
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION S Y S T E M S

AUTOMATED W E B APPLICATION VULNERABIL ITY
DETECTION

BAKALÁRSKA PRACE
B A C H E L O R ' S THESIS

AUTOR PRÁCE FRANTIŠEK KOLÁČEK
AUTHOR

BRNO 2015

VYSOKÉ UČENI T E C H N I C K E V B R N E
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

AUTOMATIZOVANÁ D E T E K C E ZRANITELNOSTI W E ­
BOVÝCH APLIKACÍ
AUTOMATED W E B APPLICATION VULNERABILITY DETECTION

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE FRANTIŠEK KOLÁČEK
AUTHOR

VEDOUCÍ PRÁCE RNDr. MAREK RYCHLÝ, Ph.D.
S U P E R V I S O R

BRNO 2015

Abstrakt
Tato práce si dává za cíl analyzovat a porovnat implementaci již existujících open source
scannerů webových zranitelností (pomocí nástrojů Wivet a Wavsep) a na základě této
analýzy navrhnout a implementovat efektivnější způsob testování jednotlivých skupin útoku
do open source scanneru Revok.

Abstract
The aim of this thesis is to analyze and compare implementation of already existing open
source web application vulnerability scanners (using test suites Wivet and Wavsep) and
according to this analysis to propose and implement more effective way of testing each
class of vulnerabilities to open source scanner Revok.

Klíčová slova
web, bezpečnost, detekce zranitelností, revok, wivet, wavsep, jenkins

Keywords
web, security, vulnerability detection, revok, wivet, wavsep, jenkins

Citace
František Koláček: Automated Web Application Vulnerability Detection, bakalářská práce,
Brno, F IT V U T v Brně, 2015

Rozšířený abstrakt

Tato práce se zabývá analýzou a porovnáním implementací již existujících open source
scannerů webových zranitelností a možnostmi zlepšení hodnocení a efektivity testování
open source scanneru Revok.

Úvod práce se zaobírá základními pojmy v oblasti testování bezpečnosti webových ap­
likací a také projektem OWASP, jež sdružuje bezpečnostní experty z celého světa, vydává
odborné publikace a také zastřešuje vývoj nástrojů určných pro testování bezpečnostní we­
bových aplikací. Dále následuje stručný přehled testovaných zranitelností včetně vysvětlení
principu jejich zneužití. Testované zranitelnosti jsou SQL Injection, Cross-site scripting,
Local file inclusion, Path traversal a Remote file inclusion.

Pro analýzu, porovnání implementace a efektivity testování jednotlivých scannerů bylo
použito testovacích nástrojů W I V E T a W A V S E P . Na základě této analýzy bylo navrhnuto
několik způsobů, jak zlepšit výsledné hodnocení scanneru Revok v testech, jež jsou obsaženy
v nástrojích W I V E T a W A V S E P . Součástí analýzy bylo srovnání hodnocení scanneru Revok
s 4 nejpoužívanějšími open source scannery (Arachni, w3af, Wapiti a Z A P) .

Jednou z navržených změn bylo vytvoření automatizovaného testovacího prostředí scan­
neru Revok pomocí nástroje Jenkins pro zjednodušení následného testování aplikovaných
změn. Mezi další navrhnuté a implementované změny scanneru Revok patří vylepšení we­
bového crawleru pro lepší hodnocení v testech nástroje Wivet a vylepšení detekce Local file
inclusion zranitelností v testech nástroje W A V S E P (Revok získal před implementací změn
v obou zmiňovaných testech hodnocení 0%).

Výsledkem této práce je funkční prototyp automatizovaného testovacího prostředí Jenk­
ins obsahující definice pro oba testovací nástroje (W I V E T a W A V S E P) . Dále byly imple­
mentovány a otestovány změny zajištující lepší hodnocení v obou testovacích nástrojích.
Veškeré výsledky a implementace byly poskytnuty komunitě scanneru Revok.

4

Automated Web Application Vulnerability Detec­
tion

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval sám pod vedením RNDr . Marka
Rychlého, Ph.D. a s pomocí odborných konzultací od pana Jana Rusnačka, jenž je odborným
vedoucím práce za společnost Red Hat Czech, s. r. o.

František Koláček
May 18, 2015

Poděkování
Rád bych poděkoval svému vedoucímu práce RNDr . Marku Rychlému, Ph.D. za odborné
vedení, motivaci a cenné rady při řešení této práce a svému technickému vedoucímu práce
za společnost RedHat Czech, s. r. o. panu Jánu Rusnačkovi za poskytnutí cenných rad
a technických konzultací.

© František Koláček, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Bachelor's Thesis Assignment
Unofficial Translation

Student

František Koláček

Specialisation

Information Technology

Topic

Automated Web Application Vulnerability Detection

Category

Web

Instructions

1. Study the state of the art in web application security scanning and vulnerability
detection. Study, evaluate, and compare detection capabilities and features of existing
open-source web application scanners, including Revok.

2. Based on the analysis of the existing scanners and Revok, propose several new fea­
tures of Revok. The features will address missing detection capabilities in Revok, for
common classes of web vulnerabilities.

3. Propose the most effective approach to the detection of each addressed class of web
vulnerabilities.

4. Implement the proposed features of Revok and evaluate the results in comparison
with selected scanners applied on available web applications for penetration testers
and on real open source web applications. Any found vulnerabilities shall be disclosed
responsibly.

5. Document the project results and possible further enhancements in a technical report.

Supervisor

Marek Rýchly , R N D r . , Ph.D., UIFS FIT V U T

1

Contents

1 Introduction 4
1.1 Web application security 4
1.2 Testing of web application security 4
1.3 Automation in testing 5
1.4 OWASP and OWASP foundation 5
1.5 Top 10 web vulnerabilities in 2013 5
1.6 Structure of the document 6

2 Analysis of existing solutions 7
2.1 Arachni 7
2.2 Revok 8
2.3 w3af 9
2.4 Wapiti 9
2.5 Z A P 9
2.6 Features summary 10

2.6.1 User interface 10
2.6.2 Reporting and logging 10
2.6.3 Remote access and A P I support 10
2.6.4 Parallel scans and pause functionality 10

3 Testing and evaluation 11
3.1 Testing methodology 11

3.1.1 W I V E T 11
3.1.2 W A V S E P 12

3.2 Evaluation 12
3.2.1 W I V E T 12
3.2.2 W A V S E P 12
3.2.3 Evaluation using W A V S E P 12
3.2.4 Testing and evaluation using Jenkins 13

3.3 Tested vulnerabilities 13
3.3.1 SQLi 13
3.3.2 XSS 14
3.3.3 L F I and Path traversal 15
3.3.4 RFI 15

3.4 Approaches commonly used to detect vulnerabilities 15
3.4.1 SQLi 15
3.4.2 XSS 16
3.4.3 Path traversal and L F I 17

2

3.4.4 R F I 18
3.5 Results 18

3.5.1 W I V E T results 18
3.5.2 W A V S E P results 19
3.5.3 Results overview 19

4 Missing features in Revok 20
4.1 Revok's results evaluation 20
4.2 Proposed features 20

4.2.1 Enhancement of web crawler 20
4.2.2 Improve L F I detection 20

5 Features implementation 21
5.1 Enhancement of web crawler 21

5.1.1 Problem with relative links handling 21
5.1.2 Problem with multiple events on single page 22

5.2 Improve L F I detection 22
5.2.1 Problem with limited list of entry points 23
5.2.2 Problem with stability of W A V S E P testing suite 23

5.3 Jenkins CI tool for Revok 24
5.3.1 What is continuous integration 24
5.3.2 Jenkins job for testing Revok against W I V E T 24
5.3.3 Jenkins job for testing against W A V S E P 25
5.3.4 Results after features implementation 26

6 Conclusion 27
6.1 Future development 27

A D V D Contents 31
A . l Content of the D V D 31

B Installation and Usage 32
B. l W I V E T 32
B.2 W A V S E P 32
B.3 Revok 33
B.4 Arachni 33
B.5 w3af 33
B.6 Wapiti 34
B. 7 Z A P 34

C Detailed results 35
C. l W I V E T detailed results 35
C.2 W I V E T detailed results after modification 37

3

Chapter 1

Introduction

Subject of this bachelor thesis is to analyze, compare and evaluate functionality of already
existing open source web application vulnerability scanners and to propose and implement
new features to recently open sourced scanner Revok [] to make it more effective in finding
security vulnerabilities in web applications.

In the first part of this thesis selected open source web application scanners are analyzed
and tested and their efficiency and number of implemented features are evaluated and
compared. The results discussed in Evaluation section 3.2 were used to identify weak
points of the current version of Revok scanner and also to propose missing features. Based
on this evaluation selected features have been implemented.

1.1 Web application security

According to the Technopedia definition [43], „Web application security is the process of
securing confidential data stored online from unauthorized access and modification". Web
sites, web applications and web services are unfortunately really prone to security risks
since web servers are open to internet by design. The most serious sources of security risks
are misconfigured or not updated servers and website sources themselves. Exploiting or
misusing discovered vulnerabilities or security threats can lead to potential private data
leak, service unavailability or data loss.

Wi th every new feature developer or/and every change performed on deployed web
application the chance of creating new vulnerability is increasing. It means that securing
web applications against hacker's malicious intentions is always a long-term and time-
consuming project. Since more and more important applications have become accessible
over network and number of performed attacks on these applications is growing rapidly,
their security is becoming more and more important topic these days.

1.2 Testing of web application security

Testing of web application security is a process of analyzing web application's behavior
and finding security risks and possible vulnerabilities, which can lead to data corruption.
This analysis is performed to minimize the possibility of unauthorized access, sensitive data
modification or theft either by person or by malicious script.

4

1.3 Automation in testing

Nowadays the security of web applications is mostly tested by automated programs also
called web application security scanners. Web application security scanner usually performs,
unlike source scanners, only black-box testing. It means that it does not perform any source
code analyses (it does not even have access to the source code of tested application) but
it communicates with a web application only through its web front-end. For this reason,
these scanners are trying to identify potential security vulnerabilities by actually performing
attacks to known security issues and then analyzing the application's output and behavior.

1.4 OWASP and OWASP foundation

OWASP Foundation is worldwide not-non-profit charitable organization [37] which sup­
ports OWASP (The Open Web Application Security Project) globally around the world.
OWASP is focusing on making security of application more visible and easily understand­
able by creating freely available articles, documentation and tools. Their main goal is to
openly inform about security risks and potential vulnerabilities so that either individuals
or organizations can make informed decisions on how to secure their applications.

1.5 Top 10 web vulnerabilities in 2013

The OWASP 1.4 every year publishes updated version of document where the most critical
web application vulnerabilities are listed. The security flaws mentioned on this list occur
very frequently in web applications and are very dangerous because they could be easily
found and exploited. These vulnerabilities could be used for stealing data and sensitive
information, preventing your software to work properly or causing complete data loss.
According to the OWASP [], the list of the most common and exploited vulnerabilities
in 2013 is following:

• A l - Injection

• A2 - Broken Authentication and Session Management

• A3 - Cross-Site Scripting (XSS)

• A4 - Insecure Direct Object References

• A5 - Security Misconfiguration

• A6 - Sensitive Data Exposure

• A7 - Missing Function Level Access Control

• A8 - Cross-Site Request Forgery (CSRF)

• A9 - Using Components with Known Vulnerabilities

• A10 - Unvalidated Redirects and Forwards

5

Each of vulnerabilities is described in detail in OWASP ToplO document also with
examples of possible attacks and information on how to avoid them. OWASP also organizes
special trainings which cover (not only) ToplO problematic. The main purpose of these
trainings is to keep users and developers informed as much as possible and to increase
awareness of potential consenquences of these attacks so they can analyze and protect their
applications.

Selected security flaws from this OWASP ToplO document will be explained in section
3.3. These flaws will be also tested with open source web application scanners mentioned
in chapter 2 and results of these tests are presented later in section 3.5.

1.6 Structure of the document

In the next chapter called Analysis of existing solutions 2 selected open source scanners
will be introduced. For the full list of analyzed scanners refer to the table 2.1. Information
about their authorship, licenses, tested versions and used programming languages and also
publicly available list of features can be found in section 2.6.

In the next chapter called Testing and evaluation 3, techniques which have been used for
testing and evaluating functionality of each scanner are introduced. The list of the tested
vulnerabilities is mentioned in section Tested vulnerabilities 3.3 and brief description of
each vulnerability and approaches of their detection are mentioned in section Approaches
commonly used to detect vulnerabilities 3.4. Evaluation of functionality and efficiency of
each scanner by using testing suites W I V E T 3.1.1 and W A V S E P 3.1.2 is mentioned in
section 3.2.

The results of efficiency and functionality of each web application scanner are introduced
in chapter 3.5.

Analysis of missing features in Revok scanner along with the implementation suggestions
for new features are introduced in chapter Missing features in Revok 4.

At the end of this thesis, there is a conclusion 6 of my contribution to Revok web
application scanner.

The content of the attached D V D is listed in appendix A . Installation and usage guides
are mentioned in appendix B . The specific tested scenarios are mentioned in table 3.2 and
more detailed results of each scanner are listed in appendix C.

6

Chapter 2

Analysis of existing solutions

For my bachelor thesis analysis I have only chosen commonly used open source scanners
because of a possibility to check their implementation and efficiency The complete list of
chosen scanners, including information about their development, is mentioned in table 2.1.

Scanner Developer Version Language License
Arachni [] Tasos Laskos 1.0.6 Ruby Apache v2.0
Revok [34] Yubin Yan 0.8.0 Ruby G N U AGPLv3.0
w3af [] Andres Riancho 1.6 Python G N U GPLv2.0
Wapiti [38] Nicolas Surribas 2.3.0 Python G N U GPLv2.0
Z A P [32] OWASP Foundation 2.3.1 Java Apache v2.0

Table 2.1: List of tested scanners

A l l of the scanners mentioned have their source code publicly accessible. Each of the
tested scanners is introduced more closely in the following sections.

2.1 Arachni

Arachni [] is an open source, modular and high-performance framework developed in
Ruby, aimed at helping security specialists, administrators and penetration testers to test
and evaluate web application's security.

Arachni also has an integrated browser support so it is able to audit and test client-side
code. Due to its feature Arachni can be used for testing highly complicated web applications
which are using dynamic technologies like JavaScript, A J A X and it can be used for D O M
[26] manipulation.

There are two possibilities to operate this framework: either from command line or
via its web interface. It can be also configured for use in multi-node high effective grids.
Arachni also provides easy R P C A P I [] for managing the whole framework.

7

2.2 Revok

Revok [34] is an easy to use online web app security scanner developed in Ruby. It is
completely open source (since Nov 17th 2014) and it is released under G N U AGPLv3.0 [8].
Revok aims to be as easy as it could possibly be. Wi th this in mind, any software engineer
cat test and evaluate security of web application constantly and through the full software
development life cycle.

Revok also provides JavaScript crawler for testing basic client side scripts. It is also
designed to be deployed in both single-node and multiple-nodes environment, which makes
it possible to run scans in parallel. Revok itself consists of the following components:

• Web console (user interface for submitting new scan requests)

• R E S T A P I (API for handling requests from web console)

• Messaging server (distributing messages/requests across Caroline nodes)

• Caroline nodes (working nodes performing scans)

• Database (storing details for all scan tasks)

The communication workflow is illustrated on figure 2.1.

Web Console Frontend

REST Server

Active MQ

DB Server

Backend

r r

1 *
>

Caroline Caroline Caroline Caroline
Node l Node2 Node3 Noden

Figure 2.1: Revok components overview [20].

8

2.3 w3af

Tool w3af (short form for Web Application Attack and Audit Framework) [31] is an open
source framework used for securing web applications by analyzing and exploiting their
vulnerabilities. This cross-platform framework is developed in the Python programming
language so it is available for all of the popular operating systems such as Linux, FreeBSD,
Mac OS X , Microsoft Windows and others.

w3af can be used via command line but it also provides graphical interface and function­
ality could be easily extended by using more than 130 available plugins. This framework
was started as one man show by Andres Riancho in March 2007, but later (in July 2010)
sponsorship and partnership with Rapid7 was announced (which allowed rapid development
of this framework).

2.4 Wapiti

Wapiti [i] is a web application vulnerability scanner using blackbox approach for testing
and evaluating web application's security. Wapiti is developed in Python and it supports
both G E T and P O S T H T T P methods for discovering possible vulnerabilities. Once the
structure mapping of targeted application is finished, Wapiti will try to test payloads to
test whether discovered scripts and forms are vulnerable or not.

Wapiti provides only command line interface so it is not as user friendly as other scanners
providing web interface, so it is more suitable for experienced users. Wapiti, like other tested
scanners, is completely open source released under GPLv2.0 [] license.

2.5 ZAP

Z A P (short for Zed Attack Proxy) [!] is penetration testing tool developed by OWASP
foundation 1.4 and used for finding vulnerabilities in web applications. It provides both
passive and active scanners and can be used either for automatic or manual testing. Z A P
behaves as intercept proxy and could be used in combination with properly configured web
browser to browse pages manually and manipulate all of the traffic coming through.

It is suitable for absolute beginners as well as for skilled testers because it provides
very wide range of functionalities. In daemon mode it could also be controlled by powerful
R E S T A P I [18].

Z A P is one of the most active OWASP projects and it is a part of OWASP flagship
project. It is developed in Java and distributed under Apache License v2.0 []. It was also
awarded in recognizing competitions (e.g. second place in the Top Security Tools of 2014
as voted by ToolsWatch.org readers [1]).

9

http://ToolsWatch.org

2.6 Features summary

Each of the tested scanners has its own subset of implemented features. In the table 2.2
only general features of each scanner are mentioned.

Scanner C L I GUI W E B A P I Report Log Pause Parallel scans
Arachni / * / / / / / /
Revok * / / / / * /
w3af / * * / / *
Wapiti / * * * / / * *
Z A P * * / / *

Table 2.2: List of implemented features.

2.6.1 User interface

Most of the tested scanners have some form of graphical interface (represented by columns
GUI and W E B) which can be also used by less experienced users for submitting their tests.
Only one of them (Wapiti) has command line interface (column C L I in table above) only.

2.6.2 Reporting and logging

A l l of the tested scanners are able to create scan report (usually in form of web page) so it
is easier for user to check the results of performed scan. These results usually contain also
useful hints and recommendations on how to improve security of tested web application.
A l l of tested scanners also provide functionality of logging results to some log files (in form
of plain text or formatted for example using J S O N [5]).

2.6.3 Remote access and A P I support

Some of the tested scanners (Revok, Arachni and ZAP) provide remote A P I (REST [18] or
R P C [23]) which can be used for integration these scanners to automated testing workflows
like continuous integration testing. The rest of the tested scanners do not support any kind
of remote A P I .

2.6.4 Parallel scans and pause functionality

Some of the tested scanners are also able to pause running tests and resume them later
(represented by column Pause in table 2.2). Only two of the tested scanners (Revok and
Arachni) are capable to be deployed on multiple nodes and provide parallel scans function­
ality.

10

Chapter 3

Testing and evaluation

The selected tools have been used for testing and evaluating possibilities and efficiency of
each web application vulnerabilities scanner mentioned in the chapter Analysis of existing
solutions 2. Each one of these tools is briefly described bellow. The results of all tested
scanners are presented in chapter Results 3.5. Installation of each scanner and testing suite
is described in appendix B and arguments, enabled modules and targets used during testing
are described in table 3.2.

3.1 Testing methodology

A l l tested scanners have been running multiple times with various arguments. In the first
run, all of the tested scanners, including Revok, have been tested in default configuration
and with all default modules enabled. In the second run, there were only appropriate
modules enabled for each attack vector and scanner. These two runs have been compared
with each other and only the highest earned score for each vector type and each scanner
has been recorded.

Later testing has been realized using open source CI (continuous integration) testing
tool called Jenkins [28]. For both testing suites (W I V E T and WAVSEP) have been created
jobs which fully automated testing of Revok scanner against these testing suites. Details
of Jenkins CI implementation is presented in chapter Jenkins CI tool for Revok 5.3.

3.1.1 W I V E T

W I V E T [] (short for Web Input Vector Extractor Teaser) is a benchmarking project that
measures how effective is tested scanner in crawling web applications and in finding possibly
exploitable input vectors. W I V E T project is developed in P H P 1 , which means that it could
be hosted on almost any common hosting (which supports P H P) . Deployment and usage
of this tool is straightforward and does not require any additional configuration. W I V E T
itself provides very easy-to-use web interface where you can see actual progress of testing
and also the total coverage of each scanner (statistics are bounded to the PHPSESSID 2) .
Detailed installation and usage of this tool is described in appendix B . l .

1 P H P - Hypertext Prepropcessor, popular general-purpose scripting language
2 PHPSESSID - Unique session identificator used by PHP applications to determine different clients.

11

3.1.2 W A V S E P

W A V S E P [39] (short for Web Application Vulnerability Scanner Evaluation Project) is
the evaluation platform which contains a collection of unique web pages. Each of them
is vulnerable in different way so the whole framework provides possibility to test various
properties of web application scanners. W A V S E P is developed in Java and it uses Tomcat
[] application server for running. Detailed installation and usage of this tool is described
in appendix B.2. This project does not contain any kind of evaluation so custom evaluation
method has been used (details will be presented in following section).

3.2 Evaluation

This section describes steps which have been performed in order to evaluate efficiency and
detection accuracy of each class of vulnerabilities using testing suites W I V E T and W A V S E P .
Specific testing scenarios which have been used for testing and evaluating are mentioned in
table 3.2.

3.2.1 W I V E T

Each one of tested scanners has been tested first against W I V E T 3.1.1 to determine coverage
of each attack vector. W I V E T itself is capable to evaluate ability of each scanner to use
particular attack vector and also to present the results via its web interface. W I V E T
includes tests for 56 different attack vectors so it is possible to express the success ratio of
each scanner in percentage. W I V E T results are presented in chapter 3.5, section 3.5.1. For
testing coverage of each scanner has been used W I V E T in version 4.

3.2.2 W A V S E P

W A V S E P is vulnerable web application which contains a collection of unique web pages.
The W A V S E P contains 1261 vulnerable pages in total (142 SQLi , 98 XSS, 828 LFI , 115
RFI and 78 other vulnerabilities which are not mentioned in this thesis). Each class of web
attacks (SQLi, XSS, LFI , RFI) was tested separately and only dedicated plugins/modules
were enabled during these tests. For testing abilities of selected scanners was used W A V S E P
in version 1.5.

3.2.3 Evaluation using W A V S E P

This testing platform provides only links to vulnerable pages and description of each vulner­
ability but does not provide any way of evaluating the detection accuracy of each scanner.
For this reason I have created scripts which helped me to gather links of all vulnerable pages
from W A V S E P to the testing database and parse logs of each scanner/attack. I have deter­
mined discovered vulnerabilities from these logs and then evaluated the overall detection
accuracy. A l l of these scripts are located on attached D V D in directory bp-jenkins-scripts
and more complex usage along with dependencies are described in appendix B.2. Wavsep
testing and evaluation of Revok's results have been simplified and transformed to separate
Jenkins job. This job was used later for testing Revok's improved testing capabilities (after
applying all changes mentioned in chapter Features implementation 5).

12

Gathering links

The list of the unique URLs for testing pages was generated using script wavsep-gather-
links.sh. This script is using the same configuration file as the one used by Jenkins scripts
(which will be introduced later 5.3). This script takes only one parameter from command
line - the name of the vector which it should generate links for (allowed values are: sql, xss,
Ifi and rfi). The rest of the configuration options is located in the shared configuration file
which is also used for Jenkins scripts. This script also uses the location of your W A V S E P
installation (e.g. http://localhost:8082/wavsep/).

Database initialization

For initializing database was used script wavsep-init-db.sh which uses as a parameter the
name of the SQL file containing links of vulnerable pages. I have used this database as a
reference for evaluating whether the scanner discovered this particular vulnerability or not.

Log file analysis

Analysis of generated log files from each scanner was performed by running script wavsep-
eval.sh which takes as an argument the name of the analyzed scanner. It searches for log
files in directory results and performs analysis of logs which match the name (e.g. revok-
xss.html, revok-sql.html and others).

Gathering statistics

Script wavsep-results.sh was used for the gathering of final statistics, which prints on stan­
dard output the information about successfully discovered attacks of each class for each
tested scanner.

3.2.4 Testing and evaluation using Jenkins

The continuous integration testing for Revok open source web application scanner has been
proposed in section Proposed features 4.2 and later implemented and described in section
Features implementation 5. Jenkins jobs allow fully automated testing of Revok's capa­
bilities and these jobs have been created for both testing suites (W I V E T and W A V S E P) .
Details about them, their configuration and usage is described later in this thesis.

3.3 Tested vulnerabilities

In this section there are the tested vulnerabilities presented and possibility of its exploiting
is explained.

3.3.1 S Q L i

According to the OWASP [], SQL injection (also known as SQLi) is one of the commonly
used attacks performed and tested against web (and not only) applications. It consists of
insertion SQL 3 query via some input vector to the application which causes its execution.
SQLi depends on incorrectly sanitized user's input which is used for injection attacker's

3 SQL - Structured Query Language

13

http://localhost:8082/wavsep/

code into the original query. This attack could lead to revelation of sensitive data stored in
application database, allowing data manipulation (update,insert or even delete) and even
administration operations can be executed on database.

3.3.2 X S S

The Cross-site Scripting (also known as XSS) is, according to the OWASP [6], another type
of remote injection attack which uses injecting of malicious script for exploiting legitimate
web site. This attack occurs whenever are the untrusted data received by the application
and sent to the victim's web browser without proper escaping or validation (XSS allows
executing of malicious script in victim's browser). This attack has very wide range of use
and it is very difficult to detect by the victim. As stated by OWASP [25], there are three
variants of this attack:

• Stored XSS

• Reflected XSS

• D O M Based XSS

This was the basic classification but it is also possible to divide Cross-site Scripting
attacks by accessibility:

• Server XSS - occurs when malicious code is included in an H T M L response received
from the server

• Client XSS - occurs when malicious code is used to update the D O M by the Javascript
call

Exploiting of these vulnerabilities could be used for accessing victim's sensitive data (e.g.
cookies, session tokens and others) and also running malicious script in victim's browser (it
could be used for example for updating content of the affected page).

Non-Persistent XSS

It is the most common type of XSS vulnerability because malicious code is not stored
anywhere persistently and therefore does not require any additional interaction with any
storage system (e. g. database system). For exploiting this vulnerability any user input
which is not properly sanitized could be used.

Persistent XSS

This type of XSS attack is similar to the previous one but there is one difference - malicious
code is stored persistently on the server (in database, files or any other resource providing
storage) and can be exploited multiple times with every refresh of infected page.

D O M based XSS

This kind of attack is performed by changing D O M on client side without any interaction
with server so there is no way how to check if client was compromised or not.

14

3.3.3 L F I and Path traversal

According to the OWASP [], Local File Inclusion (also known as LFI) is the vulnerability,
that allows the attacker to include files that are already present in the system (unlike Remote
file inclusion which will be mentioned later in section R F I 3.3.4) to an application via the
web browser. This vulnerability occurs when page does not use properly validated and
sanitized input. This attack can be used for revealing sensitive data from files present
on the system (e.g. configs, files containing passwords and others). This vulnerability is
commonly exploited in P H P applications, but can be found also in other technologies (e.g.
ASP, JSP).

This vulnerability also allows to use another attack called Path or Directory traversal.
Principle of this attack is in exploiting page includes (the same way as in LFI) so an attacker
would be able to access files and directories which are not present in the web folders [17].

3.3.4 R F I

The Remote file Inclusion (also known as RFI) is very similar to the Local File Inclusion
vulnerability. The difference between these two vulnerabilities is in including remote files
(files hosted on different server) instead of the local ones like in L F I [22].

3.4 Approaches commonly used to detect vulnerabilities

This section contains brief description of used approaches for detecting each of all mentioned
vulnerabilities in web applications.

3.4.1 S Q L i

SQL Injection is still a common web application vulnerability and according to the OWASP
ToplO it is the most exploited vulnerability ever. Exploiting an SQL injection is nowa­
days very easy thanks to automated tools specialized on this kind of vulnerability such as
SQLMap [35] or SQLNinja [36]. A l l of them are using set of already predefined payloads
and they are trying to inject the same set of payloads to the web application. There are 6
basic payload types used for exploiting SQL injection according to the Arne Swinnen [3]:

• boolean-based blind

• time-based blind

• error-based

• U N I O N query

• stacked queries

• out-of-band queries

A l l of these payload types will be briefly described bellow. More details about these
payloads and examples are above the scope of this thesis.

15

Boolean-based blind method

This method is based on injecting payloads (boolean subquery returning true) which leads
to altering the original query and returning different content which was not originally
requested.

Time-based blind method

This method is based on injecting payload which causes delay on database server and slows
down the speed of the whole application in return.

Error-based method

This method is using payloads to break the original SQL request and force the database
server to generate SQL error presented back to the client.

U N I O N query

This method is using SQL command U N I O N for merging results from multiple tables and
printing information which was not originally supposed to be returned to the client.

Stacked queries

Method very similar to the U N I O N query method using multiple queries stacked together.

Out-of-band queries
This payload method can use for example a file which could be executed inside the web
server directory.

3.4.2 X S S

Cross-site scripting are attacks where an attacker is able to get control of victim's web
browser and use it for executing malicious script (usually in the form of Javascript code).
According to the OWASP ToplO it is the third most exploited vulnerability these times.
As already mentioned in previous section 3.3.2 there are 3 types of XSS attacks:

• Non-Persistent attack (also known as Reflected XSS)

• Persistent attack

• D O M based attack

There are mainly three kind of approaches for detecting XSS vulnerabilities and they
are as following:

• Static analysis

• Dynamic analysis

• Combination of static and dynamic analysis

16

Some of the approaches will be briefly described bellow but this topic is too complex to
be covered in this thesis. For more details about approaches for detecting XSS please refer
to master thesis Approaches to detect SQL injection and XSS in web applications created
by Abhishek Kumar Baranwal [].

Static analysis approach

There are many types of static analysis used for detecting XSS vulnerability in web appli­
cation according to the Abhishek Kumar Baranwal's thesis []:

• Bounded Model Checking

• Analysis of String

• Software Testing Approaches

• Taint Propagation Approach

• Using Untrusted Scripts

Dynamic analysis approach

• Syntactical Structure Approach

• Interpreter-based Approaches

• Browser-Enforced Embedded Policies Approach

• Proxy-based Approach

Static and Dynamic Analysis Approach

• Lattice-based Approach

3.4.3 Path traversal and L F I

This vulnerability is the result of insufficient validation and sanitization of browser input
from users. Path traversal (also known as directory traversal) vulnerability can be located
either in web server implementation or application itself and this vulnerability can exist in
a variety of programming languages (it is not limited only to P H P and web applications).

Attackers exploiting this vulnerability send malicious U R L to the server which instructs
web server to return specific files. Attacker has to find U R L which can be modified to
retrieve the file from the server. The ' . . / ' sequence is commonly used for exploiting this
vulnerability which basically instructs the web server to retrieve file from parent directory.

Local File Inclusion attack is very similar to the Path Traversal attack. The difference
between them is that for exploiting L F I attacker uses files which are located on the targeted
server. The most often used file on Linux systems is /etc/passwd because attacker can be
absolutely sure that it exists and it is accessible and readable by the web server. Attacker
can use this vulnerability for retrieving of any file located on targeted server (any file which
can be accessed by the user running web server or another exploited service).

17

3.4.4 R F I

Remote File Inclusion vulnerability is very similar to the L F I . The only difference between
them is that in this case attacker uses file which is not stored locally but it is located on
remote server (usually on server controller by attacker). Attacker's goal is to include remote
file and force web server or hosted application to execute this included file. Exploiting this
vulnerability is commonly used for uploading malicious scripts to victim server (very often
used are tiny scripts which provide remote shell support or F T P access so attacker can
easily upload new files and continue with exploiting application/server).

3.5 Results

This sections presents W I V E T and W A V S E P results of each tested scanner. Used testing
methodology and information how to interpret results was already described in the chapter
Testing and evaluation 3. Specific testing scenarios used for testing scanners are mentioned
in table 3.2.

3.5.1 W I V E T results

A l l of the scanners has been tested against W I V E T testing suite and results of evaluating
ability of each scanner to use various attack vectors are mentioned in table 3.1. A l l of
the tested scanners were tested multiple times with different modules enabled and only the
highest score was recorded for comparison.

Arachni Revok w3af Wapiti Z A P

Total coverage 96% 0% 16% 44% 69%

Table 3.1: W I V E T results

Results of testing scanners against W I V E T testing suite with information about used
modules are mentioned in table 3.2.

Scanner Enabled modules Coverage

Wapiti xss 44%

w3af web-spider 12%

w3af web-spider, digit-sum 16%
Revok all 0%

Arachni trainer, audit-links, audit-forms 96%
Z A P basic 10%

Z A P subtree 16%
Z A P subtree, ajax 69%

Table 3.2: W I V E T results according to enabled modules

For more detailed W I V E T results please refer to the appendix C . l where you can find
the list of all tested vectors and corresponding results for each of tested scanners.

18

3.5.2 W A V S E P results

A l l of the tested scanners have also been tested against W A V S E P testing suite and results
of each scanner are presented in table 3.3. Only relevant modules of each scanner were used
for testing each class of vulnerability.

Vulnerability Arachni Revok w3af Wapiti Z A P

SQLi 100% 32% 35% 100% 100%

xss 90% 88% 37% 66% 100%
L F I 100% 0% 57% 51% 75%
R F I 100% 31% 16% 57% 100%

Total score 97.5% 37% 36.2% 68.5% 93.7%

Table 3.3: W A V S E P results

3.5.3 Results overview

The highest score reached by all of the tested scanners is mentioned in table 3.4. According
to this table it is evident that the Arachni scanner performed the best with total score
96.8%, followed by Z A P which reached score 81.35%. The difference between the 2nd
(ZAP) and 3rd position (Wapiti) is relatively big because Wapiti reached only 56.25%. The
rest of the tested scanners reached even lower score (scanner w3af reached 26.1% and Revok
only 18.5%).

Arachni Revok w3af Wapiti Z A P

W I V E T 96% 0% 16% 44% 69%
W A V S E P 97.5% 37% 36.2% 68.5% 93.7%

Total score 96.8% 18.5% 26.1% 56.25% 81.35%

Table 3.4: Results overview

19

Chapter 4

Missing features in Revok

4.1 Revok's results evaluation

According to the results of each scanner mentioned in the previous section, Revok is not
the most effective and powerful scanner on the list of tested scanners although it performed
well. As stated in table 3.1, Revok scored with result 0% only in W I V E T test and it did
not even passed basic tests.

As stated in table 3.3 Revok is the most effective in finding XSS vulnerabilities, on the
second place was discovering SQL injection and Remote File Inclusion vulnerabilities. It
is also apparent, that Revok has problems with detection of Local File Inclusion and Path
Traversal vulnerabilities although it already contains dedicated plugin for finding Path
Traversal vulnerabilities.

4.2 Proposed features

For testing new features implementation it is necessary to establish a testing environment
which allows the possibility of an automated testing of efficiency and reliability of the new
implemented features. This automated testing environment can be also used for ensuring
that no regressive problem will be integrated to the new version of the Revok. It also means
that the possibility that regressive problem will be integrated to the next release during the
development cycle. For this purpose Jenkins CI Continuous Integration project has been
used. More information about the configuration, host topology and usage of the Jenkins
CI testing environment used in this specific project is presented in the following section
Features implementation 5.

4.2.1 Enhancement of web crawler

The another proposed change/feature is to identify the problem causing the zero score
for Revok in W I V E T tests, develop fix for this problem, create pull request and inform
developers and community where and what was the problem (ideally in form of creating
issue and pull request afterwards).

4.2.2 Improve L F I detection

Enhance the testing and detection capability of already existing Path Traversal module and
implement/add new checks for finding Local File Inclusion vulnerabilities.

20

Chapter 5

Features implementation

In this chapter will be presented new features and their implementation to the open source
scanner Revok which was proposed earlier in section Proposed features 4.2.

5.1 Enhancement of web crawler

First proposed change was enhancing testing capability of Revok's web crawler to improve
results in W I V E T testing.

5.1.1 Problem with relative links handling

As I already mentioned in previous section, Revok has obvious problems with W I V E T
testing suite because it scored only 0%. After some research I've discovered that this
poor score was caused by the lacking capability of handling html base tag during Revok's
crawlering phase.

Revok was not able to handle relative links in case that there is H T M L base tag present
on the scanned page. This issue is not actually caused by Revok itself because Revok only
uses project PhantomJS [] for the whole process of analyzing / crawling the targeted
page. PhantomJS is scripted headless browser based on Webkit which provides full web
stack (including Javascript). There is already known issue [] with handling relative URLs
in PhantomJS but this problem is still not resolved.

Due to this bug, Revok was not able to resolve relative links properly and it led to 0%
score reached in W I V E T testing. The problem is that W I V E T uses multiple frames on one
page and there is base tag located in one of them. Although Revok was able to identify
all links on scanned paged properly it was not able to combine the address stored in base
tag with the relative links found on page. Because of this, Revok did not even reach these
pages - server returned Error not found instead.

This problem has been already reported to the Revok team (on their original GitHub
repository [34]). Issue request has been created with detailed description of this problem
[13]. This lacking capability caused problems with proper web crawling, more specifically
with the relative link handling. Possible fix/workaround for this issue has been developed
and also introduced to the Revok's developers and community. Pul l request [] has been
created for this purpose. Patch containing this fix/workaround is also located on attached
D V D A .

21

5.1.2 Problem with multiple events on single page

Fixing problems with handling relative links mentioned in previous section improved W I V E T
testing coverage, but only to 19%. After this change Revok was able to handle basic attack
vector like redirects. It was also able to handle some click and mouse events but not on all
of them.

There was an implementation of basic method called scanOthers in web crawler module
webcrawler.js which was supposed to perform basic click events on elements li and span.
This implementation relied on fact that there is only one event with click event binded at the
same time on single page. Web crawler module is also using jQuery [] javascript library
for easier orientation on scanned page (it allows easier D O M manipulation and provides
powerful D O M selectors).

The base functionality of scanOthers method was to match all occurences of li and span
elements and perform delayed click on each of them. The problem with this approach was
that the first executed click event triggers redirect event and the whole page was redirected
to different page. Redirect causes that none of the rest of delayed click events will be
processed anymore.

There is one limitation which prevents from implementing easy and straightforward
solution of this problem. Every action performed on scanned page using PhantomJS is
sandboxed (method evalute which takes callback function as an argument). It also means
that j Query framework can be only used inside this sandboxed function and it is problematic
to pass arguments to this function and return multiple values from it.

This problem has also already been reported to the Revok team and issue request for
this problem has already been created [12].

I have developed possible solution for this problem and I already pushed this change to
my forked repository. I have implemented method called scanEvents which is able to go
through all elements specified in array objects electors and perform all events specified in
array events. Supported elements currently are: div, li and span, but it is possible to add
other elements as well. There are also new events supported in this implementation:

• click - event occurs when the user clicks on an element

• mouseout - event occurs when the mouse pointer is moved out of an element

• mouseover - event occurs when the mouse pointer is moved onto an element

• mousedown - event occurs when the user press' a mouse button over an element

This method uses workaround for identifying all selected elements with ID before trig­
gering events even start. For this purpose is every element which should be tested (it means
that events should be triggered on this element) marked with unique ID (in case that it
does not have ID already). Then we are able to track down which element (by ID) was
already tested and which was not and we can go through all of them creating sandbox for
triggering every single event (it will not affect other events).

Pul l request [] has been created for this purpose. Patch containing this fix/workaround
is also located on attached D V D A .

5.2 Improve LFI detection

The second proposed change was improving capability of detecting Local file inclusion
vulnerability in W A V S E P tests.

22

5.2.1 Problem with limited list of entry points

The Revok scanner uses only predefined and very limited list of entry points for testing
both Local and Remote file inclusion vulnerabilities. There is only one module present in
Revok scanner which is responsible for scanning all three vulnerabilities (LFI, R F I and Path
traversal) and it is called path-traversal module (stored in file path.traversal.rb). Revok
provides possibility to select which modules will be used for requested scan so this module
can be easily tested separately to ensure that results will not be influenced by another
modules.

This module contains a list (it is an array jjname) of predefined entry points and only
these entry points are tested and evaluated in this module. The list of these predefined
entry points is as following: doc, file, f, page, p, dir, filename, fname.

The problem in this approach is that W A V S E P uses different entry point (namely target)
so Revok was not able to test file inclusion attacks only with path-traversal module enabled.
Revok is able to discover some R F I vulnerabilities with XSS modules enabled but it does
not work with Local file inclusion and Path traversal vulnerabilities.

Solution of this problem is to add entry point used by W A V S E P to list of predefined
entry points which uses Revok's path-traversal module. Issue request [] has been created
with suggested workaround which can be used as temporary solution.

5.2.2 Problem with stability of W A V S E P testing suite

During testing Revok's ability to detect Local file inclusion vulnerabilities using W A V S E P
testing suite I have experienced various problems with stability of the whole testing suite.
When I was testing some L F I pages, which are part of the W A V S E P testing suite, Tomcat
server stopped responding. The problem occurred only when all L F I pages were tested in
one scan. I have also tried to separate L F I pages to smaller groups divided by used protocol
and expected return value (WAVSEP itself provides this separation using different index
files for each combination of used protocol and expected return code) and it worked without
any problem. This problem occurred also when I was testing L F I testing capability of other
open source scanners mentioned in this thesis.

This problem with W A V S E P was already reported by Isaac Dawson [] and Tasos Laskos
[]•

The default behavior of the crawler module implemented in Revok scanner is to return
only the target U R L when remote server stops responding. This, with combination of
previously mentioned problem, led to 0% testing score in W A V S E P tests.

Solution of this problem is to test each combination of tested protocol and expected re­
turn value separately and then merge these results together to get the final score. W A V S E P
contains tests for 2 H T T P methods (POST and G E T) and following H T T P responses:

• Errorneous H T T P 500 Responses

• Errorneous H T T P 404 Responses

• Errorneous H T T P 200 Responses

• H T T P 302 Redirect Responses

• H T T P 200 Responses Wi th Differentiation

• H T T P 200 Responses with Default File on Error

23

5.3 Jenkins CI tool for Revok

For automated testing of new Revok features implementation has been used open source
continuous integration tool Jenkins [28]. Jenkins is an open source continuous integration
tool developed in Java. This project is licensed under M I T [16] license and it was originally
forked from project Hudson. This tool has been chosen for this purpose because it offers
many advantages such as:

• Easy installation (can be installed from rpm or via yum package manager)

• Easy configuration (the entire Jenkins can be configured via web user interface)

• Change set support (Jenkins can generate a list of changes between builds)

• Distributed builds (builds can be distributed to multiple nodes)

• Plugin support (Jenkins can be extended via many 3rd party plugins)

5.3.1 What is continuous integration

Continuous integration (also known as CI) is according to the TechTarget definition []
software engineering practice in which isolated changes are immediately tested and reported
on when they are added to a larger code base. The goal of CI is to provide rapid feedback so
that if a detect is introduced into the code base, it can be identified and corrected as soon
as possible ".

5.3.2 Jenkins job for testing Revok against W I V E T

For testing and evaluating Revok against W I V E T testing suite Jenkins job called Wivet-
testing-suite has been created. Configuration file for this job in form of X M L is located
on attached D V D A . Job is parameterized and can be executed in production and testing
mode. The difference between these two modes is in the path of the Revok repository (these
two paths are stored in configuration file for Jenkins scripts and can be adjusted). This
job is also configured to store all log and result files from latest builds on Jenkins master
so they can be analyzed later manually. Job itself consists from calling 3 separate scripts.

Script wivet-start.sh

This script is responsible for installing any necessary dependencies needed for running
Revok and W I V E T test suite. It also creates necessary folders with proper rights, clones
both tools from paths specified in configuration file to destinations and ensures that service
httpd is started and running prior executing tests.

Script wivet-test.sh

This script is used for testing Revok against W I V E T test suite. It ensures that httpd service
is running and also that all directories and tools created or cloned are on the right places.
Testing against W I V E T does not require having all Revok's services running because it is
needed to test only web crawler module. Revok uses mitmdump [30] as intercept proxy
for analyzing the whole communication between web crawler module and the target so
this script ensures that this proxy is started prior the crawler itself. After this operation

24

PhantomJS process is started with proper arguments, it performs initialization of web
crawler module and starts the scan. This script also ensures that once scan finishes both,
mitmdump and PhantomJS processes are terminated.

Script wivet-stop.sh

Last script, which is used for testing and evaluating Revok's capability using W I V E T
in Jekins, is responsible for stopping all services that are not needed anymore, cleaning
all files created only for testing purposes and also evaluating test results from statistic
files generated by W I V E T suite. The example of results generated by this Jenkins job is
presented on screenshot 5.1.

5.3.3 Jenkins job for testing against W A V S E P

For testing and evaluating Revok against W A V S E P testing suite very similar Jenkins job
to the previous one called Wavsep-testing-suite has been created. Configuration file for
this job in form of X M L is located on attached D V D A . Job is parameterized and can
be executed in production and testing mode. The difference between them is the same as
is in the job mentioned earlier. There is one additional parameter which can be used for
customizing this job. This parameter is specifying attack vectors which should be tested.
Allowed choices are: all, sql, xss, Ifi-partially. The last one represents the workaround
mentioned earlier in section 5.2.2. This job is also configured to store all log and result files
from latest builds on Jenkins master so they can be analyzed later manually. Job itself also
consists from calling 3 separate scripts.

Script wavsep-start.sh

This script is responsible for installing all needed dependencies for running Revok and
W A V S E P test suite. It also creates necessary folders with proper rights, clones both tools
from paths specified in configuration file to destinations and ensures that service tomcat
[27] is started and running prior executing tests.

Script wavsep-test.sh

W A V S E P testing suite is more complex (in sense of preparing test environment) than
W I V E T one. For testing internal modules it is needed to start all Revok services and
not only the two as in case of W I V E T . This script ensures that all Revok's services are
started and running properly and then requests all scans of attack vectors specified at the
beginning. Requesting scans is done via using R E S T A P I which Revok provides (using
specifically crafted P U T request with corresponding arguments).

Script wavsep-stop.sh

This script is responsible for cleaning all testing files and stopping services that are not
needed anymore. It is also responsible for evaluating test results of every attack vector
enabled and for printing statistics. The example of results generated by this Jenkins job is
presented on screenshot 5.2.

25

5.3.4 Results after features implementation

In this subsection screenshots of Jenkins job containing results for each of used testing suites
are presented. The results mentioned below were reached after applying all implemented
changes proposed in section 4.2 and implemented in section 5.

Wivet-stop.sh

[*] Checking wivet d i r e c t o r y
[*] Checking i f httpd i s running
[*] Service httpd i s running
[*] Stopping service httpd. .
[!] Cannot stop httpd, k i l l i n g . .
[*] Service httpd i s stopped
[*] RESULTS 2886729839_1430491659.dat
[*] Result f i l e : 2886729839_1430491659.dat | Passed t e s t s : 17/56 (3Cft)
16_lbl4f 12_la2cf 12_2a2cf 2_lf84b 2_2b7a3 5_le4d2 9_10ee31 7_16a9c I l _ l f 2 e 4
9_3a2b7 9_22ee31 20_le833 12_3a2cf 21_lf822 13_10ad3 14_leeab 14_leeab
[*] Cleaning WIVET s t a t i s t i c s . .
[*] Done
Archiving a r t i f a c t s
Finished: SUCCESS

Figure 5.1: Results of W I V E T Jenkins job

######################^
Wavsep-stop.sh

[*] Checking i f tomcat i s running
[*] Service tomcat i s running
[*] Stopping s e r v i c e tomcat..
[*] Service tomcat i s stopped
[*] Checking i f manadb i s running
[*] Service manadb i s running
[*] Stopping s e r v i c e manadb..
[*] Service manadb i s stopped
[*] Stopping Revokd..
[*] Result f o r vector: s q l 0/142 [0%)
[*] Result f o r vector: xss 0/98 [Efts)
[*] Result f o r vector: I f i 111/828 (13%)
[*] Result f o r vector: r f i 0/115 (0%)
[*] Done
A r c h i v i n g a r t i f a c t s
F i n i s h e d : SUCCESS

Figure 5.2: Results of W A V S E P Jenkins job

26

Chapter 6

Conclusion

The goal of this thesis was to study, analyze and compare implementation and vulnerability
detection capabilities of selected open source scanners. Based on this analysis, the next step
was to propose and implement new features or extend the functionality of already existing
ones in open source scanner Revok.

This goal has been successfully achieved and detection capabilities of Revok have been
extended. After applying all patches mentioned in section 5 Revok was able to reach 30%
testing coverage in W I V E T and 13% in W A V S E P L F I testing which is considerably better
than the previous 0% coverage reached in both suites. Continuous integration environment
based on open source tool Jenkins has been created and successfully tested, and all bugs
and issues discovered during the progress on this thesis have been already reported back to
the Revok community.

6.1 Future development

Revok has been recently open sourced, which allowed contribution also from developers and
users outside of Red Hat. That definitely helped a lot with improving functionality of this
scanner (either in form of creating issue requests or pull requests). There are still plenty
of ways of how to improve vulnerability detection (e.g. implementing detection of non-
discovered attack vectors in W I V E T C.2) and Revok has the potential to be more used and
become more powerful in detecting vulnerabilities in web applications. However, there are
open source projects which already provide detection capabilities with much better results.
They are usually supported by already existing large communities (development of some of
them is funded by sponsors) so it will be very hard for Revok to compete with such mature
projects.

27

Bibliography

[1] 2014 Top Security Tools as Voted by ToolsWatch.org Readers. U R L :
h t tps : / /www.toolswatch .org /2015/01/2014-1op-secur i ty- tools -as-voted-
by- toolswatch-org-readers / (visited on 05/16/2015).

[2] Apache License, Version 2.0. ht tp: / /www.apache.0rg / l icenses/LICENSE-2.O.
cit. 2015-05-16. 2004.

[3] Automated SQL Injection Detection. U R L :
h t tps : / /www.arneswinnen.net /2013/09/automated-sql- inject ion-detect ion/
(visited on 05/16/2015).

[4] Abhishek Kumar Baranwal. "Approaches to detect SQL injection and XSS in web
applications". M A thesis. University of British Columbia, 2012.

[5] T im Bray. The JavaScript Object Notation (JSON) Data Interchange Format. R F C
7159. cit. 2015-05-16. R F C Editor, 2014. U R L :
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 1 5 9 . t x t .

[6] Cross-site Scripting. U R L : https://www.owasp.org/index.php/XSS (visited on
05/16/2015).

[7] Isaac Dawson. LFI test cases throwing: java.lang.IllegalArgumentException: URI
has an authority component.
h t tp : / /code .google. com/p/wavsep/issues/detai l?id=8. cit. 2015-05-16.

[8] GNU Affero General Public License, version 3.
ht tp: / /www.gnu.0rg / l icenses/agpl-3 .O.html . cit. 2015-05-16. 2007.

[9] GNU General Public License, version 2.
ht tp : / /www.gnu.0rg / l i censes /gp l -2 .O.h tml . cit. 2015-05-16. 1991.

[10] František Koláček. Missing target entry point in path-traversal module.
https: / /gi thub.com/Revok-scanner/revok/issues/44, cit. 2015-05-16.

[11] František Koláček. Possible fix of bad base html tag handling.
ht tps : / /g i thub .com/Revok-scanner / revok/pul l /40 . cit. 2015-05-16.

[12] František Koláček. Problems with multiple events on single page.
ht tps : / / g i t h u b . com/Revok-scanner/revok/issues/43, cit. 2015-05-16.

[13] František Koláček. Relative links are not handled properly (due to base html tag).
https: / /gi thub.com/Revok-scanner/revok/issues/39. cit. 2015-05-16.

[14] Tasos Laskos. LFI test case 37 & similar test cases don't function under linux.
ht tp: / /code.google .com/p/wavsep/ issues /deta i l? id=10. cit. 2015-05-16.

[15] Mike Mired. Relative URLs in set content property not resolved properly.
ht tps : / / g i t h u b . com/ariya/phantomj s/ issues/10610. cit. 2015-05-16.

28

http://ToolsWatch.org
https://www.toolswatch.org/2015/01/2014-1op-security-tools-as-voted-
http://www.apache.0rg/licenses/LICENSE-2.O
https://www.arneswinnen.net/2013/09/automated-sql-injection-detection/
http://www.rfc-editor.org/rfc/rfc7159.txt
https://www.owasp.org/index.php/XSS
http://www.gnu.0rg/licenses/agpl-3.O.html
http://www.gnu.0rg/licenses/gpl-2.O.html
https://github.com/Revok-scanner/revok/issues/44
https://github.com/Revok-scanner/revok/pull/40
https://github.com/Revok-scanner/revok/issues/39
http://code.google.com/p/wavsep/issues/detail?id=10

[16] MIT License. h t tp : / /opensource .org / l i censes /MIT. cit. 2015-05-16. 1988.

[17] Path Traversal. U R L : ht tps: / /www.owasp.org/index.php/Path_Traversal
(visited on 05/16/2015).

[18] Zach Shelby. Constrained RESTful Environments (CoRE) Link Format. R F C 6690.
cit. 2015-05-16. R F C Editor, 2012. U R L :
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 6 6 9 0 . t x t .

[19] SQL Injection. U R L : ht tps: / /www.owasp.org/index.php/SQL_Injection (visited
on 05/16/2015).

[20] Revok team. ht tps: / /gi thub.com/Revok-scanner/revok. cit. 2015-05-16.

[21] Testing for Local File Inclusion, U R L :
h t tps : / /www.owasp.org/ index.php/Tes t ing_for_Local_Fi le_Inclus ion
(visited on 05/16/2015).

[22] Testing for Remote File Inclusion, U R L :
ht tps: / /www.owasp.org/ index.php/Test ing_for_Remote_File_Inclusion
(visited on 05/16/2015).

[23] Robert Thurlow. RPC: Remote Procedure Call Protocol Specification Version 2.
R F C 5531. cit. 2015-05-16. R F C Editor, 2009. U R L :
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 5 5 3 1 . t x t .

[24] Top 10 2013-Top 10 - OWASP. U R L :
https://www.owasp.org/index.php/Top_10_2013-Top_10 (visited on
05/16/2015).

[25] Types of Cross-Site Scripting, U R L :
h t tps: / /www.owasp.org/ index.php/Types_of_Cross-Si te_Script ing (visited
on 05/16/2015).

[26] W3C. Web Application Vulnerability Security Scanner Framework. Tech. rep. cit.
2015-05-16. World Wide Web Consortium, 2005.

[27] W W W stránky. Apache Tomcat, h t tp : / / tomcat .apache .org / . cit. 2015-05-16.

[28] W W W stránky. Jenkins, h t t p s : / / j e n k i n s - c i . o r g / . cit. 2015-05-16.

[29] W W W stránky. jQuery. h t tps : / / j que ry . com/, cit. 2015-05-16.

[30] W W W stránky, mitmdump. https://mitmproxy.org/doc/mitmdump.html. cit.
2015-05-16.

[31] W W W stránky. Open Source Web Application Security Scanner, h t tp : / /w3af .org.
cit. 2015-05-16.

[32] W W W stránky. OWASP Zed Attack Proxy Project.
ht tps : //www.owasp. org/index.php/OWASP_Zed_Attack_Proxy_Project. cit.
2015-05-16.

[33] W W W stránky. PhantomJS. h t tp : / /phantomjs.org/ , cit. 2015-05-16.

[34] W W W stránky. Revok. h t tps: / /gi thub.com/Revok-scanner/revok. cit.
2015-05-16.

[35] W W W stránky. SQLMap. h t t p : / /sqlmap. o rg / , cit. 2015-05-16.

[36] W W W stránky. SQLNinja. h t t p : / / s q l n i n j a . s o u r c e f o r g e . n e t / . cit. 2015-05-16.

29

http://opensource.org/licenses/MIT
https://www.owasp.org/index.php/Path_Traversal
http://www.rfc-editor.org/rfc/rfc6690.txt
https://www.owasp.org/index.php/SQL_Injection
https://github.com/Revok-scanner/revok
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion
http://www.rfc-editor.org/rfc/rfc5531.txt
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
http://tomcat.apache.org/
https://jenkins-ci.org/
https://mitmproxy.org/doc/mitmdump.html
http://w3af
http://www.owasp
https://github.com/Revok-scanner/revok
http://sqlninja.sourceforge.net/

[37] W W W stránky. The Open Web Application Security Project.
https://www.owasp.org. cit. 2015-05-16.

[38] W W W stránky. The web-application vulnerability scanner.
h t tp : / /wap i t i . sou rce fo rge .ne t . cit. 2015-05-16.

[39] W W W stránky. Web Application Vulnerability Scanner Evaluation Project.
https:/ /code.google.eom/p/wavsep. cit. 2015-05-16.

[40] W W W stránky. Web Application Vulnerability Security Scanner Framework.
http://www.arachni-scanner.com. cit. 2015-05-16.

[41] W W W stránky. Web Input Vector Extractor Teaser.
ht tps : / /g i thub.com/bedi rhan/wivet . cit. 2015-05-16.

[42] W W W stránky. What is continuous integration (CI).
h t tp : / / s ea rchsof twarequa l i ty . t ech ta rge t . com/de f in i t ion /con t inuous - in t eg ra t ion ,
cit. 2015-05-16.

[43] W W W stránky. What is Web Application Security? - Definition from Techopedia.
http://www.techopedia.com/def in i t i on /24377 /web-app l i ca t ion - secur i ty ,
cit. 2015-05-16.

30

https://www.owasp.org
http://wapiti.sourceforge.net
https://code.google.eom/p/wavsep
http://www.arachni-scanner.com
https://github.com/bedirhan/wivet
http://searchsoftwarequality.techtarget.com/definition/continuous-integration
http://www.techopedia.com/def

Appendix A

DVD Contents

The attached D V D contains the source code of the latest stable version of Revok. It contains
also scripts used by Jenkins CI tool and job definitions for both Jenkins job in form of X M L
configuration file. Both testing suites are also included on attached D V D in form of GIT
repository.

A . l Content of the DVD

• bp-Jenkins-scripts/ (Jenkins scripts used in Jobs)

• bp-revok/ (GIT repository containing scanner Revok)

• bp-wivet/ (GIT repository containing W I V E T test suite)

• bp-wavsep/ (GIT repository containing W A V S E P test suite)

• patches/ (Al l changes stored in form of patches)

31

Appendix B

Installation and Usage

In this chapter are described steps needed to perform the for basic installation and usage
of each tool used in this thesis.

B . l WIVET

For installation of your local WIVET you should follow this steps:

1. # yum i n s t a l l -y php ht tpd g i t

2. # g i t clone h t t p s : / / g i t hub . com/ fko l acek /bp -wive t . g i t /var/www/html/wivet

3. # restorecon -Rv /var/www/html/

4. # chown -R apache:apache /var/www/html/wivet

5. # systemctl s t a r t h t tpd

After performing these steps your W I V E T instance should be accessible via address:
http://localhost/wivet .

B.2 WAVSEP

For installation of your local WIVET you should follow this steps:

1. # yum i n s t a l l -y tomcat g i t java-1.8.0-openjdk

2. # g i t clone h t tps : / /g i thub .com/fkolacek/bp-wavsep .g i t /var / l ib / tomcat /webapps/

3. # restorecon -Rv /var / l ib / tomcat /webapps/

4. # chown -R tomcat:tomcat /var/www/html/wivet

5. # systemctl s t a r t tomcat

After performing these steps your W A V S E P instance should be accessible via address:
http://localhost:8080/wavsep .

32

https://github.com/fkolacek/bp-wivet.git
http://localhost/wivet
https://github.com/fkolacek/bp-wavsep.git
http://localhost:8080/wavsep

B.3 Revok

For installation of your local Revok instance you will have to install following dependencies
and perform some post installation tasks:

1. # yum i n s t a l l -y t c l java-1.8.0-openjdk r ead l ink g i t

2. $ g i t clone h t tp s : / / g i thub .com/ fko lacek /bp - revok .g i t

3. $ cd bp-revok

4. $. / revokd i n i t

5. $. / revokd s t a r t

After performing these steps your Revok instance should be accessible via address:
http://localhost-.3030 .

B.4 Arachni

For installation of your local Arachni instance you will have to install following dependencies
and perform some post installation tasks:

1. # yum i n s t a l l -y wget

2. $ wget h t tp : / /downloads .arachni -scanner .com/arachni -1 .1-0 .5 .7- l inux-x86_-
64 . t a r .gz

3. $ t a r xvzf a rachn i -1 .1 -0 .5 .7 - l inux-x86_64 . t a r .gz

4. $ cd cd a rachn i -1 .1 -0 .5 .7

5. $ bin/arachni_web

After performing these steps your Arachni instance should be accessible via address:
http ://localhost:9292 .

B.5 w3af

For installation of your local w3af instance you will have to install following dependencies
and perform some post installation tasks:

1. # yum i n s t a l l -y g i t

2. $ g i t clone —depth 1 h t tps : / /g i thub .com/andresr iancho/w3af .g i t

3. $ cd w3af

4. $./w3af_gui

33

https://github.com/fkolacek/bp-revok.git
http://localhost-.3030
http://downloads.arachni-scanner.com/arachni-1.1-0.5.7-linux-x86_-
https://github.com/andresriancho/w3af.git

B.6 Wapiti
For installation of your local Wapi t i instance you will have to install following dependencies
and perform some post installation tasks:

1. # yum i n s t a l l -y wget

2. $ wget h t t p : / / h e a n e t . d l . s o u r c e f o r g e . n e t / p r o j e c t / w a p i t i / w a p i t i / w a p i t i - 2 . 3 . O / w a p i t i -

3. # yum l o c a l i n s t a l l -y wapi t i -2 .3 .0-1 .noarch . rpm

4. $ w a p i t i

B.7 ZAP

For installation of your local ZAP instance you will have to install following dependencies
and perform some post installation tasks:

1. # yum i n s t a l l -y wget

2. $ wget h t t p : / / f r ee f r . d l . sou rce fo rge .ne t /p ro j ec t / zap roxy /2 .4 .0 /ZAP_2 .4 .0_ -
L i n u x . t a r . g z

3. $ t a r xvfz ZAP_2.4.0_Linux. tar .gz

4. $ ZAP_2.4.0/zap.sh

34

http://heanet.dl.sourceforge.net/project/wapiti/wapiti/wapiti-2.3.O/wapiti-
http://freefr.dl.sourceforge.net/project/zaproxy/2.4.0/ZAP_2.4.0_-

Appendix C

Detailed results

C . l WIVET detailed results

In this section you can find more detailed results of testing scanners' ability to use various
attack vectors.

Attack vector Arachni Revok w3af Wapiti Z A P

self referencing link / / / /
self referencing link with random query string / / / /
iframe / / / /
302 redirection / / / /
html encoded links / / / /
protocol relative links / / / /
link creation after button click / / /
link href js protocol / / /
div onmouseover window.open / / /
form submit thru select onchange w/ simple
alert

/ /

form submit button onclick / /
td onclick window.location.href / /
link href js protocol window.location w/ alert
override

/ /

td onmouseout window.location.href / /
td onmousedown window.location.href / /
link href j query / /
td onmouseup window.location.href / /
frame created dynamically / / / /
iframe created dynamically / / / /
a href javascript protocol window.open / /
tr onclick window.location.href / /
xhr initiating / /

35

link created thru xhr response / / /
tr onmouseout window.location.href / /
tr onmousedown window.location.href / /
tr onmouseup window.location.href / /
form action with javascript protocol set / /
span onclick window.location / / /
span onmouseout window.location.href / / /
span onmousedown document.location.href / / /
xhr with a busy mode page 1 / /
span onmouseup document .location / /
heavy js library standard form creation / /
div onclick window.location.href / /
div onmouseout window.location.href / /
div onmousedown window.location.href / /
div onmouseup window.location.href / /
l i onclick window.location.href / /
l i onmouseout window.location.href / /
link creation after some time w/ setTimeout /
multi-page form with a single path to final
destination

/

link in html comment /
relative link in html comment /
p onclick window.location.href /
p onmouseout window.location.href /
p onmousedown window.location.href /
p onmouseup window.location.href /
l i onmousedown window.location.href /
l i onmouseup window.location.href /
radio onclick window.location.href /
unattached js function document .location / /
meta refresh tag / /
302 redirection link in response body / /
xhr with a busy mode page 2 /
link attached to a swf simple button onclick
event
link attached to a swf simple button parame­
terized onclick event

total coverage: 96% 0% 16% 44% 69%

Table C . l : W I V E T results

36

C.2 WIVET detailed results after modification

In this section you can find more detailed results of Revok's ability to use various attack
vectors with all patches applied.

Attack vector Revok

self referencing link /
self referencing link with random query string /
iframe /
302 redirection /
html encoded links /
protocol relative links /
link creation after button click
link href js protocol
div onmouseover window.open /
form submit thru select onchange w/ simple
alert
form submit button onclick /
td onclick window.location.href
link href js protocol window.location w/ alert
override
td onmouseout window.location.href
td onmousedown window.location.href
link href j query /
td onmouseup window.location.href
frame created dynamically /
iframe created dynamically /
a href javascript protocol window.open
tr onclick window.location.href
xhr initiating /
link created thru xhr response
tr onmouseout window.location.href
tr onmousedown window.location.href
tr onmouseup window.location.href
form action with javascript protocol set
span onclick window.location

span onmouseout window.location.href
span onmousedown document .location.href /
xhr with a busy mode page 1
span onmouseup document.location
heavy js library standard form creation

div onclick window.location.href

37

div onmouseout window.location.href /
div onmousedown window.location.href
div onmouseup window.location.href
l i onclick window.location.href
l i onmouseout window.location.href /
link creation after some time w/ setTimeout
multi-page form with a single path to final
destination
link in html comment
relative link in html comment
p onclick window.location.href
p onmouseout window.location.href
p onmousedown window.location.href
p onmouseup window.location.href
l i onmousedown window.location.href
l i onmouseup window.location.href
radio onclick window.location.href
unattached js function document.location

met a refresh tag /
302 redirection link in response body

xhr with a busy mode page 2
link attached to a swf simple button onclick
event
link attached to a swf simple button parame­
terized onclick event

total coverage: 30%
Table C.2: W I V E T results with all patches applied

38

