
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

SQL BACKEND PRO SUBVERSION
SQL BACKEND FOR SUBVERSION

DIPLOMOVÁ PRAČE
MASTER'S THESIS

AUTOR PRÁCE Bc. JAN HORÁK
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ KAŠPÁREK
SUPERVISOR

BRNO 2010

Abstrakt
Práce analyzuje systém pro správu verzí Subversion a dostupné backendy pro ukládání dat
na serveru. Tyto backendy porovnává a popisuje návrh a implementaci nového backendu,
založeného na databázovém systému MySQL. Jsou analyzovány obecné přístupy ukládání
stromových struktur v relační databázi, různé možnosti práce s indexy a byla provedena
řada dílčích analýz, které jsou využitelné i v jiných aplikacích.
Návrh vychází z existujících backendů, jenž byly brány jako zdroj informací i při samotné
implementaci. Nový backend byl implementován a zkušebně integrován do aktuální verze
Subversion, nicméně zatím není implementována plná funkčnost, takže oficiální součástí
systému není. Backend je v závěru porovnán s existujícími backendy B D B a FSFS a jsou
navrženy další možnosti pokračování.

Abstract
The thesis analyses version control system Subversion and its available backends for storing
data in a repository. It compares these backends and describes basic features of a new
SQL database backend. Design and implementation of the new backend, based on M y S Q L
database, is described and the new backend is then compared with existing backends B D B
and FSFS.

Klíčová slova
Subversion, verzování, revize, S V N , S C M , Berkeley D B , FSFS, M y S Q L , D A G , A P R

Keywords
Subversion, versioning, revision, S V N , S C M , Berkeley D B , FSFS, MySQL, D A G , A P R

Citace
Jan Horák: SQL backend for Subversion, diplomová práce, Brno, F IT V U T v Brně, 2010

SQL backend for Subversion

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Tomáše Kašpárka. Další informace mi poskytli programátoři systému Subversion. Uvedl
jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Jan Horák
May 21, 2010

Poděkování
Děkuji panu Ing. Tomáši Kašpárkovi za odborné vedení a věcné připomínky.

© Jan Horák, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 6

2 Analysis of the Subversion system 7
2.1 Purpose of the Subversion system 7

2.1.1 Suitable deployment of Subversion 8
2.1.2 History of Subversion 8

2.2 Other version control systems 8
2.2.1 C V S 8
2.2.2 Aegis 9
2.2.3 Arch 9
2.2.4 Bazaar 9
2.2.5 BitKeeper 9
2.2.6 Dares 9
2.2.7 Git 10
2.2.8 Mercurial 10
2.2.9 Monotone 10
2.2.10 Perforce 10
2.2.11 PureCM 10
2.2.12 Vesta 11

2.3 Using Subversion 11
2.3.1 Repository and working copies 11
2.3.2 Branching and Merging 11

2.4 Joining to Subversion community 12
2.4.1 Working on an open source project 12
2.4.2 Coding style 12

2.5 External libraries used by Subversion 12
2.5.1 Apache Portable Runtime 13
2.5.2 B D B (Berkeley database) 13

2.6 Subversion Architecture 14
2.7 System layers 15

2.7.1 Repository layer 16
2.7.2 Backend FSFS 17

2.8 Comparison of backends FSFS and B D B 17
2.8.1 Performance and reliability 17
2.8.2 Description and design of benchmark tests 17
2.8.3 Comparison backends using benchmark tests 18
2.8.4 Repository administration 20

1

2.8.5 Known issues of existing backends 20
2.9 Expected features of the SQL backend 21
2.10 Subversion analysis conclusion 23

3 Analysis and Design of the M y S Q L backend 24
3.1 Existing M y S Q L backend prototype 24
3.2 Subversion filesystem scheme 25
3.3 Base data model of the Subversion filesystem 25

3.3.1 Node-revisions 25
3.3.2 Representations 26
3.3.3 Transactions 26
3.3.4 Revisions 26
3.3.5 Changes 26
3.3.6 Copies 27
3.3.7 Locks 27

3.4 Example of Subversion object diagram 27
3.4.1 Conclusion of the example, operations frequency 29

3.5 D A G structures in SQL databases 29
3.5.1 Read all to memory 31
3.5.2 Materialized path 31
3.5.3 Nested sets 32
3.5.4 String-Based Nested Sets 33
3.5.5 Nested intervals (Partial order) 33
3.5.6 Adjacency nodes 33
3.5.7 Adjacency nodes with transitive closure 35
3.5.8 M y S Q L , MSSQL, PostgreSQL and Oracle solutions 36
3.5.9 Conclusion of the implementation the D A G structures in SQL . . . 36

3.6 Backend operations analysis 36
3.6.1 Table access 36
3.6.2 Repeating operations 36
3.6.3 Discussing possible storing mechanisms 38

3.7 Comparing numeric and character indexes 38
3.7.1 Simple numeric and character indexes compare test 38

3.8 Database and Filesystem Access Speed Comparison 39
3.9 Directory content storing 42
3.10 Primary key of the transaction properties table 43
3.11 Another suggested changes in SQL backend design 44
3.12 Optimizing M y S Q L operations 44

3.12.1 M y S Q L engines 44
3.12.2 Optimizing tables 44
3.12.3 Storing the lists in SQL 45
3.12.4 Using of prepared statement and multiple-lines inserts 45
3.12.5 General acceleration of the MySQL database 45

3.13 Database scheme of the MySQL backend 45
3.13.1 Nodes 47
3.13.2 Revisions 47
3.13.3 Node-Revisions 47
3.13.4 Representations 48

2

3.13.5 Representation windows 49
3.13.6 Strings 50
3.13.7 Next-keys 50
3.13.8 Transactions 50
3.13.9 Changes 51
3.13.10 Copies 51
3.13.11 Locks 52

4 Implementation 53
4.1 Layers 53
4.2 Public functions analysis and implementation iterations 54
4.3 Errors handling in Subversion 55
4.4 A P I interfaces using virtual tables 55
4.5 Using A P R and memory pooling 55

4.5.1 Apache SQL/Database Framework 56
4.6 Modifications of other parts of Subversion application 56
4.7 Difficulties during implementation 57
4.8 Performance test against existing backends 57

5 Conclusion 59
5.1 Performance conclusion 59
5.2 Reliability and plans for future work 59

A Public Functions frequencies per various operations 65

3

List of Figures

2.1 Client part of Subversion [1] 14
2.2 Server part of Subversion [1] 15
2.3 Graph of the repository size 18
2.4 Graph of the repository commintting speed 19
2.5 Range of Storage and Query Services [42] 23

3.1 Subversion füesystem object diagram 30
3.2 Materialized path example 32
3.3 Nested sets example 33
3.4 Adjacency nodes example 34
3.5 Results of access speed test with small files 41
3.6 Results of access speed test with large files 41
3.7 Database scheme of the M y S Q L backend design 46

4.1 M y S Q L backend comparison; small files [s] 58
4.2 MySQL backend comparison; large files [s] 58
4.3 MySQL backend comparison; repository size [MB] 58

4

List of Tables

2.1 Repository size [kB] 18
2.2 Operations speed [s] 19

3.1 Revisions table after the first commit 28
3.2 Transactions table after the first commit 28
3.3 Node revision table after the first commit 28
3.4 Changes table after the first commit 28
3.5 Representations table after the first commit 28
3.6 Revisions table after the second commit 29
3.7 Transactions table after the second commit 29
3.8 Node revision table after the second commit 29
3.9 Changes table after the second commit 31
3.10 Representations table after the second commit 31
3.11 Materialized paths example 32
3.12 Nested sets example 33
3.13 Adjacency nodes table example 34
3.14 Adjacency nodes (edges) table example 34
3.15 Adjacency nodes with transitive closure example 35
3.16 Adjacency nodes with transitive closure (edges) example 35
3.17 Table access during a commit operation 37
3.18 Table access during a checkout operation 37
3.19 Numeric and character indexes compare [s] 39
3.20 Numeric and character indexes compare (small files) [s] 40
3.21 Numeric and character indexes compare (large files) [s] 40

A . l Functions frequencies in various operations (part 1) 66
A.2 Functions frequencies in various operations (part 2) 67

5

Chapter 1

Introduction

The work considers analysis, design and implementation of a new backend to store data in
Subversion system. Subversion is an application used for management of a software source
code most often with parallel access and ability to keep every change in history.

The chapter Analysis of the Subversion system presents the whole system, discuses
dividing to layers and describes the lowest layer - storing data backends. The chapter
contains a description of backends which are available at present time and author tries to
compare advantages and disadvantages of them.

Later the analysis of requirements is discussed, considering a new backend based on SQL
database. The design of the backend follows, oriented to M y S Q L . The last part describes
implementation of the new backend and some performance and responsibility tests. The
backend is compared with other existing backends and the next work is advised.

6

Chapter 2

Analysis of the Subversion system

This chapter describes the Subversion system as deep as we need to understand the function
and integration of backends for storing data in a repository. The architecture with layered
design is described shortly, the backend layer for storing data is described more detailed.
Backends, that are available now, are described and their features are compared in section
2.8.

2.1 Purpose of the Subversion system

In the book Version control with Subversion [] authors of Subversion describe the system
as a fantastic hammer, but we cannot view every problem as a nail. When we are deciding
of the deployment of Subversion, we need to think, if the project needs Subversion at all.

Generally open source Subversion system handles a management of a versioned data
(most often a source code of software). The system is free to use and these are its main
features:

• Client-server architecture - a server handles storing of a data and clients use that
data. There are several alternatives, how to get the data from the server, depending
on protocol, security reasons, performance, etc. The system allows using the server
and the client on one computer, as well as on different computers connected using a
network.

• Keeping changes - besides the actual version of data every change made to the
data is kept. The system allows restoring any of versions from the history, even if
there is a newer version of the data stored on the server. We can look at the data
as an ordinary file system tree, which has one dimension more (the time). In other
words the data stored on the server are sequences of snapshots, while we can see every
snapshot as a file system tree.

• Ability to work in parallel - The Subversion system has been designed for parallel
work of many clients. A client usually do the following: gets data from the server,
changes the data and sends them back to the server. The system allows to do all
these changes parallel by many users, without locking the data or even parts of them.
Despite that, the system can keep the data in integrity and no change can be done
without cognition of the user. The way how this is implemented, is called copy-
change-merge solution and we can read more about this in [1].

7

2.1.1 Suitable deployment of Subversion

As mentioned before, the Subversion system is most often used to manage a source code of
applications. It is useful utility for manage data, which are centralized on one place, but
changed by many users from different places.

If a mistake is discovered, data can simply be restored to the original version. This can
be done at any time in the future, even if the data are changed several times after that
bad change. System stores changes in files data as well as in file properties (file property
changes were not kept in C V S - Control Version System [28]).

On the other hand, Subversion is not suitable to management data, which are static or
which we don't need to keep history of. There are better utilities to handle these situations.

2.1.2 History of Subversion

The history of Subversion began in 2000, when C V S had been a system used to management
software source code the most often. C V S has many disadvantages, so CollabNet company
(http://www.collab.net) decided to implement a new system, which will replace C V S .

CollabNet contacted author of the book Open Source Development with CVS, Kar l
Fogel, and he and others (Ben Collins-Sussman, Briean Behlendorf, Jaseon Robbins and
Greg Stein) created a community of active contributors, which staied behind Subversion
development untill recently. The community is now organized by The Apache Software
Foundation (http://www.apache.org), which manages many other open source projects.

Note: The Subversion project has been accepted into the Apache Incubator just recently,
it had been organized by Tigris.org before. The move was announced on Wednesday,
November 4th, 2009. More about that on [4] or [25].

2.2 Other version control systems

Some other version control systems (or configuration management systems) are shortly
described later in this chapter. More information about comparison can be found on [18]
or on [49].

2.2.1 C V S

C V S (Concurrent Version System) was the most used version control system to control
source code a few years back. Subversion is straight coming out of the C V S and does not
want to break a good known and used way to management source code. On the other hand
authors tried to get the best of the C V S and remove or minimize its disadvantages.

The C V S system composes from one central repository and every change is uploaded
back to repository. It does not recognize changes in a directory tree and revision numbers
are related to files, not to whole repository (like it is in Subversion). Branching and merging
are not usable in the C V S , there are problems with binary files and locking is possible only
explicitly by user. Despite many disadvantages the C V S has been long time the most
used S C M , but now there are many alternatives, which are shortly described in the next
paragraphs. More about C V S on [28].

8

http://www.collab.net
http://www.apache.org
http://Tigris.org

2.2.2 Aegis

Aegis is a transaction-based software configuration management system, but it is not used
very often. It concentrates integrity and testing data and uses distributed way to share
data. It's not suitable to use in a network and it is relatively complicated to manage the
system.

Compared to Subversion it offers disconnected commits, peer-to-peer architecture and it
uses a filesystem-based storing data backend (no SQL or embedded database are integrated).
More about Aegis on [38].

2.2.3 A r c h

Arch system fixes some problems, which C V S had. It is similar to Subversion when a
directory tree is changing or new branches are created. Thanks to support of standard
protocols (FTP, S F T P and WebDAV over H T T P or HTTPS) it is easy to deploy and to
use it on the Internet.

It is particularly useful for public free software projects, because of it's easy to learn
and to administer. It's a distributed system. More about Arch on [27].

2.2.4 Bazaar

The system is implemented in Python, it is very simple with basic configuration, but it's
very scalable using many plug-ins (new storage formats can be plugged-in too). It is well
portable and able to manage even large projects. There's no need to choose between central
and distributed version control tools, Bazaar directly supports many work-flows with ease.

The system supports many best practices including re-factoring, pair programming,
feature branching, peer reviews and pre-commit regression testing. Wi th true rename
tracking for files and directories, merging changes from others simply works better. More
about Bazaar on [33].

2.2.5 BitKeeper

BitKeeper is a very powerful, capable and reliable version control system that supports
copies, moving and renaming, atomic commits, change-sets, distributed repositories and a
propagation of change-sets, 3-way merging, etc. It is portable to all major U N I X flavors,
and to Win32.

BitKeeper has a few drawbacks. It can only duplicate a repository and work against it
and cannot work against a working copy of a snapshot. This makes large checkouts over a
W A N very slow.

2.2.6 Dares

A n open source (G N U G P L) distributed version control system with a very simple reposi­
tory creation and some interesting features (like spontaneous branches). A n implementation
in Haskel, not very supported and used language, speaks against its massive deployment.
More about Dares on [6].

9

2.2.7 Git

Git is a free and open source distributed version control system influenced by commercial
BitKeeper. It is designed to handle everything from small to very large projects with speed
and efficiency In the beginning it was designed to use many other version control systems
by, but now it is an independent project. System is often used by Linux distributions and
the Linux kernel development. It supports a non-linear distributed development, branching,
merging etc.

Following the U N I X tradition, Git is a collection of many small tools written in C, and
a number of scripts that provide convenient wrappers. Git provides tools for both easy
human usage and easy scripting to perform new clever operations. More about Git on [3].

2.2.8 Mercurial

A distributed system developed as a reaction to moving the source of the BitKeeper from
open source to a commercial sphere. It was designed with the intention of being small, easy
to use, and highly scalable. It is often marked as the fastest version system. Mercurial is a
platform independent system written in Python and C. It offers many extensions and uses
many commands known from Subversion. More about Mercurial on [].

2.2.9 Monotone

Monotone is a distributed version control system with a different philosophy. Namely,
change-sets are posted to a depot (which the communication with is done using a custom
protocol called netsync), which collects change-sets from various sources. Afterwards, each
developer commits the desirable change-sets into his own private repository based on their
R S A certificates and possibly other parameters.

Monotone identifies the versions of files and directories using their SHA1 checksum.
Thus, it can identify when a file was copied or moved, if the signature is identical and
merge the two copies. It also has a command set that tries to emulate C V S as much as
possible.

The Monotone architecture makes an implementation of many features easier. It is not
without flaws, however. For example, Monotone is slow, and doesn't scale well to large
code-bases and histories. More about Monotone on [40].

2.2.10 Perforce

Perforce is a centralized, commercial (non-free) solution for version control. It is very fast,
very stable and robust. It scales very well, and has a good reputation. It requires an annual
per-seat licensing, but it is also available for interested open source developers under a gratis
license. More about Perforce on [43].

2.2.11 P u r e C M

PureCM project is a commercial, cross-platform S C M , which offers some features, which are
not implemented in many other SCMs - a stream hierarchy view of the data, a command-
line interface as well as a GUI interface in base, a checkpoint support for a parallel work,
merging on the server, a visual folder diff, etc. More about PureCM on [34].

10

2.2.12 Vesta

Vesta is a mature software configuration management system that originated from an in­
ternal use by Digital Equipment Corporation (now Compaq/HP). It is a replacement for
C V S and Make and provides more than a mundane revision control systems. It is an open
source under the L G P L .

Vesta is a portable S C M system focused on supporting of development software systems
of almost any size, from fairly small (under 10,000 source lines) to very large (10,000,000
source lines). More about Vesta on [5].

2.3 Using Subversion

This section takes a short look at an ordinary work with the Subversion version control
system.

2.3.1 Repository and working copies

Subversion is a centralized (not distributed) system, where data are stored on the server,
so-called repository. Repository is a directory tree with files and users can get the actual
directory tree as well as any of the trees from history. Every change in the repository assigns
a new incremental unique number to it. We call this number a revision number and the
revision number 0 means an empty directory (it is a convention used by Subversion).

We need to create so-called working copy for working with the data from the repository.
The working copy is a copy of a part of the data from the repository on the client's file
system. A client can make as many changes as he wants and then the data are copied back
to the repository. A n operation that provides a copying the data back to the repository
is called commit and it is designed as an atomic transaction. During the transaction data
are checked if no newer data has been uploaded before (by another user). If there is a
version conflict detected, the user (who is doing the commit transaction) is responsible to
get all changes from both users to be applied and he is responsible to keep the data in an
integrated state.

Subversion uses the copy-modify-merge way and no explicit locking is needed for a par­
allel access. It seems to be uncomfortable because of conflict resolutions, but the used way
is much faster in the result as compare with the lock-modify-unlock solution for example.

2.3.2 Branching and Merging

Branches and tags are well known from many other version systems, but were not imple­
mented well in C V S . Both are actually copies of the actual version of part of the repository.
Branches are used to develop new features or new versions of the software, tags are used to
store the snapshot of the some version (for example an official releases).

Subversion does not force users to keep a strict directory tree structure, nevertheless
the most often organization is the following:

• /trunk - the actual version, which is under development at all the time and which is
updated from branches

• /branches - development branches, which are created, updated and removed in time

• /tags - the tags are creating in time, but not changed nor deleted any more

11

2.4 Joining to Subversion community

Subversion development began by CollabNet Company and continues under Apache Soft­
ware Foundation (ASF) now. Thanks to CollabNet a contributor's community has been
created and now it is a middle-sized open source community with a specialization to devel­
opment and maintenance utilities and tools to improve the collaboration on the software
development. Its motto sounds We're here to help you help us!

Every programmer can join the community in many fields - the analysis, design or
implementation of the tools, general libraries, tests or documentation. The community
likes to get new suggestions for new projects or to overtake some existing ones.

Joining the Subversion development means to join the Apache Subversion mailing list
and sign the Individual Contributor License Agreement. Often form of contribution is bug
logging or debugging, but in the case of this thesis it is needed to join the development, to
communicate and resolve problems with other contributors.

2.4.1 Working on an open source project

In the beginning of the work it was not clear how the community will adopt the intention
to implement a new backend. Without the interest to cooperate, this work would be
done without the community. However, it was clear from their first reply, they welcome
the idea to make the system better and a help was offered to discuss the design or the
implementation.

For the implementation of the new backend a new development branch should have been
created, but it hasn't been done yet (the reason is described in 5.2). The new backend can
be added to an official release in the future, but it is not possible right now, because of a
premature state of development.

A l l communication on open-source projects under Tigris.org or A S F takes place only
using mailing lists, so their subscription was the first step to communication. Considering
that the development of new features on such a big project does not put in charge more
than couple of contributors, the communication is not unnoticed using this simple way.

2.4.2 Coding style

Every new developer, who collaborates with A S F community, has to agree with conditions
organized to establish an easier cooperation. Many projects are implemented in C/C+-1-
language, which does not force programmer to follow general indent style, comments writing
etc.

Reading or updating a source code in other coding style is difficult, so some rules
(similar to G N U code style) had been established and every contributor should use them.
The common language of the documentation is English, which should be simple and single
valued. It is also the reason, why this thesis is written in English.

2.5 External libraries used by Subversion

Subversion uses some general libraries, which handle some parts of the system. These
libraries are mentioned in the following paragraphs.

12

http://Tigris.org

2.5.1 Apache Portable Runtime

The mission of the Apache Portable Runtime project (APR) is to create and maintain
software C / C + + libraries that provide a predictable and consistent interface to underlying
platform-specific implementations. The primary goal is to provide an A P I , which software
developers may code in, and to be assured of predictable if not identical behavior regard­
less of the platform on which their software is built, relieving them of the need to code
special-case conditions to work around or take advantage of platform-specific deficiencies
or features.

A P R was originally a part of the Apache H T T P Server, but it has been spun off into
a separate project of the Apache Software Foundation, and it is used by other applications
to achieve platform independence.

The range of a platform-independent functionality provided by A P R includes:

• Memory allocation and memory pool functionality

• Atomic operations

• Dynamic library handling

• File I /O

• Command argument parsing

• Locking

• Hash tables and arrays

• Mmap functionality

• Network sockets and protocols

• Thread, process and mutex functionality

• Shared memory functionality

• Time routines

• User and group ID services

A P R also offers an extension for working with M y S Q L database (A P R D B D) , which is a
kind of wrapper for standard functions from mysql.c library, including a query preparation
and transaction handling. A P R only changes an interface of those functions to correspond
with other A P R functions.

More about A P R on [23] and more about A P R D B D in 4.5.1.

2.5.2 B D B (Berkeley database)

A n open source, embeddable Berkeley database [] from Oracle offers a fast, reliable local
persistence library with zero administration. It is often deployed as an edge database and
it provides very high performance, reliability, scalability, and availability for applications
that do not require SQL.

B D B stores arbitrary key/data pairs as byte arrays (no database scheme), and supports
multiple data items for a single key. Key and data are specified only by byte length and no

13

<<dev ice>>
SVN Client

Command-l ine
S\/N client

Graphic
S\/N client

Repository
access

libsvn ra

Client l ibrary
libsvn client

"TT
A.

Work ing copy
management

l ibrary
libsvn wc

^ ^ W o r k i n g c o p y ^ ^

Figure 2.1: Client part of Subversion []

other structure is defined (it depends only on a developer). B D B has bindings in C, C++,
Java, Perl, Python, Ruby, Tel, Smalltalk, and other programming languages.

Despite very simple design, B D B is a universal embedded database, which allows to
store even terabytes of data as well as kilobytes. The database has very fast indexing
and a sequence access, it offers some advanced features like locking, shared memory, log­
ging, backup and replication. Transactions in B D B follow A C I D (atomicity, consistency,
isolation, durability).

More about Oracle Berkeley D B on [22] or in [21].

2.6 Subversion Architecture

Generally, if we want to implement a new feature of the system, we should know the rest
of the system. Figures 2.1 and 2.2 describe the Subversion architecture fastest. A reader
will understand where important components are located, but detailed structure of them is
not needed generally. Only important components are described in more detail later.

The server communicates with the client application using several Internet protocols,
based on T C P / I P . User always works with his working copy, not with the repository directly.
The repository itself can be directly accessed only by a repository administrator, using
several routines, such as svnadmin, svnlook, etc.

Client applications are graphic or command-line clients using the libsvn-client library
to process commands, libsvn-wc library to work with working copy and libsvri-ra library to
access the repository. Client's application can be integrated in OS, like the TortoiseSVN
does it in Windows. The entire client's side is independent to the backend used to store
the data in the repository, so we don't need to describe the client's part any more.

We can recognize a layered architecture on the server too (see the Figure 2.2). Every
layer has its own interface, while the most important interface for this thesis is the repository
interface.

Layers communicating with a client use the libsvn-fs library to access the repository

14

Figure 2.2: Server part of Subversion [1]

data itself. This library offers a general interface to work with the repository and uses
backend-specific libraries. The backend libraries are the most important libraries for our
intention.

In the present Subversion supports backends that store data in B D B and using native
OS file system - backend FSFS. The aim of this thesis is to add a new backend, which
will store data in SQL database (concretely in MySQL) . The new backend is inserted to
the Figure 2.2 and as we see, thanks to the layered libraries design, we will touch only two
libraries (library libsvnjs to connect the new backend and the most part of work will be
done in the new backend library).

More information about other layers can be found in [1].

2.7 System layers

We have mentioned the architecture divided into layers, while every layer or library has
strictly defined interface. Every library is a part of exactly one layer, which can be the
following:

• Repository Layer

• Repository Access (RA) layer

• Client layer

Let's take a short look on all libraries [1]:

• libsvn_client - Primary interface for client programs

15

• libsvn_delta - Tree and byte-stream differencing routines

• libsvn_diff - Contextual differencing and merging routines

• libsvn_fs - Filesystem commons and module loader

• libsvn_fs_base - The Berkeley D B filesystem backend

• libsvn_fs_fs - The native filesystem (FSFS) backend

• libsvn_ra - Repository Access commons and module loader

• libsvn_ra_local - The local Repository Access module

• libsvn_ra_neon - The WebDAV Repository Access module

• libsvn_ra_serf - Another (experimental) WebDAV Repository Access module

• libsvn_ra_svn - The custom protocol Repository Access module

• libsvn_repos - Repository interface

• libsvn_subr - Miscellaneous helpful subroutines

• libsvn_wc - The working copy management library

• mod_authz_svn - Apache authorization module for Subversion repositories access
via WebDAV

• mod_dav_svn - Apache module for mapping WebDAV operations to Subversion ones

The fact that the word miscellaneous appears only once in the previous list is a good
sign. The Subversion development team is serious about making sure that functionality
lives in the right layer and libraries.

2.7.1 Repository layer

Repository layer consists of libraries libsvn-fs, libsvn-fs-base and libsvn-fs-fs. The first one
offers an interface for the higher layer, so the Repository Layer can access all backends using
only one interface. The library libsnv-fs offers almost similar operations, as an ordinary file
system - creating, changing, moving and deleting files. However, we cannot forget that all
changes are stored in time forever.

We have mentioned the commit operation and we called this operation a transaction.
Let's have a short look how this type of transaction differs from the transaction, as it
is commonly known from database systems. The main purpose is the same - to ensure,
that data will remain in consistent state. This is ensured following the A C I D (atomicity,
consistency, isolation, durability) set of properties.

Subversion transactions are much bigger than ordinary database transactions, while
many relatively complicated operations are done during one Subversion transaction and
it could last for several minutes. But the final effect is the same - the transaction will
proceeded all or not at all. Transactions are always related to a sub-tree in the repository.
It could be one file or even the whole repository.

16

2.7.2 Backend F S F S

The FSFS backend was first integrated in Subversion 1.1 and from Subversion 1.2 it is the
standard backend. FSFS is versioned file system implementation, that uses the native OS
file system directly, rather than via a database library or some other abstraction layer, to
store the data [1].

The FSFS abbreviation can be misunderstood with Fast Secure File System, which is a
user-space, client-server distributed file system, but is not used by Subversion.

The philosophy of implementing FSFS has been to make the best of the files, which are
the most important parts of the operation system. A similar way is often used to store data
in other version control systems.

2.8 Comparison of backends FSFS and BDB

Many features are very similar in both existing backends, however, some differences could
be found. The following paragraphs take a look at some of these differences and compare
FSFS and B D B backend [1].

2.8.1 Performance and reliability

B D B is very reliable and keep data in integrity, but there had to be done some recovery
operations by a user in older versions from time to time, because the database had got to
an inconsistent state. From version 4.4 B D B database uses an auto-recover system, so no
manual recovery actions have to be done any more. FSFS is generally reliable, except some
bugs in the history, which were rarely demonstrated, but were data-destroying.

B D B is more sensitive to unexpected interruptions, it can be left wedged and some
recovery procedures have to be done. FSFS is not very sensitive to interruptions. B D B
cannot be accessible from a read-only mount (FSFS can) and does not have a platform
independent storage format (FSFS has). FSFS can be used over network filesystems, while
B D B can't and FSFS has a smaller repository usage on the disk.

FSFS is faster, when there are many files in the directory, but there used to be problems
with a large number of revisions (many entries in one directory were the problem, but this
disadvantage has been repaired already). FSFS is generally faster (especially if we store
smaller files, see section 2.8.3), but commits last sometimes very long.

2.8.2 Description and design of benchmark tests

Both of the existing backends have been tested for speed and disk usage requirements. A
new benchmark in Python was implemented. It should simulate many different operations,
usually done by user while working with Subversion. The tests are configure-able to simulate
various behaviors.

A repository and a working copy were hosted on the same P C to avoid the net quality
in-correctness. S V N protocol has been chosen to communicate to simulate the ordinary
work.

Two identical tests have been launched on every backend, while pseudo-random gener­
ator has been initialized by the same seed. Every time a lot of small files (kilobytes) first,
then less large files (megabytes) has been tested.

One test composed from four steps:

17

• creating files

• modifying files

• combination of operations (creating, modifying and deleting files)

• deleting files

Note: Tested on a computer with Intel Core2Duo T5550, 1.83GHz, 2GB RAM, HDD
Hitachi HTS542525K9SA00, 5400rpm, Ubuntu 9.10, Linux Kernel 2.6.31-16.

2.8.3 Comparison backends using benchmark tests

The results of the tests are mentioned in the Table 2.1 (size of the repository) and in the
Table 2.2 (speed of operations). The same results are shown in the Figure 2.1 and in the
Figure 2.2.

backend B D B backend FSFS
Empty 1456 68
Filled 314572 206040

Table 2.1: Repository size [kB]

Repository Size [kB]

3000 0 0

'25ZZZZ

2000 0 0

100000

50000

Empty F i led

Figure 2.3: Graph of the repository size

We can see, that the size of the FSFS repository is by one third smaller, then when
using the B D B backend.

BDB

FSFS

18

backend B D B backend FSFS
Small files - creating 212.0 164,0
Small files - modifying 256.0 230,0
Small files - various actions 354.0 319,1
Small files - deleting 220.0 219,0
Large files - creating 4200.0 4224,0
Large files - modifying 114.3 78,3
Large files - various actions 1500.0 1544,8
Large files - deleting 100.0 104,6

Table 2.2: Operations speed [s]

Speed of Various Operations [s]

i-ZZZ

3500

3000

2500

2000

1500 •

1000 -

500

Z

1 E

z
3 3i

"33

I

- •

I E

3D3
I FSFS

I

E E
I

E

E
oo

.Si Qj oi Ol

Figure 2.4: Graph of the repository commintting speed

19

We can see that the speed is very similar in both backends, however, FSFS is a bit
faster. Thanks the good result of the FSFS, it is the default backend from Subversion 1.2.

2.8.4 Repository administration

Generally the repository is a part of the system, that does not need any maintenance, but
it is good to know something about its parts, if something gets wrong. The repository has
the following directory structure:

• conf - configuration files (for example repository access is set here)

• db - the data in the repository

• hooks - scripts for additional work with repository, providing extended features

• locks - files implementing the locking of some files in the repository

Note: hook scripts are launched similar to triggers in some database, generally before
or after some actions (for example sending emails after commits).

2.8.5 Known issues of existing backends

Accessibility

B D B is generally portable, but it is not possible to move a repository to another system
using a simple copying. The FSFS is more suitable for this kind of moving, so it is portable
without limitations. However, we can use the dump function for moving B D B as well as
FSFS.

If we want to use a network file system to host the repository data, we have to use FSFS
backend, while B D B backend is not able to work in the network environment.

Data in repository is generally unreadable to human and we can work with them only
using special applications. If we want to see the data in human-readable format, we can
use the mentioned dump function. This function creates so-called dump file, which can be
got back to the repository using a load function. Despite this feature the repository is still
very hard to read by human.

What is important, the dump file is portable and compatible for both backends, so we
can make a dump file from B D B repository for example and load it to other repository,
which is based either on B D B or FSFS backend.

The dump file can be used to backup repository too. We can even choose what revisions
should be covered up to the dump file. Then we can load these dump files back in the same
order (for example if we are recovering a weakly backuped repository). After the loading
we have all files in the repository even with their history up to revision 0.

FSFS generally doesn't suffer from portability issues and is able to move from one
system to another.

Scalability

If we consider the scalability, it is e.g. not easy to add new indexes in FSFS, relatively much
code has to be rewritten and the indexing itself is relatively complicated feature. Generally
all changes in the data scheme will involved relatively many changes in the code.

20

Performance

In FSFS backend the last part of the commit operation can sometimes last too long and
also the head revision checkout is sometimes very slow. Despite that the FSFS is still faster
than B D B when we work with small files. B D B could be a bit faster if we work with
large files, but it is relatively seldom situation, Subversion is used for management of many
smaller files more often.

Reliability

There were serious reliability problems in FSFS in history and some recovery actions had
to be done manually from time to time in B D B before version 4.4. But in the present time
it seems there are generally no serious reliability problems known any more.

2.9 Expected features of the SQL backend

Generally we cannot expect much better performance from an SQL backend in comparison
to FSFS and B D B backends, but it can offer a lot of new possibilities. Some of them are
mentioned here.

There is one interesting point to implement the SQL backend - some potential users
decided to not use Subversion because of simply absence of that type of backend. A report
by user John will represents similar point: „SVN doesn't really need an SQL backend (FSFS
rocks), but it would make a lot of people feel better, if their repositories could be stored in
regular SQL Server ... something they understand and feel comfortable with" [35].

A little less serious point wrote by David Weintraub: Ln large corporate environments,
this can be a selling point. Typical Pointy Headed Manager's Comment: „SQL! That means
it must be good" [20].

So we can say, many users will be interested in Subversion much more, if it will have
the SQL backend.

Scalabiliy

Mark Phippard, Subversion contributor, wrote (2005-03-07): „/ can picture a large hosting
site like SourceForge using a clustered SQL repository that is front-ended by a large number
of load-balanced Apache servers and getting very good response times. Since you would
get a robust client/server architecture for free with most SQL engines, it offers a lot more
possibilities for intelligently and safely splitting the workload across machines" [20].

Adding new indexes to tables is very simple operation (much simpler than in FSFS and
BDB) and indexing itself is on higher level, than in FSFS, and comparable with B D B .

We can choose the SQL database engine from very big amount of available variants,
while the changes in the code to adding a support for the new database system will not
be very large. Generally the SQL backend will be suitable for large projects using a well
customized database, while the customization will be easy.

Performance

We should consider (like David Anderson wrote in Subversion mailing list at 2006-01-19),
that subversion backends are generally storage systems that store a versionned file system,
which is a series of interconnected DAGs (Directed Acyclic Graph or we can call it trees) ...

21

This is a problem, because SQL is great at many forms of data crunching, but representing
a tree is one thing it is definitely not good at doing. There are algorithms which make it
fairly easy to represent a single tree in a SQL database, with fast read access to subtrees,
but slow write access ... Storing a sequence of interrelated trees in a SQL database is a
Hard problem, and that is why we don't yet have a SQL backend for Subversion" [20].

So we cannot expect better or even the same speed of operations, like the FSFS or B D B
backend can offer. We also can expect worse results considering the database size, while
the data from tables itself will be larger comparing to FSFS and B D B and some more data
will be stored for indexing.

However, SQL engines can offer better indexing and caching, than FSFS and B D B
backends can offer. How much this influence the total speed, it is a question. I suppose the
speed could be better only on large projects with a powerful database engine (e.g. Oracle).

We can expect faster head revision checkout and a finalization of a commit comparing
to FSFS, so the SQL backend could be more suitable for installations where many readers
access the repository at the same time.

Reliability/Backup/Recovery

FSFS and B D B offer backup and recovery operations, but that is available only using
specific Subversion utilities. FSFS could be backed-up with standard file system utilities
too, but that doesn't have to be good enough for some system administrators, because it
doesn't correspond with their already using system backup work-flows/infrastructure.

Kevin Broderick wrote the following comment about potential advantages of SQL back-
end at 2005-07-15: „ . . . Many, if not all organizations already have databases of some
sort (or of multiple sorts) in place. That usually implies that the infrastructure around the
database - network, server, backups, admin tools, monitoring, etc. also in place. ... L real­
ize that most organizations should also have filesystem backups in place, but my experience
is that the databases get more attention and are a bit easier to monitor." „With that said,
I think that FSFS provides a reasonable option and L'm not sure that a SQL backend would
provide much in the way of feature benefits for the current user base" [20].

Generally SQL backend will provide an easy integration to company's work-flows, a
simple backup and recovery without needs of special utilities.

Accessibility

As mentioned before, SQL backend would be well suitable for larger installations and it
wouldn't be problem to store big amounts of data in some power-full database (e.g. Oracle).

SQL backend will be (like FSFS) platform-independent, it would be accessible using
network and it would be read-able by human without need of using db-dump utilities (more
about db-dump in []). Dominic Anello wrote: „it can offer more robust query interface into
the repository (we can use queries like "Where were all modifications to somefile.h made,,
or "What tags have been made off of the project-2.3.1 branch,, without using the log)" [20].

The Figure 2.5 shows the possibility to create ad-hoc queries in the repository in various
backends. We see that the SQL backend offers the best support for specific queries applied
to the repository data.

22

I'ull ad hoc querv
support

R D B M S #

Find objects by
name only

N o transactions Full transactions and
fine-gained recovery

Figure 2.5: Range of Storage and Query Services []

2.10 Subversion analysis conclusion

Enough information needed for analyzing and designing of the new backend was the result
of the semestral project. Big part of the work was to become familiar with the Subversion
system as a user and the backend layer has been studied in detail. The work with existing
backends continued, because it was possible to define requirements to the new SQL backend
from their design and implementation. This is described in section 3.2.

The design of the SQL tables and the implementation in C / C + + language followed as
a main part of the master thesis. The implementation raised from existing backends, but
both of them, FSFS and B D B , are very different from SQL database; so many issues were
solved individually. The result of the design is in sections 3.13.

Communication with other Subversion contributors continued during design and imple­
mentation, because they know the Subversion system much better and they had many good
ideas (see 3.9, 3.10 and 3.11).

Berkeley D B

File systems

23

Chapter 3

Analysis and Design of the MySQL
backend

Design of the M y S Q L backend is described in this chapter. Berkeley and M y S Q L databases
are generally different, but if we use them for the same domain model, structures of the
databases are a bit similar. Thus, M y S Q L backend database scheme design raised from
B D B scheme. On the other side, there are many things specific for each database, such as
indexing, lists storing, data types, etc.

In the beginning of this chapter (sections 3.2 and 3.3) necessary details of the existed
Subversion filesystems are studied and the main features of existing backends have been
taken as the source of information for design the new one. A general scheme of any backend
is described in sections Subversion filesystem scheme and Base data model of the Subversion
filesystem.

A n example of execution of two basic commit operations is demonstrated in the section
3.4 as the result of sections 3.2 and 3.3. The purpose of this example is to describe all
effects in the abstract backend, that have happened during these operations. This should
help to understand how a backend works.

Next sections (3.6, 3.5 and 3.7) consider possible ways to store specific data structures
in a relational database, which operations could be applied to that data and how fast
the operations can be. Namely the universal approaches to store D A G structures in SQL
databases are discussed to determine, if we can profit by one of the approaches. Then an
access speed to large tables is tested, especially the use of different data types for indexes.

The next section 3.8 studies the performance differences of storing small and large files in
relational database instead of a pure OS filesystem. After these researches the first version
of M y S Q L database scheme of the backend was designed and offered to other Subversion
contributors to comment. Some useful changes and possible issues were discussed by all
interested persons and the discussions are shortly mentioned in sections 3.9, 3.10 and 3.11.

In the end of this chapter some general ideas about optimizing M y S Q L database are
discussed in section 3.12. The last section 3.13 presents the results of the analysis and
design of the M y S Q L backend and a M y S Q L database scheme of the backend is described.

3.1 Existing MySQL backend prototype

There have been some attends to develop SQL backends in the history. For example there
is one very old prototype of a backend on [31], which uses M y S Q L database, besides B D B .

24

The prototype originated in early time of Subversion's existence and many things changed
from that time. For example the FSFS backend was added and the whole backend interface
has been redesigned.

The way how the prototype changed the database was the quickest one, only the accesses
to tables were changed. No other things were designed or changed for the SQL style and
that is the reason, why it is nicknamed as „Quick and Dirty" prototype. I think it wouldn't
be clever to use this prototype as a source of information.

3.2 Subversion filesystem scheme

Generally a Subversion filesystem looks like an ordinary U N I X filesystem, so a node in
Subversion could be either a file or a directory. The main difference from a U N I X node is
that a node's content changes over time and we need to store all previous contents.

When we change the node's content or attributes (even a name of the node), it is still
the same node, just with another content or attributes. So the node's identity isn't bound
to a filename or content.

A node revision refers to a node's contents at a specific point in time. Changing a node's
contents always creates a new revision of that node. Once created, a node revision's contents
never change. As users make changes to the node over time, we create new revisions of that
same node.

When a user commits a change that deletes a file from the filesystem, we don't delete
the node, or any revision of it. Instead, we just remove the reference to the node from the
directory.

3.3 Base data model of the Subversion filesystem

The purpose of this section is to describe the structure of Subversion filesystem backend
using a higher level of abstraction. If anybody wants to get familiar with the Subversion
backend, this section will give him the first basic information. The following scheme arises
more from the B D B backend design, than from FSFS, but it tries to describe the general
concept of the filesystem more than one specific implementation. It is much simpler in
comparison with real structures, which are more complicated.

3.3.1 Node-revisions

If we speak about a node, we always need to know, which version we speak about, so we do
not usually use a node ID, but a node revision ID instead. A node revision ID is composed
from a node ID, copy ID and a txn ID („txn" is a shortcut for transaction, that is used in
Subversion very often).

The node ID is unique to a particular node in the filesystem across all of revision
history. That is, two node revisions who share revision history (e.g. because they are
different revisions of the same node, or because one is a copy of the other) have the same
node ID, whereas two node revisions who have no common revision history will not have
the same node ID.

The copy ID identifies a given node revision, or one of its ancestors, resulted from a
unique filesystem copy operation.

25

The txn ID is just an identifier that is unique to a single filesystem commit (it is not
important if the commit succeeded or not). A l l node revisions created as part of a commit
share this txn ID.

A node revision is either a file or a directory and this type cannot change over time.
We store some necessary attributes by a node revision record:

• created path - the canonicalized absolute filesystem path at which this node revision
was created

• pred ID - indicates the node revision which is the immediate predecessor of this node

These attributes above are the most important ones, for another attributes see [9].

3.3.2 Representations

The content of files or directories as well as file's or directory's properties are deltified (we
usually don't store the whole content, but only deltas from the previous version, which
saves much place on the disc). That data are stored separately from a node revision data
and we call it representations, which are byte or text strings in FULL or DELTA format.
More about representations in [9].

3.3.3 Transactions

Transactions represent exactly one commit operation and it could be in the following states:
transaction (unfinished, active transaction), dead (an inactive transaction, which is not
completed correctly) or committed (a correctly completed transaction).

A transaction contains following attributes:

• root ID - the node revision ID of the transaction's root directory

• base ID - the node revision ID of the root of the transaction's base revision (the base
transaction is, of course, the transaction of the base revision)

• transaction properties

• copies - references to filesystem copies created inside of this transaction (if the trans­
action is aborted, these copies get removed)

3.3.4 Revisions

The revision is an integer number beginning by 0 (empty directory), whose value is the
transaction that was committed to create this revision.

3.3.5 Changes

As modifications are made (files and directories added or removed, text and properties
changed, etc.) on Subversion filesystem trees, the filesystem tracks basic changes made in
changes records.

The main attributes of changes are:

• path - absolute path in the Subversion filesystem

• node revision ID - the node revision, that this change is related to

26

i can be one of the following operations: add, delete, replace, modify

- an indication, that the content of the node was modified

: - an indication, that the properties of the node was modified

3.3.6 Copies

Every time a filesystem copy operation is performed, Subversion records meta-data about
that copy.

A copy record has the following attributes:

• type: copy indicates an explicitly requested copy, and soft-copy indicates a node that
was cloned internally as part of an explicitly requested copy of some parent directory
(details in [9])

• source path - canonicalized absolute path of a source of the copy

• source txn - transaction ID of a source of the copy

• destination node revision ID - represents a new node revision created as a result of
the copy

3.3.7 Locks

When a caller locks a file (reserving an exclusive right to modify or delete it), a lock object
is created. It has the following attributes:

• path - an absolute filesystem path reserved by the lock

• token - an universally unique identifier of the lock

• owner - an authenticated username that owns the lock

• comment - a string describing the lock

• XML-p - a boolean (either 0 or 1) indicating whether the comment field is wrapped
in an X M L tag

• creation-date - date/time when the lock was created

• expiration-date - date/time when the lock will cease to be valid

3.4 Example of Subversion object diagram

This example originated to better understand, how a backend works inside. I also wanted to
check, if I understood the backend right, so I posted this example to a Subversion mailing-
list to demonstrate my thoughts to other contributors. Only one reaction without any
serious suggestions came back, so I had been probably right.

The following example is a demonstration of the Subversion filesystem structure during
two simple commit operations. First commit will add a directory b and files a.txt and
/b/c.txt to the root in an empty repository. The next commit will change the content of

27

rev_num txn
1 1

Table 3.1: Revisions table after the first commit

txt state root
1 committed 0.0.0

Table 3.2: Transactions table after the first commit

node ID type path pred ID rep
0.0.1 directory / 1
1.0.1 directory /b 2
2.0.1 file /a.txt 3
3.0.1 file /b/c.txt 4

Table 3.3: Node revision table after the first commit

txt path type node ID
1 / change 0.0.1
1 /b add 1.0.1
1 /a.txt add 2.0.1
1 /b/c.txt add 3.0.1

Table 3.4: Changes table after the first commit

rep type txn content
1 full 1 (1.0.1, 2.0.1)
2 full 1 (3.0.1)
3 full 1 'abcdef
4 full 1 'tuvwxy'

Table 3.5: Representations table after the first commit

28

rev_num txn
2 2

Table 3.6: Revisions table after the second commit

txt state root
2 committed 0.0.1

Table 3.7: Transactions table after the second commit

the file a. txt, add a file d.txt and rename the directory b to bb. The first commit will create
a revision 1; the second will create a revision 2.

The contents of the tables after the first commit are in tables 3.1, 3.2, 3.3, 3.4 and 3.5.
After the second commit the new data will be as in the tables 3.6, 3.7, 3.8, 3.9 and 3.10.
The whole scheme after the 2nd commit is sketched in the Figure 3.1.

3.4.1 Conclusion of the example, operations frequency

The Subversion filesystem is sort of a directed acyclic graph (DAC). Because we need to
keep every change made in that filesystem, the most often modify operation is inserting
(updating or deleting objects are only occasional operations).

We have generally two options how to store deltas. We can deltify the content against
the youngest revisions, this way is used in B D B backend and offers faster checkout of the
youngest revision and it is also the reason, why this option was chosen for the SQL backend.

Or we can use the second way and store the content as deltas against earlier revisions.
This way is used in FSFS backend and offers better simplicity and robustness, as well as
the flexibility to make commits work without write access to existing revisions.

While reading the Subversion filesystem, the most often operations are retrieving all
ancestors of the node and retrieving all direct descendants (e.g. all nodes in the directory).

3.5 D A G structures in SQL databases

This section summaries and describes possible ways to store Directed acyclic graphs (DAG)
in a relational database. It is only general review of possible algorithms and approaches,
which does not follow Subversion backend structure. The possibility of real application of
any of the following ways wasn't known before studying the backend's code and it seems
inapplicable after that, because the backend interface would have to change too much. The
following approaches could be possibly used within the bigger changes in Subversion design
or in some another project.

Let's have a general D A G structure that we want to store in an SQL database and the
following operations that we want to apply to that data:

node ID type path pred ID rep
0.0.2 directory / 0.0.1 5
1.0.2 directory /bb 1.0.1 6
2.0.2 file /a.txt 2.0.1 7
4.0.2 file /d.txt 8

Table 3.8: Node revision table after the second commit

29

/

/

/

\

Objects created by 2nd commi t

Node
10 = 3 . 6 . 2
t y p e = d i r
p a t h = /
p r e d I D - 8 . 9 . 1
r a p = 5

Rep
ID - 5
c o n t e n t = (+4. 1.2 - 1 . 3 .1 +1. .2 - 2 . .1 4-2.(•2

Node
ID = 2 . 1.2
t y p e = T i l e
p a t h = / a . t x t
p r e d I D - 2 . 8 . 1
r a p = 7

1

Rep
ID - 7
c o n t e n t = + g h i j k l

Node
ID = 4 . 3 . 2
t y p e = f i l e
p a t h = / d . t x t
p r e d I D
rep = 8

Node
ID = 1 . 3 . 2
t y p e = d i r
p a t h = / c
p r e d _ I D - 1 . 0 . 1
rap = 6

Rep
ID - 8
c o r t e r t

Rep
ID - 6
c o n t e n t = {)

\

\
\

Objects created by 1st commit

N ,

— >

Node
ID . 3 . 3 . 1
t y p e - d i r
p a t h . /
p r e d I D
rep - 1

Rep
ID = 1
c o n t e n t = (1 . 3 . 1 , 2 . 8 . 1)

/

Node
ID = 2 . 3 . 1
t y p e - T i l e
p a t h = / a . t x t
p r e d I D
r a p = 3

Rep Rep
ID - 3
c o r t e r t

ID - 2
c o r t e r t = (3 . 0 . 1)

Node
ID = 3 . 3 . 1
t y p e - f i l e
p a t h = / D / c . t x t
p r e d _ I D
rep = 4

Rep
ID - 4
c o r t e r t tuvwxy

Figure 3.1: Subversion nlesystem object diagram

30

txt path type node ID
2 / modify 0.0.2

2 /bb rename 1.0.2

2 /a.txt modify 2.0.2

2 /d.txt add 4.0.2

Table 3.9: Changes table after the second commit

rep type txn content
5 delta 2 (+4.0.2 -1.0.1 +1.0.2 -2.0.1 +2.0.2)

6 delta 2 0
7 delta 2 +'ghijkl'
8 full 2 'mnopqr'

Table 3.10: Representations table after the second commit

• insert a new node

• delete a node

• get direct ancestor

• get all ancestors

• get direct descendants

• get all descendants

Every request to the SQL database costs some time, so we will try to use all the
operations above using as little queries as it is possible.

3.5.1 Read all to memory

We can reduce the number of database queries by loading the whole D A G structure to
the memory and working with the data in the business logic. The way how to store edges
between nodes could be adjacency list (see bellow), but this approach is applicable to only
very small count of records, so it is definitely not applicable to Subversion filesystem.

3.5.2 Materialized path

In this approach each record stores the whole path to the root (using a character as a
separator). A n SQL table can look like as the table 3.11 or in Figure 3.2.

Let's look at some queries. We want to get an employee John and chain of his supervi­
sors:

SELECT el . *

FROM emp e l , emp e2

WHERE

e2.path LIKE el.path || >'/„>

AND e2.id = 4

31

id name path
1 Peter 1
2 James 1.1
3 Jane 1.2
4 John 1.2.1
5 Charlie 1.2.2

Table 3.11: Materialized paths example

1
.Peter

John Charlie
1.2.1 1.2.2

Figure 3.2: Materialized path example

Then we want to get an employee Peter and all his (indirect) subordinates:

SELECT e l . *

FROM emp e l , emp e2

WHERE

el.path LIKE e2.path || >'/„>

AND e2.id = 1

We can see that reading one or more ancestors or descendants is very fast, but there
are several problems. The adding and deleting nodes that are not leaves is very expensive,
because we need to change paths of all its descendants.

Another issue is the path length, which can be very long in very complicated DAGs like
a Subversion filesystem. We can reduce the size of the path using another path definition,
which is describe in [32], but the disadvantage is still there.

3.5.3 Nested sets

This method is based on pre-calculated values left and right using the preorder tree traversal
algorithm. More about this algorithm is in [16]. We will get table 3.12 for example and the
structure will be like in Figure 3.3.

The advantage of this solution is easy reading the node's direct descendants as well as a
whole subtree. Also reading of all leaves can be implemented using only one query. A row
size is constant (only two single values are added) even if the D A G is very large. Getting
the parent or all ancestors of the node is quick and it is possible to get the depth of the
node in the hierarchy using COUNT and GROUP BY statements.

But there is one big disadvantage - adding or deleting nodes requires recount left and
right values of many nodes in the tree, so it is not possible to use this solution in large
DAGs. More information about this solution and about queries is in [16].

32

id name left right
1 Peter 1 10
2 James 2 3
3 Jane 4 9
4 John 5 6
5 Charlie 7 8

Table 3.12: Nested sets example

1 Peter __ 10

2 James 3 4 Jane 9

5 |ohn 6 7 Charlie 8

Figure 3.3: Nested sets example

3.5.4 String-Based Nested Sets

This solution, published in [], describes using materialized path and nested sets together.
It offers trigger definitions, so the nested sets are automatically maintained, but the per­
formance is not better than ordinary nested sets and disadvantages of nested sets stay.

3.5.5 Nested intervals (Partial order)

Nested intervals are an alternative way, how to look at nested sets, but it doesn't give better
performance when updating the D A G . More information about this solution in [15].

3.5.6 Adjacency nodes

The adjacency nodes solution has more implementations. The first way uses one nodes
table with one special column, which references the same table and defines the parent of
the node.

The other way is general definition of the edges. There are two tables - one-column
table of nodes and a two-column table of edges. The edges table can be thought of as
a nodes-nodes bridge table, each row containing pointers to origin and destination nodes.
Other details of nodes and edges can be encoded in extra nodes and edges columns, or in
child tables.

For our example the table of nodes will look like table 3.13.
The table of edges will look like table 3.14. The structure will look like as in the Figure

3.4.
If we want to get the whole subtree, we have two general options. First option is to

use several joins, but we have to know the depth of the query before we build it. This is
definitely not universal, so we won't use it.

The other option is to use a recursion, which means either many requests to the database
or an SQL procedure with a recursion or an equivalent loop. Then we can use one of basic
traversal algorithms for a tree. There are several ways how to read subtrees using M y S Q L
procedures described

33

id name
1 Peter
2 James
3 Jane
4 John
5 Charlie

Table 3.13: Adjacency nodes table example

child parent
2 1
3 1
4 3
5 3

Table 3.14: Adjacency nodes (edges) table example

.Peter

lohn Charlie

Figure 3.4: Adjacency nodes example

34

id name
1 Peter
2 James
3 Jane
4 John
5 Charlie

Table 3.15: Adjacency nodes with transitive closure example

child parent hops
2 1 0
3 1 0
4 3 0
5 3 0
4 1 1
5 1 1

Table 3.16: Adjacency nodes with transitive closure (edges) example

The biggest advantage of this method is simple adding or deleting nodes, which is done
in constant time.

We should mention another feature of adjacency nodes, even if it is not the case of
the Subversion filesystem. This solution is the only one from the methods above that is
available to use to represent non tree graphs.

3.5.7 Adjacency nodes with transitive closure

We have mentioned, that getting a subtree using standard adjacency list is a difficult
task and we have to use recursion. However, there is another solution which requires
some redundancy in the database. The purpose of that redundant information is to move
recursion from the operation while selecting a subtree to tree structure itself. That means
we will use a recursion just while inserting a node and we won't use it while we will retrieve
the subtree.

The purpose of this method is to create a transitive closure of the D A G . Besides the
direct edges we will store indirect edges too and we will add one extra column (hops) to
the edges table, which will count number of nodes in a indirect edge. For our example the
data can look like in tables 3.15 and 3.16.

This approach has many advantages. First, retrieving any subtree will be done by only
one query. Addition and deletion are not so complicated as in nested sets and consumes
from 0(log(N)) up to O(N) time.

On the other hand, there is one significant disadvantage too, that is number of indirect
edges stored in the database. This number depends on the D A G character very much, but
it can consume even 0(N2) space. We can find more about this approach in [2].

A bit similar solution is used in Oracle and SQL Server implementations that support
some tree operations.

35

3.5.8 M y S Q L , M S S Q L , PostgreSQL and Oracle solutions

MySQL doesn't offer any D A G oriented utilities, all we can use are views, procedures or
functions.

In PostgreSQL we can use a module Itree, which implements the Materialized path
solution. More about this module in [2].

Oracle offers a START WITH and CONNECT BY statements, which are used to define a
connection using the adjacency nodes. This operator can be used only for graphs that are
trees. More about that operators in [2].

Microsoft SQL Server includes a WITH operator as a part of so-called Common Table
Expressions. It can be used for processing recursive sets too. We can find a similar operator
in DB2 from I B M too.

3.5.9 Conclusion of the implementation the D A G structures in S Q L

Out of all the ways to store a tree in a R D M S the most common are adjacency lists and
nested sets. Nested sets are optimized for reads and can retrieve an entire tree in a single
query. Adjacency lists are optimized for writes, reads are generally a simple query with
little of data [].

3.6 Backend operations analysis

The purpose of this analysis was to find out, which operations in which tables the B D B
backend accessed most often. We can use this in the design of the database scheme, because
we need to know what data we will store and what operations we will apply to that data.
The data structure is described in the previous text, but the operations haven't been clear
before this analysis.

3.6.1 Table access

We need to consider what tables we work with most often and what kind of work it is. In
the following tables 3.17 and 3.18 there is a result of the two most important operations
with repository - commit and checkout. The test tried to simulate an ordinary work with
the repository.

We can see that most of accesses during commit operation, as well as during checkout
operation, were done to tables nodes, representations and transactions. Other tables were
not accessed so frequently, so we don't need to focus on optimizing those tables. We need
to design a database scheme that will ensure fast read and write operations to tables nodes,
representations and transactions.

3.6.2 Repeating operations

The second part of this analysis was aimed to discover which operations were repeated and
which were used separately. The repeated operation could be possibly optimized (for exam­
ple for reading by using the only one query). The analysis shows that only representations
and nodes tables were accessed multiple times within one major operation.

We have already said that the Subversion filesystem is a kind of D A G , but the nodes
of the D A G are generally from various tables. If we take a look at the tables separately,
the tables are generally not the D A G anymore, apart from the nodes and representations

36

table name access type number of access
copies get 3
checksum_reps get 25
node_origins get 30
uuids get 42
lock_tokens get 76
miscellaneous get 78
revisions get 289
transactions get 924
represent ations get 1402
nodes get 2424
copies put 2
checksum_reps put 12
revisions put 29
node_origins put 30
changes put 45
strings put 203
nodes put 221
represent ations put 265
transactions put 343
sum of all tables both 6443

Table 3.17: Table access during a commit operation

table name access type number of access
uuids get 2
revisions get 65
transactions get 125
nodes get 326
represent ations get 338
sum of all tables both 856

Table 3.18: Table access during a checkout operation

37

tables. We can say that these two tables are a kind of D A G , so we can use one of the
possible ways of storing the D A G in SQL in the future, but it will cost bigger changes in
Subversion design. It is very important that there is no need to read descendants of nodes,
only to read ascendants (we can imagine we read the history of the element) in both tables.

3.6.3 Discussing possible storing mechanisms

We could not use the Nested sets solution, because the insertion of the new nodes would
cost too much. Also Adjacency lists with transitive closure are not suitable for this purpose,
because the memory requirements would be too large.

If we consider Materialized paths, we need to think about how many ancestors a node
could have. If a Subversion project has hundreds of thousands of revisions, we could expect
that a node or a representation item could have thousands of ancestors. So the materialized
path length could reach hundreds of kilobytes per item even if the item itself is very small,
which is not acceptable.

Thus, the only solution to store a D A G in Subversion seems to be the Adjacency lists
without transitive closure. It always consumes a constant memory space and the inserting
and updating is very fast. The disadvantage of this solution is that it is not possible to
implement the reading of all ancestors by using one query. It is possible to use procedures
and functions in D M L in the future, in order to delegate some primitive D A G operations
from application to database logic.

3.7 Comparing numeric and character indexes

In B D B and FSFS backends there are keys in 36-base format, which are as a matter of fact
strings. In M y S Q L it is possible to use various data types as primary keys of the tables, but
speed of access using various types is different. This section should answer the question,
how much faster is to use integer indexes to access data entries in a relational database,
than to use 36-base character indexes.

The fastest access to data offer integer indexes, so we always should try to find numeric
column to use as primary key. This is valid generally for indexes, but the most important
indexes are primary keys. Some operations (especially aggregate functions) could be several
orders of magnitude faster using numeric index, than using character index. More about
indexes in [].

On the other hand there is existing interface in Repository Access Layer, that use
character 36-base indexes. These indexes are not changed in the existing backend layer and
it would be necessary to redesign too large part of Subversion, if we want to use numeric
indexes. The question is, if the numeric indexes are so much faster, that it will be worth
enough to implement backend using them.

3.7.1 Simple numeric and character indexes compare test

Because of deciding if we need to use numeric indexes, a simple test was implemented.
We had two tables with two columns - primary key ID and DATA column of the type
VARCHAR(255). In the first table a primary key was of type CHAR(10), in the second table
a primary key was of type INTEGER. Both tables were filled with 320,000 random records,
but there were the same data in both tables.

38

Numeric index Character index
First query before optimize 0.230 10.700
Second query before optimize 0.010 12.400
First query after optimize 0.209 1.606
Second query after optimize 0.022 1.710

Table 3.19: Numeric and character indexes compare [s]

The first query was composed from one SELECT with BETWEEN operator and a sub-query
with the second SELECT, also with BETWEEN operator. There were about 10,000 result rows
for this query and the query looks as follows:

SELECT 'key'

FROM 'numeric_index_table'

WHERE

'key' BETWEEN XI AND Yl

AND 'key' IN (

SELECT 'key'

FROM 'numeric_index_table'

WHERE 'key' BETWEEN X2 AND Y2)

The second query was very simple with only one result row and it looks as follows:

SELECT *

FROM 'numeric_index_table'

WHERE

'key' = X;

Both queries were tested twice - after inserting records and after optimalization of the
tables.

How long the queries lasted is shown in table 3.19. Tests were run several times and
there are average values in the table. The time is in seconds.

Note: Tested on a computer with Intel Core2Duo T5550, 1.83GHz, 2GB RAM, HDD
Hitachi HTS542525K9SA00, 5400rpm, Ubuntu 9.10, Linux Kernel 2.6.31-20, MySQL 5.1.

We see, that numeric indexes are much faster then character indexes. Another interest­
ing thing is, that using numeric indexes the less results we get, the faster the query is. But
using character indexes the number of results doesn't involve the speed at all.

3.8 Database and Filesystem Access Speed Comparison

The reason of this test was to compare access speed of reading data from pure filesystem
and from M y S Q L database running on the localhost. It was supposed that reading data
from database will be slower than reading from filesystem, but the question is how much.
The test was run twice with different record size.

There were same random data in binary or text form in the filesystem as well as in the
MySQL database. The data were accessed by their 128bit-length md5 hash. There were
totally 100,000 records of small files with average size of 3,7kB, which means totally 366MB
of data and 11MB for index in database. In a test with large files there were 780MB of
data, 28kB for index in 200 records.

39

F S # 1 M y S Q L #1 Comp. #1 FS #2 M y S Q L #2 Comp. #2
Test #1 11.29 4.81 43% 0.013 0.814 6091%
Test #2 12.84 4.74 37% 0.017 0.688 4138%
Test #3 10.69 4.56 43% 0.023 0.638 2766%
Test #4 10.67 4.32 40% 0.017 0.707 4047%
Test #5 9.92 3.98 40% 0.023 0.616 2677%
Test #6 9.86 4.07 41% 0.023 0.620 2745%
Test #7 12.37 3.78 31% 0.016 0.548 3326%
Test #8 10.19 3.25 32% 0.014 0.377 2791%
Test #9 9.43 3.50 37% 0.013 0.383 2854%
Test #10 9.34 3.00 32% 0.013 0.299 2250%

Table 3.20: Numeric and character indexes compare (small files) [s]

FS #1 M y S Q L #1 Comp. #1 FS #2 M y S Q L #2 Comp. #2
Test #1 1.81 11.52 637% 1.07 7.29 682%
Test #2 2.45 9.71 397% 0.98 6.78 689%
Test #3 2.15 10.27 478% 1.12 7.7 687%
Test #4 1.65 7.92 480% 1.04 7.17 690%
Test #5 2.19 7.63 348% 1.1 7.63 690%
Test #6 1.55 8.38 542% 1.21 8.32 689%
Test #7 1.14 7.31 642% 1.07 7.37 691%
Test #8 1.15 8.33 723% 1.23 8.42 686%
Test #9 1.08 7.52 699% 1.07 7.39 694%
Test #10 1.04 7.39 712% 1.02 7.24 707%

Table 3.21: Numeric and character indexes compare (large files) [s]

In the filesystem files had to be placed in separate directories, because more than 1,000
files in one directory slows down the directory searching. A n example of the stored files can
be as follows:

• files/df/dfdbf90903852bd6bbd66c532fceb2b5

• files/c9/c9d7b037dc8dcd52fb7a972e33a0alcf

• files/73/73f65d20dca6fc6063c6974757cabl45

In the M y S Q L database contents of files were stored in one InnoDB table with integer
primary column ID, column HASH of the type VARCHAR(32) for MD5 hash of the con­
tent and column CONTENT of the type L0NGBL0B for the content itself. Searching was
performed using one UNIQUE INDEX on the HASH column.

Each test composed from 10 partial tests. 1,000 random records were loaded in every
partial test in the case of small files and 300 records in the case of large files. Pseudo­
random generator had been initialized by the same seed, so the results from M y S Q L and
from filesystem were the same. Each test was run twice for small files and twice for large
files, because repeated reading could be influenced by using a cache.

Results of the test with small files are in the table 3.20 and with large files in the table
3.21. The time is in seconds.

40

Small Files Data Access Speed Comparison (s)

o $ * * * » * $ * —

• Filesystem #1
•••MySQL #1
V Filesystem #2
* M y S Q L # 2

Figure 3.5: Results of access speed test with small files

Large Files Data Access Speed Comparison (s)

• Filesystem #1
MySQL #1

? Filesystem #2
• MySQL #2

Figure 3.6: Results of access speed test with large files

41

Note: Tested on a computer with Intel Core2Duo T5550, 1.83GHz, 2GB RAM, HDD
Hitachi HTS542525K9SA00, 5400rpm, Ubuntu 9.10, Linux Kernel 2.6.31-20, MySQL 5.1.

We can see that reading data from M y S Q L is surprisingly not always slower than reading
data from pure filesystem. Especially in the case when small files are read first time, M y S Q L
database is much faster than a pure filesystem. This is probably caused by caching more
rows during the first query, whereas the filesystem caches each file separately.

If we want to improve the reading from pure filesystem, we could store small records in
larger files so the filesystem cache could be used better. The real speed also depends on the
character of the work with data, it depends on repetition of reading of the same or close
data and it also depends on the size of the data.

I discussed with other Subversion developers, whether the storing data in filesystem will
be faster than in database. Greg Stein (one of the most involved developers) had a very
good point that I agree with:

,My gut says "not that much faster „. In most scenarios, the network bandwidth between
the client/server will be the bottleneck. Reading the data off a disk (rather than from a DB)
is not going to make the WAN connection any faster. On a LAN, you might have enough
network bandwidth to see bottlenecks on the server's I/O channel, but really... I remain
somewhat doubtful. I'd go with the "store content in the database,, until performance figures
(or a DBA) demonstrates it is a problem."

Philipp Marek responded with another approach: „How about allowing a mixed de­
sign (later, optional, when the backend is running)? Ie keep blocks smaller than N in the
database, but write larger ones to the filesystem? Or provide different paths depending on
the block size? Then people with SSDs could use them for the small blocks (or just keep them
in the database, as before), but larger data entities could be read from disk directly. That
would probably make some sense, as small blocks don't matter if they're traveling across a
few pipes; but for multi-MB data blocks that should be avoided."

This issue will probably stay opened some time, at least until any SQL prototype will
be able to test and compare all approaches. Until that the content data will stay in the
database. The whole thread in Subversion mailing-list can be found in [37].

3.9 Directory content storing

This section considers a problem with too many files in one directory and possible ways
to avoid the speed access problems. Storing many files in one directory brings some per­
formance issues, because files are stored in pure sequence generally. The problem comes
up with about a thousand of files in one directory. Reading or writing to such directory is
much slower than to smaller directory. This is general problem of many present filesystems
and the same problem has arisen in Subversion filesystem too. In B D B as well as in FSFS
files are stored sequentially, thus the bigger a directory is, the slower reading or writing to
that directory is.

In Subversion there is another problem with big directories - very big space requirements
for changes. For example, if we have a directory with 10,000 files and we delete one file,
we have to store the whole directory content in the new revision. Subversion does not
use the delta design for the directory content, because in most cases it doesn't bring any
performance advantages, rather the opposite.

There is a user's experience in the Subversion developers mail-list []. Paul Holden is
describing tests with svn update operation on two directories. The first directory contained
10,000 files in 390MB well distributed in subdirectories; the second directory contains 5,000

42

files in 22MB without subdirectories. Update of the first directory lasted 4 minutes, update
of the second directory lasted 10 minutes. This paradox is caused by not efficient working
with directory entries. We can say that disadvantages of this issue are seldom, but they
can be very paint-full.

The problem with large directories, described in the previous text, was the impulse for
another discussion between Subversion contributors, including me. Philipp Marek advised
to design storing diretories' contents in another way in the prepared SQL backend. The
purpose of another storing algorithm is to make the storing overhead (when directory entries
are changed) as little as it is possible.

It has been mentioned before; delta design is not good choice, because of unnecessary
overhead in smaller directories, where no special algorithm is needed, so the delta design
would probably slow down the system. Philipp Marek advised two another approaches:
„Either use a new table, with fields like parent, name (or path), valid-from-revision, valid-
before-revision or something like that. Then changing an entry means only updating valid-
before of the old record, and inserting a new one. Or, if you want to store directories in
the same way as file data (like now in FSFS and BDB), I'd suggest to limit such blocks of
directory data to a few KB, but to define an indirect-block that tells which blocks are used.
A new entry could then reference all the unchanged blocks of the older revision" .

Both of the approaches from Philipp Marek are available to design in SQL backend,
which of them would be faster and if they will be better than present approach is a question
that can be answered first after testing in real environment. After Phillip advised his idea,
Greg Stein replied with another solution: „Go ahead now and store megabytes for each
directory, just like the other backends. And leave the solution of this problem to a future
iteration of the SQL-based backend. Really... optimizing before you even get started is not
advisable. Get something done. Then examine and iterate. There could be numerous other
problems inherent in a SQL backend that would obviate any such solution proposed today".

Greg's idea is certainly right so I decided to leave this problem for the next iterations
of development, when real benefits of any other approaches could be tested. The whole
thread in mail-list is available in [36].

3.10 Primary key of the transaction properties table

One of the discussions between me and other Subversion contributors was about storing
transactions properties. In B S B transaction properties are stored as a skel (or a list in
another words) with name and value attributes, but it is not possible to store lists in an
SQL database as a single value. A new table with foreign key transaction-id was connected
to the rest of the SQL design, other columns where name and value (both strings).

It was a question, what should be the primary key of that table. In the first design there
were special integer primary key and another unique key on two columns - transaction-id
and name. Greg Stein suggested using that unique key as primary, because the former
primary key was not referenced at all. Thus, in the next design the transaction properties
table uses only one key (composed from transaction-id and name).

The whole thread in Subversion mailing-list is in [44].

43

3.11 Another suggested changes in SQL backend design

Some contributors or users suggested to make another changes in SQL design, that are not
necessary to solve right now, but in the future, in next iterations of the SQL backend devel­
opment. Martin Furter for example suggested „to add a field repository-name to the trans­
actions table, it would be possible to store multiple repositories in one database/schema."

From my sight, it would be nice to store more repositories in one database, but I find
this way a bit confusing and without significant advantages (e.g. it would be not clear
which rows belong to which repository). But, some table prefix could be used by all tables,
it would be transparent and easy to destroy the whole repository for example (without svn
routine).

The same view has Bob Archer, who wrote „Please don't do this (adding the field
repository.name) unless it is an option. Each repository should be self contained. It would
also be nice if it were OS agnostic... so for example I could move a repository from one
server to another (Windows to Mac) by just copying over a SQLite database. Even all the
config info should be in the database rather than magic config files."

This thread in Subversion mailing-list can be found in [29].

3.12 Optimizing MySQL operations

This section offers some basic information how to optimize relational databases generally.
We should always want to get the database design to the normalized form, so we cannot
store lists in one table column for example, as it could be done in B D B database. We can
also improve the database speed significantly using some basic optimization operations,
some of the most important are shortly described in the following subsections.

3.12.1 M y S Q L engines

MySQL database offers various storing engines - M y l S A M , InnoDB, Merge, Memory,
Archive, CSV, Federated, N D B Cluster, I S A M , B D B , Example and M a x D B . Many of them
are intended for special purposes and we will consider only two of them, which can be used
for any general purpose - M y l S A M and InnoDB. More information about other engines
can be found in [14].

Both engines are well optimized and have a lot in common. We will discuss only dif­
ferences. InnoDB have better support for parallel work of many users, offers possibility of
locking rows as well as tables and includes support for transactions. It is better for storing
huge amount of data, even bigger than a file size limit of the used filesystem is. But on the
other side the data needs more space on disc.

Engine M y l S A M doesn't use transactions, but it is a bit faster than InnoDB and offers
full-text search.

We can probably use the third engine Memory, but only for some temporary data, not
as a main storage engine. Data of this engine are stored in H E A P memory and can be
stored only during run of the M y S Q L server. More about engines in [14].

3.12.2 Optimizing tables

MySQL offers many options how to optimize stored data or access performance to that
data. Many of the options have its advantages and disadvantages at the same time and it
depends on the particular situation which option is better.

44

The ROW_FORMAT parameter defines if a table will be dynamic or static. Dynamic tables
are smaller but working with them is slower. Fixed tables are faster and their size could be
optimized, but the space on the disk will be always bigger then by dynamic tables.

We can specify supposed and maximal number of rows in the table, this can be used
for better optimizing. M y S Q L offers a special procedure analyze , which can be used for
optimizing table schema. It is very useful to use the OPTIMIZE TABLE query, from time
to time, which is important especially at often changed tables. More about optimizing in
[14].

3.12.3 Storing the lists in S Q L

Storing the whole list of more values in one column isn't possible in relational database,
we have to always use another table and l:many relations. The access speed to the joined
columns depends on the indexes very much. Properly used indexes are more important in
the tables with more rows and the the robustness of the index (number of different values
in all rows for the specified column) should be as big as it is possible. We can also use
composed indexes, if the single index has small robustness. More about storing lists in
database and optimizing of joining tables in [].

3.12.4 Using of prepared statement and multiple-lines inserts

MySQL offers prepared queries in the same way, as in other database engines. The query
is prepared once and the prepared statement could be called with various parameters. We
can save some processor time, because queries don't have to be analyzed every-time.

Another speed improvement is multiple-line inserts, that can be surprisingly several
times faster, then the same number of simple inserts. This feature should be definitely used
if a bigger number of entries will be inserted in a sequence, for example as a part of import
action.

3.12.5 General acceleration of the M y S Q L database

There are many optimization methods how to improve the speed of M y S Q L database. We
can for example store indexes in another server than data, to have very fast access to
indexes even if the data server is busy. We can use more servers, clusters, regulate memory
limits, cache sizes, page sizes or using secondary indexes to optimize database for our special
purpose. It always depends on database size and operation types and we should always use
a real data to test any improvements. We can find many of mentioned solutions and some
others in [14].

3.13 Database scheme of the MySQL backend

This section describes the M y S Q L backend structure and its differences compared to B D B
backend. This scheme is inspired by the B D B structure, that is accessible in [9]. The whole
backend is visualized in Figure 3.7.

B D B and M y S Q L are both databases, but they differ quite a lot. B D B is embedded
database, which stores key-value pairs, while M y S Q L is general purpose relation database.
Both of the databases has advanced index handling, transaction support (if we use InnoDB
in MySQL) and good support on many operating systems.

45

transactions proplist
+txn_id <PKxFK>
+name <PK>

transactions copies
+txn_id <FK>
+copy_id <FK>

copies
+copy_id <:PK>
+kind = copy|soft-copy
+source_path
+source_txn <FK>
+dest node rev i d <FK>

transactions
+txn_id <PK>
+kind = transaction|commited|dead
+root_node_rev_id <FK>
+base_node_rev_id <Ffc>
+ revis ion number

revisions
revisionnumber <:PK:>

•txn i d <FK>

changes
+change_id <PK>
+txn_id <FK>
+path
+node_rev_id <FK>
+kind = add|delete.
+text_mod
+prop_mod

node revisions
n o d e r e v i d <PK>

+ p r e d n o d e r e v i d <FK>
+topy_id <FK>
+txn_id <FK>
+node_id <FK>
+kind = f i l e | d i r
+created_path
+pred_cojnt
+prop_key <FK>
+data_key <FK>

next_keys
+table_na
+key

locks
+token <PK>
•i-path
+awner
+comment
+xml p
+creation_date
•i-expiration_date

node origins
-nodeid <PK>
-node rev i d <FK*

strings
+string_id <PK>
+data

representations
+rep_id <PK>
-i- a lh a s h
+kind = f u l l t e x t | d e l t a
+string_id*:FK>

representation windows
+ repwindaw_id<PK>
+rep_id <FK>
+string_id<FK>
+diff_kind
+diff_version
+offset
+size
+rep_key
+rep_offset

Figure 3.7: Database scheme of the M y S Q L backend design

46

The main differences between M y S Q L and B D B are the list, that are stored in the
database entry just like other values in B D B , but a special table and the l:many relation
has to be used in M y S Q L . Another significant difference are indexes, that are 36-base in
B D B , while there are used integer values in M y S Q L database. This is not necessary because
of M y S Q L abilities, but it is much faster to use integer values, than 36-base strings (test is
described in section 3.7).

3.13.1 Nodes

Nodes are abstract structures, which we can imagine like files or directories in an ordinary
filesystem. So a node has its type (file or directory), content and properties. The type of
the node never changes, a file will always be a file and a directory will always be a directory.

Properties and content of nodes changes in time and every change is stored in the
backend. Set of changes of one or many nodes (files or directories) are done in transactions
(shortly txn, we will talk about them later). Every successful transaction will make a new
snapshot of the whole filesystem, and we mark the snapshot with integer value started from
0, called revision number; the snapshot is called revision.

3.13.2 Revisions

The revisions table have two columns - revision-number (primary key) and txn-id, so it is
a kind of map of revision-number to txn-id. For example an item (5, 23) says that revision
5 has been made using the transaction with txn-id 23. That's all we can read from that
table, nothing more.

The convention says, that revision 0 is an empty directory with nodejrev-id is 0.0.0 (see
bellow).

Structure of the Revisions table

• revision-number, int (20) - Number of the revision (snapshot)

• txn-id: int (20) - Transaction ID which this revision was made from

3.13.3 Node-Revisions

As we have said above, there is not a nodes table in the database, but there is a node-
revisions table there. This table stores the snapshots of the nodes in time. If a node's
content or properties change, a new node-revision is inserted in this table. No items are
deleted, always just added. If we want to get all the actual files tree, we need to read all
last node-revision entries from the table node-revisions.

Because of distinction which nodes are snapshots of the same node, there is a node-id
column in the table. There is also a copy-id column, which indicate, which node-revision
entries has the same history (e.g. one is a copy of another), more about copies in the text
bellow.

Besides node-id and copy-id there is txn-id, which specifies, what snapshot the node-
revision entry belongs to. So the node-revision is well defined by three values - node-id,
copy-id and txn-id. These values are the primary key of the node-revisions table.

It is problem to reference to composed primary key from other tables using a foreign
key, so a new column node-revision-id was added. This column correspond with the node-

47

revs-id in B D B design, so it is concatenation of the values node-id '.' copy-id '.' txri-id
(primary key units, separated with '.').

Besides attributes above we store the created-path, which is the path, where the node
has been created in. Then there are a prop-key and a data-key, that are foreign keys to the
table representations, represented the properties and the content of the node respectively.

The attribute pred-nodejrev-id is the reference to the same table which specifies the
predecessor of this node. The pred-count attribute specifies the count of predecessors of the
node_revisions.

A directory entry identifies the file or subdirectory it refers to using a node revision ID -
not a node ID. This means that a change to a file far down in a directory hierarchy requires
the parent directory of the changed node to be updated, to hold the new node revision ID.
Now, since that parent directory has changed, its parent needs to be updated, and so on to
the root. We call this process „bubble-up".

If a particular subtree was unaffected by a given commit, the node revision ID that
appears in its parent will be unchanged. When doing an update, we can notice this, and
ignore that entire subtree. This makes it efficient to find localized changes in large trees.

Structure of the Node-Revisions table

• node-rev-id: varchar(64) - string representation of the primary key in the form
node-id '.' copy-id '.' txn-id

• pred-node-rev-id: varchar(64) - reference to predecessor

• copy-id: int (20) - reference to the Copy table

• txn-id: int (20) - reference to the Transactions table

• node-id: int (20) - ID of the node

• kind: int (4) - kind of the node (either file or directory), value depends on the C-enum
value

• created-path: varchar (1024) - path under which the node has been created

• pred-count: int (20) - count of all predecessors of the node-revision

• prop-key: int (20) - reference to representations table (node-revisions' properties
entry)

• data-key: int (20) - reference to representations table (node-revisions' data entry)

3.13.4 Representations

This is the place, where content and properties of files and directories are stored. Content
stored here differs files from directories. In directories, the content of the directory is stored
always as a fulltext. No deltas (more about deltas bellow) are applied to that data, but
there are possible ways to change this approach in the future, because there are some
performance issues when a directory contains a lot files (see section 3.9).

The variable-length data of files is often similar from one revision to the next, so Subver­
sion stores just the deltas between them, instead of successive fulltexts. The newest version
is stored in fulltext and the older versions are stored as a difference from the previous. In

48

FSFS the older version is stored in fulltext, which brings greater simplicity and robustness,
as well as the flexibility to make commits work without write access to existing revisions.

In SQL backend the B D B approach is followed, which brings fast checkouts of the last
revisions.

Let's take a look at referencing in the representations table. There is an attribute
shalhash, that is (as supposed) an SHA1 hash of the entry's data. It's possible then to split
blocks on manber-borders, to save space, because we don't need to store the same data
again and again. We just know, we have that data already in database, so we add only a
reference to that data and we're done.

Structure of the Representations table

• rep-key: int (20) - primary key

• shalhash: varchar (40) - SHA1 hash of the data

• kind: int (4) - fulltext or delta

• string-id: int (20) - foreign key to strings table, where real data are stored (used
only in fulltext mode)

3.13.5 Representation windows

This table is used to store metadata of deltified files contents. Column repJzey says what
the window should be applied against, or none if this is a self-compressed delta. Column
size says how much data this window reconstructs, column version says what version of the
svndiff format is being used (currently only version 0 is supported).

Column string-id says which string contains the actual svndiff data (there is no diff data
held directly in the representations table, of course).

Note also that rep-key might refer to a representation that itself requires undeltification.
We use a delta combiner to combine all the deltas needed to reproduce the fulltext from
some stored plaintext.

Structure of the Representations table

• repwindow-key: int (20) - primary key

• rep-key: int (20) - foreign key to representation table

• string-id: int (20) - foreign key to strings table, where real data of this window are
stored

• diff-kind: int (4) - kind of diff

• diff-version: int (4) - version of the diff used

• size: int (20) - size of the data stored in this window

• offset: int (20) - where the data start

• rep-key: int (20) - chunk-specific data used in data combiner

• rep-offset: int (20) - chunk-specific data prepared for possible future use, not used
at present (see more in [9])

49

3.13.6 Strings

This table is used to store the binary data of files or directories itself.

Structure of the Representations table

• string-id: int (20) - primary key

• data: blob - binary data of various size

3.13.7 Next-keys

This table is used for generating various integer sequences, e.g new primary keys in all
tables. We need to handle new keys more complexly, for example we often want to allocate
a new value only, without inserting a row to the database, so it is not able to use auto-
increment columns for that purpose.

The table stores the first not-used value always, so we can read a value without updating,
increment the value without inserting any rows, change the next value, etc.

Structure of the table:

• table-name: varchar(64) - name of the table, generally identificator of a sequence

• key: int (20) - first unused value in a sequence

3.13.8 Transactions

Every change made in the backend is done as a part of a transaction. The transaction
can be in progress (unfinished), dead (aborted) or committed] committed or dead trans­
action cannot change any more. Transactions in the backend are a bit different from the
transactions in the database.

Backend transactions often last several minutes, while the database transactions seldom
last a second. But the purpose of both of the transactions is the same - to run a group of
changes as all of them were one atomic operation, that is either successful or it happened
not at all. However, we definitely cannot use the database transactions to handle the
transactions in the backend.

Transactions are always related to the specified subdirectory in the Subversion filesys-
tem, which can be the whole repository of course. After the transaction is committed, the
revision number made by this transaction is set to the transactions property.

Structure of the Transactions table

• txn-id: int (20) - primary key, ID of the txn

• kind: int (4) - status of the txn (committed, aborted, unfinished

• root-node-rev-id: varchar(64) - root of the transaction

• bascnode-rev-id: varchar (64) - the node revision ID of the root of the transaction's
base revision. This is of the form O.O.BASE-TXN-ID - the base transaction is, of
course, the transaction of the base revision

• revision-number, int (20) - revision number made using this txn

50

3.13.9 Changes

A l l changes made during a transaction are stored in the changes table. This table does
not influence the content of the repository, it describes only changes in every transaction.
These changes can be then used in the future.

Path and kind of the change (addition, modification, deletion, replace) is stored for
every changed node, which is referenced by node-revision-id. Properties text-mode and
prop-mode are boolean values that indicate what of the node has been changed, if the
content or properties or both.

Structure of the Changes table

• txn-id: int (20) - reference to the txn table

• path: varchar (1024) - path where the change occurred

• nodejrev-id: varchar (64) - reference to the node-revisions table; which node-revision
has been changed

• kind: int (4) - type of the change (addition, modification, deletition, replace), value
depends on C-enum value

• text-mod: int (4) - bit specifying that the data of the node-revision has been changed

• prop-mod: int (4) - bit specifying that properties of the node-revision has been
changed

3.13.10 Copies

If we copy a node, both new nodes share the history and we need to store this fact, so we do
it in copies table. A copy is defined by a source-path, a source-txn and a destination-node.
A copy can be either soft or normal. Soft copy indicates, that a node that was cloned
internally as part of an explicitly requested copy of some parent directory. Normal copy is
initialized by user using a copy command.

Structure of the Copies table

• copy-id: int (20) - primary key, ID of the copy

• kind: int (4) - kind of the copy (copy, soft-copy)

• source-path: varchar (1024) - path of the source node-revision

• source-txn: int (20) - reference to the txn table, aims to the txn where the copy has
been done

• dest-node-rev-id: varchar (64) - a node-revision, that has originated by this copy

51

3.13.11 Locks

When a caller locks a file - reserving an exclusive right to modify or delete it - an lock
object is created in this table.

Locks table stores these temporary locks in the tokens. A token specifies the the path,
owner, comment and dates of creation and expiration. A bit xmp_p indicates that the
comment is in X M L format.

Structure of the Locks table

• token: int (20) - primary ID, unique lock token

• path: varchar (64) - path which the lock belongs to

• owner: varchar (64) - user who created the lock

• comment: text - the purpose of the lock

• xmLp: int (4) - bit specifying if the lock is in the xml form

• creation-date: timestamp - timestamp when the lock has been created

• expiration-date: timestamp - timestamp when the lock can be removed (or is expi-
rated)

The test if a path is locked is not implemented yer, but can be done the same as in the
BDB backend, see [9].

52

Chapter 4

Implementation

4.1 Layers
Files in Subversion backend layer are arranged in levels and each file depends only on
services provided by files on the previous level. A file structure is similar to structures of
B D B or FSFS backends and it is described in the following list.

• id.c, dbt.c, convert-size.c: Low-level utility functions.

• fs.c: Creating and destroying filesystem objects.

• err.c: Error handling.

• nodes-table, c, txns-table.c, revs-table, c, copies-table, c: Create and open particular
database tables. Responsible for intra-record consistency.

• node-rev. c: Creating, reading, and writing node revisions. Responsible for deciding
what gets deltified when.

• reps-table, c: Retrieval and storage of represented strings. This will handle delta-based
storage.

• node-origins-table, c, changes-table, c: Handle additional information during a trans­
action.

• next-keys-table, c: Generating and handling new unique identificators.

• dag.c: Operations on the D A G filesystem. „DAG" because the interface exposes the
filesystem's sharing structure. Enforce inter-record consistency.

• tree.c: Operations on the tree filesystem. This layer is built on top of dag.c, but
transparently distinguishes virtual copies, making the underlying D A G look like a real
tree. This makes incomplete transactions behave like ordinary mutable filesystems.

• lock.c: Locks handling.

53

4.2 Public functions analysis and implementation iterations

The M y S Q L backend design gives us enough knowledge to begin the implementation, but
it was not easy to decide where to start, because the source code of B D B or FSFS backends
reach to hundreds of kilobytes. Thus, an analysis of public interface functions from B D B
backend has been done and the planning of the future work was therefore easier.

The analysis was focused on some very simple operations:

• creating repository

• adding a file and commit

• adding a directory and commit

• changing a file's content

• deleting a file

• checkout of an empty repository

• checkout of full repository

A l l calls of public functions from the backend's public interface were tracked and results
(if they were called and how often it was) are in the Appendix A . Functions that are used
the most frequently during every operation are obvious. Names of functions correspond
with Subversion conventions, a prefix svri-fs-mysql— means that a function is from library's
public interface and mysqL prefix means internal function in the backend, which provides
some services to other level of the backend. More about conventions in [8].

In the next step operations from the analysis were taken one after the other, starting
with the repository creation, adding an empty directory, etc. and functions needed by these
operations were implemented with all necessary subroutines. From this analysis we can also
choose functions that are used most frequently and implement them in preference.

The implementation itself proceeded in iterations, which composed of several steps.
First step was to recognize which functions we need to declare. These were functions that a
compiler complained about. They could be empty at this time or returning a special error
N O T J M P L E M E N T E D (about error handling in Subversion you can read more in section
4.3). Function's arguments and location were taken from existing B D B design.

After the compilation had proceeded without errors, we could move to the next step.
The second step was to run a simple Subversion operation, which ended before being suc­
cessfully finished. The error written in the console told us which function we need to
implement first, so we knew where to start.

The next step was the hardest - to analyze what a similar function in B D B backend
should provide and to implement the same behavior in the M y S Q L backend. A good
point was that much code in a backend isn't database-specific, so sometimes only small
modifications were done. Bigger modifications had to be done in complex operations, such
as deltifying of file contents or in the database access itself.

A n aim of all iterations was to make as little modifications that are able to be compiled
and run as possible.

The last step of all iterations was a check if all operations do the right thing and if they
do it properly. The best way how to check a backend's behavior turned out to be the use
of test prints on the standard output together with check of database tables' content.

54

4.3 Errors handling in Subversion

Subversion is very complex application which needs to be stable along very long period.
Thus, an error handling policy is very important in the whole system. The error handling
is described in the following text.

Almost every function in Subversion returns a pointer to a special error structure,
which contains an error code, description and some other metadata, such as where an error
occurred. Only very simple functions (often containing only one line of code) return some
value themselves, but other could return one or more values only by using pointers in their
arguments.

Every call of a function is then wrapped with C-macro SVN_ERR, which catches a returned
error code and checks it. If some error is recognized, the macro returns the same error to
the level above. On the level above the same macro is used, so the error bubbles up until
some function can proceed it or the whole process is ended and the error is printed.

Some errors, such as „an item is missing in database" could be used to indicate some
state of the database, not just the error in application itself. So errors could be used for
some special messages in communication between different functions on the same level, as
well as on different levels. The whole approach can evoke an exceptions handling, known
from higher-level programming languages.

4.4 API interfaces using virtual tables

A l l interfaces in Subversion are implemented using virtual tables, that are structures of
function pointers in a matter of fact. Every pointer to function has well-defined arguments
as well as return value type and the collection of functions with the same orientation defines
the whole interface.

Virtual tables are used between Subversion layers as well as in the layers itself. For
example a distribution of backend's functions to several levels is implemented using virtual
tables.

4.5 Using A P R and memory pooling

Apache Portable Runtime library is used in every part of Subversion and a memory pooling
is the base of the whole A P R , so it was used every time when we needed to work with
dynamic memory. A good description of the purpose of memory pooling and why it is
better than native malloc function is described in [1]:

„A memory pool is an abstract representation of a chunk of memory allocated for use by
a program. Rather than requesting memory directly from the OS using the standard malloc()
and friends, programs that link against APR can simply request that a pool of memory be
created (using the apr_pool_create () function). APR will allocate a moderately sized
chunk of memory from the OS, and that memory will be instantly available for use by the
program. Any time the program needs some of the pool memory, it uses one of the APR pool
API functions, like apr_palloc (), which returns a generic memory location from the pool.
The program can keep requesting bits and pieces of memory from the pool, and APR will
keep granting the requests. Pools will automatically grow in size to accommodate programs
that request more memory than the original pool contained, until of course there is no more
memory available on the system."

55

,JVow, if this were the end of the pool story, it would hardly have merited special at­
tention. Fortunately, that's not the case. Pools can not only be created; they can also be
cleared and destroyed, using apr_pool_clear () and apr_pool_destroy O respectively. This
gives developers the flexibility to allocate several - or several thousand - things from the
pool, and then clean up all of that memory with a single function call! Further, pools have
hierarchy. You can make "subpools „ of any previously created pool. When you clear a pool,
all of its subpools are destroyed; if you destroy a pool, it and its subpools are destroyed."

Thus, a pointer to a pool structure is presented in most of functions in whole Subversion.
The good point is that we don't need to care about memory freeing so much, because every
server request is proceeded using its own pool instance, so it could be released at once in
the end of the proceeding.

There is only one problem when using memory pools in iterations, if we don't know
the number of iteration loops at the time of compilation. It is better to create a special
memory „inter-pool" object in each loop, the reason is described in [] and you can read
more about A P R itself in [23].

4.5.1 Apache SQL/Database Framework

Apache SQL/Database Framework (DBD) is incorporated in Apache A P R (since version
1.2). It is used for work with M y S Q L database and it enables a database to applications
efficiently. It offers dynamic connection pooling for scalable applications, persistent con­
nection or database-independent framework with driver modules for different databases.
A P R D B D Drivers are currently available for M y S Q L and PostgreSQL. You can read more
about D B D in [24].

InnoDB was chosen as a M y S Q L engine because of transactions support. SQL transac­
tions are used every time when the database is modified. Checking the status of commit
operation result allows to control, if all changes proceeded without errors, so we don't need
any other checks.

Every error in the database is caught using a macro MYSQL_ERROR, which is similar to
SVN_ERR) and creates a standard Subversion error structure of it.

SQL queries are prepared dynamically, so there is always a threat of SQL injection.
Every SQL string argument is checked using apr_dbd_escape function and wrapped using
apostrophes. Work with binary values is a bit more complicated and using an escape
function is not good enough. There are special functions prepared for binary data in A P R
D B D , for example we have to use prepared statements with special modification for writing.

We also need to use a special apr_get.datum function to read a binary entry and then
use so-called bucket and bucket brigades structures, which are integrated in A P R utilities
library. Brigades are a kind of abstract data types, which can be used as hash maps, heap
structures or doubly-linked lists. More about Bucket Brigades could be found in public
A P I in [26].

4.6 Modifications of other parts of Subversion application

Only very little modifications had to be done outside the new backend layer, so we can
say the Subversion's layered design is very good. Some modifications were made in a
backend access layer, where all backends are initialized, and some changes had to be done
in svnadmin routine. The standard command to creation of a new repository looks as
follows:

56

svnadmin create repos-bdb —fs-type=bdbj-

If we want to use M y S Q L backend, we need to specify the connection parameters, such
as server name, login, password and a database name. A l l of this information is given to
the svnadmin routine while the repository is creating and it is kept in db subdirectory in
repository's directory, specifically in connection, inf file. So the whole command to create a
new M y S Q L repository looks as follows:

svn create repos-mysql —fs-type=mysql —sql-server=localhost

—sql-dbname=mydbname —sql-login=mylogin —sql-pass=mypass

Note: Besides the Subversion source some changes had to be done in autogen.sh routine,
that is used to prepare configuration setting used before make itself.

4.7 Difficulties during implementation

The biggest problem during implementation was debugging. Subversion is very complex
system composed of a client and a server, communicating using socket streams, while the
server use threads for processing requests. Even if the system has some developer modes I
couldn't use standard debugging techniques, such as gdb debugger, as much as I've planned.
I found better prints to standard output while processing a request, which is very primitive
way of debugging, but it brings me the best results.

Besides function names from a public A P I some SQL queries can be printed during
proceeding, when this feature is enabled. It was useful for debugging queries itself, as well
as the whole backend.

And as I've mentioned in 4.2, the implementation iterations were kept as small as
possible to better mistakes recognition.

4.8 Performance test against existing backends

The new M y S Q L backend was compared against existing backends B D B and FSFS, specif­
ically a speed of commit and checkout operations and a repository's size. Every operation
was tested three times to minimize some random computer delays. Results while using
many small files (every file had a couple of kilobytes) in one commit are in Figure 4.1.
Results when a little of large files (every file had a couple of megabytes) were committed
and then checkouted are in Figure 4.2.

Repository's size after committing some large files is in Figure 4.3. A l l tests' results are
interpreted in the last chapter 5.

Note: Tested on a computer with Intel Core2Duo T5550, 1.83GHz, 2GB RAM, HDD
Hitachi HTS542525K9SA00, 5400rpm, Ubuntu 9.10, Linux Kernel 2.6.31-21, MySQL 5.1.

57

• FSFS
• BDB
• MySQL

2 6 2.6 2V-.

u i r i
Commit #1 Commit #2 Commit #3 Checkout #1 Checkout #2 Checkout #3

Figure 4.1: M y S Q L backend comparison; small files [s]

11

ll i l l

7 6 • FSFS
|—I ID BDB

• MySQL

Commit #1 Commit#2 C o m m i t s Checkout*! Checkouts Checkout #3

Figure 4.2: M y S Q L backend comparison; large files [s]

FSFS BDB MySQL

Figure 4.3: M y S Q L backend comparison; repository size [MB]

58

Chapter 5

Conclusion

Performance tests from the previous chapter are interpreted in section 5.1 and reliability
of the new backend is discussed in section 5.2. Some plans for future work are advised and
benefits of this work are mentioned in the last section too.

5.1 Performance conclusion

As we can see, the M y S Q L backend is slower than both existing backends in all operations,
but it could have been expected. It is probably caused by many SQL queries that are slowed
down by a connection between application and database.

We can reduce the number of SQL queries by using a special cache in the application, but
the memory requirements will be a bit larger. If we used a smart cache limit, it could bring
some performance improvement. The other way how to decrease the number of queries to
a database is to enlarge a chunk size transmitted in one query (a chunk is one block of data
read in one query).

If this backend would be used for management of large data in many thousand of
revisions, tables will have several million of rows. Thus, table indexes will be very important,
as well as an optimalization of tables from time to time. Index search speed could be
increased by using distributed server design, where indexes could be stored on a separate
server.

MySQL backend has better results only in case of repository's size in comparison to other
existing backends. The size of the M y S Q L database is smaller than the B D B database, but
it is larger than FSFS repository at the same time.

5.2 Reliability and plans for future work

The M y S Q L backend is not completely reliable at present and it crashes with unknown
cause from time to time, concretely if delta design is chosen to store data. Also not all
functions are implemented yet, so the following work should be aimed to increase the
reliability, stable implementation and functionality improvement. The performance cannot
be improved until the previous is done.

The whole result will be presented to Apache Subversion contributor's team and the
possible continuation of work will be considered. A new development branch wasn't created
in Subversion repository, in spite of planning to do so, because the community is in the
middle of moving from Tigris.org to Apache Software Foundation and the development

59

http://Tigris.org

stagnates a bit. Another complication was an Individual Contributor License Agreement,
which has to be signed before any contributor involves in the project and there were not
enough time to handle all these details.

I hope this work will be worth enough, even if the SQL backend wouldn't be included in
Subversion official release at all. Some notice-able tests and analyses were done during the
designing. As a result, I believe that some of topics (e.g. D A G structures in SQL databases
in section 3.5, M y S Q L index performance test in section 3.7, etc.) can be used in many
other applications, not only in Subversion.

60

Bibliography

[1] Brian W. Fitzpatrick C. Michael Pilato, Ben Collins-Sussman. Version Control with
Subversion. O'Reilly Media, Inc., 2008. ISBN 978-0-596-51033-6.

[2] Joe Celko. Hierarchical sql [online].
http://onlamp.com/pub/a/onlamp/2004/08/05/hierarchical_sql. html,

2010-05-16.

[3] Scott Chacon. Git project homepage [online], http://git-scm.com/, 2010-05-16.

[4] CollabNet.net. Tigris.org homepage [online], http://www.tigris.org, 2010-05-16.

[5] Compaq. Vesta project homepage [online], http://www.vestasys.org/, 2010-05-16.

[6] Software Freedom Conservancy. Dare project homepage [online].
http://darcs.net/, 2010-05-16.

[7] Subversion contributors. Apr pool usage conventions [online].
http://subversion.apache.org/docs/community-guide/conventions.html,

2010-05-16.

[8] Subversion contributors. Hacker's guide [online].
http://svn.apache.org/repos/asf/subversion/tags/1.3.0-rc3/

www/hacking.html, 2010-05-16.

[9] Subversion contributors. Structure of bdb backend [online].
http://svn.apache.org/repos/asf/subversion/trunk/subversion/

libsvn_f s_base/notes/structure, 2010-05-16.

[10] Subversion contributors. Structure of fsfs backend [online].
http://svn.apache.org/repos/asf/subversion/trunk/subversion/

libsvn_f s_fs/structure, 2010-05-16.

[11] Subversion contributors. Subversion design [online].
http://svn.apache.org/repos/asf/subversion/trunk/notes/

subversion-design.html, 2010-05-16.

[12] Subversion contributors. Subversion faq [online].
http://subversion.apache.org/faq.html, 2010-05-16.

[13] CollabNet Corporation. Collab.net [online], http://www.collab.net, 2010-05-16.

[14] Schneider Robert D. MySQL - Oficiální průvodce tvorbou, správou a laděním
databází. Grada Publishing, a.s., 2006. ISBN 80-2471-516-3.

61

http://onlamp.com/pub/a/onlamp/2004/08/05/hierarchical_sql
http://git-scm.com/
http://CollabNet.net
http://Tigris.org
http://www.tigris.org
http://www.vestasys.org/
http://darcs.net/
http://subversion.apache.org/docs/community-guide/conventions.html
http://svn.apache.org/repos/asf/subversion/tags/1.3.0-rc3/
http://svn.apache.org/repos/asf/subversion/trunk/subversion/
http://svn.apache.org/repos/asf/subversion/trunk/subversion/
http://svn.apache.org/repos/asf/subversion/trunk/notes/
http://subversion.apache.org/faq.html
http://Collab.net
http://www.collab.net

[15] A d i Malinaru Daniel Aioanei. General trees persisted in relational databases [online],
http: //www. codeproject. com/KB/database/persisting_trees.aspx, 2010-05-16.

[16] Dhananjay. Effective way to expand data tree in sql server [online],
http://dgoyani.blogspot.com/2005/09/

effective-way-to-expand-data-tree-in.html, 2010-05-16.

[17] Kemal Erdogan. A model to represent directed acyclic graphs (dag) on sql databases
[online].
http: //www. codeproject. com/KB/database/Modeling_DAGs_on_SQL_DBs.aspx,

2010-05-16.

[18] Shlomi Fish. Available cvs alternatives [online].
http://better-scm.berlios.de/alternatives/, 2010-05-16.

[19] Dennis W. Forbes. Versatile high performance hierarchies in sql server [online],
http://www.yafla.com/papers/sqlhierarchies/sqlhierarchies.htm,

2010-05-16.

[20] Apache Software Foundation. Subversion mailing list [online].
http://subversion.apache.org/mailing-lists.html, 2010-05-16.

[21] Oracle Education Foundation. Berkeley db architecture [online].
http://oukc.oracle.com/static05/opn/oracle9i_database/34313/

050306_34313/index.htm, 2010-05-16.

[22] Oracle Education Foundation. Oracle berkeley db products [online].
http://www.oracle.com/technology/products/berkeley-db/index.html,

2010-05-16.

[23] The Apache Software Foundation. Apache portable runtime project [online].
http://apr.apache.org, 2010-05-16.

[24] The Apache Software Foundation. Apache sql/database framework homepage
[online], http://apache.webthing.com/database/, 2010-05-16.

[25] The Apache Software Foundation. Apache.org homepage [online].
http://apache.org, 2010-05-16.

[26] The Apache Software Foundation. Bucket brigades api [online],
http://apr.apache.org/docs/apr-util/0.9/

group__APR__Util__Bucket__Brigades.html, 2010-05-16.

[27] Inc. Free Software Foundation. Arch project homepage [online],
http://www.gnu.org/software/gnu-arch/, 2010-05-16.

[28] Inc. Free Software Foundation. Cvs project homepage [online],
http://www.nongnu.org/cvs/, 2010-05-16.

[29] Martin Furter. More repositories in one database [online].
http://svn.haxx.se/dev/archive-2010-04/0374.shtml, 2010-05-16.

[30] Paul Holden. Severe performance issues with large directories [online],
http://svn.haxx.se/dev/archive-2010-04/0180.shtml, 2010-05-16.

62

http://dgoyani.blogspot.com/2005/09/
http://better-scm.berlios.de/alternatives/
http://www.yafla.com/papers/sqlhierarchies/sqlhierarchies.htm
http://subversion.apache.org/mailing-lists.html
http://oukc.oracle.com/static05/opn/oracle9i_database/34313/
http://www.oracle.com/technology/products/berkeley-db/index.html
http://apr.apache.org
http://apache.webthing.com/database/
http://Apache.org
http://apache.org
http://apr.apache.org/docs/apr-util/0.9/
http://www.gnu.org/software/gnu-arch/
http://www.nongnu.org/cvs/
http://svn.haxx.se/dev/archive-2010-04/0374.shtml
http://svn.haxx.se/dev/archive-2010-04/0180.shtml

[31] Edmund Horner. A quick and dirty mysql backend [online].
http://homepages.paradise.net.nz/ ejrh/subversion/mysql/, 2010-05-16.

[32] Eugene Lepekhin. Trees in sql databases [online].
http://www.codeproject.com/KB/database/Trees_in_SQL_databases.aspx,

2010-05-16.

[33] Canonical L td . Bazaar project homepage [online],
http://bazaar.canonical.com/en/, 2010-05-16.

[34] PureCM.com Ltd . Purecm homepage [online], http://www.purecm.com, 2010-05-16.

[35] Subversion mailing list. Subversion newbie thoughts [online].
http://svn.haxx.se/users/archive-2005-07/0862.shtml, 2010-05-16.

[36] Philipp Marek. Another performance issues with large directories [online],
http://svn.haxx.se/dev/archive-2010-04/0259.shtml, 2010-05-16.

[37] Philipp Marek. Storing content data [online].
http://svn.haxx.se/dev/archive-2010-04/0002.shtml, 2010-05-16.

[38] Peter Miller. Aegis project homepage [online], http://aegis.sourceforge.net,

2010-05-16.

[39] MIT . How fsfs is better [online], http://web.mit.edu/ghudson/info/fsfs,
2010-05-16.

[40] Graydon Hoare Nathaniel Smith. Monotone project homepage [online],
http://www.monotone.ca/, 2010-05-16.

[41] Jesper Noehr. Mercurial project homepage [online],
http://mercurial.selenic.com/, 2010-05-16.

[42] Oracle. A comparison of oracle berkeley db and relational database management
systems [online].
http://www.oracle.com/database/docs/Berkeley-DB-v-Relational.pdf,

2010-05-16.

[43] Perforce. Perforce project homepage [online], http://www.perforce.com,
2010-05-16.

[44] Greg Stein. Transactions properties table [online].
http://svn.haxx.se/dev/archive-2010-04/0022.shtml, 2010-05-16.

[45] Pavel Szalbot. Stromy v sql [online].
http://www.abclinuxu.cz/clanky/navody/stromy-v-sql, 2010-05-16.

[46] Tigris.org. Subversion documentation [online].
http://svn.collab.net/svn-doxygen/, 2010-05-16.

[47] Ventanazul. Why i decided to use fsfs over berkeley db with subversion [online],
http://www.ventanazul.com/webzine/articles/

subversion-changing-from-bdb-to-fsfs, 2010-05-16.

63

http://homepages.paradise.net.nz/
http://www.codeproject.com/KB/database/Trees_in_SQL_databases.aspx
http://bazaar.canonical.com/en/
http://PureCM.com
http://www.purecm.com
http://svn.haxx.se/users/archive-2005-07/0862.shtml
http://svn.haxx.se/dev/archive-2010-04/0259.shtml
http://svn.haxx.se/dev/archive-2010-04/0002.shtml
http://aegis.sourceforge.net
http://web.mit.edu/ghudson/info/fsfs
http://www.monotone.ca/
http://mercurial.selenic.com/
http://www.oracle.com/database/docs/Berkeley-DB-v-Relational.pdf
http://www.perforce.com
http://svn.haxx.se/dev/archive-2010-04/0022.shtml
http://www.abclinuxu.cz/clanky/navody/stromy-v-sql
http://Tigris.org
http://svn.collab.net/svn-doxygen/
http://www.ventanazul.com/webzine/articles/

[48] Rob Volk. More trees and hierarchies in sql [online].
http://www.sqlteam.com/article/more-trees-hierarchies-in-sql, 2010-05-16.

[49] David A . Wheeler. Comments on open source software [online],
http://www.dwheeler.com/essays/scm.html, 2010-05-16.

64

http://www.sqlteam.com/article/more-trees-hierarchies-in-sql
http://www.dwheeler.com/essays/scm.html

Appendix A

Public Functions frequencies per
various operations

Functions from the public backend interface were traced to get the frequencies of their
calling inside various operations. Count of calling of each of the functions are in the table
A . l . Operations are specified a bit in the legend.

Legend:

• ere: creation of a repository

• coe: checkout of an empty repository

• caf: commit after a file was added

• cad: commit after a directory added

• upf: update of the repository with a file and a directory

• ccf: commit after a file was changed

• cdf: commit after a file was deleted

65

Operations (see legend above)
Function name ere coe caf cad upf ccf cdf total
mysql_apply_text 0
mysql_apply_textdelta 1 1 2
mysql_bdb_logfiles 0
mysql_bdb_pack 0
mysql_bdb_recover 0
mysql_bdb_set _err call 0
mysqLclosest .copy 0
mysqLcontentS-changed 0
mysqLcopied-from 0
mysqLcopy 0
mysqLcreate 0
mysql_delete_fs 0
mysql_delete_node 1 1
mysql_dir .entries 2 1 2 2 1 1 9
mysql_file_contents 0
mysql_file_checksum 1 1 2
mysql_file_length 0
mysql_get_description 0
mysql_get_file_delta_stream 0
mysql_get_mergeinfo 2 1 1 1 1 1 7
mysql_history_location 0
mysql_history_prev 0
mysqLhotcopy 0
mysql_change_node_prop 0
mysql_check_path 3 4 1 8
mysql_make_dir 1 1
mysql_make_file 1 1
mysqLmerge 0
mysql_node_created_path 0
mysql_node_created_rev 1 1 1 1 4
mysql_node_history 0
mysql_node_id 5 1 1 8 1 2 18
mysql_node_origin_rev 0
mysql_node_prop 0
mysql_node_proplist 0
mysql_open 2 1 1 1 1 1 7
mysql_open_for .recovery 0
mysql_paths_changed 0
mysql_props_changed 1 1 2
mysql_revision_link 0
mysqLupgrade 0

Table A . l : Functions frequencies in various operations (part 1)

66

Operations (see legend above)
Function name cre coe caf cad upf ccf cdf total
svn_fs mysql_version 3 4 2 2 2 2 2 17
svn_fs_mysql__abort_txn 0
svn Js_mysql__begin_obliteration_txn 0
svn_fs_mysql begin_txn 1 1 1 1 4
svn_fs_mysql__commit_obliteration_txn 0
svn_fs_mysql commit.txn 1 1 1 1 4
svn_fs_mysql__deltify 1 1 1 1 4
svn_fs_mysql__generateJock_token 0
svn_fs_mysql__get_lock 0
svn_fs_mysql__get_locks 0
svn_fs_mysql get_uuid 5 2 2 3 2 2 16
svn Js_mysql__change_rev_prop 0
svn_fs_mysql change_txn_prop 2 2 2 2 8
svn_fs_mysql change_txn_props 1 1 1 1 4
svn_fs_mysql id_compare 2 2
svn_fs_mysql__id_parse 3 7 65 69 24 98 87 353
svn_fs_mysql id_unparse 6 14 69 62 20 84 63 318
svn_fs_mysql__list_transactions 0
svn_fs_mysql__lock 0
svn_fs_mysql__open_txn 0
svn_fs_mysql__purge_txn 0
svn_fs_mysql revision_prop 2 2 2 2 8
svn_fs_mysql revision_proplist 1 1 2
svn_fs_mysql revision_root 5 3 3 5 3 3 22
svn_fs_mysql__set_uuid 0
svn_fs_mysql__txn_prop 0
svn_fs_mysql__txn_proplist 0
svn_fs_mysql txn_root 1 1 1 1 4
svn_fs_mysql__unlock 0
svn_fs_mysql youngest _rev 2 2 2 1 2 2 11

Table A.2: Functions frequencies in various operations (part 2)

67

