfilled.

Now, regarding the definition (35), we are able to use spline functions Zk+1
i (t)

which have zero integral on Ω (denoted as ZB-splines in the sequel). In the

following, Z∆λ
k [a, b] denotes the vector space of polynomial splines of degree k > 0,

defined on a finite interval Ω = [a, b] with the sequence of knots ∆λ given in (21)

and having zero integral on [a, b], it means

Z∆λ
k [a, b] :=

sk(t) ∈ S∆λ
k [a, b] :

∫
I

sk(t) dt = 0

 . (38)

Theorem 2.2 The dimension of the vector space Z∆λ
k [a, b] defined by the formula

(38) is g + k.

Proof. For spline sk(t) ∈ S∆λ
k [a, b], sk (t) =

g∑
i=−k

biB
k+1
i (t) with the coincident

additional knots it is known [8] that

∫
Ω

sk(t) dt =
1

k + 1

g∑
i=−k

bi(λi+k+1 − λi).
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(a) Linear B-spline Z2
i (t) =

d

dt
B3
i (t) with equidistant knots 0, 1, 2, 3.
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(b) Quadratic B-spline Z3
i (t) =

d

dt
B4
i (t) with nonequidistant knots 0, 1, 10, 30, 50.
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(c) Cubic B-spline Z4
i (t) =

d

dt
B5
i (t) with equidistant knots 0, 1, 2, 3, 4, 5.

Figure 4: Example of piecewise polynomial functions Zk+1
i (t) := d

dt
Bk+2
i (t) with

k ∈ {1, 2, 3}. Vertical dashed gray lines indicate knot positions.

It means that B-spline coefficients of sk(t) ∈ Z∆λ
k [a, b] ⊂ S∆λ

k [a, b] satisfy con-

dition 0 =
g∑

i=−k
bi(λi+k+1 − λi) = Ab with A = (λ1 − λ−k, · · · , λg+k+1 − λg),
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b = (b−k, · · · , bg)′. And it is obvious that codim(Z∆λ
k [a, b]) = 1, thus

dim(Z∆λ
k [a, b]) = dim(S∆λ

k [a, b])− codim(Z∆λ
k [a, b]) = g + k.

2

Theorem 2.3 For the coincident additional knots (22), the functions Zk+1
−k (t),

· · · , Zk+1
g−1 (t) form a basis for the space Z∆λ

k [a, b].

Proof. Since Mk+1
i (t) form a basis for the spline space S∆λ

k [a, b] and Zk+1
i (t) =

Mk+1
i (t) −Mk+1

i+1 (t), the functions Zk+1
i (t), i = −k, . . . , g − 1, are linearly inde-

pendent and are elements of Z∆λ
k [a, b] with dim(Z∆λ

k [a, b]) = g + k. Therefore

Zk+1
i (t), i = −k, . . . , g − 1, form a basis in Z∆λ

k [a, b]. 2

With regard to this theorem, each spline sk(t) ∈ Z∆λ
k [a, b] has a unique

representation

sk (t) =

g−1∑
i=−k

bziZ
k+1
i (t) . (39)

Now we can proceed to a matrix notation of sk(t) ∈ Z∆λ
k [a, b]. With respect

to (36) and (37), we are able to write the functions Zk+1
i (t) in matrix notation

as

Zk+1
i (t) = (k + 1)

(
Bk+1
i (t) , Bk+1

i+1 (t)
)

1

λi+k+1 − λi
0

0
1

λi+k+2 − λi+1

( 1
−1

)
,

that is, for ZB-spline basis of Z∆λ
k [a, b] we have

(Zk+1
−k (t) , . . . , Zk+1

g−1 (t)) = (Bk+1
−k (t) , . . . , Bk+1

g (t))DKz = Bk+1(t)DKz,

where matrix D is given in (31) and

Kz =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1

 ∈ Rg+k+1,g+k. (40)
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It follows that each spline sk(t) from Z∆λ
k [a, b] can be written in the matrix no-

tation using the standard B-spline basis with B-spline coefficients b = (b−k, . . . , bg)
′

fulfilling the condition (34) from Theorem 2.1 as

sk(t) = Zk+1(t)bz = Bk+1(t)DKzbz = Bk+1(t)b, (41)

with Zk+1(t) = (Zk+1
−k (t) , . . . , Zk+1

g−1 (t)) and bz =
(
bz−k, . . . , b

z
g−1

)′
. Note that the

formula (41) provides a guideline how to convert the splines from Z∆λ
k [a, b] to

splines with zero integral (with coefficients fulfilling (34)) from S∆λ
k [a, b]. This is

particularly useful from the practical point of view as it allows to use existing

codes in the statistical softwares for actual computations of the methods of FDA.

For instance, the package fda of the statistical software R implements functio-

nal principal component analysis for a standard B-spline basis representation of

functional data, hence it can be used for sampled (clr) density functions as in

Section 5.

Example 2.2 We consider knots ∆λ := λ0 = 0 = a < 2 < 5 < 9 < 14 < b =

20 = λ5. The task is to find a cubic spline with the given sequence of knots and

which has zero integral on the interval [0, 20]. It is evident that k = 3, g = 4. We

consider the additional knots

λ−3 = λ−2 = λ−1 = λ0 = a = 0, 20 = b = λ5 = λ6 = λ7 = λ8.

The basis functions of the space Z∆λ
3 [0, 20] are plotted in Figure 5 (right). Every

spline s3(t) ∈ Z∆λ
3 [0, 20] can be written as

s3 (t) =
3∑

i=−3

bziZ
4
i (t) . (42)

Thus, e.g., for bz = (bz−3, . . . , b
z
3)′ = (−1,−5,−15,−30,−30, 14, 5)′ the cubic

spline function s3(t) with zero integral is plotted in Figure 5 (left).

Unlike Approach I where the smoothing spline functions with zero inte-

gral were constructed upon standard B-spline basis system of functions Bk+1
i (t),

i = −k, . . . , g, we can now use ZB-spline basis system of functions Zk+1
i (t),

i = −k, . . . , g−1 for this purpose. Accordingly, for an arbitrary l ∈ {1, . . . , k − 1}
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Figure 5: Cubic spline function s3(t) with the given coefficients bz =
(−1,−5,−15,−30,−30, 14, 5)′ in Z∆λ

3 [0, 20] (left) and ZB-spline basis system of
Z∆λ

3 [0, 20] (right). Vertical dashed gray lines indicate knot positions.

we aim to find a smoothing spline sk(t) ∈ Z∆λ
k [a, b] ⊂ L2

0([a, b]) which minimizes

the functional (24). The minimum is found for the spline s∗k(t) of the form (39)

with ZB-spline coefficients bz∗ =
(
bz∗−k, . . . , b

z∗
g−1

)′
obtained as (see [24] for details)

bz∗ = Vzz (43)

with

Vz := G−1g, (44)

where

G := (Kz)
′
D
[
(1− α)S

′

lMklSl + αB
′

k+1(t)WsBk+1(t)
]

DKz (45)

and

g := α(Kz)
′
DB

′

k+1(t)Ws;

the matrices Bk+1(t),D,Mkl,Sl,K
z are given in (30), (31), (32), (33), (40). Con-

sequently, by considering the formula (41), the resulting smoothing spline in ma-

trix notation using standard B-splines Bk+1
i (x) is obtained as

s∗k(t) = Bk+1(t)DKzbz∗,

where the vector bz∗ is given in (43).

In some applications, the orthonormalization of the B-spline basis might be

useful. Note that ZB-spline functions forming the basis system of Z∆λ
k [a, b] are by
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(a) Linear ZB-splines Z2
i (t) with given equidistant knots 0, 0, 1, 2, 3, 3 (left), linear

orthogonal ZB-splines O2
i (t) (right).
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(b) Quadratic ZB-splines Z3
i (t) with given nonequidistant knots 0, 0, 0, 3, 5, 6, 8, 8, 8

(left), quadratic orthogonal ZB-splines O3
i (t) (right).

Figure 6: Orthogonalized ZB-spline basis system of Z∆λ
1 [0, 3] (first row) and

Z∆λ
2 [0, 8] (second row). Vertical dashed gray lines indicate knot positions.

the default setting (36) non-orthogonal. The orthogonalized ZB-spline functions

are obtained by using a linear transformation Φ such that

Φ
′
Φ = Σ−1,

where Σ represents the positive definite matrix

Σ =

b∫
a

Zk+1(t)Z′k+1(t) dt =

 b∫
a

Zk+1
i (t)Zk+1

j (t) dt

g−1

i,j=−k

. (46)

In a light of (41), the matrix Σ can be expressed as

Σ = (Kz)′D

∫ b

a

B′k+1(t)Bk+1(t) dtDKz = (Kz)′DMk0DKz, (47)
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The linear transformation Φ is not unique and can be computed for example by

the Cholesky decomposition. The following basis functions

Ok+1(t) = (Ok+1
−k (t) , . . . , Ok+1

g−1 (t))′ (48)

obtained as

Ok+1(t) = ΦZk+1(t)

are orthogonal and have a zero integral. The linear and quadratic ZB-spline

functions with zero integral and their ortogonalization are plotted in Figure 6.

Consequently, the spline sk(t) with zero integral can be constructed as a linear

combination of orthogonal ZB-splines with zero integral (48) in a form

sk(t) =

g−1∑
i=−k

bziO
k+1
i (t) = Ok+1(t)bz;

or by considering the formula (41) in the form

sk(t) = ΦBk+1(t)DKzbz (49)

which is a preferable choice from the practical point of view.

Compositional splines in the Bayes spaces B2(λ): Construction of spline

functions directly in L2
0(λ) has important practical consequences, however, it is

crucial also from the theoretical perspective. Expressing B-spline functions as

functions in L2
0(λ) enables to transform them back to the original Bayes space

B2(λ) by using the exponential. It results in compositional B-splines (CB-splines),

obtained from (36) as

ζk+1
i (t) =B(λ) exp[Zk+1

i ](t), i = −k, . . . , g − 1, k ≥ 0. (50)

Accordingly, for instance ZB-splines from Figure 4 can be now expressed directly

in the Bayes space B2(λ) as CB-splines, see Figure 7. As a consequence, it is

immediate to define vector space C∆λ
k [a, b] of compositional polynomial spline

functions of degree k > 0, defined on a finite interval Ω = [a, b] with the sequence

of knots ∆λ. From isomorphism between C∆λ
k [a, b] and Z∆λ

k [a, b] it holds that

dim
(
C∆λ
k [a, b]

)
= g + k.
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(a) Linear ZB-spline Z2
i (t) (left) and linear CB-spline ζ2

i (t) (right) with equidistant
knots 0, 1, 2, 3.
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(b) Quadratic ZB-spline Z3
i (t) (left) and quadratic CB-spline ζ3

i (t) (right) with no-
nequidistant knots 0, 1, 10, 30, 50.
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(c) Cubic ZB-spline Z4
i (t) (left) and cubic CB-spline ζ4

i (t) (right) with equidistant knots
0, 1, 2, 3, 4, 5.

Figure 7: Example of CB-spline functions of degree 1, 2 and 3 from the Figure 4.
Vertical dashed gray lines indicate knot positions.

Moreover, from isometric properties of clr transformation (14) and (15) it follows

that each compositional spline function ξk(t) ∈ C∆λ
k [a, b] in B2(λ) can be uniquely
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represented as

ξk(t) =

g−1⊕
i=−k

bzi � ζk+1
i (t). (51)

CB-splines ζk+1
i (t) forming the basis are by the default setting (36) not ortho-

gonal. Their orthogonalization can be done in L2
0(λ) by using (49) and then

back-transformed to B2(λ).

The resulting compositional splines (with either orthogonal, or non-orthogonal

CB-spline basis system) can be used for the representation of density functions

directly in Bayes spaces. This is an important step in the construction of the FDA

methods involving density functions. With CB-splines one has a guarantee that

methods are developed consistently in the Bayes spaces. Moreover, the possibility

of having an orthogonal basis enables to gain additional features resulting from

orthogonality of finite dimensional projection in combination with approximate

properties of spline functions.

Finally, compositional spline functions can be tuned according to a concrete

problem, with the advantage of their direct formulation in the Bayes space sense.

2.2.3 Application: smoothing of Italian income data

To illustrate the smoothing procedures, Approach I and Approach II, re-

spectively, we will use income data from the Survey on Household Income and

Wealth (SHIW) conducted by the Italian Central Bank. They include almost

8000 interviewed households composed of 19907 individuals and 13266 income-

earners and are freely available on the web [2]. We focus on annual net disposable

income (composed of payroll income, i.e., net wages, salaries and fringe benefits,

pensions and net transfers, net self-employment income and property income) of

households in all N = 20 Italian regions, similarly as it was done in [23]. The regi-

ons were further grouped into three natural areas according to their geographical

location to examine possible differences over regions (see Figure 8).

In the preprocessing step, the raw income data from individual regions were

aggregated into histogram data as follows. The sampled values of incomes in

each region were divided into D = 9 equally-spaced income classes determined

by Sturges’ rule [39] (i.e., its mean value over the regions was considered) for
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Figure 8: Map of Italy and its 20 regions with color distinguishing northern
(green), middle (gold) and southern and island (red) regions according to the
National statistical institute (ISTAT).

non-zero incomes up to 117.22 ke. Only incomes below the 99%-quantile were

used and extreme values were excluded. Subsequently, the vectors of proportions

of D = 9 income classes within each region Wi = (WiD, . . . ,WiD)′ were com-

puted together with the raw discretized density data yi = (yi1, . . . , yiD)′, i =

1, . . . , N which corresponds to the interval midpoints of income classes ti =

(ti1, . . . , tiD)′, i = 1, . . . , N (Tables 5 and 6 of Appendix B). These were obta-

ined by dividing (not necessary normalized) proportions Wi, i = 1, . . . , N by

the length of the respective subintervals resulting from the partition of income

interval Ω = [0, 117.22] ke into income classes. The present zero-values were

imputed by a model-based procedure [25]. Figure 9 shows an instance of two his-

tograms together with raw data to be smoothed. To do so, their transformation

into real vectors is conducted using clr transformation (17), resulting into vectors

of raw clr transformed density data zi = (zi1, . . . , ziD)′ for i = 1, . . . , N (Table

7 of Appendix B). We note that as long as the histogram data are constructed

on subintervals of the same length, i.e. with equally-spaced breakpoints, it ena-

bles to use the discrete clr transformation directly on the vector of proportions

Wi, i = 1, . . . , N by considering the scale invariance property; if not, the input

of the clr transformation must be vectors with raw density data yi, i = 1, . . . , D.

Having collected data (tij, zij), i = 1, . . . , N, j = 1, . . . , D, we aim to smooth

them by (a) smoothing splines adapted for clr density functions using a standard
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Figure 9: Histograms for Piemonte and Toscana region together with estima-
ted probability density functions. Asterisks indicate discrete data (tij, yij), i =
1, 9, j = 3, 4 and Wi indicates indicate proportions of equidistant classes resul-
ting from given partition of the interval Ω = [0, 117.22] ke; income is expressed
in 103 ke.

B-spline basis system (Approach I) and (b) compositional smoothing splines (Ap-

proach II) using a system of ZB-spline basis functions from the L2
0(λ) space. The

corresponding smoothing splines sik(t) on Ω which approximate density functions

fi(t) for each i = 1, . . . , N are found by minimizing the functional (24) and having

zero integral. For all N observations, the same strategy was followed to set the

values of the input parameters for the smoothing procedures. Cubic smoothing

splines were employed (k = 3, l = 2) with four given knots at income values 0, 30,

70 and 117.22 ke, the vector of weights ws
i for all input data was set to vectors

of ones and the smoothing parameter α equals to 0.5 (i.e., the same importance

is assigned to both smoothness of the resulting smoothing splines as well as to

their approximative properties). Note that this choice corresponds to α = 1 for

the functional (26).

The resulting optimal smoothing splines and compositional smoothing spli-

nes represent the same approximations in a sense that they lead to the same

functions si∗3 (t), i = 1, . . . , N , and are obtained via their clr representation as

si∗3 (t) =
2∑

ν=−3

b∗i,νB
4
ν(t) =

1∑
ν=−3

bz∗i,νZ
4
ν (t), i = 1, . . . , N, t ∈ Ω; (52)

the corresponding B-spline coefficients b∗i and ZB-spline coefficients bz∗i for i =

1, . . . , N are reported in Tables 1 and 2, respectively. Note that b∗i , i = 1, . . . , N
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Figure 10: Smoothed income density functions via smoothing splines in B2(λ)
(left) space and its clr transformation in L2

0(λ) (right) space with the same color
resolution as in the map in Figure 8; income is expressed in 103 ke. Vertical
dashed gray lines indicate knot positions.

can be derived directly from (41) using the output bz∗i , i = 1, . . . , N . Nevertheless,

only the Approach II enables to express explicitly the resulting splines in B2(λ).

Indeed, their representation with respect to CB-spline basis system of functions

ζ4
ν (t) = exp [Z4

ν ] (t), ν = −3, . . . , 1 is given by

ξi3(t) =
1⊕

ν=−3

bz∗i,ν � ζ4
ν (t), i = 1, . . . , N, t ∈ Ω.

An instance of two raw density data from Figure 9 is plotted together with

smoothed curves in Figure 10a: in the L2
0(λ) space (right) and after the inverse

transformation in the B2(λ) space (left). The whole sample of smoothed density

functions is displayed in Figure 10b; the color scheme matches those colors used

for the geographical map (Figure 8). Visual inspection of Figure 10b suggests that

a regional pattern may be present, as the northern regions seem to be associated
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Region loc. B-spline coefficients, b∗i = (b∗i,−3, . . . , b
∗
i,2)′, i = 1, . . . , N

Piemonte N -1.749 2.683 2.673 -1.057 -2.098 -3

Valle d’Aosta N -3.692 1.759 3.97 -2.909 -0.299 -2.346

Lombardia N -1.165 1.623 1.563 -0.174 -1.898 -1.609

Trentino N -2.62 2.544 1.392 0.515 -2.454 -2.308

Veneto N -0.565 1.674 2.512 -1.145 -1.819 -2.155

Friuli N -1.715 2.543 1.026 0.872 -2.42 -2.921

Liguria N -1.301 2.545 1.967 0.369 -2.651 -3.85

Emilia Romagna N -1.59 1.627 2.347 -0.797 -1.364 -2.729

Toscana M -2.396 1.612 2.266 -0.342 -1.865 -2.198

Umbria M -2.081 2.64 2.581 -0.552 -2.051 -3.837

Marche M -0.9 2.84 1.688 -0.154 -2.311 -3.179

Lazio M -0.473 2.299 2.204 -0.649 -1.908 -3.444

Abruzzo S -0.582 2.149 2.79 -1.497 -2.234 -1.898

Molise S -0.667 2.637 1.766 -0.361 -2.183 -2.941

Campania S 0.176 4.575 1.122 -0.187 -2.972 -3.724

Puglia S 0.982 3.099 2.489 -2.545 -0.597 -3.976

Basilicata S 0.802 3.063 1.414 -0.176 -2.961 -2.653

Calabria S 1.125 2.844 2.606 -2.069 -1.857 -2.833

Sicilia S -0.088 4.586 0.571 0.106 -3.049 -2.793

Sardegna S 0.247 3.1 2.247 -0.641 -3.173 -2.88

Table 1: B-spline coefficients for optimal smoothing splines approximating income
density functions of N = 20 Italian regions.

with higher incomes than the southern ones. This is probably related to the fact

that a large number of businesses and industries are based in the north. The life

cost is not homogeneous over the regions either, which may also play a major

role in determining the actual salaries. Moreover, the highest variability seems to

be present on boundaries of Ω and it is more pronounced on its left-hand side:

low incomes dominate in the southern regions whereas in the central and the

northern regions their incidence is significantly lower.

Once the functional data are reconstructed, we can proceed with the statis-

tical analysis. The following section introduces functional regression analysis in

the B2(λ) space, the extension of SFPCA for the case of non-uniform reference

measure is presented in Section 5 and applied to smoothed Italian income density

functions.
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Region loc. CB-spline coefficients, bz∗i = (bz∗i,−3, . . . , b
z∗
i,1)′, i = 1, . . . , N

Piemonte N -13117.38 33827.37 112161.82 81173.56 35417.62

Valle d’Aosta N -27689.15 3101.96 119432.17 34199.26 27688.31

Lombardia N -8738.07 19656.85 65467.32 60374.37 18993.47

Trentino N -19650.11 24874.78 65671.57 80749.19 27243.95

Veneto N -4235.51 25058.29 98663.45 65116.43 25443.24

Friuli N -12866.1 31628.2 61707.04 87259.28 34484.86

Liguria N -9759.85 34783.47 92439.12 103264.55 45451.45

Emilia Romagna N -11926.89 16537.56 85324.37 61956.23 32212.77

Toscana M -17968.32 10238.6 76628.47 66598.39 25940.97

Umbria M -15606.04 30587.34 106209.41 90024.22 45295.48

Marche M -6753.12 42954.33 92429.05 87913.87 37528.47

Lazio M -3548.24 36686.45 101275.24 82268.39 40658.7

Abruzzo S -4366.94 33237.96 114990.47 71114.36 22410.71

Molise S -4999.18 41139.95 92894.57 82324.94 34722.56

Campania S 1316.71 81370.66 114241.24 108770.21 43960.7

Puglia S 7368.1 61603.74 134545.89 59960.23 46933.93

Basilicata S 6011.31 59608.46 101045.52 95887.36 31320.53

Calabria S 8436.74 58210.8 134570.72 73925.13 33439.39

Sicilia S -660.92 79602.63 96346.92 99445.84 32969.79

Sardegna S 1855.1 56113.48 121968.24 103187.83 33996.89

Table 2: ZB-spline coefficients for compositional smoothing splines approximating
income density functions of N = 20 Italian regions.
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3 Statistical methods in unweighted Bayes spa-

ces: Functional regression

Regression analysis is a key statistical tool to model a linear relationship be-

tween a response variable and a set of covariates. If the response or the predictors

have functional nature, the functional regression analysis is to be considered. Al-

though the general problem of functional regression has been extensively studied

in the literature on FDA (i.e., for instance in [15, 36, 38]), a concise methodo-

logy for regression analysis in the presence of a distributional response has been

proposed only recently in [41]. It aims to develop a general theoretical and compu-

tational setting allowing for the estimation and uncertainty assessment in linear

models with a distributional response.

In this section, we firstly briefly recall the function-on-scalar regression mo-

del for data in L2 spaces and subsequently, the main focus will be on a function-

on-scalar model for a distributional response in Bayes spaces on closed interval

Ω = [a, b]. Similarly as in the L2 setting, the key is to consider the B-spline repre-

sentation of the PDF response observed as discrete (histogram) data. On these

bases, the effective computational procedure is proposed and further discussed in

this section.

3.1 Functional regression model in L2(λ)

We here review the key notions on function-on-scalar regression that are

deemed useful for our developments, by following [36, Chapter 13], to which the

reader is referred for further details.

A function-on-scalar regression model relates a functional response y(t) with

independent scalar covariates xj for j = 0, . . . , r, the first regressor x0 indicating

the intercept, x0 = 1. Consider an N -dimensional vector of functional observati-

ons y(t) in L2(λ) on Ω, a design matrix X of dimension N×p (the first column is

made of ones if the intercept is included) and a p-dimensional vector of unknown

functional regression parameters β(t) in L2(λ) on Ω. Call ε(t) an N -dimensional

vector of i.i.d. (functional) random errors with zero-mean in L2(λ). The functi-

onal linear model for the i-th observation yi(t), i = 1, ..., N , associated with the
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regressors xij, j = 0, ..., r, is expressed as

yi(t) = β0(t) +
r∑
j=1

xijβj(t) + εi(t), i = 1, . . . , N, t ∈ I, (53)

or, in matrix notation, y(t) = Xβ(t) + ε(t), where p = r + 1 and xi0 = 1. The

estimators β̂j, j = 0, ..., r, of the coefficients βj, j = 0, ..., r, can be obtained by

minimizing the least square fitting criterion,

SSE(β) =

∫
I

[y(t)−Xβ(t)]′ [y(t)−Xβ(t)] dt. (54)

The smoothness of the resulting estimations may be controlled by adding a dif-

ferential penalization to the SSE criterion, i.e.,

PENSSE(β) =

∫
I

[y(t)−Xβ(t)]′ [y(t)−Xβ(t)] dt+ δ

∫
I

[Lβ(s)]′ [Lβ(s)] ds,

(55)

with L a linear differential operator and δ a smoothing parameter.

Several computational methods have been proposed in the literature to mini-

mize (54) or (55). In [36], methods relying upon basis expansions of the functional

observations yi(t), i = 1, . . . , N , and regressors βj(t), j = 0, . . . , r, are broadly

discussed. Suppose that yi(t) and βj(t) admit the representations

yi(t) =

Ky∑
k=1

cikϕk(t), βj(t) =

Kβ∑
k=1

bjkψk(t), (56)

in terms of known basis systems {ϕ1, . . . , ϕKy} and {ψ1, . . . , ψKβ} (e.g., standard

B-spline basis systems), with coefficients {cik} and {bjk}. Equivalently, we may

express (56) in matrix notation as y(t) = Cϕ(t) and β(t) = Bψ(t), where C

and B are matrices of bases coefficients with dimensions N × Ky and p × Kβ,

respectively, and ϕ, ψ are vectors of basis functions.

If in (56) the same basis system is used for both the y’s and the β’s (i.e.,

K ≡ Ky = Kβ, ϕk = ψk, k = 1, ..., K), the estimation of functions βj reduces to

the estimation of the matrix of basis coefficients B. They are found by minimizing
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the penalized least square fitting criterion, i.e.,

PENSSE(β) =

∫
I

[Cϕ(t)−XBϕ(t)]′ [Cϕ(t)−XBϕ(t)] dt

+δ

∫
I

[LBϕ(s)]′ [LBϕ(s)] ds. (57)

Note that setting δ = 0 yields the reformulation of (54) in terms of basis expan-

sion.

Further, denote by P, Q the symmetric constant matrices of order K, P =∫
I

[Lϕ(s)] [Lϕ(s)]′ ds and Q =
∫
I
ϕ(t)ϕ(t)′dt. By differentiating (57) with respect

to B it can be shown that the estimation of B is found as solution of the linear
system

(X′XBQ + δBP) = X′CQ. (58)

System (58) can be equivalently reformulated using the Kronecker product ⊗ as

[Q⊗ (X′X) + P⊗ δI] vec(B) = vec (X′CQ) . (59)

Matrix B is thus obtained as solution of a system of linear equations of dimension

p×K and the resulting estimations of regression parameters as β̂(t) = B̂ϕ(t), t ∈
Ω.

3.2 Functional regression model in B2(λ)

In this subsection, a function-on-scalar regression model in B2(λ) is intro-

duced as a counterpart of the model (53). We assume the dependent varia-

ble y(t), t ∈ Ω to be an element of B2(λ) and consider scalar covariates xj,

j = 0, . . . , r. Each observation of the distributional response yi(t), i = 1, . . . , N ,

is thus associated with a vector of p covariates, xi0, . . . , xir, with xi0 = 1 for

i = 1, ..., N . We consider a functional linear model in B2(λ) of the form

yi(t) = β0(t)⊕
r⊕
j=1

[xij � βj] (t)⊕ εi(t) (60)

where εi denotes a zero-mean functional error (or residual) in B2(λ), i = 1, . . . , N ,

and the unknown functions βj, j = 0, ..., r, belong to B2(λ) as well. To estimate
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the coefficients βj(t), j = 0, . . . , r, we minimize the functional sum of square-

norms of the error in B2(λ)

SSE(β) =
N∑
i=1

‖εi‖2
B2(λ) =

N∑
i=1

∥∥∥∥∥
r⊕
j=0

[xij � βj]	 yi

∥∥∥∥∥
2

B2(λ)

. (61)

Note that (61) is the counterpart of SSE (54) in the Bayes Hilbert space B2(λ); in

fact, it also represents the analogue of compositional SSE in B2(Pc) [11] in infinite

dimensions. Applying the clr transformation (14) to both sides of the model (60)

yields

clrλ(yi)(t) = clrλ(β0)(t) +
r∑
j=1

[xij · clrλ(βj)] (t) + clrλ(εi)(t), i = 1, . . . , N, (62)

that enables one to reformulate the objective SSE (61) equivalently in the L2

sense as

SSE(β) =
N∑
i=1

‖clrλ(εi)‖2
L2(λ) =

N∑
i=1

∥∥∥∥∥
r∑
j=0

[xij · clrλ(βj)]− clrλ(yi)

∥∥∥∥∥
2

L2(λ)

. (63)

In this thesis, the focus is on SSE, since one may control the smoothness of

the estimated functions for clrλ(βj(t)) through the smoothness of the B-spline

representation of the response, as shall be discussed further in this section. Note

that alternatively one could develop PENSSE, by closely following the arguments

here presented.

As a next step, since both the observed functions clrλ(yi)(t), i = 1, . . . , N ,

and regression parameters clrλ(βj)(t), j = 0, . . . , r, are elements of L2
0(λ), their

basis expansion fulfilling the zero-integral constraint on Ω using a given basis

system {ϕk, k = 1, ..., K} must be considered, i.e.,

∫
I

clrλ(yi(t))dt =

∫
I

K∑
k=1

cikϕk(t)dt = 0;

∫
I

clrλ(βj(t))dt =

∫
I

K∑
k=1

bjkϕk(t)dt = 0.

(64)

Both approaches to basis expansions designed for densities outlined in Sections

2.2.1 and 2.2.2, respectively, can be used when estimating the linear model (60).
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Nevertheless, we note that, regarding to Theorem 2.1, the former leads to con-

straints on the coefficients {cik}, {bjk} and consequently on model singularities.

Although this can be overcome by using the latter method based on composi-

tional splines, both of them in fact lead to the same estimations of regression

parameters. Therefore, in the following we will mainly focus on the consequences

related to the former approach as developed in [41].

3.2.1 Regression modeling of B-spline coefficients using Approach I

Let us consider the B-spline representations for the clr transformed observati-

ons of the response density, i.e., clrλ(yi)(t), i = 1, . . . , N , of the form

sik (t) =

g∑
j=−k

Yi,j+k+1B
k+1
j (t) , (65)

where the vector of B-spline coefficients Y(i) = (Yi,1, . . . , Yi,g+k+1)′ is obtained as

Y(i) = Vz(i), i = 1, . . . , N ; (66)

the matrix V of dimensions (g+k+1)×D is given in (29) and z(i) = (zi1, . . . , ziD)′,

i = 1, . . . , N are vectors of clr transformed raw density data. If the same B-spline

basis system is used for all the data, (66) can be expressed in matrix notation as

Y = ZV′, (67)

where Y, Z are the matrices of dimensions N×(g+k+1) and N×D, respectively,

having the following form,

Y =

 Y(1)
′

...
Y(N)

′

 , Z =

 z(1)
′

...
z(N)

′

 .

Consequently, we can express the model (60) in the form of a multivariate

regression model. Following the given notation, spline coefficients for the i-th

observation yi(t) are denoted by Y(i) = (Yi,1, . . . , Yi,g+k+1)′, i = 1, 2, . . . , N , and

vectors Y(1), ...,Y(N) form the rows of the N × (g + k + 1) (random) response
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matrix Y. On this basis, we consider in place of (60) the multivariate linear

regression model of the form

Y(N×(g+k+1)) = X(N×p)B(p×(g+k+1)) + ε(N×(g+k+1)), (68)

or, equivalently,

(Y1,Y2, . . . ,Yg+k+1) = X(β1,β2, . . . ,βg+k+1) + (ε1, ε2, . . . , εg+k+1).

Here, the design matrix X is assumed to be of full column rank, βj = (βj0, . . . , βjr)
′,

j = 1, 2, . . . , g+k+1, is a vector of unknown regression coefficients and ε is a ma-

trix of random errors. The multivariate responses Y(i) = (Y1,i, . . . , Yg+k+1,i)
′, i =

1, 2, . . . , N , are independent with the same unknown variance-covariance matrix

Σ, i.e., cov(Y(i),Y(j)) = 0((g+k+1)×(g+k+1)), i 6= j, var(Y(i)) = Σ((g+k+1)×(g+k+1)),

for i = 1, . . . N .

The best linear unbiased estimator (BLUE) of the parameter matrix B is

found as

B̂ = (X′X)
−1

X′(Y1,Y2, . . . ,Yg+k+1), (69)

which is invariant to Σ. Under the assumption that Y is of full column rank, the

multivariate model can be simply decomposed into g + k + 1 univariate multiple

regression models that implies an alternative estimation of columns of B as

β̂j = (X′X)
−1

X′Yj, j = 1, . . . , g + k + 1. (70)

The variance-covariance matrix of the vector vec(B̂) = (β̂
′
1, β̂

′
2, . . . , β̂

′
g+k+1)′ is

var
[
vec(B̂)

]
= Σ⊗ (X′X)

−1
,

where the symbol ⊗ denotes the Kronecker product. The unbiased estimator of

Σ is Σ̂ = Y′MXY/(N − p), where MX = I−X(X′X)−1X′ is a projector on the

orthogonal complement of the vector space M(X) generated by the columns of

the matrix X, i.e., M(X) = {Xu : u ∈ Rp}.

Because the realization of the multivariate response Y(i) is the vector of B-

spline coefficients b = (b−k, . . . , bg)
′ of the clr transformed data, the variables
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Yi,1, . . . , Yi,g+k+1 are linearly dependent. Indeed, one has that

g+k+1∑
j=1

Yij(λj − λj−k−1) = 0, (71)

due to Theorem 2.1. Accordingly, one may expect that a similar constraint applies

to the corresponding estimated regression coefficients, as stated by the following

result.

Proposition 3.2.1 If
∑g+k+1

j=1 Yij(λj − λj−k−1) = 0 for all i = 1 . . . , N , then∑g+k+1
j=1 β̂sj(λj − λj−k−1) = 0 for all s = 0, . . . , r.

Proof. Denote by a(s) the sth row of the matrix product (X′X)−1X′, s = 0, . . . , r,

dj = λj−λj−k−1, j = 1, . . . , g+k+1, and 1g+k+1 a vector of g+k+1 ones. Then

g+k+1∑
j=1

β̂jsdj = d1a(s)Y1 + d2a(s)Y2 + · · ·+ dg+k+1a(s)Yg+k+1 =

= a(s)(d1Y1, d2Y2, . . . , dg+k+1Yg+k+1)1g+k+1 =

= a(s)

(
g+k+1∑
j=1

Y1,jdj,

g+k+1∑
j=1

Y2,jdj, . . . ,

g+k+1∑
j=1

Yg+k+1,jdj

)
= 0.

2

Note that whenever the same B-spline basis is employed for all the observati-

ons of the response – as it is usually the case – the latter constraint from Pre-

position 3.2.1 introduces a singularity into the regression model (68), which may

affect parameter inference. Similarly as in multivariate regression [17], the mo-

del singularity may be an issue when statistical inference is performed based on

B-spline coefficients, e.g., when testing for the significance of the coefficient βj

through parametric tests based on Fisher’s statistics. In these cases, orthonormal

representations of the B-spline coefficients may be considered. Since vectors Y(i),

i = 1, ..., N , form a hyperplane H of dimension g + k, orthogonal to the normal

vector (λ1 − λ−k, . . . , λg+k+1 − λg)′ one may build an orthonormal basis for H,

express Y(i), i = 1, ..., N , through the coordinates of such a basis – removing
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the singularity due to the linear constraints induced by (64) – and then use the

regularized representation for the purpose of further statistical inference. A basis

for H can be easily obtained as the set of the first g + k principal components of

the B-spline coefficient vector, that in turn correspond to the Simplicial Functio-

nal Principal Components (SFPCs) of the smoothed densities y1(t), ..., yN(t) [21].

However, note that the BLUE estimation (69) of the regression coefficients is not

affected by the singularity constraint in the response, and can be thus computed

explicitly, without resorting to the SFPCA or to orthonormalized representati-

ons. Of course, the singularity problem can be prevented by considering ZB-spline

basis system from L2
0(λ), so that the response is expressed through a set of un-

constrained coefficients, namely ZB-spline coefficients.

It should be also noted that the number of knots for the B-spline basis

function cannot be chosen independently of the discretization used to build vec-

tors Wi = (Wi1, . . . ,WiD)′ , i = 1, ..., N (i.e., the discrete compositions which

form the raw data representing histograms). The number of knots and the num-

ber of classes on Ω upon which Wi are built are indeed related, as the former

cannot exceed the latter. The problem of setting the discretization on Ω and the

number of knots is affected by the bias-variance trade-off. Indeed, when building

Wi, a fine discretization yields minimum bias in estimating the point value of

the target density, but inflates the associated variance, and vice-versa. Similarly

in the B-spline representation – where the number of knots is concerned – a high

number of knots is associated with low bias and high variance, and vice-versa.

Clearly, no optimal choice is known a priori to set these parameters, but the

‘optimum’ is problem dependent. For instance, it depends on the sample size, as

well as on the signal-to-noise ratio. Several methods have been developed in the

theory of descriptive statistics to set an optimal number of classes when buil-

ding a histogram. Amongst these, we mention Sturges’ rule [39], which has been

already used in the example of Section 2.2.3. Fixed the discretization, the num-

ber of knots can be then set as to balance the fitting to the raw data and the

smoothness of the estimates, possibly based on a cross-validation analysis as in

the case study dealing with metabolomics data presented further in this section.

A natural question which may arise in the proposed context regards the

smoothing properties of the regression estimates, and particularly if and how

the data smoothing reflects on the estimates. The key point that we here aim
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to investigate is whether equivalence results can be stated for the following al-

ternative procedures: (a) the data are smoothed and the Bayes space regression

from Section 3.2 is applied (hereafter named “regression-smoothing”), and (b)

a compositional regression [11] is applied, estimating the model

zi = β
(Z)
0 +

r∑
j=1

β
(Z)
j xij + εi, (72)

and the estimates (or predictions) of Z are smoothed afterward (hereafter named

“smoothing-regression”). In particular, we here show that, under specific condi-

tions, the following scheme represents the relation between the model presented

here and that one proposed in [11]

Z
smoothing−−−−−−→ Y

regression

y yregression
Ẑ −−−−−−→

smoothing
Ŷ

(73)

From (69), the matrix of predicted coefficients Y is obtained as

Ŷ = X (X′X)
−1

X′Y, (74)

while for the model (72) one has

Ẑ = X (X′X)
−1

X′Z. (75)

Plugging-in (67) in (74) we obtain Ŷ = X (X′X)−1 X′ZV′. On the other

hand, when smoothing splines for predicted data ẑi, i = 1, . . . , N , are considered,

the matrix of the corresponding B-spline coefficients is obtained as

̂̂
Y = ẐV′Z . (76)

In order to guarantee that VZ coincides with the matrix V in (67), one needs

to build the smoothing spline upon the same sequence of knots, the same degree

of spline and the same objective functional (e.g., the same penalization). In this

case, and using (75), the matrix
̂̂
Y can be written in the form

̂̂
Y = X (X′X)

−1
X′ZV′,
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that directly implies the target assertion, i.e.,
̂̂
Y = Ŷ. As a consequence, when

smoothing splines are considered, the smoothness of the observations induces

a corresponding degree of smoothness on the estimates, even if this is not ex-

plicitly imposed through the use of a PENSSE criterion, introduced in Section

3.1.

It should be noted that, although under particular conditions the “smoothing-

regression” and “regression-smoothing” approaches are equivalent, the proposed

framework provides a much more flexible setting to perform the analysis. For in-

stance, to carry out the analysis in the “regression-smoothing” setting, one would

need to estimate all the histograms according to the same set of classes, which

may not be the optimal one for all of them. In the “smoothing-regression” setting,

one can freely estimate the histograms with their own optimal classes and then fit

the basis expansion to each of those. In other cases, one may be already provided

with densities defined over a fine grid (e.g., with particle-size data, [29, 30, 31]).

Dealing with high-dimensional (compositional) data from a discrete viewpoint

may yield issues related to the curse of dimensionality, which are completely

overcome with a functional viewpoint.

3.3 Simulation study

3.3.1 Assessing the effects of smoothing on regression

A simulation study aims to test the performances of the proposed methodo-

logy. Attention will be paid to the sensitivity of the results to the main parameter

setting – number of classes, knots and starting data. To generate the functional

dataset, yi ∈ B2(λ), i = 1, ..., N = 30, the following reference model is considered,

yi(t) = β0(t)⊕ [xi � β1] (t)⊕ εi(t), t ∈ Ω = [−3, 3], i = 1, . . . , 30, (77)

where ε is the random error, whose mean is the neutral element of perturbation

in B2(λ), i.e., the uniform distribution. Specifically, for each observation i, 500

realizations are generated from a uniform distribution on Ω = [−3, 3] and then

smoothed via optimal smoothing splines (Approach I) to represent the errors εi

through a B-spline basis. The smoothing procedure is designed to reproduce the

estimation strategy which will be applied in the case study, and is based on qua-

51



−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

de
ns

ity

(a) Reference response.

−2 −1 0 1 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

de
ns

ity

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

● ●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

●
●

● ●

●●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

● ● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●

(b) Smoothed errors via B-splines.

Figure 11: Example of starting data of the first iteration – simulated (true) density
response (left) with model errors (right) represented by optimal smoothing spli-
nes (Approach I; Section 2.2.1). Vertical dashed grey lines indicate partition of
interval Ω with 10 classes.

dratic splines (k = 2, l = 1), with smoothing parameter α = 0.99 and five equally

spaced knots. The regression parameters are set to truncated Gaussian densities

N(µi, σ
2
i ), i = 0, 1, with support on Ω. For the intercept β0 the parameters are

set to µ0 = 0, σ0 = 2, and for the slope parameter β1 to µ1 = −1, σ1 = 1. For bre-

vity, the latter model is hereafter named Model 500, 500 indicating the number

of sampled data.

To test the robustness of the method to the number D of classes upon which

histogram data are built, the model shall be estimated based on three different

parameter settings, one determined by using the Sturges’ rule, one above and

one below the first. Specifically, with the previous model settings, Sturges’ rule

suggests an optimal value of D = 10 classes. The two additional values considered

are thus D = 7 and D = 14. The simulated functional dataset is computed for

each of such settings taking the model (77) for 30 equally spaced values xi in

the interval [0.01, 10]. To assess the performances of the method in estimating

the parameters, the simulation is repeated K = 30 times. Figure 11 represents

the observed response for the first iteration, together with raw and smoothed

error model data, with D = 10 classes and 3 knots. To compare the quality

of the obtained estimates, the integrated square error (ISE) between the true

and estimated density parameter functions, ISE = ‖βlk 	 β̂lk‖2
B2(λ), l = 0, 1,

k = 1, ..., 30, was considered. The top panels of Figure 12 display boxplots of

the integrated square errors for the number of classes D = 7, 10, 14. Simulations
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Figure 12: Boxplots of ISE between the true density parameter functions β0 (left)
and β1 (right) and their estimates obtained by iteration procedure from the si-
mulated model (77) – Model 500. Top panels: sensitivity to number of classes
(cl.): 7, 10 (Sturges’ rule) and 14. Bottom panels: sensitivity to number of knots
in {3, 5, 7}.

shows that the Sturges’ rule can be considered as a reasonable choice as the

estimates of both parameters do not appear to be sensitive to that parameter

setting.

Having fixed the number of classes according to Sturges’ rule, the sensitivity

of the result to the number of knots was assessed in the same simulation setting,

only varying the number of equally spaced knots in {3, 5, 7}. The bottom panels

of Figure 12 seem to suggest the use of a moderate number of knots, as a higher

number of knots may lead to overfitting the data. Note that the parameters

β0, β1 are two-dimensional in the Bayes space (they belong to an affine space

of dimension 2, [21]), compatible with the low number of knots suggested by
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Figure 13: Comparison of boxplots of ISE for models with different number of
starting data with optimal parameter setting – Model 300 (9 classes, 5 knots),
Model 500 (10 classes, 3 knots), Model 700 (10 classes, 5 knots) – for β0 left and
β1 right.

simulation results.

Finally, the experiment was repeated with different numerosity of the initial

sampled error data, taking 300 (Model 300 ) and 700 (Model 700 ) of them. Results

are consistent with the previous ones, hence omitted. They confirm the overall

good performances of Sturges’ rule, and suggests a moderate number of classes

in all the cases. In particular, they suggest that the number of sampled data

does not have a strong influence on the results (see Figure 13). Note that all the

simulation settings here considered are based upon a relatively high number of

data, which is the setting for which the method is proposed. Indeed, the main issue

with the sample size is related with the need of estimating the entire response

distribution from the data instead of its first moments. Although demanding, this

offers the clear advantage of working with the entire information content that the

distribution offers. In the cases in which the sample size is an issue instead, one

may resort to multivariate approaches [11].

3.3.2 Comparison of the Bayes approach with competitors in L2(λ)

In this subsection, the proposed approach is compared with two alternative

methods to fit a linear model based on the same distributional responses {yi, i =

1, ..., 30} (Figure 11) and the same scalar regressors {xi, i = 1, ..., 30} as in Section
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3.3.1. To this end, the following models are considered: (a) a function-on-scalar

model in L2(λ)

yi(t) = α0(t) + α1(t)xi + ζi(t), (78)

with ζi random errors in L2(λ), with mean zero; and (b) a function-on-scalar

model in L2(λ), but for the log-transformation of the response

log(yi(t)) = γ0(t) + γ1(t)xi + ηi(t), (79)

with ηi random errors in L2(λ), with mean zero. Note that using a logarithmic

transformation is very common for data on a relative scale, and preserves positi-

veness, but does not guarantee that the resulting estimates keep scale invariance

with the possibility of a unit integral representation. Estimation of the models

(78) and (79) is obtained by ordinary least squares, and computed numerically

on a fine discretization of the data.

Note that the regression coefficients of the proposed model and of the alter-

native ones cannot be directly compared, and so their estimates. Thus, the results

of the three methods shall be compared in terms of (i) goodness of fit on the (si-

mulated) response in Figure 14a and (ii) quality of predictions in correspondence

of 20 equally spaced new values of the regressors x in [0, 30] (Figure 14b).

Figure 14 shows the results obtained when using the Bayes space methodo-

logy. In particular, it shows that the proposed method reproduces precisely the

parameters β generating the model (Figure 14e).

In fact, very different results are obtained when using the geometry of L2(λ)

(Figure 15). The model in L2(λ) clearly provides poorer estimations since fitted

(Figure 15a) as well as predicted responses (Figure 15b) do not follow the integral

constraint and exhibit negative values. Moreover, the difference between predicted

curves in L2(λ) and in B2(λ) is evident, the latter being much more precise in

representing the reference realizations. Here, predictions have greater variance

around the mean for increasing values of the regressor x and they are more

elongated in their amplitude which is also a consequence of analysing densities

on an absolute scale.

Using a log-transformation allows to improve the results both in terms of

fitting and of prediction with respect to a L2 approach (see Figure 16), as the

resulting densities are guaranteed to be positive. However, fitted and predicted

55



−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

de
ns

ity

(a) Simulated response.

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

t

de
ns

ity
(b) Target realization to be predicted.

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

de
ns

ity

(c) Fitted response y, in B2(λ).
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(d) Predicted response y, in B2(λ).
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(e) True (grey line) and estimated (blue
line) parameters.

Figure 14: Fitted response and estimated parameters in B2(λ) space. Vertical
dashed grey lines indicate partition of interval Ω with 10 classes.
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(a) Fitted response y, in L2(λ).
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(b) Predicted response y, in L2(λ).

Figure 15: Fitted and predicted model in L2(λ) space.
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(a) Fitted response y, using log-
transformation.
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(b) Predicted response y, using log-
transformation.

Figure 16: Fitted and predicted model in L2(λ) space using log-transformation.

responses do not honor the unit integral constraint, thus providing unsatisfactory

results.

3.4 Application: modeling metabolite distributions in new-

borns

The data used in this example are part of a standard newborn screening done

in 2013 in the Laboratory of Inherited Metabolic Disorders, in the Department

of Clinical Biochemistry of the Faculty Hospital in Olomouc. Here, the weight

and gender of every newborn are observed, together with 48 metabolic parame-

ters (so-called metabolites) measured from dried blood spots of each newborn.

The dataset we consider collects the data about 10000 newborns with standard

weights. All the data were anonymised prior to analysis, and were not yet used
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elsewhere. Although they are not publicly available, their aggregations are given

in Appendix C. In particular, for the purpose of this example, we focus on the

metabolite C18, which is presumed to be closely connected with the weight of

newborns. More in general, newborn screening is a nationwide active search of

diseases in their early, preclinical stage, so that these diseases are diagnosed and

treated before they may impact a child and cause irreversible health damage. The

screening is based on the analysis of dried blood spots on filter paper; blood is

taken under defined conditions for all newborns born in the Czech Republic and

18 diseases are investigated.

For the purpose of modeling the dependence of C18 distribution on weight

through functional regression models, the C18 distribution was assessed from

sampled data as follows. The values of the logarithm of C18 were divided into

10 groups of equal size according to the logarithm of weight, and represented by

the midpoint of the corresponding interval of weights, separately for girls (g) and

boys (b). In order to exclude extreme values of concentration of the metabolite,

the measurements under the bottom 0.5%-quantile and above the upper 99.5%-

quantile were omitted. In each of the N = 10 groups, the distribution of log(C18)

was estimated empirically, by dividing in equally spaced classes and computing

the frequency within each class. The number of optimal classes were computed as

previously based on Sturges’ rule, resulting in mean value 9.93 for girls and 9.94

for boys. Hence, for both girls and boys we built D = 10 equally spaced classes on

the ranges Ωg = [−2.936,−0.939] and Ωb = [−2.813,−0.763]. Tables 8 and 9 in

Appendix C list the vectors of proportions Wi = (Wi1, . . . ,WiD)′, i = 1, . . . , D, of

log(C18) within each group of weights, together with the midpoints of the classes

tj, j = 1, . . . , 10 (index i is omitted for the midpoints values as they coincide

in all N = 10 weight groups). In this setting, since the vectors of proportions

– histogram data – are constructed upon the same partition of the intervals,

Ωg and Ωb, respectively, with equally-spaced breakpoints, they can be directly

used in order to get real vectors of clr transforms of raw density functions for

all N = 10 groups, for both girls and boys, respectively. It results in the vectors

zi = (zi1, . . . , ziD)′, i = 1, . . . , D, reported in Tables 10 and 11 of Appendix C.

As a second step of the analysis, the raw observations (tj, zij) within the

N = 10 weight groups were turned into the smooth density functions by using
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smoothing splines (Approach I; Section 2.2.1) with support Ωg and Ωb, for girls

and boys. In both cases (i.e., for girls and boys) the same strategy was followed

to set the values of the input parameters for smoothing procedure. We considered

quadratic splines (i.e., k = 2, l = 1) and set the number of knots by performing

leave-one-out cross-validation. The latter showed that the results are robust to

the number of equally spaced knots in the set {3, 5, 7}. The optimal smoothing

spline sk(t) on Ω was found as to minimize the penalized functional (24) with

respect to condition (25) where parameter α was set to α = 0.99 in order to

be as close as possible to input data, and the weights were set to wsj = 1, for

j = 1, . . . , D. Note that the same approximations would be obtained via com-

positional smoothing splines (Approach II; Section 2.2.2) if the setting of input

parameters of the smoothing procedure is preserved. The resulting smoothed clr

density functions clrλ(yi)(t) ∈ L2
0(λ), i = 1, ..., N , are displayed in Figure 17

together with the corresponding density functions yi(t) ∈ B2(λ), i = 1, ..., N ,

obtained by applying the inverse clr transformation to the smoothed clr functi-

ons, i.e., yi(t) = exp [clrλ(yi)] (t), i = 1, . . . , N . Data are plotted on red (in girls’

group) and blue scale (in boys’ group) distinguishing the weight groups – a low

intensity of the colors is associated with a lower weight of newborns, while its

large intensity with a higher weight of newborns.

Given that the supports of the log(C18) distribution differ between girls

and boys populations, for each of the two groups, we separately modeled the

dependence of the log(C18) distributions on log(weight) through following linear

model in B2(λ),

yi(t) = β0(t)⊕ [log(wi)� β1] (t)⊕ εi(t), i = 1, . . . , 10. (80)

By considering the same standard B-spline basis functions B3
−2(t), . . . , B3

3(t) from

L2(λ) for the response clrλ(y)(t), the regression parameters clrλ(β0)(t), clrλ(β1)(t)

and the error clrλ(ε)(t), model (80) can be written as a multivariate model for

the B-spline coefficients Y(i) = (Yi,1, . . . , Yi,6)′, in matrix form as Y = XB + ε.

The resulting estimates β̂0 = (β̂01, β̂02, · · · , β̂06)′ and β̂1 = (β̂11, β̂16, · · · , β̂16)′ for

girls and boys are listed in Table 3, together with the estimates of their standard

deviations. The corresponding estimates of the regression functions clrλ(β0)(t)

and clrλ(β1)(t) are displayed in Figure 18, together with their counterparts in
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(a) Smoothed raw density data in girls’ group.
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(b) Smoothed raw density data in in boys’ group.

Figure 17: Smoothed density functions of log concentrations of metabolite C18
(log(C18)) via optimal smoothing splines (Approach I; Section 2.2.1) in B2(λ)
(left) space and its clr transformation in L2

0(λ) (right) spaces: top panels for girls,
bottom panels for boys. Vertical dashed gray lines indicate knot positions.

B2(λ) with the same color resolution, i.e., red for girls and blue for boys.

We first focus on the interpretation of the estimated regression parame-

ters in the female group, by visual inspection of Figure 18 (top panels). We

first note that the intercept β0(t) is hardly interpretable, as it estimates the ex-

pected value of the density of log(C18) when the weight of the newborn is 1

gram. Nevertheless, the coefficient β0(t) acts as a shift in the model – in sense

of the geometry of Bayes spaces – towards a density highly concentrated in the

right tail of domain Ωg. Instead, by graphical inspection of the same figure, one

can better interpret the effects of the slope coefficient β1(t) on the response. In-

deed, if the weight of newborns increases, the predicted average distribution of

log(C18) tends to be more concentrated in the left part of the domain Ωg, and
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Estimates of regression parameters β· = (β·1, . . . , β·6)′

β̂
g
0 -17.693 -14.437 -9.227 7.573 17.487 16.553

σ̂ 7.491 5.995 3.235 3.436 3.998 7.536

β̂
g
1 1.978 1.738 1.265 -0.835 -2.235 -2.274

σ̂ 0.928 0.742 0.403 0.425 0.495 0.933

β̂
b
0 -33.132 -13.687 -7.866 5.601 21.190 24.920

σ̂ 6.828 3.054 2.028 1.984 4.572 9.292

β̂
b
1 3.912 1.660 1.105 -0.585 -2.727 -3.337

σ̂ 0.841 0.377 0.245 0.249 0.563 1.145

Table 3: Estimates of regression parameter vectors β0 and β1 with marking – g
for girls, b for boys (colourless rows), together with the corresponding estimates

of the standard deviations σ̂ =

√{
v̂ar(vec(B̂))

}
k,k

(grey rows).
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(a) Estimates of regression parameters in girls’ group.
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(b) Estimates of regression parameters in boys’ group.

Figure 18: Estimates of regression parameters. In both lines, from left to right:
estimates in L2

0(λ) (clr transformed), estimate of β0 in B2(λ), estimate of β1 in
B2(λ).
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(a) Prediction of log(C18) in girls’ group.
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(b) Prediction of log(C18) in boys’ group.

Figure 19: 2D and 3D graphs of predicted distributions of log(C18) for increasing
sequence of 20 values of log weights.

vice versa. This can be better appreciated from Figure 19, where the response

y(t) is predicted for a sequence of increasing values of the log-weights in the

interval [log(w1), log(w20)] = [log(1), log(7000)]. Note that, as the value of the

regressor increases, the predicted expected values of the log(C18) decreases while

its predicted variance increases. It can be concluded that the relative proportion

of newborns with higher concentrations of metabolite C18 decreases when wei-

ght increases, while the relative proportion of newborns with middle and lower

concentrations of C18 increases. In general, newborns with lower weight exhibit

higher concentrations of metabolite C18 whereas those with higher weight show

middle and lower concentrations of C18. Very similar conclusions can be drawn

for the males’ group, however, here the impact of lower weight on the distribution

of the metabolite seems to be even more dramatic. This indicates a more serious

impact of the underweight to a predisposition of the metabolic disease for boys.

To assess the goodness-of-fit of the model on the observed density cur-

ves, a pointwise version of the coefficient of determination R2(t), t ∈ Ω, was com-

puted based on the pointwise comparison between the predicted clr transformed
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Figure 20: Pointwise coefficient of determination – on the left for girls and on the
right for boys).

density and the actual data. Additionally, a global coefficient of determination,

denoted by R2
glob, was computed as

R2
glob =

∑N
i=1 ‖clrλ(ŷi)− clrλ(ȳ)‖2

L2(λ)∑N
i=1 ‖clrλ(yi)− clrλ(ȳ)‖2

L2(λ)

.

The latter measures the amount of the total sample variance of the yi(t) explained

by the model, in a global sense. The pointwise and the global coefficients of

determination are displayed in Figure 20. Although the graphs of pointwise R2

indicate some lack of fit in the central part of the domain, the coefficient R2
glob

reaches high values in both cases, being about 72.8% and 81.2%, thus indicating

a very good (global) fit of the model.

To support the interpretation of the parameters of the regression models, it is

desirable to incorporate uncertainty in the estimation of regression parameters.

To this end, we employed a resampling method (bootstrap), to avoid introdu-

cing strong distributional assumptions, such as Gaussianity. In particular, we

considered a bootstrap scheme based on the re-sampling of the model-residuals.

More precisely, having estimated the model, we computed the estimated residu-

als as clrλ(ε̂i) = clrλ(yi) − clrλ(ŷi). For each bootstrap repetition, we generated

the bootstrap sample clrλ(ε
boot
1 ), . . . , clrλ(ε

boot
N ) by sampling with repetition from

{clrλ(ε̂1), . . . , clrλ(ε̂N)}. We defined the corresponding bootstrap response varia-
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bles

clrλ(y
boot
i )(t) = clrλ(β0)(t) + log(wi) · clrλ(β1)(t) + clrλ(ε

boot
i )(t), i = 1, . . . , N,

and collect bootstrap sample for fixed predictor log(wi) using original estimates

β0(t) and β1(t), respectively, i.e.,

S =
[
(log(w1), clrλ(y

boot
1 )), . . . , (log(wN), clrλ(y

boot
N ))

]
.

We considered R = 200 bootstrap repetitions, which seemed sufficient for

the purpose of uncertainty assessment. For each bootstrap sample, we fitted the

model and obtained the corresponding estimates of the parameters, denoted by

(β̂boot0r , β̂boot1r ), for r = 1, ..., R. The estimated β’s and the bootstrap repetitions are

displayed in Figure 21a and 22a.

We then used these bootstrap outputs (β̂boot0r , β̂boot1r )r=1,...,R to quantify the

uncertainty in the fitted model for fixed value of log(w). Here, two values of

weights were chosen to compute 200 fitted curves by using the estimates obtained

by the bootstrap procedure. The results are displayed in Figure 21 and 22, panels

(b) and (c). In both cases, interesting patterns appear by observing the figures, as

most of the uncertainty in β0 is shown in the right part of the domain, whereas for

β1 it is mostly present in the left part of the domain. For the girls’ case, Figure 21c

indicates poor fitting for observed distribution corresponding to log(w5) which can

be also read from pointwise evaluated coefficient of determination (see Figure 20).

This can indicate that response might depend on other regressors, not available

in this study.

Finally, a leave-one-out cross-validation analysis was conducted to assess

the goodness of the model in terms of prediction performances. The latter were

assessed by computing the mean squared error

MSECV =

1
N

∑N
i=1 ‖yi − ŷ

(−i)
i ‖2

B2(λ)

1
N

∑N
i=1 ‖yi‖2

B2(λ)

,

where ŷ
(−i)
i indicates the prediction of the i-th density, by using all the data

but the i-th. Results showed that the predictions of the model are satisfactory,

with a mean squared error of 4.51% for females and 5.02% for males. Results

64



−2.5 −2.0 −1.5 −1.0

−30

−20

−10

0

10

20

30

log(C18)

cl
r(

de
ns

ity
)

clr(β̂0)(t)
clr(β̂1)(t)

−2.5 −2.0 −1.5 −1.0

0

20

40

60

80

log(C18)
de

ns
ity

β̂0(t)

−2.5 −2.0 −1.5 −1.0

0

2

4

6

8

10

log(C18)

de
ns

ity

β̂1(t)

(a) Bootstrap estimates of regression parameters.
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(b) Bootstrap estimates of the distributional response for w1.
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(c) Bootstrap estimates of the distributional response for w5.

Figure 21: Bootstrap results for the girls’ group. In panels (a): red curves indicate
estimates of regression parameters, grey lines indicate the R = 200 bootstrap
estimates for both the regression parameters. In panels (b) and (c): red curves
indicate observed distributions for w1 (panel (b)) and w5 (panel (b)), green curves
indicate the fitted distribution for w1 and w5 by model (80), grey lines indicate
the corresponding fitted distributions obtained by bootstrap procedure.
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(c) Bootstrap estimates of the distributional response for w5.

Figure 22: Bootstrap results for the boys’ group. In panels (a): blue curves indicate
estimates of regression parameters, grey lines indicate the R = 200 bootstrap
estimates for both the regression parameters. In panels (b) and (c): blue curves
indicate observed distributions for w1 (panel (b)) and w5 (panel (b)), green curves
indicate the fitted distribution for w1 and w5 by model (80), grey lines indicate
the corresponding fitted distributions obtained by bootstrap procedure.
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with a different number of knots for the B-spline basis (namely 3,5,7) were not

significantly different (females: 4.16%, 5.17%; males: 5.94%, 4.94%; for 3,7 knots

respectively), confirming the robustness of the method to the choice of these

parameters.
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4 Weighted Bayes spaces

The weighting of a domain of PDFs can be relevant in practice, as rarely all

regions of the domain have the same importance or relevance for the analysis.

For example, it is known that in particle-size distributions [29, 30, 31], finer

fractions of soil are measured for some methods with lower reliability than crude

fractions [16], which implies naturally higher relevance of the latter and their

respective subdomain. Another example is represented by income distributions

across various regions (see Section 5.2). The lower-income values are going to be

of primary interest for policy makers when the aim is to reveal regions suffering

from poverty. In addition, here the relative scale, which implies a larger impact

of changes in small income values, matters and should be highlighted. And yet

another reason why weighting can be convenient is to analyze deviations from

a common trend in data. All these cases can benefit from a sensible weighting

scheme which gives more relevance to certain regions of the domain of the PDF

when conducting functional data analysis.

Weighted Bayes spaces refer to Bayes spaces with the reference measure

other than the uniform one. The name weighted Bayes spaces reflects the fact

that changing the uniform reference measure induces a (non-uniform) weighting

of the domain of PDFs. Linking a weighting scheme to a non-uniform reference

measure has been already discussed for multivariate compositions in [13]. As

mentioned previously, rarely all regions of the domain (compositional parts in

the multivariate case) have the same importance. Such weighting can be indeed

relevant to consider a relative scale on the domain of a distributional variable [26].

For instance, coming back to the example of income distributions, changes in the

low-income stratum (e.g. an increase of 100 e for an income of 1000 e per month)

are typically of greater importance than the same absolute differences for higher

earners (e.g. increase of 100 e for an income of 10,000 e per month). Accordingly,

a sensible weighting strategy may be aimed at emphasizing the variability in the

bottom of the domain. A weighting scheme can also be considered to account for

imprecise values near the detection limit of a measurement device. The choice

of the reference measure should be thus driven by the purpose of the analysis,

in order to up-weight (or down-weight) subdomains (i.e., sets of parts in the

discrete case) that may have greater (or lesser) importance for the analysis. More
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in general, data-driven weighting schemes were shown to play a crucial role for

the statistical analysis in the context of domain-selection procedures, clustering,

testing and regression of functional data (see [5, 18] for examples in L2).

Following the notation from Section 1.1, we now assume that the reference

measure of a measurable space (Ω,A) = ([a, b], B([a, b])) is fixed to a general

(probability) measure P. Then given measure µ with its P-density f = dµ/dP (i.e.,

w.r.t. the reference measure P), the probability measure of any event B ∈ B([a, b])

is

µ(B) =

∫
B
f dP =

∫
B

dµ

dP
dP.

Note that the choice of the reference measure is not scale invariant, because

it reflects on the scale of the entire Bayes space. For instance, the Lebesgue

measure on a domain Ω = [a, b] is proportional to the uniform measure P0 on Ω

(hence, it belongs to the same B-equivalence class as P0). Clearly, λ has density

dλ/dλ = 1 with respect to itself, whereas it has density dλ/dP0 = b − a w.r.t.

P0. Thus, a rescaling of the reference measure determines a rescaling of the total.

For example, when λ is considered, the total is set to λ(Ω) = b − a, whereas P0

is associated with a total equal to P0(Ω) = 1. On the other hand, once the scale

of the reference measure is fixed, the corresponding densities satisfy the scale

invariance property. For instance, having set the reference measure on Ω = [a, b]

to λ, the Lebesgue density dλ/dλ and the uniform density dP0/dλ = 1
b−a are

equivalent. This is further exemplified in Section 4.3 where a detailed simulation

study is provided. As such, it will always be necessary to specify the total mass

of the reference measure as this matters for the analysis.

Since a typical choice for P is the Lebesgue measure, restricted here to

a bounded support, it opens a question on how to change the reference from

λ to a measure P with strictly positive λ-density p = dP/dλ. This is done by

using the well-known chain rule, i.e. for a generic measure µ we have that

µ(B) =

∫
B

dµ

dλ
dλ =

∫
B

dµ

dλ
· dλ
dP

dP =

∫
B

dµ

dλ
· 1

p
dP.

Given a σ-finite measure P, the Bayes space B2(P) is a space of B-equivalence

classes of σ-finite positive measures µ with square-integrable log-density w.r.t. the
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reference measure P:

B2(P) =

{
µ ∈ B2(P) :

∫ ∣∣∣∣ln dµdP
∣∣∣∣2 dP < +∞

}
, (81)

where measures are identified with the corresponding Radon-Nikodym densities;

or, equivalently, B2(P) consists of B(P)-equivalence classes of proportional density

functions f = dµ
dP

on Ω = [a, b] whose logarithm is square-integrable w.r.t. P.

The reason for adopting a different reference measure P can be motivated by

weighting itself, but it should be also remarked that it is necessary when dealing

with PDFs on possibly unbounded supports [43].

4.1 Hilbert structure of weighted Bayes spaces

In this section, we introduce a Hilbert space geometry of weighted Bayes

spaces. That is, the definition of basic operations, perturbation and powering,

and inner product under the general reference measure P will be considered.

While both operations remain formally unchanged when changing the reference

measure, the weighting affects the inner product. Here also the absolute scale of

reference measure P matters, which corresponds to volume of the space Ω. It is

possible to express densities from the Bayes space in the L2 space (with respect

to reference measure P) using clr transformation. This, however, still leaves open

the problem of how to express the weighted densities in an unweighted L2 space.

A possible solution will be presented in Section 4.2.

Using a reference measure P, in [42] the operations of perturbation and

powering are defined as

(µ⊕P ν)(B) =B(P)

∫
B

dµ

dP
(t) · dν

dP
(t) dP(t), B ∈ B (82)

and

(α�P µ)(B) =B(P)

∫
B

(
dµ

dP
(t)

)α
dP(t), B ∈ B, (83)

where µ and ν are measures in B2(P) and α is a real number. Moreover, all

the measures µ, ν, λ and P are assumed to be well-defined. Consequently, these

operations define a vector space structure on B2(P) [42].
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The operations (82) and (83) can be equivalently expressed using the densi-

ties with respect to P. Denoting them by fP = dµ
dP

and gP = dν
dP

respectively, we

have that

(fP ⊕P gP)(t) =B(P) fP(t) · gP(t) and (α�P fP)(t) =B(P) fP(t)α.

It is easy to verify that scale invariance of the reference density p holds for

these operations. On the other hand, the scale of p is crucial for the definition of

the inner product, defined originally in [43] and redefined here for the purpose of

further developments as

〈fP, gP〉B(P) =
1

2P(Ω)

∫
Ω

∫
Ω

ln
fP(t)

fP(u)
ln
gP(t)

gP(u)
dP(t)dP(u)

=
1

2P(Ω)

∫
Ω

∫
Ω

ln
f(t)

f(u)
ln
g(t)

g(u)
· p(t) · p(u) dλ(t)dλ(u),

(84)

which endows the Bayes space B2(P) with a separable Hilbert space structure.

As a consequence, the distance between two densities fP, gP ∈ B2(P) is obtained

as

dB(P)(fP, gP) =

√
1

2P(Ω)

∫
Ω

∫
Ω

(
ln
fP(t)

fP(u)
− ln

gP(t)

gP(u)

)2

dP(t)dP(u). (85)

The reason for redefining the inner product (84) and distance (85) with

respect to [43] reflects the approach presented in the multivariate case by Egozcue

& Pawlowsky-Glahn [13], where the aim was to keep dominance under change of

reference measure. Specifically, let p0 be a uniform density of a measure P0, not

necessarily normalized to P0(Ω) = 1, supported in an interval (or compact set) I

in R (or Rm), such that

P0(I) =

∫
I

p0(t) dt < +∞.

Let p, q be densities in B2(P0) corresponding to measures P,Q such that P domi-

nates Q, P � Q, that is

P0(t ∈ I : p(t) ≥ q(t)) = P0(I).
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Then, for fP0 , gP0 ∈ B2(P0),

dB(P)(fP, gP) ≥ dB(Q)(fQ, gQ), (86)

where fP = fP0 · dP0/dP =B(P) fP0 	 pP0 and gP = gP0 · dP0/dP =B(P) gP0 	
pP0 [19]. The property (86) represents indeed the continuous counterpart to the

subcompositional dominance in compositions [33]. That is, if the volume of the

space P(I) is greater than or equal to Q(I) uniformly for any subinterval of I, then

distances in B(P) dominate distances in B(Q). An example of this is comparing

distances in a subinterval I1 ⊆ I with those in I – restrictions to subinterval

corresponding to taking subcompositions [13].

Let’s denote by L2
0(P) the closed subspace of L2(P) whose elements f0 have

zero integral
∫

Ω
f0 dP = 0. Since the Bayes space B2(P) is a Hilbert space, we

can define an isometric isomorphism (i.e. a bijective map preserving distances)

between B2(P) and L2
0(P). Such a map is provided by the centred logratio (clr)

transformation with respect to P, which is denoted by clrP and is defined for

fP ∈ B2(P) by [43] as

f cP(t) = clrP(fP)(t) = ln fP(t)− 1

P(Ω)

∫
Ω

ln fP(u) dP(u), t ∈ Ω. (87)

Its inverse mapping to B2(P) is obtained by using the exponential transformation,

exp[f cP](t) = exp[clrP(fP)](t), as shown in [43]. The clr representation allows to use

the ordinary geometry of L2(P) to conduct operations of perturbation, powering,

and inner product for the elements of B2(P), while accounting for the specific

features captured by the Bayes space. Indeed,

clrP(fP ⊕P gP) = clrP(fP) + clrP(gP), clrP(α� fP) = α · clrP(fP)(t)

and

〈fP, gP〉B2(P) = 〈clrP(fP), clrP(fP)〉L2(P) . (88)

In order to prove the relationship (88) (recall: fP, gP are elements of B2(P)), we
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develop the right-hand side of (84),

〈fP, gP〉B(P) =
1

2P(Ω)

∫
Ω

∫
Ω

[ln fP(t)− ln fP(u)] · [ln gP(t)− ln gP(u)] dP(t) dP(u)

=
1

2P(Ω)

[
2

∫
Ω

∫
Ω

ln fP(t) · ln gP(t) dP(t) dP(u)

−2

∫
Ω

∫
Ω

ln fP(t) · ln gP(u) dP(t) dP(u)

]
=

∫
Ω

ln fP(t) · ln gP(t) dP(t)− 1

P(Ω)

∫
Ω

ln fP(t) dP(t) ·
∫

Ω

ln gP(u) dP(u),

which truly equals the right-hand side of (88),

〈clrP(fP), clrP(fP)〉L2(P) =

∫
Ω

clrP(fP)(t) · clrP(gP)(t) dP(t)

=

∫
Ω

[
ln fP(t)− 1

P(Ω)

∫
Ω

ln fP(u)dP(u)

]
·
[
ln gP(t)− 1

P(Ω)

∫
Ω

ln gP(u)dP(u)

]
dP(t)

=

∫
Ω

ln fP(t) · ln gP(t) dP(t)dP(t)− 2

P(Ω)

∫
Ω

ln fP(t) dP(t) ·
∫

Ω

ln gP(u) dP(u)

+
1

P2(Ω)

∫
Ω

[∫
Ω

ln fP(u) dP(u)

∫
Ω

ln gP(u) dP(u)

]
dP(t)

=

∫
Ω

ln fP(t) · ln gP(t) dP(t)− 1

P(Ω)

∫
Ω

ln fP(t) dP(t) ·
∫

Ω

ln gP(u) dP(u),

where t, u ∈ Ω. As pointed out in the Sections 2.2 and 3, the zero integral con-

straint of clr transformed P-densities (
∫

Ω
clrP(fP)dP = 0) should be taken into

account for any subsequent statistical analysis.

Unlike the case of [43, Sect. 4], in this work the reference measure P in

L2
0(P) is not necessarily a probability measure, as its normalization may lead to

incoherent results when restricting the analysis to a subdomain of the original

domain Ω (as was shown in the discrete case [13]).

4.2 Unweighting Bayes spaces

Most methods developed for FDA rely on the assumption that functional

data are embedded in the unweighted L2 space. However, the clr transformation
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(87) maps measures/densities in (a subspace of) a weighted space L2 space, i.e.

L2
0(P). Similarly, methods developed so far in Bayes spaces ground on the as-

sumption that a uniform reference measure is considered, as for instance in Secti-

ons 2.2 and 3. A transformation mapping P-densities from B2(P) to an unweighted

counterpart of L2
0(P) would have the advantage of allowing the use of most FDA

methods while accounting for the weighted Bayes structure of the data. Similarly,

a transformation mapping P-densities from B2(P) to an unweighted space B2(λ)

would allow for the use of unweighted methods to perform actual computations.

In this subsection, we derive an unweighting scheme allowing one to represent

the weighted Bayes space geometry in an unweighted Bayes space, as well as in

an unweighted L2 space.

We thus aim to define three mappings. Firstly, we define ω from B2(λ) to

B2(P) as a weighting map associating an unweighted λ-density to a weighted P-

density. Inversely, ω−1 is interpreted as an unweighting map. Similarly, we define

ω2 and its inverse ω−1
2 which play the same role between the unweighted and

weighted L2 spaces, i.e. L2(λ) and L2(P) respectively. Finally, we define clru

(unweighting clr) such that, for fP ∈ B2(P),

clru(fP ⊕P gP) = clru(fP) + clru(gP), clru(α� fP) = α ·P tPclru(fP)(t)

and

〈fP, gP〉B2(P) = 〈clru(fP), clru(fP)〉L2(λ) . (89)

To support this construction and study the properties of these maps, we shall use

an auxiliary measure
√
P defined as

√
P(A) =

∫
A

√
p dλ, A ∈ A.

This measure plays the role of unweighting measure, in the sense that it allows

to consistently map the weighted Bayes space B2(P) into a subset of the unwei-

ghted L2 space. We refer the reader to the scheme in Figure 23 as a concise

representation of these relationships.

We define the B2-weighting map ω as

ω : B2(λ)→ B2(P)

ϕ 7→ ω(ϕ) = ϕ1/
√
p,

(90)
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Figure 23: Relationships among weighted and unweighted Bayes spaces, B2(P)
and B2(λ), and weighted and unweighted L2(P) and L2(λ) spaces.

where p = dP
dλ

(recall: p is assumed to be strictly positive in Ω). In (90), the map

ω is formulated for measures, but it can be equivalently expressed using densi-

ties with respect to respective reference measures. This map defines a bijection

between B2(λ) and B2(P), as proved in the following proposition.

Proposition 4.2.1 The map ω defined in (90) is one-to-one and onto.

Proof. For ϕ ∈ B2(λ), let be ω(ϕ) = ϕ1/
√
p. Clearly, ω(ϕ) is uniquely defined.

Then ω(ϕ) ∈ B2(P) due to∫
Ω

ln2(ϕ) dλ =

∫
Ω

ln2[ω(ϕ)
√
p] dλ =

∫
Ω

ln2[ω(ϕ)]p dλ =

∫
Ω

ln2[ω(ϕ)] dP.

Inversely, for ω(ϕ) ∈ B2(P), let be ϕ = ω(ϕ)
√
p. Then, based on the same argu-

ments, it results that ϕ ∈ B2(λ). 2

The inverse ω−1 is defined as ω−1(ψ) = ψ
√
p and it is interpreted as a B2-

unweighting map. It is represented in the bottom left part of the scheme in

Figure 23. Obviously, both ω and ω−1 depend on the scale of P.

We define the L2-weighting map ω2 as

ω2 : L2(λ) → L2(P)

η 7→ ω(η) = η/
√
p.
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Using the same rationale as for Proposition 4.2.1, it can be proved that ω2 defines

a bijection between L2(λ) and L2(P). Its inverse ω−1
2 is defined as ω−1

2 (ξ) = ξ
√
p

and it is interpreted as a L2-unweighting map. It is represented in the bottom

right part of the scheme in Figure 23. Note that ω is non-linear with respect to

the Bayes space geometry, as well as ω2 is non-linear in L2.

Using (84), the map clru : B2(P)→ L2(λ) can be then defined as

clru(fP) = ω−1
2 [clrP(fP)]. (91)

It can be proven that (91) fulfills all the properties detailed in (89). Note that

the scale of clru depends on the scale of
√
p, hence on the scale of

√
P, because of

the non-linearity of ω2 (see [10] for the case of finite-dimensional compositions).

As such, similarly to the multivariate case [13], the scale of the reference measure

is relevant in the geometry of both weighted and unweighted spaces.

It is worth noticing that clru is closely related to a different centered logratio

transformation. This is defined on the unweighted space B2(λ) and induced by

the unweighting measure
√
P. Indeed, let L2

0,
√
P
(λ) be the subspace of L2(λ) such

that
∫

Ω
f d
√
P = 0 for f ∈ L2(λ). Let’s define on B2(λ) the map clr√P as

clr√P(ϕ)(t) = lnϕ(t)− 1√
P(Ω)

∫
Ω

ln[ϕ(u)] d
√
P(u), t ∈ Ω, ϕ ∈ B2(λ). (92)

In light of Proposition 4.2.1, it is easy to see that the map (92) is well defined.

For any ϕ ∈ B2(λ), we can set fP ∈ B2(P) to fP = ω(ϕ) = ϕ1/
√
p. Then, it holds

that ∫
Ω

ln[ϕ(u)] d
√
P(u) =

∫
Ω

ln[fP(u)]p(u) dλ(u) < +∞.

Moreover, for any ϕ in B2(λ), we have that clr√P(ϕ) ∈ L2
0,
√
P
(λ). The following

proposition establishes the close relationship between clru and clr√P, thus com-

pleting the scheme in Figure 23.

Proposition 4.2.2 The following statements hold true.

(i) The image of the space B2(P) under the map clru defined in (91) is L2
0,
√
P
(λ).
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(ii) The map clru coincides with the composed function clr√P ◦ ω−1, i.e.

clru(fP) = clr√P(ω−1(fP)) and fP ∈ B2(P).

(iii) The inverse of the map clr√P is clr−1√
P

: L2
0,
√
P
(λ)→ B2(λ) and is given by

clr−1√
P
(ψ) =B2(λ) exp(ψ),

for any ψ in L2
0,
√
P
.

(iv) The inverse of the map clru is clr−1
u : L2

0,
√
P
(λ)→ B2(P) and is given by

clr−1
u (ψ) =B2(P) exp[ω2(ψ)] =B2(P) ω[exp(ψ)],

for any ψ in L2
0,
√
P
.

Proof. Statement (i). Let’s denote by fP a density in B2(P). Then∫
Ω

clru(fP) d
√
P =

∫
Ω

clru(fP)
√
p dλ =

∫
Ω

clrP(fP) dP = 0,

proving the first statement.

Statement (ii). Consider fP ∈ B2(P). Then

clr√P(ω−1(fP)) = ln(f
√
p

P )− 1√
P(Ω)

∫
Ω

ln(f
√
p

P ) d
√
P =

=
√
p ln(fP)− 1√

P(Ω)

∫
Ω

ln(fP)p dλ. (93)

Let’s call ξ ∈ L2
0(P) the element ξ = clrP(fP). Since clrP is one-to-one and onto

between B2(P) and L2
0(P), it holds that fP =B2(P) exp ξ and we can rewrite

clr√P(ω−1(fP)) = ξ
√
p,

where the last term of (93) cancels because ξ ∈ L2
0(P). Considering clru, using

the same notation as before, it results that

clru(fP) =
√
p ·
[
ln(fP)− 1

P(Ω)

∫
Ω

ln(fP) dP

]
= ξ
√
p.
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Statement (iii). For ψ ∈ L2
0,
√
P
, it holds that

clr√P[exp(ψ)](u) = ln[exp(ψ)]− 1√
P(Ω)

∫
Ω

ln[exp(ψ(u))]d
√
P(u) = ψ(u),

for any u ∈ Ω.

Statement (iv). This is an obvious consequence of the previous point (iii). 2

Note that taking the B2-unweighting transformation ω−1 is indeed different

from simply changing the reference measure from P to λ. The former transfor-

mation is indeed used to represent the weighted Bayes space through an unweigh-

ted one, while preserving its weighted Hilbert geometry. In fact, as further highli-

ghted in Section 5.2, this auxiliary space may serve to enhance the interpretation

of the weighted structure. For instance, visual interpretation of a weighted density

fP in B2(P) is hindered by the need to take into account the weighting scheme

considered for the support. On the contrary, visualisation of the corresponding

unweighted density ω−1(fP) allows for the usual interpretation, yet representing

the same object – just by incorporating the weighting scheme.

As a way of example, consider the graphs in Figure 24, whose layout recalls

that of Figure 23. Figure 24b represents a uniform density with respect to the

Lebesgue measure (its density dλ/dλ = 1 is displayed as a grey line), on the

interval Ω = [0, 0.5], i.e., f(t) = 2, t ∈ Ω. Such density is embedded in B2(λ);

an equivalent representation is its clr transformation clrλ(f), which is an element

of L2
0(λ) (in fact, clr(f)(t) = 0, t ∈ Ω) and is reported in Figure 24a. To give

higher relevance to the right part of the domain with respect to the left one, one

may consider as a weighting scheme that induced by the function p(t) displayed as

a grey line in Figure 24c. Here, p(t) = dP/dλ is defined as a Gaussian density with

the mean µ = 0.5 and the standard deviation σ = 0.2, truncated to the interval

Ω, and normalized over this interval. The density f , when changing the reference

measure to P (i.e., fP = f 	 p), is no longer uniform; it is displayed as a black

curve in Figure 24c. Note that, when interpreting Figure 24c, (e.g., to compare the

mass attributed to subdomains), one should pay close attention to the weighting

scheme. The (weighted) density fP can be represented as an element of L2(P)

(black curve Figure 24d) if transformed via clrP. Even though such representation
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Figure 24: Changing the reference measure to the uniform density.

allows mapping the relative scale of B2(P) to the absolute scale of L2(P), it

still preserves the weighting scheme: in Figure 24d, the geometry still needs to

account for the weights p(t) (grey line). Figure 24e and 24f display the unweighted

counterparts of Figure 24c and 24d, i.e., ω−1(fP) and ω−1
2 (clrP(fP)) = clru(fP),

respectively. Note that they still represent the same weighted density fP but in

a different (unweighted) space, which can be used for the purpose of analysis

and interpretation. For instance, Figure 24e shows that the density fP can be

interpreted as a measure giving relatively more mass to the right part of the

domain than to its left part. Such interpretation would be otherwise hard to

argue from Figure 24c. Finally, note that the densities f (black line in Figure

24b) and ω−1(fP) (black line in Figure 24e) are markedly different, being in fact

representatives of different weighting schemes.

It is also clear that, as long as the Lebesgue reference measure is concerned

(P(Ω) = λ([a, b])), the transformations clru and clrP coincide, and they reduce

to the clr transformation clrλ (13). Note, however, that this would not be true

for reference measures proportional to the Lebesgue one, because the scale of the

reference does have an impact on the Hilbert geometry.

The above considerations have a direct impact on applications. For a sample

of densities f1, . . . , fN to be analyzed with respect to a reference measure P, the

following strategy can be adopted:

1. Set the reference measure P.
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2. If the PDFs were given w.r.t. the Lebesgue measure, change the reference

measure from λ to P. That is, set fP,i = fi 	 p, for i = 1, . . . , N , with

fP,i ∈ B2(P).

3. Map fP,i, for i = 1, . . . , N , onto L2
0,
√
P
(λ) by using the clru transformation.

Set yi = clru(fP,i), for i = 1, . . . , N .

4. Perform the statistical analysis on yi, i = 1, . . . , N , using unweighted L2
0

(L2
0,
√
P
(λ)) methods.

5. If the results needs to be given in terms of densities, use the inverse transfor-

mation exp[clru(fP)] to express the results in the unweighted space B2(λ),

where they can be easily interpreted.

This strategy is further illustrated in Section 5, which presents a dimensionality

reduction method in weighted Bayes spaces.

4.3 Changing the reference measure: the consequences for

density data using simulated densities from exponen-

tial families

To examine the effects of changing the reference measure, we simulate densi-

ties from two exponential families and analyze them with respect to different

reference measures – Lebesgue, uniform (as its normalized counterpart) and ex-

ponential measures. While the first two reference measures represent equal wei-

ghting on the respective domains, the last one is an example of down-weighting

the right-hand side of domain, possibly to stress the relative scale along the do-

main of the data as motivated by the income data application mentioned at the

beginning of the chapter.

Inspired by the case study presented in Section 5.2, we consider a set of

(truncated) log-normal densities with means µi = 0.6+0.25 · (i−1) and standard

deviations σj = 0.5 + 0.07 · (j − 1) for i, j = 1, . . . , 9, on the interval Ω = [1, 10].

They are represented with respect to the Lebesgue measure and displayed in

Figure 25a, where the color scale follows the index κ = j + 9(i− 1), i, j = 1, ..., 9

(i.e. equal mean values are represented with similar colors). In this case, the
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(after clrλ transformation).
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(c) B2-unweighted P0-density
functions on B2(λ).
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(λ) (after clru transfor-

mation).

Figure 25: Log-normal density functions w.r.t. the Lebesgue measure (panels
(a)-(b)) and w.r.t. the uniform measure P0 (panels (c)-(d)), with parameters
µi = 0.6 + 0.25 · (i− 1) and σj = 0.5 + 0.07 · (j− 1) for i, j = 1, . . . , 9, Ω = [1, 10].
Black curves indicate the corresponding mean functions.

transformations clrP and clru coincide (Figure 25b), and they are obtained as

f cλ(t;µi, σj) =− ln2 t

2σ2
j

+

(
−1 +

µi
σ2
j

)(
ln t− 10

9
· ln 10 + 9

)
+

+
1

σ2
j

(
1 +

5

9
· ln2 10− 9

10
ln 10

)
, t ∈ Ω.

(94)

To appreciate the influence of changing the scale of the reference measure,

we set P0 to be the uniform measure on Ω, P0 = λ/9 (with density p0(t) =

1/9, for t ∈ Ω). The log-normal densities w.r.t. P0 are proportional to those in

Figure 25a, which is precisely the scaling effect induced by the reference measure.

The clrP0 representations of the P0-densities coincide with those in Figure 25b;

however, the former are embedded in L2(P0), whereas the latter do so in L2(λ).

As such, a different scale is actually characterizing the two Bayes spaces. The
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Figure 26: Covariance functions of log-normal λ-densities (left) and log-normal
P0-densities (right). To appreciate the similarity between covariance structures,
colors are not given on the same scale.

clru transformed densities, i.e. yi = (1/3) · clrP0(fP0,i) – which is an element

of L2
0,
√
P0

– are displayed in Figure 25d. Here, the different scales of the two

spaces are apparent. Finally, Figure 25c displays the B2-unweighted densities, i.e.,

ω−1(fP0,i) = (fP0,i)
3, which are now elements of B2(λ). A graphical representation

like in Figure 25c may be very convenient in applications, as it allows to visually

neglect the weighting of the domain when observing the figure.

Visual inspection of Figure 25c suggests that the scaling of the reference

measure by α > 1 (or α < 1) results in a shrinkage (or expansion) of the corre-

sponding Bayes space. The shrinkage of the Bayes space can be readily observed

by comparing Figures 25b and 25d (note that these representations are compara-

ble because they are referred to the same reference λ). This is also well reflected

in the covariance functions (Figure 26); indeed, the covariance structure is pre-

served but it differs in the scale. Here, the variability of the data, when these

are embedded in B2(λ) (resp. B2(P0)), is concentrated on the boundaries of the

domain Ω. Particularly being more dominant in its left-hand side, where the

densities display larger relative differences. Analogous conclusion can be derived

from Figures 25b and 25d respectively, but note that these graphs are interpreted

in terms of absolute differences among curves in agreement with the L2 geometry

considered therein.

For the same log-normal densities, an exponential reference measure Pδ was

also considered, setting their densities to pδ(t) =B(λ) exp {−δ · t}, t ∈ Ω, with

δ in {0.25, 0.75, 1.25}. Note that, for increasing values of δ, the reference gives
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increasing weight to the left-hand side of the domain Ω. In order to obtain com-

parable results in terms of scales, the reference measures were all considered as

normalized to unity. Figure 27 depicts the resulting log-normal densities w.r.t. P,

fP(t;µi, σj) =B(P)
1

t
· exp

{
− ln t− µi

2σ2
j

+ δ · t
}
, t ∈ Ω,

as well as their counterparts in L2
0(P) and L2

0,
√
P
(λ). As expected, by down-

weighting the right-hand side of the domain (i.e. increasing δ), the variability

in the tails on the right is eventually completely masked, whereas the opposite

trend can be observed in the tails on the left. This is apparent when comparing

the log-normal densities (Figure 27e) and the corresponding covariance functions

(Figures 26 and 28).

To see the weighting effects on densities whose major source of (relative)

variability is in the right-hand side of domain, truncated Weibull densities with

the support on Ω = [1, 8] are considered, namely

fλ(t; νi, θj) =B(λ)

(
t

νi

)θj−1

· exp

{
−
(
t

νi

)θj}
, t ∈ Ω,

with shape and scale parameters set to θj = 1 + 0.1 · (j − 1) and νi = 1 +

0.6 · (i − 1)), i, j = 1, . . . , 10 respectively. The main source of variability in the

latter densities is primarily displayed in the right part of the boundary, as shown

in Figure 30a and Figure 30b. Figure 29 illustrates the behavior of densities

when the reference measure is changed to an exponential measure P = Pδ with

δ ∈ {0.25, 0.75, 1.50},

fP(t; νi, θj) =B(P)
fλ(t; νi, θj)

pδ(t)
=B(P)

(
t

νi

)θj−1

· exp

{
−
(
t

νi

)θj
+ δt

}
, t ∈ Ω.

(95)

As before, the variability driven by the right tails of the distribution is reduced

and becomes significantly higher in the left. In addition, for an extreme weighting

(δ = 1.50) some differences are evidenced even in the central part of distributi-

ons (see also Figure 30, where the covariance structure of weighted densities is

reported).
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(a) λ-density functions on B2(λ) together with the exponential reference densities
Pδ(blue curves).
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(b) P-density functions on B2(P) (fP,ij), for the exponential reference densities P = Pδ.
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(c) clrP transformation of the P-density functions on L2(P) (clrP(fP,ij)), for P = Pδ.
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(d) B2-unweighted version of P-density functions on B2(λ) (obtained as ω−1(fP,ij)), for

P = Pδ.
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(e) clru transformation of P-density functions in L2
0,
√
P
(λ) (obtained as clru(fP,ij)), for

P = Pδ.

Figure 27: Log-normal density functions with respect to exponential reference
measures with δ = 0.25 (first column), δ = 0.75 (second column) and δ = 1.25
(third column) for parameters µi = 0.6 + 0.25 · (i− 1) and σj = 0.5 + 0.07 · (j− 1)
for i, j = 1, . . . , 9 on Ω = [1, 10]. 84
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(a) Pδ, δ = 0.25
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(b) Pδ, δ = 0.75
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(c) Pδ, δ = 1.25

Figure 28: Comparison of covariance functions for log-normal densities w.r.t. the
exponential reference measure for different values of parameter δ. To appreciate
the patterns of the covariance structures, colors are not given on the same scale.
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(a) B2-unweighted version of P-density functions on B2(λ) (obtained as ω−1(fP,ij)) and
their clru-transformation in L2

0,
√
P
(λ) (obtained as clru(fP,ij)), for P = P0.
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(b) B2-unweighted version of P-density functions on B2(λ) (obtained as ω−1(fP,ij)) and

their clru-transformation in L2
0,
√
P
(λ) (obtained as clru(fP,ij)), for P = Pδ, δ = 0.25.
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(c) B2-unweighted version of P-density functions on B2(λ) (obtained as ω−1(fP,ij)) and

their clru-transformation in L2
0,
√
P
(λ) (obtained as clru(fP,ij)), for P = Pδ, δ = 0.75.
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(d) B2-unweighted version of P-density functions on B2(λ) (obtained as ω−1(fP,ij)) and

their clru-transformation in L2
0,
√
P
(λ) (obtained as clru(fP,ij)), for P = Pδ, δ = 1.50.

Figure 29: Weibull density functions in case of (1) uniform measure (P = P0) and
(2) exponential reference measures (P = Pδ, δ ∈ {0.25, 0.75, 1.50}) for parameters
θj = 1 + 0.1 · (j − 1) and νi = 1 + 0.6 · (i − 1) for i, j = 1, . . . , 10 on Ω = [1, 8].
The black curves indicate respective mean functions.
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(a) P = λ
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(b) P = P0
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(c) P = Pδ, δ = 0.25
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(d) P = Pδ, δ = 0.75
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(e) P = Pδ, δ = 1.50

Figure 30: Comparison of covariance functions for simulated Weibull densities
w.r.t. Lebesgue, uniform and the exponential reference measure for different va-
lues of parameter δ.
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5 Statistical methods in weighted Bayes spaces:

weighted SFPCA

Simplicial functional principal component analysis (SFPCA, [21]) was re-

cently introduced to adapt the well-known functional principal component ana-

lysis [36] to density functions. It is grounded on the theory of Bayes spaces and

assumes that the Lebesgue measure is set as a reference measure. SFPCA aims

to explore the main modes of relative variability in a sample of density data

and can be used to suggest a possible dimensionality reduction of a dataset of

PDFs. In this section, we extend the SFPCA to its weighted version, named he-

reafter wSFPCA. Besides its relevance in applications, this extension serves as

an illustrative example of the strategy detailed in Section 4.2.

Let’s denote by f1, . . . , fN an i.i.d. sample in B2(λ). After selecting the re-

ference measure P with λ-density p, a sample fP,i = fi 	 p, for i = 1, . . . , N ,

in B2(P) is obtained. We assume without loss of generality this sample is mean-

centered. If this is not the case, it is enough to consider f̃P,i = fP,i	 f̄P, where f̄P

stands for the (weighted) sample mean of the observed (weighted) densities

f̄P =
1

N
�P

⊕
P

N

i=1
fP,i.

Note that the centering operation shifts the center of the sample to the neutral

element of the (weighted) perturbation operation, that is, the uniform density on

B2(P).

The aim of wSFPCA is to identify a collection of orthogonal and normalized

P-density functions {ξP,j}j≥1 in B2(P) corresponding to the directions in B2(P)

along which the dataset displays its main modes of variability. These directions

are called weighted simplicial functional principal components (wSFPCs), and

they are obtained by maximizing the following objective function

N∑
i=1

〈fP,i, ξP〉2B(P) subject to ‖ξP‖B(P) = 1; with 〈ξP, ξP,k〉B(P) = 0, k < j, (96)

over ξP in B2(P), where 〈fP,i, ξP〉B(P) is the projection of fP,i along the direction

in B2(P) identified by ξP, i.e., coordinate of fP (Fourier coefficient). The ortho-

88



gonality condition has only to be fulfilled for j ≥ 2, and guarantees that the jth

wSFPC ξP,j is orthogonal to the first j − 1 wSFPCs.

Since B2(P) is a Hilbert space, the solution of the maximization problem

(96) exists and is unique for all j ∈ {1, 2, . . . , N − 1}. It coincides with the set of

eigenfunctions associated with the ordered eigenvalues of the sample covariance

operator V : B2(P)→ B2(P), defined for ξP ∈ B2(P) as

V ξP =
1

N
�P

⊕
P

N

i=1
〈fP,i, ξP〉B(P) �P fP,i. (97)

The jth wSFPC ξP,j is thus obtained by solving the eigenequation V ξP,j = ρj �P

ξP,j. The N − 1 eigenvalues ρ1 ≥ . . . ≥ ρN−1 represent the variability of the

dataset along the directions of the associated eigenfunctions ξP,1, . . . , ξP,N−1.

From the practical viewpoint, it is desirable to restate the problem of fin-

ding the eigenpairs (ξP,j, ρj), j = 1, . . . , N − 1, in B2(P) in terms of the unwei-

ghted L2 spaces, i.e. L2
0,
√
P
(λ), where well-established computational methods

are available. To this end, consider the clru transformation of the data, i.e.

clru(fP,1), . . . , clru(fP,N). Following the same arguments of [21], one can easily

prove that performing a functional principal component analysis of the transfor-

med dataset in L2
0,
√
P
(λ) yields the eigenpairs (clru(ξP,j), ρj) , j = 1, . . . , N − 1.

The resulting eigenfunctions clru(ξP,j) can be eventually transformed back into

B2(P), or into the unweighted B2(λ), by using the corresponding inverse clr trans-

formation (i.e. clr−1
u or clr−1√

P
respectively) to proceed with interpretation in the

original space.

The results of wSFPCA can be interpreted, e.g. by analyzing the principal

component scores, which are useful to inspect the relationships among observati-

ons. Note that the score fij is a projection of the (centered) observation fP,i

along the direction ξP,j, i.e. fij = 〈fP,i, ξP,j〉B(P) = 〈clru(fP,i), clru(ξP,j)〉L2(λ), and

thus the scores coincide in B2(P) and L2(λ). It is useful to visualize the mean

density perturbed by the jth wSFPC ξP,j powered by a suitable coefficient. This

represents the variability around the mean function along the direction of a given

wSFPC, and can support the analyst in the definition of a weighting strategy

for the dataset at hand. Indeed, in the context of general reference measures,
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the wSFPCs can be plotted and interpreted to see the effect of weighting the

domain of the distributional variable according to alternative reference measures.

Finally, for the purpose of dimensionality reduction, the number of wSFPCs to

be retained can be set by the commonly used scree plot. Particularly, searching

for an elbow shape or setting a threshold on the portion of variance explained by

wSFPCs as usually.

5.1 Changing the reference measure: consequences on SFPCA

using simulated densities from exponential families

In this section, the effect of changing the reference measure is further analy-

zed in the context of weighted SFPCA. The same set of log-normal densities used

in Section 4.3 is considered, by setting the reference measure to either uniform

or exponential distribution.

Both datasets considered in Section 4.3 belong to a 2-parametric exponen-

tial family which forms an affine subspace of the Bayes space whose dimension is

precisely the number of parameters [42]. This feature was highlighted in [21] for

the case of the Lebesgue reference measure. Accordingly, the original spaces can

be reconstructed (without loss of information) by the first two SFPCs (SFPC1

and SFPC2), forming an orthonormal basis of the corresponding affine subspace.

One may expect that changing the reference measure for densities in the expo-

nential family will have an impact on the wSFPCA while preserving the data

dimensionality. We also note that the results of wSFPCA under a uniform refe-

rence measure are expected to be just a rescaling of those that would be obtained

with the SFPCA of [21].

Figures 31 and 32 report the wSFPCA results on the log-normal densities

when uniform and exponential reference measures are used respectively. As ex-

pected, the first two wSFPCs represent the total variability of the dataset in all
cases.

When placing more emphasis on the left-hand side of the support Ω by incre-

asing the parameter δ of the exponential reference measure (Figure 32), the por-

tion of explained variability increases in SFPC1 (and thus decreases in SFPC2).

Regardless of the reference measure, the first clr-wSFPC suggests that the main

contribution to the total variability is associated with a contrast between the
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(c) B2-unweighted SFPC1 (solid line; 96.08%) and SFPC2 (dashed line; 3.92%) (left)
and their clru transformation (right).
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(d) B2-unweighted version of f̄P0 ⊕P0 /	P0 2
√
ρ1�P0 SFPC1 (left) and of f̄P0 ⊕P0 /	P0

2
√
ρ2 �P0 SFPC2 (right).

2 4 6 8 10

0.00
0.05
0.10
0.15
0.20
0.25

t

de
ns

ity

(e) B2-unweighted version of the
P0-densities fP0,ij .
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(f) B2-unweighted version of the
approximation of fP0,ij via SFPC1

and SFPC2.

Figure 31: Results of SFPCA for simulated log-normal densities in the case of a
uniform reference measure P0. Results in panels (c) to (f) are represented in the
unweighted spaces L2

0,
√
P0

(λ), B2(λ). By B2-unweighted version of f ∈ B2(P0) it

is meant ω−1(fP0) ∈ B2(λ).
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(a) Scores for SFPC1 and SFPC2.
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(b) clru transform of the wSFPC1 (solid line; explained variability: 96.48%, 97.80%,
98.76%) and wSFPC2 (dashed line; explained variability: 3.52%, 2.20%, 1.24%).
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(c) B2-unweighted version of f̄P ⊕P /	P 2
√
ρ1 �P wSFPC1 in B2(λ), with P = Pδ.
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(d) B2-unweighted version of f̄P ⊕P /	P 2
√
ρ2 �P wSFPC2 in B2(λ), with P = Pδ.
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(e) B2-unweighted version of the approximation of the P-densities via wSFPC1 and
wSFPC2.

Figure 32: Results of SFPCA for simulated log-normal densities in case of expo-
nential reference measures with δ = 0.25 (first column), δ = 0.75 (second column)
and δ = 1.25 (third column). By B2-unweighted version of f ∈ B2(Pδ) it is meant
ω−1(fPδ) ∈ B2(λ)
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left-hand side of the domain and the other side. It should be pointed out that clr

transformed densities always display a contrast due to the zero integral constra-

int. However, it is worth noticing that the zero-crossing point moves to the left

when the reference measure is changed using higher values of δ. The same pattern

is observed for the second clr-wSFPC since it still highlights the variability in the

left-hand side of the domain, but additionally it presents a contrast between the

central and the rest. These conclusions are further supported by Figures 31d,

32c and 32d, where, for P = P0 and P = Pδ respectively, the mean density is

perturbed (⊕P/	P) by the SFPC powered (�P) to twice the standard deviation
√
ρ along the corresponding direction ξP (i.e. f̄P⊕P /	P (2

√
ρj�P ξP,j), where the

(ρj, ξP,j) is the jth eigenpair of the covariance operator V ). These results suggest

that, when a uniform reference P0 or an exponential Pδ with δ = 0.25 are consi-

dered, the main mode of variability resides in the left-hand side of the domain.

Changing the reference measure to Pδ has the effect of inflating the variability of

the data in the central-left section of the domain (around the interval [2, 4], see

also Figure 27d), with a direct effect on the variability displayed along the first

wSFPC.

Figures 31b and 32a display the score plots of wSFPCA under a P0 and Pδ

respectively. The symbols represent the indices of the data points, with fP,ij being

represented through the index κ = j + 9(i− 1), i, j = 1, ..., 9. Recalling that the

sampling design considers µi = 0.6 + 0.25 · (i− 1) and σj = 0.5 + 0.07 · (j− 1) for

i, j = 1, . . . , 9; note that SFPC1 arranges the densities according to parameter µi

whereas SFPC2 according to parameter σj.

Finally, Figures 31f and 32e display the projection of the log-normal densities

on the basis generated by the first two wSFPCs, each represented in the unwei-

ghted B2(λ) space (i.e., after clru transformation). These results confirm that the

dimensionality of the affine spaces of B2(P), for P = P0 and P = Pδ, spanned by

the log-normal family is indeed captured by the first two wSFPCs.

Consistent results are obtained for the second data set consisting of Weibull

densities. For the sake of brevity, only evolution in exponentially weighted SFPCs

is illustrated and compared with the unweighted case in Figure 33. The plots of

the wSFPCs confirm that most of the relative variability is contained in the right

tail of the distribution (uniform case) and this effect is getting suppressed when
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(b) P = Pδ, δ = 0.25
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(c) P = Pδ, δ = 0.75
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(d) P = Pδ, δ = 1.50

Figure 33: Results of wSFPCA for simulated Weibull densities in case of uniform
and exponential reference measure with δ ∈ {0.25, 0.75, 1.50} : clru transform of
the wSFPC1 (solid line; proportion of explained variability: 99.62, 99.45, 98.78,
97.82) and of the wSFPC2 (dashed line; proportion of explained variability: 0.38,
0.55, 1.22, 2.18).

weighting is employed. Moreover, in all the cases, wSFPCA properly singles out

just two non-zero wSFPCs. However, these two components are associated with

different explained variance for different references, the wSFPC1 decreasing and

wSFPC2 increasing for increasing values of δ.

5.2 Application: weighted SFPCA of Italian income data

As an illustrative example, we apply wSFPCA to income data introduced

in Section 2.2.3. In the following, we describe the results of wSFPCA when the

reference measure is set to (i) the Lebesgue measure, (ii) the exponential measure

Pδ (Section 4.3), and (iii) the measure Pm corresponding to the unweighted sample

mean of the data as in [43]. Figure 34 displays the (ii) and (iii) cases, together

with the corresponding B2-unweighted densities (ω−1(fP)). Finally, as (iv) we

apply also Burr measure which is popularly used in economic studies.

SFPCA w.r.t. the Lebesgue measure SFPCA was performed by conside-

ring the Lebesgue reference measure as in [21]. The results are reported in the
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first column of Figure 35. Figure 35b displays the clrλ transform of the first two

SFPCs. The first clr-SFPC is interpreted as a contrast between the bottom band

of the income distribution (i.e., income lower than 36.6 ke) and the rest. The

second SFPC still contrasts low against high incomes, but provides further insi-

ght into differences in the central band of the distribution (i.e. for middle-income

values). These findings are also well reflected in Figure 35c-d, which displays va-

riation along the first and second SFPCs respectively with respect to the sample

mean. Having fixed the sign of the clr-SFPC as in Figure 35b, high scores along

the first principal direction are predominantly associated with regions characteri-

zed by more low-income households than the average and, conversely, low scores

are expected for high-income regions. Similarly, Figure 35d supports the interpre-

tation of the second principal direction. From Figure 35a, the first SFPC can be

clearly associated with geographical location, as the northern and central regions

(higher incomes) appear well separated from the southern regions (lower incomes)

along this direction. Finally, the approximation of smoothed density data using

only the first SFPC is shown in Figure 35e. Comparing this with the actual data

(Figure 10b), the goodness of the approximation can be appreciated.

wSFPCA w.r.t. exponential measure An exponential reference measure

P = Pδ was used in order to emphasize the relative scale of income values, with

δ optimizing a data-driven criterion. In particular, δ maximizes regional discri-

mination along the first principal directions. We remark that other criteria may

be of interest, e.g. one may want to attain a certain rate of explained variability

by the first SFPCs, or to select the reference measure that best fits the data.

Following our criterion, Table 4 presents the classic decomposition of the total

sum of squares (SST ) into between-groups (SSB) and within-groups (SSW ) sum of

squares when the scores for the wSFPC1 using P = Pδ are modeled via a one-way

analysis of variance (ANOVA), using the Italian regions (north, center, south) as

a factor. Amongst the tested reference measures Pδ, we selected the one associated

with the highest ratio SSB/SST (i.e. the highest discrimination between groups),

which is δ = 3× 10−5. Note that we could otherwise consider Fisher’s canonical

direction as in ordinary discriminant analysis, which provides the direction of

maximum discrimination between groups.

SFPCA was performed on the dataset consisting of exponentially weighted
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(d) B2-unweighted version of P-
densities when P = Pm and their mean
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Figure 34: Income densities in case of exponential (left column) and mean refe-
rence measure (right column). By B2-unweighted version of f ∈ B2(P) it is meant
ω−1(fP) ∈ B2(λ).

distributions (Figures 34a-c). The results are reported in the second column of

Figure 35. The score plot (Figure 35a) shows that the configuration of the scores

well represents geographical locations, even though it is somehow similar to the

one obtained obtain using the Lebesgue reference measure. However, the amount

of variability explained along the first two SFPCs is higher in comparison to the

unweighted case (Figure 35b).

It is worth noticing that the interpretation of the wSFPCs appears to be

affected by the change in the reference measure. Indeed, although the first SFPC

(Figure 35b) still represents a contrast between low and high incomes households,

the second SFPC displays a contrast within the low-income group. This could

prompt further interesting economic interpretation, as this contrast might be

related to an unequal redistribution of wealth within the lower-income class. For
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SSB SSW SST SSB/SST

Uniform 1.5030 0.7130 2.2160 0.6782

Exp(1.5× 10−5) 2.1811 0.8425 3.0236 0.7214

Exp(3× 10−5) 2.3631 0.9111 3.2742 0.7217

Exp(6× 10−5) 1.8540 0.9128 2.7668 0.6701

Exp(1.2× 10−4) 0.8609 0.8515 1.7124 0.5027

Table 4: ANOVA sum of squares decomposition for the first SFPC scores based
on uniform and exponential reference measures using region as factor. The expo-
nential measures were Pδ, with δ ∈ {1.5× 10−5, 3× 10−5, 6× 10−5, 1.2× 10−4}.

instance, the (annual) poverty threshold in 2008 for a household of two members

was 11.8 ke, which is roughly half of the zero-crossing of SFPC1 and close to

the zero-crossing of SFPC2. Hence, weighting according to the relative scale of

income data could help to signaling unequal redistribution of wealth, particularly

amongst the low-income population.

wSFPCA w.r.t. the sample mean A different view is obtained when the

reference measure is set to the sample mean of the data f̄ (density w.r.t. the

Lebesgue reference measure), computed as

f̄(t) =
1

N
�

N⊕
i=1

fi(t), t ∈ Ω.

Recall that the reference measure determines the origin of the space B2(P), which

is a P-density represented by a constant function. This is unchanged when map-

ped to B2(λ) through the B2-unweighting map ω−1. For this reason, the sample

weighted mean density in B2(λ) appears as an uniform density in Figure 34d.

In this case, the representation of the B2-unweighted data (Figure 34d) provi-

des additional information about the dispersion of income distributions around

their mean. Note that this has to be interpreted as usual (unweighted) PDFs.

The distributions vary in different ways across regions: the income distributi-

ons in southern regions tend to be more concentrated than the average around

low income (the average being represented as a uniform distribution), and they

are less concentrated for higher incomes. The opposite is observed for northern

and central regions. This is also well reflected by the wSFPCA output which is

summarized in the third column of Figure 35.
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(a) Scores for SFPC1 and SFPC2
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(b) clru transform of the wSFPC1 (solid line; explained variability: 66.08, 80.99, 79.93)
and of the wSFPC2 (dashed line; explained variability: 18.14, 9.35, 13.22).
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(c) B2-unweighted version of f̄P⊕P /	P 2
√
ρ1�P wSFPC1 in B2(λ), with P = λ,Pδ,Pm
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(d) B2-unweighted version of f̄P⊕P/	P2
√
ρ2�PwSFPC2 in B2(λ), with P = λ,Pδ,Pm.
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(e) B2-unweighted version of the approximation of the P-densities via SFPC1.

Figure 35: SFPCA results for income densities in Italian regions in case of refe-
rence measure set to (1) P = λ the Lebesgue measure (first column), (2) P = Pδ

the exponential measure with δ = 3 × 10−5 (second column) and (3) P = Pm

the mean measure (third column). By B2-unweighted version of f ∈ B2(P) it is
meant ω−1(fP) ∈ B2(λ).
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Figure 36: Fitted income densities by Burr (Singh-Maddala) distribution in B2(λ)
(left) space and its clr transformation in L2

0(λ) (right) space with the same color
resolution as in the map in Figure 8; income is expressed in 103 ke.

The first wSFPC – depicted in panel (b) – still contrasts the bottom of the

distributions (income below 25.23 ke) against their middle and top. The second

wSFPC shows differences especially between the middle band of the distributions

(income in [18.77, 45.06] ke) and the top band (income over 45.06 ke). Note that

a higher dispersion of the scores wSFPC2 is observed for northern and central

regions in relation to southern regions, which appear almost constant along the

second mode of variation. In fact, wSFPC2 seems to reveal a different distribution

of wealth in the central band of the income distributions. Lombardia and Friuli

regions tend to concentrate more medium-high incomes than the mean. Contra-

rily, the Valle d’Aosta region is characterized by low-medium incomes, appearing

as an outlier along wSFPC2. The approximation of the sampled income distri-

butions by the first SFPC (capturing almost 80% of the total variability) well

reflects the data structure, as can be appreciated by comparing Figure 34d and

Figure 35e.

wSFPCA w.r.t. a Burr reference measure In economic studies, parametric

distributions are often used to represent income data. For instance, two-parameter

distributions defined on positive real line such as log-normal and Weibull distri-

butions are commonly used for this purpose [27]. We here fit the raw income data

by a three-parameter distribution known as Burr (Singh-Maddala) using the the-

ory of generalized linear models (implemented with a help of R-package VGAM;

function vglm), and having the following density

fλ(t;α, c, k) =
k · c
α

(
t

α

)c−1 [
1 +

(
t

α

)c]−k−1

, t > 0, α > 0, c > 0, k > 0,
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(b) B2-unweighted version of P-
densities when P = Pm and their
mean function (black line).

Figure 37: Burr (Singh-Maddala) income densities in case of mean reference me-
asure. By B2-unweighted version of f ∈ B2(P) it is meant ω−1(fP) ∈ B2(λ).

where c and k are the shape parameters and α is the scale parameter. We remark

that all the above-mentioned distributions come from the exponential family.

As such, the dimension of the corresponding space can be correctly determined

using the Bayes space geometry and it corresponds to the number of parameters.

The raw income data were fitted on the truncated interval Ω = [1, 117.218] ke

in order to avoid artifacts related to very low values of the fitted densities on

the left boundary of the domain Ω that would bias the subsequent statistical

processing. Figure 36 shows the fitted data. The graphical inspection of their clr

representation clearly shows that this approach might not be appropriate for all

observations, the region Valle d’Aosta clearly representing an outlier. Accordingly,

the respective region (Valle d’Aosta) could be possibly removed from further

analysis if needed.

Finally, SFPCA is performed for all fitted densities for the cases of the Lebe-

sgue measure and Burr (Singh-Maddala) mean distribution Pm (computed from

fitted data, see Figure 37), respectively. The results of SFPCA for these data sets

are reported in Figure 38. It can be noted first that negligible information is lost

since the cumulative variability captured by the first three SFPCs equals 99.85%

and 99.86%, respectively (due to possible numerical imprecision, not 100% was

achieved). The data representation did not influence the conclusions for the mean

reference (see also the third column of Figure 35), but this is no longer true if we

compare results for in the case of the Lebesgue measure (see also the first column

of Figure 35). The outlier Valle d’Aosta region, identified previously, is further

confirmed from the scree plot in panel (a), and contributes substantially to va-
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riability in the right part of the distribution (see a plot of SFPC1 in panel (b)).

However, one may appreciate that working with distributions from exponential

family guarantee the dimension of data. Indeed, the exact reconstruction of data

can be inspected from comparison of Figures 36 (left) and 37 (right) with 38e.

Both the exponential and sample mean reference measures used above can be

considered as data-driven. The former is particularly suitable for income densities,

because it reflects the relative scale of income data, and the parameter of the

exponential density can be determined by optimizing a data-driven criterion –

here set in the framework of SFPCA (see Table 4). However, the sample mean

f̄(t) itself may be more appropriate as a default choice of the reference measure.

In this case, the input data are directly used to drive the choice of the reference,

highlighting departures from the mean trend in the data. A more general setting

f̄(t)α (possibly rescaled to a given integral constraint representation to achieve

comparability) can be also considered, where α is a real parameter to be set by the

analyst. Here, setting the parameter α in [0, 1] would lead to a balance between

the extreme cases of α = 0 (uniform reference) and α = 1 (sample mean). For

instance, the “compromise” choice α = 0.5 would allow focusing on the main

trend while down-weighting subdomains with lower density values on average.

This choice would also reflect a similar strategy proposed in the multivariate case

of compositional data [20], where smaller values of components are more likely to

be burdened by relative scale effects, uncertainty and, in the functional context,

also by the possible presence of count zeros [25] in the aggregated histogram data.
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(b) clru transform of the wSFPC1 (solid line; explained variability: 62.88, 77.58),
wSFPC2 (dashed line; explained variability: 32.76, 19.26) and wSFPC3 (dotted line;
explained variability: 4.20, 3.00).
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(c) B2-unweighted version of f̄P ⊕P /	P 2
√
ρ1 �P wSFPC1 in B2(λ), with P = λ,Pm.
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(d) B2-unweighted version of f̄P ⊕P /	P 2
√
ρ2 �P wSFPC2 in B2(λ), with P = λ,Pm.
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(e) B2-unweighted version of the approximation of the P-densities via SFPC1, SFPC2
and SFPC3.

Figure 38: SFPCA results for fitted income densities in Italian regions by Burr
(Singh-Maddala) distribution in case of reference measure set to (1) P = λ the
Lebesgue measure (first column) and (2) P = Pm the mean measure (second
column). By B2-unweighted version of f ∈ B2(P) it is meant ω−1(fP) ∈ B2(λ). In
panel (a), the same numbering of the regions is used as in the map in Figure 8.
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Conclusions

The focus of this work was to develop statistical methods for the analysis

of functional data carrying relative information – probability density functions,

defined on a bounded domain. These methods are grounded on the theory of

Bayes Hilbert spaces, capturing all key inherent features of densities (i.e., scale

invariance, relative scale), and they extend the well-known results of FDA to

density functions.

In Section 2, we considered the problem of statistical preprocessing of densi-

ties using spline functions, performed in the clr space. Firstly, we recalled opti-

mal smoothing splines for clr transformed density functions as proposed in [23].

Here, we proved a new key result to characterize B-spline representation of clr

transformed densities using standard B-spline basis system in terms of a linear

constraint on the B-spline basis coefficients. Nevertheless, it was recognized that

using the standard B-spline basis system for approximation of density functions

in clr space has some limitations since the basis elements do not belong to the L2
0

space. Therefore, this approach was updated by proposing a new class of com-

positional splines which enable to construct a B-spline basis directly in the clr

space of density functions (ZB-spline basis system) and, consequently, also in the

original space of densities (CB-spline basis system). Accordingly, compositional

splines can be implemented instead of the standard ones into FDA methods for

statistical processing of density functions. Also further tuning of the compositio-

nal splines is possible, here represented by the smoothing compositional splines

or by orthonormalization of the ZB-basis systems. As for future research, it could

be attractive to generalize the methodology of compositional splines even for

multidimensional density functions.

In Section 3, a novel approach to perform functional regression when the

response is a density function using the Bayes space methodology was develo-

ped. For the actual estimation of the regression coefficients, an approach based

on B-spline expansion of clr transformed density functions was proposed. This

expansion enables to control the smoothness of the estimated regression coeffi-

cients (density functions) through the smoothness of the B-spline representation

of the response. On the other hand, it turned out that the linear constraint on

B-spline basis coefficients (using the former approach for B-spline expansion of
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PFDs) induces the singularity problem into the regression model. Nevertheless,

this can be overcome by using the compositional splines which lead to expression

of PDFs through a set of unconstrained coefficients. Such representation can be

then further used for the purpose of inference on the coefficients using proper

functional tests.

The role of reference measure in Bayes spaces was discussed in Section 4,

specially, a novel weighting approach to probability density functions was propo-

sed. An advanced weighting scheme was developed which enables to link weighted

Bayes spaces to unweighted B2 and the L2 spaces. The advantage of representing

weighted densities in an unweighted space is demonstrated by the possibility of

(i) making comparisons of densities arising from different weighting criteria, and

(ii) visually interpret the results through ordinary ‘unweighted eyes’. In fact, the

proposed framework allows to perform statistical processing in weighted Bayes

spaces by using simply popular (unweighted) methods, which were developed for

FDA. In the final Section 5, this strategy has been demonstrated by extending

a dimensionality reduction method (SFPCA) to the weighted case. Nevertheless,

other methods could be considered as well, such as clustering, regression, spatial

prediction techniques, etc. We finally stress that considering different weighting

schemes can be particularly relevant in statistical applications, i.e., (i) to ac-

count for different degrees of uncertainty across the domain of the data, (ii) to

incorporate prior knowledge about the phenomenon or (iii) to perform domain

selection.

I truly hope that the presented thesis helps to expand the Bayes space me-

thodology for statistical processing of density functions and that it will be a mo-

tivation to propose other statistical methods for analyzing PDFs such as outlier

detection and related anomaly detection, classification or functional regression

with densities playing the role of the response and/or covariates.
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Appendix A: Proof of Theorem 2.1

In the following the notation sbk (t) is used to emphasize the dependency on
vector b = (b−k, . . . , bg)

′. It is known that

b∫
a

sbk (t) dt =
[
sck+1(t)

]b
a
,

for a vector c, that is

sbk (t) =

g∑
i=−k

biB
k+1
i (t) =

d

dt

g∑
i=−k−1

ciB
k+2
i (t) =

d

dt
sck+1(t). (98)

The components of vectors b = (b−k, . . . , bg)
′ and c = (c−k−1, . . . , cg)

′ satisfy

bi = (k + 1)
ci − ci−1

λi+k+1 − λi
, i = −k, . . . , g,

so that

ci = ci−1 +
bi (λi+k+1 − λi)

k + 1
, i = −k, . . . , g.

To simplify the notation we set

di =
k + 1

λi+k+1 − λi
, i = −k, . . . , g; (99)

then

ci = ci−1 +
bi
di
, i = −k, . . . , g.

From these g + k + 1 equations it is easy to see that

cg =
bg
dg

+ · · ·+ b−k
d−k

+ c−k−1. (100)

With respect to (98) it is evident that

b∫
a

sbk (t) dt =
[
sck+1(t)

]b
a

= sck+1(λg+1)− sck+1(λ0), (101)

because a = λ0, b = λg+1. Considering the definition, properties of B-splines and
the above mentioned additional knots it follows that

sck+1(λg+1)− sck+1(λ0) = cg − c−k−1. (102)
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Thus
b∫

a

sbk (t) dt = cg − c−k−1. (103)

Now it is clear that for a spline sbk (t) ∈ S∆λ
k [a, b], sbk (t) =

g∑
i=−k

biB
k+1
i (t), the

condition
b∫

a

sbk (t) dt = 0

is fulfilled if and only if
cg = c−k−1.

From (100) it follows that

cg = c−k−1 ⇔ bg
dg

+ · · ·+ b−k
d−k

= 0.

Finally, considering the notation (99) we easily get

b∫
a

sbk (t) dt = 0 ⇔
g∑

i=−k

bi (λi+k+1 − λi) = 0.
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Appendix B: Aggregated Italian income data

Region loc. Proportions of income classes, Wi = (Wi1, . . . ,WiD)′, i = 1, . . . , N

Piemonte N 0.064 0.387 0.326 0.134 0.052 0.022 0.009 0.005 0.003

Valle d’Aosta N 0.018 0.375 0.312 0.208 0.042 0.014 0.010 0.014 0.007

Lombardia N 0.089 0.274 0.271 0.150 0.107 0.057 0.022 0.018 0.012

Trentino N 0.052 0.320 0.285 0.128 0.134 0.029 0.041 0.006 0.006

Veneto N 0.098 0.331 0.257 0.177 0.081 0.024 0.015 0.010 0.007

Friuli N 0.084 0.320 0.232 0.168 0.088 0.068 0.028 0.008 0.004

Liguria N 0.078 0.352 0.217 0.217 0.081 0.026 0.026 0.003 0.002

Emilia Romagna N 0.062 0.303 0.278 0.189 0.085 0.045 0.017 0.016 0.006

Toscana M 0.042 0.281 0.293 0.190 0.106 0.052 0.015 0.015 0.007

Umbria M 0.052 0.351 0.337 0.157 0.056 0.026 0.015 0.004 0.002

Marche M 0.115 0.401 0.219 0.150 0.061 0.032 0.014 0.006 0.003

Lazio M 0.115 0.354 0.260 0.150 0.066 0.032 0.012 0.007 0.002

Abruzzo S 0.100 0.364 0.299 0.144 0.045 0.030 0.004 0.010 0.005

Molise S 0.124 0.357 0.277 0.109 0.080 0.022 0.022 0.005 0.003

Campania S 0.238 0.483 0.169 0.066 0.019 0.016 0.006 0.002 0.001

Puglia S 0.238 0.441 0.197 0.072 0.025 0.007 0.014 0.005 0.002

Basilicata S 0.247 0.385 0.170 0.116 0.039 0.031 0.006 0.005 0.002

Calabria S 0.230 0.419 0.209 0.078 0.042 0.005 0.010 0.003 0.003

Sicilia S 0.247 0.476 0.165 0.053 0.029 0.014 0.012 0.002 0.002

Sardegna S 0.167 0.425 0.217 0.123 0.044 0.015 0.006 0.003 0.002

Midpoints of intervals tij 6574 19591 32608 45625 58641 71658 84675 97692 110709

Table 5: Proportions of D = 9 income classes in N = 20 Italian regions. The
values tij, i = 1, . . . , N, j = 1, . . . , D are the midpoints of the income subintervals
of Ω = [0, 117.22] ke.

Region loc. Raw density values, yi = (yi1, . . . , yiD)′, i = 1, . . . , N

Piemonte N 4.90e-06 2.97e-05 2.50e-05 1.03e-05 4.00e-06 1.7e-06 7.0e-07 4.0e-07 2e-07

Valle d’Aosta N 1.40e-06 2.88e-05 2.40e-05 1.60e-05 3.20e-06 1.1e-06 8.0e-07 1.1e-06 5e-07

Lombardia N 6.80e-06 2.10e-05 2.08e-05 1.15e-05 8.20e-06 4.4e-06 1.7e-06 1.4e-06 9e-07

Trentino N 4.00e-06 2.46e-05 2.19e-05 9.80e-06 1.03e-05 2.2e-06 3.1e-06 4.0e-07 4e-07

Veneto N 7.50e-06 2.54e-05 1.97e-05 1.36e-05 6.20e-06 1.8e-06 1.2e-06 8.0e-07 5e-07

Friuli N 6.40e-06 2.46e-05 1.78e-05 1.29e-05 6.80e-06 5.2e-06 2.1e-06 6.0e-07 3e-07

Liguria N 6.00e-06 2.71e-05 1.66e-05 1.66e-05 6.20e-06 2.0e-06 2.0e-06 2.0e-07 1e-07

Emilia Romagna N 4.80e-06 2.33e-05 2.13e-05 1.45e-05 6.50e-06 3.5e-06 1.3e-06 1.2e-06 4e-07

Toscana M 3.20e-06 2.16e-05 2.25e-05 1.46e-05 8.20e-06 4.0e-06 1.1e-06 1.1e-06 5e-07

Umbria M 4.00e-06 2.70e-05 2.58e-05 1.21e-05 4.30e-06 2.0e-06 1.1e-06 3.0e-07 1e-07

Marche M 8.90e-06 3.08e-05 1.68e-05 1.15e-05 4.60e-06 2.4e-06 1.1e-06 4.0e-07 2e-07

Lazio M 8.90e-06 2.72e-05 2.00e-05 1.15e-05 5.10e-06 2.5e-06 9.0e-07 6.0e-07 2e-07

Abruzzo S 7.60e-06 2.79e-05 2.29e-05 1.11e-05 3.40e-06 2.3e-06 3.0e-07 8.0e-07 4e-07

Molise S 9.50e-06 2.74e-05 2.13e-05 8.40e-06 6.20e-06 1.7e-06 1.7e-06 4.0e-07 3e-07

Campania S 1.83e-05 3.71e-05 1.29e-05 5.10e-06 1.50e-06 1.2e-06 5.0e-07 1.0e-07 1e-07

Puglia S 1.82e-05 3.39e-05 1.51e-05 5.60e-06 1.90e-06 5.0e-07 1.0e-06 3.0e-07 2e-07

Basilicata S 1.89e-05 2.96e-05 1.30e-05 8.90e-06 3.00e-06 2.4e-06 5.0e-07 4.0e-07 2e-07

Calabria S 1.77e-05 3.21e-05 1.61e-05 6.00e-06 3.20e-06 4.0e-07 8.0e-07 2.0e-07 2e-07

Sicilia S 1.90e-05 3.66e-05 1.26e-05 4.10e-06 2.30e-06 1.1e-06 9.0e-07 2.0e-07 2e-07

Sardegna S 1.28e-05 3.26e-05 1.66e-05 9.40e-06 3.40e-06 1.1e-06 4.0e-07 2.0e-07 1e-07

Midpoints of intervals tij 6574 19591 32608 45625 58641 71658 84675 97692 110709

Table 6: Histogram data in N = 20 Italian regions: yi are raw density values at
interval midpoints ti = (ti1, . . . , tiD)′ of D = 9 income classes.
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Region loc. Raw clr density values, zi = (zi1, . . . , ziD)′, i = 1, . . . , N

Piemonte N 0.534 2.339 2.167 1.276 0.336 -0.545 -1.432 -1.992 -2.685

Valle d’Aosta N -0.780 2.241 2.059 1.654 0.044 -1.026 -1.369 -1.052 -1.771

Lombardia N 0.273 1.399 1.390 0.795 0.460 -0.167 -1.127 -1.309 -1.715

Trentino N -0.011 1.799 1.683 0.882 0.927 -0.599 -0.263 -2.209 -2.209

Veneto N 0.627 1.845 1.590 1.220 0.438 -0.794 -1.236 -1.642 -2.047

Friuli N 0.401 1.739 1.417 1.095 0.448 0.190 -0.697 -1.950 -2.643

Liguria N 0.643 2.156 1.669 1.669 0.683 -0.456 -0.456 -2.646 -3.263

Emilia Romagna N 0.099 1.686 1.598 1.213 0.409 -0.219 -1.200 -1.287 -2.299

Toscana M -0.295 1.616 1.656 1.222 0.645 -0.080 -1.317 -1.317 -2.128

Umbria M 0.348 2.252 2.209 1.447 0.417 -0.345 -0.905 -2.291 -3.132

Marche M 0.961 2.206 1.603 1.223 0.317 -0.330 -1.119 -2.035 -2.826

Lazio M 0.943 2.063 1.756 1.204 0.389 -0.342 -1.298 -1.808 -2.907

Abruzzo S 0.860 2.154 1.958 1.231 0.061 -0.344 -2.342 -1.443 -2.136

Molise S 0.991 2.049 1.795 0.865 0.555 -0.744 -0.744 -2.190 -2.577

Campania S 2.260 2.970 1.916 0.976 -0.253 -0.435 -1.351 -2.738 -3.345

Puglia S 2.021 2.640 1.833 0.832 -0.235 -1.535 -0.842 -1.940 -2.774

Basilicata S 1.877 2.323 1.502 1.119 0.020 -0.203 -1.840 -2.048 -2.750

Calabria S 1.987 2.585 1.892 0.911 0.282 -1.797 -1.104 -2.316 -2.440

Sicilia S 2.114 2.771 1.708 0.573 -0.014 -0.777 -0.931 -2.722 -2.722

Sardegna S 1.670 2.603 1.931 1.364 0.335 -0.764 -1.680 -2.529 -2.930

Midpoints of intervals tij 6574 19591 32608 45625 58641 71658 84675 97692 110709

Table 7: Input data for smoothing procedure: zi are raw clr density values at
interval midpoints ti = (ti1, . . . , tiD)′ of D = 9 income classes.
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Appendix C: Aggregated concentrations of me-
tabolite C18

weight[g] log(weight) Proportions of log(C18) classes, Wi = (Wi1, . . . ,WiD)′, i = 1, . . . , D

w1 2324 7.751 0.008 0.024 0.051 0.110 0.165 0.173 0.194 0.153 0.088 0.035

w2 2793 7.935 0.010 0.029 0.076 0.130 0.214 0.223 0.165 0.091 0.045 0.017

w3 2964 7.994 0.014 0.041 0.093 0.145 0.214 0.201 0.149 0.089 0.048 0.008

w4 3095 8.037 0.015 0.040 0.079 0.152 0.252 0.168 0.152 0.083 0.042 0.015

w5 3200 8.071 0.004 0.041 0.126 0.169 0.171 0.196 0.171 0.089 0.027 0.008

w6 3309 8.105 0.008 0.052 0.107 0.147 0.200 0.172 0.182 0.095 0.031 0.006

w7 3425 8.139 0.012 0.077 0.090 0.171 0.204 0.185 0.144 0.075 0.037 0.006

w8 3549 8.175 0.025 0.045 0.117 0.187 0.251 0.179 0.096 0.051 0.033 0.016

w9 3709 8.218 0.021 0.050 0.131 0.182 0.230 0.163 0.129 0.054 0.025 0.015

w10 4103 8.319 0.021 0.054 0.114 0.186 0.269 0.164 0.106 0.046 0.033 0.006

Midpoints of intervals tj -2.836 -2.636 -2.437 -2.237 -2.037 -1.838 -1.638 -1.439 -1.239 -1.039

Table 8: Proportions of D = 10 log(C18) classes within N = 10 log(weight)
groups for girls. The values tj, j = 1, . . . , D are the midpoints of the log(C18)
subintervals of Ωb = [−2.936,−0.939].

weight[g] log(weight) Proportions of log(C18) classes, Wi = (Wi1, . . . ,WiD)′, i = 1, . . . , D

w1 2380 7.775 0.002 0.024 0.057 0.124 0.191 0.185 0.179 0.130 0.067 0.039

w2 2906 7.974 0.021 0.046 0.087 0.137 0.218 0.216 0.133 0.091 0.033 0.019

w3 3084 8.034 0.017 0.049 0.101 0.181 0.202 0.184 0.142 0.089 0.027 0.008

w4 3224 8.078 0.014 0.052 0.104 0.176 0.220 0.185 0.149 0.058 0.035 0.008

w5 3345 8.115 0.017 0.035 0.123 0.175 0.221 0.217 0.121 0.069 0.017 0.006

w6 3455 8.147 0.027 0.056 0.134 0.165 0.228 0.172 0.130 0.056 0.031 0.002

w7 3569 8.180 0.023 0.061 0.126 0.178 0.232 0.195 0.103 0.050 0.025 0.006

w8 3699 8.216 0.019 0.075 0.140 0.190 0.202 0.165 0.131 0.056 0.015 0.008

w9 3874 8.262 0.023 0.046 0.137 0.174 0.226 0.207 0.112 0.052 0.019 0.004

w10 4232 8.350 0.029 0.079 0.126 0.229 0.231 0.167 0.089 0.029 0.014 0.008

Midpoints of intervals tj -2.711 -2.506 -2.301 -2.096 -1.891 -1.685 -1.480 -1.275 -1.070 -0.865

Table 9: Proportions ofD = 10 log(C18) classes withinN = 10 log(weight) groups
for boys. The values tj, j = 1, . . . , D are midpoints of log(C18) subintervals of
Ωb = [−2.813,−0.763].
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weight[g] log(weight) Clr transformation of log(C18) classes, zi = (zi1, . . . , ziD)′, i = 1, . . . , N

w1 2324 7.751 -2.185 -1.086 -0.313 0.454 0.860 0.906 1.024 0.786 0.235 -0.681

w2 2793 7.935 -1.916 -0.818 0.138 0.679 1.175 1.219 0.917 0.324 -0.390 -1.328

w3 2964 7.994 -1.585 -0.487 0.340 0.786 1.178 1.113 0.813 0.298 -0.312 -2.145

w4 3095 8.037 -1.505 -0.540 0.129 0.785 1.290 0.881 0.785 0.176 -0.494 -1.505

w5 3200 8.071 -2.687 -0.336 0.794 1.086 1.097 1.235 1.097 0.448 -0.741 -1.994

w6 3309 8.105 -2.059 -0.149 0.562 0.886 1.190 1.044 1.098 0.447 -0.672 -2.346

w7 3425 8.139 -1.715 0.182 0.343 0.982 1.156 1.057 0.810 0.156 -0.563 -2.409

w8 3549 8.175 -1.015 -0.445 0.514 0.984 1.279 0.941 0.311 -0.322 -0.747 -1.501

w9 3709 8.218 -1.186 -0.326 0.635 0.970 1.203 0.859 0.621 -0.252 -1.019 -1.505

w10 4103 8.319 -1.089 -0.154 0.591 1.078 1.448 0.956 0.521 -0.309 -0.653 -2.388

Midpoints of intervals tj -2.836 -2.636 -2.437 -2.237 -2.037 -1.838 -1.638 -1.439 -1.239 -1.039

Table 10: Clr transformation of D = 10 log(C18) classes within the N = 10
log(weight) groups for girls. The values tj, j = 1, . . . , D are the midpoints of the
log(C18) subintervals of Ωg = [−2.936,−0.939].

weight[g] log(weight) Clr transformation of log(C18) classes, zi = (zi1, . . . , ziD)′, i = 1, . . . , N

w1 2380 7.775 -3.434 -0.949 -0.066 0.710 1.141 1.110 1.077 0.756 0.093 -0.438

w2 2906 7.974 -1.233 -0.453 0.176 0.632 1.096 1.087 0.603 0.219 -0.798 -1.329

w3 3084 8.034 -1.327 -0.305 0.427 1.008 1.120 1.030 0.766 0.304 -0.885 -2.138

w4 3224 8.078 -1.560 -0.211 0.483 1.004 1.230 1.058 0.837 -0.105 -0.616 -2.120

w5 3345 8.115 -1.228 -0.535 0.734 1.086 1.320 1.302 0.718 0.158 -1.228 -2.327

w6 3455 8.147 -0.796 -0.067 0.814 1.020 1.344 1.065 0.785 -0.067 -0.662 -3.435

w7 3569 8.180 -1.016 -0.035 0.689 1.032 1.295 1.125 0.489 -0.242 -0.935 -2.402

w8 3699 8.216 -1.199 0.162 0.789 1.094 1.153 0.953 0.718 -0.134 -1.422 -2.115

w9 3874 8.262 -0.936 -0.243 0.841 1.079 1.341 1.252 0.639 -0.125 -1.119 -2.728

w10 4232 8.350 -0.739 0.267 0.727 1.324 1.332 1.007 0.382 -0.739 -1.501 -2.061

Midpoints of intervals tj -2.711 -2.506 -2.301 -2.096 -1.891 -1.685 -1.480 -1.275 -1.070 -0.865

Table 11: Clr transformation of D = 10 log(C18) classes within the N = 10
log(weight) groups for boys. The values tj, j = 1, . . . , D are the midpoints of the
log(C18) subintervals of Ωb = [−2.813,−0.763].
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1 Abstract

Probability density functions (PDFs) are understood as functional data carry-

ing relative information. Their features such as scale invariance and relative scale

are well captured by the theory of Bayes spaces of measures; Bayes spaces thus re-

present a generalization of the Aitchison geometry for compositional data. These

spaces have the Hilbert space structure whose origin is determined by a given re-

ference measure and it can be easily changed through the well-known chain rule.

The algebraic-geometric structure of these spaces enables to express PDFs as real

functions in the standard L2 space with the same reference measure using the

centered logratio (clr) transformation. This is key to propose statistical methods

for PDFs by adapting popular methods of functional data analysis (FDA) which

are typically designed in the L2 space. Since the resulting transformed PFDs have

the zero integral (with respect to the given reference measure), they are elements

of a subspace of the L2 space, hereafter denoted as L2
0. The thesis aims to in-

troduce Bayes spaces of PDFs on a bounded domain in case of (i) the Lebesgue

measure and (ii) a general probability measure, and their application to selected

problems of FDA. Similar as in FDA, a proper statistical preprocessing of dis-

cretely sampled PDFs is crucial for any further analysis. A novel methodology

based on principles of Bayes spaces was developed and to use (smoothing) spline

functions called compositional (smoothing) splines. Their construction relies on

building up a B-spline basis system directly in the L2
0 space w.r.t. the Lebesgue

reference measure. Consequently, the compositional splines can be implemented

into FDA methods for statistical processing of PDFs, as demonstrated in detail in

case of regression analysis with functional response formed by PDFs. The thesis

further deals with weighting of PDFs through the reference measure. The impact

on statistical analysis is illustrated through an application to the functional prin-

cipal component analysis of Italian income data. For its implementation, as well

as for the other methods of FDA, it is essential to use a novel centered logratio

transformation that maps Bayes spaces with a general reference measure into the

L2
0 space with the Lebesgue reference measure.

Key words: Bayes spaces, probability density functions, reference measure,

centered logratio transformation, compositional splines, B-spline representation,

functional regression analysis, functional principal component analysis
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2 Abstrakt v českém jazyce

Hustotami rozděleńı pravděpodobnost́ı (angl. probability density functions,

PDFs) rozumı́me funkcionálńı data nesoućı relativńı informaci. Jejich vlastnosti

jako invariantnost na změnu měř́ıtka a relativńı měř́ıtko jsou zachyceny pomoćı

Bayesových prostor̊u měr; Bayesovy prostory tak představuj́ı zobecněńı Aitchi-

sonovy geometrie pro kompozičńı data. Tyto prostory maj́ı strukturu Hilber-

tova prostoru, jehož počátek je dán referenčńı mı́rou, která může být jednoduše

změněna pomoćı známého řetězového pravidla. Algebraická struktura Bayesových

prostor̊u umožňuje PDFs vyjádřit jako reálné funkce ve standardńım L2 pro-

storu vzhledem ke zvolené referenčńı mı́̌re použit́ım centrované logpod́ılové (clr)

transformace. Toto je kĺıčové pro možnost užit́ı metod funkcionálńı analýzy dat

(functional data analysis, FDA) pro statistické zpracováńı hustot, nebot’ tyto

metody jsou typicky navržené právě v prostorech L2. Protože výsledné trans-

formované PDFs maj́ı nulový integrál (vzhledem k dané referenčńı mı́̌re), jedná

se o prvky podprostoru L2, který je dále označen jako L2
0. Ćılem této disertačńı

práce je představit Bayesovy prostory jako prostory hustot na omezeném intervalu

s (i) Lebesgueovou a (ii) obecnou pravděpodobnostńı referenčńı mı́rou, a jejich

aplikace pro vybrané metody FDA. Podobně jako v FDA, vhodné statistické

předzpracováńı diskrétně pozorovaných PDFs je kĺıčové pro jejich následnou

analýzu. Nová metodika založená na principech Bayesových prostor̊u navrhuje

užit́ı (vyhlazovaćıch) splajn̊u nazvaných kompozičńı (vyhlazuj́ıćı) splajny. Je-

jich konstrukce je založena na vytvořeńı B-splajnového bázového systému př́ımo

v prostoru L2
0 vzhledem k Lebesgueově referenčńı mı́̌re. Následně mohou být

kompozičńı splajny implementovány do FDA metod pro statistické zpracováńı

PDFs, což je podrobně demonstrováno na př́ıpadu regresńı analýzy se závisle

proměnnou reprezentovanou PDFs. Disertačńı práce se věnuje i aspektu vážeńı

oboru hodnot hustot prostřednictv́ım referenčńı mı́ry. Vliv změny referenčńı mı́ry

na statistickou analýzu PDFs je demonstrován pomoćı funkcionálńı metody hlav-

ńıch komponent na souboru dat o př́ıjmech v Itálii. Pro jej́ı implementováńı,

stejně tak jako daľśıch metod FDA, je kĺıčové použit́ı nové clr transformace,

která zobraźı Bayesovy prostory s obecnou referenčńı mı́rou do L2
0 prostor̊u s Le-

besgueovou referenčńı mı́rou.
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Kĺıčová slova: Bayesovy prostory, hustoty rozděleńı pravděpodobnost́ı, refe-

renčńı mı́ra, centrovaná logpod́ılová transformace, B-splajnová reprezentace, re-

gresńı analýza, funkcionálńı metoda hlavńıch komponent

3 Introduction

Distributional data in their discrete form frequently occur in many real-world

surveys. For instance, frequencies of occurrence of observations from a continuous

random variable – aggregated according to a given partition of the domain of ob-

servation – are typically represented by a histogram, which in turn approximates

an underlying (continuous) probability density function (PDF). In general, a PDF

is a non-negative Borel measurable function constrained to integrate to a con-

stant, conventionally set to one. Several authors [5, 8, 32, 33] noted that PDFs

have a relative nature, in the sense that the meaningful information is embedded

in the relative contribution of the probability of any (Borel) subset of the domain

of the random variable generating the data to the overall probability, i.e. the me-

asure of the whole set (so-called total). Changing the value of the total by mul-

tiplying the PDF by a positive real constant results in a scaled density conveying

the same relative information (which is known as the scale invariance property).

As a consequence, the actual total is in fact irrelevant for the purpose of the

analysis, as widely recognized in Bayesian statistics [14]. The total used sim-

ply determines a representative of the equivalence class of proportional density

functions.

The relative nature of PDFs can be explained directly with an example:

the relative increase of a probability over a Borel set from 0.05 to 0.1 (2 mul-

tiple) differs from the increase 0.5 to 0.55 (1.1 multiple), although the absolute

differences are the same in both cases. This is known as the relative scale pro-

perty of PDFs. It motivates the use of the so-called logratio approach – a well-

established methodology for the analysis of compositional data. These are vectors

describing quantitatively the parts of some whole, and are frequently represented

as constrained data (e.g. proportions, percentages) carrying relative information

[1, 24]. PDFs can be then interpreted as the continuous counterparts of compositi-

ons, i.e., as compositions with infinitely many parts. This has recently motivated

the construction of the so-called Bayes Hilbert spaces, whose geometry results
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from the generalization of the Aitchison geometry for compositional data [10]

to the infinite-dimensional case. While the pioneering work on Bayes spaces [8]

covers only the case assuming that densities are defined on a finite support, Van

den Boogaard et. al [33] extended this concept even for densities on possibly un-

bounded support and introduced Bayes spaces in a more general setting, i.e. as

spaces of measures endowed with the Hilbert space structure. In general, Bayes

spaces can be defined only if a reference measure P has been set. In the pionee-

ring work, the reference measure was set by default to the Lebesgue (i.e. uniform)

reference measure, however, to deal with unbounded support, a non-uniform re-

ference measure P has to be considered as it shown in the latter work. Although

Bayes spaces allow to deal with both unbounded and bounded domains for the

PDFs, the latter case has been mainly considered so far in practice, and it will

be the main focus in this thesis.

Nowadays, we experience an increasing interest in the development of statis-

tical methods for the analysis of PDFs [2, 15, 16, 20, 22, 23, 25, 26, 28]. Although

functional data analysis (FDA) [27] may potentially provide a wide range of me-

thodological tools for this purpose, they are typically designed for data embedded

in the L2 space of square-integrable functions. As such, they can not be applied

directly to densities since the metric of L2 spaces does not account for their pecu-

liar properties (e.g., the aforementioned scale invariance and relative scale). The

key point in the analysis of PDFs is to map them from Bayes spaces to L2 spa-

ces where standard FDA methods (e.g., smoothing of functional data, clustering,

regression analysis, functional principal component analysis, etc.) can be applied.

The thesis aims to introduce the concept of Bayes space methodology which

turns out to be a relevant approach to statistical analysis of PDFs. Three par-

ticular novel approaches to statistical processing of PDFs will be presented such

as smoothing of PDFs [18], functional regression with the response variable re-

presented by PDF [31] and weighting in Bayes spaces with implications for di-

mensionality reduction of PDFs using simplicial functional principal component

analysis [30].
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4 Recent state summary

4.1 Bayes spaces

Bayes spaces represent an algebraic-geometric structure of equivalence classes

of proportional σ-finite measures, including probability measures. An arbitrary

σ-finite measure P can be selected as the origin of the space. Once such a mea-

sure is stated, all measures can be identified with density functions with respect

to the measure P, resulting from considering densities as Radon-Nikodym deri-

vatives. Accordingly, P is referred to as the reference measure. In the following,

we restrict our attention only to positive (probability) measures on a bounded

domain Ω = [a, b] ⊂ R. In this setting, the reference measure is set by default

to a uniform measure, i.e. to the Lebesgue measure. In the thesis, also discrete

(probability) measures are marginally mentioned, nevertheless, they are skipped

in this summary.

Bayes spaces: sample space of scale invariant positive measures

Let’s assume that the distribution of a continuous random variable is charac-

terized by σ-finite positive measure µ on measurable space (Ω,A) with reference

measure P, Ω = [a, b] ⊂ R and A being Borel σ-algebra B([a, b]). In this setting,

the reference measure P can be set to the Lebesgue measure λ, restricted here

to a bounded support. The reference density is then the reference measure with

respect to itself, i.e. dλ/dλ = 1 on Ω. Given two measures µ and ν with λ-

densities f = dµ/dλ and g = dµ/dλ, we say that two measures (densities) are

B(λ)-equivalent, denoted by ν =B(λ) µ (f =B(λ) g), if they are proportional. That

is, in terms of measures, if there exists a positive real constant c such that, for

any subset B ∈ B([a, b]), µ(B) = c ·ν(B). If µ(Ω) = 1 (i.e., µ is a probability mea-

sure), we single out a particular representative within a B(λ)-equivalence class of

proportional measures (densities) which provides the same relative information.

Indeed, this is typically quantified through the (log-)ratios µ(B1)/µ(B2), with

B1, B2 in B([a, b]) (equivalently in terms of densities, i.e, f(t1)/f(t2), with t1, t2

in Ω = [a, b]), which are clearly invariant within the B(λ)-equivalence class (i.e.

scale invariance is followed). Within the concept of Bayes spaces, the only re-
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levant information embedded into measures (densities) itself is the relative one.

This motivated the use of the log-ratio approach, already known from (multiva-

riate) compositional data analysis, to deal with density functions.

For a fixed reference measure P = λ, Bayes space B2(λ) is a space of

B(λ)-equivalence classes of σ-finite positive measures on Ω = [a, b] with square-

integrable log-density with respect to reference measure λ:

B2(λ) =

{
µ ∈ B2(λ) :

∫ ∣∣∣∣ln dµdλ
∣∣∣∣2 d λ < +∞

}
, (1)

where measures are identified with the corresponding Radon-Nikodym densities;

or, equivalently, we can say that B2(λ) consists of B(λ)-equivalence classes of

proportional density functions f = dµ
dλ

on Ω = [a, b] whose logarithm is square-

integrable w.r.t. λ. We note that B(λ) is a space for measures as well as for

densities since in both cases they are elements of this space. Nevertheless, whether

B(λ) is interpreted as space of densities or measures should be obvious from the

context.

4.1.1 Hilbert structure of Bayes spaces

The basic operations named perturbation (⊕) and powering (�) represent

addition and multiplication in B2(λ). Moreover, the first of them can be inter-

preted as Bayes updating which gave the name to these spaces. The operations

are defined as follows,

(µ⊕ ν)(B) =B(λ)

∫
B

dµ

dλ
· dν
dλ

dλ, B ∈ B, (2)

and

(α� µ)(B) =B(λ)

∫
B

(
dµ

dλ

)α
dλ, B ∈ B; (3)

where µ and ν are measures in B2(λ) and α is a real number. The operations (2)

and (3) can be equivalently expressed using densities. That is, for f = dµ
dλ

and

g = dν
dλ

we have that

(f ⊕ g)(t) =B(λ) f(t) · g(t) and (α� f)(t) =B(λ) f(t)α, t ∈ Ω. (4)
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In [8], it is proven that B2(λ) equipped with the operations (⊕,�) is a vec-

tor space. Note that the neutral elements of perturbation and powering are

e(t) = 1
λ(Ω)

= 1
b−a (i.e., the uniform density), and 1, respectively. The operation

subtraction (	) between two densities f, g is obtained as perturbation of f with

reciprocal of g,

(f 	 g)(t) =B(λ) f(t)⊕ [(−1)� g(t)] t ∈ Ω. (5)

This operation is identified as the Radon–Nikodym derivative of µ with respect

to ν, that is dµ
dλ
·
(
dν
dλ

)−1
= dµ

dν
.

Finally, to endow B2(λ) with the Hilbert space structure, an inner product

is required. Egozcue et al. [8] defined it for the Lebesgue reference measure on

Ω = [a, b] and van den Boogaard et al. [33] extended the definition to any fi-

nite reference measure. Accordingly, the Bayes inner product on B2(λ) is can be

defined [30] as

〈f, g〉B(λ) =
1

2λ(Ω)

∫
Ω

∫
Ω

ln
f(t)

f(u)
ln
g(t)

g(u)
dλ(t)dλ(u), t, u ∈ Ω, (6)

where λ(Ω) = b− a, and the corresponding norm and distance as

‖f‖B(λ) =
√
〈f, f〉B(λ) and dB(λ)(f, g) = ‖f 	 g‖B(λ) . (7)

4.2 First steps for a statistical analysis in Bayes spaces

As a first step of any data analysis, one needs to think about the sample

space for data embedding. Hilbert spaces are mostly employed for functional data

due to their geometric structure which allows an easier extension of multivariate

methods. Statistical methods provided by the FDA are mostly developed under

the assumption that the data belongs to the Hilbert space of squared-integrable

functions with the reference measure defaulty set to the Lebesgue measure λ,

denoted as L2(λ). Although continuous density functions can be viewed as functi-

onal data, they are characterized by specific features which are not honored by

FDA. Nevertheless, as long as the data are embedded in a separable Hilbert space
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[8], an isometric mapping can be found which enables to express elements of Ba-

yes spaces as real functions of the L2(λ) space. Subsequently, standard statistical

analysis can be performed via FDA while accounting for the Bayes space geome-

try. Such mapping can be provided by centered logratio (clr) transformation.

4.2.1 Centered logratio transformation

For P = λ, the clr mapping represents an isometric isomorphism (i.e. a

bijective map preserving distances) between B2(λ) and L2(λ) spaces and it is

defined in [33] for f ∈ B2(λ) as

f c(t) = clrλ(f)(t) = ln f(t)− 1

λ(Ω)

∫
Ω

ln f(u) dλ(u), t ∈ Ω. (8)

Apparently, the clr representation allows to use the ordinary geometry of L2(λ)

to conduct operations of perturbation (2), powering (3) and inner product (6) for

the elements of B2(λ), while accounting for the specific features captured by the

Bayes space. Indeed,

clrλ(f ⊕ g) = clrλ(f)(t) + clrλ(g)(t), clrλ(α� f)(t) = α · clrλ(f)(t) (9)

and

〈f, g〉B2(λ) = 〈clrλ(f), clrλ(g)〉L2(λ) =

∫
Ω

clrλ(f)(t) · clrλ(g)(t)dλ(t), (10)

where 〈·, ·〉L2(λ) denotes the inner product in L2(λ). However, due to the con-

struction, the clr transformed densities are characterized by zero-integral con-

straint (w.r.t. λ),∫
Ω

clrλ(f)(t) dλ(t) =

∫
Ω

ln f(t) dλ(t)−
∫

Ω

1

λ(Ω)

∫
Ω

ln f(u) dλ(u) dλ(t) = 0, (11)

which needs to be taken into account when analyzing clr transformed densities.

As the clr space is clearly a subspace of L2(λ), hereafter it is denoted as L2
0(λ).

Note that clr transformation represents one-to-one mapping, so it is possible to

map densities in L2
0(λ) back to B2(λ) by using exponential transformation, i.e.

exp [f c] (t) = exp [clrλ(f)] (t). The resulting back-transformed density f can be

closed to the unit integral due to the scale invariance feature.
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4.2.2 Smoothing of density functions (Approach I)

The second step in FDA is related to the estimation of the underlying N

functions f1, . . . , fN from discretized data (tij, yij), i = 1, . . . , N, j = 1, . . . , ni,

where yij is observation of fi at tij. Spline functions are extensively used in

FDA for an approximation of nonperiodical functions as they are flexible enough

to cover a wide range of their specific behavior, hence they are also a natural

choice for density functions. Moreover, using splines for the representation of

density functions turned out to be the most appropriate approximative tool as

the associated basis coefficients can be directly used for further statistical analysis,

i.e., for instance in functional regression with response formed by PDFs.

In case of density functions, they are discretely sampled in terms of histogram

data. That is, for each density fi(t), t ∈ Ω, i = 1, . . . , N , one usually observes a

positive real vector Wi = (Wi1, . . . ,WiDi
)′, whose components correspond to the

(absolute or relative) frequencies of Di classes in which the interval Ω is partiti-

oned. Accordingly, the raw density data yij correspond to interval midpoints tij

of Di classes obtained by dividing (not necessary normalized) components of Wi

by the length of the respective classes. Note that data yi = (yi1, . . . , yiDi
)′ , i =

1, . . . , N can be interpreted as discretized density functions, that is, as com-

positions. Since it is convenient to perform preprocessing of density functions in

clr space L2
0, discrete version of clr transformation is employed to express com-

positional vectors yi, i = 1, . . . , N in a standard Euclidean space; this yields clr

transformed data denoted as zi = (zi1, . . . , ziDi
)′ , i = 1, . . . , N . Consequently, the

aim is to estimate (approximate) the underlying continuous clr density functions

clrλ(fi), i = 1, . . . , N from raw given data (tij, zij), i = 1, . . . , N, j = 1, . . . , Di.

A first attempt of constructing a spline representation adapted for clr trans-

formed density functions was proposed in [17] and will be recalled in this section.

In the following, it is assumed that a single density function clrλ(f) is being

approximated.

To set the notation, call values

∆λ := {λ0 = a < λ1 < . . . < λg < b = λg+1} (12)

a given sequence of knots, and denote by S∆λ
k [a, b] the vector space of polynomial

12



splines of degree k > 0, defined on Ω = [a, b] given the knots ∆λ. It is known that

dim(S∆λ
k [a, b]) = g+k+1. For the construction of all basis functions of S∆λ

k [a, b], it

is necessary to consider some additional knots. Without loss of generality, we here

assume that those additional knots are at the boundary, i.e.,

λ−k = · · · = λ−1 = λ0, λg+1 = λg+2 = · · · = λg+k+1. (13)

Then every spline sk(t) ∈ S∆λ
k [a, b] in the L2 space has a unique representation

as (see [3], [4] for details)

sk (t) =

g∑
i=−k

biB
k+1
i (t) , (14)

where the vector b = (b−k, . . . , bg)
′ is the vector of B-spline basis coefficients of

sk (t) and functions Bk+1
i (t), i = −k, . . . , g are B-spline functions of the same

degree k as spline function sk (t) forming basis in S∆λ
k [a, b]. They are defined for

k = 0 (order 1) by

B1
i (t) =

{
1 if t ∈ [λi, λi+1)
0 otherwise.

and for k, k ∈ N, k ≥ 1, (order k + 1) by

Bk+1
i (t) =

t− λi
λi+k − λi

Bk
i (t) +

λi+k+1 − t
λi+k+1 − λi+1

Bk
i+1(t).

In [17], the optimal smoothing problem was represented as a trade-off between

smoothing and the least squares approximation. Assume that data (tj, zj), a ≤
tj ≤ b, the weights wsj ≥ 0, j = 1, . . . , D, D ≥ g+ 1 and the parameter α ∈ (0, 1)

are given. For an arbitrary l ∈ {1, . . . , k − 1} our aim is to find a smoothing

spline sk(t) ∈ S∆λ
k [a, b], which minimizes the functional

Jl(sk) = α

D∑
j=1

wj [zj − sk(tj)]2 + (1− α)

∫ b

a

[
s

(l)
k (t)

]2

dt, (15)

and fulfills the condition
b∫

a

sk(t) dt = 0, (16)
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resulting from the clr transformation. The minimization problem (15) represents

a compromise between staying close to the given data and obtaining a smooth

function. The smoothness of the resulting approximation is affected by the smo-

othing parameters α and l, where l stands for lth derivative. Similarly, one can

minimize the following functional with respect to condition (16) for some positive

parameter α, i.e.

Jl(sk) =
D∑
j=1

wj [zj − sk(tj)]2 + α

∫ b

a

[
s

(l)
k (t)

]2

dt (17)

For the sake of brevity, we will focus on the minimization of the functional (17).

It was proven that the optimal smoothing spline for this task is the spline s∗k(t),

given by formula

s∗k (t) =

g∑
i=−k

b∗iB
k+1
i (t) , (18)

with B-spline coefficients b∗ = (b∗−k, . . . , b
∗
g)
′ obtained as (see [17] for details)

b∗ = Vz (19)

with

V := DK
[
α (DK)′NklDK + (Bk+1(t)DK)′WsBk+1(t)DK

]+
K′DB′k+1(x)Ws.

(20)

Here A+ denotes the Moore-Penrose pseudoinverse of a matrix A, Ws = diag(ws),

ws = (ws1, . . . , w
s
D)′, t = (t1, . . . , tD)′, z = (z1, . . . , zD)′,

Bk+1(t) =

 Bk+1
−k (t1) . . . Bk+1

g (t1)
...

. . .
...

Bk+1
−k (tD) . . . Bk+1

g (tD)

 ∈ RD,g+k+1 (21)

is the collocation matrix,

D = (k + 1) diag

(
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

)
∈ Rg+k+1,g+k+1 (22)

and

K =


1 0 0 · · · −1
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1

 ∈ Rg+k+1,g+k+1.
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The matrix Nkl = S′lMklSl is positive semidefinite, with

Mkl =


〈
Bk+1−l
−k+l , B

k+1−l
−k+l

〉
L2(λ)

. . .
〈
Bk+1−l
g , Bk+1−l

−k+l

〉
L2(λ)

...
...〈

Bk+1−l
−k+l , B

k+1−l
g

〉
L2(λ)

. . .
〈
Bk+1−l
g , Bk+1−l

g

〉
L2(λ)

 ∈ Rg+k+1−l,g+k+1−l,

(23)

where

〈
Bk+1−l
i , Bk+1−l

j

〉
L2(λ)

=

b∫
a

Bk+1−l
i (t)Bk+1−l

j (t) dt

stands for scalar product of B-splines in L2(λ) space. The matrix Sl is an upper

triangular matrix such that

Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1, (24)

and Dj′ ∈ Rg+k+1−j,g+k+1−j′ is a diagonal matrix such that

Dj′ = (k + 1− j′) diag (d−k+j′ , . . . , dg)

with

di =
1

λi+k+1−j′ − λi
∀i = −k + j′, . . . , g

and

Lj′ :=

(−1 1
. . . . . .
−1 1

)
∈ Rg+k+1−j′,g+k+2−j′ .

5 Thesis objectives

The thesis aims to introduce the concept of Bayes space methodology which

turns out to be a relevant approach to statistical analysis of PDFs. Three particu-

lar novel approaches to statistical processing of PDFs will be presented such as

smoothing of PDFs [18], functional regression with the response variable represen-

ted by PDF [31] and weighting in Bayes spaces with implications for dimensiona-

lity reduction of PDFs using simplicial functional principal component analysis

[30]. The potential of the methodological developments is shown on simulated

data and real-world data (illustrative examples are skipped in this summary).
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6 Theoretical framework and applied methods

6.1 Smoothing of density functions (Approach II)

We note that an initial approach for approximation of density functions in clr

space has some limitations since the basis elements do not belong to the L2
0 space.

Therefore, an important step ahead is made by constructing a B-spline basis di-

rectly in the clr space L2
0. As a direct consequence, the B-splines can be expressed

directly in Bayes spaces leading to spline representation of density functions in

the original space; hereafter we refer to compositional splines. Apart from me-

thodological advantages, using compositional splines simplifies the construction

and interpretation of spline coefficients that can be considered as coefficients of

a basis in Bayes spaces.

Let the sequence of knots (12) is given. We define the functions Zk+1
i (t) for

k ≥ 0, k ∈ N, which are the first derivatives of the B-splines Bk+2
i (t) for k ≥ 0,

k ∈ N, as

Zk+1
i (t) :=

d

dt
Bk+2
i (t), (25)

i.e., more precisely for k = 0

Z1
i (x) =

{
1 if x ∈ [λi, λi+1)
−1 if x ∈ (λi+1, λi+2]

and for k ≥ 1

Zk+1
i (t) = (k + 1)

(
Bk+1
i (t)

λi+k+1 − λi
−

Bk+1
i+1 (t)

λi+k+2 − λi+1

)
. (26)

The functions Zk+1
i (t) have similar properties as B-spline functions Bk+1

i (t). They

are piecewise polynomials of degree k on local support for k ≥ 1,

supp Zk+1
i (t) = supp Bk+2

i (t) = [λi, λi+k+2],

with continuous derivatives up to order k − 1. From the perspective of L2
0 space,

a crucial point is that the integral of Zk+1
i (t) equals to zero. If we consider Curry-
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Schoenberg B-spline Mk+1
i (t) [3], which are defined as

Mk+1
i (t) :=

k + 1

λi+k+1 − λi
Bk+1
i (t)

with property ∫
R

Mk+1
i (t) dt = 1,

than it is clear that

Zk+1
i (t) = Mk+1

i (x)−Mk+1
i+1 (t) (27)

and ∫
R

Zk+1
i (t) dt = 0.

Now, regarding the definition (25), we are able to use spline functions Zk+1
i (t)

which have zero integral on Ω (denoted as ZB-splines in the sequel). In the

following, Z∆λ
k [a, b] denotes the vector space of polynomial splines of degree k > 0,

defined on a finite interval Ω = [a, b] with the sequence of knots ∆λ given in (12)

and having zero integral on [a, b], it means

Z∆λ
k [a, b] :=

sk(t) ∈ S∆λ
k [a, b] :

∫
I

sk(t) dt = 0

 . (28)

Theorem 6.1 The dimension of the vector space Z∆λ
k [a, b] defined by the formula

(28) is g + k.

Theorem 6.2 For the coincident additional knots (13), the functions Zk+1
−k (t),

· · · , Zk+1
g−1 (t) form a basis for the space Z∆λ

k [a, b].

With regard to this theorem, each spline sk(t) ∈ Z∆λ
k [a, b] has a unique

representation

sk (t) =

g−1∑
i=−k

bziZ
k+1
i (t) . (29)
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Now we can proceed to a matrix notation of sk(t) ∈ Z∆λ
k [a, b]. With respect

to (26) and (27), we are able to write the functions Zk+1
i (t) in matrix notation

as

Zk+1
i (t) = (k + 1)

(
Bk+1
i (t) , Bk+1

i+1 (t)
)

1

λi+k+1 − λi
0

0
1

λi+k+2 − λi+1

( 1
−1

)
,

that is, for ZB-spline basis of Z∆λ
k [a, b] we have

(Zk+1
−k (t) , . . . , Zk+1

g−1 (t)) = (Bk+1
−k (t) , . . . , Bk+1

g (t))DKz = Bk+1(t)DKz,

where matrix D is given in (22) and

Kz =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1

 ∈ Rg+k+1,g+k. (30)

It follows that each spline sk(t) from Z∆λ
k [a, b] can be written in the ma-

trix notation using the standard B-spline basis with B-spline coefficients b =

(b−k, . . . , bg)
′ fulfilling the condition (45) from Theorem 6.3 as

sk(t) = Zk+1(t)bz = Bk+1(t)DKzbz = Bk+1(t)b, (31)

with Zk+1(t) = (Zk+1
−k (t) , . . . , Zk+1

g−1 (t)) and bz =
(
bz−k, . . . , b

z
g−1

)′
. Note that the

formula (31) provides a guideline how to convert the splines from Z∆λ
k [a, b] to

splines with zero integral (with coefficients fulfilling (45)) from S∆λ
k [a, b]. This is

particularly useful from the practical point of view as it allows to use existing

codes in the statistical softwares for actual computations of the methods of FDA.

For instance, the package fda of the statistical software R implements functio-

nal principal component analysis for a standard B-spline basis representation of

functional data, hence it can be used for sampled (clr) density functions as in

Section 5.

Unlike Approach I where the smoothing spline functions with zero inte-

gral were constructed upon standard B-spline basis system of functions Bk+1
i (t),
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i = −k, . . . , g, we can now use ZB-spline basis system of functions Zk+1
i (t),

i = −k, . . . , g−1 for this purpose. Accordingly, for an arbitrary l ∈ {1, . . . , k − 1}
we aim to find a smoothing spline sk(t) ∈ Z∆λ

k [a, b] ⊂ L2
0([a, b]) which minimizes

the functional (15). The minimum is found for the spline s∗k(t) of the form (29)

with ZB-spline coefficients bz∗ =
(
bz∗−k, . . . , b

z∗
g−1

)′
obtained as (see [18] for details)

bz∗ = Vzz (32)

with

Vz := G−1g, (33)

where

G := (Kz)
′
D
[
(1− α)S

′

lMklSl + αB
′

k+1(t)WsBk+1(t)
]

DKz (34)

and

g := α(Kz)
′
DB

′

k+1(t)Ws;

the matrices Bk+1(t),D,Mkl,Sl,K
z are given in (21), (22), (23), (24), (30). Con-

sequently, by considering the formula (31), the resulting smoothing spline in ma-

trix notation using standard B-splines Bk+1
i (x) is obtained as

s∗k(t) = Bk+1(t)DKzbz∗,

where the vector bz∗ is given in (32).

In some applications, the orthonormalization of the B-spline basis might be

useful. Note that ZB-spline functions forming the basis system of Z∆λ
k [a, b] are by

the default setting (26) non-orthogonal. The orthogonalized ZB-spline functions

is discussed in the thesis and it is not shown in this summary.

Compositional splines in the Bayes spaces B2(λ): Construction of spline

functions directly in L2
0(λ) has important practical consequences, however, it is

crucial also from the theoretical perspective. Expressing B-spline functions as

functions in L2
0(λ) enables to transform them back to the original Bayes space

B2(λ) by using the exponential. It results in compositional B-splines (CB-splines),

obtained from (26) as

ζk+1
i (t) =B(λ) exp[Zk+1

i ](t), i = −k, . . . , g − 1, k ≥ 0. (35)
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As a consequence, it is immediate to define vector space C∆λ
k [a, b] of com-

positional polynomial spline functions of degree k > 0, defined on a finite interval

Ω = [a, b] with the sequence of knots ∆λ. From isomorphism between C∆λ
k [a, b]

and Z∆λ
k [a, b] it holds that

dim
(
C∆λ
k [a, b]

)
= g + k.

Moreover, from isometric properties of clr transformation (9) and (10) it follows

that each compositional spline function ξk(t) ∈ C∆λ
k [a, b] in B2(λ) can be uniquely

represented as

ξk(t) =

g−1⊕
i=−k

bzi � ζk+1
i (t). (36)

The resulting compositional splines (with either orthogonal, or non-orthogonal

CB-spline basis system) can be used for the representation of density functions

directly in Bayes spaces. This is an important step in the construction of the FDA

methods involving density functions. With CB-splines one has a guarantee that

methods are developed consistently in the Bayes spaces. Moreover, the possibility

of having an orthogonal basis enables to gain additional features resulting from

orthogonality of finite dimensional projection in combination with approximate

properties of spline functions.
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6.2 Statistical methods in Bayes spaces: Functional regres-

sion

Regression analysis is a key statistical tool to model a linear relationship

between a response variable and a set of covariates. If the response or the predic-

tors have functional nature, the functional regression analysis is to be conside-

red. Although the general problem of functional regression has been extensively

studied in the literature on FDA (i.e., for instance in [11, 27, 29]), a concise

methodology for regression analysis in the presence of a distributional response

has been proposed only recently in [31]. It aims to develop a general theoretical

and computational setting allowing for the estimation and uncertainty assess-

ment in linear models with a distributional response. In particular, we focus on

a function-on-scalar model for a distributional in Bayes spaces on closed interval

Ω = [a, b]. Similarly as in the L2 setting, the key is to consider the B-spline repre-

sentation of the PDF response observed as discrete (histogram) data. On these

bases, the effective computational procedure is proposed and further discussed in

this section.

A function-on-scalar regression model in B2(λ) is introduced as a counterpart

of a model in the L2 space. We assume the dependent variable y(t), t ∈ Ω to be an

element of B2(λ) and consider scalar covariates xj, j = 0, . . . , r. Each observation

of the distributional response yi(t), i = 1, . . . , N , is thus associated with a vector

of p covariates, xi0, . . . , xir, with xi0 = 1 for i = 1, ..., N . We consider a functional

linear model in B2(λ) of the form

yi(t) = β0(t)⊕
r⊕
j=1

[xij � βj] (t)⊕ εi(t) (37)

where εi denotes a zero-mean functional error (or residual) in B2(λ), i = 1, . . . , N ,

and the unknown functions βj, j = 0, ..., r, belong to B2(λ) as well. To estimate

the coefficients βj(t), j = 0, . . . , r, we minimize the functional sum of square-

norms of the error in B2(λ)

SSE(β) =
N∑
i=1

‖εi‖2
B2(λ) =

N∑
i=1

∥∥∥∥∥
r⊕
j=0

[xij � βj]	 yi

∥∥∥∥∥
2

B2(λ)

. (38)
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Note that SSE (38) in the Bayes Hilbert space B2(λ) represents the analogue of

compositional SSE in B2 space with the discrete uniform reference measure [7]

in infinite dimensions. Applying the clr transformation (9) to both sides of the

model (37) yields

clrλ(yi)(t) = clrλ(β0)(t) +
r∑
j=1

[xij · clrλ(βj)] (t) + clrλ(εi)(t), i = 1, . . . , N, (39)

that enables one to reformulate the objective SSE (38) equivalently in the L2

sense as

SSE(β) =
N∑
i=1

‖clrλ(εi)‖2
L2(λ) =

N∑
i=1

∥∥∥∥∥
r∑
j=0

[xij · clrλ(βj)]− clrλ(yi)

∥∥∥∥∥
2

L2(λ)

. (40)

In this thesis, the focus is on SSE, not on penalized SSE, since one may control

the smoothness of the estimated functions for clrλ(βj(t)) through the smoothness

of the B-spline representation of the response, as shall be discussed further in this

section.

As a next step, since both the observed functions clrλ(yi)(t), i = 1, . . . , N ,

and regression parameters clrλ(βj)(t), j = 0, . . . , r, are elements of L2
0(λ), their

basis expansion fulfilling the zero-integral constraint on Ω using a given basis

system {ϕk, k = 1, ..., K} must be considered, i.e.,

∫
I

clrλ(yi(t))dt =

∫
I

K∑
k=1

cikϕk(t)dt = 0;

∫
I

clrλ(βj(t))dt =

∫
I

K∑
k=1

bjkϕk(t)dt = 0.

(41)

Both approaches to basis expansions designed for densities, i.e., Approach I (4.2.2)

and Approach II 6.1, respectively, can be used when estimating the linear model

(37). Nevertheless, regarding to the key results proved in the following section

(Theorem 6.3), the former approach leads to constraints on the coefficients {cik},
{bjk} and consequently on model singularities. Although this can be overcome by

using the latter method based on compositional splines, both of them in fact lead

to the same estimations of regression parameters. Therefore, in the following we

will mainly focus on the consequences related to the former approach as developed

in [31].
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6.2.1 Regression modeling of B-spline coefficients using Approach I

Let us consider the B-spline representations for the clr transformed observati-

ons of the response density, i.e., clrλ(yi)(t), i = 1, . . . , N , of the form

sik (t) =

g∑
j=−k

Yi,j+k+1B
k+1
j (t) , (42)

where the vector of B-spline coefficients Y(i) = (Yi,1, . . . , Yi,g+k+1)′ is obtained as

Y(i) = Vz(i), i = 1, . . . , N ; (43)

the matrix V of dimensions (g+k+1)×D is given in (20) and z(i) = (zi1, . . . , ziD)′,

i = 1, . . . , N are vectors of clr transformed raw density data. If the same B-spline

basis system is used for all the data, (43) can be expressed in matrix notation as

Y = ZV′, (44)

where Y, Z are the matrices of dimensions N×(g+k+1) and N×D, respectively,

having the following form,

Y =

 Y(1)
′

...
Y(N)

′

 , Z =

 z(1)
′

...
z(N)

′

 .

The explicit expression for the optimal smoothing B-spline is given in (18).

As an element of innovation, we aim to find the necessary and sufficient condition

for the vector b = (b−k, . . . , bg)
′ to be the vector of B-spline coefficients for spline

with zero integral. The following Theorem 6.3 characterizes all the splines with

zero integral (not necessarily a smoothing spline) using a standard B-spline basis

system through a necessary and sufficient condition on the vector b.

Theorem 6.3 For a spline sk(t) ∈ S∆λ
k [a, b], sk (t) =

g∑
i=−k

biB
k+1
i (t), the condi-

tion
b∫
a

sk(t) dt = 0 is fulfilled if and only if

g∑
i=−k

bi (λi+k+1 − λi) = 0. (45)
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In the light of Theorem 6.3, it is easy to see that vector b is orthogonal to the

vector (λ1 − λ−k, . . . , λg+k+1 − λg)′, which only depends on the knots positions.

Further, the vectors Y(i), i = 1 . . . , N , of B-spline coefficients, one has the linear

constraints
g+k+1∑
j=1

Yij (λj − λj−k−1) = 0. (46)

Whenever the same B-spline basis is employed for all the data – as it is usually

the case – the linear constraint (46) turns into a model singularity, as we shall

show further in this subsection.

By considering the B-spline representations of the clr transformed response

functions clrλ(yi)(t), i = 1, . . . , N , we can express the model (37) in the form

of a multivariate regression model. Following the given notation, spline coeffi-

cients for the i-th observation yi(t) are denoted by Y(i) = (Yi,1, . . . , Yi,g+k+1)′,

i = 1, 2, . . . , N , and vectors Y(1), ...,Y(N) form the rows of the N × (g + k + 1)

(random) response matrix Y. On this basis, we consider in place of (37) the

multivariate linear regression model of the form

Y(N×(g+k+1)) = X(N×p)B(p×(g+k+1)) + ε(N×(g+k+1)), (47)

or, equivalently,

(Y1,Y2, . . . ,Yg+k+1) = X(β1,β2, . . . ,βg+k+1) + (ε1, ε2, . . . , εg+k+1).

Here, the design matrix X is assumed to be of full column rank, βj = (βj0, . . . , βjr)
′,

j = 1, 2, . . . , g+k+1, is a vector of unknown regression coefficients and ε is a ma-

trix of random errors. The multivariate responses Y(i) = (Y1,i, . . . , Yg+k+1,i)
′, i =

1, 2, . . . , N , are independent with the same unknown variance-covariance matrix

Σ, i.e., cov(Y(i),Y(j)) = 0((g+k+1)×(g+k+1)), i 6= j, var(Y(i)) = Σ((g+k+1)×(g+k+1)),

for i = 1, . . . N .

The best linear unbiased estimator (BLUE) of the parameter matrix B is

found as

B̂ = (X′X)
−1

X′(Y1,Y2, . . . ,Yg+k+1), (48)

which is invariant to Σ. Under the assumption that Y is of full column rank, the

multivariate model can be simply decomposed into g + k + 1 univariate multiple
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regression models that implies an alternative estimation of columns of B as

β̂j = (X′X)
−1

X′Yj, j = 1, . . . , g + k + 1. (49)

The variance-covariance matrix of the vector vec(B̂) = (β̂
′
1, β̂

′
2, . . . , β̂

′
g+k+1)′ is

var
[
vec(B̂)

]
= Σ⊗ (X′X)

−1
,

where the symbol ⊗ denotes the Kronecker product. The unbiased estimator of

Σ is Σ̂ = Y′MXY/(N − p), where MX = I−X(X′X)−1X′ is a projector on the

orthogonal complement of the vector space M(X) generated by the columns of

the matrix X, i.e., M(X) = {Xu : u ∈ Rp}.

Because the realization of the multivariate response Y(i) is the vector of B-

spline coefficients b = (b−k, . . . , bg)
′ of the clr transformed data, the variables

Yi,1, . . . , Yi,g+k+1 are linearly dependent (see (46)) due to Theorem 6.3. Accor-

dingly, one may expect that a similar constraint applies to the corresponding

estimated regression coefficients, as stated by the following result.

Proposition 6.2.1 If
∑g+k+1

j=1 Yij(λj − λj−k−1) = 0 for all i = 1 . . . , N , then∑g+k+1
j=1 β̂sj(λj − λj−k−1) = 0 for all s = 0, . . . , r.

The latter constraint introduces a singularity into the regression model (47),

which may affect parameter inference. Similarly as in multivariate regression [13],

the model singularity may be an issue when statistical inference is performed

based on B-spline coefficients, e.g., when testing for the significance of the coef-

ficient βj through parametric tests based on Fisher’s statistics. In these cases,

orthonormal representations of the B-spline coefficients may be considered. Since

vectors Y(i), i = 1, ..., N , form a hyperplane H of dimension g + k, orthogonal

to the normal vector (λ1 − λ−k, . . . , λg+k+1 − λg)′ one may build an orthonormal

basis for H, express Y(i), i = 1, ..., N , through the coordinates of such a basis

– removing the singularity due to the linear constraints induced by (41) – and

then use the regularized representation for the purpose of further statistical infe-

rence. A basis for H can be easily obtained as the set of the first g + k principal

components of the B-spline coefficient vector, that in turn correspond to the
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Simplicial Functional Principal Components (SFPCs) of the smoothed densities

y1(t), ..., yN(t) [15]. However, note that the BLUE estimation (48) of the regres-

sion coefficients is not affected by the singularity constraint in the response, and

can be thus computed explicitly, without resorting to the SFPCA or to orthonor-

malized representations. Of course, the singularity problem can be prevented by

considering ZB-spline basis system from L2
0(λ), so that the response is expressed

through a set of unconstrained coefficients, namely ZB-spline coefficients.

A natural question which may arise in the proposed context regards the

smoothing properties of the regression estimates, and particularly if and how

the data smoothing reflects on the estimates. The key point that we here aim

to investigate is whether equivalence results can be stated for the following al-

ternative procedures: (a) the data are smoothed and the Bayes space regression

from Section 3.2 is applied (hereafter named “regression-smoothing”), and (b)

a compositional regression [7] is applied, estimating the model

zi = β
(Z)
0 +

r∑
j=1

β
(Z)
j xij + εi, (50)

and the estimates (or predictions) of Z are smoothed afterward (hereafter named

“smoothing-regression”). In particular, we here show that, under specific condi-

tions, the following scheme represents the relation between the model presented

here and that one proposed in [7]

Z
smoothing−−−−−−→ Y

regression

y yregression
Ẑ −−−−−−→

smoothing
Ŷ

(51)

It can be shown that under particular conditions the “smoothing-regression”

and “regression-smoothing” approaches are equivalent. Nevertheless, the propo-

sed framework provides a much more flexible setting to perform the analysis.

For instance, to carry out the analysis in the “regression-smoothing” setting, one

would need to estimate all the histograms according to the same set of classes,

which may not be the optimal one for all of them. In the “smoothing-regression”

setting, one can freely estimate the histograms with their own optimal classes
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and then fit the basis expansion to each of those. In other cases, one may be

already provided with densities defined over a fine grid (e.g., with particle-size

data, [21, 22, 23]). Dealing with high-dimensional (compositional) data from a dis-

crete viewpoint may yield issues related to the curse of dimensionality, which are

completely overcome with a functional viewpoint.

Moreover, as a consequence, when smoothing splines are considered, the

smoothness of the observations induces a corresponding degree of smoothness on

the estimates, even if this is not explicitly imposed through the use of a penalized

SSE criterion [27].

The thesis also deals with assessing the goodness-of-fit of the model on the

observed density curves via coefficient of determination and uncertainty in the

estimation of regression parameters is incorporated based on a resampling method

(bootstrap). Both are detailed in the thesis.

6.3 Weighted Bayes spaces

Weighted Bayes spaces refer to Bayes spaces with the reference measure

other than the uniform one. The name weighted Bayes spaces reflects the fact

that changing the uniform reference measure induces a (non-uniform) weighting

of the domain of PDFs. Accordingly, Bayes spaces with the uniform reference

measures are referred from now on to as unweighted Bayes spaces. Linking a

weighting scheme to a non-uniform reference measure has been already discussed

for multivariate compositions in [9].

The weighting of a domain of PDFs can be relevant in practice, as rarely

all regions of the domain (compositional parts in the multivariate case) have the

same importance or relevance for the analysis. For example, it is known that in

particle-size distributions [21, 22, 23], finer fractions of soil are measured for some

methods with lower reliability than crude fractions [12], which implies naturally

higher relevance of the latter and their respective subdomain. Another example

is represented by income distributions across various regions (see Section 5.2).

The lower-income values are going to be of primary interest for policy makers

when the aim is to reveal regions suffering from poverty. In addition, here the

relative scale, which implies a larger impact of changes in small income values,
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matters and should be highlighted. And yet another reason why weighting can

be convenient is to analyze deviations from a common trend in data. All these

cases can benefit from a sensible weighting scheme which gives more relevance

to certain regions of the domain of the PDF when conducting functional data

analysis.

Weighted Bayes spaces: sample space of scale invariant positive mea-
sures

Following the notation from Section 1.1, we now assume that the reference

measure of a measurable space (Ω,A) = ([a, b], B([a, b])) is fixed to a general

(probability) measure P. Then given measure µ with its P-density f = dµ/dP (i.e.,

w.r.t. the reference measure P), the probability measure of any event B ∈ B([a, b])

is

µ(B) =

∫
B
f dP =

∫
B

dµ

dP
dP.

Note that the choice of the reference measure is not scale invariant, because

it reflects on the scale of the entire Bayes space. For instance, the Lebesgue

measure on a domain Ω = [a, b] is proportional to the uniform measure P0 on Ω

(hence, it belongs to the same B-equivalence class as P0). Clearly, λ has density

dλ/dλ = 1 with respect to itself, whereas it has density dλ/dP0 = b − a w.r.t.

P0. Thus, a rescaling of the reference measure determines a rescaling of the total.

For example, when λ is considered, the total is set to λ(Ω) = b − a, whereas P0

is associated with a total equal to P0(Ω) = 1. On the other hand, once the scale

of the reference measure is fixed, the corresponding densities satisfy the scale

invariance property. For instance, having set the reference measure on Ω = [a, b]

to λ, the Lebesgue density dλ/dλ and the uniform density dP0/dλ = 1
b−a are

equivalent. This is further exemplified in Section 4.3 where a detailed simulation

study is provided. As such, it will always be necessary to specify the total mass

of the reference measure as this matters for the analysis.

Since a typical choice for P is the Lebesgue measure, restricted here to

a bounded support, it opens a question on how to change the reference from

λ to a measure P with strictly positive λ-density p = dP/dλ. This is done by
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using the well-known chain rule, i.e. for a generic measure µ we have that

µ(B) =

∫
B

dµ

dλ
dλ =

∫
B

dµ

dλ
· dλ
dP

dP =

∫
B

dµ

dλ
· 1

p
dP.

Given a σ-finite measure P, the Bayes space B2(P) is a space of B-equivalence

classes of σ-finite positive measures µ with square-integrable log-density w.r.t. the

reference measure P:

B2(P) =

{
µ ∈ B2(P) :

∫ ∣∣∣∣ln dµdP
∣∣∣∣2 dP < +∞

}
, (52)

where measures are identified with the corresponding Radon-Nikodym densities;

or, equivalently, B2(P) consists of B(P)-equivalence classes of proportional density

functions f = dµ
dP

on Ω = [a, b] whose logarithm is square-integrable w.r.t. P.

The reason for adopting a different reference measure P can be motivated by

weighting itself, but it should be also remarked that it is necessary when dealing

with PDFs on possibly unbounded supports [33].

6.3.1 Hilbert structure of weighted Bayes spaces

In this section, the definition of basic operations, perturbation and powering,

and inner product under the general reference measure P will be considered.

While both operations remain formally unchanged when changing the reference

measure, the weighting affects the inner product. Here also the absolute scale of

reference measure P matters, which corresponds to volume of the space Ω. It is

possible to express densities from the Bayes space in the L2 space (with respect

to reference measure P) using clr transformation. This, however, still leaves open

the problem of how to express the weighted densities in an unweighted L2 space.

A possible solution is presented in the thesis, Section 4.2.

Using a reference measure P, in [32] the operations of perturbation and

powering are defined as

(µ⊕P ν)(B) =B(P)

∫
B

dµ

dP
(t) · dν

dP
(t) dP(t), B ∈ B (53)
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and

(α�P µ)(B) =B(P)

∫
B

(
dµ

dP
(t)

)α
dP(t), B ∈ B, (54)

where µ and ν are measures in B2(P) and α is a real number. Moreover, all

the measures µ, ν, λ and P are assumed to be well-defined. Consequently, these

operations define a vector space structure on B2(P) [32].

The operations (53) and (54) can be equivalently expressed using the densi-

ties with respect to P. Denoting them by fP = dµ
dP

and gP = dν
dP

respectively, we

have that

(fP ⊕P gP)(t) =B(P) fP(t) · gP(t) and (α�P fP)(t) =B(P) fP(t)α.

It is easy to verify that scale invariance of the reference density p holds for

these operations. On the other hand, the scale of p is crucial for the definition of

the inner product, defined originally in [33] and redefined here for the purpose of

further developments as

〈fP, gP〉B(P) =
1

2P(Ω)

∫
Ω

∫
Ω

ln
fP(t)

fP(u)
ln
gP(t)

gP(u)
dP(t)dP(u)

=
1

2P(Ω)

∫
Ω

∫
Ω

ln
f(t)

f(u)
ln
g(t)

g(u)
· p(t) · p(u) dλ(t)dλ(u),

(55)

which endows the Bayes space B2(P) with a separable Hilbert space structure.

As a consequence, the distance between two densities fP, gP ∈ B2(P) is obtained

as

dB(P)(fP, gP) =

√
1

2P(Ω)

∫
Ω

∫
Ω

(
ln
fP(t)

fP(u)
− ln

gP(t)

gP(u)

)2

dP(t)dP(u). (56)

The reason for redefining the inner product (55) and distance (56) with

respect to [33] reflects the approach presented in the multivariate case by Egozcue

& Pawlowsky-Glahn [9], where the aim was to keep dominance under change of

reference measure. Specifically, let p0 be a uniform density of a measure P0, not

necessarily normalized to P0(Ω) = 1, supported in an interval (or compact set) I

in R (or Rm), such that

P0(I) =

∫
I

p0(t) dt < +∞.
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Let p, q be densities in B2(P0) corresponding to measures P,Q such that P domi-

nates Q, P � Q, that is

P0(t ∈ I : p(t) ≥ q(t)) = P0(I).

Then, for fP0 , gP0 ∈ B2(P0),

dB(P)(fP, gP) ≥ dB(Q)(fQ, gQ), (57)

where fP = fP0 · dP0/dP =B(P) fP0 	 pP0 and gP = gP0 · dP0/dP =B(P) gP0 	
pP0 [14]. The property (57) represents indeed the continuous counterpart to the

subcompositional dominance in compositions [24]. That is, if the volume of the

space P(I) is greater than or equal to Q(I) uniformly for any subinterval of I, then

distances in B(P) dominate distances in B(Q). An example of this is comparing

distances in a subinterval I1 ⊆ I with those in I – restrictions to subinterval

corresponding to taking subcompositions [9].

Let’s denote by L2
0(P) the closed subspace of L2(P) whose elements f0 have

zero integral
∫

Ω
f0 dP = 0. Since the Bayes space B2(P) is a Hilbert space, we

can define an isometric isomorphism (i.e. a bijective map preserving distances)

between B2(P) and L2
0(P). Such a map is provided by the centred logratio (clr)

transformation with respect to P, which is denoted by clrP and is defined for

fP ∈ B2(P) by [33] as

f cP(t) = clrP(fP)(t) = ln fP(t)− 1

P(Ω)

∫
Ω

ln fP(u) dP(u), t ∈ Ω. (58)

Its inverse mapping to B2(P) is obtained by using the exponential transformation,

exp[f cP](t) = exp[clrP(fP)](t), as shown in [33]. The clr representation allows to use

the ordinary geometry of L2(P) to conduct operations of perturbation, powering,

and inner product for the elements of B2(P), while accounting for the specific

features captured by the Bayes space. Indeed,

clrP(fP ⊕P gP) = clrP(fP) + clrP(gP), clrP(α�P fP) = α · clrP(fP)(t)

and

〈fP, gP〉B2(P) = 〈clrP(fP), clrP(fP)〉L2(P) . (59)
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Unlike the case of [33, Sect. 4], in this work the reference measure P in L2
0(P) is

not necessarily a probability measure, as its normalization may lead to incoherent

results when restricting the analysis to a subdomain of the original domain Ω (as

was shown in the discrete case [9]).

6.3.2 Unweighting Bayes spaces

Most methods developed for FDA rely on the assumption that functional

data are embedded in the unweighted L2 space. However, the clr transformation

(58) maps measures/densities in (a subspace of) a weighted space L2 space, i.e.

L2
0(P). Similarly, methods developed so far in Bayes spaces ground on the as-

sumption that a uniform reference measure is considered, as for instance in Secti-

ons 2.2 and 3. A transformation mapping P-densities from B2(P) to an unweighted

counterpart of L2
0(P) would have the advantage of allowing the use of most FDA

methods while accounting for the weighted Bayes structure of the data. Similarly,

a transformation mapping P-densities from B2(P) to an unweighted space B2(λ)

would allow for the use of unweighted methods to perform actual computations.

In this subsection, we derive an unweighting scheme allowing one to represent

the weighted Bayes space geometry in an unweighted Bayes space, as well as in

an unweighted L2 space.

We thus aim to define three mappings. Firstly, we define ω from B2(λ) to

B2(P) as a weighting map associating an unweighted λ-density to a weighted P-

density. Inversely, ω−1 is interpreted as an unweighting map. Similarly, we define

ω2 and its inverse ω−1
2 which play the same role between the unweighted and

weighted L2 spaces, i.e. L2(λ) and L2(P) respectively. Finally, we define clru

(unweighting clr) such that, for fP ∈ B2(P),

clru(fP ⊕P gP) = clru(fP) + clru(gP), clru(α� fP) = α · clru(fP)(t)

and

〈fP, gP〉B2(P) = 〈clru(fP), clru(fP)〉L2(λ) . (60)

To support this construction and study the properties of these maps, we shall use
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Figure 1: Relationships among weighted and unweighted Bayes spaces, B2(P) and
B2(λ), and weighted and unweighted L2(P) and L2(λ) spaces.

an auxiliary measure
√
P defined as

√
P(A) =

∫
A

√
p dλ, A ∈ A.

This measure plays the role of unweighting measure, in the sense that it allows to

consistently map the weighted Bayes space B2(P) into a subset of the unweighted

L2 space. We refer the reader to the scheme in Figure 1 as a concise representation

of these relationships.

We define the B2-weighting map ω as

ω : B2(λ)→ B2(P)

ϕ 7→ ω(ϕ) = ϕ1/
√
p,

(61)

where p = dP
dλ

(recall: p is assumed to be strictly positive in Ω). In (61), the map

ω is formulated for measures, but it can be equivalently expressed using densi-

ties with respect to respective reference measures. This map defines a bijection

between B2(λ) and B2(P), as proved in the following proposition.

Proposition 6.3.1 The map ω defined in (61) is one-to-one and onto.

The inverse ω−1 is defined as ω−1(ψ) = ψ
√
p and it is interpreted as a B2-

unweighting map. It is represented in the bottom left part of the scheme in

Figure 1. Obviously, both ω and ω−1 depend on the scale of P.
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We define the L2-weighting map ω2 as

ω2 : L2(λ) → L2(P)

η 7→ ω(η) = η/
√
p.

Using the same rationale as for Proposition 6.3.1, it can be proved that ω2 defines

a bijection between L2(λ) and L2(P). Its inverse ω−1
2 is defined as ω−1

2 (ξ) = ξ
√
p

and it is interpreted as a L2-unweighting map. It is represented in the bottom

right part of the scheme in Figure 1. Note that ω is non-linear with respect to

the Bayes space geometry, as well as ω2 is non-linear in L2.

Using (55), the map clru : B2(P)→ L2(λ) can be then defined as

clru(fP) = ω−1
2 [clrP(fP)]. (62)

It can be proven that (62) fulfills all the properties detailed in (60). Note that

the scale of clru depends on the scale of
√
p, hence on the scale of

√
P, because

of the non-linearity of ω2 (see [6] for the case of finite-dimensional compositions).

As such, similarly to the multivariate case [9], the scale of the reference measure

is relevant in the geometry of both weighted and unweighted spaces.

It is worth noticing that clru is closely related to a different centered logratio

transformation. This is defined on the unweighted space B2(λ) and induced by

the unweighting measure
√
P. Indeed, let L2

0,
√
P
(λ) be the subspace of L2(λ) such

that
∫

Ω
f d
√
P = 0 for f ∈ L2(λ). Let’s define on B2(λ) the map clr√P as

clr√P(ϕ)(t) = lnϕ(t)− 1√
P(Ω)

∫
Ω

ln[ϕ(u)] d
√
P(u), t ∈ Ω, ϕ ∈ B2(λ). (63)

In light of Proposition 6.3.1, it is easy to see that the map (63) is well defined.

For any ϕ ∈ B2(λ), we can set fP ∈ B2(P) to fP = ω(ϕ) = ϕ1/
√
p. Then, it holds

that ∫
Ω

ln[ϕ(u)] d
√
P(u) =

∫
Ω

ln[fP(u)]p(u) dλ(u) < +∞.

Moreover, for any ϕ in B2(λ), we have that clr√P(ϕ) ∈ L2
0,
√
P
(λ). The following

proposition establishes the close relationship between clru and clr√P, thus com-

pleting the scheme in Figure 1.
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Proposition 6.3.2 The following statements hold true.

(i) The image of the space B2(P) under the map clru defined in (62) is L2
0,
√
P
(λ).

(ii) The map clru coincides with the composed function clr√P ◦ ω−1, i.e.

clru(fP) = clr√P(ω−1(fP)) and fP ∈ B2(P).

(iii) The inverse of the map clr√P is clr−1√
P

: L2
0,
√
P
(λ)→ B2(λ) and is given by

clr−1√
P
(ψ) =B2(λ) exp(ψ),

for any ψ in L2
0,
√
P
.

(iv) The inverse of the map clru is clr−1
u : L2

0,
√
P
(λ)→ B2(P) and is given by

clr−1
u (ψ) =B2(P) exp[ω2(ψ)] =B2(P) ω[exp(ψ)],

for any ψ in L2
0,
√
P
.

Note that taking the B2-unweighting transformation ω−1 is indeed different

from simply changing the reference measure from P to λ. The former transfor-

mation is indeed used to represent the weighted Bayes space through an unweigh-

ted one, while preserving its weighted Hilbert geometry. In fact, as further highli-

ghted in Section 5.2, this auxiliary space may serve to enhance the interpretation

of the weighted structure. For instance, visual interpretation of a weighted density

fP in B2(P) is hindered by the need to take into account the weighting scheme

considered for the support. On the contrary, visualisation of the corresponding

unweighted density ω−1(fP) allows for the usual interpretation, yet representing

the same object – just by incorporating the weighting scheme.

It is also clear that, as long as the Lebesgue reference measure is concerned

(P(Ω) = λ([a, b])), the transformations clru and clrP coincide, and they reduce to

the clr transformation clrλ (8). Note, however, that this would not be true for

reference measures proportional to the Lebesgue one, because the scale of the

reference does have an impact on the Hilbert geometry.
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The above considerations have a direct impact on applications. For a sample

of densities f1, . . . , fN to be analyzed with respect to a reference measure P, the

following strategy can be adopted:

1. Set the reference measure P.

2. If the PDFs were given w.r.t. the Lebesgue measure, change the reference

measure from λ to P. That is, set fP,i = fi 	 p, for i = 1, . . . , N , with

fP,i ∈ B2(P).

3. Map fP,i, for i = 1, . . . , N , onto L2
0,
√
P
(λ) by using the clru transformation.

Set yi = clru(fP,i), for i = 1, . . . , N .

4. Perform the statistical analysis on yi, i = 1, . . . , N , using unweighted L2
0

(L2
0,
√
P
(λ)) methods.

5. If the results needs to be given in terms of densities, use the inverse transfor-

mation exp[clru(fP)] to express the results in the unweighted space B2(λ),

where they can be easily interpreted.

This strategy is further illustrated in the Section 5, which presents a dimensio-

nality reduction method in weighted Bayes spaces.

6.4 Statistical methods in weighted Bayes spaces: weighted

SFPCA

Simplicial functional principal component analysis (SFPCA, [15]) was re-

cently introduced to adapt the well-known functional principal component ana-

lysis [27] to density functions. It is grounded on the theory of Bayes spaces and

assumes that the Lebesgue measure is set as a reference measure. SFPCA aims

to explore the main modes of relative variability in a sample of density data

and can be used to suggest a possible dimensionality reduction of a dataset of

PDFs. In this section, we extend the SFPCA to its weighted version, named he-

reafter wSFPCA. Besides its relevance in applications, this extension serves as

an illustrative example of the strategy detailed in Section 4.2.
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Let’s denote by f1, . . . , fN an i.i.d. sample in B2(λ). After selecting the re-

ference measure P with λ-density p, a sample fP,i = fi 	 p, for i = 1, . . . , N ,

in B2(P) is obtained. We assume without loss of generality this sample is mean-

centered. If this is not the case, it is enough to consider f̃P,i = fP,i	 f̄P, where f̄P

stands for the (weighted) sample mean of the observed (weighted) densities

f̄P =
1

N
�P

⊕
P

N

i=1
fP,i.

Note that the centering operation shifts the center of the sample to the neutral

element of the (weighted) perturbation operation, that is, the uniform density on

B2(P).

The aim of wSFPCA is to identify a collection of orthogonal and normalized

P-density functions {ξP,j}j≥1 in B2(P) corresponding to the directions in B2(P)

along which the dataset displays its main modes of variability. These directions

are called weighted simplicial functional principal components (wSFPCs), and

they are obtained by maximizing the following objective function

N∑
i=1

〈fP,i, ξP〉2B(P) subject to ‖ξP‖B(P) = 1; with 〈ξP, ξP,k〉B(P) = 0, k < j, (64)

over ξP in B2(P), where 〈fP,i, ξP〉B(P) is the projection of fP,i along the direction

in B2(P) identified by ξP, i.e., coordinate of fP (Fourier coefficient). The ortho-

gonality condition has only to be fulfilled for j ≥ 2, and guarantees that the jth

wSFPC ξP,j is orthogonal to the first j − 1 wSFPCs.

Since B2(P) is a Hilbert space, the solution of the maximization problem

(64) exists and is unique for all j ∈ {1, 2, . . . , N − 1}. It coincides with the set of

eigenfunctions associated with the ordered eigenvalues of the sample covariance

operator V : B2(P)→ B2(P), defined for ξP ∈ B2(P) as

V ξP =
1

N
�P

⊕
P

N

i=1
〈fP,i, ξP〉B(P) �P fP,i. (65)

The jth wSFPC ξP,j is thus obtained by solving the eigenequation V ξP,j = ρj �P

ξP,j. The N − 1 eigenvalues ρ1 ≥ . . . ≥ ρN−1 represent the variability of the

dataset along the directions of the associated eigenfunctions ξP,1, . . . , ξP,N−1.
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From the practical viewpoint, it is desirable to restate the problem of fin-

ding the eigenpairs (ξP,j, ρj), j = 1, . . . , N − 1, in B2(P) in terms of the unwei-

ghted L2 spaces, i.e. L2
0,
√
P
(λ), where well-established computational methods

are available. To this end, consider the clru transformation of the data, i.e.

clru(fP,1), . . . , clru(fP,N). Following the same arguments of [15], one can easily

prove that performing a functional principal component analysis of the transfor-

med dataset in L2
0,
√
P
(λ) yields the eigenpairs (clru(ξP,j), ρj) , j = 1, . . . , N − 1.

The resulting eigenfunctions clru(ξP,j) can be eventually transformed back into

B2(P), or into the unweighted B2(λ), by using the corresponding inverse clr trans-

formation (i.e. clr−1
u or clr−1√

P
respectively) to proceed with interpretation in the

original space.

The results of wSFPCA can be interpreted, e.g. by analyzing the principal

component scores, which are useful to inspect the relationships among observati-

ons. Note that the score fij is a projection of the (centered) observation fP,i

along the direction ξP,j, i.e. fij = 〈fP,i, ξP,j〉B(P) = 〈clru(fP,i), clru(ξP,j)〉L2(λ), and

thus the scores coincide in B2(P) and L2(λ). It is useful to visualize the mean

density perturbed by the jth wSFPC ξP,j powered by a suitable coefficient. This

represents the variability around the mean function along the direction of a given

wSFPC, and can support the analyst in the definition of a weighting strategy

for the dataset at hand. Indeed, in the context of general reference measures,

the wSFPCs can be plotted and interpreted to see the effect of weighting the

domain of the distributional variable according to alternative reference measures.

Finally, for the purpose of dimensionality reduction, the number of wSFPCs to

be retained can be set by the commonly used scree plot. Particularly, searching

for an elbow shape or setting a threshold on the portion of variance explained by

wSFPCs as usually.
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7 Original results and summary

The focus of this work was to develop statistical methods for the analysis

of functional data carrying relative information – probability density functions,

defined on a bounded domain. These methods are grounded on the theory of

Bayes Hilbert spaces, capturing all key inherent features of densities (i.e., scale

invariance, relative scale), and they extend the well-known results of FDA to

density functions.

In Section 2, we considered the problem of statistical preprocessing of densi-

ties using spline functions, performed in the clr space. Firstly, we recalled opti-

mal smoothing splines for clr transformed density functions as proposed in [17].

Here, we proved a new key result to characterize B-spline representation of clr

transformed densities using standard B-spline basis system in terms of a linear

constraint on the B-spline basis coefficients. Nevertheless, it was recognized that

using the standard B-spline basis system for approximation of density functions

in clr space has some limitations since the basis elements do not belong to the L2

space. Therefore, this approach was updated by proposing a new class of com-

positional splines which enable to construct a B-spline basis directly in the clr

space of density functions (ZB-spline basis system) and, consequently, also in the

original space of densities (CB-spline basis system). Accordingly, compositional

splines can be implemented instead of the standard ones into FDA methods for

statistical processing of density functions. Also further tuning of the compositio-

nal splines is possible, here represented by the smoothing compositional splines

or by orthonormalization of the ZB-basis systems. As for future research, it could

be attractive to generalize the methodology of compositional splines even for

multidimensional density functions.

In Section 3, a novel approach to perform functional regression when the

response is a density function using the Bayes space methodology was develo-

ped. For the actual estimation of the regression coefficients, an approach based

on B-spline expansion of clr transformed density functions was proposed. This

expansion enables to control the smoothness of the estimated regression coeffi-

cients (density functions) through the smoothness of the B-spline representation

of the response. On the other hand, it turned out that the linear constraint on

B-spline basis coefficients (using the former approach for B-spline expansion of
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PFDs) induces the singularity problem into the regression model. Nevertheless,

this can be overcome by using the compositional splines which lead to expression

of PDFs through a set of unconstrained coefficients. Such representation can be

then further used for the purpose of inference on the coefficients using proper

functional tests.

The role of reference measure in Bayes spaces was discussed in Section 4, spe-

cially, a novel weighting approach to probability density functions was proposed.

An advanced weighting scheme was developed which enables to link weighted

Bayes spaces to unweighted B2 and L2 spaces. The advantage of representing

weighted densities in an unweighted space is demonstrated by the possibility of

(i) making comparisons of densities arising from different weighting criteria, and

(ii) visually interpret the results through ordinary ‘unweighted eyes’. In fact, the

proposed framework allows to perform statistical processing in weighted Bayes

spaces by using simply popular (unweighted) methods, which were developed for

FDA. In the final Section 5, this strategy has been demonstrated by extending

a dimensionality reduction method (SFPCA) to the weighted case. Nevertheless,

other methods could be considered as well, such as clustering, regression, spatial

prediction techniques, etc. We finally stress that considering different weighting

schemes can be particularly relevant in statistical applications, i.e., (i) to ac-

count for different degrees of uncertainty across the domain of the data, (ii) to

incorporate prior knowledge about the phenomenon or (iii) to perform domain

selection.

I truly hope that the presented thesis helps to expand the Bayes space me-

thodology for statistical processing of density functions and that it will be a mo-

tivation to propose other statistical methods for analyzing PDFs such as outlier

detection and related anomaly detection, classification or functional regression

with densities playing the role of the response and/or covariates.
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for representation of density functions (under review).
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[31] R. Talská, A. Menafoglio, J. Machalová, K. Hron, and E. Fǐserová. Com-

positional regression with functional response. Computational Statistics &

Data Analysis, 123:66–85, 2018.

[32] K. G. van den Boogaart, J. J. Egozcue, and V. Pawlowsky-Glahn. Bayes

linear spaces. SORT, 34(4):201–222, 2010.

[33] K. G. van den Boogaart, J. J. Egozcue, and V. Pawlowsky-Glahn. Bayes

Hilbert spaces. Australian & New Zealand Journal of Statistics, 56(2):171–

194, 2014.

45


	Introduction
	Bayes spaces
	Unweighted Bayes spaces: sample space
	Hilbert structure of unweighted Bayes spaces

	First steps for a statistical analysis in unweighted Bayes spaces
	Centered logratio transformation
	Effect of clr transformation

	Smoothing of density functions
	Approach I
	Approach II
	Application: smoothing of Italian income data


	Statistical methods in unweighted Bayes spaces: Functional regression
	Functional regression model in L2()
	Functional regression model in B2()
	Regression modeling of B-spline coefficients using Approach I

	Simulation study
	Assessing the effects of smoothing on regression
	Comparison of the Bayes approach with competitors in L2()

	Application: modeling metabolite distributions in newborns

	Weighted Bayes spaces
	Hilbert structure of weighted Bayes spaces
	Unweighting Bayes spaces
	Changing the reference measure: the consequences for density data using simulated densities from exponential families

	Statistical methods in weighted Bayes spaces: weighted SFPCA
	Changing the reference measure: consequences on SFPCA using simulated densities from exponential families
	Application: weighted SFPCA of Italian income data

	Conclusions
	Bibliography
	Abstract
	Abstrakt v ceském jazyce
	Introduction
	Recent state summary
	Bayes spaces
	Hilbert structure of Bayes spaces

	First steps for a statistical analysis in Bayes spaces
	Centered logratio transformation
	Smoothing of density functions (Approach I)


	Thesis objectives
	Theoretical framework and applied methods
	Smoothing of density functions (Approach II)
	Statistical methods in Bayes spaces: Functional regression
	Regression modeling of B-spline coefficients using Approach I

	Weighted Bayes spaces
	Hilbert structure of weighted Bayes spaces
	Unweighting Bayes spaces

	Statistical methods in weighted Bayes spaces: weighted SFPCA

	Original results and summary
	List of publications
	List of conferences
	References

