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Introduction

“No one ever obliges us to know, Adso. We must, that is all, even if
we comprehend imperfectly.”
“Nikdo nás nenutí k tomu, abychom věděli, Adsone. Vědět se prostě
musí, i za cenu, že všechno pochopíme špatně.”

Umberto Eco, Name of the Rose, Chapter Sixth Day Nona

It is only appropriate to begin this Thesis with the quote reflecting a genuine desire
of a lonesome individual to unravel tangled state of affairs. So much has, in my view,
a physicist or generally a scientist in common with the main character of the above
mentioned novel, a curious detective, struggling to gain knowledge no matter the cost.
Such desire is probably inherent to all humans to a certain extend, yet some have been
endowed more than others. The history of physics has been written by many such
individuals whose curiosity incited them to shed light onto basic principles governing
the Universe. As for the field of quantum physics, some of these physicists will be
mentioned. Indeed, the great riches of principles of physics provide more than enough
room to satisfy one’s desire for discovering.

Quantum Physics

Quantum physics was established more than 100 years ago which makes it a well-proven
and recognised field of physics. It was mainly the incapability of classical physics to
satisfactorily describe several phenomena that emerged at the end of the 19th century
leading to the gradual development of quantum physics [1, 2]. These peculiar phenomena
include, for example, black body radiation [3], photoelectric effect [4] or explanation of
atom’s stability [1, 5–7].

In the first case mentioned, the issue was to describe spectrum of radiation of
the black body which one can imagine as a cavity absorbing all incident radiation
and emitting only radiation due to its temperature [8, 9]. Several scientists aimed to
explain it like J. Stephan [10], L. E. Boltzmann [11], J. W. S. Rayleigh [12, 13]
and J. H. Jeans [14, 15]. Their findings, although based on well-established laws of
statistical physics, did not correspond with the experimental data in the whole range
of the electromagnetic spectrum [3]. It was only M. Planck who first derived a law
fully describing the observations [16]. He used, as he thought himself, a mathematical
construct without any physical significance: light (or generally radiation) is emitted
in quanta having energy hν, where h is a constant and ν stands for frequency of this
radiation.

In the second case mentioned, i.e. the photoelectric effect, physicists observed,
besides other, an unexpected feature [1]. When radiation of frequency ν is incident
to a cathode in a vacuum tube resultant number of emitted electrons and, in effect,
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photoelectric current depends on radiation intensity I. This is fully in compliance with
classical theory. There exists, however, a lower threshold frequency νthr under which
radiation looses its ability to cause photoelectric current regardless of the impinging I.
It has been established that νthr depends on material of the cathode.

A. Einstein, by using results of M. Planck, described the photoelectric effect
suggesting that light is interacting with the metal cathode discretely via these energy
quanta hν, later denoted as photons [17]. Thus, he basically suggested that light has
apart from the wave nature also a quantum or corpuscular behaviour. Should there
exist a corpuscle of light it ought to have assigned a momentum p. It was indeed proved
by A. S. Compton in the year 1922 [18]. The connection between wavelength λ of a
light wave and its p (p = h

λ
) was suggested shortly after that by L. V. de Broglie [19].

It should be noted that interpretation of this relation allows to ascribe λ or wave-like
nature to both particles with or without mass, say photon or electron.

In agreement with the concept of wave-like behaviour of quantum objects (i.e. both
light and particles) Schrödinger put a link between object’s position x and time t
expressing its state by a wave function Ψ(x, t). By solving the so-called Schrödinger
equation1 [20] which takes the very form of a wave equation one can obtain Ψ(x, t).
Born’s statistical interpretation [21] of quantum physics enables retrieving probability
of finding the quantum object in a certain interval of x and t as an integral of |Ψ(x, t)|2
within that interval. It is, thus, possible, only to certain degree (or with limited
probability), to learn object’s position at given time. This approach is in sharp contrast
with the classical (Newtonian) mechanics where one is always able to find exact position
of a particle as a function of time x(t). For more details on formulation of quantum
theory see [1, 22, 23].

Contemporary quantum theory seen by the mainstream physicists is based on a
number of fundamental axioms. Various sources of literature present these axioms in
slightly different forms [24–30]. For the purpose of this Thesis let us focus on those
that are of particular relevance for the presented research: principle of superposition
and probabilistic measurement. One of the consequences of these axioms is quantum
entanglement.

The principle of superposition states that if Ψ1 or Ψ2 are valid quantum states
then also expression αΨ1 + βΨ2 represents a valid state given complex coefficients α
and β are normalised (|α|2 + |β|2 = 1). Nice example of the superposition principle is
the famous thought (aka gedenken) experiment by Schrödinger involving an imaginary
cat [31] (schematically illustrated in Figure 1). A cat is closed in a box containing an
ampoule with poison that can be released by a random process (for instance, when
fission of radioactive isotope occurs). Within a certain period of time, the cat can
be either alive (in the state Ψalive) or dead (in the state Ψdead). However, one cannot
know the state of the cat until one opens the box and take a look. Should the laws
of quantum mechanics apply to cats then before one opens the box, the cat could be
also in the superposition state αΨalive + βΨdead. Since it is seemingly a nonsense this
thought experiment is referred to as Schrödinger cat paradox. Accentuating obvious
absurdity (at the time of paradox’s formulation) of application of quantum-physical laws
to macroscopic world, this thought experiment eventually stresses the crucial (but for
the cat fatal) role of measurement. Until the box is opened and a visual measurement
is done the cat is not in any classically acceptable state: dead, or alive but is rather in

1Equation in its time dependent form: i~∂Ψ
∂t = − ~

2m
∂2Ψ
∂x2 + V̂Ψ, where V̂ is a potential energy

operator of the given system (in general a function of t and x) and m is a mass.
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both states simultaneously. It should be stressed out that over the course of the 20th
century quantum nature of macroscopic objects has been demonstrated [32–35].

Figure 1: Schrödinger cat paradox. Visualisation of possible scenarios of the thought
experiment. In the two inset figures to the left, a cat is in the closed box. Before the box
is opened it is in the superposition state. Only after the box is opened and one takes a
look, which is denoted by two inset figures to the right, the cat’s wavefunction collapses
and takes up a classical state, dead or alive. Image by Gerd Altmann [36].

Probabilistic measurement. In the formalism of quantum mechanics [22–25] quantum
states are denoted as |·〉, where this symbol is read as “ket” and stands for a vector in
Hilbert space2. Likewise, symbol named “bra” 〈·| is a hermitian adjoint or conjugate,
i.e. transposed and complex conjugate, of respective ket vector. Vectors bra and ket,
respectively, form an inner product 〈·|·〉. Employing this notation, superposition state
of a quantum system may be rewritten as |Ψ〉 = α |Ψ1〉 + β |Ψ2〉. It should be noted
that |α|2 and |β|2 characterise probability pi, i ∈ {1, 2}, of finding the system in
state |Ψ1〉 and |Ψ2〉, respectively. Formally, the procedure is accomplished by means of
inner product. It is only logical because in analogy with classical physics the relation
(geometrically equivalent to the angle) between two vectors may be characterised by
the measure of mutual overlap between projection of one vector onto the direction
of the other vector. In terms of quantum mechanics, the probability p1 of finding
upon measurement the photon in state |Ψ1〉 is understood as such “measure of mutual
overlap” between |Ψ1〉 and |Ψ〉 squared: p1 = |〈Ψ1|Ψ〉|2 = |α|2 assuming for simplicity
that states |Ψ1〉 and |Ψ2〉 form mutually orthogonal basis and their inner product is,
thus, zero. Although the probability pi can be simply calculated for the known state
|Ψ〉, the outcome of an individual projection of |Ψ〉 in the {|Ψ1〉 , |Ψ2〉} basis is random.
Upon such measurement, |Ψ〉 collapses onto one of the states |Ψ1〉, or |Ψ2〉. Within the
framework of this formalism such collapse may be described in terms of a projection
operator Π̂i = |Ψi〉 〈Ψi| applied to the state |Ψ〉, where i indexes the actual outcome
from the set of all possible measurement results.

Entanglement. By far entanglement is among the most striking features of quantum
mechanics mainly because it contradicts human intuition which is naturally based on

2It is a mathematical or algebraic vector space with inner product. Simply put, its properties are
convenient for quantum mechanical description.
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classical physics. For now it is enough to say that certain states show correlations or
statistical dependencies that cannot be explained by a classical theory. Entanglement
will be described in more detail in Section 1.1 and in affect throughout the whole
doctoral Thesis.

In the course of more than 100 years of development, quantum theory started in-
fluencing and improving understanding of other fields of physics or science in general.
Those fields include: nanotechnology, condensed matter [37], computing, cryptogra-
phy [38, 39, A1], standard model of particle physics, field theory [40], electrodynam-
ics [40] and even chemistry [41], mentioning just a few. Specific effects unknown before
like quantum teleportation [42] or superfluidity [43] have been achieved in the field of
quantum physics. This makes quantum mechanics an indispensable tool in physics with
great potential which is worth studying. It also helps understanding the underlying
nature behind classical phenomena and is an imperative for further advancement of
science in general.

Basics of Quantum Information
Principle of superposition is undoubtedly an essence of quantum information3 [44, 45].
Formulation of quantum physics and feasibility of experimental demonstration of it’s
conclusions led to an abrupt advancement of quantum information (QI) sciences. Quan-
tum computing is nowadays accessible even to general public via quantum computer
and simulator run by IBM quantum experience project [46]. Development of quantum
computers goes naturally hand in hand with implementation of quantum programming
languages such as Qiskit [47], quantum algorithms such as well-know Shor’s [48–50]
or Grove’s algorithm [30, 51] and remarkably quantum machine learning [52, 53, A2].
Furthermore, quantum cryptography [54] is already commercially available [55–57]
thanks to the preceding research discovering many QI protocols such as BB84 [58],
six-state protocol [59], Eckert protocol [60], etc. This, however, triggered discussion on
an issue of security of quantum communication. While quantum mechanics intrinsically
possesses means to guarantee safety, its specific implementation vulnerabilities can be
exploited. One such successful attack is discussed in Chapter 2. Attention is also paid
to the implementation of quantum memories to enhance quantum communications
networks [61–63] in order to push quantum technologies closer to practical everyday
usage.

A unit of quantum information is the quantum bit or often abbreviated qubit or
qbit. Before explaining the term qubit it will be fitting to summarise what a classical
bit is. Bit is a basic unit of classical information. It is represented by binary digits, 0
and 1. In electronic devices, in order to perform logic operations, bit is represented for
instance by two levels of voltage or current. In other words, physical systems carrying
the information are electrons in electric current and the physical quantity expressing
binary digit is the macroscopic voltage or current. For instance, in TTL logics, widely
used in integration circuits, lower voltage up to 0.8 V corresponds to logical 0 and
higher voltage above 2 V to logical 1.

In contrast to its classical counterpart, qubit can take superposition states of the form
α |0〉+β |1〉. Resembling a classical bit, qubit is also a two-level quantum object, having
levels labelled 0 and 1 or in Dirac notation |0〉 and |1〉. These mutually orthogonal

3Since superposition is the phenomenon laying behind parallelism of quantum computer which is
the core of supremacy of quantum computer.
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states, i.e. 〈i|j〉 = δij for i, j ∈ {0, 1}, are called computational basis or logical
basis states. Qubit can be encoded into any physical system capable of supporting
mutually distinguishable states and their coherent superposition. Discrete photons
are particularly suitable candidates for quantum computing. Encoding of qubits into
polarisation and spatial modes is explained bellow in Section 1.5. Interestingly, a
single qubit can hold more than 1 bit of information, theoretically even infinite amount
of classical information. Unfortunately, one can only extract a single bit of classical
information when subjecting a qubit to a projection measurement.

Recent years witnessed striking development of quantum technologies. Remarkably,
People’s Republic of China included quantum communication tasks into their 14. five-
year plan [64]. Namely, they set an ambitious goal to develop an advanced multipurpose
quantum computer consisting of hundreds of interconnected qubits suitable for various
quantum communication tasks. However, big companies such as Google LLC or IBM
do not fall behind with innovations and plans. For instance, Google implements a
quantum processor Sycamore based on superconducting qubits. Moreover, it is not just
a scientific gadget but is even capable to perform practical scientific simulations [65,
66]. This processor along with Chinese quantum computer Jiuzhang features so-called
quantum supremacy [67–69]. It means that quantum computer exceeds capabilities
of a classical supercomputer and performs a given task within considerably shorter
time than its classical counterpart. IBM company as mentioned at the beginning of
this Section provides a unique opportunity on commercial and educational basis to
implement own quantum tasks. For this purpose it employs more than 20 quantum
processors [46]. The company, however, strives to provide it’s users with more than a
1 000-qubit computer [70, 71] by the year 2023.

Quantum transmission of information is most likely the future of secure communi-
cations. As a proof-of-principle several long-distance transmissions has been carried
out [72–75]. To support this highly promising emerging field, China along with the USA
has concentrated on development of satellites suitable for quantum communications [64].
In addition to that, a new satellite by ESA, whose objective is performing quantum
information tasks for both commercial and governmental use, should be launched this
year [76, 77]. Despite tremendous resources and earnest endeavour has been already
invested, still a lot of effort will be necessary to devote to make quantum technologies
part of an everyday life.

Outline
The main objective of this Thesis is presentation of three quantum-optics experiments.
These experiments, performed in the Joint Laboratory of Optics of UP Olomouc4 and
Institute of Physics of the Czech Academy of Sciences, will be discussed in subsequent
chapters. Theoretical background was provided by colleagues either from Faculty of
Physics of Adam Mickiewicz University in Poznań, Poland or Faculty of Physics and
Astronomy of University of Wrocław, Poland.

Methods and equipment used to carry out the experiments are presented in Chapter 1
of this Thesis. This Chapter includes all stages of photon’s life, from its origin to its
detection including analysis methods. Part of the text is devoted to introducing terms
of quantum entanglement and nonlocality. Chapters 2-4 then describe the specific
experimental tasks.

4Joint Laboratory of Optics of Palacký University in Olomouc and Institute of Physics of Czech
Academy of Sciences, 17. listopadu 50A, 771 46 Olomouc, Czech Republic



6 INTRODUCTION

Appendices A-C contain supplementary material belonging to Author’s publications
discussed within this Thesis. The Appendix D includes co-authors’ statements regarding
contribution of the Author to the research. Finally, the Appendix E comprises a list of
contents of the CD-ROM attached to the printed version of this Thesis.

Experimentally Attacking Quantum Money Schemes Based on
Quantum Retrieval Games

Based on Author’s publication Kateřina Jiráková, Karol Bartkiewicz, Antonín Černoch,
and Karel Lemr, Sci. Rep. 9, 16318 (2019) [A1]5.

Topic of quantum money and their unnoticed counterfeiting is covered in Chapter 2.
We witness rapid advancement of quantum technologies, therefore, it is only a matter
of time before quantum money are used in practical payments. Advantages of quantum
money (QM) have been recognised even in the late 1970s by S. Wiesner [38]. The
most interesting feature of QM is that perfect counterfeiting is intrinsically impossible
since quantum cloning forming irreplaceable part of forging procedure cannot be done
flawlessly on an unknown state. Verification of QM was in original Wiesner’s scheme
accomplished in the issuing bank. However, such solution required establishment of
quantum channel between users. This setback has been overcome by M. Bozzio et
al. [78] who made use of classical verification of QM instead of utilising quantum channel,
and the procedure of quantum retrieval game (QRG). Although, the authors claimed
impossibility of successful attacking of their scheme, the experiment in Chapter 2 shows
vulnerability of QM protocols based on QRG.

Measuring Concurrence in Qubit Werner States without an Aligned
Reference Frame

Based on Author’s publication Kateřina Jiráková, Artur Barasiński, Antonín Černoch,
Karel Lemr, and Jan Soubusta, Phys. Rev. Applied 16, 054042 (2021) [A3].

Alice lives on Venus, Bob lives on Mars. . . The biggest problem in their commu-
nication is to establish a common reference frame, so that they can use quantum
cryptography for their secret letters (Figure 2). To help them, this study proposes a
method for entanglement quantification that does not rely on synchronized reference
frames. Counterintuitively, measurements in random and unknown bases can be used
to establish just how entangled a quantum state is. This strategy may prove useful
in complex quantum communication networks, where establishing a common reference
frame (measurement basis) is impractical or impossible.

The genuine concurrence is a standard quantifier of multipartite entanglement,
detection, and quantification of which still remains a difficult problem from both the
theoretical and experimental points of view. Although many efforts have been devoted
to the detection of multipartite entanglement (e.g., using entanglement witnesses),
measuring the degree of multipartite entanglement, in general, requires some knowledge
about the exact shape of a density matrix of the quantum state. An experimental
reconstruction of such a density matrix can be done by full state tomography, which
amounts to have the distant parties share a common reference frame and well-calibrated

5Publications of the Author are marked in the form [A No.] to clearly differentiate them in the
text.
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Figure 2: The Author’s drawing featured on the Physical Review Applied website on the
occasion of Ref. [A3] being published.

devices. Although this assumption is typically made implicitly in theoretical works,
establishing a common reference frame, as well as aligning and calibrating measurement
devices in experimental situations, are never trivial tasks. It is therefore an interesting
and important question whether the requirements of having a shared reference frame
and calibrated devices can be relaxed. In Chapter 3, we study both theoretically
and experimentally the genuine concurrence for the generalised Greenberger-Horne-
Zeilinger states under randomly chosen measurements on individual qubits without
a shared frame of reference and calibrated devices. We present the relation between
genuine concurrence and the so-called nonlocal volume, a recently introduced indicator
of nonlocality.

Experimental Hierarchy and Optimal Robustness of Quantum
Correlations of Two-Qubit States with Controllable White Noise

Based on Author’s publication Kateřina Jiráková, Antonín Černoch, Karel Lemr, Karol
Bartkiewicz, and Adam Miranowicz, Phys. Rev. A 104, 062436 (2021) [A4].

Main objective of Chapter 4 is to demonstrate a hierarchy of various classes of
quantum correlations on experimentally prepared two-qubit Werner-like states with
controllable white noise. Werner states, which are white-noise-affected Bell states,
are prototypal examples for studying such a hierarchy as a function of the amount of
white noise. We experimentally generated Werner states and their generalisations, i.e.,
partially entangled pure states affected by white noise. These states enabled us to
study the hierarchy of the following classes of correlations: separability, entanglement,
steering in three- and two-measurement scenarios, and Bell nonlocality. We show that
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the generalised Werner states (GWSs) reveal fundamentally new aspects of the hierarchy
compared to the Werner states. In particular, we find five different parameter regimes
of the GWSs, including those steerable in a two-measurement scenario but not violating
Bell inequalities. This regime cannot be observed for the usual Werner states. Moreover,
we find threshold curves separating different regimes of the quantum correlations and
find the optimal states which allow for the largest amount of white noise which does not
destroy their specific quantum correlations (e.g., unsteerable entanglement). Thus, we
could identify the optimal Bell-non-diagonal GWSs which are, for this specific meaning,
more robust against white noise compared to the Bell-diagonal GWSs (i.e., Werner
states).

The Author also participated in implementation of an all-optical setup demonstrat-
ing kernel-based quantum machine learning for two-dimensional classification problems.
In this hybrid approach, kernel evaluations are outsourced to projective measurements
on suitably designed quantum states encoding the training data, while the model train-
ing is processed on a classical computer [A2]. Further, the Author took part in research
dealing with machine-learned quantum gate driven by a classical control. The gate
learned to achieve optimal cloning fidelity, allowed for this particular class of cloned
states, in a reinforcement learning scenario having fidelity of the clones as reward [A5].

During her master studies, the Author collaborated on construction and testing of a
Time-of-Flight detector which was later mounted on LHC in CERN [A6–A8]. Currently,
the Author collaborates with historians of fine art. Topic of a bachelor thesis supervised
by the Author covers application of classical neural networks in identification of colour
pigments. The other publication [A9] of the Author is listed in Chapter Author’s
publications as well.



Chapter 1

Experimental Equipment, Methods
and Techniques

1.1 Quantum Entanglement and Nonlocality
Quantum entanglement plays a prominent role within the field of quantum physics and
has constantly drawn physicists’ attention. Since 1935, when it was firstly considered
by A. Einstein, B. Podolsky, N. Rosen [79] and E. Schrödinger [80], until now,
entanglement has been diligently studied [45]. The reason for such an endeavour is that
entanglement has found its application in fields of practical importance such as quantum
computing, communications and metrology [81]. In addition to that, phenomenon of
entanglement is interesting also from the theoretical point of view.

To consider entanglement, imagine a quantum system containing two distinct sub-
systems1, say two particles, A and B. Each of the two particles can take the state
|0〉 and |1〉2. In other words, state of the particle A (B), denoted as |Ψ〉A (|Ψ〉B),
can be |0〉A or |1〉A (|0〉B or |1〉B). Each of these states span a 2-dimensional Hilbert
space H(2), where the index (2) denotes the dimension of Hilbert space. Evidently, both
particles can be in |0〉 state yielding the state of the entire system |0〉A⊗|0〉B or simply
|00〉 spanning H(4), where the symbol ⊗ denotes tensor or Kronecker product. On the
other hand, nothing prevents the particles from being in the state |1〉 in which case the
whole state becomes |11〉. All together, states of the set {|00〉 , |01〉 , |10〉 , |11〉} form an
orthogonal basis of the whole system.

According to the principle of superposition, mentioned in the Introduction, the whole
quantum system can be prepared as a balanced superposition of these two constituent
states

|Ψ〉AB =
1√
2

(|00〉+ |11〉) . (1.1)

Such state, despite being physically realisable, cannot be expressed as a tensor product
of its subsystems, i.e. |Ψ〉AB 6= |Ψ〉A⊗|Ψ〉B and is, therefore, called entangled. In other
words, one cannot describe the state of the individual subsystems separately. Taken
from the experimental point of view, this inseparability causes that any time the state
|0〉A is measured on subsystem A then the subsystem B is always found in the state
|0〉B. Interchangeably, this is valid for |1〉A and |1〉B. One never measures remaining
two options where each particle takes a different state. Expressed mathematically, the
probabilities of measurement of both states |00〉 and |11〉 is |〈00|Ψ〉AB|

2 = |〈11|Ψ〉AB|
2 =

1
2
. Whereas for the remaining two states, |01〉 and |10〉, is this probability zero. Such

1Entanglement can be also defined for multipartite system containing more than 2 subsystems.
2For instance, states |0〉 and |1〉 may be represented as vectors

(
0
1

)
and

(
1
0

)
, respectively.
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correlations can be, though, characteristic even for a classical system and comes, thus,
as no surprise.

Physical systems featuring entangled state (as in Equation (1.1)) are for instance
π-meson decay [22] into an electron and a positron (π0 → e− + e+) where, due to the
conservation of angular momentum, each of these particles e− and e+ has opposite
orientation of spin or a process of spontaneous Type-I parametric down-conversion [1,
82, 83] occurring in a non-linear crystal (more details on this process are provided in
Section 1.3). The mere fact that certain state |Ψ′〉AB can be factorised by states of
the two subsystems, |Ψ′〉AB = |Ψ〉A ⊗ |Ψ〉B, causes that such state is not entangled but
separable.

To illustrate the unique effect of entanglement of the state |Ψ〉AB, diagonal basis,
|+〉 / |−〉, such that |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) will be introduced. A

simple substitution reveals that the entangled state in Equation (1.1) takes the form of

|Ψ〉AB =
1√
2

(|++〉+ |−−〉) . (1.2)

Suppose two measurements on both subsystems’ states, |Ψ〉A and |Ψ〉B are carried out
in this basis +/−. The probability of finding both A and B in the same state, either
|++〉 or |−−〉, |〈++|Ψ〉AB|

2 = |〈−−|Ψ〉AB|
2, is again 1

2
. On the contrary, subsystems

cannot be found in mutually opposite states (|〈+−|Ψ〉AB|
2 = 0 and |〈−+|Ψ〉AB|

2 = 0).
This behaviour is a manifestation of stronger-than-classical correlations that cannot be
explained by classical physics.

The question arises, how is this correlation transferred and by what means is it
mediated? How does one particle “know” of the result measured on the other particle?
Before the measurement is done particles occupy a superposition state. When a mea-
surement takes place the two-particle state |Ψ〉AB collapses into an eigenstate of the
measurement appartus. Now, suppose that both particles are separated by a very long
distance, for example light years away from each other, and measurements on them are
done exactly in the same moment. Then the collapse of two-qubit state would have
to propagate faster than light which seems to be incorrect since it contradicts theory
of relativity [84]. It was generally accepted that no physical event can influence its
surroundings more quickly then light can propagate not to break principle of causality,
one of two statements of the so-called local realism. This concept was advocated by
Einstein, Podolsky and Rosen (E., P. & R.) in a famous thought experiment which is
drawing the same seeming paradox. Later it became also known under acronym EPR
paradox.

E., P. & R. concluded, among other things, that quantum mechanics does not
seem to describe reality completely. They believed that all properties of any system
are well-defined independently on whether they are measured or not [85]–the second
assumption of local realism. The apparent randomness of measurement outcomes is
according to E., P. & R. caused by our mere deficiency of understanding of physical
systems. Advocates of local realism proposed that this insufficient knowledge can be
modelled in terms of an unknown (hidden) variable Λ, inaccessible for us, which is
influencing behaviour of the state. Existence of such variable is referred to as local
hidden variable theory (LHVT).

Later, in 1964, J. S. Bell [86] theoretically derived inequalities and also predicted
their violation in accordance to laws of quantum mechanics. If such violation were
experimentally achieved, it would disprove the description by local hidden variable
theory and, in affect, would indicate whether quantum mechanics describes reality
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completely. Group of physicists J. Clauser, M. Horne, A. Shimony, and R. Holt (often
abbreviated as CHSH) proposed in 1969 a more general CHSH inequalities [87] that
could be more feasibly experimentally implemented than the original Bell’s inequalities.
It was not until 1981 that A. Aspect, P. Grangier and G. Roger experimentally broke
the inequalities proving that existence of hidden variable model is incompatible with
quantum mechanics and that quantum entanglement is a real phenomenon [88, 89].
Since then Bell inequalities are a subject of testing in various setups, quantum systems
and using more accurate and modern equipment. All experiments are in favour of
quantum-mechanical description of the Universe and contradict the LHVT [90–94].

To illustrate the contrast between quantum theory and LHVT, let us consider a
simple model. Two experimentalists in two separate laboratories, Alice and Bob, share a
bipartite quantum state. Alice and Bob chose to perform one of two mutually orthogonal
projection measurements, denoted A and B, on their part of the state independently
on one another. Each measurement outcome for A and B, respectively, can take two
values a, b ∈ {0, 1}. After many measurements have been performed, a resulting
statistics is revealed being described by a set of joint probabilities P = {P (ab|AB)},
where P (ab|AB) means probability that Alice obtains upon measurement A result
a and similarly Bob after measuring B gets b. LHVT suggests that the result of a
measurement is not given merely on random but is rather governed by a probability
distribution of hidden variable q(Λ) such that the joint probability is in the form

P (ab|AB) =
∑

Λ

q(Λ)PΛ(a|A)PΛ(b|B) . (1.3)

Naturally, q(Λ) is non-negative and normalisable,
∑

Λ q(Λ) = 1. When the joined
probabilities P (ab|AB) obtained from experimental observations cannot be described
in the form of Equatin (1.3) then these observations cannot be explained by any LHVT
and, thus, break local realism. Whenever the respective joint probabilities of parties are
not factorisable in manner of the above equation, they are called nonlocal [95, 96]. Usual
way how to detect nonlocality is to test Bell’s (or various Bell-type, e.g. Svetlichny [97],
CHSH, etc.) inequalities. For instance, CHSH inequality [87] is defined as

CHSH = P (00|AB)− P (01|AB) + P (10|AB) + P (11|AB) . (1.4)

When gathering the measurement statistics of CHSH factor, only events when detectors
of both Alice and Bob clicked, so-called coincident counts (detections) denoted CC,
are considered. Joint probabilities are expressed in terms of these coincidence counts
as P (ab|AB) = CCab∑1

i,j=0 CCij
. It can be shown that for an example such as this one can

always find LHV model if and only if |CHSH| ≤ 2. Quantum mechanics, on the contrary,
allows for |CHSH| ≤ 2

√
2. The states with CHSH factor 2 < |CHSH| do not meet the

local realism assumptions and are referred to as nonlocal.
All separable states (not entangled) can obviously produce joint probabilities ex-

pressed in the form of Equation (1.3). It, thus, follows that in order to violate CHSH
inequalities the investigated quantum state must be entangled (nonlocality implies en-
tanglement). The opposite is, however, not always true [98]. There are states that
cannot indeed be expressed as separable but the measurement results do not exclude the
LHVT interpretation. Besides entanglement and nonlocality, there are other criteria of
states describing properties inaccessible to classical physics. They constitute an open
area of research like those considered in Chapter 4. Similarly, one can generalise all
these criteria to multipartite quantum state and formulate conclusions such as those
experimentally studied in Chapter 3.
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1.2 Linear-Optical Elements

Goal of this Section is to introduce the reader to optical elements commonly used on
the platform of linear optics to implement quantum experiments and tasks. In order
to understand operation of more complex experimental setups, the following Section
presents the main parts these setups consist of, i.e. (polarising) beam splitters, wave
plates and beam displacers. Their action on photonic states will be mathematically
expressed. Even though, the considered components were used originally for purposes
of classical wave optics, transformations these components impose on the annihilation
operators (explained in Section 1.2.1) of individual modes are fairly similar.

Apart from these components there are also opto-mechanical parts playing an im-
portant role. They hold (post holders), rotate and tilt (rotation stages), and move
(translation and piezo motorised stage) the optical components. Since photons do not
directly interact with those auxiliary parts, they will not be described here.

Extensive theory of optical fibres is also omitted here because they are considered
only as much as a tool description of which does not directly relate to the topic of this
Thesis. It is sufficient to mention that within presented experiments, single-mode (SM
600) or multi-mode fibres by Thorlabs Inc. were used. Both the fibre core and cladding
are manufactured of fused silica glass (SiO2) with typical value of refractive index being
around 1.45. Single-mode fibres are much less prone to collect noise with respect to
multi-mode fibres because their geometry, namely smaller so-called acceptance angle,
complicates coupling of light into them. Another advantage is that the distribution
of intensity of light guided by this fibre corresponds to the fundamental mode LP01

(TEM00) with only one intensity maximum so higher spatial modes are cut off. Which
is particularly important for perfect interference of two beams.

1.2.1 Beam Splitters

Principle of beam splitter (BS) or beamsplitter lies in partial reflection and transmission
of incident light. It is compactly manufactured in the form of a glass plate or a prism
features of which are obtained by depositing a thin film on its surface. Beam splitters
are inseparable components of interferometers like (Mach-Zehnder, Sagnac, Michalson,
etc.) because they allow splitting and subsequent rejoining of incident light beams.
Alternatively BS can be manufactured on platform of fibre optics by means of coupling
of evanescent waves between 2 fibres. Such BSs may even have various splitting ratios
like 49:51, 30:70, 10:90, etc. Effective splitting ratio, caused by polarisation dependent
losses, is important for quantum cloning discussed further in Chapter 2.

If we neglect losses that each beam splitter intrinsically has, one can describe BS
by it’s intensity reflectance R and transmittance T in the way that R = 1 − T. In
case when splitting ratio T/R equals 1, the incident beam power with intensity Iinc is
evenly split into two output beams. As amplitude of an electromagnetic wave (field) A
is proportional to

√
Iinc, its transformation by a BS can be expressed in matrix form:(

A
(1)
out

A
(2)
out

)
=

(
t r′

−r t′

)
︸ ︷︷ ︸

ÛBS

(
A

(1)
in

A
(2)
in

)
, (1.5)

with r and t being reflection and transmission amplitudes associated with A which can
be conveyed as: |r|2 = R and |t|2 = T. The prime denotes these functions for the
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second input port. From unitarity, as mentioned further, of a loss-less transformation
it follows that r = r′ and t = t′.

Second quantisation [99, 100] of electromagnetic field postulates that amplitudes A
are replaced by annihilation operators â resulting into quantum mechanical description(

â
(1)
out

â
(2)
out

)
=

(
t r
−r t

)
︸ ︷︷ ︸

ÛBS

(
â

(1)
in

â
(2)
in

)
. (1.6)

The terms r and t have to follow normalisation condition |r|2 + |t|2 = 1. The BS
is considered lossless, therefore energy during the transformation has to be conserved.
This requirement ensures unitarity of the transformation done by the BS, i.e. it has to
follow Û†Û = 1̂l. For this reason, BS may be characterised by an effective parameter ϑ.
Utilising the general form of unitary matrix, equation (1.6) can be rewritten as(

â
(1)
out

â
(2)
out

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

)(
â

(1)
in

â
(2)
in

)
, (1.7)

where the minus sign is a consequence of a phase change that the light experiences
while reflected from the BS [101].

The commonly used BSs have balanced splitting ratio, i.e. 50:50 or R = T = 1
2
,

which allows for simplification of above unitary matrix Û in Equation (1.7). In order to
achieve this, ϑ has to equal to π

4
. Then, the unitary matrix for balanced BS is expressed

as

ÛBS = 1√
2

(
1 1
−1 1

)
. (1.8)

For annihilation â and creation operator â† it follows from the algebra of quantum me-
chanics that [â,â†] = ââ†− â†â = 1. It turns out that electromagnetic field has formally
the same Hamiltonian3, Ĥ = ~ω(â†â+ 1

2
) with ω representing angular frequency [100]

as linear harmonic oscillator. Electromagnetic field has also its eigenstates (also called
Fock or number states) |n〉: Ĥ |n〉 = ~ω(â†â + 1

2
) |n〉, where n = 1, 2, 3, ... stands for

number of photons in the given mode. Annihilation and creation operators act on Fock
states in the following way: â |0〉 = 0, â |n〉 =

√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉.

So, â decreases the number of photons by one whereas â† adds one photon, hence their
names annihilation and creation operator, respectively. In other words, they denote
absence or presence of a photon.

By use of this formalism, an effect of Hong-Ou-Mandel (HOM) interference [102]
will be shown here. It is a quantum phenomenon involving bunching of photons on BS.
It is further discussed from the experimental point of view in dedicated Section 1.4.
HOM interference occurs when there is one photon at each input port, denoted as
1

(1)
in 1

(2)
in , in the same time interacting with the other one. Naturally, there are 4 possible

solutions shown in Figure 1.1. Moreover, bearing in mind that vacuum state, |∅〉, of
all input modes needs to yield vacuum output in all modes, it is possible to summarise

3Hamiltonian is a function of energy of the system.
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the equation as∣∣∣1(1)
in 1

(2)
in

〉
= â

†(1)
in â

†(2)
in |∅, ∅〉

BS: |T|=|R|−−−−−−−→ 1

2

(
â
†(1)
out + â

†(2)
out

)(
â
†(2)
out − â†(1)

out

)
|∅, ∅〉 (1.9)

=
1

2

[(
â
†(2)
out

)2

−
(
â
†(1)
out

)2
]
|∅, ∅〉 (1.10)

=
1√
2

(∣∣∣2(2)
out, ∅(1)

〉
−
∣∣∣∅(2), 2

(1)
out

〉)
, (1.11)

where we used unitarity of ÛBS and the Equation (1.8). Interestingly enough, cross
terms of creation operators in Equation (1.9), â†(1)

out â
†(2)
out , cancel out leaving only bunching

terms none-zero (Equation (1.10)). Obviously, photons tend to gather together and
leave always only by one output port. The output state in Equation (1.11) is entangled,
namely spatially, and the entanglement is the strongest for balanced beam splitter
(|T| = |R|).

By facilitating interactions between two spatial modes of light, the BS is a key
component for implementation of a large number of quantum information experiments
like teleportation [42], quantum logic gates (such as controlled NOT or controlled
phase) [103–105], quantum cloning [106–110] discussed further in Chapter 2 and boson
sampling [A2] which exploits scattering of identically prepared bosons, like for instance
photons.



1.2. LINEAR-OPTICAL ELEMENTS 15

BS:|R| = |T|

BS(ϑ)

(1)|1in

(2)|1in

(1)
|Øout

(2)|2out

(2)|1out

(1)|1out(1)|1out

(2)|1out

(1)|2out

(2)
|Øout

Figure 1.1: Visualisation of HOM interference at balanced BS as derived in Equations (1.9)
– (1.11). Couple of cube BSs in the middle of the Figure denotes scenarios where either both
photons are transmitted or reflected. However, because of opposite signs respective creation
operators cancel out and these scenarious will not occur. The only possible scenarios are
those where photon from one input port is transmitted and photon from the other input
port is reflected (phenomenon of HOM interference). This situation is depicted as couple
of BS in the bottom of the Figure.
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1.2.2 Polarisation-Dependent Beam Splitters

A beam splitter introducing polarisation dependent splitting ratio will be called polarisa-
tion-dependent beam splitter (PDBS). Description of how PDBS acts on single photons
may be derived from relations obtained for BS (in Equation (1.6)). It is only necessary
to incorporate polarisation degree of freedom in addition to spatial modes â(1) and â(2).
This effectively enlarges the transformation space from 2 to 4. The transformation
relation then reads

â
(1),H
out

â
(2),H
out

â
(1),V
out

â
(2),V
out

 =


tH rH 0 0
rH tH 0 0
0 0 tV rV

0 0 rV tV


︸ ︷︷ ︸

ÛPDBS


â

(1),H
in

â
(2),H
in

â
(2),V
in

â
(1),V
in

 , (1.12)

where just for illustration, p-polarisation4 was substituted by H and s-polarisation5 by
V . Further simplification is achieved when a fully polarising BS is considered. From
the principle of its operation it is valid that tH = rV = 1 and rH = tV = 0. The unitary
matrix has then the form of

ÛPBS =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In its construction PDBS resembles BS just with the difference that deposited thin
layer imparts various splitting ratios to differently polarised light. However, both
polarisations are not allowed to interact in the basis in which the transformation (1.12)
is prescribed [111].

Polarising beam splitter (PBS) or sometimes beam-splitting polariser is a special
case of PDBS. It is used to split incident light beam separating it into two beams with
perpendicular polarisations as depicted in Figure 1.2. These polarisation components
are often denoted as s-polarisation and p-polarisation. Usual PBS transmits p-polarised
light and reflects s-polarised one. This is achieved by several methods. One of them is
a cube prism made out of two triangular prisms formed by dense flint glass cemented
together6. Dielectric coating applied to the joint of the cube then mediates the beam
separation (via interference [112, 113]).

There are other principles of operation of PBS, one of them employs so-called
birefringent prisms. Among the most known types are those of Glan-family, Wollastone,
Rochon or Nicol prisms [114] which are made of materials like quartz or calcite. When
optical axis is appropriately orientated with respect to the incident beam, this beam
is, as a result of birefringence, split into two beams. One of them is polarised along
ordinary (o) direction (or axis) and the second one along extraordinary (e) direction.
Light incident on such a crystal is decomposed into two mutually orthogonal polarisation

4from German word parallel, referring to polarisation laying in parallel direction to the plane of
incidence

5from German word senkrecht referring to polarisation laying in perpendicular direction to the
plane of incidence

6For technical specifications see directly the web side of the manufacturer:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=739
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components. Similarly, as in the case of BS they find their application in quantum
information tasks.

p-polarised
light

s-polarised
light

ain
(1)

aout
(2)

aout
(1)

PBS

Figure 1.2: Action of a polarising beam splitter. Incident beam is brought to the PBS by an
input port (1) denoted by the index (in). The beam is then split into two perpendicularly
polarised beams leaving PBS by two output ports (1) and (2). Polarisation of the reflected
beam is perpendicular to the plane of incidence (not depicted in the Figure) which is given by
incident beam and perpendicular to the boundary (visualised by a purple plane). Polarisation
of the transmitted beam is on the other hand parallel to this plane.

1.2.3 Wave Plates

Polarisation state of light may be easily transformed by use of an optical component,
a wave plate (WP), made of birefringent material. Two most notable examples are
half-wave plate (HWP) and quarter-wave plate (QWP). WPs are made of uniaxial
materials such as quartz or mica, where ordinary and extraordinary directions of elec-
tromagnetic field oscillations (polarisations) exist. This results in different refractive
indices, no and ne. Light incident on such a crystal is decomposed into two mutually
orthogonal polarisation components with different phase velocities. Direction for which
light experiences higher (lower) refractive index is called slow (fast) axis. Difference of
velocities unavoidably imposes phase shift or retardation between both polarisations

∆Γ =
2π d

λ
|ne − no| . (1.13)

The crystal has to have carefully chosen width d to reach certain value of ∆Γ. Specifically,
for ∆Γ = π the crystal is called HWP and for ∆Γ = π

2
it is QWP.

A transformation matrix of WP, ÛWP, acting on a vector of annihilation operators
mixes the respective modes in a similar manner as a BS works for spatial modes
(Equation (1.6)) [115]. In general, the retardation (in Equation (1.13)) imposes a
matrix unitary transformation in the basis of o- and e-directions. It is customary
to rotate the WP which produces the following effect in the basis of laboratory H
and V polarisations [113]: ÛWP = R−θ ÛWP(0)Rθ, where θ is an angle between slow
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axis and the direction of H polarisation, rotation matrix Rθ =
(

cos θ sin θ
− sin θ cos θ

)
and the

transformation matrix of WP in non-rotated state reads [115]

ÛWP(0) =

(
e−i∆Γ/2 0

0 ei∆Γ/2

)
.

Particular solutions for rotated HWP and QWP are:

ÛHWP = −i
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
and

ÛQWP =
√

2
2

(
1− i cos 2θ −i sin 2θ
−i sin 2θ 1 + i cos 2θ

)
.

Rotated by an angle θ, the effect of the HWP is as follows: It rotates incident linear
polarisation by an angle 2θ so output remains linearly polarised. Both HWP and QWP
change the global phase. Moreover, QWP adds a phase between H and V polarised
light. In other words, depending on the angle θ, it thus changes ellipticity.

Unitary nature of ÛWP(θ) causes that WP transforms a pure polarisation state into
another pure one. It can be shown that transformation of any general polarisation
state can be accomplished by a set of QWP, HWP and QWP [116]. Similarly, a
couple of HWP and QWP is sufficient to produce any polarisation state from any
linear polarisation state [117]. This quality was exploited for polarisation encoding and
projections of qubits within experiments presented in this Thesis (namely projections
are treated in the Section 1.6).

1.2.4 Beam Displacer and Beam Displacer Assembly

Beam displacer (BD) is somewhat similar in its function to BS. BDs are typically
fabricated from birefringent material such as calcite or yttrium orthovanadate (YVO4)
for applications at longer wavelengths. Prism like Rochon or Wollastone may be also
considered as BDs. Unlike BS, however, the separated beams upon leaving the BD
continue in the parallel direction with respect to the input beam. Typically, after exiting
the BD both modes remain displaced by a constant length, for instance few7 mm. As a
result of so-called walk-off effect, this component separates incident light beam into o-
and e-beam, each sensing different refractive index no and ne (Figure 1.3). Specifically,
o-beam travels through the crystal along the direction of the incident beam. On the
other hand, e-beam has a different direction, dependent on an angle of crystal’s optical
axis and k-vector of incident beam. Notably, both o- and e-beams are by the action of
birefringent crystal mutually orthogonally polarised [113, 118, 119]. Within experiments
presented in this Thesis, BDs can be mounted in such a way that horizontally polarised
light continues straight whereas vertically polarised light is deviated.

Within the platform of linear optics, BDs are employed as BSs whenever the or-
thogonal separation of light beams is not desired. BDs were integral parts of setups
discussed in Chapter 3 and formed an intermediate step towards construction of setup
presented in Chapter 4.

BDs can also implement polarisation dependent losses and a phase shift between
polarisation components by means of an interferometric device, referred to as beam

7for instance BD40 by Thorlabs Inc. provides 4 mm separation
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displacer assembly (BDA) depicted in the Figure 1.3. The term polarisation dependent
losses means a change of transmittance of a given polarisation state or mode. To
introduce such losses, one might simply employ even a single piece or a couple of plane-
parallel glass plates rotated close to Brewster’s angle8. However, such method has a
drawback that all polarisation modes are bound to undergo a change of transmittance.
This issue is solved by the very BDA which by means of conversion of polarisation
modes into two spatial modes allows to apply separately onto chosen mode some means
of attenuation (like neutral density filter).

The working principle of BDA is as follows: the first BD separates the incident
beam creating two beams as discussed earlier. In order to rejoin these two beams back
together the polarisation states have to be interchanged. For this purpose the setup
contains a HWP set at 45° that switches polarisation states of o- and e-beam. Only
now the two beams are brought to the second BD which reunites the two spatial modes.
However, complicated adjusting process and reflection losses on surfaces of crystals are
among the drawbacks of this method.

BD1 BD2

Optical
axis

HWP
@45˚

o-beam

e-beam

Figure 1.3: Visualisation of a beam displacer assembly. It consists of two BDs and a HWP.
First BD separates incident light into o- and e-beam while the second BD, by virtue of
HWP at 45◦ flipped the polarisation states, joins those two beams back together [118].

1.3 Source of Photon Pairs

In our experiments we used a laser system Paladin Nd:YAG by Coherent company with
integrated third harmonic generation at λ = 355 nm. Its repetition rate is 120MHz
and mean power reaches 2W which is further reduced to 215mW. This beam is
utilised to pump a pair of non-linear crystals β-BaB2O4 (β-barium borate which is
often abbreviated as β-BBO). In both of these crystals, a photon pair is generated via
phenomenon of spontaneous Type-I parametric down-conversion [1, 82, 83, 118]. With
some probability a pump beam photon with angular frequency ω is transformed into
two secondary photons of lower angular frequencies ω1 and ω2. It holds that ω = ω1 +ω2

and for wave vectors k = k1 + k2 (depicted in the upper part of Figure 1.4) so the
energy and momentum are conserved in this process. Apart of fulfilment of the law of
conservation, the secondary photon’s direction ki has no preferred space orientation and,

8For light wave incident on the boundary between two media each with refractive index n1 and
n2, the value of Brewster’s angle is expressed as θB = arctan n2

n1
. Then light transmitted through

the medium is partially polarised whereas reflected wave is fully s-polarised. Controlling an angle of
incidence provides an effective means to acquire polarised light from unpolarised one.
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therefore, covers surface of a cone. Further to that, generated photons leave crystals
in axially symmetric directions with respect to beam. Everywhere in this direction
couplers may be positioned to collect these photons (visualised in the lower part of the
Figure 1.4). It is worth stressing that if apex angles are small, for typical BBO crystal
3°− 4°, the position of photons’ origin is smeared and, thus, uncertain due to small size
(orders of mm) of the BBO crystal. For this reason the down-converted photons from
the 1st and 2nd crystal are indistinguishable.

-BBO2x

Pump
beam

k

k1 k2

Figure 1.4: The process of Type-I spontaneous parametric down-conversion in a couple
of nonlinear crystals β-BBO (Kwiat source). Down-converted photons from the 1st (2nd)
crystal cover surface of a deep red (light red) cone centred around the pump beam (blue
line). Photons collected in directions (an example of such ones marked by black ellipses)
that fulfil the energy and momentum conservation law (visualised in the upper part of the
Figure) are by virtue of small apex angle of these cones practically indistinguisable [1, 118].

In case of our source, the BBO crystals provides us with two output photons of
equal angular frequencies at wavelength9 λ1,2 = 710 nm (= 2 · 355 nm). This process is
interesting because created photons are correlated in polarisation, (angular) frequency
(or energy) and in direction of their motion. For this reason it is widely used in quantum
optical experiments.

The crystals are positioned so that their optical axes lay in mutually orthogonal
plains. With respect to that, the 1st crystal producesH polarised photons when pumped
by V polarised laser beam whereas the 2nd crystal produces V polarised photons
when pumped by H polarised laser beam. Because of the pump beam coherence and
indistinguishability of the photon coupling behind the crystals, we are able to generate
a coherent superposition of photons from both the crystals. This technique is known as
crystal cascade or a Kwiat source [120, 121]. The pump power together with geometrical
and material properties of our crystals make simultaneous generation of multiple photon
pairs negligible.

9The relation between angular frequency and wavelength is given by equation ω = 2πc
λ
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In all experiments presented here we postselect solely on the cases when both photons
were registered by the detectors. This procedure effectively eliminates situations when
no photon pair was generated or at least one of the photons has not been detected. One
can, thus, assume that the generated state takes the effective form

|ψ〉 = cos θ |HH〉︸ ︷︷ ︸
1st crystal

+eiϕ sin θ |V V 〉︸ ︷︷ ︸
2nd crystal

, (1.14)

where θ and ϕ are dependent on polarisation state of the pump beam. Specifically,
the parameter θ is controlled by rotation of HWP inserted to pump beam before the
crystals while the ϕ is controlled by pump beam ellipticity.

1.4 Hong-Ou-Mandel interference
Once the source is constructed its qualities have to be tested. We can verify indistin-
guishability and temporal coherence within separable state, e.g. |HH〉. Photons are
governed by Bose-Einstein statistics that dictates photons in the same quantum state
to gather together. So, in the case photons are genuinely indistinguishable, they bunch
together at the BS and leave it together by the same output port, as demonstrated in
Section 1.2.1. This special kind of two-photon interference is called Hong-Ou-Mandel
(HOM) interference [102]. When the photons may be distinguished for some reason,
they leave BS with some probability by two different ports. Therefore, HOM inter-
ference is feasibly detected in terms of coincidence detections or counts (CC), i.e. by
means of electronic modules the events are counted when each photon of the pair was
detected in different detector within a short time interval referred to as coincidence
window. Typical width of this window is several ns which is much more than the spread
in time of creation of both photons.

The measurement setup is depicted in Figure 1.5(a). Photons are entering the BS
by input ports 1 and 2 and leaving it by ports 3 and 4. One arm of the interferometer
has adjustable length which can be fine tuned by means of motorised translation stage
coupler in order to scan the interferogram. Control software registers both the position
of the motor and the CC from timing electronics. Assuming photons are in the same
quantum state, it is expected that when the motor reaches the position where the arms
are just of the same length, CC will abruptly decrease ideally to zero. Such observed
shape is known as HOM dip and is visualised in Figure 1.5(b).

As every interference pattern, the HOM interference may be evaluated according to
its visibility10. There are 3 options how to improve the visibility. As already mentioned
the source has to be fine tuned to provide indistinguishable photons which have to be
in a pure state [122]. In other words, if the generated state is influenced for instance by
white noise, such noise increases the minimum of interference pattern and, as a result,
visibility drops. Better indistinguishability of photons in terms of their energy may be
achieved by frequency filtering by incorporating narrow bandwidth filters (also known as
interference filters with typical spectral width of 10 nm and less). Finally, single-mode

10In order to obtain distinct interference within the experiment, one needs to achieve maximal
separation between baseline or differently value of CC outside the interference pattern (CCmax) and
minimal value of the HOM dip (CCmin). Such quality is described by so-called visibility

ν =
CCmax − CCmin

CCmax + CCmin
. (1.15)

Visibility can maximally reach unit value.
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optical fibres (TEM00) make the photons spatially indistinguishable preserving high
interference visibility. Employment of these elements, however, unavoidably results in
decrease of the signal putting strict requirements on adjusting of the whole setup to
obtain as high signal as possible.

It is noteworthy that the dip (Figure 1.5(b)) is accompanied by two side maxima
and its shape is of the form a − b · e(x−c)2/f sinc(x−c

g
), where a, b, c, f and g are fit

parameters. This shape is caused by specific shape of spectral filtering imposed on
photons. Their spectrum is effectively a convolution of Gaussian function (due to setup
geometry) with the rectangular shape of the interference filter used. Because of the
high sensitivity of the HOM interference visibility, it serves as a precise indicator of
imperfections of the source.
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Figure 1.5: (a) Sketch of a part of an experimental setup with which one could obtain HOM
dip [122]. Length of one input port may be adjusted by means of a motorised translation.
(b) These data of HOM dip were obtained while adjusting the experiment presented in
Chapter 2. Error bars are smaller than markers’ size. The dip was fitted according to the
function mentioned in the text. Visibility that equals to 0.96 was calculated according to
Equation (1.15) where intensities were substituted by minimum of the fit function and by
baseline of the dip. Each data point has been collected for 10 s.

1.5 Encoding of Qubits

Once the photon source has been described, the focus of this Section will be how to
make use of the photons to encode into them quantum information. (For the definition
of qubit see again the Introduction: Basics of Quantum Information.) Generally, single
photon is a quantum system that provides several means for information encoding. The
aim of the following text will be to acquaint the reader with polarisation and spatial
encoding since these were used in experiments presented further. As for the first one,
it is readily available since it is feasible to change photon’s polarisation and finds its
application also in classical optics. Other prominent techniques include encoding into
continuous variables of position and momentum of photon, x̂ and p̂, respectively [123,
124], and encoding into angular orbital moment [125–127]. Intrinsically photons carry
spin (s = 1) and additionally under some circumstances they may have an orbital
angular momentum, too. Because orbital angular momentum states are integers and
symmetrical with respect to zero, a three- and more-level system is formed. As such,
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they have a potential to accommodate general qudits [126, 128]. Encoding by means of
occupation numbers is also available [129, 130], or time-binning can be used [128, 131].

1.5.1 Polarisation Encoding

Encoding into the polarisation state of light is relatively straightforward. As is depicted
in Figure 1.6, there is a multiple choice of basis formed by mutually orthonormal vectors,
e.g., |H〉 / |V 〉, |D〉 / |A〉 and |R〉 / |L〉. So the encoding is done by choosing a basis,
for example H/V , and denoting horizontal state |H〉 as logical qubit |0〉 and vertical
state |V 〉 as |1〉. Any general superposition of logical states corresponds to a pure
polarisation state11, e.g. |0〉+ |1〉. In this particular example, it would correspond to
diagonal polarisation, but in general elliptic polarisation.

φ

ϑ

|H

|V

|R

|A

|L

|D

|ψ

Figure 1.6: A Bloch sphere, depicted in this Figure, facilitates visualisation of polarisation
states and corresponding qubit states. Polarisation basis are denoted as follows: horizontal
|H〉, vertical |V〉, diagonal |D〉, anti-diagonal |A〉, right-handed circular |R〉 and left-handed
circular |L〉, respectively. Ending point of any vector reaching surface of the sphere describes
a pure state. Pure states are those mentioned so far like that found in Equation (1.1).
Utilising Euler angles the state can be expressed as |ψ〉 = cos (ϑ/2) |H〉+ eiϕ sin (ϑ/2) |V〉.
Mixed states (see the next Section 1.6.1) are often expressed in a form of density matrix
(in Equation (1.16)) and they are visualised as vectors laying inside the sphere and starting
in its centre.

As already mentioned, polarisation state of photons may be easily prepared. It can
be shown that by combination of HWP and QWP one may obtain any required pure
polarised state from an original |H〉 state. For exact transformation of input light by a
WP see again Section 1.2.3. There is only one drawback: While propagating in standard
circularly symmetric fibres, polarisation is easily changed by every bend of the fibre.
Therefore, such changes have to be (i) prevented by employing this encoding in free
space rather than in fibres or, one has to (ii) e.g. fix the polarisation change by fastening
fibres to the optical table, and then (iii) compensate this change on several places within

11normalisation constant has been omitted for simplicity
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every setup typically by mounting polarisation controller (PC). The polarisation state
is easily projected by means of PBS, as is dicussed in Section 1.6, which is able to
separate two mutually orthogonal polarisation states. It should be noted that Kwiat
source inherently produces photons that are already found in a polarisation entangled
state.

1.5.2 Spatial Encoding

Spatial encoding is also referred to as dual-rail encoding. In general, logical qubits
denote two distinct paths a photon may take. There are several means of experimental
implementation. Within experiments presented in this Thesis, encoding and subsequent
decoding of qubits formed two paths, thus, effectively realising a Mach-Zehnder inter-
ferometer. Notably, the advantage of optical qubits is that one photon may be encoded
into more than one degree of freedom. Such technique was used in the experiment in
Chapter 3, where both polarisation and spatial encoding caused creation of 3-qubit
state by means of just 2 photons present in the setup.

1.6 Quantum State Analysis

The very last step of each experiment is to analyse encoded qubits. In order to do so
qubits have to be first projected into different bases corresponding to the given encoding
method. Detectors capable of detection of such low signals are briefly mentioned in the
following Section 1.6.2.

1.6.1 Analysis of Polarisation Encoded Qubits

Within presented experimental setups, polarisation encoding is the most frequently
used one. Furthermore, another employed means of encoding, spatial encoding, may be
converted into polarisation as well (see Chapter 3). The analysis of the encoded state
is done by gradual projecting it into bases states and gathering event counts for some
given time interval. In case of polarisation encoding the projection is done in the same
manner as the encoding: by means of HWP and QWP in addition to PBS that separates
two polarisation states from each other. Specifically, by means of these components
all 6 projections are set onto horizontal, vertical, diagonal, anti-diagonal, right-handed
circular and left-handed circular polarisations while counts are simultaneously measured
and cumulated. In case of a 2-photon state, analysis consists of all combinations of 6 · 6
previously mentioned projections.

Because of unavoidable experimental imperfections or deliberate noise introduction,
the description of observed quantum states using the |ψ〉 formalism is not sufficient.
The state needs to be described in terms of a density matrix %̂. States that were
influenced, e.g. by white noise, are a statistical mixture of pure states which prevents
them from being expressed as a simple sum of pure states. Thus, such states are fully
characterised by a density matrix %̂. To estimate the density matrix of quantum state
we employ the maximum likelihood algorithm [132] that searches for the most plausible
density matrix with respect to the observed projection counts. Generally, the density
matrix is defined as

%̂ =
N∑
i

pi |ψi〉 〈ψi| , (1.16)
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where it is summed over a general number of N states each included with a probability
pi. Specifically, for example density matrix for 2 logical qubit state is of the form of

%̂ =


〈00| 〈01| 〈10| 〈11|

|00〉 . . . .
|01〉 . . . .
|10〉 . . . .
|11〉 . . . .

 .

For each density matrix it holds that12 Tr(%̂) = 1 and that it is hermitian, i.e. %̂† = %̂.
Each diagonal component corresponds to projection probability onto a given basis state
(depicted as kets in the above Equation). For the pure state, the density matrix has
a trivial form %̂ = |ψ〉 〈ψ|. One can quantify purity P = Tr(%̂2) and fidelity of the
observed density matrix with the target pure state defined as F = 〈ψ|%̂|ψ〉. It should
be noted that in density matrix notation, an entangled state (see Section 1.1) cannot
be expressed in the form %̂AB = %̂A ⊗ %̂B.

1.6.2 Detectors and Electronics

Quantum information experiments presented in this Thesis are constructed such a way
that two photons are, with certain probability, found in the same output arm, yet they
do not to cause coincidences and, as a result, do not contribute to HOM dip. Further
to that, postselection of CC guarantees a well defined source of photon pairs so it is
not important to differentiate the exact number of impinging photons. The parameters
that are crucial for here presented experiments are high detector efficiency in order to
detect the incoming photons with high probability, low dark count rate so that the
signal was not lost in noise and a short dead time because of high rate of the source to
name just a few.

Within the experiments we employed single-photon avalanche diodes SPCM-AQRH-
14-FC by Excelitas company13 and COUNT® - NIR by Laser Components14. Since
the detectors produce a TTL pulse and Dual Counter Timer15 (by Ortec company),
registering events from both detectors, is able to work only with NIM logics16, a TTL
to NIM conversion has to take place. Coincidences are recorded by electronic modules
TAC (an acronym of Time-to-Amplitude Converter) together with SCA (from Single
Channel Analyser) by Ortec company17.

12Tr stands for the trace of a matrix and it is defined as a sum of diagonal elements of that matrix.
13https://www.excelitas.com/product/spcm-aqrh
14https://www.lasercomponents.com/de-en/product/count-nir/
15https://www.ortec-online.com/products/electronics/counters-timers-rate-meter-and-

multichannel-scaling-mcs/994
16NIM standart defines voltage 0 V as logical 0 and −0.8 V as logical 1. In addition to it, it is

required 50 Ω of input impedance.
17https://www.ortec-online.com/products/electronics/time-to-amplitude-converters-tac/567
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Chapter 2

Experimentally Attacking Quantum
Money Schemes Based on Quantum
Retrieval Games

Contents of this Chapter is based on the Author’s article [A1].

2.1 Introduction
The concept of quantum money (QM) was proposed by Wiesner in the 1970s. Its main
advantage is that every attempt to copy QM unavoidably leads to imperfect counterfeits.
In the Wiesner’s protocol, quantum banknotes need to be delivered to the issuing bank
for verification. Thus, QM requires quantum communication which range is limited by
noise and losses. Recently, Bozzio et al. (2018) have demonstrated experimentally how
to replace challenging quantum verification with a classical channel and a quantum
retrieval game (QRG). This brings QM significantly closer to practical realisation, but
still thorough analysis of the revised scheme QM is required before it can be considered
secure. We address this problem by presenting a proof-of-concept attack on QRG-based
QM schemes, where we show that even imperfect quantum cloning can, under some
circumstances, provide enough information to break a QRG-based QM scheme.

All payment methods are potential targets of thieves and counterfeiters. Over the
course of history, we have witnessed a race of arms between the counterfeiters and
issuers of various currencies. Remarkably, Sir Isaac Newton, who became the master of
Royal Mint, enforced laws against counterfeiting. Nevertheless, the methods used by
Newton become obsolete when it comes to modern payment methods. With the rapid
technological progress, we are beginning to consider a situation where counterfeiting
is no longer limited by the available technology, but rather by the laws of nature. An
example of such fundamental limitation is the no-cloning theorem,[133, 134] which
guaranties security of quantum money [38, 39, 135–137].

In a recent paper, Bozzio et al. [78] reported on an implementation of a QM scheme
based on QRGs [138–140]. While this result brings QM closer to practical implementa-
tion, here we demonstrate that QRG-based QM schemes are still vulnerable to a new
kind of attack (for some typical attacks see Ref. [141–145]) which can be considered a
quantum version of sniffing (a hacking method used to monitor classical information).
The general idea of our attack can be used against a broader range of QM schemes
based on QRG [146–148] and potentially on other quantum communication protocols.
Thus, our results can facilitate future practical implementations of QM by providing
a method for exploring the security limits allowed in QRG-based protocols. For the
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Figure 2.1: Scheme of encoding of classical banknotes using their serial number by the
bank. The secret encoding process, like e.g. hash function, is visualised by the Enigma
machine [152].

purpose of our research we have experimentally recreated the original scheme of Ref. [78].
Its working principle can be described as follows: the bank encodes QM (as a quantum
token) using a secret sequence of qubit pairs chosen from the list of eight options:

S = {|0+〉, |0−〉, |1+〉, |1−〉, |+ 0〉, | − 0〉, |+ 1〉, | − 1〉} , (2.1)

where |0〉, |1〉 are logical qubit states, and |±〉 = 1√
2

(|0〉 ± |1〉) stand for their super-
positions. Note that three bits are needed by the bank to store information on one
qubit pair on token. The tokens and their serial number are then stored on a quantum
credit card [78, 149, 150] subsequently given to a client of the bank (Figure 2.1). Upon
payment, the credit card is inserted into the vendor’s terminal which is supposed to
perform projection measurements on these pairs in a measurement basis requested by
the bank (randomly chosen to be either 0/1 or +/- for an entire pair). Then, the
terminal sends the classical outcomes of those measurements to the bank. The main
advantage of this scheme is that the terminal measurement itself is sufficient for authen-
tication of the credit card, so quantum states do not have to be sent to the bank for
verification. The bank just checks the results knowing the specific encoded states and
either accepts or denies the payment. A small amount of errors is expected to appear in
the verification procedure to account for implementation imperfections. The acceptable
amount of errors needs to be small enough to ensure that payment by a cloned quantum
credit card is denied. In contrast to the original Wiesner QM scheme [38], no on-line
quantum channel has to be used for payment. Thus, the verifiability problem as defined
by Aaronson and Christiano [151] is at least partially solved.

This protocol is secure against a dishonest terminal only if each quantum sequence
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is generated using a truly random encoding. However, such condition would give rise
to a giant database problem, as discussed in [151] and [153]. The random sequence
approach is highly impractical or even infeasible. In practice, there has to be one secret
encoding function shared by a certain number of quantum banknotes or tokens (i.e.,
sequences of quantum states and their serial numbers). Hence, in our research we test
limitations of sharing a secret encoding by multiple tokens. The tokens are therefore
encoded using a prescription based on the output of a classical algorithm. Inputs to
the this algorithm are the publicly known serial numbers (SN) and secret salt (a secret
number).

The aim of suggested attack is not to copy single banknotes but to be able to
generate new banknotes that pass as genuine. Note that by employing the studied
attack strategy, a terminal can collect in principle unlimited data during its operation.
This attack can be run in parallel while having many wiretapped terminals. Moreover,
we show that by using optimal quantum cloning we can learn the secret faster than by
limiting the attack only to classical data processing.

Although quantum cloning has been already used to counterfeit QM [39], the purpose
of quantum cloning here is completely different and as such is virtually undetectable by
the bank because we copy only parts of quantum tokens (i.e., quantum sequences). In
terms of QRG-based QM protocol, the attacker utilises a compromised payment terminal
enabling quantum cloning of an input qubit (see Fig. 2.2). The terminal performs
measurements on both copies of a qubit providing the attacker with some information
on the encoding used by the bank, if two consecutive qubits from a sequence are cloned.
The frequency of cloning can be arbitrarily small and therefore made unrecognisable
from noise. After gathering enough data, the attacker reveals the secret encoding used
by the bank for preparing credit cards. Since then, they can issue fake quantum credit
cards indistinguishable from the original ones issued by the bank.

Quantum cloning has been proposed and tested as a means of attack on quantum
communications protocols [141–143, 154, 155]. There is, however, a significant con-
ceptual difference between cloning attack on quantum cryptography and the quantum
money scheme discussed in this Chapter. The necessary condition for successful attack
on quantum cryptography protocol is having ideally 100% of the quantum key eaves-
dropped. Otherwise, the security can be attained by privacy amplification arbitrarily
lowering the attacker’s probability of decoding the shared message [156]. On the other
hand, attack on QM based on QRG described within our research only requires to clone
a small fraction of the money tokens. Such infrequent cloning is basically undetectable
in the noise, albeit gathering data would proceed slowly. A typical obstacle in cloning-
based QM attacks is requirement of high cloning success rate as at least half of the
token needs to be cloned successfully (i.e. not destroyed) [39]. This fact needs to be
dealt with on probabilistic platforms such as linear optics. The method discussed in
this Chapter is completely free of this limitation.

2.2 Results of a Quantum Sniffing Attack

We have implemented the quantum sniffing attack on the platform of linear optics,
where qubits are encoded as polarisation states of single photons. The optimal cloning
strategy (i.e., maximizing single-copy cloning fidelity) for copying qubits from the set
S is the symmetric phase-covariant cloning (SPCC) [39, 141, 157]. In the experiment,
pairs of input qubits |ψ1ψ2〉in ∈ S were subjected to SPCC procedure obtaining two
clones %̂1A⊗ %̂2A and %̂1B⊗ %̂2B of the input qubit pair. These clones were then measured
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in the same but random basis. In a QRG-based QM protocol the basis is selected by
the bank. Due to limitations of linear optics based implementations of quantum cloners
[108], the SPCC process is probabilistic and sometimes it fails to deliver the clones.
The probability of successful cloning of one input qubit is denoted P . Therefore the
probability of cloning the entire qubit pair is P 2. Quality of the clones is expressed in
terms of fidelity F defined as F = Fij = in〈ψi|%̂ij|ψi〉in, where i = 1, 2 and j = A, B
denote the first and the second clone, respectively. The probability of finding both
clones %̂iA and %̂iB in a given state |ψi〉in reads F 2. An example of an attack on a
particular qubit pair is shown in Fig. 2.2.
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Figure 2.2: Attack on a quantum credit card utilising a hacked terminal. During a transaction
a pair of states (e.g., |+ 1〉) is extracted from the card and cloned. Here, for simplicity, we
depict only the situation where all the qubits are perfectly copied (the probability of such
event is proportional to F 2). Then, measurements are performed on all four copies in the
basis randomly chosen by the bank (e.g. 0/1). If the measurements on copied qubit pairs
produces one of two results from the bottom block of the table of outcomes, the attacker
learns the originally encoded state (in this case |? 1〉). This procedure is repeated until a
relation between the quantum states and serial numbers is learned. Since then, the attacker
can issue perfectly counterfeit quantum credit cards.
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The theoretical limit for SPCC fidelity [157] is F = 1
2

(
1 + 1√

2

)
≈ 0.854 and on the

platform of linear optics the cloning succeeds with probability P = 1
3
. While the limit

on fidelity is fundamental in its nature, P depends on the physical platform used in a
given implementation and can be arbitrarily close to 1. However, even on the platform
of linear optics, it is possible to clone at arbitrarily high values of P but at the expense
of reaching lower than optimal fidelity F (see hybrid quantum cloners [141, 158]).

The terminal registers two measurement outcomes per input qubit corresponding to
the clones. If the two clones of one input qubit yield identical results, while for the other
yield opposite results, the attacker gains information about the encoding. With the
probability Ptot = Pc +Pe the attacker eliminates six of the original eight encodings (see
Eq. 2.1). One of the two remaining encodings have actually been used by the bank. The
probability of obtaining correct information from the attack is Pc = 1

2
P 2F 2, whereas

Pe = 1
2
P 2(1 − F )2 + P 2F (1 − F ) stands for the probability of getting an erroneous

result due to limited cloning fidelity. Similarly, if the two clones of each input qubit
yield identical results, the attacker knows that only one of four encodings might have
been sent by the bank.

The attacker is able to learn the method of encoding tokens by accumulating mea-
surement results provided that the fidelity is F 6= 1

2
. The cloning operation inherently

introduces errors in the measurement outcomes [133, 134]. Hence, the terminal might
send to the bank incorrect results. If the error rate surpasses a given limit (25% in
Ref. [78]), the bank will reject the payment. Thus, it is necessary to introduce a strategy
of attack considering all circumstances of the measurement (i.e., if cloning failed or
not) and its outcomes to minimise the error rate. There are generally three distinct
strategies: (i) to provide the bank with measurement outcome every time cloning takes
place and even if it fails, send a random value, (ii) to send measurement outcome, only
if it is registered by the terminal and report a lost qubit when cloning fails and (iii) to
measure qubits after their extraction from the credit card in given measurement basis
but do not perform cloning at all.

To quantify the correlations between the attacker and the genuine token we use
mutual information Isec, which expresses how many bits of information can the attacker
obtain upon cloning one qubit pair. The exact value of mutual information depends
on the strategy used, cloning success probability P and fidelity F . In case of the third
strategy (without cloning), its value is 1

2
. For more details on this strategy refer to

section Methods.
Simultaneously, we denote ε the probability of an error being reported to the bank.

The expressions for error rates ε for the two above-mentioned strategies can be obtained
by direct calculations based on analysis of probabilities of all possible scenarios and
read

ε(i) = 1
2
(1− P ) + P (1− F ) , (2.2)

ε(ii) = 1− F . (2.3)

Equation (2.2) takes into account two situations. In the first case, one or both qubits
are lost during cloning and, therefore, random results are reported to the bank (50%
chance of error). In the second case, even if cloning succeeds, non-unit fidelity may
cause the measurement to yield an incorrect result. The error rate in case of strategy
(ii) depends only on imperfect cloning fidelity.

The relation between mutual information Isec (between the bank and the attacker)
and the error rate ε for all strategies is show in Fig. 2.3. In the figure, quantities
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Figure 2.3: Mutual information Isec versus error rate ε for two fixed probabilities P =
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1
3
; 1
}
.

Vertical black dotted line represents error rate associated with security threshold discussed
in Ref. [146] and [147]. Crosses mark the smallest average error introduced by optimal
cloning for a fixed value of P . Error rates below these optimal values cannot be reached
by any physical operation (greyed curves). Circles stand for limit of classical copying (F =
0.75). Thus, the segments of curves between circles and crosses mark the regime of
quantum copying. It follows from Eq. (2.3) that classical copying limit in strategy (ii)
always corresponds to intersection between the relevant curve and the security threshold.
For more details on strategy (iii) refer to section Methods.

Isec and ε are functions of cloning fidelity for 1
2
≤ F ≤ 1 for two cloning success

rates P = 1
3
(linear optics limit [39, 108, 158]) and P = 1 (deterministic cloning [39,

158–160]). In case of deterministic cloning the two attack strategies coincide, but for
probabilistic cloning the second strategy provides better results. It is fair to note that the
mutual information of any simple linear-optical cloning strategy is lower in comparison
with the no-cloning strategy (iii). On the other hand, with deterministic cloning, one
can reach even higher values of mutual information and therefore cloning strategies
need to be considered for security implications. Additionally, machine learning-based
algorithms may require data with as little noise as possible even at the expense of the
overall quantity. Post-selection on successful cloning events allows to distil such sample.
Corresponding conditional mutual information yields a significantly higher value when
both qubits are successfully cloned than for the no-cloning strategy (iii) (Fig. 2.4).

To prove the working principle of the quantum sniffing attack, let us consider a
specific encoding of the quantum tokens and demonstrate the attacker’s approach to
learning the encoding. Here, we assume that the bank uses a hash function to encode
the tokens. Since the hash functions have become a worldwide standard for encryption
and basis of many classical cryptosystems they would be easily deployable by the bank.
Hash functions are designed to return very distinct results even for similar inputs
making their output unique. Another advantages are, for instance: irreversibility, (i.e.
impossibility to retrieve original message from a given hash), or their repeatability (they
yield the same hash for the same message).

The input can be additionally modified by using a specific secret number (salt). In
this case the hash function is often referred to as salted. For simplicity, let us now
assume that the hash function is known to the attacker, but the salt is secret. For each
token passing through the terminal, the attacker calculates hashes (outputs of the hash
function) of its serial number salted by numbers from a certain range. This way the
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Figure 2.4: Conditional mutual information Isec versus error rate ε. Strategies (i) and (ii)
are equal in this case.

attacker investigates various encodings each corresponding to one secret number (or salt).
Using the information gained by quantum sniffing, the attacker calculates the number
of agreements (matching qubit pairs) between the predictions of the tested encoding
and the measurement outcomes on real tokens. The encoding with highest number of
agreements is most probably the one used by the bank, hence the one corresponding
to the correct salt.

To showcase the attack, we have implemented token encoding using several known
hash-based functions, i.e. MD5 [161], HMAC-SHA512, HMAC-SHA256, and HMAC-
SHA1 (HMAC – Hash-based Message Authentification Code [162]). Typical example
of encoding using SHA512 is depicted in Fig. 2.5. In our proof-of-concept experiment,
the salt has been sought only among three-digit numbers. To distinguish the secret
number from noise originating from random matches, a sample of 4 040 successfully
cloned photon pairs (corresponding to 101 serial numbers used in the experiment) has
been evaluated. To optimise the computational resources of the attacker, the algorithm
gradually refines the set of evaluated secret numbers. Periodically it removes secret
numbers with low number of agreements from the list of evaluated numbers. Once the
number of agreements for one secret number surpasses the average number of agreements
by selected multiple of standard deviation, the algorithm ends and returns that number.
Note that due to some error tolerance, the attacker does not necessarily need to recreate
the original hash function. It would be enough if they found a function which error
rate is below the security threshold.

The size of HMAC output of all used hash functions was set to be 40 bytes. As
a consequence, the number of tokens necessary for guessing the secret number was
independent on the number of digits of their serial number. For each hash function
we have established how many photon pairs need to be successfully cloned in order
to reveal the secret number with sufficient certainty. The results are summarised in
Tab. 2.1. The number of cloned pairs needed does not scale with the length of the salt.
The salt length only increases the classical computing time. According to our numerical
simulation, number of photon pairs necessary for correct guess is linearly increasing
with the number of output hash bits. However, with the length of output hash the
frequency of cloning (number of cloned pairs/total number of transmitted photon pairs)
does not change because the length of the token is also increasing. The output hash and
the token have to have the same length in order to avoid incidents such as two inputs
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Figure 2.5: Dependence of number of agreements on all possible three-digit secret numbers
evaluated for 4 040 successfully cloned photon pairs. The revealed secret number (salt) is
marked by a red circle.

Table 2.1: Minimal number of photon pairs cloned for correct guess of the secret number
(salt).

hash-based function number of pairs

HMAC-MD5 1 400 ± 16
HMAC-SHA512 1 192 ± 14
HMAC-SHA256 1 060 ± 14
HMAC-SHA1 1 272 ± 13

to the hash function yielding the same output. Longer hash output would, therefore,
result in increase of computer search time, however, it would not prevent the attacker
from retrieving the secret number since the searching process is performed in parallel
with the cloning attack. Note that these results were obtained using our experimental
results where the average cloning fidelity was found to be above 80%.

We have also performed a generalised attack in which the attacker did not know
what hash function had been used for encoding. The attacker only assumes the hash
function is one from a given set. In this situation, the attacker has to calculate hashes
using all hash functions in this set to encode serial numbers and count numbers of
agreements as described above. The plot in Fig. 2.6 shows the search for the secret
number among four hash functions. The tokens were encoded using MD5. Our results
indicate that the correct secret number and hash function can be revealed assuming the
hash function is a member of a finite set. The size of which is limited by the available
time and computing power.

2.3 Experimental Implementation
Photonic qubits were encoded as four polarisation states located on the equator of
Poincaré sphere: |D〉, |A〉, |R〉 and |L〉 (i.e. diagonal linear, anti-diagonal linear, right-
handed and left-handed circular polarisations). Thus, the set of possible qubit pairs (2.1)
is given as

S ′ = {|DR〉, |DL〉, |AR〉, |AL〉, |RD〉, |LD〉, |RA〉, |LA〉} . (2.4)

Experimental setup used in our experiment is shown in Fig. 2.7. Photon pairs at λ
= 710 nm are generated in a process of type-I spontaneous parametric down-conversion
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Figure 2.6: Dependence of number of agreements on all three-digit secret numbers. Four
different hash functions are tested. The bank used MD5 for encoding. In this plot, 4 040
successfully cloned photon pairs were analysed. The revealed secret number (salt) is marked
by a red circle.

(SPDC) in a BBO (β-BaB2O4) crystal. The crystal was pumped by Paladine (Coherent)
laser operating at λ = 355 nm. One photon from each SPDC-generated pair served
as one qubit of the cloned banknote. We used a sequence of half and quarter wave
plates (HWP and QWP, respectively) to implement encoding. The second photon from
the SPDC-generated pair was meanwhile used as a cloning ancilla (kept horizontally
polarised as it is the theoretically known optimum for SPCC).

Given the nature of the attacked scheme, phase-covariant cloning is the optimal
form of cloning attack. It has been used to attack distinguished quantum cryptography
protocols such as BB84 [58] or RO4 [163, 164]. The attacked QM scheme uses equatorial
qubits in the state

|ψs〉 = 1/
√

2
(
|0〉+ eiη|1〉

)
, (2.5)

where |0〉 and |1〉 denote logical qubit states and η the phase. For this class of states,
the phase-covariant cloner reaches fidelity of 0.854. Equatorial states can be unitarily
transformed into states laying on the intersection of Bloch sphere and the plain running
through the centre of the sphere for which the optimal cloning transformation is defined
in Eq. 2.6.

Cloning is performed by an unbalanced polarisation-dependent beam splitter (BS)
which implements the optimal SPCC process (for detailed theoretical description see
Ref. [108, 157, 165], for experimental implementation see also Ref. [166]). Particular
splitting ratio for horizontal and vertical polarisations accounted for 0.21 and 0.79,
respectively. During the experiment signal and ancillary photons overlap at the BS
which results with success probability of 1

3
in the cloning transformation:

|0〉in|ψa〉 → |00〉 ,

|1〉in|ψa〉 →
1√
2

(|01〉+ |10〉) ,
(2.6)

where |ψa〉 denotes the state of ancilla.
Subsequently, each photon is projected in the D/A or R/L measurement basis as

requested by the bank (using HWPs, QWPs, and polarisers). The process of cloning
is successful only if each photon leaves BS by different output port. Therefore, we are
interested in coincidences between both output arms. The detection is handled by single-
photon detectors operating with detection efficiency of around 60% and subsequent
electronics. In the experiment, we have registered individual coincident detections one
by one thus genuinely implementing the protocol described in the text.
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Quality of the clones was quantified by fidelity for both clones and each possible
sequence qubit state (Fig. 2.8) by evaluating statistics of observed individual coincidence
events. The average cloning fidelity was calculated to be (80.3 ± 0.3)% while some
clones in the two output arms had slightly different fidelities. Typical detection rate
was 120 pairs per second.

In order to quantify the correlation between the attacker and the information en-
coded as a pair of qubits, we enter the value of mutual information I. This value
determines how many bits of information an attacker can get after cloning one pair
of qubits and depends on the strategy used, success probability of cloning P and its
fidelity F . Mutual information is calculated as

I =
111∑

X,Y=000

pX,Y log2

pX,Y

pXpY
,

where pX =
∑111

Y=000 pX,Y , pY =
∑111

X=000 pX,Y , and X,Y = 000, 001, 010, 100, 110, 101,
011, 111. The technical details on calculating probability distributions needed for calcu-
lating mutual information for all the considered strategies are given in the Supplement
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in Appendix A.1. Here we provide a brief introduction into the working principle of
strategy (iii). Without performing quantum cloning, the attacker measures the qubits
as requested by the bank and simultaneously uses this information to obtain some
knowledge about the encoding used. While this approach enables to rule out some of
8 encodings, these eliminated encodings depend on the order of encoding bases. The
attacker can assume that the order of encoding bases for the received qubit pair is either
Z/X or X/Z, where Z ∈ {0; 1} and X ∈ {+;−}. This order must be random because
there is no way of gaining this information. Thus, maximum information to gain in this
strategy is Imax = 2 instead of Imax = 3 when the order is known. Depending on the
measurement outcomes, with probability 1

2
the attacker can exclude some encodings

and can guess the order of bases correctly only in half of the cases. Only if successful,
half of 4 encodings can be eliminated. This makes Isec = 1

4
Imax = 1

2
.

2.4 Conclusion and Discussion
We have successfully attacked a QM scheme based on QRG [78]. This scheme has
been implemented in a form of quantum credit card containing quantum tokens. We
retrieved the secret number (salt) used for preparing quantum tokens purely by means
of imperfect quantum cloning and computational analysis of measured data (see Fig. 2.5
and 2.6). By learning the exact algorithm for encoding quantum tokens, the attacker
is, in principle, able to produce perfect quantum money counterfeits. It is worth noting
that the optimal strategy of our attack depends mainly on a particular implementation
of bank’s security tolerances (e.g., losses) and chosen physical platform for implementing
the attack. For instance, if the attacker uses deterministic optimal cloning even less
qubit pairs is needed to perform the attack (see Fig. 2.3).

However, the attack was feasible because the bank encoded sufficiently high number
of photon pairs using the same secret number (salt) and the same hash function. From
the data summarised in Tab. 2.1 we can deduce that if the bank changes, e.g., the
secret number after less then 1000 photon pairs, the attacker is not able to reveal the
bank’s secret with sufficient certainty. This leads to further vital questions regarding
tolerance of the bank to noise and threshold value losses.

We hope that our results will stimulate further research on security of QM schemes
based on QRG bringing this concept closer to becoming a fully fledged quantum tech-
nology. Our results indicate that the correct secret number and hash function can be
revealed assuming the hash function is a member of a finite set. The size of which is
limited by the available time and computing power. However, this is not a fundamental
limitation which might be lifted if more advanced cryptanalysis or more computing
power is applied. Our results indicate that while the idea of using hash functions might
be tempting, it would be ultimately more secure to store truly random sequences since
only these are not vulnerable to the attack described in this Chapter. The recent
progress in data storage technologies and quantum computing with its fast searching
algorithms (e.g. Deutsch-Jozsa algorithm [167]) may in future enable this. With current
technology, the most secure strategy would depend on particular implementation of the
protocol by the bank.
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Chapter 3

Measuring Concurrence in Qubit
Werner States Without an Aligned
Reference Frame

Contents of this Chapter is based on the Author’s article [A3].

3.1 Introduction
Secure and reliable information exchange is of paramount importance worldwide, hence
the practical implementation of quantum communications protocols outside the scien-
tific laboratory has become one of the main focuses of recent studies [168, 169]. Natu-
rally, such advances in quantum communication methods require the ability to perform
quantum measurements in an unstable environment, where the strict requirements
for alignment and calibration of remote devices are hard to meet (e.g., long-distance
quantum communication [73, 170, 171] or satellite-based communications [72, 74, 172,
173]). Specifically, the above-mentioned quantum communications experiments usually
rely on quantum optical devices, where qubits are encoded into polarization states of
light. However, this necessarily requires a common reference measurement frame to
be shared that has to be well aligned and calibrated measurement devices (in a sense
of well-defined scale of measurement apparatus such as the rotation angles of wave
plates). Furthermore, it also needs to be maintained stable for the entire experiment or
communication. From an experimental point of view, this is, however, never achieved
without technical difficulties (see, for instance, [174]). Maintaining a common reference
frame seems a trivial assumption when confined to a laboratory, but long-distance
quantum communications beyond the Earth’s surface [72, 74, 172, 173] have already
led scientists to re-evaluate the practicality of such an assumption [175, 176].

A possible solution to these problems in free space could be to use rotationally
invariant states of light [177]. However, to the best of our knowledge, no one has yet
applied these solutions in satellite quantum communication. Instead, much attention
has been paid to so-called reference-frame-independent (RFI) protocols [178–185]. For
instance, it was proved in Ref. [186] that a RFI quantum key distribution protocol
[187] is more robust under reference frame fluctuations than its standard counterpart
[58, 59].

Motivated by all these observations, in this Chapter we also investigate the RFI
approach. In particular, we focus on quantum entanglement, which is undoubtedly the
essence of many quantum information procedures [42, 45, 188]. Therefore, it is neces-
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sary to be able to test for the presence of entanglement and, for the reason explained
previously, it is practical to manage it in RFI mode [93, 189–192]. Over time, several
methods for entanglement detection under these constraints have been proposed. They
are based on various approaches, for example, on the violation of a Bell inequality [193,
194], the second moment of the distribution of correlations [195, 196], a geometrical
threshold criterion [197], or interference between multiple copies of the investigated
state [198]. However, all of them were so far limited to being mere witnesses to entangle-
ment rather than measures. Entanglement quantification is of considerable interest for
both theoretical and practical reasons. Our goal is to introduce a device-independent
entanglement quantification protocol operating in the RFI approach without calibrating
measurement devices, which is of great importance from the experimental point of view.
More specifically, we investigate the RFI measure of Bell nonlocality and its relation
with entanglement. As Bell nonlocality and entanglement are distinct resources, one
cannot establish a direct link between them in the general case, and this is the price paid
for the great simplification of the experimental requirements given previously. However,
such a relationship can be identified for specific families of states. Because of this, we
restrict our attention to two- and three-qubit states which are of practical importance in
quantum information processes. One such example is the family of Werner states which
have been instrumental for various important advancements in quantum information
[199–201]. Moreover, the Werner states are “considered as the paradigmatic example of
realistic noisy preparation of a pure entangled state subject to the action of white noise”
[202]. Although this family contains examples of states with nonclassical correlations,
which nevertheless admit a hidden-variable model, the violation of a local-realistic
description is still observed for highly entangled cases which are, in fact, applied in
quantum information procedures. We also discuss to what extent the results obtained
for the Werner states can be used to estimate the entanglement of other two- and three-
qubit states. In other words, we test how precisely one can estimate the entanglement
of an unknown state if our RFI approach is applied. Surprisingly, we found that our
calculations can be successfully applied to quantify the entanglement of more general
states, for example, pure states, Greenberger-Horne-Zeilinger (GHZ) symmetric states.
This result also justifies the experimental simplification within which we still obtain
an instrument that can find its application in future practical long-distance quantum
communications. Finally, we present an experimental verification of our predictions.

3.2 Preliminaries

3.2.1 Entanglement Measure

We now introduce concepts that are relevant to the current investigation. Let us
first consider a two-qubit pure state |ψ〉2, composed of subsystems A and B. The
degree of entanglement between both subsystems is given by so-called concurrence [203],
C(|ψ〉2) =

√
2 (1− Tr(ρ2

A)), where ρA denotes the reduced density matrix of subsystem
A. For mixed states ρ the concurrence is defined by the convex-roof extension [204],
C(ρ) = min

all decomp.

∑
j pjC(|ψj〉), where the minimum average concurrence is taken over

all possible convex decompositions ρ =
∑

j pj|ψj〉〈ψj| into pure states. In a special case,
when ρ2 denotes two-qubit mixed state, the mixed-state concurrence is given by

C(ρ2) = max{0,
√
λ1 −

4∑
j=2

√
λj} (3.1)
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with {λj} being the decreasingly ordered eigenvalues of ρ2(σy ⊗ σy)ρT2 (σy ⊗ σy), where
σy denotes the Pauli matrix and the transposition is performed in any product basis.

The measure described previously can be further extended to describe the genuine
multipartite entanglement (GME) [205–208], that is, a scenario when a multipartite
state has a minimum amount of entanglement in each bipartition. For instance, if
the analysed pure state |ψ〉3 is composed of three subsystems A, B, and C, one can
distinguish three bipartitions {γ|γ′}, namely {A|BC}, {B|AC}, and {C|AB}. Then,
the GME concurrence is given by [207]

CGME(|ψ〉3) = min
all bipart.

√
2
(
1− Tr(ρ2

γ)
)
, (3.2)

where the minimum is taken over all possible bipartitions {γ|γ′} and ργ denotes the cor-
responding reduced density matrix of subsystem γ. The extension of GME concurrence
to mixed states also follows the convex-roof extension presented previously [207].

We stress that a general expression for mixed-state GME concurrence still remains
unknown. However, it has been successfully evaluated for the so-called X-matrix states
[209]. These states are represented by a density matrix written in an orthonormal
product basis, the non-zero elements of which are only the diagonal (denoted by aj
and bj, where j = {1, . . . , 2N−1}) and/or anti-diagonal elements (given by zj and its
conjugation). The X-matrix states are positive if |zj| ≤

√
ajbj and we also expect∑

j(aj + bj) = 1 to ensure the normalisation of ρX. The GME concurrence for these
states is given by [210]

CGME(ρX) = 2 max
i
{0, |zi| − χi}, (3.3)

where χi =
∑
j 6=i

√
ajbj.

3.2.2 Bell-Nonlocal Correlations

Next, let us consider an N -partite Bell experiment where each party has a choice
over two measurement settings Si = {0, 1} and each measurement results in one of
two possible outcomes ri = {0, 1}. The corresponding Bell experiment is then fully
characterised by the set of joint conditional probability distributions P = {P (rN |SN)},
where rN = (r1, . . . , rN) and SN = (S1, . . . , SN). When the participants share a
quantum state ρ and the correlations are generated by local measurements performed

on their respective subsystems, then P takes the form of P (rN |SN) = Tr
(

N⊗
i=1

M̂ri|Si
ρ

)
,

where M̂ri|Si
is the positive operator-valued measure representing the measurement on

the i-th party with measurement settings Si.
To make it evident whether a given P can be described by a local realistic description,

one can employ a linear function of probabilities called Bell inequality [86]. It can be
written as

I(P) ≡
∑

rN ,SN

µSN
rN
P (rN |SN) ≤ CLHV, (3.4)

where {µSN
rN
} are real coefficients and CLHV refers to the upper threshold of I(P) for

the local realistic description. Consequently, if one observes a value of I(P) greater
than CLHV, the correlations are said to be Bell nonlocal. The value of coefficients
{µSN

rN
} solely depends on the analysed model of local realistic description [87, 211–213].

For instance, when N = 2 the Bell experiment (Eq. (3.4)) is characterised by the
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Clauser-Horne-Shimony-Holt (CHSH) inequality [87]. On the other hand, when N = 3
the genuine multipartite nonlocal correlations discussed in this Chapter require the
consideration of a set of 185 Bell inequalities defined in Ref. [213].

The presence of Bell-nonlocal correlations clearly certifies the presence of entangle-
ment, and this conclusion follows regardless of how P is generated from the underlying
state and measurements. Therefore, Eq. (3.4) is said to be a device-independent witness
for entanglement [214]. To date, the relation between entanglement and Bell nonlocal-
ity has been studied intensively. For instance, in Ref. [215] the authors showed that
C(|ψ〉2) =

√
β2

2 − 1, where β2 denotes the maximal violation of the CHSH inequality
[87]. Similar investigations have been performed for three-qubit states (see, for instance,
[216, 217] and [218] for an experimental demonstration).

Nevertheless, the previously described demonstration of nonlocal correlations em-
ploys carefully chosen measurements the implementation of which requires the spatially
separated observers to share a complete reference frame and well-calibrated devices.
Although this assumption is typically made implicit in theoretical works, establishing
a common reference frame, as well as aligning and calibrating measurement devices in
experimental situations are never trivial tasks. Recently, Liang et al. [193] have pro-
posed a reference-frame-independent protocol to circumvent the previously mentioned
problem. In their approach, the following quantity is considered [193, 219]

pV(ρ) =

∫
ω(ρ, Ω)dΩ, (3.5)

where the integration comprises a space of measurement parameters Ω according to
the Haar measure. The function ω(ρ, Ω) is an indicator function that takes the value
1 whenever the generated behaviour is nonlocal and 0 otherwise. Importantly, in this
approach the nonlocal correlations are quantified without any prior assumptions about
specific Bell inequalities [194, 220, 221]. In other words, the generated behaviour is
nonlocal if at least one inequality of the suitable set of Bell inequalities is violated. The
quantity pV, if properly normalised, can be interpreted as a probability of violation of
local realism for the measurement operators M̂ri|Si

sampled randomly according to the
Haar measure. To avoid confusion, we prefer to use the unique term nonlocal fraction
pV we prefer to use the unique term nonlocal fraction [220] to describe the quantity.

3.3 Device-Independent Estimation of Entanglement
In this work we consider a source producing copies of an unknown N -qubit state ρin,
which is transmitted through randomly unitary evolving quantum channels to N local
observers. During the j-th transmission the state ρin is transformed by N random local
unitary operators U (j)

i according to

ρout =
N⊗
i=1

U
(j)
i ρin

N⊗
i=1

U
(j)†
i . (3.6)

We assume that the unitary transformation has a timescale that is sufficiently slow
to obtain stable measurements for given projections together with their orthogonal
counterparts, but the transformation is much faster to apply standard techniques of
state analysis [222]. In other words, we can reliably accumulate signal for one particular
measurement setting and its orthogonal-projection counterpart, but not for all the
measurement settings in a row. As the local unitary transformations remain unknown,
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it is clear that a common reference frame can be established for the described scenario,
nor can local devices be calibrated.

We discuss the entanglement assessment protocol of the input state ρin based on the
nonlocal correlations revealed by the output state ρout. As the unitary operators during
the j-th transmission remain unknown for the observers, the maximal violation of Bell
inequalities cannot be determined. Instead, we estimate the nonlocal fraction which
is invariant under local unitary transformations applied by each party on the state if
one uses the Haar measure for the integration [220]. However, the use of the nonlocal
fraction has an important disadvantage which is the lack of analytical solutions [193,
220] and, so, the numerical calculations are used to determine the nonlocal fraction.

3.3.1 Quantifying Bipartite Entanglement

Two-Qubit Werner-Like States

First, we consider the scenario when the input state is given in a form of an arbitrary
two-qubit pure state |θ〉2 = cos θ |00〉+ sin θ |11〉 subjected to white noise:

ρ2(θ, v) = v |θ〉2 〈θ|+
1− v

4
1l4, (3.7)

where 1l4 is the 4× 4 identity matrix, v denotes the state visibility (0 < v ≤ 1), and we
assume without loss of generality that 0 < θ ≤ 45°. The concurrence is given by

C(ρ2) =
v
(

2 sin(2θ) + 1
)
− 1

2
. (3.8)

Such states play an important role in quantum information theory as they directly
refer to the states generated at the output of the nonlinear process designed in real
experiments based on entangled photons [120, 223]. In this context, the white noise
which enters Eq. (3.7) is a good approximation of the imperfections occurring in the
experimental setup (see, for instance, [224]).

A particular example of the states in Eq. (3.7) is the two-qubit Werner state [98],
ρW

2 (v) = ρ2(θ = 45°, v) [45, 199–201]. For the Werner states, concurrence depends
only on the visibility, C(ρW

2 ) = 3v−1
2

. Therefore, the estimation of this parameter is
equivalent to the entanglement measurement.

To do that we calculate the nonlocal fraction. Note that the nonlocal correlations of
two-qubit states are fully characterised by the CHSH inequality, assuming the freedom
in relabelling all measurement settings and/or outcomes and/or parties [225, 226]. By
straightforward calculations (see Appendix B.1) one can show that pV of the Werner
state is

pV(v) =
2
(

(1− v2) arctan
(√

2v2−1
1−v2

)
− 3
√

2v2 − 1
)

v2
,

(3.9)

which is a monotonic function of v. In other words, a direct measurement of pV allows
the estimation of visibility and, hence, the value of the concurrence C(ρW

2 ).
Naturally, for general state (Eq. (3.7)) the nonlocal fraction depends on both the

visibility v and angle θ (see Fig. 3.1(a)). Although the analytical solution of pV remains
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unknown in this case, one can always find its approximation. In particular, one can
establish the visibility v by

v(θ, pV) = vcr
2 (θ) + f1(θ) p

1/4
V + f2(θ) p

1/2
V + f3(θ) pV,

(3.10)

where

f1(θ) = (0.19674− 1.3982 θ + 4.712274 θ2

− 6.7193 θ3 + 3.3384 θ4)/
√

10,

f2(θ) = 0.11886− 0.011544 θ−1 − 0.363104 θ

+ 0.460436 θ2 − 0.204953 θ3,

f3(θ) = (0.03848− 0.011 θ−1 − 0.02531 θ

− 0.018331 θ2 + 0.017373 θ3) · 10−2,

and vcr
2 (θ) = 1/β2 denotes the critical visibility with the maximal violation of the CHSH

inequality β2 = (sin2(2θ) + 1)1/2 [215].
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Figure 3.1: (a) Visibility and nonlocal fraction for two-qubit Werner-like states given in
Eq. (3.7). Symbols denote numerical results and solid curves correspond to their analytical
approximation in Eq. (3.10). (b) Relation between concurrence C and nonlocal fraction pV

for two-qubit Werner-like states. As previously, symbols denote numerical results while solid
curves correspond to analytical approximation.

As presented in Fig. 3.1(a), this approximation provides a good agreement with
our numerical results. Therefore, substituting Eq. (3.10) into Eq. (3.8) one obtains
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the concurrence C(ρ2) depending on the angle θ and the nonlocal fraction pV (see Fig.
3.1(b)). Based on these outcomes, the following remarks can be made:

(i) Whenever an observed pV ≥ 7%, the difference between C(ρW
2 ) and C(ρ2) (here-

inafter ∆W
2 ) is no greater than 0.02 and vanishes when pV increases. This means, that

the concurrence C(ρ2) can be estimated (with precision ∆W
2 ) assuming that ρ2 ≡ ρW

2 .
(ii) For pV < 7%, remark (i) is still valid if θ ≥ 25° and pV ≥ 0.5%. In other words,

the angle θ is meaningless in such a regime and the concurrence can be estimated on
C(ρW

2 ). For other cases, the difference ∆W
2 increases for decreasing angle θ.

(iii) Finally, Eq. (3.10) can be used to establish the lower bound of C(ρ2) versus
pV. Specifically, for a given value of the nonlocal fraction there exists such angle θ0

so that the visibility v(θ0, pV) = 1 in Eq. (3.10). Then, the lower bound is given by
C(ρ2) ≥ sin(2θ0) and the equality is provided by the pure state |θ0〉2. The lower bound
can be approximated by

C(|θ0〉2) =
0.6784√

10
p

1/4
V − 1.59 · 10−2 p

1/2
V + 10−4 pV.

(3.11)

Based on this result, one can find that the difference ∆W
2 < 0.164 for an arbitrary angle

θ and 0.5% ≤ pV ≤ 7%.

General Two-Qubit Mixed States

In order to present the usefulness of our entanglement-assessment protocol for a broader
range of two-qubit state ρin, we now consider two examples where we apply our protocol.

Example 1: Two-qubit GHZ symmetric mixed state (GSMS) – These states represent
the entire family of two-qubit mixed states with the same symmetry as the two-qubit
GHZ state |45°〉2 [227]. For instance, the Werner states ρW

2 but also the |45°〉2 state
subjected to the local phase-damping or depolarising noise [228]. The GHZ symmetric
states are defined as [227]

ρGSMS
2 (x, y) = (

√
2y + x) |45°〉2 〈45°|

+ (
√

2y − x) |−45°〉2 〈−45°|+ 1− 2
√

2y

4
1l2,

where |y| ≤ (2
√

2)−1 and |x| ≤ (1 + 2
√

2y)/4. Using Eq. (3.1) one obtains the
concurrence C(ρGSMS

2 ) = max{0, 2|x|+
√

2y − 1/2}.
Next, the relation between C(x, y) and the nonlocal fraction for 104 randomly

generated GSMS states has been analysed. As a result (Fig. 3.2), we find that the upper
bound of such relation is provided by the Werner states ρW

2 ≡ ρGSMS
2 (v/2,v/(2

√
2)). The

lower bound, on the other hand, is established by the maximally nonlocal mixed states,
i.e., Bell diagonal states which produce a maximal value of β2 for given concurrence [229].
These states are given by ρPhN

2 (x) = 1+2x
2
|45°〉2 〈45°|+ 1−2x

2
|−45°〉2 〈−45°|, and describe

the |45°〉2 state subjected to the local phase-damping noise [228]. The relation between
the concurrence and the nonlocal fraction in this case is given by C(ρPhN

2 ) = C(|θ0〉2)
written in Eq. (3.11). Therefore, if one knows the nonlocal fraction of an arbitrary
GHZ symmetric state, then its concurrence is limited by C(|θ0〉2) ≤ C(ρGSMS

2 ) ≤ C(ρW
2 ).

This limitation is of great importance if remarks (i)–(iii) are taken into account. That is,
the concurrence of an arbitrary GHZ symmetric state can be determined with accuracy
not greater than ∆W

2 if the measured pV ≥ 7%. Note that, in general, the GSMS may
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Figure 3.2: The region of possible values of concurrence for given nonlocal fraction. The grey
region corresponds to two-qubit GHZ symmetric mixed states and the four curves represent
maximally entangled mixed states (red dashed-dotted curve), Kagalwala states [230] (green
dotted curve), Werner states (blue dashed curve), two-qubit GHZ state subjected to the
local phase-damping noise (red dotted curve).

denote the experimentally generated state |45°〉2 subjected to an unknown source of
noise if such noise does not change the symmetry of the input state.

Example 2: Maximally entangled mixed state (MEMS) – As a final example we
consider the states which maximise the value of the concurrence for a given value of
the violation of the CHSH inequality [231, 232]

ρMEMS
2 (γ) = γ |45°〉2 〈45°|+ (1− γ) |01〉 〈01| ,

where 2
3
≤ γ ≤ 1. Based on numerical calculation we have found that

C(ρMEMS
2 ) = 1/

√
2 + 0.1125/

√
10 p

1/4
V − 9.0 · 10−4 p

1/2
V

+ 2.83 · 10−5 pV.

As we show in Fig. 3.2, the concurrence C(ρMEMS
2 ) exceeds C(ρW

2 ) in the entire range
of pV. However, the difference between these two quantities is not greater that 0.173.

Finally, our numerical calculations performed for randomly generated two-qubit
mixed states ρ always satisfied the relation

C(|θ0〉2) ≤ C(ρ) ≤ C(ρMEMS
2 ), (3.12)

if they reveal the same value of pV. Therefore, we conjecture that the MEMS and pure
states |θ〉2 provide an upper and lower limit for C(ρ) versus pV for two-qubit states.

3.3.2 Quantifying Genuine Tripartite Entanglement

Three-Qubit Werner-Like States

Now we proceed to estimate the genuine multipartite entanglement. We follow the same
procedure as before, that is, we analyse the relationship between the GME-concurrence
and nonlocal fraction. First, we concentrate on the three-qubit Werner-like states which
serve as a benchmark for the robustness of multipartite entanglement [233]

ρ3(θ, v) = v |θ〉3 〈θ|+
1− v

8
1l8, (3.13)
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where |θ〉3 = cos θ |000〉+ sin θ |111〉 is the generalised GHZ state (gGHZ) and 1l8 is the
8 × 8 identity matrix denoting the presence of white noise. As previously, v denotes
the state visibility (0 < v ≤ 1) and we assume 0 < θ ≤ 45°. Using Eq. (3.3) one can
find the GME-concurrence as

CGME(ρ3) =

(
3 sin(2θ) + 2

)
v − 2

3
. (3.14)

In order to certify the GME, we estimate the nonlocal fraction for the genuine
multipartite nonlocal correlations. Such an estimation requires testing all 185 families
of Bell inequalities (see [194]). As a result (Fig. 3.3(a)), we find that the visibility v in
Eq. (3.13) can be approximated by pV using

v(θ, pV) = vcr
3 (θ) + g1(θ) p

1/6
V + g2(θ) p

1/2
V + g3(θ) pV,

(3.15)

where the critical visibility vcr
3 (θ) = 1/β3 and

β3 =


1 + 0.0622θ + 1.697θ2 for 0 ≤ θ < 14.94°
−3.391θ3 + 1.442θ4(

1 + 2
√

1 + sin2(2θ)
)
/3 for 14.94° ≤ θ < 29.5°√

2 sin2(2θ) for 29.5° ≤ θ < 45°

is the maximal strength of Bell-nonlocality for three-qubit Werner-like states (see [42]).
The other functions which enter Eq. (3.15) are given by

g1(θ) = max{−0.061297 + 0.55512 θ − 0.42815 θ2,

−18.58393 + 57.9917
√
θ − 50.2727 θ

+11.209 θ2}/101/3,

g2(θ) = min{0,0.76306− 4.13852 θ + 8.28077 θ2

−7.2943 θ3 + 2.38884 θ4},
g3(θ) = max{0.0001151− 0.0004063 θ + 0.0004321 θ2,

−0.015237 + 0.084803 θ − 0.17408 θ2

+0.15723 θ3 − 0.052804 θ4}.

Based on Eq. (3.14) and (3.15), the GME concurrence has been obtained as a
function of pV. As we see in Fig. 3.3(b), in contrast to ρ2(θ, v), here the angle θ is
meaningful in the entire range of attainable pV. For instance, if one takes θ1 = 45° (i.e.,
the three-qubit Werner state) and θ2 = 35°, the GME concurrence is explicitly written
as

CGME(θ1) = 0.512 + 0.186 p
1/6
V − 7.1 · 10−3 p

1/2
V

+1.12 · 10−4 pV,

CGME(θ2) = 0.542 + 0.155 p
1/6
V − 8.2 · 10−3 p

1/2
V

+1.52 · 10−4 pV. (3.16)

Using these equations one can easily find the difference ∆W
3 = CGME(θ1) − CGME(θ2)

belongs to (0.032, 0.048) when pV > 1%. Therefore, in order to establish GME concur-
rence CGME(ρ3), we need to evaluate not only the value of pV but also the underlying
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angle θ. Without prior knowledge of the angle θ, its value can be determined from
the distribution of the strength of violation for random measurements (Appendix B.2).
This requires the accumulation of data on the strength of violation of local realism for
a sequence of randomly chosen measurements. In a typical experimental investigation
of pV [93, 194, 221], such a set is known without any additional effort and, hence, one
can establish the value of GME concurrence.

On the other hand, by inserting v(θ, pV) = 1 into Eq. (3.15) one can derive the
GME concurrence for pure states |θ〉3. It can be approximated by [194]

CGME(|θ〉3) =
(

0.068 pV + 0.06 p
1/2
V

)1/2

, (3.17)

which denotes the lower bound of CGME(ρ3) with given pV.
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Figure 3.3: (a) Visibility and nonlocal fraction for three-qubit Werner-like states given in
Eq. (3.13). Symbols denote numerical results and solid curves correspond to their analytical
approximation in Eq. (3.15). (b) Relation between genuine concurrence CGME and nonlocal
fraction pV for three-qubit Werner-like states. As previously, symbols denote numerical
results whereas solid curves correspond to analytical approximation.

Other Examples of States

We note that the general analysis of the three-qubit mixed states is beyond the scope
of our research, as there is no general analytical formula of the genuine concurrence.
Therefore, we examine a few examples which illustrate the usefulness of our approach.

Example 3: Three-qubit GHZ symmetric mixed state (GSMS) – A natural extension
of the three-qubit Werner-like states is the family of GHZ symmetric states. In the
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three-qubit case, they are given by

ρGSMS
3 (x, y) =

(
2
√

3

3
y + x

)
|45°〉3 〈45°| (3.18)

+

(
2
√

3

3
y − x

)
|−45°〉3 〈−45°|+ 3− 4

√
3y

24
1l8,

where −1
4
√

3
≤ y ≤

√
3

4
, |x| ≤ (1 + 4

√
3y)/8 and the GME concurrence CGME(ρGSMS

3 ) =

max{0, 2|x|+
√

3y − 3/4}.
For these states, similar remarks can be drawn as in Example 1. Specifically, the

upper bound of the GME concurrence for a given value of pV is provided by the
three-qubit Werner state ρW

3 (Fig. 3.4). The lower bound is observed for ρPhN
3 (x) =(

1
2

+ x
)
|45°〉3 〈45°|+

(
1
2
− x
)
|−45°〉3 〈−45°|, i.e., the GHZ state subjected to the local

phase-damping noise [228]. The GME concurrence is approximated by:

CGME(ρPhN
3 ) = 0.4012 p

1/6
V − 0.0118 p

1/2
V + 9.0 · 10−5 pV,

and, hence, the difference ∆W
3 ≤ 0.14. Interestingly, results obtained for ρPhN

3 are
significantly different with respect to those of |θ〉3, as opposed to the case of two-qubit
states. In summary, for all ρGSMS

3 states, the following relation is observed

CGME(|θ〉3) < CGME(ρPhN
3 ) ≤ CGME(ρGSMS

3 ) ≤ CGME(ρW
3 ),

where we assume that each state reveals the same value of the nonlocal fraction.
Example 4: GHZ state under the amplitude-damping noise (AD) – Let us recall that

the GHZ-symmetric states describe two basic examples of the noisy GHZ state, that is,
affected by local phase-damping and depolarising noise. Here we investigate another
important example, namely the GHZ state subjected to the local amplitude-damping
noise [228]

ρAD
3 (α) =

2∑
i,j,k=1

Ki,j,k(α) |45°〉3 〈45°|K†i,j,k(α), (3.19)

where Ki,j,k(α) = Ki(α)⊗Kj(α)⊗Kk(α) denotes the tensor product of the appropriate
Kraus operators [228] and 0 ≤ α ≤ 1. Our calculations reveal that the genuine
concurrence CGME(ρAD

3 ) ≥ CGME(ρW
3 ) in the entire range of pV (Fig. 3.4). Furthermore,

the calculation has been repeated for the bit flip noise, providing results slightly smaller
than these of the Werner states. This means that if the GHZ state is transmitted via one
of the basic quantum channels (unknown in principle), then the genuine concurrence
of the output state is greater than or equal to that of ρPhN

3 .
Example 5: Three-qubit pure states – Finally, we analyse the relationship between

the genuine concurrence and the nonlocal fraction for other examples of three-qubit
pure state that are important for quantum communication protocols [234], namely the
tetrahedral (T) states [217, 235], the generalised W states [236], and the maximal slice
(MS) states [237]

|ψT〉 = t0 (|001〉+ |010〉+ |100〉) +
√

1− 3t20 |111〉 ,

|ψW〉 =
w0√

2
(|001〉+ |010〉) + w1 |100〉 ,

|ψMS〉 =
1√
2

(|000〉+m0 |110〉+m1 |111〉) , (3.20)
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Figure 3.4: The region of possible values of genuine concurrence for given nonlocal fraction.
The grey region corresponds to three-qubit GHZ symmetric mixed states and the four
blue curves represent Werner states (solid curve), three-qubit GHZ state subjected to the
local phase-damping noise (short dashed curve), three-qubit GHZ state subjected to the
local amplitude-damping noise (dotted curve), and generalised GHZ states (blue dashed
curve). Furthermore, the three green curves show the tetrahedral states (dot-dashed curve),
generalised W states (dotted curve), and maximal slice states (short dashed curve).

where the standard normalisation condition is assumed. As we show in Fig. 3.4 in all
these cases the relationship between the genuine concurrence and the nonlocal fraction
satisfy the relation

CGME(|θ〉3) < CGME(|ψT,W,MS〉) ≤ CGME(ρAD
3 ).

In other words, if one assumes that the state under the question remains unknown,
then its genuine concurrence can be estimated from the bottom using CGME(|θ〉3).

3.4 Experimental Implementation

3.4.1 Experimental Setup

We have constructed the experimental setup depicted in Fig. 3.5 to produce and charac-
terise three-qubit states. Our experiment is implemented on the platform of linear optics
and it encodes qubits into spatial and polarisation states of single photons. The setup
utilises entangled photon pairs generated using Type-I parametric down-conversion in
a β-BBO crystal cascade (referred to as Kwiat source [121]) at λ = 710 nm. A laser
beam of a wavelength of λ = 355 nm pumps two identically cut non-linear crystals,
with optical axis in mutually perpendicular planes defining horizontal and vertical basis.
If pumped by horizontally (vertically) polarised pump beam, pairs of vertically (hori-
zontally) polarised photons are generated. By setting half-wave plate HWPZ at angle
θ
2
both crystals are coherently pumped and generate photons in a state of the form of

cos θ |HH〉+ sin θ |V V 〉 . (3.21)

The first (second) position in the ket stands for polarisation of the first (second) photon,
respectively. Probability of generating two pairs simultaneously is negligible.

In order to generate the three-qubit states, we incorporate spatial mode encoding
to be used in addition to polarisation encoding. For this purpose, the first photon is
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Figure 3.5: Experimental setup. Legend: PBS – polarisation beam splitter, BD – beam
displacer, PC – polarisation controller, β-BBO – non-linear crystal β-barium borate, D –
detector, HWP – half-wave plate, QWP – quarter wave-plate.

subjected to the beam displacer (BD1). Here BD1 deviates vertically polarised photons
upwards whereas horizontally polarised photons continue straightforward. Therefore,
one can denote by |0〉 (|1〉) spatial mode of photons in the upper (lower) arm. At
the same time by associating H (V ) polarisation with logical states |0〉 (|1〉) one can
immediately identify that by the action of BD1 the original two-qubit state (3.21)
becomes a generalised GHZ state in its canonical form

|θ〉3 = cos θ |000〉+ sin θ |111〉 . (3.22)

Here the first qubit in the ket denotes first photon’s spatial mode and second (third)
qubit stands for first (second) photon’s polarisation state.

Having the desired state prepared, all 3 qubits are subjected to local projections
(hereafter |Π̂1⊗ Π̂2⊗ Π̂3〉). The third qubit is projected simply by using a combination
of quarter and half wave plates (QWP3 and HWP3) accompanied by polarising beam
splitter (PBS). The remaining two qubits are encoded into the spatial and polarisation
state of the first photon. Using a similar sequence (QWP2, HWP2 and PBS) spreading
over both spatial modes of this photon, we achieve projection of the second qubit. At
this stage, a BD2 is used to convert the spatial encoding of the first qubit to polarisation
encoding. Once polarisationally encoded, the sequence of QWP1, HWP1 and PBS is
used to perform first qubit’s projection. At the end of the setup, both photons are led
to single-photon detectors and the rate of coincident detections is measured for every
projection setting.

For the purposes of this experiment, we require the setup to prepare and characterise
all pure computational basis states, i.e., |basis〉 = {|000〉 , |001〉 , . . . , |111〉}. This is
simply achieved by setting θ = 0° resulting in generation of the |000〉 state and imposing
single-qubit NOT gates in the modes where the qubit is required in the |1〉 state. These
NOT gates are implemented by adding a 45° bias to the HWP associated with this qubit.
All these states were later used to synthesise white noise. Then, various quasi-pure
GHZ states were also prepared. All experimental data accumulated in this experiment
are available on CD-ROM (see Appendix E) enclosed with the printed version of this
Thesis.
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Figure 3.6: Visualisation of the real part of the density matrix ρexpt θ = 35◦. All values of
the imaginary part of ρexpt are less than 0.025.

The experiment is carried out in three steps. First, we generate the desired gGHZ
states and verify their quality using standard state tomography (Sec. 3.4.2). For such
verification, it is necessary to align the reference frame. Having the reconstructed
density matrix, one can estimate experimental imperfections and also test the concept
of nonlocal fraction by simulating 108 random projections imposed to this matrix. The
second experimental step is the truly RFI scenario involving 8000 random projections
directly imposed to the generated photons. This constitutes the main result of this
Chapter (Sec. 3.4.3). Finally, in Sec. 3.4.4, we also perform experimental estimation of
GME concurrence measurement on arbitrarily mixed Werner states by adding white
noise as explained previously.

3.4.2 Nonlocal Fraction Measurements - Aligned Reference
Frames

First, we consider a scenario when the observers share common reference frames. The
experimental setup has been adjusted in such a way to generate the gGHZ states, |θ〉3,
for two different angles accounting for 35° and 45°. Note that the later case denotes
the prototype GHZ state. For each adjustment of θ, the output-state density matrix,
ρexpt
θ ≡ ρexpt

3 (θ), is reconstructed by evaluating the quantum state tomography and
maximum-likelihood estimation [132, 238]. An exemplary result is shown in Fig. 3.6.
Then, we determined the fidelity F of ρexpt

θ with respect to the ideal pure state |θ〉3,
F (ρexpt

θ ) = Tr(ρexpt
θ |θ〉3〈θ|). As a result, we find that F (ρexpt

θ ) is always greater than
0.980±0.002 for all values of θ confirming the good quality of our source. The uncertainty
of the fidelity has been determined by Monte Carlo simulations of Poissonian noise
distribution.

The fact that F (ρexpt
θ ) < 1 is naturally caused by the presence of experimental

imperfections such as the improper setting of individual components or depolarisation
effects. Consequently, an effective form of the generated state should be considered
as the three-qubit Werner-like state ρ3(θ, vθ) in Eq. (3.13), where vθ is associated
with the strength of the effective noise inherently present during the experiment. The
presence of such noise is certified by a reduction in purity, P (ρ) = Tr(ρ2), of the output
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state. By straightforward calculations we have found that P (ρexpt
35° ) = 0.982 ± 0.005

and P (ρexpt
45° ) = 0.976± 0.005. Then, using the relation P (ρ) =

1+7v20
8

[95] the visibility
v0 has been estimated. In our case the visibility is equal to v35° = 0.990 ± 0.003 and
v45° = 0.986 ± 0.003. These values are further utilised to establish an appropriate
reference point of theoretical predictions.

Next, using the reconstructed output state, ρexpt
θ , and numerical procedure described

in Sec. 3.2.2, the nonlocal fraction has been evaluated

pV(ρexpt
45° ) = 9.0± 0.9%,

pV(ρexpt
35° ) = 8.2± 0.7%. (3.23)

For each state 108 different settings have been examined numerically. Although the
density matrix was obtained via tomography in an aligned reference frame scenario, pro-
cessing of probabilities corresponding to these random projection settings is identical to
the RFI situation. Comparing these results with theoretical prediction, pV(45°, v45°) =
8.830% and pV(35°, v35°) = 8.279%, we see a very good agreement between both sets of
outcomes.

3.4.3 Nonlocal Fraction Measurements - Reference Frames In-
dependent Approach

In the second step, we relax the experimental requirements and consider the reference-
frame-independent approach. In this case, all three qubits of the desired ρexpt

θ state
are subjected to randomly chosen local projections |Π̂1 ⊗ Π̂2 ⊗ Π̂3〉. Note that, by
the definition of the nonlocal fraction, their actual value is not important and, so,
there is no need to calibrate the experimental devices. The whole process includes
n = 8000 projection settings. For each adjustment of θ and |Π̂1⊗ Π̂2⊗ Π̂3〉, we measure
coincidence detections (CC ) over approximately 20 s and we registered one value of CC
per projection. The values of CC are used to determine all correlation coefficient (see [95,
194]) and, then, to test all 185 Bell inequalities relevant for the genuine multipartite
nonlocal correlations [213]. Note that in this test all possible relabelling of parties,
inputs, and outputs has been taken into account. The value of the Bell inequality is
determined with precision ±0.015. Dividing the number of projection setting which
provide violation of local realism by the total number of setting n, the nonlocal fraction
has been estimated. We obtain the following results:

pCC
V (45°) = 8.6± 1.6%,

pCC
V (35°) = 8.7± 1.2%. (3.24)

As we show in Fig. 3.7, our results in Eq. (3.24) match correctly to the attainable
range of theoretical predictions if the precision of v0 is included. Specifically, for the
error bar of v0 equal to ±0.003, one obtains 8.302% ≤ pV(45°, v45°) ≤ 9.377% and
7.735% ≤ pV(35°, v35°) ≤ 8.848%. However, the values of pCC

V (θ) slightly differ from
pV(ρexpt

θ ) in Eq. (3.23). In particular, pCC
V (45°) < pCC

V (35°). To explain such difference,
we emphasise that owing to inherent experimental fluctuation, the generated state
slightly varies over the course of the entire data acquisition time (about two days). For
that reason, one may expect some fluctuations of the inherent noise arising due to, e.g.,
dephasing and depolarisation.

In order to verify this conclusion, the distribution of the strength of violation for
random measurements has been analysed. In other words, we simulate a robustness of
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Figure 3.7: Comparison of the nonlocal fraction estimated for the reconstructed density
matrix pV(ρexpt

θ ) (gray bar) and measured coincidence detections pCC
V (θ) (blue bar) for angle

θ = 35◦, 45◦. Horizontal hatched areas show theoretical predictions, solid lines correspond
to pV(θ, vθ), and dashes lines denote pV(θ, vθ±0.03).

the nonlocal fraction pCC
V using the accumulated data for random sampling. As we see

in Fig. 3.8, for both values of angle θ the simulated relationship between pCC
V and Imin

has a similar shape as its theoretical counterpart (see Appendix B.2). Furthermore,
by fitting our experimental data with Eq. (B7) we have found the following results
{θ, v45°} ≈ {44.7°, 0.984} and {θ, v35°} ≈ {36.0°, 0.996} which is in line with our
previous observations. Note that these fitted values are sufficient to establish the GME
concurrence using Eq. (3.14) without prior knowledge about the generated state.

3.4.4 Genuine Concurrence Measure - Reference-Frame-Inde-
pendent Approach

The final stage of our experiment is to measure the GME concurrence for the Werner-
like states. In order to do that, the Werner-like states ρexpt

3 (θ, v) were synthesised with
controlled visibility v in the range [0.9; vθ]. This is accomplished by controlled mixing
(with probability vc) the output state ρexpt

θ and white noise, i.e., vcρ
expt
θ +(1−vc)ρwhite noise.

As a result, one has

ρexpt
3 (θ,v) = vcvθ |θ〉3 〈θ|+

+
∑
basis

1− vcvθ
8

|basis〉 〈basis| , (3.25)

where the total visibility v ≡ vcvθ with vθ being a constant value defined above and
controlled parameter vc varying with a step δv = 0.01.

Now, to synthesise projection results CC for any mixed state in Eq. (3.25), the
experimental setup was set to gradually generate 8 basis states |basis〉. Similarly as
in Sec. 3.4.3, each of the states is subjected to the same set of random projections
|Π̂1 ⊗ Π̂2 ⊗ Π̂3〉 as those of ρexpt (including tomography projections). Finally, values of
CC are probabilistically mixed according to the following routine (Fig. 3.9)

CCi(θ, v) = vcCCi(ρ
expt
θ ) +

∑
basis

1− vc

8
CCi(|basis〉), (3.26)

where CCi(θ, v) ≡ CCi(ρ
expt
3 (θ, v)) and CCi(ρ) denotes the values of CC for the state

ρ and the i-th projector |Π̂(i)
1 ⊗ Π̂

(i)
2 ⊗ Π̂

(i)
3 〉. This procedure results in 8000 values of



3.4. EXPERIMENTAL IMPLEMENTATION 55

(b)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
on

lo
ca
l
fr
ac
ti
on

p
V
(%

)

1.0 1.04 1.08 1.12 1.16 1.2

Strength of violation Imin

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
on

lo
ca
l
fr
ac
ti
on

p
V
(%

)

Figure 3.8: Distribution of the strength of violation for randomly sampled measurements for
(a) θ = 35◦ and (b) θ = 45◦. In both panels, symbols denote experimental results whereas
gray areas depict theoretical predictions for ρ3(θ, vθ±0.003). Dashed lines correspond to
theoretical calculations for (a) ρ3(35◦, 1) and ρ3(35◦, 0.985) (b) ρ3(45◦, 0.990) and ρ3(45◦,
0.975).
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CC for each generated state ρexpt
3 (θ, v) that can be further analysed. Note that for

every state, all CCi are normalised with respect to the overall generation rate for the
particular state.

Based on these results, the nonlocal fraction of ρexpt
3 (θ, v) has been determined.

As we see in Fig. 3.10(a), our measurements are in good agreement with theoretical
predictions given in Eq. (3.15). Finally, using Eq. (3.16) the GME concurrence for
the Werner-like states has been established and the accomplished results are in perfect
agreement with theory (Fig. 3.10(b)). Specifically, for the exemplary states discussed
in previous subsections, we obtain

CGME(45°) = 0.97± 0.01,

CGME(35°) = 0.93± 0.01, (3.27)

whereas theoretical predictions yield CGME(45°, v45°) = 0.977 and CGME(45°, v45°) =
0.924.
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Figure 3.10: (a) Dependence of the nonlocal fraction on the visibility and (b) the relation
between genuine concurrence and nonlocal fraction for three-qubit Werner-like states. In
both panels, symbols denote experimental measurements for θ = 35◦ (triangles) and θ =
45◦ (squares) while curves depict theoretical predictions.

3.5 Conclusions
In conclusion, we have theoretically and experimentally investigated the entanglement-
assessment protocol for two- and three-qubit Werner-like states. Our proposal is based
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on the concept of the nonlocal fraction which denotes the probability of detection of
nonlocal correlation under random measurements. Using numerical calculations, we
have found the relationship between the degree of entanglement and nonlocal fraction.
Then, our method has been successfully applied to the experimental measurements of
the GME concurrence of the three-qubit Werner-like state, revealing perfect agreement
with theoretical predictions.

The advantage of using random sampling in our protocol is a great simplification
of experimental procedures as the alignment and calibration of remote devices are no
longer necessary. Therefore, our protocol can be applied in an unstable environment,
where the previously mentioned requirements are hard to meet.

Although in this Chapter we focus on the Werner-like states, our protocol can also be
used for an arbitrary mixed state. In this broader context, the protocol can operate as
an indicator of a lower bound of entanglement for the state under considerations. From
the point of view of quantum communications, such finding is of great importance as it
allows the characterisation of a minimal efficiency on the communication protocol. One
should also emphasise that Werner states are considered as the paradigmatic examples
of experimental noise. This fact justifies the choice of Werner-like states as a test bed
for our protocol.
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Chapter 4

Experimental Hierarchy and Optimal
Robustness of Quantum Correlations
of Two-Qubit States With
Controllable White Noise

Contents of this Chapter is based on the Author’s article [A4].

4.1 Introduction

4.1.1 Entanglement, Steering, and Bell Nonlocality

Quantum entanglement [79] and its generalizations, i.e., quantum steering [239, 240]
and Bell nonlocality [86], are fundamental types of quantum correlations between spa-
tially separated systems (parties). These effects reveal the disparity between classical
and quantum physics from a fundamental point of view, but also play a pivotal role
in quantum information and its applications in quantum technologies of second gen-
eration [45, 241–243]. (i) Quantum entanglement (or quantum inseparability) occurs
when the state of one party cannot be described independently of the state of the
other party [45]. (ii) Quantum steering, also referred to as Einstein-Podolsky-Rosen
(EPR) steering, refers to the ability of one party (say, Alice) to affect the state of the
other party (say, Bob) through the choice of her measurement basis, which cannot be
explained by any local hidden state (LHS) models [242, 243]. Moreover, (iii) quantum
nonlocality can be defined as the effect detectable by the violation of the Bell inequality
and, thus, which cannot be explained by any local hidden variable (LHV) models. Here
we limit our interest to the two-qubit Bell inequality in the Clauser-Horne- Shimony-
Holt (CHSH) form [87]. Thus, we refer to this effect as Bell(-CHSH) nonlocality, having
in mind that quantum nonlocality can also be understood in a much broader sense [241].

The distinction between these effects is fundamental, and their intuitive operational
interpretation can be given from a measurement perspective, i.e., by referring to their
detection using two types of measuring devices, which can be perfect or imperfect from
physical and technological points of view, or trusted or untrusted from a cryptographic
perspective, i.e., with or without prior knowledge about the devices [244]. Specifically,
(i) quantum entanglement between two systems can be detected using trusted devices
for both systems, (ii) EPR steering can be tested by trusted devices for one system
and untrusted ones for the other, while (iii) quantum nonlocality can be detected by
untrusted devices on both sides. Such interpretation has direct applications for quantum
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cryptology, including secure communication. In the same measurement scenarios, Bell
nonlocality implies steering, and steering implies entanglement, but not vice versa, in
general. Indeed, there exist entangled [98] and steerable states which do not violate
Bell inequalities as well as do exist unsteerable entangled states [242, 243].

4.1.2 Werner States and Their Experimental Generation

Mixtures of a Bell state and a maximally mixed state (i.e., white noise) are prototypal
examples of states revealing the non-equivalence of entanglement and Bell nonlocality,
which was first demonstrated by Werner over 30 years ago [98]. The Werner states have
been later used to show a hierarchy of criteria and a hierarchy of some classes of corre-
lations (CC) (which for short is here refereed to as CC hierarchy), including quantum
steering (see, e.g., reviews in [45, 241–243] and the very recent Ref. [245] with references
therein). The effect of white noise on Bell states has also been studied theoretically
to reveal a hierarchy of the following classes of temporal quantum correlations [246]:
temporal inseparability [247], violations of temporal Bell-CHSH inequalities [248], and
temporal steering [249, 250].

We stress that we only consider von Neumann’s projective measurements in this
work. Note that the quantum-correlation regimes of states assumed for projective
measurements are different from those based on positive-operator-valued measures
(POVMs). However, the same hierarchy relations, as studied here, still hold assuming
POVMs.

Generation of mixed states of discrete photons has been investigated both the-
oretically [251–253] and experimentally [254–267]. Temporal decoherence of optical
polarization modes in a birefringent material seems to be a rather widely used tech-
nique in a number of experiments such as those reported in Refs. [258, 267]. This
technique has also enabled the experimental generation of maximally entangled mixed
states (MEMSs) [268] by Peters et al. [265] and later by Aiello et al. [263]. Recently,
Liu et al. incorporated a tunable decoherence channel [269] to generate the Werner
states [256]. Alternative methods to generate or simulate temporal decoherence include
the generation of mixed states by exploiting a particular geometry of a spontaneous
parametric down-conversion (SPDC) source [254, 264]. In 2004, Barbieri et al. [266]
and Cinelli et al. [260] reported their refined two-photon sources capable of preparing
a broad range of mixed quantum states, including MEMSs. A highly birefringent ma-
terial, together with a wide momentum spectrum of generated photon pairs (resulting
in effective spatial decoherence), was also used as an alternative method to generate
temporal decoherence [258]. Puentes et al. applied wedge depolarisers and bucket de-
tectors [257], and later utilized scattering in various media [262]. Moreover, Zhang et
al. incoherently combined photons generated in two separate SPDC sources to create
mixed quantum states [259], while Caminati et al. reported an experiment, where mixed
states were generated by attenuating a high-gain SPDC source [261]. The idea of using
a wide-temporal detection window, such that a detected state appeared to be mixed,
was also implemented in several experiments [255, 270]. It is also possible to use an
experimental setup that can be tuned (to change properties of generated states) in
times shorter than the measurement integration time [271].

In this work we report experimental generation of both Werner states and their
generalizations, i.e., partially entangled pure states affected by white noise, which we
refer to as generalised Werner states (GWSs). These states were not in the focus of the
above-reviewed experiments. Some of the experimental setups cannot generate these
generalised states (e.g., Ref. [263]), some could be used after specific improvements
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(e.g., Ref. [256]) and the others, possibly, might have such capabilities, but these (e.g.,
Ref. [259]) have not been used so far for demonstrating the CC hierarchy of the Werner
states or their generalizations. In this research, our experimentally generated and
reconstructed states are applied to reveal a CC hierarchy.

The remainder of this Chapter is organised as follows. Two approaches to study
hierarchies of correlations are specified in Sec. 4.2. Measures of quantum correlations
of general two-qubit states are recalled in Sec. 4.3. These include popular measures of
entanglement, steering, and Bell nonlocality. Moreover, steering in the two-, three-, and
multi-measurement scenarios is explicitly discussed in Appendices C.3, C.2, and C.4,
respectively. In Sec. 4.4 we define GWSs. Because GWSs are a direct generalization of
the usual Werner states based on a Bell state, we refer to them as Bell-non-diagonal
GWSs. Our experiment is described in Sec. 4.4.1. We compare various predictions of
the quantum correlations for the theoretical and experimental GWSs with those for the
Werner states in Sec. 4.5. We also discuss fundamental differences in a CC hierarchy
for the Bell-diagonal and -non-diagonal GWSs in this section. In Sec. 4.6 we present
our most counterintuitive theoretical results. Specifically, we show in Sec. 4.6.1 that
there exist GWSs, which are steerable in a two-measurement scenario (2MS) but still
admit LHV models. Such a regime cannot be observed for the standard Werner states.
In Sec. 4.6.2 we show that some Bell-non-diagonal GWSs are more robust against
white noise than the diagonal GWSs, i.e., the Werner states. In Sec. 4.6.3, we analyse
lower and upper bounds on steering for a large number of measurements. We show
better robustness against white noise of unsteerable entangled Bell-non-diagonal GWSs
compared to the diagonal ones. An example of a hierarchy of entanglement criteria is
discussed in Appendix C.5 in comparison with the CC hierarchy for the GWSs. We
conclude in Sec. 4.7.

4.2 Two Approaches to Study a Hierarchy of Quan-
tum Correlations

Here we study a CC hierarchy, which is the hierarchy of states with different correlation
properties rather than types of probability distributions, as in the case of certain
research in quantum information. We use the term correlation of a state by referring
to its entanglement, steering, and Bell nonlocality. For clarity, we recall that: (a) an
entangled (separable) state is a state that cannot (can) be factored into individual
states belonging to separate subspaces, (b) an EPR steerable (unsteerable) state is the
one described by the statistics which cannot (can) be reproduced by an LHS model for
a given measurement set (see Sec. 4.3.2 for more details), and (c) a quantum nonlocal
(local) state is the one described by the statistics which cannot (can) be reproduced
by an LHV model, which in turn implies the violation (fulfillment) of a Bell inequality.
Since we are focused on analysing two-qubit states, the Bell inequalities can be limited to
the CHSH inequality. Moreover, the steerability of states can be considered in the limit
of an infinite number of measurements, but it is usually limited to practical resources,
including a finite number of measurements. In our research we focus on the GWSs
which are steerable or unsteerable in two- and three-measurement scenarios (2MS and
3MS), corresponding to measuring two (three) Pauli operators. Thus, we can consider
subclasses of steerable states depending on the number of performed measurements. In
what follows, we study in detail the hierarchy of correlation classes limited to analysing
the states which are: (i) separable, (ii) entangled but unsteerable in 3MSs, (iii) steerable
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in 3MSs but not in 2MSs, (iv) 2MS steerable but local, and (v) nonlocal. The hierarchy
is extended in Sec. 4.6.3 to include the analysis of the GWSs which are steerable for a
larger number n of measurements (i.e., n = 136).

In general, a hierarchy of quantum correlations can be understood in several ways
including: (i) a hierarchy of conditions (or criteria) for the observation of a given class
of quantum correlations and (ii) a hierarchy of different classes of quantum correlations
(i.e., a CC hierarchy). This division is also closely related to experimental demonstra-
tions of a hierarchy by measuring (nonuniversal or universal) witnesses of quantum
correlations corresponding to performing partial or full quantum state tomography
(QST), respectively.

In this work, we focus on analysing a CC hierarchy of the GWSs. We demonstrate
different kinds of quantum correlations in question by performing full QST and then
calculating the corresponding measures on the reconstructed states.

Below we explain the main differences between the two approaches to study a hier-
archy of quantum correlations and explain why a complete experimental demonstration
of the studied CC hierarchy. To our knowledge, this seems to be unfeasible within the
present state of the art.

Hierarchy of Criteria for a Given Class of Quantum Correlations

Experimental demonstrations of Bell nonlocality via the violations of the CHSH in-
equalities have been at the heart of quantum information since its early days starting
from the pioneering experiments of Aspect et al. in the 1980s [272] and then refined in
hundreds of experiments, including significant-loophole-free tests (see, e.g., [273–275]
and the review in [241] for references).

Thus, if one talks about “demonstrating” the nonlocality of a quantum state, one
would normally expect to see a violation of a Bell inequality, rather than QST.

However, this approach usually reveals only a hierarchy of criteria (i.e., either
sufficient or necessary conditions) for the observation of a specific class of quantum
correlations. This is because it is usually based on measuring nonuniversal witnesses
of quantum correlations by testing the violation of specific inequalities. Note that
nonuniversal witnesses correspond usually to sufficient but not necessary conditions of
a specific quantum (temporal or spatial) correlation effect. Thus, such a witness can
usually be determined without a complete QST.

Within this hierarchy approach, one can analyse a hierarchy of, e.g., different Bell
inequalities or even the Bell-CHSH inequalities but for different angles of polarisers in a
description of Bell nonlocality, specifically, by choosing different angles φ1, φ2, φ′1, and
φ′2 as described in Eq. (4.5). By having a priori information about a given generated
state, one can choose optimally angles of the polarisers to maximize the violation of
the Bell-CHSH inequalities and thus to be able to quantify Bell nonlocality (i.e., to
determine a nonlocality measure) for the state. However, without knowing a priori
a given state, one has to measure many copies of the state at different angles of the
polarisers, to find their optimal rotation. Such scanning of the angles corresponds to
(complete or partial) QST.

The hierarchy of criteria has also been studied based on the matrices of the moments
of, e.g., the annihilation and creation operators of bosonic or fermionic states of any
dimension. Indeed, a number of works demonstrated: (i) a hierarchy of sufficient
conditions for observing entanglement (i.e., entanglement witnesses). These include
the conditions based on the Shchukin-Vogel criterion [276, 277] which are related to
the Peres-Horodecki criterion and its generalised versions using positive maps beyond
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partial transpose [278], (ii) a hierarchy of sufficient conditions for observing quantum
steering (i.e., steering witnesses) [279], (iii) a hierarchy of necessary conditions for
revealing Bell nonlocality (i.e., nonlocality requirements) [280], and (iv) a hierarchy of
sufficient conditions for observing spatial [281] and spatio-temporal nonclassicality (i.e.,
nonclassicality witnesses) [282, 283].

An illustrative detailed example of a hierarchy of entanglement criteria is discussed
in Appendix C.5.

Note that the upper and lower bounds of measures of quantum correlations, which
correspond to their sufficient and necessary conditions, can be determined using such a
hierarchy of matrices of moments without a complete QST. However, for an unknown
state, to make these bounds tight to a true measure, one needs to increase the number
of moments to be detected. This in turn leads to a partial moment-based QST, which
approaches more and more a complete QST as explained in Appendix C.5.3.

In conclusion, this approach, in general, enables a direct but partial demonstration
of a hierarchy, which is discussed below.

Hierarchy of Various Classes of Correlations

A hierarchy of various classes of correlations can be revealed by their measures or by
the conditions, which are both necessary and sufficient for their observation. It should
be stressed that we are focused on demonstrating such a CC hierarchy in this Chapter.

Indeed, experimental methods for a complete demonstration of a CC hierarchy can
be based on experimentally reconstructed density matrices (in the case of standard
single-time spatial correlations) or the Choi-Jamiołkowski matrices (in the case of
temporal correlations) for a given system via quantum state or process tomographies,
respectively. This approach enables the calculation of necessary and sufficient conditions
for observing and quantifying the amount of any class of quantum temporal or spatial
correlations for a given state or process.

Experimental demonstration of such a CC hierarchy has usually been done using a
complete QST, although it can also be done with an incomplete QST, as discussed in
Appendix C.1.

Here we apply an indirect approach based on experimental detecting and recon-
structing states via a full QST and only then calculating their correlation measures on
the reconstructed states. This approach has important fundamental and experimental
advantages, which include the following (in addition to the above-mentioned ones):

(i) We want to test the above-mentioned five classes of quantum correlations on the
same footing (preferably using the same setup) based on either complete or incomplete
tomography. However, it is seen that we can determine experimentally the Horodecki
nonlocality measure without QST, but detecting the negativity and the steerable weights
(or, equivalently, steering robustness) can be done effectively only via a complete QST.

(ii) We want to use the same experimental states for testing different quantum
properties. The problem is that we do not have perfect control of especially the mixing
parameter determining the amount of white noise in a pure state. Thus, we cannot
generate the same GWSs even using the same setup. Such a state generation would be
even more demanding using different setups for testing different classes of correlations.
However, this is feasible using a full QST to reconstruct a state, which is only then
numerically studied for its quantum correlations.
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4.3 Measures of Quantum Correlations of General
Two-Qubit States

As a part of our introduction, we shortly recall standard measures of quantum correla-
tions for general two-qubit states ρ, which can be written in the Bloch representation
as follows:

ρ =
1

4

(
I ⊗ I + u · σ ⊗ I + I ⊗ v · σ +

3∑
n,m=1

Tnm σn ⊗ σm
)

, (4.1)

where ui = Tr[ρ(σi ⊗ I)] and vi = Tr[ρ(I ⊗ σi)] are the elements of the Bloch vectors
u = [u1, u2, u3] and v = [v1, v2, v3] of the first and second qubits, respectively, and I is
the single-qubit identity operator. Moreover, the correlation matrix Tij = Tr[ρ(σi⊗σj)]
and σ = [σ1, σ2, σ3] ≡ [X, Y , Z] are expressed via the Pauli matrices.

4.3.1 Entanglement Measures

Here we recall the standard definitions and physical meaning of the two most popular
measures of two-qubit entanglement, i.e., the negativity and concurrence, which are in
the following sections compared with the measures of steering and Bell nonlocality.

The negativity is defined as N(ρ) = max{0, − 2µmin}, where µmin = min eig(ρΓ)
and ρΓ denotes a partial transpose of ρ. It was first introduced in Ref. [284] as a
quantitative version of the Peres-Horodecki entanglement criterion [285]. The two-
qubit negativity (or, more directly, the logarithmic negativity log2[N(ρ) + 1]) has
various quantum-information interpretations. Specifically: (i) it is a measure of the
entanglement cost under operations preserving the positivity of the partial transpose for
two-qubit systems [286, 287], (ii) it gives an upper bound of distillable entanglement [45],
and (iii) it determines the dimensionality of entanglement, i.e., the number of the degrees
of freedom of entangled subsystems [288].

The Wootters concurrence [289], which is monotonically related to the entanglement
of formation, is given by C(ρ) = max{0, 2λmax −

∑
j λj}, where

λ2
j = eig[ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)]j , (4.2)

with σ2 denoting the Pauli Y -operator, and λmax = maxj λj.
Note that both measures have been applied in quantifying not only entanglement

but also, e.g., nonclassicality (quantumness) of single-qubit (or single-qudit) states [290–
292]. These two related measures reach unity for the Bell states and vanish for separable
states. For the brevity of our presentation, we have plotted the negativity as the only
entanglement measure.

These entanglement measures of various two-qubit states have been typically deter-
mined experimentally only indirectly, based on a full QST, which is also the case in this
work. Note that an experimental universal test of entanglement without a complete
QST was proposed in Ref. [293] (see Appendix C.1). This test is a necessary and
sufficient criterion of two-photon polarization entanglement. It is based on measuring a
collective universal witness of Ref. [294], which gives tight lower and upper bounds for
the negativity and concurrence, and can be used as an entanglement measure on its own.
However, since its quantum-information interpretation and applications are limited, we
prefer to use the standard entanglement measures, even if they are determined indirectly
using experimental density matrices.
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4.3.2 Steerable Weight

The steerable weight [295] and the steering robustness [296] are arguably the most
popular measures of EPR steering [242, 243, 297]. They can be applied for quantifying
not only standard spatial steering, but also (after a minor modification) to quantify
temporal [246, 249, 250, 298, 299] and spatio-temporal [300] steering.

An intuitive and general idea behind the steerable weight, according to Skrzypczyk
et al. [295], is based on the decomposition of a given assemblage of Alice, σa|x, into
its steerable (σS

a|x) and unsteerable (σUS
a|x) parts, for the values of a and x specified in

Appendices C.2 and C.3, i.e.,

σa|x = µσUS
a|x + (1− µ)σS

a|x, (4.3)

for µ ∈ [0, 1]. Note that the unsteerable assemblages σUS
a|x can be created via classi-

cal strategies, and a model based on σUS
a|x can be referred to as an LHS model. The

steerable weight S = 1 − µ∗ is defined as the maximum amount of unsteerable as-
semblage σUS

a|x necessary to reproduce Alice’s assemblage σa|x. This general definition
can be formulated as solutions of semidefinite programs (SDPs) as demonstrated in
Refs. [242, 295] and are given explicitly in Appendices C.2 and C.3 for the 3MS and
2MS, respectively. Moreover, sufficient and necessary conditions for observing steering
in multi-measurement scenarios are discussed in Appendix C.4.

The LHS models are relevant to quantum steering as follows [244]: A given state
ρ is referred to as quantum (EPR) unsteerable (in the communication from Alice to
Bob) for Alice’s measurement set {Ma|x} if one can find a variable λ allowing for the
following Bell local decomposition [242, 243]

p(ab|xy) =

∫
dλ π(λ) pA(a|x,λ) Tr

(
Mb|yσλ

)
, (4.4)

where σλ is the local (hidden) quantum state of Bob and pA(a|x,λ) is Alice’s response
distribution. Otherwise a given state for the measurement set {Ma|x} is referred to as
quantum (EPR) steerable, i.e., when its statistics cannot by reproduced by an LHS
model. Note that Eq. (4.8), which defines a Bell local state, reduces in the special
case to Eq. (4.4) by setting pB(b|y,λ) = Tr

(
Mb|yσλ

)
. It is usually assumed that Bob’s

measurements Mb|y enable a complete QST of his qubit. The collection of Bob’s states
σa|x = TrA(Ma|x ⊗ 1l ρ), conditioned on Alice’s measurements, is called an assemblage.

The steerable weight and, equivalently, the steering robustness of Ref. [296] are
defined via necessary and sufficient conditions for quantum-information characterization
of quantum steering in the specified measurement scenarios. Thus, a spatially separated
two-qubit state ρ is referred to as steerable (or more precisely Sn-steerable) in the
discussed n-measurement scenarios if there exists a set of measurements such that the
steerable weight is nonvanishing, Sn(ρ) > 0. Otherwise it is referred to as unsteerable
(or Sn-unsteerable).

The question arises why our interest is focused on analysing steering in two- and
three- measurement scenarios only, except in Sec. 4.6.3 and Appendix C.4. In principle,
one could also consider steering in the limit of an infinite number (of the types) of
measurements. But this would require knowing universal criteria (i.e., which are both
sufficient and necessary) for detecting this type of steering. Unfortunately, such universal
criteria are not known for the GWSs. Note that the upper and lower bounds for steering
have only been calculated numerically so far for large but still finite numbers n of
measurements (i.e., at most for n = 136, as shown in Fig. 4.8(a) based on the results
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of Refs. [301, 302]). Moreover, our analysis of steering includes not only criteria but
also steering measures, as shown in Figs. 4.2–4.5. Unfortunately, the calculations of
the steerable weight and the steering robustness are much more involved beyond 3MS.
Finally, we remark that our experimentally generated states are not exactly GWSs, so
the calculations of their measures or even universal criteria of steering beyond the 3MS
are even more complicated compared to those for the perfect GWSs.

4.3.3 Horodecki Measure of Bell Nonlocality

Here we recall the Horodecki measure [303, 304] of quantum nonlocality for two-qubit
states.

Note that quantum nonlocality is usually studied and interpreted in the context
of Bell inequalities (including the CHSH inequality) and then it is often referred to
as Bell(-CHSH) nonlocality [241]. A Bell inequality violation (BIV) demonstrates the
impossibility of any LHV models to fully reproduce quantum-mechanical predictions [86].
For convenience, we use the terms BIV and Bell(-CHSH) nonlocality interchangeably,
in the context of our two-qubit experiments. Note that BIV implies a violation of local
realism. So BIV can in principle be explained by nonlocal (non)realistic theories, but
also by local nonrealistic ones. Moreover, quantum nonlocality can be defined without
referring to BIV. In addition, such (generalised) quantum nonlocality can occur without
quantum entanglement in, e.g., three qubits or two qutrits (three-level systems) [305].
Thus, it should be stressed that, in general, neither BIV implies quantum nonlocality
nor quantum nonlocality implies BIV (see, e.g., Refs. [241, 306]).

The Horodecki measure of Bell nonlocality for a two-qubit state ρ quantifies the
amount of the maximal violation of the Bell-CHSH inequality [87],

|〈B〉| = |E(φ1,φ2) + E(φ′1,φ2) + E(φ1,φ′2)− E(φ′1,φ′2)| ≤ 2, (4.5)

which is given in terms of the Bell-CHSH operatorB = a·σ⊗(b+b′)·σ+a′·σ⊗(b−b′)·σ.
Moreover, φi and φ′i are two dichotomic variables of the i-th (i = 1, 2) qubit correspond-
ing to the rotations of a polariser in typical optical implementations; while E(φ1,φ2)
is the expectation value of the joint measurement of φ1 and φ2, and, analogously, for
the other expectation values. For a given two-qubit state ρ, the expected value of the
Bell-CHSH operator B, which is maximized over real-valued three-dimensional unit
vectors a, a′, b, and b′, reads [303, 304]:

max
B

Tr (ρBCHSH) = 2
√
M(ρ), (4.6)

where M(ρ) = maxj<k {hj + hk} ≤ 2, and hj ( j = 1, 2, 3) are the eigenvalues of
U = TT T , which is the real symmetric matrix constructed from the correlation matrix
T (and its transpose TT) defined below Eq. (4.1). Thus, the Bell-CHSH inequality is
violated if M(ρ) > 1 [303, 304]. To quantify the degree of BIV and Bell nonlocality we
apply the parameter [307]:

B(ρ) ≡
√

max [0, M(ρ)− 1]. (4.7)

Note that this nonlocality measure is exactly equal to the concurrence and negativity
for two-qubit pure states. For a given state ρ, the Bell-CHSH inequality in Eq. (4.5) is
satisfied if and only if B(ρ) = 0. If B(ρ) = 1 then the inequality is maximally violated,
which is the case for Bell states. We refer to B(ρ) as a Bell nonlocality measure.
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In this work we refer to Bell nonlocal and local states with the following meaning.
Usually, a spatially separated state is referred to as Bell local if local measurements
and classical communication can generate a correlation admitting an LHV model [86,
241]. Otherwise, the state is referred to as Bell nonlocal.

More specifically, an LHS model can be introduced by considering two distant
observers (Alice and Bob) who share an entangled two-qubit state ρ. Assume that
Alice (Bob) performs a set of measurements {Ma|x} ({Mb|y}) satisfying Ma|x, Mb|y ≥ 0
and

∑
aMa|x =

∑
bMb|y = 1l, where x and y label measurements and aand b are their

outcomes. The resulting statistics p(ab|xy) = Tr
(
Ma|x ⊗Mb|y ρ

)
is referred to as Bell

local (with respect to the measurement sets {Ma|x} and {Mb|y}) if they allow for a Bell
local decomposition [241]:

p(ab|xy) =

∫
dλ π(λ) pA(a|x,λ) pB(b|y,λ), (4.8)

where λ is a shared local hidden variable distributed with density π(λ), while pA(a|x,λ)
and pB(b|y,λ) are local response distributions. Thus, a state is called Bell local if it can
be reproduced by an LHV model with properly chosen {λ, π(λ), pA(a|x,λ), pB(b|y,λ)}.
Otherwise, the state is referred to as Bell nonlocal for the measurement sets {Ma|x}
and {Mb|y}. This Bell nonlocality can be witnessed by the violation of a Bell inequality,
which reduces to testing the Bell-CHSH inequality in the case of two-qubit states. So,
in terms of the Horodecki measure, a given two-qubit state is Bell local (nonlocal) if
and only if B(ρ) = 0 (B(ρ) > 0).

The Horodecki measure of Bell nonlocality can be determined without a complete
QST, which was experimentally demonstrated in an entanglement-swapping device
in [308] (see Appendix C.1). However, here, we apply a full QST for determining ρEGW

and then calculating B(ρEGW).
Note that various alternative approaches to quantifying nonlocality have been pro-

posed [241]. These include a nonlocality measure introduced by Elitzur et al. in
Ref. [309], which can be interpreted as a fraction of a given ensemble that cannot
be expressed via local correlations. Thus, this quantifier has been referred to as a
fraction of nonlocality [310, 311].

4.4 Generalised Werner States and Their Experimen-
tal Generation

In this work we focus on comparing quantum correlations of experimental states, which
are special cases of those in Eq. (4.1). Specifically, we directly generated Werner(-like)
states (also referred to as isotropic states or Bell states with white noise) [98]:

ρW = p
∣∣φ+
〉 〈
φ+
∣∣+

1− p
4

I ⊗ I, (4.9)

which are mixtures of any Bell state [say, |φ+〉 = (|00〉+ |11〉)/
√

2)] and the maximally
mixed state for various values of the mixing parameter p ∈ [0,1]. Note that the original
definition of the Werner state is based on the singlet state [98], instead of |φ+〉. However,
this local change does not effect measures of entanglement, steering, and nonlocality.
Thus, the state defined in Eq. (4.9) is also often referred to as a Werner state (see, e.g,
Refs. [268, 302, 307, 312, 313]). This terminology is used in this Chapter.

We are also interested in partially entangled states with white noise, which we call
GWSs, which are obtained from Eq. (4.9) by replacing |φ+〉 by a general two-qubit pure
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state |φq〉 =
√
q |00〉 +

√
1− q |11〉 with the superposition coefficient q ∈ [0,1]. Thus,

the GWSs can be defined as

ρGW(p,q) = p |φq〉 〈φq|+
1− p

4
I ⊗ I. (4.10)

These states for q = 1
2
can be referred to as the Bell-diagonal GWSs corresponding to

the Werner states ρW(p), which are diagonal in the Bell basis. While for q 6= 1
2
we refer

to them as the Bell-non-diagonal GWSs. These states have been generated by us in
the experimental setup described below.

4.4.1 Experimental Setup

Here we describe our experimental setup, which is designed to be as much versatile as
possible, being capable of generating a broad class of mixed quantum states in the form
of

ρ =


A 0 0 E
0 B F 0
0 F ∗ C 0
E∗ 0 0 D

 . (4.11)

This class of states includes (i) the Werner [98] and Werner-like states, (ii) the Horodecki
states, which are mixtures of a Bell state and a separable state orthogonal to it [285],
(iii) Bell-diagonal states [including the Werner states], and (iv) various types of MEMSs,
e.g., those defined in [268]. Moreover, capabilities of our method are not limited to the
Werner or Horodecki states based on a “balanced” Bell state, but also allow for (v) their
generalised forms based on unbalanced entangled states

√
1− q |00〉+

√
q |11〉 for any

q ∈ [0,1] instead of considering only q = 1
2
.

In this work we focus on experimental generation of the Werner states and GWSs,
which are prepared on a platform of quantum linear optics using the experimental setup
depicted in Fig. 4.1. Qubits were encoded into polarization states of single photons.
The process of type-I spontaneous parametric down-conversion (SPDC) occurring in a
cascade of two nonlinear β-BBO crystals, served as a source of entangled photons [121].
When pumped by a beam at a wavelength of λ = 355 nm, the source generated two
polarization-entangled photons in mutually different spatial modes at λ = 710 nm
[Fig. 4.1(a)]. The state of these photons can be expressed in the form of |φ+〉 = (|00〉+
+ |11〉)/

√
2, where |0〉 and |1〉 denote horizontally (H) and vertically (V ) polarized

photons, respectively. Due to the geometry of type-I SPDC, photons are generated in
symmetrically opposite directions on the surface of a cone with its axis coincidental
with the pump beam. We choose to couple photon pairs propagating in the vertical and
horizontal planes, denoting them by (1A,1B) and (2A,2B), respectively [see Fig. 4.1(a)].
Assuming that only two photons were generated (so higher-photon-number processes
are negligible), these photons are simultaneously in either modes (1A,1B) or (2A,2B).
Employing a half-wave plate (HWP) at 45° in the 2B mode, the state |φ+〉 is transformed
into the Bell state |ψ+〉 = (|01〉+ |10〉)/

√
2. Thus, we obtained states spanning the two

subspaces |φ+〉 and |ψ+〉.
Our goal is to prepare the Werner states and their generalizations for various values

of the mixing parameter p. The main idea behind the design of our setup is to decrease
temporal coherence of the states |φ+〉 (in the modes 1A and 1B) and |ψ+〉 (in the
modes 2A and 2B) using beam displacer assemblies (BDAs). A BDA consists of a
pair of beam displacers (BDs) with an HWP inserted between them. This allows us
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Figure 4.1: Our experimental setups for (a) photon-pairs generation and (b) state synthesis.
Legend: 1A and 1B (2A and 2B) stand for photons propagating in vertical (horizontal)
planes, BD – a beam displacer, BDA – a beam displacer assembly, D – a detector, FC
– a fiber coupler, HWP – a half-wave plate, PBS – a polarization beam splitter, PC – a
polarization controller, QWP – a quarter-wave plate, I1,I2 – irises 1, 2, and β-BBO stands
for a nonlinear crystal (β-barium borate).
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to split and subsequently rejoin the horizontal and vertical components of a photon
polarization state. By introducing a difference in the propagation time between these
two components (which is done by tilting one BD) we can achieve their mutual phase
difference (by fine tilting) and tunable distinguishability (by coarse tilting). Polarization-
sensitive losses can easily be implemented by partially blocking one of the polarization
paths. Subsequently, the modes (1A,2A) and (1B,2B) are incoherently mixed in fiber
couplers (FCs).

Firstly, the subspace |φ+〉 was adjusted while arms 2A and 2B (belonging to the
subspace |ψ+〉) were blocked. By means of the polarization-sensitive losses in BDA1,
we regulated the intensity ratio of the matrix elements A and D [see Eq. (4.11)] in the
computational basis, i.e., |00〉 and |11〉 (or |HH〉 and |V V 〉 in the polarization terms).
The ratio accounts for

RA,D =
4pq + 1− p

4p(1− q) + 1− p , (4.12)

where p and q are both tuned parameters. The next step consists of tuning the de-
coherence by observing coincidence counts in the projections |++〉 and |+−〉, where
|±〉 = (|0〉 ± |1〉)/

√
2 stand for diagonal and anti-diagonal polarization states, respec-

tively. We found such a coarse tilt of BD1 so that the visibility accounts for

ν =
2E

A+D
, (4.13)

while the phase is set by fine-tuning, the tilt using a piezo-actuator, which minimizes
the signal in the |+−〉 projection by setting the effective value of E to be real.

Secondly, when adjusting the subspace |ψ+〉 in turn, the arms 1A and 1B were
blocked. In analogy with the adjustment of the |φ+〉 subspace, the same two steps were
performed. This time, however, the target intensity ratio RB,C is equal to 1 because
B = C. The coarse tilt of BD3 needs to be sufficient to decrease the coherence of the
state completely since ν = 0, resulting in F = 0. The phase becomes meaningless.

Finally, all arms were unblocked and both subspaces were balanced to adjust the
ratio between the matrix elements A and B. While having the projection |00〉 and |01〉,
the required ratio was

RA,B =
4pq + 1− p

1− p . (4.14)

For this purpose, we partially closed the irises in the 1A and 2A couplers, which are
depicted in Fig. 4.1(b) by labels I1 and I2, respectively.

After all the adjustments were implemented, the measurement itself was carried out
and it consisted of a standard full QST [238]. Polarization projection was performed
on both photons utilizing a set of quarter- and half-wave plates, as well as polarisers
and single-photons detectors. Coincidence detections within 2 ns window were detected
under all 36 two-fold combinations of single-photon projections onto the basis states:
|0〉, |1〉, |+〉, |−〉, and (|0〉 ± i |1〉 /

√
2, where the latter states are the right- and left-

hand circularly polarized states, respectively. Density matrices were estimated via a
maximum likelihood method [132, 314–317].

Because of experimental imperfections, the setup produces states with the p and
q parameters slightly different from those targeted by the above-described procedure.
To observe better agreement with theoretical predictions, we have estimated the best-
fitting parameters pest and qest by finding such a ρGW(pest, qest) that its fidelity with the
experimentally reconstructed density matrix is maximized. We find that the deviations
of the estimated value of the mixing parameter pest from the value of p, which was set
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with a limit precision in our experiment, are on average equal to 0.01 for the Werner
states and 0.03 for the GWSs. For the estimated value of the superposition parameter
qest, the observed parameter deviations from a given value of q are equal on average to
0.02. The maximal deviation values are 0.03 for both Werner states and GWSs. Note
that the superposition parameter q was manually set by an HWP in the source part
of the setup shown in Fig. 4.1(a). Experimental data as well as the estimated density
matrices are provided on the CD-ROM attached to the printed version of this Thesis
(Appendix E).

The states ρW and ρGW can also be expressed by Eq. (4.11) with F = 0. In this
matrix, the subspace spanned by the states |φq〉 for q ∈ [0, 1] is represented by the
elements A, D, E, and E∗, while the corresponding subspace for the white-noise term
corresponds to only diagonal elements (A, B, C, D). For the reasons specified below,
we set, in our experiments, the superposition coefficient at q = 0.9, in addition to
q = 0.5.

Note that it is irrelevant to replace |φq〉 by a four-term superposition state |φabcd〉 =
a |00〉+b |01〉+c |10〉+d |11〉 at least in the analysis of nonclassical correlations. This is
because |φabcd〉 can be reduced to |φq〉 solely by local rotations, so the studied two-qubit
quantum correlations are unchanged. As mentioned above, the GWSs are not diagonal
in the Bell basis, except q = 0, 1

2
, 1. This property greatly complicates analytical

calculations of correlation measures. So, for the Bell-non-diagonal GWSs, we present
analytical formulas of the entanglement and nonlocality measures only, contrary to the
corresponding results for the Werner states, which include also our formulas for the
steerable weights.

We begin our detailed comparative analysis by presenting various theoretical rela-
tions between chosen correlation measures for the Werner states and GWSs showed in
Figs. 4.2 and 4.3, respectively. These curves show the negativity N (or equivalently
the concurrence C), the steerable weights S2 and S3, and the Bell nonlocality measure
B as a function of the mixing parameter p. Each coloured region starts where a given
correlation measure becomes non-zero with an increasing value of the mixing parameter
p. We refer to these regions as quantum correlation regimes, which are also listed in
Tables 4.1 and 4.2.

Table 4.1: Hierarchy of classes of correlations for the Werner states ρW(p) depending on
the mixing parameter p. The four regimes of vanishing or nonvanishing different classes of
quantum correlations correspond to the regimes shown in Figs. 4.2 and 4.4.

Regime B S2 ≡ Sij2 S3 N p experiment

#1 B = 0 S2 = 0 S3 = 0 N = 0 p ∈ [0, 1
3
] direct

#2 B = 0 S2 = 0 S3 = 0 N > 0 p ∈ (1
3
, 1√

3
] direct

#3 B = 0 S2 = 0 S3 > 0 N > 0 p ∈ ( 1√
3
, 1√

2
] direct

#4 B = 0 S2 > 0 S3 > 0 N > 0 p ∈ ∅ impossible
#5 B > 0 S2 > 0 S3 > 0 N > 0 p ∈ ( 1√

2
, 1] direct
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Figure 4.2: Four correlation regimes of the Werner states corresponding to those listed
in Table 4.1. Note that regime #4 is missing. Theoretical plots for the negativity N (or,
equivalently, the concurrence C), the steerable weights S2 and S3, and the Bell nonlocality
measure B are shown as a function of the mixing parameter p. Exact definitions of the
depicted quantum correlation measures are given in Sec. 4.5.
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4.5 Hierarchy of the Classes of Correlations for Werner-
Like States

4.5.1 Entanglement of Werner-Like States

It is well known that, for Werner states, the concurrence and negativity, which were
defined in Sec. 4.3.1, are equal to each other and are given by a linear function of the
mixing parameter p, i.e.,

N(ρW) = C(ρW) = max [0, (3p− 1)/2] , (4.15)

as shown in Fig. 4.2 by the dot-dashed curve. The good agreement of the negativities
calculated for the theoretical and experimental Werner states is shown in Fig. 4.4(a).

We find that the negativity and concurrence for the GWSs read:

N(ρGW) = C(ρGW) = max
{

0, 1
2

[
p(1 + 4

√
x)− 1

]}
, (4.16)

with x = q(1− q), which is plotted in Fig. 4.3 by the dot-dashed curve. Figure 4.5(a)
demonstrates the good fit of the negativities calculated for the theoretical and experi-
mental GWSs for different values of the superposition parameter q. Note that not only
N(ρW) but also N(ρGW) is a linear function of the mixing parameter p for a fixed value
of the superposition coefficient q. In a special case for a pure state |φq〉 (i.e., when
p = 1), Eq. (4.16) reduces to N(|φq〉) = C(|φq〉) = 2

√
q(1− q).

Equation (4.16) vanishes for p ∈ [0, pN(q)] at the threshold value given by

pN(q) = 1/
[
1 + 4

√
q(1− q)

]
, (4.17)

which is plotted in Fig. 4.6. It is seen thatN [ρW(p)] > 0 if p > 1
3
andN [ρGW(p, 0.9)] > 0

if p > p′N = 5
11
. These threshold values are below compared with those for the other

measures of quantum correlations and also marked in Figs. 4.6 and 4.7.
Note that N(ρGW) = C(ρGW) should hold for the ideal GWSs, including the Werner

states. However, our experimental GWSs do not exactly satisfy this condition. Thus,
we calculated both measures, because their difference shows how much our experimental
states deviate from the ideal Werner states. These deviations quantify also the precision
of our measurements. Specifically, the observed experimental differences between the
negativity and concurrence were on the average 0.02% for the Werner states and 0.06%
for the GWSs. Thus, on the scale of Figs. 4.4(a) and 4.5(a) one could not see any
differences between N(ρEGW) and C(ρEGW).

4.5.2 Steering of Werner-Like States in the Three-Measurement
Scenario

Steering in a 3MS on Alice’s side can be quantified by the steerable weight S3 of
Ref. [295], as defined as an SDP in Appendix C.2. We find that this steerable weight
S3 for the Werner states is a linear function of the mixing parameter p, specifically,

S3(ρW) = max

(
0,

√
3p− 1√
3− 1

)
, (4.18)

which means that the state ρW(p) is steerable in the 3MS if p > 1√
3
[see Fig. 4.4(d) and

Table 4.1]. By contrast to this, the steerable weight S3 for the GWSs is a nonlinear
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Figure 4.4: Quantum correlations for the theoretical and experimental Werner states as
a function of the estimated mixing parameter pest: (a) negativity N , (b) Bell nonlocality
measure B, as well as the steerable weights (c) S2 and (d) S3.

function of the mixing parameter p for q 6= 1
2
. This is shown for q = 0.9 in Fig. 4.5(d). It

can be seen that these GWSs are steerable for p > pS3 = 0.7390 (see also Table 4.2). This
means that ρGW(p, 0.9) is steerable for a much shorter range of the mixing parameter p
than that for ρW(p) ≡ ρGW(p, 1

2
). Figures 4.4(d) and 4.5(d) show the weight S3 for our

experimental states compared to those for the theoretical states. These results show
good agreement of the theory with our experimental results.

4.5.3 Steering of Werner-like States in Two-Measurement Sce-
narios

To quantify steering of the Werner states and GWSs in 2MSs on Alice’s side, we apply
the steerable weights Sij2 of Ref. [295] defined in Appendix C.3.

We find that the weights Sij2 for the Werner states are equal to each other, S2(ρW) ≡
SXY2 (ρW) = SXZ2 (ρW) = SY Z2 (ρW), being a linear function of the mixing parameter p,
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Figure 4.5: Same as in Fig. 4.4 but for the GWSs for the estimated superposition coefficient
qest ≈ q = 0.9 (see the text for details).

i.e.,

S2(ρW) = max

(
0,

√
2p− 1√
2− 1

)
. (4.19)

This implies the steerability of the states in the 2MS if p > 1√
2
[see Fig. 4.4(c) and

Table 4.1]. However, the steerable weights for the GWSs become much more complicated.
We find that SXY2 (ρGW) ≤ SXZ2 (ρGW) = SY Z2 (ρGW) ≡ S2(ρGW), and there exist two
threshold values p′S2

and p′B, as listed in Table 4.2. Specifically, (i) SXZ2 (ρGW) =
SY Z2 (ρGW) > 0 if p > p′S2

= 0.8370 · · · and (ii) SXY2 (ρGW) > 0 if p > p′B = 5√
32
, which

is the same threshold parameter as that for the Bell nonlocality measure B > 0, as
discussed above. Moreover, the dependence of Sij2 (ρGW) on the mixing parameter p
becomes nonlinear for q 6= 1

2
. Different values of the threshold parameters for p′B and

p′S2
imply the occurrence of the region #4 for the GWSs, which is shown in Figs. 4.3,

4.6(a), and 4.7(c), and explained in detail in Sec. 4.6.1.
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Figure 4.6: Threshold mixing parameters pi(q) versus the superposition parameter q for the
GWSs. (a) The threshold curves separate the five regimes in the hierarchy of the classes of
quantum correlations, which are listed in Table 4.2. (b) Transitions between various curves,
requiring the largest amount of white noise, are indicated by arrows. It is seen that the
only arrow e for the Werner states (i.e., the GWSs at q = 1/2) is marked for the transition
between the curves pS2(q) and pS3(q). All the other arrows are plotted at q 6= 1/2. This
explains the meaning of enhanced robustness of the Bell-non-diagonal GWSs against white
noise compared to that of the Werner states. The locations at qopt and lengths of the
labelled arrows are listed in Table 4.3. The unlabelled arrows are located at q′opt = 1− qopt.

4.5.4 Nonlocality of Werner-Like States

To estimate the degree of quantum nonlocality or, equivalently, to quantify the violation
of the Bell-CHSH inequality for two-qubit states [87], we use the Horodecki measure [303,
304], which is as defined in Sec. 4.3.3.

The Bell nonlocality measure for the Werner states reads as

B(ρW) =
√

max(0, 2p2 − 1), (4.20)

which instantly implies a standard result that the Werner states are nonlocal if p > 1√
2

(see also Table 4.1). However, if p ∈ (1
3
, 1√

2
), the Werner states are entangled without

BIV (admitting an LHV model), as already demonstrated by Werner in 1989 in [98].



78 CHAPTER 4. HIERARCHY AND ROBUSTNESS OF 2-QUBIT STATES

We find that the Bell nonlocality measure for the GWSs is given by

B(ρGW) = max
{

0,
√
p2[1 + 4q(1− q)]− 1

}
, (4.21)

Note that for pure states (p = 1), Eq. (4.21) reduces to the standard result B(|φq〉) =

N(|φq〉) = 2
√
q(1− q). It can be seen that B(ρGW) is zero for the values of the mixing

parameter in the range p ∈ [0, pB(q)] with the threshold value given by

pB(q) = 1/
√

1 + 4q(1− q), (4.22)

which is plotted in Fig. 4.6. For the diagonal GWSs (with q = 1
2
), we can reproduce the

well-known threshold value pB(1
2
) = 1√

2
for the Werner states. In another special case

for q = 0.9, which was set in our experiments, we have the threshold value p′B ≡ pB(q =
0.9) = pB(q = 0.1) = 5√

32
. Thus, the GWSs ρGW(p, 0.9) for p ∈ (p′N , p′B) = ( 5

11
, 5√

32
)

are entangled without Bell nonlocality, which occurs for a wider range of the mixing
parameter p compared to that for the Werner states, i.e., p′B− p′N ≈ 0.4029 > 1√

2
− 1

3
≈

0.3738, as it is explained in detail in Sec. 4.6.2.
In Fig. 4.4(b) we plotted B(ρW) in comparison to the numerically calculated B(ρEW)

for the experimental Werner states ρEW(p) for various values of the mixing parameter p
and fixed q = 0.9. Analogous results for the Bell nonlocality measure B(ρGW) for the
GWSs generated experimentally, ρEGW(p; q = 0.9), are shown in Fig. 4.5(b) in comparison
to those for the ideal GWSs, ρGW(p; q = 0.9). Note that B(ρGW) > 0 if p > p′B (see
also Table 4.2), assuming q = 0.9 or 0.1, which is clearly larger than the corresponding
threshold value 1√

2
for the Werner states. Both Figs. 4.4(b) and 4.5(b) show relatively

good agreement of our experimental results compared to the corresponding theoretical
predictions. More details about the accuracy of our experimental results were given in
Sec. 4.4.1.

4.6 Counterintuitive results
Here we present, arguably, the most interesting theoretical results of our research for
the states generated experimentally (either directly or in a hybrid way).

4.6.1 Steerability S2 Without Bell Nonlocality

Here we show that Bell-non-diagonal GWSs are steerable in 2MSs on Alice’s side but
still admit an LHV model. So the existence of such quantum correlations cannot be
revealed by the violation of the Bell-CHSH inequality. The GWSs exhibiting the S2-
steerability without Bell nonlocality correspond to the regime #4 in Table 4.2 and are
shown in Figs. 4.3, 4.6(a), and 4.7(c).

Our analytical and numerical results clearly demonstrate that the regime #4 cannot
be observed for the Werner states, for which pB(1

2
) = pS2(

1
2
) holds, as can be seen in

Fig. 4.3. However, this degeneracy is broken for the GWSs with q 6= 0, 1
2
, 1.

We find this result interesting, although the amount of the required white noise
destroying the correlations is small [i.e., maxq ∆B,S2(q) = 0.023] compared to all the
other cases shown in Fig. 4.7, except Fig. 4.7(e).

Moreover, the regime #4 can be observed for the mixing parameter p limited to a
very narrow range [p′S2

, p′B] ≈ [0.837, 0.857] assuming q = 0.9 (or, equivalently, 0.1),
as shown in Figs. 4.5(b) and 4.5(c). We have experimentally generated the GWSs for
p = 0.8 and p = 0.9, but unfortunately they are outside the desired range [p′S2

, p′B].
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To solve this problem, we recall that mixtures of any two GWSs, say ρGW(p1, q)
and ρGW(p2, q) for a fixed value of q, are also GWSs. Specifically,

ρEGW(p, q) =
p2 − p
p2 − p1

ρGW(p1, q) +
p− p1

p2 − p1

ρGW(p2, q). (4.23)

Thus, we can use this property to produce (or simulate) a GWS, which was not measured
directly in our experiment, e.g.,

ρGW(0.85,q) =
1

2
[ρEGW(0.8, q) + ρEGW(0.9, q)], (4.24)

simply by balanced post-measurement numerical mixing of the two experimental GWSs
ρEGW(p, q) for p = 0.8 and 0.9 assuming q = 0.9. We refer to this method as a hybrid
experimental generation, as written in Table 4.2 for the regime #4. By contrast to
this regime, we have directly generated experimental states in all other regimes listed
in Tables 4.1 and 4.2. Moreover, all the states plotted in our figures correspond to
those directly generated experimentally without using any post-measurement numerical
mixing.

Our prediction of the existence of states in the regime #4 is a surprising result
and our experiment has just confirmed it. This prediction seems to be especially
counterintuitive in the context of the Girdhar-Cavalcanti article on “All two-qubit
states that are steerable via CHSH-type correlations are Bell nonlocal” [318] (see also
Refs. [319, 320]), which seemingly implies the impossibility of generating states in this
regime. However, the Girdhar-Cavalcanti theorem is valid in 2-2 measurement scenario
only, i.e., for “a scenario employing only correlations between two arbitrary dichotomic
measurements on each party” [318]. Our steering measures S2 and S3 refer to a 2-3 and
3-3 measurement scenarios, respectively. Indeed, we always assume a full tomography
on Bob’s side corresponding to the measurement of the three Stokes parameters: 〈σx〉,
〈σy〉, and 〈σz〉, while the projective measurements on Alice’s side can be limited to
2MS or 3MS. It is seen that our and Girdhar and Cavalcanti’s steering results refer
to different measurement scenarios. Thus, the observation of the regime #4 in our
steering scenarios does not imply the violation of the Girdhar-Cavalcanti theorem.

4.6.2 Increased Robustness Against White Noise of Bell-Non-
diagonal Generalised Werner States

Even a quick analysis of Figs. 4.6(b) and 4.7, and Table 4.3 shows one of the main
theoretical results of this Chapter, i.e., increased robustness against white noise of Bell-
non-diagonal GWSs compared to the standard (Bell-diagonal) Werner states. Below
we give a more intuitive and detailed explanation of this result.

We recall that Bell diagonal (non-diagonal) GWSs are the maximally (partially)
entangled states affected by white noise. Let us analyse the amount of white noise
(i.e., 1 − p), which is necessary to make the transition of a GWS from one threshold
value, say pi(q), to another (final) value, pf(q), for a given value of the superposition
parameter q. Thus, the required white noise can be quantified by

∆if (q) ≡ pi(q)− pf (q) (4.25)

for i 6= f ∈ {N , S3, S2, B}, which is plotted in Fig. 4.7 and numerically given in
Table 4.3.
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Figure 4.7: Differences ∆ij(q) = pi(q) − pj(q) of the threshold mixing parameters versus
the superposition parameter q for the GWSs corresponding to the transitions shown by the
red arrows in Fig. 4.6. The red-coloured regions show explicitly the improved robustness
against white noise of the Bell-non-diagonal GWSs compared to the diagonal ones in the
Bell basis (i.e., the standard Werner states), except the case shown in panel (e). Combined
red and cyan regions correspond to the regimes indicated in the captions of all these panels
and those listed in Table 4.2.
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For example, let us consider the maximally entangled Werner state admitting an
LHV model, i.e., ρW(pB). Our question is about the minimum amount of white noise
which should be added to this state to make it separable, i.e., ρW(pN). The answer
is ∆BN(q = 1

2
) = 1√

2
− 1

3
≈ 0.3738. However, in the case of the GWSs, the minimum

amount of white noise needed to convert the maximally entangled GWS ρGW(pB(q), q),
admitting an LHV model, to the closest separable state ρGW(pN(q), q) can be larger
than that for the Werner states, ∆BN(q) > ∆BN(1

2
), for some values of the superposition

parameter q corresponding to the red regions in Fig. 4.7(a). Assuming that q = 0.9 (as
set in our experiments), we obtain ∆BN(0.9) = 0.4029 > 0.3738. Actually, the largest
value maxq ∆BN(q) = ∆BN(q′) = 0.4037 can be achieved for q′ = 0.8829 and 1 − q′,
which can be calculated by solving the following sixth-order equation (1+4x2)3 = x2(1+
+ 4x)4 with x =

√
q′(1− q′).

The same conclusion about higher robustness of the Bell-non-diagonal GWSs against
white noise compared to that of the Werner states can also be drawn for other transitions,
indicated by the arrows in Figs. 4.6(b) and 4.7 and also listed in Table 4.3. The only
exception is observed for the transition corresponding to ∆S2,S3(q), which reaches the
largest value for the Werner states, as shown in Fig. 4.7(e).

More white noise should be added to a Bell state to reach any threshold value pj
compared to that for any partially entangled state, because 1− pj(1

2
) > 1− pj(q) for

q 6= 1
2
and j ∈ {N , S3, S2, B}, i.e., the amount of white noise destroying completely

any quantum properties of the states, including entanglement, steering, and nonlocality.
So, in that sense, the Werner states are more robust against white noise than the non-
diagonal GWSs. However, by choosing proper reference states or proper transitions,
one can draw the opposite conclusion, as we have demonstrated in this section and it
is clearly visualized in Figs. 4.6(b) and 4.7.

4.6.3 Increased Robustness of Steering for a Larger Number of
Measurements

Our research is focused on analysing steering in only the two- and three-measurement
scenarios. Nevertheless, in Appendix C.4 we also discuss steering in multi-measurement
scenarios including the case of steering in the limit of an infinite number of types of
available measurements.

Specifically, we analyse lower and upper bounds on steering for a much larger number
n of measurements (even n = 136). We demonstrate that entangled GWSs, which are
unsteerable for a very large (or in principle infinite) number of measurements, can
be more robust against white noise if they are non-diagonal in the Bell-state basis
compared to the diagonal ones (i.e., the Werner states).

First, we recall that, while the analysed entanglement measures reveal the property
of a given state independent of its measurements, the measures for steerability and Bell
nonlocality additionally depend on the available measurements.

Thus, one can raise the following questions: (i) whether a larger spread (corre-
sponding to higher robustness) between different classes of correlations in the GWSs is
an artefact stemming from the fact that the considered steering and Bell-nonlocality
measures perform better on less entangled states? This question can also be rephrased
differently: (ii) Can one expect to find the same robustness behaviour for some tight
bounds for Bell nonlocal states and steerable states (taking into account any measure-
ment scenario)?

We answer these questions by calculating tight upper (pup
S ) and lower (plow

S ) bounds
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on steering for the GWSs for a large number of measurements. These numerical bounds
strongly suggest that the hierarchy also holds for an arbitrary number of measurements.
Indeed, similar analysis can be performed for Bell nonlocality of the GWSs, as discussed
in [301], to show that the Horodecki measure fully describes the nonlocality in two-qubit
states with no restriction on the number of measurements.

Two bounds on multi-measurement steering are shown in Fig. 4.8. Specifically,
the upper bound pup

S , which corresponds to the border curve between the regimes #6
and #7 in Fig. 4.8(a), is a sufficient condition for the steerability of the GWSs. This
bound was obtained numerically in Refs. [301, 302] from a criterion of Ref. [242] using
an SDP technique for 13 measurements on the Bloch sphere. Moreover, the lower
bound plow

S , which is shown by the curve between the regimes #7 and #8, corresponds
to a sufficient condition of the unsteerability of the GWSs based on the algorithm of
Refs. [301, 302] for constructing LHS models assuming 136 projective optimal (or almost
optimal) measurements corresponding to the fourth level of their algorithm. The curves
for both plow

S and pup
S are plotted using the numerical data of Ref. [302]. Thus, any

GWS above the pup
S curve in Fig. 4.8(a) is steerable, while any state below the plow

S

curve is unsteerable. The unsteerability of some of the states in the regime #7 (lying
close to the border curve plow

S ) can be tested by applying the algorithm of Refs. [301,
302] for higher levels, which corresponds to analysing a larger number of measurements
(n� 136). However, it is unclear whether any GWSs lying inside the regime #7 can
be steerable in the limit of n→∞.

Figure 4.8(a) shows that by including the criteria for steering in multi-measurement
scenarios, in addition to S2 and S3, one can study a CC hierarchy which is more refined
than that in Fig. 4.6(a). Note that the regime #2 in Fig. 4.6(a) corresponds to the
sum of the regimes #6, #7, and #8 shown in Fig. 4.8(a).

To answer the questions raised above, we plotted the differences pup
S −pN and plow

S −pN
in Figs. 4.8(b) and 4.8(c), respectively. Both figures are quite similar and show that
the optimal robustness against noise is observed for the Bell non-diagonal GWSs with
the superposition parameter q 6= 1

2
(denoted by black solid lines). Thus, even without

knowing the exact threshold values between the steerability and unsteerability of the
GWSs in the limit of an infinite number of measurements, one can conclude that the
predicted optimal robustness is not an artefact, at least for the cases shown in Figs. 4.8(b)
and 4.8(c). This is the answer to question (i). Concerning the above-mentioned question
(ii), the robustness behaviour is different for different pi = pup

S , plow
S , pS2 , pS3 . Indeed,

the optimal values of the superposition parameter q maximizing pi − pN depend on i.
However, this property does not weaken our conclusion about higher robustness against
white noise of some Bell non-diagonal GWSs compared to that of the Werner states.

4.7 Conclusions

The main purpose of this work was to analyse a CC hierarchy of theoretical and
experimental Werner states and their generalization, i.e., the Bell-non-diagonal GWSs.
We recall that the considered GWSs are the mixtures of partially entangled two-qubit
pure states (not only of a Bell state) and the maximally mixed state (white noise).
We have shown that the Bell-non-diagonal GWSs exhibit a more refined CC hierarchy
compared to that of the Bell-diagonal GWSs, i.e., the Werner states.
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Figure 4.8: (a) Same as in Fig. 4.6(a) but with additional regions (regimes) #6, #7, and
#8 of steerability in the limit of a large number of measurements. Also shown are the
differences (b) pup

S − pN and (c) plow
S − pN , where pN is given by Eq. (4.17). The curve pup

S

is the border between the regimes #6 and #7, which corresponds to a sufficient condition
for steerability of Ref. [242], while the curve plow

S is the border between the regimes #7 and
#8, which corresponds to a sufficient condition of unsteerability based on the algorithm
and numerical data of Refs. [301, 302] assuming 136 projective measurements. Panels (b,c)
show, analogously to those in Fig. 4.7, that the optimal robustness of steering assuming a
large number of measurements compared to the entanglement of the GWSs is observed for
the Bell non-diagonal GWSs with the superposition parameter q 6= 1/2 (as denoted by solid
blue lines).

By tuning the mixing and superposition parameters of the GWSs, we have exper-
imentally generated and tomographically reconstructed such GWSs, which reveal the
hierarchy of the following classes of correlations: #1 separability, #2 entanglement
without steerability in 3MS, #3 steerability in the 3MS but not steerable in the 2MS,
#4 steerability in the 2MS without violating the Bell-CHSH inequality (so admitting
LHV models), and #5 Bell nonlocality, which cannot be explained within LHV models.
Note that the case of steering is a little more subtle since the measures assume specific
measurements. Thus, we have also analysed a sufficient condition for unsteerability
assuming a very large number (i.e., 136) of measurements.
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In particular, we found five different parameter regimes of the GWSs, including
the states which are steerable in a 2MS without violating Bell inequalities and thus
corresponding to the regime #4. This is a counterintuitive result, especially when
compared with the Girdhar-Cavalcanti theorem [318], which states that: “All two-
qubit states that are steerable via CHSH-type correlations are Bell nonlocal” [318]. In
Sec. 4.6.1 we have explained why the observation of the regime #4 in our steering
scenarios does not imply the violation of the Girdhar-Cavalcanti theorem. We also
demonstrated that the regime #4 cannot be observed for the usual Werner states.

Moreover, we have shown that the robustness against the white noise for, e.g.,
steerable states admitting LHV models can be stronger for some Bell-non-diagonal
GWSs than that for the diagonal GWSs (i.e., the Werner states). This can be achieved
by properly choosing the value of the superposition coefficient q, as shown in Figs. 4.6(b)
and 4.7. Thus, we addressed the problem of optimal robustness of states against white
noise. Specifically, we analysed threshold values (curves) separating the five regimes of
quantum correlations. Then we could find optimal transitions between various curves
corresponding to the largest amount of white noise or, in other words, to the largest
spread in the hierarchy. Thus, we discovered the optimal Bell-non-diagonal GWSs
which are more robust against white noise than the Werner states.

Furthermore, we considered lower and upper bounds on steering in multi-measurement
scenarios. Again we demonstrated better robustness against white noise of some un-
steerable entangled Bell-non-diagonal GWSs compared to the diagonal ones. Thus,
such enhanced robustness is not limited to only the two- and three-measurement steer-
ing scenarios; it can also be observed for steering in the limit of a large number of
measurements.

Possible applications of the discovered optimal robustness against white noise can
be found for quantum cryptography. For instance, imagine that legitimate users of some
secure quantum communications system want to use steering (or entanglement) such
that it should not be detected by the violations of Bell inequalities by others. Thus,
assuming that the communication is via a depolarizing channel, it is convenient to use
partially steerable (or partially entangled) states which are Bell local and are the most
robust against white noise. Such optimal states are indicated by arrows in Fig. 4.6(b).

Our study of the hierarchy of the classes of spatial quantum correlations can be gen-
eralised to analyse a hierarchy of their temporal or spatio-temporal analogues. Indeed,
the concepts of spatial and temporal quantum correlations are closely related. For-
mally, it is enough to replace two-qubit measurements for testing spatial correlations by
measurements on a single qubit, followed by transmission through a channel, to reveal
temporal correlations, as explained in the example of spatial and temporal steering in
Ref. [298]. Thus, many of the results discussed here for spatial correlations can also be
generalised to temporal correlations. We explicitly indicated such relations in various
sections of this Chapter. Analyses of CC hierarchies of temporal correlations can lead
to a deeper understanding of, e.g., quantum causality [321] or enable designing new
types of quantum cryptosystems and finding new methods of breaking the standard
ones.

We believe that analysing such CC hierarchies is interesting concerning both fun-
damental aspects of quantum mechanics and possible cryptographic applications for,
e.g., secure communication, secure information retrieval, or zero-knowledge proofs of
(quantum) identity.
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Conclusion

“God makes everything happen at the right time. Yet none of us
can ever fully understand all he has done, and he puts questions in
our minds about the past and the future.”
Ecclesiastes 3:11 in translation of Contemporary English Version

“On ve svém čase učinil všechno krásné a do srdce jim vložil touhu
po věčnosti, jenže člověk není schopen pochopit ani počátek ani
konec toho, co Bůh koná.”
Kazatel 3:11 v překladu Slovo na Cestu

Nowadays, increasing number of companies has recognised that quantum physics
is no longer a subject of academic discussions among physicists but rather it opens
up unprecedented opportunities for solving intricate issues and tasks. They invest
strenuous efforts and considerable funds to jump on the bandwagon of a very promising
field, quantum computing, hoping to find solutions to, e.g., industrial, analytical and
other practical tasks that have been difficult to tackle before. Quantum communications
is another field that has found its application in practice, especially for the prospect
of security warranted by laws of Nature. Thus, quantum technologies are gradually
becoming part of our lives.

Since it was formulated more than 80 years ago, a phenomenon of quantum entan-
glement has become an indispensable part of quantum physics and in time it found
its application (among others) in those above mentioned fields of significance. Thus,
its detailed study is an imperative for further development of any practical application
of quantum technologies. Additionally, entanglement is of interest even to theoretical
perspective.

The goal of this doctoral Thesis is to present three experiments aim of which is
either to improve a quantum money protocol or to study quantum correlations and their
hierarchy on Werner states made up of two and three qubits subjected to controllable
white noise. The common feature of the two remaining experiments is the investigation
of generalised Werner states, i.e., gGHZ states influenced by white noise. This family
of states realistically showcases deterioration of entanglement during, e.g., quantum
communication caused by presence of noise in the communications channel. Since
two- and three-qubit Werner states are widely used to model quantum information
transmissions through realistic channels, results of our research might eventually find
its practical usage. All presented experiments were implemented on the platform of
linear optics and information was encoded into polarisation and spatial modes of single
photons. Therefore, the main components used for building of these experiments are
described in the Chapter 1 along with source of photons and procedures of encoding
and analysis of qubits.

A successful attack on a quantum money (QM) scheme, which is based on quantum
retrieval games, is presented within the scope of the Chapter 2. This attack was
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realised by means of imperfect cloning on a beam splitter with the frequency of cloning
deliberately lowered in order to hide the eavesdropping in noise. We expected that the
bank uses an unknown secret function, like for instance hash function, and a secret
number – salt, to encode all issued banknotes. The main result of this experiment is that
despite using hash function, the secret number has been guessed. Even though quantum
physics possesses fundamental means (such as no-cloning theorem) to provide security
of quantum communication, protection is not guaranteed unconditionally. Security
of quantum communication is affected by several factors, such as the noise threshold,
which the bank still considers safe. Further assessment of security has to take place
before this type of QM protocol becomes a viable quantum technology. It is worth
stressing that entangled states are present even in this experiment, although it may
not be immediately obvious. The reason being that during the cloning transformation
entangled states are inherently created (Eq. (2.6)) as signal and ancillary photons
overlap on beam splitter.

In the remainder of this Thesis, i.e., in Chapters 3 and 4, we addressed experimental
preparation of Werner states and also their generalised form (in the later Chapter). We
measured concurrence and nonlocal fraction (Chapter 3) on these states and demon-
strated hierarchy of several classes of quantum correlations (Chapter 4). Specifically,
the aim of the third Chapter is to show how quantification of multipartite entanglement
can be made more accessible for practical quantum communications where alignment
and calibration of laboratory devices cannot be guaranteed due to, e.g., an unstable
conditions. To implement it, the measurements were carried out in reference-frame
independent regime, i.e. by means of random sampling, instead of standard quantum
tomography. Under these relaxed conditions we focused on quantification of entangle-
ment (by means of concurrence) via detection of nonlocal fraction. Both connection
between entanglement and nonlocality and quantification of entanglement are of par-
ticular interest. All our results are well in agreement with the theory.

Demonstration of hierarchy of separability, entanglement, steering (2- and 3-measure-
ment scenario) and Bell nonlocality is discussed in the fourth Chapter. It turned out
that this hierarchy reveals that generalised Werner states display fundamentally new
features of quantum correlations. Particularly, unlike Werner state, their generalised
form does not break Bell inequality (i.e. they are Bell local), yet they retain steerability
in a 2-measurement scenario. Further, it was discovered, by means of both experiment
and theoretical analysis, that some optimally prepared generalised Werner states exhibit
increased robustness against white noise. To put it another way, quantum correlations
of these optimal states are not disrupted upon addition of larger amount of white noise.
Increased robustness also makes these states being an suitable tool for applications in
secure quantum communications and cryptography.

The Author has firm believe that the research presented within this Thesis meaning-
fully contributed to better understanding of such a thrilling feature of quantum physics
which entanglement certainly is. The Author is also particularly pleased that our results
were published in journals with IF, namely Scientific Reports, Physical Review Applied
and Physical Review A. Even though entanglement has found its stable role within
the context of several fields of quantum physics its study has not been completed, yet.
There are some open fundamental questions still waiting to be satisfactorily answered,
such as: “What is the relation between entanglement and nonlocality?” or “How to
reliably quantify and detect entanglement?”. This provides an opportunity for new
discoveries. Nonetheless, it is a well-known truth that research brings actually more
questions than answers which is in line with the quote above. This has a positive
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effect that there will always be something to research, as ongoing studies widen our
view and insight into quantum mechanics and bring out new possibilities. Still, under
no circumstances should this quote be viewed as a pessimistic view of the future of
science. Quite the contrary: it means that the profession of physicist will always find
employment.

¦
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Appendix A Supplementary
Material of Chapter 2

A.1 Strategies for assigning information to measure-
ments performed on cloned pairs

During the transaction, a pair of states is taken from the card, which the hacker clones
and from which we receive two pairs of copied qubits. To carefully consider the actual
attack it is necessary to present all the situations in which the states are distorted.
Using the knowledge of the protocol and assuming high fidelity of cloning, we can
consider three strategies applied for analysing the results of measurements made on
cloned pairs. For each measurement result, we assume the most likely situation.

A.1.1 Strategy a

We assume that both pairs of qubits are cloned perfectly. The measurements result in
the same outcome for clones of the first qubit from a given pair and different outcome
for clones of the second qubit from the pair. This is a strategy that allows to reject
the largest number of possible options and gives the most information about the cloned
state.
Example:

• The hacker measures two pairs (|V A〉, |V A〉) in the same basis, i.e., Qzz.

• The result is: (|V H〉, |V V 〉) or (|V V 〉, |V H〉).

• The last bit of the hacker’s information is assigned at random: (01r).

A.1.2 Strategy b

We assume that both qubits are cloned ideally, but the measurement results on each
pair of clones are the same. This is a strategy allows us to reject half of the possible
options, from which we are still able to obtain some information about the cloned state.
Example:

• The hacker measures two pairs (|V A〉, |V A〉) in the same basis, i.e., Qzz.

• The result is: (|V H〉, |V H〉) or (|V V 〉, |V V 〉).

• The second or the third bit of the hacker’s information is information is random:
(01r or 1r0) = (010,011) or (100, 110), or (01r or 1r1) = (010, 011) or (101, 111).
This results in four random options.
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A.1.3 Strategy c

We assume that one of the clones is orthogonal to the cloned state. This is a strategy
that does not allow the elimination of any possibility. We do not get any information
about the cloned state.
Example:

• The hacker measures two pairs (|HA〉, |V A〉) in the same basis Qzz.

• The result is: (|HH〉, |V V 〉) or (|HV 〉, |V H〉).

• All bits of the hacker’s information are random, i.e., 8 options are equally probable:
(000, 001, 010, 100, 110, 101, 011, 111).

A.1.4 Additional variants

There is also an option that two or more clones end up in the orthogonal state resulting
in errors in the hacker’s information. The probability of such situations is, however,
for optimal phase-covariant cloner no larger than (F − 1)2 = 0.0213. In Tab. 4 we give
the probability of a successful attack on a single pair when both qubits from a pair
are cloned (variant 1) for strategies a1 and b1. The probability of a successful attack
(assigning the correct information to a pair of qubits) for a single pair for measurement
in any basis, when both qubits in the pair are cloned for strategy c (i.e., strategy c1)
is constant and equals to 1

8
(F − 1)F. In Tab. 4 we also present the probabilities for

the case where only one qubit from the pair has been cloned (variant 2, strategies a2

and b2). The probability of a successful attack on a single pair for measurement in any
basis for strategy c when only one qubit from a pair is cloned (i.e., variant 2, strategy
c2) is constant and equals to 1

16
(F − F 2 + 1

4
). Note that very similar analysis is valid

for measurements Qxx.
The table has been created using the following procedure. We assume that if the

bank sends a bit sequence, let it be 000 (in general it is X – 8 possible sequences).
Next, the cloning is performed. With probability P 2 it succeeds twice, with probability
2(1 − P )P it succeeds once with only one of two qubits in the sequence, and with
probability (1 − P )2 it fails and the attacker learns nothing. At this point we have
already 4 cases to consider for 8 inputs. To simplify our explanations, let us analyse a
case where X = 000 −→ |HD〉 (the same procedure is applied for all 8 inputs).

• Variant 0: With probability (1−P )2 neither of the clones is created, thus, as in
the case of erasure channel we get the following direct product of two probabilistic
spaces:

{[|HD〉, 1/4], [|HA〉, 1/4], [|V D〉, 1/4], [|V A〉, 1/4]} ×
{[|HD〉, 1/4], [|HA〉, 1/4], [|V D〉, 1/4], [|V A〉, 1/4]}.

• Variant 1: For two clones the outcome of optimal cloning appearing with proba-
bility P 2 is a direct product of two probabilistic spaces, i.e., with probability P 2

both clones are created and F is fidelity of cloning:

{[|HD〉,F 2], [|HA〉,F (1− F )], [|V D〉,F (1− F )], [|V A〉, (1− F )2]} ×
{[|HD〉,F 2], [|HA〉,F (1− F )], [|V D〉,F (1− F )], [|V A〉, (1− F )2]}.

• Variant 2: With probability (1− P )P the first qubit is cloned resulting in the
following direct product of two probabilistic spaces:
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{[|HD〉, F
2

], [|HA〉, F
2

], [|V D〉, 1−F
2

], [|V A〉, 1−F
2

]} ×
{[|HD〉, F

2
], [|HA〉, F

2
], [|V D〉, 1−F

2
], [|V A〉, 1−F

2
]}

• Variant 2: With probability (1−P )P the second qubit is cloned resulting in the
following direct product of two probabilistic spaces:

{[|HD〉, F
2

], [|HA〉, 1−F
2

], [|V D〉, F
2

], [|V A〉, 1−F
2

]} ×
{[|HD〉, F

2
], [|HA〉, 1−F

2
], [|V D〉, F

2
], [|V A〉, 1−F

2
]}.

To complete the stochastic trees we need to explain the decision process of the attacker
as outlined above to guess three bits Y according to strategies a,b, and c. Let us choose
query Qxx. The attacker can measure (with some probability given by the above-listed
probabilistic spaces):

• DD, DD −→ set Y = 000 or Y = 001 or Y = 101 or Y = 110 with equal
probability.

• DD, DA −→ set Y = 000 or Y = 001 with equal probability.

• DD, AD −→ set Y = 100 or Y = 101 with equal probability.

• DD, AA −→ impossible, set any Y with equal probability OR do nothing.

• DA, DD −→ set Y = 000 or Y = 001 with equal probability.

• DA, DA −→ set Y = 001 or Y = 011 or Y = 100 or Y = 101 with equal
probability

• DA, AD −→ impossible, set any Y with equal probability OR do nothing.

• DA, AA −→ set Y = 001 or Y = 011 with equal probability.

• AD, DD −→ set Y = 000 or Y = 010 with equal probability.

• AD,DA −→ impossible, set any Y with equal probability OR do nothing.

• AD, AD −→ set Y = 110 or Y = 111 or Y = 000 or Y = 010 with equal
probability.

• AD, AA −→ set Y = 110 or Y = 111 with equal probability.

• AA, DD −→ impossible, set any Y with equal probability OR do nothing.

• AA, DA −→ set Y = 001 or Y = 011 with equal probability.

• AA, AD −→ set Y = 110 or Y = 111 with equal probability.

• AA, AA −→ set Y = 001 or Y = 011 or Y = 110 or Y = 111 with equal
probability.

If the query is Qzz, the logic is the same. Finally, by tracking the relevant branches of
stochastic tree, we create probability tables. Having explained all the steps, a complete
stochastic tree for a given query would have the following structure: 8 input states
X −→ 4 cloning failure/success events −→ 16 qubit pairs −→ 16 measurement outcomes
−→ 8 states Y. The complete analysis of the tree would correspond to tracking 8 nodes
−→ 32 nodes −→ 512 nodes −→ 8192 nodes −→ 65536 nodes. Note that the attacker
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Table 4: Joint probability distribution describing encoded bits and hacker’s knowledge Y
gained from an attack on a single pair of qubits encoding 3-bit sequence X for query Qzz

or after swapping two last bits of X and Y for query Qxx. When cloning both qubits in the
pair and deal with strategy a (i.e., strategy a1), we have p1 = 1

4
F 2, p2 = 1

4
(1− F )2, and

p3 = 1
4
F (1− F ). In the same regime, for strategy b (i.e., strategy b1), we have p1 = 1

8
F 2,

p2 = 1
8
(1 − F )2, and p3 = 1

8
F 2 − 1

8
F + 1

16
. If successful cloning was achieved only with

one qubit from a pair, we assume that the second qubit of the pair is associated with two
completely mixed clones of the fidelity of 1/2. In this second regime we have for strategy
a (i.e., strategy a2) p1 = 1

8
F 2 + 1

32
, p2 = 1

8
F 2 − 1

4
F + 5

32
, and p3 = −1

8
F 2 + 1

8
F + 1

32
.

Under the same assumption on cloning in case of strategy b we have p1 = 1
16
F 2 + 1

64
,

p2 = 1
16
F 2 − 1

16
F + 5

64
, and p3 = 1

16
F 2 − 1

16
F + 3

64
.

000 001 010 011 100 101 110 111
000 p1 p1 p2 p2 p3 p3 p3 p3

001 p1 p1 p2 p2 p3 p3 p3 p3

010 p2 p2 p1 p1 p3 p3 p3 p3

011 p2 p2 p1 p1 p3 p3 p3 p3

100 p3 p3 p3 p3 p1 p1 p2 p2

101 p3 p3 p3 p3 p1 p1 p2 p2

110 p3 p3 p3 p3 p2 p2 p1 p1

111 p3 p3 p3 p3 p2 p2 p1 p1

knows when the cloning succeeds/fails and what is measured. Thus, also for each
cloning failure/success event and each query a separate probability table is created.
Finally, three different probability tables are created depending on the decision strategy
(the attacker differentiates between the strategies).

The hacker, collecting the results of measurements, is able to learn the algorithm
of encoding pairs of qubits. However, in order to make it possible the cloning fidelity
must be optimized. Cloning operation unavoidably involves causing errors in the
measurement results used for verification. If the level of incorrect results exceeds the
specified limit the transaction will be rejected. In order to minimize the error rate
it is, therefore, necessary to implement an attack strategy that takes into account all
measurement circumstances.

A.2 Attack-verification scenarios

There are 3 attack–verification scenarios that we consider in our work:

• Scenario (i): Providing the bank with results each time cloning takes place. If
cloning fails, sending random values.

• Scenario (ii): Providing the bank with results only when the measurement is
recorded by the terminal. In case of unsuccessful cloning, the loss of the qubit is
reported.

• Scenario (iii): Measurement of qubits in the specified database after the card is
removed from terminal, without cloning operation. Random results are sent to
the bank.
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Note that in the main text these cases are referred to as strategies. However, here it is
more suitable to call them scenarios.

From direct calculations based on the probabilities leading to verification error, we
can derive an expression concerning the frequency of errors in the verification of a pair
of qubits ε. This is the probability of reporting an error to the bank. Note that it
depends only on what happens to a qubit measured in a compatible basis. For each
strategy, the error rate is described by the respective equation [see Eq. (2) and (3) in
the main text], i.e.:

ε(i) = P (1− F ) + (1− P )/2,

ε(ii) = (1− F ),

ε(iii) =
1

2
.

The parameter ε(i) takes into account two situations. In the first case, one or both
cubits are lost during cloning and therefore random results are reported to the bank
(50% chance of getting an error). In the second case, even if the cloning is successful,
imperfect fidelity may cause the measurement to give an incorrect result. The error
rate in scenario (ii) depends only on the imperfect fidelity of the cloning.

A.3 Mutual information
In order to quantify the correlation between the attacker and the information encoded
as a pair of qubits, we enter the value of mutual information I. This value determines
how many bits of information an attacker can get after cloning one pair of qubits and
depends on the strategy used, cloning the probability of success P and fidelity F.Mutual
information is calculated as

I = IX,Y = IY ,X =
111∑

X,Y=000

pX,Y log2

pX,Y

pXpY
,

where pX =
∑111

Y=000 pX,Y , pY =
∑111

X=000 pX,Y , and X, Y = 000, 001, 010, 100, 110, 101,
011, 111. When considering scenario (i) to calculate mutual information we need to
utilise probabilities from Tabs. 1–4 and possibility uniform probability distribution
(the cloned pair is lost) referred to as strategy 0. The mutual information for security
analysis of scenarios (i) and (ii), respectively, reads

Isec(i) = P 2(Ia1 + Ib1 + Ic1)

+2P (1− P )(Ia2 + Ib2 + Ic2) + (1− P )2I0

and
Isec(ii) = Ia1 + Ib1 + Ic1 ,

where I0 = 0 and the subscripts denote the strategy. These values are query independent.
For scenario (iii) the information learned by the hacker is Isec(iii) = 1

2
. Note that for

this strategy while the attacker can eliminate some of 8 encodings (values of Y ), these
eliminated encodings depend on the order of basis. The attacker can assume/guess that
the order of encoding bases for the received pair of qubits is XZ or ZX. The order
must be random because there is no way of gaining this information (thus maximum
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Table 5: Joint probability distribution describing encoded bits and hacker’s knowledge Y
gained from an attack on a single pair of qubits encoding 3-bit sequence X for query Qxx

(i.e., XX–basis measurement) for scenario (iii), where the attacker assumes at random
encoding XZ or ZX.

000 001 010 011 100 101 110 111

000 1
32

0 1
32

0 1
64

1
64

1
64

1
64

001 0 1
32

0 1
32

1
64

1
64

1
64

1
64

010 1
32

0 1
32

0 1
64

1
64

1
64

1
64

011 0 1
32

0 1
32

1
64

1
64

1
64

1
64

100 1
64

1
64

1
64

1
64

1
32

0 1
32

0
101 1

64
1
64

1
64

1
64

0 1
32

0 1
32

110 1
64

1
64

1
64

1
64

1
32

0 1
32

0
111 1

64
1
64

1
64

1
64

0 1
32

0 1
32

Table 6: Joint probability distribution describing encoded bits and hacker’s knowledge Y
gained from an attack on a single pair of qubits encoding 3-bit sequence Z for query Qzz

(i.e., ZZ–basis measurement) for scenario (iii), where the attacker assumes at random
encoding XZ or ZX.

000 001 010 011 100 101 110 111

000 1
32

1
32

0 0 1
64

1
64

1
64

1
64

001 1
32

1
32

0 0 1
64

1
64

1
64

1
64

010 0 0 1
32

1
32

1
64

1
64

1
64

1
64

011 0 0 1
32

1
32

1
64

1
64

1
64

1
64

100 1
64

1
64

1
64

1
64

1
32

1
32

0 0
101 1

64
1
64

1
64

1
64

1
32

1
32

0 0
110 1

64
1
64

1
64

1
64

0 0 1
32

1
32

111 1
64

1
64

1
64

1
64

0 0 1
32

1
32

information to gain is here Imax = 2 instead of Imax = 3 when the order is known).
Then, under this assumption, with probability 1/2 the attacker, depending on the
measurement outcomes (query Qxx or Qzz - honest but curious attacker), can exclude
some encodings. The attacker can guess the order of bases correctly only in half of
the cases. Only if successful, half of 4 encodings can be eliminated. This makes
Isec(iii) = 1

4
Imax = 1

2
. This is confirmed by direct calculations based on Tab. 5 or Tab. 6.

Note that Figs. 2 and 3 presented in the main text are depict functions Isec(n)[ε(n)]
for n = i,ii,iii. In case of Fig. 3 depicting conditional mutual information, Isec(i) is
calculated assuming P = 1, because in this case the hacker infers the information only
if both qubits are cloned.
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Material of Chapter 3

B.1 Analytical Derivation of Eq. (3.9)
The CHSH inequality for general two-qubit state ρ can be written as [322]

|a0 ·Rρ · (b0 + b1) + a1 ·Rρ · (b0 − b1) | ≤ 2, (B1)

where a0, a1, b0, b1 are unitary vectors in R3 and Rρ denotes the 3 × 3 correlation
matrix with elements Rρ

ij = Tr[ρ (σi ⊗ σj)] given in terms of the three Pauli matrices.
For the special case, when ρ stands for the Werner state (in the form proposed in Ref.
[98]), the correlation matrix R = −v1l3, where v is the visibility.

Next we introduce a pair of unitary vectors c0 and c1 by b0 + b1 = c0

√
2(1 + x),

b0 − b1 = c1

√
2(1− x), where x = b0 · b1. Substituting all these quantities into Eq.

(B1), one has

|a0 · c0

√
1 + x+ a1 · c1

√
1− x| ≤

√
2

v
. (B2)

To prove Eq. (3.9) we shall find how often inequality (B2) is violated when unit
vectors a0, a1, c0, c1 and the variable x are chosen independently, randomly, and
isotropically. Following arguments presented in Ref. [193], to solve the above problem,
it is sufficient to sample x and dot products a0 · c0 and a1 · c1 uniformly from the
interval [−1, 1] as the actual direction of individual vectors is irrelevant (hereafter, we
use α = a0 · c0 and β = a1 · c1).

From a geometrical point of view, this solution denotes the fraction of the cube’s
volume containing points (α, β, x) violating the inequality (B2). For a particular fixed
x, the regime of the cube containing points violating Eq. (B2) are given by

β >

√
2− αv

√
1 + x

v
√

1− x ,

β < −
√

2 + αv
√

1 + x

v
√

1− x . (B3)

Therefore, with some straightforward calculation, one can find that the fraction of Alice
and Bob’s measurement directions that would violate the CHSH inequality and, hence,
the nonlocal fraction is given by

pV = 4

∫ x+

x−

(√
2− v(

√
1− x+

√
1 + x)

)2

Vcube v2
√

1− x2
dx, (B4)

where Vcube = 23 stand for the cube’s volume, the integration is performed for x± =

±
√

2v2−1
v4

and the result is multiplied by 4 to take into account any possible relabelling
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of measurement settings and/or outcomes. This is because, for any given measurement
directions, at most one of the CHSH inequalities can be violated. The value of x± is
caused by the fact that for fixed v and x > x+ (x < x−), there are no pairs (α, β) (both
in the interval [−1, 1]) which satisfy constraints (B2). After appropriate integration in
Eq. (B3), we obtain Eq. (3.9). Note that for v = 1 the nonlocal fraction pV = 2(π− 3),
which is in line with [193].

B.2 Nonlocal Fraction Based on the Distribution of
the Strength of Violation

Let us take a three-qubit state ρ and a finite set of measurement settings {M̂i}, where
i = 1, . . . , m. To verify whether the genuine nonlocal correlations are generated for the
state ρ and given measurement setting M̂i, one should test 185 Bell inequalities [213]
of the form Ĩj(ρ|Mi) ≤ CLHV

j , where j = 1, . . . , 185. To this end, it is expedient to
consider CLHV

j = 1 and Ij(ρ|Mi) = Ĩj(ρ|Mi)/CLHV. Based on such a test, a maximal
strength of violation for M̂i is determined as Imax

i (ρ) = max
j
{Ij(ρ|Mi)}, where the

maximum is taken over 185 Bell inequalities. Dividing the number of Imax
i (ρ), satisfying

the constraints Imax
i (ρ) > 1, by the number of measurement settings m, the nonlocal

fraction is estimated

pV(ρ) = lim
m→∞

n
(
{Imax

i (ρ),Imax
i (ρ) > 1}

)
m

. (B5)

Next, let us consider a state σ(v) = vρ + (1 − v)/8 · 1l8, i.e., a statistical mixture
of the state ρ and white noise. Then, one can easily prove that Ij(σ|Mi) = v Ij(ρ|Mi)
and, hence, the maximal strength of violation Imax

i (σ) = v Imax
i (ρ). Consequently, by

analogy to Eq. (B5), the nonlocal fraction of state σ can be written

pV(σ) = lim
m→∞

n
(
{Imax

i (ρ),Imax
i (ρ) > Imin = 1/v}

)
m

. (B6)

In other words, if one knows the distribution of the strength of violation {Imax
i (ρ)},

then the nonlocal fraction of any state σ(v) can be estimated by suitable shiftiness of
the classical threshold denoted by Imin. As a result, one can find a relationship between
pV(σ) and the visibility v (c.f. Fig. 3.3(a)).

In particular, if we assume that ρ = ρ3(θ, v0), then the state σ(v) = v · v0 |θ〉3 〈θ|+
+ 1−v·v0

8
1l8 and the relationship between pV(σ) and v is described by Eq. (3.15) with

unknown values v0 and angle θ. Therefore, Eq. (3.15) can be rewritten as

v =
1

v0

(
vcr

3 (θ) + g1(θ) p
1/6
V + g2(θ) p

1/2
V + g3(θ) pV

)
.

(B7)

By fitting the distribution pV(σ) versus v described previously with Eq. (B7) one
obtains an approximation of both parameters v0 and θ.
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C.1 Universal Detection of Quantum Correlations
Without Full Quantum State Tomography

In this work we determined quantum correlations from experimentally generated and
reconstructed states using a full QST. Here we address the question of universal
detection of quantum correlations without full QST.

(a) Universal detection of an entanglement measure without QST.— The first exper-
imental universal detection of standard two-qubit entanglement without full QST has
been proposed in Ref. [293] (see also [323]) based on the universal witness of Ref. [294].
This method has been later improved in Ref. [198] to show theoretically a direct exper-
imental method for determining the negativity of a general two-qubit state based on
eleven measurements performed on multiple copies of the state using Hong-Ou-Mandel
interference. To our knowledge, none of these methods of universal entanglement de-
tection without a full state tomography has been demonstrated experimentally yet
because of the complexity of such setups and low probability of required multiple co-
incidences. Note that an experimental detection, without a complete tomography, of
the fully entangled fraction of Bennett et al. [199] has been demonstrated by us in
Ref. [308]. Unfortunately, the fully entangled fraction is not a universal entanglement
witness in general, so it usually only gives a sufficient (but not necessary) condition of
entanglement.

(b) Universal detection of a steering measure without QST.— To our knowledge,
such methods have been implemented or even proposed neither for the steering robust-
ness nor the steerable weight. The calculations of these popular steering measures
for general states are based on numerical optimization (using semidefinite programs).
Thus, in general, these measures up to now can only be determined experimentally
for tomographically reconstructed states or processes, as it has been done in dozens of
experimental works (see reviews [242, 243] and references therein). Of course, there are
many experiments demonstrating quantum steering via nonuniversal witnesses (to re-
veal a hierarchy of criteria), i.e., by observing the violations of steering inequalities [242,
243]. We note that measures of steering (e.g., that proposed for a 2MS and a 3MS in
Ref. [320]) which are based on the maximal violation of well-established steering inequal-
ities can be measured without a complete QST. For example, the optimal violation of
the Cavalcanti-Jones-Wiseman-Reid inequality [324] can in principle be experimentally
demonstrated with polarized photons without scanning all the angles of polarisers. This
can be done, as we anticipate, in systems similar to those demonstrating the Horodecki
measure of Bell nonlocality [308].

(c) Universal detection of a nonlocality measure without QST.—The Horodecki mea-
sure [303, 304]) of Bell-CHSH nonlocality of two-qubit states can indeed be measured
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without a full QST, but, to our knowledge, it has been first determined experimentally
only recently in our experiment [308] without scanning the angles of the polarisers
to obtain an optimal value of the angles maximizing the violation of the Bell-CHSH
inequality for an unknown two-qubit state. To demonstrate the power of this method,
we have implemented an entanglement-swapping device. To our knowledge, no other
experimental universal detections of a nonlocality measure (without scanning the po-
larization angles or without a priori information about a given generated state) have
been reported yet.

C.2 Steerable Weight in a Three-Measurement Sce-
nario

Here we consider two-qubit EPR steering in a 3MS, when Alice performs the mea-
surements of the three Pauli operators: X = |+〉 〈+| − |−〉 〈−|, Y = |R〉 〈R| − |L〉 〈L|,
Z = |0〉 〈0| − |1〉 〈1|, of qubits encoded in the polarization states of photons, as in our
experiment. Thus, these measurements are just the projections onto the Pauli-operator
eigenstates |±〉 = (|0〉 ± |1〉)/

√
2, |R〉 = (|0〉 + i |1〉)/

√
2, |L〉 = (|0〉 − i |1〉)/

√
2, |0〉,

and |1〉, which correspond to the diagonal, anti-diagonal, right-circular, left-circular,
horizontal, and vertical polarization states, respectively. These measurements of Alice
generate unnormalized states σa|x of Bob for x = X, Y , Z assuming measured eigenval-
ues a = ±1. By denoting f(|m〉) = TrA[(|m〉 〈m| ⊗ I)ρ], the six possible unnormalized
Bob states σa|x read as:

σ+1|X = f(|+〉), σ−1|X = f(|−〉),
σ+1|Y = f(|R〉), σ−1|Y = f(|L〉),
σ+1|Z = f(|0〉), σ−1|Z = f(|1〉). (C1)

Alice, after performing her measurements, holds a classical random variable λ ≡ [x, y,
z] = [〈x|X |x〉 , 〈y|Y |y〉 , 〈z|Z |z〉], where hereafter x, y, z = ±1. Thus, the variable
λ can take the values λ1 = [−1, − 1, − 1], λ2 = [−1, − 1, 1], ..., and λ8 = [1, 1,
1]. The unsteerable assemblage σUS

a|x, can now be expressed as: σUS
±1|X =

∑
y,z σ±1,y,z,

σUS
±1|Y =

∑
x,z σx,±1,z, and σUS

±1|Z =
∑

x,y σx,y,±1, where σλ ≡ σxyz are the states held by
Bob.

The steerable weight S3 in our 3MS can be given by the solution of the following
SDP (semidefinite program):

S3 = 1−max Tr
∑
x,y

σxyz, (C2)

such that σxyz ≥ 0 and

σ±1|X −
∑
y,z

σ±1,y,z ≥ 0,

σ±1|Y −
∑
x,z

σx,±1,z ≥ 0,

σ±1|Z −
∑
x,y

σx,y,±1 ≥ 0. (C3)
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C.3 Steerable Weight in Two-Measurement Scenarios
The above approach can be simplified when analysing EPR steering in 2MSs, i.e., when
Alice is performing the measurements of only two Pauli operators (XY , XZ, and Y Z).
Thus, one can consider the following three measures:

(i) The steerable weight SXY2 for the measurements of X and Y . In this case the
corresponding unsteerable assemblage σUS

a|x can be expressed as σUS
±1|X =

∑
y σ±1,y and

σUS
±1|Y =

∑
x σx,±1, where σλ ≡ σxy are the states held by Bob. Then the corresponding

steerable weight SXY2 can be calculated as the solution of the following SDP:

SXY2 = 1−max Tr
∑
x,y

σxy, (C4)

under the constraints: σxy ≥ 0 and

σ±1|X −
∑
y

σ±1,y ≥ 0, σ±1|Y −
∑
x

σx,±1 ≥ 0. (C5)

(ii) The steerable weight SXZ2 , based on Alice’s measurements of the Pauli operators X
and Z, is given by:

SXZ2 = 1−max Tr
∑
x,z

σxz (C6)

such that σxz ≥ 0 and

σ±1|X −
∑
z

σ±1,z ≥ 0, σ±1|Z −
∑
x

σx,±1 ≥ 0. (C7)

(iii) The steerable weight SY Z2 corresponding to measuring the Pauli operators Y and
Z can be calculated as

SY Z2 = 1−max Tr
∑
y,z

σy,z, (C8)

under the conditions σyz ≥ 0, and

σ±1|Y −
∑
z

σ±1,z ≥ 0, σ±1|Z −
∑
y

σy,±1 ≥ 0. (C9)

The optimized 2MS steerable weight (S2) can be given as the maximum value of
the steerable weights for specific measurement choices, i.e.,

S2 = max(SXY2 , SXZ2 , SY Z2 ). (C10)

This definition of S2 can directly be applied to symmetric states, including the Werner
states and GWSs. However, for non-symmetric states (including some of our experimen-
tal density matrices), the optimal projectors can be found numerically by maximizing
the steerable weight over unitary transformations for any two Pauli operators. In our
experiments and theoretical analysis, we apply only single Pauli operators (rather than
their linear combinations) and then optimize them over their unitary transformations.
Thus, we obtained the steerable weights, which were optimized over von Neumann’s
projection-valued measures (PVMs), instead of the most general case of POVMs. Note
that the required optimization over POVMs is more demanding both experimentally
and theoretically and it is not applied in this work. We find that, on the scale of
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Figs. 4.4(c) and 4.5(c), no differences can be seen for S2 if it is calculated by the
optimized projectors and by applying directly Eq. (C10) for any of the measured states.

Note that, in this approach to determine S2, we are limiting the number of the
types of measurements on Alice’s side, but a full QST is always assumed on Bob’s
side corresponding to measuring all the Pauli operators. Thus, the steerable weight S3

corresponds to a 3-3 measurement scenario, i.e., three types of measurements on Alice’s
and Bob sides (assuming that the efficiency of detectors is known). While the steerable
weight Sij2 (for the specific choice of two Pauli operators) corresponds to a 2-3 scenario,
i.e., based on two types of measurements on Alice’s side and three on Bob’s side.

All these steerable weights in the two- and three-measurement scenarios can be
efficiently calculated numerically as solutions of the described semidefinite programs
using standard numerical packages for convex optimization. Our numerical programs are
based on the software for disciplined convex programming of Ref. [325]. The steerable
weights in our work were calculated using experimental density matrices, which were
reconstructed using a full quantum tomography.

C.4 Steerability in Multi-Measurement Scenarios

A related question arises about the steerability using a larger number n of the types
of measurements on Alice’s side, and especially in the limit of an infinite number of
measurements. The algorithms of Refs. [301, 302, 326] for constructing LHS models can
be applied to arbitrary entangled states and thus can be used for finding numerically a
sufficient condition of unsteerability (i.e., a lower bound on steerability) based on a given
number of projective measurements. Note that for the GWSs, such a lower bound on
steerability was determined up to n = 136 measurements in Ref. [302]. For convenience,
we consider here a steering lower bound plow

S (n), which can be numerically determined by
the protocols of Refs. [301, 302] for a given number n of measurements. We also consider
a steering upper bound pup

S (n), being a sufficient condition for steerability, based on an
SDP technique of Ref. [242] (see also [302]) assuming specifically 13 measurements on
the Bloch sphere.

The algorithm of Refs. [301, 302] has already been applied to the steerability of
the Bell-diagonal states (including the Werner states) and GWSs (there referred to
as partially entangled states with white noise). Sufficient conditions of unsteerability,
corresponding to n = 6, 16, 46, and 136 types of measurements, were found for four
levels of the algorithm [302]. These results can enable calculating plow

S (n). Note that
each type of measurement is characterized by a Bloch vector, and all such vectors form
a polyhedron on the Bloch sphere.

It is quite challenging to numerically calculate the lower bound plow
S (n) of steerability

in multi-measurement scenarios, even for the next layer of the protocol of Fillettaz et
al. [302] (corresponding to the number of measurements greater than 136) because
of the problem which is closely related to the “curse of dimensionality”. Indeed, the
number of deterministic strategies to be checked numerically grows exponentially with
the number of measurements. The results should also be optimized for the orientation of
the polyhedra; otherwise the results differ significantly, as explicitly shown in Ref. [301].

The ranges of the allowed values of the mixing (p) and superposition (q) parameters
in ρGW(p, q), for which the GWSs are steerable, increase with the number of measure-
ments n. Thus, finding numerically a solution to these steering problems could in
principle enable us to analyse a more refined hierarchy of the classes of steerability as a
function of the number of measurements such that a given state is steerable using a given
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number of measurements, but unsteerable using a smaller number of measurements.
But an experimental demonstration of such a refined hierarchy is quite challenging, as
explained below.

Clearly, a direct experimental demonstration that a given state is indeed unsteer-
able based on 136 types of measurements is extremely demanding using linear optics.
However, even theoretical demonstration of such a refined hierarchy of the classes of
multi-measurement steerability for tomographically reconstructed experimental states
is quite challenging. These problems include the following:

First problem.—We recall that our experimental GWSs, ρEGW(p, q), have a high
Bures fidelity F compared to the theoretical optimal GWSs, ρGW(popt, qopt) which on
average are equal to 0.97. Nevertheless, ρEGW(p, q) and ρGW(popt, qopt) can still have
very different steering properties such that one of the states is steerable and the other
is unsteerable in the same n-measurement scenario, especially for n > 3.

Note that all the examples of multi-measurement steerability, based on the proto-
cols of Refs. [301, 302, 326], were numerically tested only for highly-symmetric states
(including the Werner states and GWSs). Unfortunately, our experimental states ρEGW

have usually a broken symmetry compared to that of the theoretical GWSs, ρGW. So
the calculation of the steerability of ρEGW in the 2MS and 3MS is sometimes much more
time-consuming and less precise. This is even the case for calculating the steerable
weight and steering robustness using standard packages in the 2MS. For example, the
calculations of these two steering measures for ρGW take at most a few seconds on a
standard PC, while those for the generated ρEGW require sometimes dozens of minutes
assuming the same precision in both cases. These numerical problems grow very fast
with the increasing number n of measurements.

Second problem.—Our experimental tuning of the parameters p and q for the GWSs
is not fine enough, as explained in greater detail in Sec. 4.4.1. Note that the ranges of
parameters p and q of the GWSs are very small such that a given GWS is steerable
with (n + 1) measurements and unsteerable with n measurements for n > 3. Our
experimental tuning of p and q was good enough to directly generate states in the
regime #3 corresponding to S3 > 0 and S2 = 0. However, we were not able to directly
generate experimentally GWSs belonging to different regimes of steerability for a larger
number n. Note that even our experimental GWS in the regime #4, corresponding
to S2 > 0 and B = 0, was not generated directly. Indeed, we have obtained it in a
hybrid way, i.e., by numerically mixing experimental states belonging to other regimes,
as explained in Sec. 4.6.1.

Third problem.—It is numerically very challenging to check whether a given ρEGW

is n-measurement steerable and (n − 1)-measurement unsteerable, which is crucial
in experimentally demonstrating such a refined hierarchy of the steerability classes
for multi-measurement scenarios. Specifically, if we numerically obtain Sn(ρEGW) ∼
10−12, which is the precision of our numerical calculation of the steering measures, it
is quite biased to decide whether this state ρEGW is indeed steerable or not. With the
increasing number n of measurements, the numerically estimated Sn(ρEGW) become less
and less precise. So the question arises how to correctly classify the steerability of
a given experimental state in the hierarchy of classes of steerability in various multi-
measurement scenarios.

Fourth problem.—The border between the steerable and unsteerable theoretical
GWSs is not precisely determined in the limit of an infinite number n of measurements
on Alice’s side. Indeed, the border corresponds to the region #7 in Fig. 4.8(a) spanned
by the curves plow

S and pup
S . Estimating plow

S for our experimental imperfect GWSs, ρEGW,
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is even more demanding because ρEGW usually exhibits a broken symmetry compared
to that of the ideal GWSs ρGW.

Thus, for these numerical and experimental reasons, we have decided to analyse in
detail the steerability of our experimental states for the two simplest types of measure-
ment scenarios only. We believe that this is good enough to show the hierarchy of some
classes of correlations (including steerability in 2MS and 3MS) for experimental states.

C.5 Hierarchy of Entanglement Criteria

C.5.1 Hierarchy of the Shchukin-Vogel Entanglement Criteria

Here we briefly recall the Shchukin-Vogel entanglement criteria for the universal detec-
tion of distillable entanglement via the matrices of moments of the annihilation and
creation operators [276]. This approach, in principle, does not require a full QST, so it
is an alternative to the approach applied in our experiment using QST. We indicate
some advantages and drawbacks of this approach for detecting two-qubit entanglement.

The Shchukin-Vogel criteria are based on the Hermitian matrices of moments for a
given two-mode state ρ, which are defined as follows

M
org
N =


M11 M12 ... M1N

M21 M22 ... M2N

... ... ... ...
MN1 MN2 ... MNN

 , (C11)

where Mij = 〈(a†i2ai1b†i4bi3)(a†j1aj2b†j3bj4)〉 are the moments of the annihilation (a, b)
and creation (a†, b†) operators of two modes of arbitrary dimension. Here i and j label
multi-indices, e.g., (i1, i2, i3, i4). These moments can be detected experimentally (at
least for not too high powers) using, e.g., the setup based on homodyne detection as
described by Shchukin and Vogel [327]. A partially transposed matrix of moments can
be obtained from M

org
N as follows:

MΓ
ij = 〈(a†i2ai1a†j1aj2)(b†i4bi3b†j3bj4)〉Γ

= 〈(a†i2ai1a†j1aj2)(b†i4bi3b†j3bj4)†〉
= 〈(a†i2ai1a†j1aj2)(b†j4bj3b†i3bi4)〉, (C12)

where the superscript Γ denotes partial transposition applied here for the second mode.
This relation between M

org
N andMΓ

N is a key observation of Ref. [276]. LetMN ,(r1,r2,··· ,rn)

denotes the n×n submatrix ofMN having Mri,rj elements. The Shchukin-Vogel criteria
are based on the following Sylvester’s theorem [277]: MN is positive semidefinite if and
only if its all principal minors are nonnegative, i.e., det{M}N ,(r1,r2,··· ,rn) ≥ 0. Thus, the
Shchukin-Vogel criteria correspond to the positive partial transposition Peres-Horodecki
criterion, but formulated in terms of the matrix moments as follows [276, 277]:

ρ is PPT ⇔ ∀N , ∀{rk} : det{M}Γ
N ,(r1,r2,··· ,rn) ≥ 0,

ρ is NPT ⇔ ∃N , ∃{rk} : det{M}Γ
N ,(r1,r2,··· ,rn) < 0,

(C13)

where 1 ≤ r1 < r2 < · · · < rn ≤ N , n = 1, 2, · · · , N , and PPT (NPT) stands for
positive (nonpositive) under partial transposition. Many popular entanglement criteria
can be derived from the Shchukin-Vogel criteria [276, 283], including the Hillery-Zubairy
inequalities, which are below recalled and applied to the GWSs.
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Figure 9: Hierarchy of criteria versus the CC hierarchy for the GWSs. Specifically, the
criterion hierarchy is based on different nonuniversal witnesses for a given class of quantum
correlation, while the CC hierarchy reveals different types of correlations determined by
their measures or universal witnesses. This is shown here by the example of nonuniversal
entanglement witnesses using the (a) first and (b) second HZ witnesses. The colour regions
reveal the CC hierarchy, as in Fig. 4.6(a), while the areas filled with parallel lines show the
criterion hierarchy. The latter areas determine the allowed values of the mixing parameter
p and the superposition parameter q for the locally rotated GWSs, ρφ(p, q), for which
entanglement can be revealed by the corresponding HZ witnesses: (a) H̄1(ρφ) for φ = π
(area filled with blue lines), φ = 0.8π (red-line area), and φ = 0.7π (black-line area); and (b)
H̄2(ρφ) for φ =0 (blue-line-filled area), φ = 0.2 (red-line area), and φ =0.3 (black-line-filled
area). For φ = π/2 neither of the HZ witnesses can detect the entanglement of the GWSs.
The dashed curves are obtained from the analytical formulas in Eqs. (C22), (C25), (C28),
and (C29).

C.5.2 Hierarchy of the Hillery-Zubairy Entanglement Criteria

The Hillery-Zubairy (HZ) entanglement criteria for nonuniversal detection of two-mode
entanglement read as [328]:

H1(ρ) ≡ 〈n1n2〉 − |〈ab†〉|2 < 0, (C14)
H1(ρ) ≡ 〈n1〉〈n2〉 − |〈ab〉|2 < 0, (C15)

where n1 = a†a and n2 = b†b. Thus, if H1(ρ) < 0 or H2(ρ) < 0 then ρ is entangled.
The criteria are simple and useful witnesses of entanglement and have already been
experimentally tested in a number of setups (see, e.g., [329]). These two criteria can
be derived from the Shchukin-Vogel criteria by calculating

Hn(ρ) = det{M}Γ
n (C16)

for

M
org
1 =

[
1 〈ab〉
〈a†b†〉 〈n1n2〉

]
, MΓ

1 =

[
1 〈ab†〉
〈a†b〉 〈n1n2〉

]
(C17)

and

M
org
2 =

[
〈n1〉 〈a†b〉
〈ab†〉 〈n2〉

]
, MΓ

2 =

[
〈n1〉 〈a†b†〉
〈ab〉 〈n2〉

]
, (C18)
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respectively. To analyse the HZ criteria on the same footing as the discussed measures
of quantum correlations, one can redefine Hn to be the following HZ witnesses,

H̄n = max {0,−Hn} . (C19)

Let us now analyse in detail the hierarchy and effectiveness of these criteria in
detecting the entanglement of the GWSs compared to the true measures of entanglement
and other correlations.

We find the following HZ witnesses for the original GWSs:

H̄1(ρGW) = max
{

0,− 1
4
[1 + p(3− 4q)]

}
= 0, (C20)

H̄2(ρGW) = max
{

0, p2qq̄ − 1
4
(1 + p− 2pq)2

}
, (C21)

where q̄ = 1− q. It can be seen that H̄1(ρGW) is useless in detecting the entanglement
of the GWSs; however, H̄2(ρGW) can be nonzero. Thus, it detects entanglement for the
GWSs corresponding to the blue-line-filled area in Fig. 9(a). The threshold (border)
curve, as a function of the superposition parameter q in ρGW(p, q), corresponds to the
smallest allowed values of the mixing parameter p, for which the entanglement of the
GWSs can be detected. This threshold is shown by the blue dashed curve in this figure,
and is given by

pH2(q) = 1/[2(q +
√
qq̄)− 1], (C22)

for q ∈ [1
2
, 1]. Let us now apply the Pauli operator σ1 (the NOT gate) to the second

qubit in the GWS, which results in the state ρX = (I ⊗ σ1)ρGW(I ⊗ σ1). Note that any
local unitary operation does not change entanglement measures, but of course it can
change entanglement witnesses, which is the case for the HZ criteria. Indeed, this local
transformation results in the following HZ witnesses:

H̄1(ρX) = max
{

0, p2qq̄ − 1
4
p̄
}

, (C23)
H̄2(ρX) = max

{
0,− 1

4
(1− p2)− p2qq̄

}
= 0, (C24)

where p̄ = 1− p. It is seen that the sensitivities of the HZ witnesses are exchanged for
ρX compared to ρGW. The second criterion cannot detect entanglement, while the first
reveals entanglement of some GWSs corresponding to those shown in the blue-line-filled
area in Fig. 9(b). Analogously to Eq. (C22), the threshold curve for the first HZ witness
for ρX(p, q) is given by

pH1X(q) = 2/[1 +
√

1 + 16qq̄], (C25)

for q ∈ [0, 1]. Now let us apply an arbitrary rotation along the y-axis of the second qubit
in the GWSs. Thus, we transform ρGW into ρφ = [I ⊗ RY (φ)]ρGW[I ⊗ R†Y (φ)], where
the rotation is described by RY (φ) = [c,− s; s, c], with c = cos(φ/2) and s = sin(φ/2).
The HZ witnesses for the locally rotated GWSs read:

H̄1(ρφ) = max
{

0,− 1
4

[
c2[1 + p(3− 4q)]

+s2(p̄− 4s2p2qq̄)
]}

, (C26)
H̄2(ρφ) = max

{
0, c4p2qq̄ − 1

4
f+(c2f+ + s2f−)

}
, (C27)

where f± = 1± p(1− 2q). The threshold curves for the HZ witnesses applied to ρφ(p, q)
are given by

pH1(q, φ) =
(
f1 +

√
f 2

1 + 2f2

)
f−1

2 , (C28)

pH2(q, φ) = 2/[
√
f + 2(1 + C1)q − C1 − 1], (C29)
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which are physically meaningful only in the regions of q for a given φ such that
pHn(q,φ) ∈ [0, 1] (n = 1, 2). Here f = (1 − C1)2(1 − 2q)2 + 2(4C1 + C2 + 3)qq̄,
with Cn = cos(nφ), f1 = c2(3− 4q)− s2, and f2 = 8qq̄s4. As seen in Fig. 9, the lowest
value of q for which the entanglement of the GWSs can be detected via the HZ witness
H̄1(ρφ) [H̄2(ρφ)] is 0 (1

2
) for φ = π (φ = 0). For both HZ witnesses, the largest allowed

value of q is equal to 1.
Figure 9 shows a comparison of the two approaches to analyse a hierarchy of quantum

correlations, i.e., the criterion hierarchy, which is based on the HZ witnesses, and the
CC hierarchy, which is based on the discussed quantum correlation measures. Any
good measure of entanglement results in the same CC hierarchy for the GWSs, while
the criterion hierarchy depends on the applied nonuniversal witnesses and can reveal
only a subset of the entangled GWSs, which correspond to the regimes #2–#5. This
figure explains our motivation of experimentally demonstrating in detail only the CC
hierarchy instead of the hierarchy based on the HZ witnesses, or using other either
sufficient or necessary conditions of quantum correlations. Unfortunately, by contrast
to such a hierarchy of criteria, it is experimentally challenging to reveal such a CC
hierarchy for the GWSs without QST.

C.5.3 Quantum State Tomography via Moments of Annihila-
tion and Creation Operators

Here we give an example showing that some very limited additional measurements on
a given state can supplement a partial state reconstruction into a full QST.

We recall that a general single-mode density matrix ρ of a bosonic field can be
reconstructed from the following moments of the annihilation and creation operators
via the formula [330]:

〈m1|ρ|m2〉 =
∞∑
j=0

1

j!
√
m1!m2!

〈(a†)m2+jam1+j〉. (C30)

Note that this formula can be divergent for some states of the radiation field including
thermal field with the mean photon number 〈n〉 ≥ 1. However, for finite-dimensional
states, the above sum becomes finite. In particular, a two-mode version of Eq. (C30)
leads to the following moment-based representation:

f 〈b†〉 − 〈n1b
†〉 〈a†〉 − 〈a†n2〉 〈a†b†〉

〈b〉 − 〈n1b〉 〈n2〉 − 〈n1n2〉 〈a†b〉 〈a†n2〉
〈a〉 − 〈an2〉 〈ab†〉 〈n1〉 − 〈n1n2〉 〈n1b

†〉
〈ab〉 〈an2〉 〈n1b〉 〈n1n2〉

 (C31)

of a general two-qubit state ρ, where f = 1−〈n1〉− 〈n2〉+ 〈n1n2〉, and the annihilation
operator a = a1 (and analogously b = a2) is simply a = σ− = [0, 1; 0, 0], i.e., the qubit
lowering operator. Thus, an arbitrary two-qubit state can be completely reconstructed
by measuring only the following moments: 〈ni〉, 〈n1n2〉, 〈ai〉, 〈nia2−i〉, 〈a1a2〉, and
〈a1a

†
2〉 for i = 1, 2.
Note that experimental implementations of the HZ witnesses require measuring 〈ni〉,

〈n1n2〉, 〈a1a2〉, and 〈a1a
†
2〉. Thus, by measuring additionally only the following moments

〈ai〉 and 〈nia2−i〉, one can collect all the information required for a complete QST, with
which one can thus calculate any properties of an experimentally-reconstructed two-
qubit state.
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Appendix E Contents of Enclosed
CD-ROM

• folder data_Concurence_WS:

– folder Maps:

∗ Mapa4_GHZ03_35deg.dat
∗ Mapa4_GHZ03_45deg.dat
∗ Mapa4_SEP03_2_000.dat
∗ Mapa4_SEP03_3_001.dat
∗ Mapa4_SEP03_4_010.dat
∗ Mapa4_SEP03_5_011.dat
∗ Mapa4_SEP03_6_100.dat
∗ Mapa4_SEP03_7_101.dat
∗ Mapa4_SEP03_8_110.dat
∗ Mapa4_SEP03_9_111.dat
∗ README_map.txt

– folder Tomography:

∗ README_Tom.txt
∗ tom200114a_GHZ45deg.dat
∗ tom200114a_GHZ45deg.mat
∗ tom200221a_GHZ35deg.dat
∗ tom200221a_GHZ35deg.mat

• folder data_hierarchy_QCorrelations:

– folder GWS_densityMat_data:

∗ GWS_densityMat_p_0_15.mat
∗ GWS_densityMat_p_0_4.mat
∗ GWS_densityMat_p_0_6.mat
∗ GWS_densityMat_p_0_8.mat
∗ GWS_densityMat_p_0_9.mat
∗ GWS_densityMat_p_1_b1.mat
∗ GWS_densityMat_p_1.mat

– folder GWS_RAW_data:

∗ GSW_RAW_p_0_6.dat
∗ GWS_RAW_p_0_15.dat
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∗ GWS_RAW_p_0_4.dat
∗ GWS_RAW_p_0_8.dat
∗ GWS_RAW_p_0_9.dat
∗ GWS_RAW_p_1_b1.dat
∗ GWS_RAW_p_1.dat
∗ README.txt

– folder WS_densityMat_data:
∗ WS_densityMat_p_0_15.mat
∗ WS_densityMat_p_0_333.mat
∗ WS_densityMat_p_0_5.mat
∗ WS_densityMat_p_0_577.mat
∗ WS_densityMat_p_0_6.mat
∗ WS_densityMat_p_0_65.mat
∗ WS_densityMat_p_0_707.mat
∗ WS_densityMat_p_0_73.mat
∗ WS_densityMat_p_0_8.mat
∗ WS_densityMat_p_0_9.mat
∗ WS_densityMat_p_1.mat

– folder WS_RAW_data:
∗ README.txt
∗ WS_RAW_p_0_15.dat
∗ WS_RAW_p_0_333.dat
∗ WS_RAW_p_0_5.dat
∗ WS_RAW_p_0_577.dat
∗ WS_RAW_p_0_6.dat
∗ WS_RAW_p_0_65.dat
∗ WS_RAW_p_0_707.dat
∗ WS_RAW_p_0_73.dat
∗ WS_RAW_p_0_8.dat
∗ WS_RAW_p_0_9.dat
∗ WS_RAW_p_1.dat

• folder data_Quantum_Money:

– clones171121aDx.dat
– clones171121bDo.dat
– clones171121cAx.dat
– clones171121dAo.dat
– clones171121eRx.dat
– clones171121fRo.dat
– clones171121gLo.dat
– clones171121hLx.dat
– dip171010d.dat

• jirakovaK_doctoral_thesis.pdf
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