
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

QUANTUM AND POST-QUANTUM CRYPTOGRAPHY
KVANTOVÁ A POSTKVANTOVÁ KRYPTOGRAFIE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Andrej Krivulčík

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Jan Hajný, Ph.D.

BRNO 2022

Date of project
specification:

7.2.2022
Deadline for
submission:

 24.5.2022

Supervisor: doc. Ing. Jan Hajný, Ph.D.

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Master's Thesis
Master's study program Information Security

Department of Telecommunications
Student: Bc. Andrej Krivulčík ID: 203414
Year of
study:

 2 Academic year: 2021/22

TITLE OF THESIS:

Quantum and Post-quantum Cryptography

INSTRUCTION:

The topic is focused on the analysis of existing technologies for quantum and post-quantum key establishment
and their combination. In the thesis, student will select suitable solutions and will propose the method for their
combination. The system will be implemented as a demonstrator for the key establishment on the Linux platform.
The main result of the thesis will be realized as a software demonstrator with postquantum libraries and HTTPS
communication interface allowing downloading a key from the lab infrastructure. Demonstrator will use the hybrid
key for AES 256 data encryption and will transfer the encrypted data over the network.

RECOMMENDED LITERATURE:

[1] NIST. Post-Quantum Cryptography PQC: Round 3 Submissions. [cit. 2021-09-09]. Dostupné z:
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[2] ETSI. ETSI GS QKD 014 V1.1.1 (2019-02): Quantum Key Distribution (QKD): Protocol and data format of
REST-based key delivery API. [cit. 2021-09-09]. Dostupné z:
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_QKD014v010101p.pdf

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
With advances in quantum computing comes the threat of breaking the algorithms
that are used in everyday communication. With this, an industry of post-quantum
cryptography has emerged that develops algorithms resistant to quantum computers.
The aim of this thesis is to study methods for combining and using keys established by
quantum and post-quantum algorithms in such a way that if one of the given algorithms
is broken the resulting hybrid key will still be secure. The resulting key is then used in
encrypting the file using AES–256 which is sent between clients.

KEYWORDS
Key combination, Hybrid key, Key derivation, QKD, KEM, PQC, HTTPS, Python, NIST,
AES, KMAC

ABSTRAKT
S pokrokom v rozvoji kvantových počítačov prichádza hrozba prelomenia algoritmov
ktoré sa používajú pri bežnej komunikácii. S týmto vzniklo odvetvie pre post-kvantovú
kryptografiu ktoré vyvíja algoritmy odolné voči kvantovým počítačom. Cieľom tejto dip-
lomovej práce naštudovanie metód pre kombináciu a využitie kľúčov ustanovených po-
mocou kvantových a post-kvantových algoritmov takým spôsobom, keby pri došlo k
prelomeniu jedného z daných algoritmov tak výsledný hybridný klúč bude stále bez-
pečný. Výsledný klúč je následne využitý pri šifrovaní súboru pomocou AES–256 ktorý je
zaslaný medzi klientami.

KĽÚČOVÉ SLOVÁ
Kombinácia kľúčov, Hybridný kľúč, Derivácia kľúčov, QKD, KEM, PQC, HTTPS, Pyt-
hon, NIST, AES, KMAC

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍRENÝ ABSTRAKT
Teoretická časť práce predstavuje kvantovú kryptografiu, jej kvantovú distribúciu
kľúčov (QKD) a jeden z najpopulárnejších protokolov BB84 a koherentný jednos-
merný protokol (COW). Postkvantová kryptografia predstavuje jej rôzne prístupy,
kryptografiu založenú na mriežkach a problémy na nich, kryptografiu založenú na
hashovacích funkciach a kryptografiu založenú na opravných kódoch. Organizácia
NIST založila súťaž pri snahe o štandardizáciu post–kvantových algoritmov. Ak-
tuálne táto sútaž je v treťom a zároveň finálnom kole. Protokoly sú podrobne
opísané v ich príslušných kapitolách. Sú to dlhoročné protokoly, ako napríklad
McEliece, alebo nové protokoly, ako napríklad NTRU alebo SABER. Každý algo-
ritmus je založený na ich príslušných postkvantových problémoch, čím si navzájom
dobre konkurujú.

Hlavným cieľom tejto práce je kombinácia dvoch kľúčov, kvantového a postk-
vantového, a ich bezpečné spojenie do jedného kľúča tak, aby v prípade oslabenia
alebo prelomenia jedného z protokolov, druhý protokol udržal kľúč bezpečným až
do momentu, kedy by bolo možné vykonať protiopatrenia.

Prvou z možných kombinácii a vytvorení hybridného kľúču je funkcia XOR.
Funkcia XOR, zvaná aj ako perfektná šifra, sa na prvý pohľad javí ako implemen-
tačne jednoduchá funkcia, ktorá bude vo výsledku bezpečná. Ale opak je pravdou.
Funkcia XOR má jednu veľmi podstatnú vlastnosť, a tou je reverznosť. Pri použití
2 kľúčov, A a B, funcia vráti kľúč C. Ale pri opätovnom použití kľúču C a jedného
z kľúčov, napríklad A, funkcia vráti kľúč B. Táto vlastnosť je vo fundamentálnom
rozpore s ideou tejto práce a preto je táto funkcia veľmi nedoporučovaná.

Hashovacie funkcie, na rozdiel of funkcie XOR, sú jednostranné. To znamená,
že pri správne navrhnutej hashovacej funkcí nie je možné z výstupu zistit vstup.
V dnešnej dobe sú hashovacie funkcie optimalizované na takej úrovni, kde výpočty
trvajú iba niekoľko milisekúnd. Avšak je podstatné používať dodatočné parametre
ako soľ, ktorá ešte viac znáhodní výsledný hash. Aj pri vlastnostiach ako sú odolnosť
voči kolíziam, je hash funkcia, konkrétne rodina hash funkcii SHA–2 a SHA–3, stále
veľmi obľúbená a používaná funkcia. Jedinou nevýhodou statická dĺžka výstupu.

Metódy kombinácie pomocou odvodzovania kľúču sú najviac pokročilé metódy a
to z dôvodu, že kombinujú dobré vlastnosti hash funkcii s dodatočnou bezpečnostou
a to aj v prípade kedy funkcie ako Extract–and–Expand Key Derivation Function
(HKDF) a KECCAK Message Authentication Code (KMAC) sú pomalšie. Tieto
funkcie umožňujú flexibilnú dĺžku výstupného kľúču.

Implementácia už spomínanej kombinácie dvoch kľúčov je písaná v programova-
com jazyku Python. Simulácia klientov bola zriadená v internej sieti na Vysokom
učení technickom v Brne (VUT). Klienti boli virtualizovaní v internom laboratóriu.
Knižnica PQcrypto sa použila na dohodnutie postkvantového kľúča, pričom kvan-

tový kľúč bol stiahnutý z QKD serverou pomocou rozhrania HTTPS. Tento kľúč sa
vyjednával prostredníctvom kvantového kanála s opísanými vlastnosťami. Výsledný
skript kombinuje kľúče tromi rôznymi metódami, ktorými sú neodporúčaná funkcia
XOR, ktorá je veľmi náchyná na útok pomocou kryptoanalýzi, kombinácia pomo-
cou hash funkcie SHA–2 alebo SHA–3, alebo použitie pokročilej metódy na odvo-
denie kľúča KMAC. Metóda na odvodtovanie kľúču KMAC je najbezpečnejšia ale
aj zároveň najpomalšia. Okrem samotnej kombinácie sa tajný súbor zašifruje hy-
bridným kľúčom. Súbor, ktorý si užívateľ vyberie, je zašifrovaný výsledným hybrid-
ným kľúčom pomocou symetrickej šifry AES–256 v móde Galois/Counter (GCM)
a odošlaný prostredníctvom TCP spojenia druhému klientovi, ktorý tento súbor
dešifruje im vytvoreným hybridný kľúčom a uloží. Výstupná konzolová apliká-
cia je bez grafického používateľského rozhrania, ktorú možno spustiť s rôznymi
počiatočnými riadiacimi argumentmi. Pripojená je aj používateľská príručka na
jednoduchšiu navigáciu a spustenie uvedeného demonštrátora.

KRIVULČÍK, Andrej. Quantum and Post-quantum Cryptography. Brno: Brno Univer-
sity of Technology, Fakulta elektrotechniky a komunikačních technologií, Ústav teleko-
munikací, 2022, 61 p. Master’s Thesis. Advised by doc. Ing. Jan Hajný, Ph.D.

Author’s Declaration

Author: Bc. Andrej Krivulčík

Author’s ID: 203414

Paper type: Master’s Thesis

Academic year: 2021/22

Topic: Quantum and Post-quantum Cryptogra-
phy

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank the supervisor of my master thesis doc. Ing. Ján Hajný, Ph.D. for
his professional guidance, consultation, patience and suggestions for this work. I would
also like to thank Dr. Alex Bryne for his mentoring and Luke Joyce for his moral support.

Contents

Introduction 14

1 Quantum cryptography 15
1.1 Quantum computing . 15
1.2 Quantum key distribution . 16

1.2.1 BB84 protocol . 16
1.2.2 Coherent One–Way Protocol 17

2 Post–quantum cryptography 19
2.1 Lattice–based cryptography . 19

2.1.1 Shortest Vector problem . 20
2.1.2 Closest Vector problem . 20

2.2 Multivariate cryptography . 21
2.3 Hash–based cryptography . 21
2.4 Code-based cryptography . 21

3 NIST standardisation 23
3.1 McEliece . 23

3.1.1 Key generation . 23
3.1.2 Key encapsulation . 24
3.1.3 Key decapsulation . 24

3.2 Crystals–Kyber . 24
3.2.1 Key generation . 25
3.2.2 Key encapsulation . 25
3.2.3 Key decapsulation . 26

3.3 NTRU . 26
3.4 SABER . 28

4 Key combination 30
4.1 Xor based combination . 30
4.2 Hash based combination . 31
4.3 Key derivation function . 33

4.3.1 Extract–and–Expand Key Derivation Function (HKDF) 34
4.3.2 KECCAK Message Authentication Code (KMAC) 36

5 Implementation 37
5.1 Testing environment and topology . 37
5.2 Development . 39

5.2.1 XOR-based combination . 46
5.2.2 Hash-based combination . 47
5.2.3 Key derivation . 48
5.2.4 Key utilisation . 48

Conclusion 51

Bibliography 52

Symbols and abbreviations 55

List of appendices 57

A User manual 58
A.1 Topology . 58
A.2 Dependencies . 58
A.3 Script . 59
A.4 Example . 59

List of Figures
1.1 Coherent one–way protocol . 18
2.1 Shortest Vector problem on 2–dimensional lattice 20
2.2 Closest vector problem on 2–dimensional lattice 21
5.1 Testing topology . 37
5.2 Photo of QKD servers . 38
5.3 Example of a communication . 44
5.4 Output of script for Alice . 45
A.1 Script output on Alices side . 60
A.2 Script output on Bobs side . 61

List of Tables
1.1 Polarisation table example . 17
1.2 Example of BB84 key negotiation . 17
2.1 Security of algorithms against quantum computers by NIST 19
3.1 Recommended parameters for Crystals–Kyber 25
4.1 SHA algorithms, their release year, collision resistance, bit sized out-

put and design architecture . 33
5.1 Algorithms from library PQCrypto and their time needed 41
5.2 Algorithms from library PQCrypto and their key sizes 42
5.3 Time required for each hash algorithm according to given input (10 000

runs) . 48
5.4 Time required for KMAC to create an output (10 000 runs) 48

Listings
5.1 Argument parsing . 40
5.2 Example of generating, encrypting and decrypting derivated key . . . 41
5.3 Alice requesting key from QKD server 42
5.4 Bob requesting key from QKD server by key ID 43
5.5 Bash script for requesting key from QKDB 43
5.6 Code for initiating communication . 46
5.7 Code for initiating communication . 47
5.8 Example of usage of SHA hashing functions 47
5.9 Example of KMAC usage . 48
5.10 Example of encryption with AES . 50
5.11 Example of decryption with AES . 50

Introduction
One of the most fundamental mathematical problems that current cryptography
is based on is the factorisation of two prime numbers and the discreet logarithm
problem. Protocols like Diffie–Hellman key exchange (DH) and Digital Signature
Algorithm (DSA) are bound on these mathematical problems. With progress in the
current computation era, the rise of quantum computers would make these protocols
obsolete and easily breakable. Thanks to the use of Shor’s algorithm which could
solve these mathematical problems in a polynomial time on a strong enough quantum
computer.

With this problem in mind, a new cryptography branch was created called post-
quantum cryptography (also called quantum-resistant cryptography). The main goal
is to create quantum-resistant protocols that would not be solvable in polynomial
time on quantum computers. Currently, there are 4 most popular categories of post-
quantum cryptography, Lattice–based, Multivariate, Hash–based and Code–based
cryptography. Each of these approaches solves the same problem by a different
approach.

NIST (National Institute for Standards and Technologies) initiated a competition
to evaluate possible candidates for standardisation in post-quantum cryptography.
Currently, it’s in the third round of submissions with algorithms such as McEliece,
Crystal-Kyber, NTRU and SABER for post-quantum secret key sharing.

Furthermore, a difference between possible key combinations is described, due to
the fact, that either quantum or post-quantum cryptography protocol can be broken
at any given time. This brings danger to communication as a whole. By combining
two established keys into one hybrid key, one for post–quantum cryptography and
one for quantum cryptography proper way, we should achieve a key strong enough
that, when one of the protocols is broken, the other can still hold the whole key
secure. This key combination should be irreversible without the knowledge of both
keys.

Main goal and thus practical implementation in chapter 5 will be described in
programming language Python. Two test clients are set in virtual environment
in internal BUT laboratory. Both clients are connected to quantum servers from
Swiss manufacturer ID Quantique. Both quantum and post–quantum keys will be
combined by all described methods and analysed. Output will be a functioning
demonstrator for creating said hybrid key.

14

1 Quantum cryptography
Over the past few years, a quantum era has been unfolding. With the development of
quantum computers, we will have access to an unprecedented amount of processing
and computational power. Unfortunately, this new degree of power creates new
problems to resolve. Most cryptography protocols that we are currently using could
be broken with the use of Shor’s algorithm, which could solve mathematical problems
tied to these protocols in polynomial time. The prime factorisation and discreet
algorithm problem, alongside its alternative on Elliptic curves, would be rendered
unsecure in an era of quantum computing.

1.1 Quantum computing
Modern computers use a unit of information known as a bit, which can be stored as
either logical 0 or 1. However, rather than using electrical charge on transistors to
represent logical bits, quantum computers use a quantum principle called quantum
superposition. In a quantum system, entities can have several quantum states.
Whenever the entity exists, it could have several quantum states at once, sometimes
all possible states. Only after the entity is observed can we determine its quantum
state. This phenomenon is a building block for quantum mechanics. Schrödinger’s
Cat is a popular thought experiment based on quantum superposition. By locking
a cat into a box and leaving it be, after some time, the same cat can have two
possible states. Either the cat is dead or alive. Quantum mechanics tells us that cat
has both states at once, that it is dead and alive at the same time. It is only when
we measure its state (opening the box and observing the cat) that we can determine
its current state [1].

For quantum computers, we use electrons as an entity and their spin as a state.
Electrons can spin two ways: up or down. So instead of assuming a logical 0 or 1, it
can possess a spectrum of values. By observing (measuring) the spin of an electron,
we force it to collapse into the state of either 0 or 1. The outcome of the measurement
is a probability vector, where the probability of one state is 100 % and the rest of
the states are 0 %. Therefore, with the use of a probability vector instead of regular
logical values, a quantum computer can parallelise these computations and offer a
huge increase in computational power [1].

The next significant property of quantum computers is quantum entanglement.
This is a phenomenon where two particles, in our case electrons, are entangled
together, thus one is influencing the other. It is a process that consists of generating
these two particles and subsequently entangling them together. After separating

15

them with a distance, they still influence each other. Conducting computations
with them is therefore significantly more effective [1].

1.2 Quantum key distribution
Quantum key distribution (QKD) is one of the key elements of quantum cryptogra-
phy. This process involves two sides negotiating and producing one identical secret
key that can be used to encrypt or decrypt messages. The advantage of quantum key
distribution is that throughout the negotiation, users can determine whether any
third party is trying to listen to this negotiation, thanks to fundamental property
described in section 1.1, that being the observation of particles. By introducing a
third party to the communication, they bring anomalies, disturbances, and errors
to measurement. Prior to negotiation, both parties determine a threshold anomaly
rate. When these detected anomalies are at their lowest, the key is declared to be
secure, otherwise, the protocol is aborted and would need to be recreated. When
the negotiation is finished, the quantum key can be used as a symmetric key for
encryption by protocols such as Advanced Encryption Standard (AES) [2].

1.2.1 BB84 protocol

Protocol BB84, named after its inventors Charles H. Bennett and Gilles Brassard,
was published in 1984 and primarily focused on photon polarisation as quantum
entities. In the modern era, optic fibre communication commonplace. Through
a quantum channel, two sides will communicate and exchange information. We
commonly refer to these two sides as Alice and Bob, where Eve is a third party
wanting to peek into the communication [3].

The protocol is designed with quantum indeterminacy in mind (see section 1.2).
those being quantum indeterminacy, which means without measuring the particles
you can’t determine their current state. However, measuring such particles forces
them to collapse into one of their final states.

The protocol starts with a base. This base refers to a polarised pair of entities
with a rectilinear basis, commonly referred to as + base, with either 0 or 90–degree
rotation, and a diagonal basis, commonly referred to as X base, with either 45
or 135–degree rotation. We can describe this communication in 5 steps, see also
table 1.2.1:

1. Alice generates a random n bits by a random number generator.
2. Alice randomly generates bases, either + or X.
3. Alice polarises photons according to negotiated polarisation table, see ta-

ble 1.2.1.

16

4. Bob randomly generates its receiving bases.
5. Bob measures received photons.
6. They both publicly discuss on which bases they matched.
7. Roughly 50 % of measured bits are lost in a process and shared key in estab-

lished.
Without any knowledge of Alice’s base, Bob can just guess any of his bases. When
bases do not match, Bob will measure the incorrect states. If Eve was eavesdrop-
ping, it would introduce errors to Bob’s measurement. This would make the key
insecure and it would be discarded. Even without any eavesdropping, the channel
can introduce errors to the measurement due to environment properties [3]. This
means that communication by long distance is not possible on its own. The network
needs to provide so–called repeaters. These devices repeat received photons. But
these devices are a significant security problem. If these devices got into hands of
an attacker, they could see every single communication going through them. With
modern symmetric ciphers needing at least a 256–bit long key to be secure, Alice
would need to generate at least 512 random bits [3].

Tab. 1.1: Polarisation table example

Base 0 1
X ↗ ↘
+ ↑ →

Tab. 1.2: Example of BB84 key negotiation

Alice’s random bit generation 0 1 1 0 1
Alice’s random base generation + + X + X
Alice polarisation ↑ → ↘ ↑ ↘
Bob’s random base generation + X X X +
Bob’s measurements ↑ ↗ ↘ ↗ →
Secret key 0 1

1.2.2 Coherent One–Way Protocol

Coherent One–Way Protocol (COW) was published in 2012 and is a key exchange
protocol over optical fibre cable. The transmission consists of two parties, gener-
ating states of logical 0 and 1 and generating decoy signals to confuse potentially
eavesdropping third parties. As the name suggests, it is based on coherent pulses
generated by Alice. Every bit of information is encoded into a pair of pulses. This

17

pair consists of either 𝜇 pulse, which represents a small amount of photons being
sent, or 0–pulse, which represents no photons being sent. By combining these two
states we can modulate a logical 1, shown in formula 1.1, as a pair of pulses con-
sisting of a 𝜇 pulse, followed by 0–pulse. For logical 0, shown in formula 1.2, the
pair order is reversed, which means modulating as pair 0–pulse followed by 𝜇 pulse.
Decoy, shown in formula 1.3, is modulated as a pair consisting of two 𝜇 pulses in
succession [4] [5].

Logical 1 : |0 > +|𝜇 > (1.1)

Logical 0 : |𝜇 > +|0 > (1.2)

Decoy : |𝜇 > +|𝜇 > (1.3)

On Bob’s end, he has a data–line detector 𝐷𝑚1, with which he detects incoming
pulses. To ensure security, Bob randomly measures coherence between two successive
𝜇 pulses by detector 𝐷𝑚2. This can happen either by measuring a decoy pulse or
two successive non–decoy pulses. Detector 𝐷𝑚2 will evaluate if wavelengths and
phases of received 𝜇 pulses are aligned. If they are aligned, we surely know, that no
interference was added throughout the transfer. If it detects any misalignment, a loss
of coherence is introduced, thus making the key insecure and the key is discarded
[4] [5].

Fig. 1.1: Coherent one–way protocol

The biggest advantage over polarisation protocols is easier a cheaper implemen-
tation over optical fibre channels without the need to add any repeaters along with
longer distances by making receivers passive optoelectronic components, all whilst
still maintaining a high transfer rate.

Experiments attempting a long–running key exchange from Geneva to Neuchatel
in Switzerland over the distance of 150 km for 10 hours could achieve a 2.5 kbps
real–time bit rate with an average error rate during 3 hours of 2.5 bps with a 43 dB
loss line by using superconductor components [6].

18

2 Post–quantum cryptography
Cryptography is an essential part of everyday modern-day communication, from dig-
ital signatures using RSA, to hash functions in the SHA algorithm. A lot of legacy
and new hardware uses some sort of cryptographic algorithm. They are based on
some sort of mathematical problem and fundamentally restructuring cryptography
would be an almost impossible task. The most common mathematical problems
are prime number factorisation and discrete logarithm problems. But with the
rise of quantum computing, future attacks with Shor’s algorithm could theoretically
solve these problems in polynomial time, thus putting commonly used cryptographic
algorithms at risk. Endangered algorithms are shown in table 2. It is predicted that
within the next twenty years, mankind could produce a quantum computer powerful
enough to break algorithms like DSA or RSA [7] [8]. This generates a significant op-
portunity for the relatively young research area of the post–quantum cryptographic
systems. Researchers are introducing mathematical operations with little to no
computational speed advantage on quantum computers.

Tab. 2.1: Security of algorithms against quantum computers by NIST

Algorithm Type Impact of quantum computer
AES Symmetric key encryption Larger keys (at least 512 bits)
SHA–2, SHA–3 Hash functions Bigger outputs required
Elliptic curves Signatures, key exchange No longer secure
DSA Signature, key exchange No longer secure
RSA Signature, key exchange No longer secure

Currently post–quantum cryptography research is separated into 6 different
branches [10]:

• Lattice–based cryptography.
• Multivariate cryptography.
• Hash–based cryptography.
• Code–based cryptography.
• Supersingular elliptic curve isogeny cryptography.
• Symmetric key quantum resistance.

2.1 Lattice–based cryptography
Lattice–based cryptography is based on a fundamental principle of a lattice, which
is a set of points in n dimensions with a periodic structure [8][9]. We could imagine

19

a two–dimensional lattice as a sheet of graph paper. Every square is a single point
in a finite lattice space.

Definition 2.1.1 A lattice 𝐿 ⊂ 𝑅𝑛 is the set of all integer linear combinations of
basis vectors 𝑏1, . . . , 𝑏𝑛 ∈ 𝑅𝑛, or 𝐿 = {∑︀

𝑎𝑖𝑏𝑖; 𝑎𝑖 ∈ 𝑍}.

Some of the most popular protocols are Crystals—Kyber, NTRU and SABER. The
main mathematical problems that are theorised to be unbreakable by quantum com-
puters are the Short Vector Problem (SVP) and Closest Vector Problem (CVP).

2.1.1 Shortest Vector problem

The shortest Vector problem is an optimisation on a lattice. When given base
B, consisting of 2 vectors 𝑎1 and 𝑎2, finding a non–zero vector with their linear
combination measuring 𝑁 . In other words, finding a non–zero vector such that:

𝑁(𝑣) = 𝜆(𝐿), (2.1)

where 𝜆 is Euclidian norm of said vector. It is believed that to be NP–hard problem,
with no solution so far.

Fig. 2.1: Shortest Vector problem on 2–dimensional lattice

2.1.2 Closest Vector problem

Similar to SVP, the Closest Vector problem is an optimisation problem on a lattice.
Given a base B, consisting of two vectors 𝑎1 and 𝑎2, and a target vector 𝑡 and finding
a linear combination of base vectors such as they will be closest to 𝑡. It’s believed
that CVP is an NP–hard problem.

20

Fig. 2.2: Closest vector problem on 2–dimensional lattice

2.2 Multivariate cryptography
Multivariate cryptography is asymmetric cryptography over multivariate polynomi-
als over a field 𝐹 . Solving multivariate polynomials is proven to be an NP–complete
problem. That is why they are considered a good candidate for post–quantum cryp-
tography, especially for signature schemes because of their shortest signature length
[10].

2.3 Hash–based cryptography
Hash—based cryptography is commonly used for digital signature schemes, compu-
tational proof of integrity, and more. Merkle’s signature scheme, using Merkle’s tree
is one of the examples of a one-time signature. A one—time signature is a type of
signature that can be used to sign only a single message. A combination of more
one–time key pairs is an advanced method of using key pairs a finite number of
times. By revealing parts of Merkle’s tree, it is possible to verify a given hash with
its corresponding input. Hash-based signatures rarely rely on used hash functions.
Cryptocurrencies are one of the real-world uses of hash-based cryptography [10].

2.4 Code-based cryptography
Code—based cryptography is a cryptography scheme that introduces errors to en-
crypted text in a manner that only a certain error correction codes could repair, thus
decrypting the whole message. The first and maybe the most popular code–based
encryption was presented by Robert J. McEliece in 1978. By introducing errors to
ciphertext, only the owner with the private key, in this case, a binary Goppa code
matrix, could correct those errors introduced by a public key. This scheme remains

21

unbroken even after more than thirty years of constant research, making it still se-
cure, but not particularly resource efficient. This protocol will be described in more
detail in section 3.1 [10].

22

3 NIST standardisation
NIST (the National Institute for Standards and Technologies), founded in 1901, is
a United States government body attempting to evaluate and standardise technolog-
ical and scientific projects for everyday life. Post–quantum cryptography is one of
the many projects that it is currently concerned with. They initiated a competition
in December 2016 to support post-quantum cryptography. There are two topics
in this competition. The first is Public–key Encryption and Key–establishment
Algorithms and the second is Digital Signature Algorithms. These submissions are
currently undergoing public review. This thesis will be focused on Round 3 Finalists
of Public–key Encryption and Key–establishment Algorithms [11].

3.1 McEliece
As already mentioned in section 2.4, McEliece is a code—based public-key cryp-
tosystem. McEliece is designed to be one-–way, meaning that it is impossible to
find plain text just from a ciphertext and a public key. The following process is
simplified. McEliece cryptosystem shares common security parameters [12]:

• n - Length of the Goppa code.
• k - Dimension of the Goppa code.
• t - Guaranteed error–correction capability.

3.1.1 Key generation

Alice’s first step is to choose a linear code 𝐶, which is an error–correction code
that she knows an effective algorithm to solve, thus making the code 𝐶 public. By
making the algorithm a secret, she effectively did not share any secret information,
because the parameters generating 𝐶 are required. For example, generating 𝐶 from
a polynomial is near–impossible to replicate, given a long enough polynomial. In
the case of McEliece, binary Goppa code is in place of 𝐶 A large number of official
parameter sets have been proposed. Every set has its advantages and disadvantages.
Generating is as follows [12]:

• Generating 𝐶 = (𝑛 × 𝑘), which is possible to correct 𝑡 errors. 𝐺 is a generator
for 𝐶.

• Compute 𝑆 = (𝑘 × 𝑘) random binary non–singular matrix, such as it’s easy to
compute 𝑆−1.

• Compute 𝑃 = (𝑛×𝑛) random permutation matrix, such as it’s easy to compute
𝑃 −1.

• Compute �̂� = 𝑆𝐺𝑃 ; �̂� ∈ 𝑍𝑘×𝑛.

23

Thus public key is defined by pair (�̂�, 𝑡) and private key by pair (𝑆, 𝑃).

3.1.2 Key encapsulation

The only assumption is that 𝑚 is a length of 𝑘. Afterwards Bob does:
• Compute 𝑚′ = 𝑚�̂�.
• Generating 𝑛–bit vector 𝑧 with 𝑡 ones (errors).
• Compute 𝑐 = 𝑐′ + 𝑧.

Bob sends 𝑐 to Alice.

3.1.3 Key decapsulation

After receiving cipher-text 𝑐, Alice does the following:
• Compute 𝑐 = 𝑐𝑃 −1.
• Alice uses decoding algorithm 𝑓 to decode �̂� = 𝑓(𝑐).
• Compute 𝑚 = �̂�𝑆−1.

One of the biggest limitations is the size of the public key in the scale of megabytes
and key generation is compared to other algorithms much slower. To make each
public key efficient, one side should use a generated public key long enough to offset
the costs of generating another. On the other hand, encryption and decryption
on hardware accelerators are proven to be efficient. The biggest advantage of the
McEliece cryptosystem is its ciphertext size, just under 256 bytes, which is perfect
for network transport, due to the fact that the whole ciphertext can be fit into one
packet [12].

3.2 Crystals–Kyber
Protocol Crystals-–Kyber is a protocol from a family of crystals which are cryp-
tographic primitives on lattices. Crystals-–Kyber is focused on key encapsulation
mechanisms (KEM), while Crystals-Dilithium focuses on digital signature. Both
protocols are finalists in NIST’s post-quantum cryptography competition. Crys-
tal–Kyber is based on a Learning–with–errors problem (LWE) with an alteration on
using Ring-LWE instead of Module–LWE, as per most encryption schemes. The pro-
tocol itself can work in two modes. CCPAKE is a private key encryption. CCAKEM
is a CCPAKE extension KEM scheme based on similar functionalities as CCPAKE.
Further, only CCAKEM will be described [13].

Firstly, parameters required for Crystals–Kyber are:
• 𝑛 - bit size of the encapsulated key (recommended 256, could be used smaller

but it will introduce lower noise levels, this reducing overall security).

24

• 𝑘 - fixed lattice dimensions.
• 𝑞 - small prime number satisfying 𝑛 | (𝑞 − 1) to enable fast NTT–based multi-

plication, there are documented two known primes, where this equation holds,
those being 257 and 769, but they are not recommended due to high enough
probability failure, thus recommended value is 3329.

• 𝜂1, 𝜂2 - defining noise levels while encrypting.
• 𝑑𝑣, 𝑑𝑢 - security parameters.

With parameters described above, failure probability of < 2−139 is achieved for
KYBER512. Other parameters are described in table 3.2.

Tab. 3.1: Recommended parameters for Crystals–Kyber

Protocol 𝑛 𝑘 𝑞 𝜂1 𝜂2 (𝑑𝑢, 𝑑𝑣) Failure probability
KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 329 2 2 (10,4) 2−164

KYBER1024 256 4 329 2 2 (11,5) 2−174

3.2.1 Key generation

Key generation function named CPAPKE.KeyGen() produces a private and secret
key, via this process:

• A seed 𝑝 = {0, 1}𝑛 ; 𝑛 = 256 is generated and publicly announced .
• Matrix 𝐴 = 𝑀𝑘×𝑘 is generated by seed and Shake–128 hash function in NTT

domain.
• Secret coefficient 𝑠 and and error 𝑒 are generated by centred binomial distri-

bution (CBD).
• Through NTT we get 𝑠 = 𝑁𝑇𝑇 (𝑠) and 𝑒 = 𝑁𝑇𝑇 (𝑒).
• Thus its possible to compute private key pk = 𝐴𝑠 + 𝑒 and making secret key

sk = 𝑠.
The result of this operation is a key–pair of private and secret key [13].

3.2.2 Key encapsulation

By using keys from section 3.2.1, we may proceed to key encapsulation, which in-
volves negotiating common secret keys on both sides. Pk and Sk was well as pre-
viously established common parameters. For simplification, let us assume that one
side, Alice, wants to establish a common secret key with the other side, Bob [13].

• Alice, through a RNG or PRNG generator generates a 32–bit value 𝑚 (gener-
ator and its initial parameters should be kept in secret).

25

• Alice uses SHA–3–256 to hash 𝑚.
• (�̄�, 𝑟) = 𝐺(𝑚, 𝐻(𝑝𝑘)), where 𝐻 is SHA–3–256 and 𝐺 is SHA–3–512 and 𝑟 is

called random coins.
• Values (𝑝𝑘, 𝑚, 𝑟) are send to Bob.
• Bob, again, generates 𝐴 ∈ 𝑅𝑘×𝑘

𝑞 in NTT.
• Bob by centred binomial distribution samples 𝑟, 𝑒1, 𝑒2.
• Bob compute 𝑢 = 𝑁𝑇𝑇 −1(𝐴𝑡 ∘ 𝑟 + 𝑒1).
• Bob compute 𝑣 = 𝑁𝑇𝑇 −1(𝑡𝑇 ∘ 𝑟) + 𝑒2 + 𝐷𝑒𝑐𝑜𝑚𝑝(𝑚)), where 𝐷𝑒𝑐𝑜𝑚𝑝 is a de-

compression function.
• 𝑐 = 𝐶𝑜𝑚𝑝𝑞(𝑢, 𝑑𝑢), 𝐶𝑜𝑚𝑝𝑞(𝑣, 𝑑𝑣), where 𝐶𝑜𝑚𝑝 is a compress function.
• Bob encrypts 𝑐 with Alices 𝑝𝑘 and sends it to Alice.

3.2.3 Key decapsulation

After encapsulating the key, both sides have their respective ciphertexts 𝑐 and their
secret keys 𝑆𝑘, thus making it possible to decapsulate the ciphertext (shared key)
by steps. Both sides do the following:

1. 𝑢 = 𝐷𝑒𝑐𝑜𝑚𝑝𝑞(𝑐, 𝑑𝑣),
2. 𝑣 = 𝐷𝑒𝑐𝑜𝑚𝑝𝑞(𝑐 + 𝑑𝑢 · 𝑘 · 𝑛

8 , 𝑑𝑣),
3. 𝑚′ = 𝐶𝑜𝑚𝑝𝑞(𝑣 − 𝑠𝑇 · 𝑢, 1)),
4. (�̄� ′, 𝑟′) = 𝐺(𝑚′, 𝑆𝑘),
5. Both sides tries encapsulation process one more time from section 3.2.2, but

without sending the resulting 𝑐, naming it 𝑐′,
6. If 𝑐 = 𝑐′, then we can compute the final key 𝐾 = KDF(�̄� ′, 𝐻(𝑐)), where KDF

represents SHAKE–256 and 𝐻 represents SHA–3–256,
7. If 𝑐 ̸= 𝑐′, the process should be repeated from the start due to errors.

In the end the common secret key 𝐾 is established and available for symmetric
encryption [13].

3.3 NTRU
NTRU protocol is another NIST finalist in the key encapsulation mechanism cate-
gory. Similarly to other finalists, NTRU is a encapsulation method based on lattices
and around a Shortest Vector Problem (SVP), described in section 2.1.2. Addition-
ally, a Learning with Errors (LWE) problem is introduced, which brings a small
enough error into the equation that can possibly mitigate any possible attacks. By
introducing error 𝑒, we arbitrarily increase the difficulty of finding a given vector
that would be close to point zero, will not be a zero–vector, and will still belong to
the lattice [15]. NTRU operates on a special subset of lattice called polynomial rings,

26

which is a ring-shaped set of polynomials over a lattice . A Gaussian noise is most
commonly for error distribution. NTRU is additionally known as a probabilistic
algorithm. Security of NTRU comes from mixing polynomial systems [14].

Key generation

NTRU relies on three main integer parameters N, p, q and four sets of polynomials
of degree 𝑁 − 1. 𝑃 and 𝑞 does not necessarily have to be prime numbers, but their
greatest common divisor (GCD) should be 1. The process of key generation is as
followed:

• Alice chooses 2 polynomials 𝑓 and 𝑔, which both lies in the given Lattice ring.
• Additionally, polynomial 𝑓 has to have inverse in modulo 𝑝 and modulo 𝑞.

This principle is shown in formula 3.5.
• This inverse values are denoted as 𝐹𝑞 and 𝐹𝑝.
• Alice then computes equation:

ℎ ≡ 𝐹𝑞 × 𝑔(𝑚𝑜𝑑𝑞). (3.1)

• Alices public key is polynomial ℎ and polynomial 𝑓 is hers private key.
Despite the fact that NTRU was originally created as Key Encapsulation method

(KEM), it can be also used as digital signature algorithm. This variant is also
publicly available as open-source code.

Key encapsulation

Let’s say that Bob wants to negotiate a shared key with Alice. So the process is
simplified:

• Bob randomly generates a shared key 𝑚.
• Bob requests Alice for her already generated public key ℎ.
• Bob randomly chooses a polynomial 𝜑 that lies in the ring.
• Bob computes equation:

𝑒 ≡ 𝑝 × 𝜑 × ℎ + 𝑚(𝑚𝑜𝑑 𝑞). (3.2)

Ciphertext 𝑒 is encrypted with Alice’s public key, thus making it unreadable for
everyone without an appropriate private key.

Key decapsulation

After Alice receives ciphertext 𝑒 she is ready to decapsulate this shared key with her
private key 𝑓 :

• Alice computes 𝑎 as:
𝑎 ≡ 𝑓 × 𝑒(𝑚𝑜𝑑 𝑞). (3.3)

27

• Alice chooses coefficients of 𝑎 in interval (−𝑞/2, 𝑞/2).
• Finally Alice can recover message by computing:

𝐹𝑝 × 𝑎(𝑚𝑜𝑑 𝑝). (3.4)

As the name probabilistic name stands, there is a low possibility that recovering
message from given parameters will fail. Thus its recommended to add additional
checks to ensure decryption will work.

𝐹𝑞 × 𝑓 ≡ 1(𝑚𝑜𝑑 𝑞) ∪ 𝐹𝑝 × 𝑓 ≡ 1(𝑚𝑜𝑑 𝑝). (3.5)

3.4 SABER
SABER protocol is the final NIST round, with three finalists in the standardisa-
tion competition. It is based on a lattice and heavily relies on Module learning
with rounding problems (Mod-LWR). This problem is based on the Learning with
rounding problem (LWR), which introduces a small enough error 𝑒 to mitigate any
possible attacks on a given ciphertext. This problem is a close child to a Learning
with error problem (LWE), but with small caveats, such as different distributions of
introduced errors 𝑒 [15] [16].

Firstly, SABER defines recommended parameters for its successful operation:
• 𝑝, 𝑞, 𝑇 - Modulo values, chosen to be power of 2, that means

𝑞 = 2𝜖𝑞 , 𝑝 = 2𝜖𝑝 , 𝑇 = 2𝜖𝑇 , where 𝜖𝑞 > 𝜖𝑝 > 𝜖𝑇 . Higher values will result in
lesser security but higher correctness.

• 𝜇 - Coefficients of secret vectors 𝑠, sampled to the centre of binomial distri-
bution. where 𝜇 < 𝑝. Higher values will result in lesser security but higher
correctness.

• 𝑛, 𝑙 - Defines a polynomial ring, thus defines secret vector 𝑠 and determines lat-
tice problem 𝑙×𝑛. Higher values increases security but reduces its correctness.
Recommended values for 𝑛 = 256.

• 𝐹, 𝐺, 𝐻 - Hash functions used in protocol. Functions 𝐹 and 𝐻 are hash func-
tions SHA3–256, function 𝐺 is hash function SHA3-512.

• 𝑔𝑒𝑛 - Output function for generating pseudo–random matrix 𝐴.

Key generation

SABER generates its key as followed:
• Seed is chosen from {0, 1}𝑛.
• Random matrix 𝐴 is generated from seed as:

𝐴 = 𝑔𝑒𝑛(𝑠𝑒𝑒𝑑) ∈ 𝑅𝑙𝑥𝑙
𝑞 . (3.6)

28

• Secret vector 𝑠 is sampled as binomial distribution.
• Value 𝑏 is calculated from equation 3.7 using matrix 𝐴 and vector ℎ. After-

wards right bit shift operation is used. This operations replaces rounding, but
still resulting into same output.

𝑏 = ((𝐴𝑇 𝑠 + ℎ)𝑚𝑜𝑑 𝑞). (3.7)

As a result of this generation private key 𝑝𝑘 is a pair of values 𝑠𝑒𝑒𝑑 and 𝑏. Public
key 𝑝𝑘 is value 𝑠.

Key encapsulation

As already mentioned, SABER is a probabilistic protocol. That means that com-
munication parties can and sometimes will fail to establish a shared key. But this
probability is mostly negated by sending additional control parameters [16]. Lets say
that Alice already generated her private and public key. Afterwards, the protocol is
as followed:

• Alice sends her public key, those being 𝑠𝑒𝑒𝑑 and 𝑏𝑎.
• Bob calculates 𝑠𝑏 and matrix 𝐴 from received Alices seed. Then he calculates

values 𝑏𝑏 and 𝑣𝑏 as followed:

𝑏𝑏 = 𝐴𝑇 𝑠𝑏 + ℎ. (3.8)

𝑣𝑏 = 𝑏𝑇
𝐴𝑠𝑏 + ℎ. (3.9)

• Bob sends Alice calculated value 𝑏𝑏.

Key decapsulation

After Alice receives value 𝑏𝑏 she can proceed to decapsulation as:
• Alice afterwards computes value 𝑣𝑎 as:

𝑣𝑎 = 𝑏𝑇
𝑏 𝑠𝑎 + ℎ. (3.10)

• Alice and Bob can now compute shared key 𝑘.
If whole communication went without any problems, Alice and Bob will have shared
key 𝑘. This algorithm is described without correction parameters.

29

4 Key combination
The main goal of this chapter is to introduce a problem that could affect the future of
quantum and post–quantum cryptography. With the rapid development of modern
computer technologies, we are never able to accurately predict the future state of
cryptography. As discussed in section 1.2 and chapter 3, several future problems have
been identified. Both QKD and PQC key distribution methods are vulnerable with
the development of quantum computing. Thus, a significant number of precautions
and alterations need to be determined.

This problem presents an opportunity to develop an approach that blends both
quantum and post-quantum cryptography protocols. By choosing a specific method,
we can combine two keys into a one shared hybrid key with these properties. This
process ensures that if one protocol is compromised, the other one will still hold,
thus securing the entire communication.

4.1 Xor based combination
Logical operation XOR is one of the fundamental components of cryptography. It
is a binary operation over any given two inputs, which produces one output, see
table 4.1. It is based on a logical gate, thus making it extremely easy to hardware
accelerate. The usual bottleneck for this function is that it is a stream cipher.
Steam ciphers input their source bit by bit. This behaviour is better suited for
real–time applications, where inputs are procedurally generated. On the other hand,
block ciphers compute over a block of information. This may create a bottleneck in
generating inputs [17].

Input A Input B Result
0 0 0
0 1 1
1 0 1
1 1 0

4 mathematical properties make XOR function very useful in modern computer
science:

• Commutative - mean that it does not matter the order of inputs, thus 𝐴∘𝐵 =
𝐵 ∘ 𝐴.

• Associative - chaining together more XOR operations is possible and it does
not matter in which order inputs are fed, for example 𝐴∘(𝐵 ∘𝐶) = 𝐵 ∘(𝐴∘𝐶).

• Identity element - Any input combined with 0 stays unchanged, 𝐴 ∘ 0 = 𝐴.

30

• Self–inverse - Any input XOR’d with itself will result in 0, 𝐴 ∘ 𝐴 = 0.
XOR is often referred to as a perfect cipher or unbreakable cipher. If inputs are

truly random, the result will have enough entropy to withstand any cryptography
attack. If input A is a plain–text and input B is a key, then B should be generated
from a truly random generator to ensure perfect balance between zeros and ones in
the result. Otherwise, the XOR cipher is susceptible to a frequency analysis attack.
In case of two randomly generated keys, we can’t be certain if keys have sufficient
entropy to negate this attack.

Although the XOR function may appear to be the ideal candidate for a key
combination of this type, the opposite is in fact true. As already mentioned, the
commutative property of a XOR function is a significant benefit, but also a draw-
back. Two inputs, key 𝐴 and 𝐵, are combined into key 𝐶, it is possible to compute
the remaining unknown part if the two keys are leaked. This means that XOR
functions are reversible. Even in this edge case, it is a significant flaw [17].

With these properties in mind, being reversibility and vulnerability to cryp-
toanalysis, XOR is not suitable for key combination. In theory, it is a suitable
candidate if key generation could be purely random, if keys are destroyed after com-
bination, or if keys are securely stored. In reality, none of these parameters can
be met with certainty. Fundamentally, using this function contradicts the basic
principles of this thesis.

4.2 Hash based combination
A hash function is a one—way function that takes an arbitrary sized input and
produces an output of a fixed size. Ideally, this process should be irreversible, and
a specific input should only produce one given output. But so—called collisions are
bound to occur. With hash functions we have these types of collisions:

• Collision– Resistance - collision occurs when hashing two different inputs re-
sults in the same hash value, mathematically said that 𝐻(𝑀) ̸= 𝐻(𝑀 ′); 𝑀 ̸=
𝑀 ′, the complexity of finding this collision is 2𝑛

2 , where 𝑛 is a length of the
hash output.

• Pre–image Resistance (Pre) - given hash function 𝐻 and hash output 𝐻(𝑀),
it should be computationally infeasible to retrieve the original message 𝑀 or
generate any other 𝑀 that would generate the same output, with a complexity
of 2𝑛, where 𝑛 is a length of the hash output.

• 2nd Pre–image resistance (Sec) - given hash function 𝐻 and message 𝑀 , it
should be computationally infeasible to find a different message 𝑀 such as it
would produce the same hash output, making this the weakest and the most
attacked point of most hash functions due to a "brute–force attack".

31

All hash functions should have three security properties. Identifying so–called
collisions does not mean that a hash function is deemed to be broken. However,
proving that there is a way to exploit a given hash function will mark the hash
function as less secure. Finding these weak spots, so–called structural weaknesses,
may move theoretical attacks to practical ones. A prime example is the hash function
MD5, which was invented in 1991, and was officially broken in 2005, due to a
so–called birthday paradox. Simply said, MD5 produces a 128–bit long hash that
is too small, thus making collisions occur much more frequently. Yet MD5 is still
widely used despite the fact that it has been broken. For example, a file fingerprint
called md5sum is a simple check, if the file was maliciously changed. This function
takes the whole file and reduces it into a hash string. This string can be verified by
user by simply hashing whole downloaded file by himself and then comparing those
two hashes. It is still used since its computationally simple and fast, thus hashing
big files is less demanding [18].

Hash functions are commonly used for a variety of applications, such as a file or
message integrity verification. In each message or file, a hash of a that attachment
is given, making it easy to verify if it was tempered with it. Similarly, the digital
signature also uses some form of a hash function to ensure that a given message came
from a given user and that it was not tampered with by adding a unique identifier.
Another use of hash functions is password storage when passwords are not kept in a
server’s database as plain–text but are rather hashed. Even in the case of a security
breach, attackers should not be able to retrieve original passwords [18].

A commonly used hash functions is a family of hash algorithms known as SHA
(Secure Hash Algorithm). SHA–1 is a variant of a hash function which is declared
to be insecure, but not yet broken. SHA–2 hash algorithms are commonly used with
its variants like SHA–2–128 and SHA–2–256 and not thought to be quantum-secure.
This makes SHA–2–512 a better candidate for a quantum–resistant hash function.
The last member of the SHA family is SHA–3, also known as SHAKE, which was
released in 2015 by NIST. As opposed to SHA–2, the name of a SHAKE function,
like SHAKE–128 or SHAKE–256, does not imply its output size like in the case
of SHA–2, but rather its security strength. It is thought that SHA–3 should be
a quantum–resistant hash function [18]. Differences between SHA–2 and SHA–3
family, see table 4.2 are:

• Resistance to length extension attack: SHA–2 is more vulnerable to these types
of attacks because if a message authentication code is known for SHA–2, it
is easier to forge an authenticator on other hashed. This the main reason
for developing an HMAC function. SHA–3 solved this problem by key–prefix
construction.

• Performance: SHA–2 has higher performance compared to SHA–3, shown in

32

table 4.2.
• Different internal design: SHA–2 is designed around Davies–Meyer structure

with block ciphers, built on ARX network. SHA–3 is designed on sponge
structure with Keccak permutation [26] [27].

Tab. 4.1: SHA algorithms, their release year, collision resistance, bit sized output
and design architecture

Hash Year Collision resistance Bit size Design
SHA–0 1993 80 160 32–bit ARX DM
SHA–1 1995 80 160 32–bit ARX DM
SHA–2–256 2002 128 256 32–bit ARX DM
SHA–2–512 2002 256 512 64–bit ARX DM
SHA–2–512/256 2012 128 256 64–bit ARX DM
SHA–3-256 2013 112 224 64–bit Keccak sponge
SHA–3-512 2013 256 512 64–bit Keccak sponge
SHAKE–256 2013 <256 any 64–bit Keccak sponge

In theory, hash functions could be the solution for key combinations. Its fast
implementation should not cause any bottlenecks. This method should be secure
if a strong enough hash function is used, that being SHAKE–256, SHA–3–256, or
SHA–2–256 for an output of 256 bits or its alternative counterparts for 512–bit
outputs. However, as part of this process, we lose possible flexibility with the size of
outputs. Currently, ciphers like AES use 128, 192 or 256–bit keys. That presents an
obstacle to implementing other variants. If we would like to use AES–128, it is very
insecure to split a 256–bit key into two separate keys. That creates a vulnerability
to attack, because by splitting the key, collision resistance drops by half of the
original value. A similar situation will occur if we would like to use a 192–bit key.
Reducing the output hash would weaken the hash function itself. Therefore, we are
forced to use only 256 or 512–bit keys. Hash functions are a middle ground between
security and computational efficiency and a good choice for modern computers and
on less–computationally fast devices.

4.3 Key derivation function
Key derivation function (KDF) is a cryptographic function that derives one or more
inputs, such as a password or secret key, into a more desirable single or multiple
output. It is commonly used for obtaining keys of a desired format, length, or
volume, where the original key does not have these properties.

33

Key derivation functions have a lot of useful applications in cryptography, such as
transforming passwords or passphrases into a stronger secret key. This is commonly
used in Wi–Fi Protected Access 2 (WPA2) where multiple secret keys are derived
from a secret password. These derivations are commonly part of a larger protocol
for key agreement such as standard IEEE P1363 [19], or in Key stretching and key
strengthening.

Key stretching and key strengthening is a method of deriving keys from a secret
passphrase or password that makes an attack extremely slow due to the fact that
they are made to be deliberately slow. This dissuades brute-force attacks. One of
the possible methods of key strengthening is to add a few parameters to the process.
Those parameters are salt and number of iterations [21].

Salt
Salt is a random value which can, but does not have to, be public, and that serves
as an extra layer of protection against pre–calculated tables of results of a given
algorithm. For example, hashing the same input will always result in the same
output. Therefore, adding salt to the password will negate, or at least slow down,
incoming attacks and possible cracking, because two users could theoretically have
the same password, resulting in the same hash value. The only requirement of this
method is that the salt value has to be stored with the hash value of the password
in the database.

Hashed passwords will be recalculated when a user tries to login into the service.
Salt should not be reused and ideally should not be too short. This puts a designer
of a given system into a position where they have to choose between greater security
(larger salt length) and a greater resource demand on data storage, or weaker security
(smaller salt length) and a smaller data storage requirement [22].

4.3.1 Extract–and–Expand Key Derivation Function (HKDF)

Extract–and–Expand Key Derivation Function (HKDF) is a candidate for this par-
ticular case of a key combination. Published in 2010 as a product of IETF (Internet
Engineering Task Force), it has since been publicly approved and is in common us-
age. It is based on HMAC (Hash–based message authentication code), which is an
algorithm that takes secret keys and messages and combines them into one output
of a specific length [23].

HKDF follows the extract–and–expand paradigm, where it consists of two mod-
ules, extract and expand.

34

Extract

The first step is to extract a pseudo–random key from the given inputs. By doing
the following operation:

𝑃𝑅𝐾 = 𝐻(IKM, 𝑠𝑎𝑙𝑡, 𝐿), (4.1)

where output 𝑃𝑅𝐾 is a pseudo–random key, 𝐻 is an HMAC hash function, 𝐼𝐾𝑀

are keying materials (in this case two keys), salt is an optional parameter (when not
given, salt is automatically value 0) and 𝐿 is a length of output 𝑃𝑅𝐾. The only con-
cern in this step is the fundamental process of extracting the pseudo–random key out
of given information. Therefore, the input information should have well–dispersed
entropy on given keys, which will be reflected in the entropy of the resulting key.
Another note to this process is the optional use of salt. Salts and their meanings
are described in section 4.3. In a real–world scenario, salts are necessary for the
protection of outputs against a lot of different attacks. Salts should be a randomly
generated value and should never be reused. However, it is not always possible to
generate a salt value, so the salt value is set to optional.

Expand

The second stage is the most important part of this algorithm due to the fact that the
first is not mandatory. Many NIST and IEEE standards only take into consideration
the second part [20]. The computation is as follows:

𝑂𝐾𝑀 = 𝐻𝐾𝐷𝐹 (𝑃𝑅𝐾, info, 𝐿), (4.2)

where 𝑂𝐾𝑀 is output keying material, 𝑖𝑛𝑓𝑜 is similar to salt value, commonly
used for binding given algorithm to an application. This value can be the ID of the
application, protocol number or any other identifiers. This results in more diversity
when using the same inputs. Value 𝐿 is a number of octets in resulting 𝑂𝐾𝑀 .
𝑂𝐾𝑀 is calculated as a result of multiple chained HMAC hash functions together
in a way:

𝑇 (0) = Emptystring
𝑇 (1) = 𝐻(𝑃𝑅𝐾, 𝑇 (0), info)
𝑇 (2) = 𝐻(𝑃𝑅𝐾, 𝑇 (1), info)
𝑇 (3) = 𝐻(𝑃𝑅𝐾, 𝑇 (2), info)

(4.3)

After this computation, the resulting 𝑂𝐾𝑀 is a concatenated result of 𝑇𝑖, where 𝑖

is a number of requested octets [23].
In conclusion, KDF is the most secure way to combine two keys. Its effectiveness

is demonstrated by its wide usage in protocols like WPA2. However, to achieve the

35

most security, it is mandatory to use salt. This introduces the problem of generating
the same salt value on both ends of the communication to achieve the same key
output. One possible solution is a derivation from some shared values, possibly
from the keys themselves, or through additional communication. Unfortunately,
both approaches come with their own time–consuming operations and weak points.
Another advantage is its flexible output size. Compared to hash-based combination,
this does not limit individuals to using specific symmetric ciphers due to the static
length of hash outputs. Yet key derivations come with a significant computational
cost, resulting in problems if used on less computationally powerful devices.

4.3.2 KECCAK Message Authentication Code (KMAC)

KMAC is another widely used pseudo-random function (PRF) and keyed hash func-
tion with a variable output based on KECCAK, in other words, based on SHA–3,
see section 4.2. KMAC is described in NIST standard SP 800–185 [24]. KMAC ex-
ists in two variants, being KMAC–128 and KMAC–256. Both variants are based on
function cShake–128 and cShake–256 respectively. KMAC–128 offers 128 bit secu-
rity against pre—image or second–pre—image attacks, see section 4.2. The biggest
drawback and difference between these two variants is speed, while collision resis-
tance is sufficient with both. For the purpose of key combination, only the PRF
part of KMAC will be used. NIST refers to the needed parameters as followed:

• X - main input message, can be any size.
• L - length of output hash (in bits), in this case 256.

Computation of hybrid key would look like followed:

𝐾ℎ𝑦𝑏𝑟𝑖𝑑 = KMAC256((𝐾𝑃 𝑄𝐶 ||𝐾𝑄𝐾𝐷), 256), (4.4)

where 𝐾𝑃 𝑄𝐶 is already established post-quantum key and 𝐾𝑄𝐾𝐷 is already estab-
lished quantum key. Value 256 represents the length of output hash in bits. Both
keys are chained together.

In the case of KMAC, it’s recommended to use salt, or in this case, a value called
the nonce. The nonce value should be generated by a pseudo-random generator with
sufficient entropy. This value will afterwards be added to the keys as an input to
KMAC. Thus, the resulting equation would look as followed:

𝐾ℎ𝑦𝑏𝑟𝑖𝑑 = KMAC256((𝐾𝑃 𝑄𝐶 ||𝐾𝑄𝐾𝐷||𝑁), 256). (4.5)

36

5 Implementation
The implementation and practical comparison of all combination methods from
chapter 4 will be discussed in this chapter. The main goal is to compare and choose
the best combination in security, computation speed, and overall performance.

5.1 Testing environment and topology
Testing topology is straightforward without any unnecessary additions or parties.
Two clients, Alice and Bob, are hosted as virtual machines in VMWare virtual envi-
ronment on the operational system Ubuntu. All parties are situated in a laboratory
environment at Brno University of Technology. QKD server is a physical machine
from company IDQ, more in section 5.1. Keys are downloaded from Application
Programming Interface (API) and used afterwards for the hybrid key. Keys are not
stored anywhere, thus minimising any risk of reusing the same keys. Alice and Bob
are not communicating with the same entity but rather with their corresponding
partnered QKD server. QKD entities are connected with quantum channels and the
whole quantum key establishment process is done by them, visualised in figure 5.1.
Communication with QKD parties requires a certificates, which are saved on said
devices.

Fig. 5.1: Testing topology

37

QKD server

As already mentioned, the testing workplace is situated in Brno University of Tech-
nology (BUT), specifically in the Faculty of Electrical Engineering and Communica-
tion (FEKT) the in Department of Telecommunications, in room T12/SC 5.37, also
so called Cryptolab. Two main units, QKDA and QKDB, are connected through
an optical quantum channel with FC/APC connectors (see photo 5.2). To ensure
the correct functioning of QKD servers, it is necessary to avoid connecting them di-
rectly. Additional attenuation devices are used to ensure at least 10dB attenuation
on channel. To simulate distance between these two servers, a variable optical fibre
cable is used. This cable can be extended up to 25 km. With this scenario, it is
possible to achieve attenuation of 0.2 dB/km. Additionally, there is a possibility of
introducing a malicious third party into this communication to simulate eavesdrop-
ping. Configuration for these servers is done by web interface with tool KEMS, for
example adding accepted TLS certificates, restarting, or maintenance.

Fig. 5.2: Photo of QKD servers

The quantum key establishment devices are physical devices from the Swiss
manufacturer IDQ. The most essential elements for demonstration purposes are the
devices shown in the table below. The devices are connected to using the SSH

38

protocol, so certificates for each device are also required as well as keys and a cer-
tification authority (CA) certificate. As already mentioned, both clients have their

Name IP address Certificate Certificate pass
Alice (QKDA) 192.168.10.102 ENCA-cert.pem ENCA-key.pem
Bob (QKDB) 192.168.10.107 ENCB-cert.pem ENCB-key.pem

corresponding partners for communication. QKDA is called master, thus initiating
quantum key negotiation, while QKDB is called slave and only answering. This re-
sults in QKDB being structurally and visually different then QKDA. Both keys are
stored in said devices for a few seconds before deleting them. Keys are paired with
their corresponding key ID. With this ID, a key can be downloaded from QKDB.

5.2 Development
Development was run and tested in a Visual Studio Code. It was written in Python
3.9, which is the latest version with the help of a bash support script for downloading
keys from a QKD server. Both languages are natively in Linux-based operational
systems, thus no additional installations are required. User manual is created for
easy operation of demonstrator in attachment A.

Control arguments

For console application control arguments are essential to change dynamic parame-
ters with every run. Thus script required these arguments:

• --initComm or --listener - defining if client will initiate communication or rather
wait with open port for initiation respectively.

• --dest [ADDR] - defines destination IPv4 address (without port).
• --local [ADDR] - defines local IPv4 address of exiting interface (any client can

have multiple exit interfaces, thus this functionality).
• --mPath [PATH] - defines path to file that initialising client want to send (only

initialising client takes advantage of this parameter).
• --sPath [PATH] - defines save path for received file for listening client (only

listening client takes advantage of this parameter).
• --comb [xor/sha2/sha3/kmac] - declares mechanism for creating hybrid key,

either by XOR-based combination, Hash-based combination (SHA–2–256 or
SHA–3–256) or key derivation by KMAC, respectively.

An example of argument parsing is depicted in listing 5.1. By default, port 15000
is chosen for communication. Before this communication, Bob and Alice exchanged
their public keys via a secured shared medium to ensure they were not tampered

39

with. This medium could be a USB stick or a CD drive. Output of said script is
depicted in figure 5.3. In this example, the initialising client (Alice) is on right side
while the listening client (Bob) is on the left side.

Listing 5.1: Argument parsing
1 def main ():
2 """
3 Argument parsing
4 """
5
6 parser = argP. ArgumentParser (description =’Arguments ’)
7 parser . add_argument (’--initComm ’, action =’store_true ’)
8 parser . add_argument (’--listener ’, action =’store_true ’)
9 parser . add_argument (’--dest ’)

10 parser . add_argument (’--local ’)
11 parser . add_argument (’--mPath ’)
12 parser . add_argument (’--sPath ’)
13 parser . add_argument (’--comb ’)
14 args = parser . parse_args ()
15 config = vars(args)

Used libraries

Starting from the top of the script client.py, which is the main run file, it is clear
that the script uses a library socket to make network communication as flexible
as possible. With this library clients can freely open and close dynamic ports, thus
making peer-to-peer communication easier and clearer without any overheads.

PQCrypto

For post-quantum cryptography a library called PQCrypto is used. It is an open-
source library available from Github and it is one of the recommended libraries to use
for NIST Round 3 finalists. It supports multiple key encapsulations methods, such
as Crystals-Kyber, McEliece, NTRU, SABER and many more. All of the variants
of these algorithms are also present with their recommended variables mentioned in
chapter 3. Unfortunately, the library is not that easily installed, thus reading the
official installation guide is highly recommended.

In listing 5.2, a module pqcrypto.kem.kyber512 is used, which is a Crystals-
Kyber 512, however any available module can be used from GITHUB repository [25].
Fetching methods for key generation, encryption, and decryption in straight forward.
Alice will generate her key pair by calling function gen_keys(). Derivation and

40

encryption of a secret key are done by method encrypt(), where one argument
is Alice’s public key. When Alice receives ciphertext, she can easily use method
decrypt() to decipher the shared secret key.

Listing 5.2: Example of generating, encrypting and decrypting derivated key
1 from pqcrypto .kem.kyber512
2 import gen_keys , encrypt , decrypt
3
4 # Alice generates a key pair of public and secret key
5 public_key , secret_key = gen_keys ()
6
7 # Bob derives a secret key and
8 # encrypts it with Alice ’s public key
9 ciphertext , plaintext_original = encrypt (public_key)

10
11 # Alice decrypts Bob ’s ciphertext
12 # to derive the now shared secret
13 plaintext_recovered = decrypt (secret_key , ciphertext)

Table 5.2 shows some of the available algorithms and the time needed for gener-
ating key pairs, derivation and encryption of keys, and decrypting ciphertexts. It is
mainly focused on the Crystals-Kyber family of algorithms. McEliece 348864’s key
generation time could be discouraging at first, but it must be noted that generating
key pairs is not always mandatory for every communication. Key pairs could be
reused. In this case, public keys will be pre-shared, thus skipping the first step. In
table 5.2, key lengths for a particular algorithm are shown as well as the length of
ciphertext on a negotiated secret key.

Algorithms (10 000 runs) Key generation [ms] Encrypting [ms] Decrypting [ms] Total time [ms]
Crystals-Kyber 512 0.031682994 0.01821944 0.005159678 5.51E-02
Crystals-Kyber 768 0.034731898 0.022210953 0.008181872 6.51E-02
Crystals-Kyber 1024 0.038353925 0.026300926 0.012050421 7.67E-02
McEliece 348864 11.88667321 0.045699596 0.021952629 1.20E+01

Tab. 5.1: Algorithms from library PQCrypto and their time needed

41

Size (bytes) Public key Private key Ciphertext Secret key
Crystals-Kyber 512 800 1632 736 32
Crystals-Kyber 768 1184 2400 1088 32
Crystals-Kyber 1024 1568 3168 1568 32
McEliece 348864 261120 6452 128 32

Tab. 5.2: Algorithms from library PQCrypto and their key sizes

HTTPS interface

Requests for QKD servers API are handled separately in a bash script running
command curl. Curl is a tool for transferring data through interfaces with HTTP
or a secured variant, HTTPS. For HTTPS, it is required to specify the certificate
and its additional necessities, such as the key to the certificate or a certificate from
the Certifications Authority (CA). In the example listing 5.3, Alice executes curl
command from a Python environment in background shell. She receives the key
and its corresponding key ID from her QKD server (QKDA). It is important to
note that this pair is stored in QKD machines for only a few seconds before being
erased. This ensured that clients will not have infinite time and any malicious party
could steal this pair. The key pair is encrypted throughout the communication
with attached certificates. Returned QKD keys are in json format [’key_ID’:
’string’, ’key’: ’string’].

Listing 5.3: Alice requesting key from QKD server
1 def RestApiRequestGetKey ():
2 curl_cmd = f’curl --cert { master . master_cert }
3 --key { master . master_key } --cacert { master . ca_cert }
4 -k https ://{ master . addr_master }{ path_to_key }’
5 output = subprocess . check_output (curl_cmd ,shell=True)
6
7 json_data = json.loads(output)[’keys ’]
8 # [{’ key_ID ’: ’string ’, ’key ’: ’string ’}]
9 return json_data

For Bob’s side, he only receives the key ID and has to download it from its
corresponding QKD server (QKDB). This key is then fed into the already mentioned
support bash script listed in 5.5. For correct functionality, it is required that Linux
operating system got installed packages curl for downloading and jq for parsing
answers in json format.

42

Listing 5.4: Bob requesting key from QKD server by key ID
1 def RestApiRequestGetKeyFromId (key_ID):
2 curl_cmd = f"sh QKDscript { key_ID }"
3 try:
4 output = subprocess . check_output (curl_cmd ,
5 shell=True)
6 except subprocess . CalledProcessError as e:
7 output = e. output
8
9 if "null". encode () not in output :

10 return output
11 else: raise Exception ("No QKD key downloaded !")

Listing 5.5: Bash script for requesting key from QKDB
1 KMSS_IP =’192.168.10.102:443 ’
2 Rep=$(curl --cert ENCB -cert.pem --key ENCB -key.pem
3 --cacert ca -cert.pem -X POST
4 -H ’Content -Type: application /json ’
5 -d "{\" key_IDs \":[{\" key_ID \":\" $KeyID \"}]}"
6 -k https :// $KMSS_IP /api/v1/keys/ENCB/ dec_keys)
7 Key=$(echo $Rep | jq ’.keys [0]. key ’ | cut -d ’"’ -f 2)
8 echo $Key

Communication

From the outset, communication between clients is not encrypted. But this is true
only for the first two "Hello" packets. Throughout key negotiation, either for quan-
tum or post-quantum key negotiation, communication is encrypted with a corre-
sponding scheme. This process does not reveal any private or important information
that could be used maliciously.

Alice will send a Hello message, which represents the initiation for establishing
a hybrid key. Bob responds with the same message. After that, Bob loads Alice’s
public key, which they exchanged before this communication via a USB stick. From
that key, Bob generates a shared key. He encrypts it with Alice’s public key and
sends her the ciphertext. Alice will decipher the message with her private key and
reveal the shared key. After this, both sides will establish a post-quantum key.

Establishing the quantum key starts with Alice sending an HTTPS GET request
to the QKDA server (master). With the quantum protocol, QKDA and QKDB then
negotiate a shared key. QKDA replies with a response in json format with the
key and its corresponding key ID. This communication is encrypted. Certificates

43

for these serves should be kept securely stored. Afterwards, Alice sends Bob the
corresponding key ID. Bob receives this message and creates his HTTPS POST
request, for example in listing 5.5, with a key he received to the QKDB server
(slave). If time frames were met, QKDB will reply with a quantum key.

At this point, both clients (Alice and Bob) received the same post-quantum and
quantum key. Both can start combining this key, resulting in a shared secure hybrid
key. After combining with the defined mechanism, the output hybrid key is set
to a length of 256 bits for every method. The hybrid key is used for encrypting
with algorithm AES-256 in mode GCM, sending an encrypted file through non-
secure public channel. This file is sent via a TCP connection. The other client
decrypts this file with the same hybrid key and saves it into its internal storage. If
every process was executed properly, both clients will have the same hybrid key and
shared file. Output is depicted in picture 5.4, also in manual A.

Fig. 5.3: Example of a communication

The whole communication will usually be done in a few milliseconds, which could
theoretically increase with the distance between clients or any other interference on
the network. However, this should not cause any significant problems because the
only time dependent units are QKD servers, which store keys for a few seconds.

44

Fig. 5.4: Output of script for Alice

45

Listing 5.6: Code for initiating communication
1 def initCommThread (ipAddr):
2 try:
3 t = time.time ()
4 print (" Initializing comm for shared key")
5 serverSocketRec = socket (socket .AF_INET ,
6 socket . SOCK_STREAM)
7 print (f" Connecting to { ipAddr }")
8 serverSocketRec . connect ((ipAddr , 15000))
9 print (f" Connection successful to { ipAddr }.")

10 print (" Sending hello packet ")
11 serverSocketRec .send(b"hello")
12 answer = serverSocketRec .recv(4096)
13 answer = answer . decode ()
14 if answer == "hello":
15 print (f" Seding hello message to { ipAddr }.")
16 #print(public_key)
17 #print(f" Public key: { public_key }". encode ())
18 KEM_encrypted = serverSocketRec .recv(4096)
19 print ("Recv ciphertext ... decrypting ")
20 KEM = decrypt (secret_key , b64 decode (
21 KEM_encrypted))
22 print (" Shared key ",b64 encode (KEM))
23 serverSocketRec .close ()
24 elapsed = time.time () - t
25 print ("TIME ELAPSED : ", elapsed)
26 return b64 encode (KEM)
27 except Exception as e:
28 print (e)

5.2.1 XOR-based combination

XOR, as a basic logical operator is simple to implement. With symbol ˆ, which rep-
resents operator XOR, we can XOR two characters. With two strings it’s necessary
to create a cycle that will go character by character. Example code is depicted in
listing 5.7. This process got a complexity of 𝑂(𝑛). In other words, linear complex-
ity. But for reasons already mentioned in section 4.1, this is not a viable option for
creating the hybrid key. The output of this combination is set to a length of 256
bits.

46

Listing 5.7: Code for initiating communication
1 def XorDigest (QKD ,KEM):
2 return ’’.join ([hex(ord(QKD[i%len(QKD)]) ^
3 ord(KEM[i%(len(KEM))]))[2:]
4 for i in range (max(len(QKD), len(KEM)))])

5.2.2 Hash-based combination

As mentioned in section 4.2, hash functions will take any arbitrary sized values and
convert them into fixed-sized output. However, using any hash functions would
be reckless. Quantum safe hash functions should be used, those being SHA-256,
SHA-512 and possibly a whole family of SHA-3 should be quantum-safe [27] [26].

Depending on further usage of a hashed key, the size of the output needs to
be ascertained. For AES, 256 or 512-bit output is recommended, or whenever the
slower SHA-3 algorithms are more important than lesser secure SHA-2. It does not
mean that SHA-2 is instantly insecure, it just means that SHA-2 is a more likely to
be weakened or broken. Ultimately both families stay secure for the time being [26]
[27].

Python library hashlib offers widely used hash functions with all of their vari-
ants. By simply calling import hashlib we have access to many hash functions.
Then it’s just a matter of choosing preferred hash functions, feeding given input into
is and by calling hexdigest() returns a hash in hexadecimal format. An example
of usage is shown in listing 5.8.

As shown in table 5.2.2, SHA–2–256 performed better then SHA-3-256. This is
due to the internal structure of said hash functions. As already mentioned in section
4.2, this provides a secure way to combine these two keys into a hybrid key.

Listing 5.8: Example of usage of SHA hashing functions
1 def Sha2 Digest (QKD ,KEM):
2 s = hashlib .sha256()
3 s. update (QKD)
4 s. update (KEM)
5 sharedKey = s. digest ()
6 print ("HASH: ", bytes.hex(sharedKey))
7 return sharedKey

By choosing either SHA–2–256 or SHA–3–256, output length is set to 256 bits
for further usage.

47

Tab. 5.3: Time required for each hash algorithm according to given input (10 000
runs)

Algorithm 512 bit input [ms] 256 bit input [ms]
SHA–3–256 0.1233 0.12118
SHA–3–512 0.13636 0.126766
SHA–2–256 0.0756 0.0605
SHA–2–512 0.08116 0.01109

5.2.3 Key derivation

KMAC is chosen to be the implemented key derivation method. As already men-
tioned in section 4.3.2, KMAC is based on SHA–3. This algorithm is already imple-
mented in library PyCryptodome as KMAC128 or KMAC256. For this very use case as
PRF, it is recommended to use 256–bit variant. This implementation is very simi-
lar to the Hash–based combination from section 5.2.2. This is because the authors
are trying to make unified uses of similarly functioning algorithms. KMAC outputs
a hybrid key of length 32 bytes (256 bits). Example code is depicted in listing 5.9.

Listing 5.9: Example of KMAC usage
1 def KmacDigest (QKD , KEM):
2 mac = KMAC256.new(key=QKD+KEM , mac_len =32)
3 mac. update (QKD)
4 mac. update (KEM)
5 sharedKey = mac. digest ()
6 print ("HASH: ", bytes.hex(sharedKey))
7 return sharedKey

Tab. 5.4: Time required for KMAC to create an output (10 000 runs)

Algorithm Time required [ms] Output length [bits]
KMAC128 0.30425 256
KMAC256 0.28251 256

5.2.4 Key utilisation

Negotiating and combining both keys results in one shared hybrid key of length 256
bits. This size is not random, but rather intentionally chosen. Advanced Encryption
Standard (AES) is a symmetric block cipher introduced by NIST in FIPS PUB 197
standard. AES supports 128, 192 or 256–bit keys. However, the most commonly

48

used variant is AES–256 which requires 256–bit key. Thus all already mentioned
key combinations result in 256–bit keys.

Furthermore, to increase the security of block ciphers, cryptography created
modes for said ciphers. Block ciphers are best suited for 1 block of data to encrypt
or decrypt. This means that every further block is encrypted separately without any
link to the previous one, creating some link between consecutive blocks. For this
usage AES-256 in mode Galois/Counter (GCM) is used because it is widely adopted
for its performance.

Library PyCryptodome1 offers variety of different AES modes, among which is
mode GCM. The library supports adding nonce to encryption to increase security.
This nonce is generated internally in the library. After encryption, the method re-
turns ciphertext and generates nonce and tag, which is a Message Authentication
tag (MAC tag). This tag will be used in decryption to ensure that message was
decrypted successfully. These values should and will be passed to Bob. However,
these values are in the form of non-printable binary characters. Therefore, for trans-
ferring, they are encoded into a more readable version, Base64 format. When Bob
receives this message, he decodes it back into binary form, decrypts the message,
and verifies its correctness. Example of encryption is in listing 5.10 and decryption
in listing 5.11.

1https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html

49

Listing 5.10: Example of encryption with AES
1 def encryptAES (Aes_private_key , plain_text):
2
3 cipher_config = AES.new(Aes_private_key , AES. MODE_GCM)
4
5 cipher_text , tag = cipher_config .
6 encrypt_and_digest (plain_text . encode ())
7
8 return {
9 ’cipher_text ’: b64 encode (cipher_text). decode (),

10 ’nonce ’: b64 encode (cipher_config .nonce). decode (),
11 ’tag ’: b64 encode (tag). decode ()
12 }

Listing 5.11: Example of decryption with AES
1 def decryptAES (enc_dict , combinedKey):
2
3 regexForPrivateKey = r"(?: Cipher text:)
4 ([^\r\n]+)(?:; Tag:)([^\r\n]+)
5 (?:; Nonce:)([^\r\n]+)"
6 regSplitter = re.split(regexForPrivateKey , enc_dict)
7 dict_keys = {
8 ’cipher_text ’: b64 decode (regSplitter [1]),
9 ’nonce ’: b64 decode (regSplitter [3]),

10 ’tag ’: b64 decode (regSplitter [2])
11 }
12
13 cipher_text = dict_keys [’cipher_text ’]
14 nonce = dict_keys [’nonce ’]
15 tag = dict_keys [’tag ’]
16 Aes_private_key = combinedKey
17
18 cipher = AES.new(Aes_private_key , AES.MODE_GCM ,
19 nonce=nonce)
20 return cipher . decrypt_and_verify (cipher_text , tag)

50

Conclusion
The main goal of the master’s thesis is an introduction to quantum and post-
quantum cryptography, different types of both principles and analyzing each ap-
proach and their implementation of hybrid key distribution.

The theoretical part of the thesis is to introduce quantum cryptography, its quan-
tum key distribution (QKD) and one of the most popular protocols BB84 and Coher-
ent One-Way protocol (COW). Post-quantum cryptography introduces its different
approaches, Lattice-based cryptography and problems based around this topic, mul-
tivariate, hash-based and code-based cryptography. NIST competition provided us
with a big insight into possible solutions for post-quantum based cryptographical
protocols. Protocols are described in detail in their relevant chapters. There are
some long–standing protocols such as McEliece or new ones like NTRU or SABER.
Each algorithm is based on their relevant post-quantum problems, making them
good competitors to each other. The key combination is one of the most important
parts of this thesis. The main goal of this thesis is a combination of two keys, quan-
tum and post–quantum, and securely combine them into one key that way, when
one of the mechanisms is weakened or broken, the other will hold the key secure
to the point, when countermeasures could be done. Some of the common possible
solutions are using a simple XOR function, hashing two keys together by a secure
algorithm or by using a more advanced key derivation function, in this case, Extract
and Expand key derivation function (HKDF) or KECCAK Message Authentication
Code (KMAC) which suits this purpose ideally.

Implemented proof of concept for this problem of combining these two keys is
implemented in programming language Python. Both clients were set up in inter-
nal network in Brno University of Technology (BUT). Clients were virtualized in
internal laboratory. Library PQcrypto is used to negotiate post-quantum key while
quantum key was downloaded from QKD servers using HTTPS interface. This key
was negotiated through quantum channel with described properties. Key combina-
tion can be done in three different methods, those being not recommended XOR
function, Hash combination with SHA–2 or SHA–3, or using advanced method for
key derivation KMAC. Furthermore, a secret file is encrypted with hybrid key and
sent through TCP connection to the other client that decrypted this file and saved
it. Output console application is without GUI that can be ran with different starting
control arguments. User manual is also attached to simple navigation and running
of said demonstrator.

The main goals of this master’s theses were met. Both quantum and post–
quantum algorithms were analysed. Possible key combination were described and
implemented in virtual environment to demonstrate creation of hybrid key.

51

Bibliography
[1] STEANE, Andrew. Quantum computing. Reports on Progress in Physics.

1998, 61(2), 117–173. Available from URL: <https://doi.org/10.1088/
0034-4885/61/2/002>.

[2] LOTKENHAUS, N. Quantum key distribution. EQEC ’05. European Quantum
Electronics Conference, 2005 [online]. IEEE, 2005, 295-295 [cit. 2021-11-18].
ISBN 0-7803-8973-5. Available from: doi: 10.1109/EQEC.2005.1567461

[3] AIZAN, Nur Hanani Kamarul, Zuriati Ahmad ZUKARNAIN, Hishamuddin
ZAINUDDIN, Yann THOMA and Hugo ZBINDEN. Implementation of BB84
Protocol on 802.11i. 2010 Second International Conference on Network Applica-
tions, Protocols and Services [online]. IEEE, 2010, 2010, 130-134 [cit. 2021-11-
18]. ISBN 978-1-4244-8048-7. Available from: doi: 10.1109/NETAPPS.2010.31

[4] AHMED I., Khaleel. Coherent one-way protocol: Design and simulation. 2012
International Conference on Future Communication Networks [online]. 2012,
170-174 [cit. 2021-11-17]. Available from URL: <doi:10.1109/ICFCN.2012.
6206863

[5] STUCKI, Damien, Sylvain FASEL, Nicolas GISIN, Yann THOMA and Hugo
ZBINDEN. Coherent one-way quantum key distribution. Proc SPIE [online].
2007 [cit. 2021-11-17]. Available from: doi:10.1117/12.722952

[6] STUCKI, Damien, Claudio BARREIRO, Sylvain FASEL, et al. High speed
coherent one-way quantum key distribution prototype. Optics Express [on-
line]. Geneva, Switzerland, 2008, (17), 9 [cit. 2021-11-17]. Available from: doi:
10.1364/OE.17.013326

[7] CHEN, Lily, Stephen JORDAN, Yi-Kai LIU, Dustin MOODY, Rene PER-
ALTA, Ray PERLNER and Daniel SMITH-TONE. Report on Post-Quantum
Cryptography [online]. 2016, 1–3 [cit. 2021-11-17]. Available from URL: <http:
//dx.doi.org/10.6028/NIST.IR.8105

[8] BERNSTEIN, D. a T. LANGE. Post-quantum cryptography. Nature [online].
2017, (549), 188–194 [cit. 2021-11-17]. Available from URL: <https://doi.
org/10.1038/nature23461>

[9] MICCIANCIO, Daniele and Oded REGEV. Lattice-based Cryptography [on-
line]. Berlin, Heidelberg, 2009, 147–191 [cit. 2021-11-17]. ISBN 978-3-540-88702-
7. Available from: doi:10.1007/978-3-540-88702-7_5

52

https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1088/0034-4885/61/2/002
doi:10.1109/ICFCN.2012.6206863
doi:10.1109/ICFCN.2012.6206863
http://dx.doi.org/10.6028/NIST.IR.8105
http://dx.doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1038/nature23461
https://doi.org/10.1038/nature23461

[10] BERNSTEIN, Daniel J. Post-Quantum Cryptography: Introduction to post-
quantum cryptography [online]. Berlin, Heidelberg, Springer Berlin Heidelberg,
2009, 1–14 [cit. 2021-11-17]. ISBN 978-3-540-88702-7. Available from: doi:
10.1007/978-3-540-88702-7_1

[11] NIST Post-Quantum Cryptography Standardization NIST Information Tech-
nology Laboratory COMPUTER SECURITY RESOURCE CENTER [online],
2020 [cit. 2021-11-17]. Available from: <https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions>

[12] ALBRECHT, Martin R., Daniel J. BERNSTEIN, Tung CHOU, et al. Clas-
sic McEliece: conservative code-based cryptography [online]. 2010,6–20 [cit.
2021-11-17]. Available from URL: <https://classic.mceliece.org/nist/
mceliece-20201010.pdf>

[13] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Specification document (update from August 2021) [online]. 4–15 2021-
08-04 [cit. 2021-11-17] Available from URL: <https://pq-crystals.org/
kyber/data/kyber-specification-round3-20210804.pdf>

[14] CHEN, Cong, Oussama DANBA, Jefrey HOFSTEIN a Andreas
HÜLSING. Algorithm Specifications And Supporting Documenta-
tion [online]. March 30, 2019 [cit. 2022-04-23]. Available from URL:
<https://ntru.org/f/ntru-20190330.pdf>

[15] HOFFSTEIN, Jeffrey, Jill PIPHER a Joseph H. SILVERMAN. NTRU: A Ring-
Based Public Key Cryptosystem [online]. Springer, Berlin, Heidelberg, 2006
[cit. 2022-04-23]. ISBSN 978-3-540-64657-0. Available from URL: <https://
doi.org/10.1007/BFb0054868>

[16] BASSO, Andrea, Jose Maria Bermudo MERA, Jan-Pieter D’ANVERS a Ang-
shuman KARMAKAR. SABER: Mod-LWR based KEM (Round 3 Submission)
[online]. 2019 [cit. 2022-04-23]. Available from URL: <https://www.esat.
kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf>

[17] LEWIN, Michael. All About XOR. Accu [online]. 2012 [cit. 2021-11-17]. Avail-
able from URL: <https://accu.org/journals/overload/20/109/lewin_
1915/

[18] AL-KUWARI, Saif; DAVENPORT, James H.; BRADFORD, Russell J. Cryp-
tographic Hash Functions: Recent Design Trends and Security Notions. IACR

53

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://accu.org/journals/overload/20/109/lewin_1915/
https://accu.org/journals/overload/20/109/lewin_1915/

Cryptol. ePrint Arch., 2011 [cit. 2021-11-17], Available from URL: <https:
//eprint.iacr.org/2011/565.pdf

[19] IEEE Standard for Identity-Based Cryptographic Techniques using Pairings.
IEEE Std 1363.3-2013 [online]. IEEE, 2013, 1-151 [cit. 2021-11-17]. Available
from: doi: 10.1109/IEEESTD.2013.6662370

[20] BARKER, Elaine, Lily CHEN, Allen ROGINSKY, Apostol VASSILEV and
Richard DAVIS. Recommendation for Pair-Wise Key-Establishment Schemes
Using Discrete Logarithm Cryptography [online]. 2018 [cit. 2021-11-18]. Avail-
able from: doi: 10.6028/NIST.SP.800-56Ar3

[21] KELSEY, John, Bruce SCHNEIER, Chris HALL and David WAGNER.
Secure applications of low-entropy keys [online]. Berlin, Heidelberg, 1998,
121–134 [cit. 2021-11-17]. ISBN 978-3-540-69767-1. Available from: doi:
10.1007/BFb0030415

[22] Salted Password Hashing - Doing it Right. Crack Station [online].
2021 [cit. 2021-11-17]. Available from URL: <https://crackstation.net/
hashing-security.htm>

[23] KRAWCZYK, H. and P. ERONEN. HMAC-based Extract-and-Expand Key
Derivation Function. Internet Engineering Task Force [online]. 2010, 1–
6 [cit. 2021-11-17]. ISSN 2070-1721. Available from URL: <https://www.
rfc-editor.org/rfc/rfc5869>

[24] KELSEY, John, Shu-Jen H CHANG and Ray PERLNER. SHA-3 derived func-
tions: cSHAKE, KMAC, TupleHash and ParallelHash, 2016. NIST Special
Publication [online]. 800–185 [cit. 2022-04-04]. Available from URL: <https:
//doi.org/10.6028/NIST.SP.800-185>

[25] pq-crypto, 2020. kpdemetriou. GitHub [online]. 8 September 2020. [cit. 2021-
12-2]. Available from URL: <https://github.com/kpdemetriou/pqcrypto>

[26] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions [online]. 2015 [cit. 2021-12-05]. Available from URL: <http://dx.
doi.org/10.6028/NIST.FIPS.202>

[27] NIST. Secure Hash Standard (SHS) [online]. 2015 [cit. 2021-12-05]. Available
from URL:<http://dx.doi.org/10.6028/NIST.FIPS.180-4>

54

https://eprint.iacr.org/2011/565.pdf
https://eprint.iacr.org/2011/565.pdf
https://crackstation.net/hashing-security.htm
https://crackstation.net/hashing-security.htm
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://github.com/kpdemetriou/pqcrypto
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
 http://dx.doi.org/10.6028/NIST.FIPS.180-4

Symbols and abbreviations
HTTPS Hypertext Transfer Protocol Secure

CA Certification authority

QKD Quantum key distribution

KEM Key encapsulation method

COW Coherent One-Way Protocol

RSA Rivest–Shamir–Adleman

DH Diffie-Hellman

SHA Secure hash algorithm

DSA Digital Signature Algorithm

SVP Shortest Vector problem

CVP Closest Vector problem

NP Non polynomial

NIST National Institute for Standards and Technologies

LWE Learning-with-errors

Pk Public key

Sk Secret key

MD5 Message-Digest algorithm

KDF Key derivation function

WPA Wi-fi protected Access

HKDF Extract-and-Expand Key Derivation Function

KMAC KECCAK Message Authentication Cod

PRF Pseudo-random function

IETF Internet Engineering Task Force

HMAC Hash-based message authentication code

55

API Application Programming Interface

56

List of appendices

A User manual 58
A.1 Topology . 58
A.2 Dependencies . 58
A.3 Script . 59
A.4 Example . 59

57

A User manual

User manual for operating key combination script
This manual covers the operation of a sample script for combining quantum and
post-quantum keys using selected methods. The script as well as its parts are
written in Python 3.9 programming language with the help of a supporting script in
bash. Once combined, the output key is used to encrypt using AES–256 symmetric
cipher in GCM mode and send to the other party in the communication. The latter
decrypts and saves the file. All necessary files and certificates are stored directly on
the Alice and Bob clients.

A.1 Topology
The individual devices are in the internal laboratory network of the BUT in the
192.168.10.X address range. Visualised demonstration devices Alice and Bob with
Debian operating system.

Name IP address Login Password
Alice 192.168.10.2 mystify dpVUT22
Bob 192.168.10.7 mystify dpVUT22

The quantum key establishment devices are physical devices from the Swiss man-
ufacturer IDQ. The most essential elements for demonstration purposes are the
devices shown in the table below. The devices are connected to using the SSH pro-
tocol, so certificates for each device are also required as well as keys and a certificate
authority certificate.

Name IP address Certificate Password to certificate
Alice (QKDA) 192.168.10.102 ENCA-cert.pem ENCA-key.pem
Bob (QKDB) 192.168.10.107 ENCB-cert.pem ENCB-key.pem

A.2 Dependencies
Dependencies needed to run the script:

• Python 3.9: library Pycryptodomex and PqCrypto,
• Linux package curl and jq.

58

A.3 Script
All the necessary files are pre-loaded for each of Alice and Bob’s clients in the
/home/mystify/hybrid_key. These files are:

• Certificates and their additional files for quantum key establishment devices,
see A.1,

• Script and it parts: client.py, master.py, slave.py, QKDscript.
The script is run using the client.py file with additional parameters, all of which
are mandatory:

• --initComm or --listener - defining if client will initiate communication or rather
wait with open port for initiation respectively,

• --dest [ADDR] - defines destination IPv4 address (without port),
• --local [ADDR] - defines local IPv4 address of exiting interface (any client can

have multiple exit interfaces, thus this functionality),
• --mPath [PATH] - defines path to file that initialising client want to send (only

initialising client takes advantage of this parameter),
• --sPath [PATH] - defines save path for received file for listening client (only

listening client takes advantage of this parameter),
• --comb [xor/sha2/sha3/kmac] - declares mechanism for creating hybrid key,

either by XOR-based combination, Hash-based combination (SHA–2–256 or
SHA–3–256) or key derivation by KMAC, respectively.

A.4 Example
Before running the script its mandatory to enter directory \ home\ mystify\ home\
hybrid_key by simple command cd hybrid_key. Afterwards its possible to start
the script. Example command for Bob:
python3 client.py –listener –dest 192.168.10.2 –local 192.168.10.7
–sPath /home/mystify/hybrid_key/secret_recovered_2 –comb xor.
Example command for Alice:
python3 client.py –initComm –dest 192.168.10.7 –local 192.168.10.2
–mPath /home/mystify/hybrid_key/secret –comb xor.

Once started, a connection is established with each party. Using the PQCrypto
library, a key establishment is performed on the symmetric post-quantum cipher.
Alice then downloads the quantum key and an identification number, which she
then sends to Bob. He downloads the same key as well. The combination of the key
according to the selected method, encryption of the selected file and transmission
takes place. Output for Alice is in picture A.1 and for Bob in picture A.2.

59

Fig. A.1: Script output on Alices side

60

Fig. A.2: Script output on Bobs side

61

	Introduction
	Quantum cryptography
	Quantum computing
	Quantum key distribution
	BB84 protocol
	Coherent One–Way Protocol

	Post–quantum cryptography
	Lattice–based cryptography
	Shortest Vector problem
	Closest Vector problem

	Multivariate cryptography
	Hash–based cryptography
	Code-based cryptography

	NIST standardisation
	McEliece
	Key generation
	Key encapsulation
	Key decapsulation

	Crystals–Kyber
	Key generation
	Key encapsulation
	Key decapsulation

	NTRU
	SABER

	Key combination
	Xor based combination
	Hash based combination
	Key derivation function
	Extract–and–Expand Key Derivation Function (HKDF)
	KECCAK Message Authentication Code (KMAC)

	Implementation
	Testing environment and topology
	Development
	XOR-based combination
	Hash-based combination
	Key derivation
	Key utilisation

	Conclusion
	Bibliography
	Symbols and abbreviations
	List of appendices
	User manual
	Topology
	Dependencies
	Script
	Example

