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Introduction 

"No one ever obliges us to know, Adso. We must, that is all , even if 
we comprehend imperfectly." 
"Nikdo nás nenut í k tomu, abychom věděli, Adsone. Vědět se pros tě 
musí, i za cenu, že všechno pochopíme špa tně ." 

Umberto Eco, Name of the Rose, Chapter Sixth Day Nona 

It is only appropriate to begin this Thesis with the quote reflecting a genuine desire 
of a lonesome individual to unravel tangled state of affairs. So much has, in my view, 
a physicist or generally a scientist in common wi th the main character of the above 
mentioned novel, a curious detective, struggling to gain knowledge no matter the cost. 
Such desire is probably inherent to all humans to a certain extend, yet some have been 
endowed more than others. The history of physics has been writ ten by many such 
individuals whose curiosity incited them to shed light onto basic principles governing 
the Universe. A s for the field of quantum physics, some of these physicists w i l l be 
mentioned. Indeed, the great riches of principles of physics provide more than enough 
room to satisfy one's desire for discovering. 

Quantum Physics 
Quantum physics was established more than 100 years ago which makes it a well-proven 
and recognised field of physics. It was mainly the incapability of classical physics to 
satisfactorily describe several phenomena that emerged at the end of the 19th century 
leading to the gradual development of quantum physics [1, 2]. These peculiar phenomena 
include, for example, black body radiation [3], photoelectric effect [4] or explanation of 
atom's stability [1, 5-7]. 

In the first case mentioned, the issue was to describe spectrum of radiation of 
the black body which one can imagine as a cavity absorbing al l incident radiation 
and emitting only radiation due to its temperature [8, 9]. Several scientists aimed to 
explain it like J . Stephan [10], L . E . Bol tzmann [11], J . W . S. Rayleigh [12, 13] 
and J . H . Jeans [14, 15]. Their findings, although based on well-established laws of 
statistical physics, did not correspond wi th the experimental data in the whole range 
of the electromagnetic spectrum [3]. It was only M . Planck who first derived a law 
fully describing the observations [16]. He used, as he thought himself, a mathematical 
construct without any physical significance: light (or generally radiation) is emitted 
in quanta having energy hu, where h is a constant and v stands for frequency of this 
radiation. 

In the second case mentioned, i.e. the photoelectric effect, physicists observed, 
besides other, an unexpected feature [1]. When radiation of frequency v is incident 
to a cathode in a vacuum tube resultant number of emitted electrons and, in effect, 
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photoelectric current depends on radiation intensity I. This is fully in compliance with 
classical theory. There exists, however, a lower threshold frequency z/ thr under which 
radiation looses its ability to cause photoelectric current regardless of the impinging I. 
It has been established that z/ thr depends on material of the cathode. 

A . Einstein, by using results of M . Planck, described the photoelectric effect 
suggesting that light is interacting wi th the metal cathode discretely v ia these energy 
quanta hu, later denoted as photons [17]. Thus, he basically suggested that light has 
apart from the wave nature also a quantum or corpuscular behaviour. Should there 
exist a corpuscle of light it ought to have assigned a momentum p. It was indeed proved 
by A . S. Compton in the year 1922 [18]. The connection between wavelength A of a 
light wave and its p (p — T) was suggested shortly after that by L . V . de Broglie [19]. 
It should be noted that interpretation of this relation allows to ascribe A or wave-like 
nature to both particles wi th or without mass, say photon or electron. 

In agreement with the concept of wave-like behaviour of quantum objects (i.e. both 
light and particles) Schrodinger put a l ink between object's position x and time t 
expressing its state by a wave function t). B y solving the so-called Schrodinger 
equation 1 [20] which takes the very form of a wave equation one can obtain t). 
Born's statistical interpretation [21] of quantum physics enables retrieving probability 
of finding the quantum object in a certain interval of x and t as an integral of t)\2 

within that interval. It is, thus, possible, only to certain degree (or wi th l imited 
probability), to learn object's position at given time. This approach is in sharp contrast 
with the classical (Newtonian) mechanics where one is always able to find exact position 
of a particle as a function of time x(t). For more details on formulation of quantum 
theory see [1, 22, 23]. 

Contemporary quantum theory seen by the mainstream physicists is based on a 
number of fundamental axioms. Various sources of literature present these axioms in 
slightly different forms [24-30]. For the purpose of this Thesis let us focus on those 
that are of particular relevance for the presented research: principle of superposition 
and probabilistic measurement. One of the consequences of these axioms is quantum 
entanglement. 

The principle of superposition states that if \&i or \ l / 2 are valid quantum states 
then also expression a^i + (3^2 represents a valid state given complex coefficients a 
and /3 are normalised ( |a | 2 + \(3\2 = 1). Nice example of the superposition principle is 
the famous thought (aka gedenken) experiment by Schrodinger involving an imaginary 
cat [31] (schematically illustrated in Figure 1). A cat is closed in a box containing an 
ampoule wi th poison that can be released by a random process (for instance, when 
fission of radioactive isotope occurs). W i t h i n a certain period of time, the cat can 
be either alive (in the state \l/aiive) or dead (in the state ^dead)- However, one cannot 
know the state of the cat unt i l one opens the box and take a look. Should the laws 
of quantum mechanics apply to cats then before one opens the box, the cat could be 
also in the superposition state a^/anve + P^dead- Since it is seemingly a nonsense this 
thought experiment is referred to as Schrodinger cat paradox. Accentuating obvious 
absurdity (at the time of paradox's formulation) of application of quantum-physical laws 
to macroscopic world, this thought experiment eventually stresses the crucial (but for 
the cat fatal) role of measurement. Unt i l the box is opened and a visual measurement 
is done the cat is not in any classically acceptable state: dead, or alive but is rather in 

1Equation in its time dependent form: ihj^- = — 2 m § ^ r + , where V is a potential energy 
operator of the given system (in general a function of t and x) and m is a mass. 
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both states simultaneously. It should be stressed out that over the course of the 20th 
century quantum nature of macroscopic objects has been demonstrated [32-35]. 

Figure 1: Schrodinger cat paradox. Visual isat ion of possible scenarios of the thought 
experiment. In the two inset figures to the left, a cat is in the closed box. Before the box 
is opened it is in the superposi t ion state. On ly after the box is opened and one takes a 
look, which is denoted by two inset figures to the right, the cat 's wavefunct ion collapses 
and takes up a classical state, dead or alive. Image by Gerd A l tmann [36]. 

Probabilistic measurement. In the formalism of quantum mechanics [22-25] quantum 
states are denoted as |-), where this symbol is read as "ket" and stands for a vector in 
Hilbert space 2. Likewise, symbol named "bra" (-| is a hermitian adjoint or conjugate, 
i.e. transposed and complex conjugate, of respective ket vector. Vectors bra and ket, 
respectively, form an inner product (-|-). Employing this notation, superposition state 
of a quantum system may be rewritten as |\&) = a + /3 l^)- It should be noted 
that | a | 2 and |/3| 2 characterise probability pi, i G {1, 2}, of finding the system in 
state and l ^ ) , respectively. Formally, the procedure is accomplished by means of 
inner product. It is only logical because in analogy wi th classical physics the relation 
(geometrically equivalent to the angle) between two vectors may be characterised by 
the measure of mutual overlap between projection of one vector onto the direction 
of the other vector. In terms of quantum mechanics, the probability p\ of finding 
upon measurement the photon in state is understood as such "measure of mutual 
overlap" between and squared: pi = | ( \ l / i | \ l / ) | 2 = \a\2 assuming for simplicity 
that states and form mutually orthogonal basis and their inner product is, 
thus, zero. Al though the probability pi can be simply calculated for the known state 

the outcome of an individual projection of in the , ^ 2 ) } basis is random. 
Upon such measurement, |\&) collapses onto one of the states or 1̂ 2) • W i t h i n the 
framework of this formalism such collapse may be described i n terms of a projection 
operator flj = applied to the state |\&), where i indexes the actual outcome 
from the set of all possible measurement results. 

Entanglement. B y far entanglement is among the most striking features of quantum 
mechanics mainly because it contradicts human intuition which is naturally based on 

2It is a mathematical or algebraic vector space with inner product. Simply put, its properties are 
convenient for quantum mechanical description. 
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classical physics. For now it is enough to say that certain states show correlations or 
statistical dependencies that cannot be explained by a classical theory. Entanglement 
wi l l be described in more detail in Section 1.1 and i n affect throughout the whole 
doctoral Thesis. 

In the course of more than 100 years of development, quantum theory started in­
fluencing and improving understanding of other fields of physics or science in general. 
Those fields include: nanotechnology, condensed matter [37], computing, cryptogra­
phy [38, 39, A l ] , standard model of particle physics, field theory [40], electrodynam­
ics [40] and even chemistry [41], mentioning just a few. Specific effects unknown before 
like quantum teleportation [42] or superfluidity [43] have been achieved in the field of 
quantum physics. This makes quantum mechanics an indispensable tool in physics with 
great potential which is worth studying. It also helps understanding the underlying 
nature behind classical phenomena and is an imperative for further advancement of 
science in general. 

Basics of Quantum Information 
Principle of superposition is undoubtedly an essence of quantum information 3 [44, 45]. 
Formulation of quantum physics and feasibility of experimental demonstration of it's 
conclusions led to an abrupt advancement of quantum information (QI) sciences. Quan­
tum computing is nowadays accessible even to general public v ia quantum computer 
and simulator run by I B M quantum experience project [46]. Development of quantum 
computers goes naturally hand in hand with implementation of quantum programming 
languages such as Qiskit [47], quantum algorithms such as well-know Shor's [48-50] 
or Grove's algorithm [30, 51] and remarkably quantum machine learning [52, 53, A2] . 
Furthermore, quantum cryptography [54] is already commercially available [55-57] 
thanks to the preceding research discovering many QI protocols such as B B 8 4 [58], 
six-state protocol [59], Eckert protocol [60], etc. This, however, triggered discussion on 
an issue of security of quantum communication. Whi le quantum mechanics intrinsically 
possesses means to guarantee safety, its specific implementation vulnerabilities can be 
exploited. One such successful attack is discussed in Chapter 2. Attention is also paid 
to the implementation of quantum memories to enhance quantum communications 
networks [61-63] in order to push quantum technologies closer to practical everyday 
usage. 

A unit of quantum information is the quantum bit or often abbreviated qubit or 
qbit. Before explaining the term qubit it wi l l be fitting to summarise what a classical 
bit is. B i t is a basic unit of classical information. It is represented by binary digits, 0 
and 1. In electronic devices, in order to perform logic operations, bit is represented for 
instance by two levels of voltage or current. In other words, physical systems carrying 
the information are electrons in electric current and the physical quantity expressing 
binary digit is the macroscopic voltage or current. For instance, in T T L logics, widely 
used in integration circuits, lower voltage up to 0.8 V corresponds to logical 0 and 
higher voltage above 2 V to logical 1. 

In contrast to its classical counterpart, qubit can take superposition states of the form 
a \0) + (3 |1). Resembling a classical bit, qubit is also a two-level quantum object, having 
levels labelled 0 and 1 or in Dirac notation |0) and |1). These mutually orthogonal 

3 Since superposition is the phenomenon laying behind parallelism of quantum computer which is 
the core of supremacy of quantum computer. 
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states, i.e. = % for i, j e {0, 1}, are called computational basis or logical 
basis states. Qubit can be encoded into any physical system capable of supporting 
mutually distinguishable states and their coherent superposition. Discrete photons 
are particularly suitable candidates for quantum computing. Encoding of qubits into 
polarisation and spatial modes is explained bellow in Section 1.5. Interestingly, a 
single qubit can hold more than 1 bit of information, theoretically even infinite amount 
of classical information. Unfortunately, one can only extract a single bit of classical 
information when subjecting a qubit to a projection measurement. 

Recent years witnessed striking development of quantum technologies. Remarkably, 
People's Republic of China included quantum communication tasks into their 14. five-
year plan [64]. Namely, they set an ambitious goal to develop an advanced multipurpose 
quantum computer consisting of hundreds of interconnected qubits suitable for various 
quantum communication tasks. However, big companies such as Google L L C or I B M 
do not fall behind wi th innovations and plans. For instance, Google implements a 
quantum processor Sycamore based on superconducting qubits. Moreover, it is not just 
a scientific gadget but is even capable to perform practical scientific simulations [65, 
66]. This processor along with Chinese quantum computer Jiuzhang features so-called 
quantum supremacy [67-69]. It means that quantum computer exceeds capabilities 
of a classical supercomputer and performs a given task wi thin considerably shorter 
time than its classical counterpart. I B M company as mentioned at the beginning of 
this Section provides a unique opportunity on commercial and educational basis to 
implement own quantum tasks. For this purpose it employs more than 20 quantum 
processors [46]. The company, however, strives to provide it's users wi th more than a 
1 000-qubit computer [70, 71] by the year 2023. 

Quantum transmission of information is most likely the future of secure communi­
cations. A s a proof-of-principle several long-distance transmissions has been carried 
out [72-75]. To support this highly promising emerging field, China along with the U S A 
has concentrated on development of satellites suitable for quantum communications [64]. 
In addition to that, a new satellite by E S A , whose objective is performing quantum 
information tasks for both commercial and governmental use, should be launched this 
year [76, 77]. Despite tremendous resources and earnest endeavour has been already 
invested, stil l a lot of effort wi l l be necessary to devote to make quantum technologies 
part of an everyday life. 

Outline 
The main objective of this Thesis is presentation of three quantum-optics experiments. 
These experiments, performed in the Joint Laboratory of Optics of U P Olomouc 4 and 
Institute of Physics of the Czech Academy of Sciences, wi l l be discussed in subsequent 
chapters. Theoretical background was provided by colleagues either from Faculty of 
Physics of A d a m Mickiewicz University in Poznaň , Poland or Faculty of Physics and 
Astronomy of University of Wroclaw, Poland. 

Methods and equipment used to carry out the experiments are presented in Chapter 1 
of this Thesis. This Chapter includes al l stages of photon's life, from its origin to its 
detection including analysis methods. Part of the text is devoted to introducing terms 
of quantum entanglement and nonlocality. Chapters 2-4 then describe the specific 
experimental tasks. 

4 Joint Laboratory of Optics of Palacký University in Olomouc and Institute of Physics of Czech 
Academy of Sciences, 17. listopadu 50A, 771 46 Olomouc, Czech Republic 
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Appendices A - C contain supplementary material belonging to Author 's publications 
discussed within this Thesis. The Appendix D includes co-authors' statements regarding 
contribution of the Author to the research. Finally, the Appendix E comprises a list of 
contents of the C D - R O M attached to the printed version of this Thesis. 

Experimentally Attacking Quantum Money Schemes Based on 
Quantum Retrieval Games 
Based on Author 's publication Kateřina Jiráková, Karol Bartkiewicz, Antonín Černoch, 
and Karel Lemr, Sci. Rep. 9, 16318 (2019) [ A l ] 5 . 

Topic of quantum money and their unnoticed counterfeiting is covered in Chapter 2. 
We witness rapid advancement of quantum technologies, therefore, it is only a matter 
of time before quantum money are used in practical payments. Advantages of quantum 
money (QM) have been recognised even in the late 1970s by S. Wiesner [38]. The 
most interesting feature of Q M is that perfect counterfeiting is intrinsically impossible 
since quantum cloning forming irreplaceable part of forging procedure cannot be done 
flawlessly on an unknown state. Verification of Q M was in original Wiesner's scheme 
accomplished in the issuing bank. However, such solution required establishment of 
quantum channel between users. This setback has been overcome by M . Bozzio et 
al. [78] who made use of classical verification of Q M instead of utilising quantum channel, 
and the procedure of quantum retrieval game ( Q R G ) . Al though, the authors claimed 
impossibility of successful attacking of their scheme, the experiment in Chapter 2 shows 
vulnerability of Q M protocols based on Q R G . 

Measuring Concurrence in Qubit Werner States without an Aligned 
Reference Frame 

Based on Author 's publication Kateřina Jiráková, Artur Barasinski, Antonín Černoch, 
Karel Lemr, and Jan Soubusta, Phys. Rev. Appl ied 16, 054042 (2021) [A3]. 

Al ice lives on Venus, Bob lives on M a r s . . . The biggest problem in their commu­
nication is to establish a common reference frame, so that they can use quantum 
cryptography for their secret letters (Figure 2). To help them, this study proposes a 
method for entanglement quantification that does not rely on synchronized reference 
frames. Counterintuitively, measurements in random and unknown bases can be used 
to establish just how entangled a quantum state is. This strategy may prove useful 
in complex quantum communication networks, where establishing a common reference 
frame (measurement basis) is impractical or impossible. 

The genuine concurrence is a standard quantifier of multipartite entanglement, 
detection, and quantification of which st i l l remains a difficult problem from both the 
theoretical and experimental points of view. Although many efforts have been devoted 
to the detection of multiparti te entanglement (e.g., using entanglement witnesses), 
measuring the degree of multipartite entanglement, in general, requires some knowledge 
about the exact shape of a density matr ix of the quantum state. A n experimental 
reconstruction of such a density matr ix can be done by full state tomography, which 
amounts to have the distant parties share a common reference frame and well-calibrated 

Publications of the Author are marked in the form [A No.] to clearly differentiate them in the 
text. 
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Figure 2: T h e Au thor ' s drawing featured on the Physical Review Appl ied website on the 
occasion of Ref. [A3] being published. 

devices. Al though this assumption is typically made implic i t ly in theoretical works, 
establishing a common reference frame, as well as aligning and calibrating measurement 
devices in experimental situations, are never t r ivial tasks. It is therefore an interesting 
and important question whether the requirements of having a shared reference frame 
and calibrated devices can be relaxed. In Chapter 3, we study both theoretically 
and experimentally the genuine concurrence for the generalised Greenberger-Horne-
Zeilinger states under randomly chosen measurements on individual qubits without 
a shared frame of reference and calibrated devices. We present the relation between 
genuine concurrence and the so-called nonlocal volume, a recently introduced indicator 
of nonlocality. 

Experimental Hierarchy and Optimal Robustness of Quantum 
Correlations of Two-Qubit States with Controllable White Noise 
Based on Author 's publication Kateřina Jiráková, Antonín Černoch, Karel Lemr, Karol 
Bartkiewicz, and Adam Miranowicz, Phys. Rev. A 104, 062436 (2021) [A4]. 

M a i n objective of Chapter 4 is to demonstrate a hierarchy of various classes of 
quantum correlations on experimentally prepared two-qubit Werner-like states wi th 
controllable white noise. Werner states, which are white-noise-affected B e l l states, 
are prototypal examples for studying such a hierarchy as a function of the amount of 
white noise. We experimentally generated Werner states and their generalisations, i.e., 
partially entangled pure states affected by white noise. These states enabled us to 
study the hierarchy of the following classes of correlations: separability, entanglement, 
steering in three- and two-measurement scenarios, and Bel l nonlocality. We show that 
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the generalised Werner states (GWSs) reveal fundamentally new aspects of the hierarchy 
compared to the Werner states. In particular, we find five different parameter regimes 
of the G W S s , including those steerable in a two-measurement scenario but not violating 
Bel l inequalities. This regime cannot be observed for the usual Werner states. Moreover, 
we find threshold curves separating different regimes of the quantum correlations and 
find the optimal states which allow for the largest amount of white noise which does not 
destroy their specific quantum correlations (e.g., unsteerable entanglement). Thus, we 
could identify the optimal Bell-non-diagonal G W S s which are, for this specific meaning, 
more robust against white noise compared to the Bell-diagonal G W S s (i.e., Werner 
states). 

The Author also participated in implementation of an all-optical setup demonstrat­
ing kernel-based quantum machine learning for two-dimensional classification problems. 
In this hybrid approach, kernel evaluations are outsourced to projective measurements 
on suitably designed quantum states encoding the training data, while the model train­
ing is processed on a classical computer [A2]. Further, the Author took part in research 
dealing wi th machine-learned quantum gate driven by a classical control. The gate 
learned to achieve optimal cloning fidelity, allowed for this particular class of cloned 
states, in a reinforcement learning scenario having fidelity of the clones as reward [A5]. 

During her master studies, the Author collaborated on construction and testing of a 
Time-of-Flight detector which was later mounted on L H C in C E R N [A6-A8]. Currently, 
the Author collaborates with historians of fine art. Topic of a bachelor thesis supervised 
by the Author covers application of classical neural networks in identification of colour 
pigments. The other publication [A9] of the Author is listed in Chapter Author 's 
publications as well. 



Chapter 1 

Experimental Equipment, Methods 
and Techniques 

1.1 Quantum Entanglement and Nonlocality 
Quantum entanglement plays a prominent role within the field of quantum physics and 
has constantly drawn physicists' attention. Since 1935, when it was firstly considered 
by A . Einstein, B . Podolsky, N . Rosen [79] and E . Schrodinger [80], unt i l now, 
entanglement has been diligently studied [45]. The reason for such an endeavour is that 
entanglement has found its application in fields of practical importance such as quantum 
computing, communications and metrology [81]. In addition to that, phenomenon of 
entanglement is interesting also from the theoretical point of view. 

To consider entanglement, imagine a quantum system containing two distinct sub­
systems 1, say two particles, JL and <3. Each of the two particles can take the state 
|0) and |1) 2 . In other words, state of the particle JL ((B), denoted as (1^)®); 
can be \0)x or ( |0) s or | l ) s ) . Each of these states span a 2-dimensional Hilbert 
space 3i^2\ where the index ^ denotes the dimension of Hilbert space. Evidently, both 
particles can be in |0) state yielding the state of the entire system |0)^ ® | 0 ) s or simply 
100) spanning di^\ where the symbol ® denotes tensor or Kronecker product. On the 
other hand, nothing prevents the particles from being in the state |1) in which case the 
whole state becomes |11). A l l together, states of the set {|00), |01), |10), |11)} form an 
orthogonal basis of the whole system. 

According to the principle of superposition, mentioned in the Introduction, the whole 
quantum system can be prepared as a balanced superposition of these two constituent 
states 

l*>jra = -J | ( |00> + | l l » • (1.1) 

Such state, despite being physically realisable, cannot be expressed as a tensor product 
of its subsystems, i.e. \^)X(B ^ \^)^ ® 1^)® a n d is, therefore, called entangled. In other 
words, one cannot describe the state of the individual subsystems separately. Taken 
from the experimental point of view, this inseparability causes that any time the state 
|0)^ is measured on subsystem Ji then the subsystem (B is always found in the state 
| 0 ) s . Interchangeably, this is valid for |1)^ and | l ) s . One never measures remaining 
two options where each particle takes a different state. Expressed mathematically, the 
probabilities of measurement of both states 100) and |11) is | (001j^rg | 2 = K 1 1 ! ^ ) ^ ® ! 2 = 
| . Whereas for the remaining two states, |01) and |10), is this probability zero. Such 

1 Entanglement can be also denned for multipartite system containing more than 2 subsystems. 
2For instance, states |0) and |1) may be represented as vectors ( ° ) and (J), respectively. 
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correlations can be, though, characteristic even for a classical system and comes, thus, 
as no surprise. 

Physical systems featuring entangled state (as in Equat ion (1.1)) are for instance 
7r-meson decay [22] into an electron and a positron (n° —> e~ + e + ) where, due to the 
conservation of angular momentum, each of these particles e~ and e + has opposite 
orientation of spin or a process of spontaneous Type-I parametric down-conversion [1, 
82, 83] occurring in a non-linear crystal (more details on this process are provided in 
Section 1.3). The mere fact that certain state |^')ýr® c a n be factorised by states of 
the two subsystems, |^/')ýr® = ® l^)a> causes that such state is not entangled but 
separable. 

To illustrate the unique effect of entanglement of the state diagonal basis, 
|+) / | - ) , such that |+) = (|0) + |1)) and | - ) = (|0) - |1)) wi l l be introduced. A 
simple substitution reveals that the entangled state in Equation (1.1) takes the form of 

l * U = 7 f (!++> + ! — » • (i-2) 

Suppose two measurements on both subsystems' states, and | \ r ) s are carried out 
in this basis +/—. The probability of finding both JL and (B in the same state, either 
|++) or I ), | ( + + | ^ ) ý t ( B | 2 = |( l^)ýr®| 2) is again | . O n the contrary, subsystems 
cannot be found in mutually opposite states ( | (H—|^)ýt®| 2 = 0 and |(—H^).ýr®| 2 = 0). 
This behaviour is a manifestation of stronger-than-classical correlations that cannot be 
explained by classical physics. 

The question arises, how is this correlation transferred and by what means is it 
mediated? How does one particle "know" of the result measured on the other particle? 
Before the measurement is done particles occupy a superposition state. W h e n a mea­
surement takes place the two-particle state \ ^ ) ^ collapses into an eigenstate of the 
measurement appartus. Now, suppose that both particles are separated by a very long 
distance, for example light years away from each other, and measurements on them are 
done exactly in the same moment. Then the collapse of two-qubit state would have 
to propagate faster than light which seems to be incorrect since it contradicts theory 
of relativity [84]. It was generally accepted that no physical event can influence its 
surroundings more quickly then light can propagate not to break principle of causality, 
one of two statements of the so-called local realism. This concept was advocated by 
Einstein, Podolsky and Rosen (E. , P. & R.) in a famous thought experiment which is 
drawing the same seeming paradox. Later it became also known under acronym E P R 
paradox. 

E . , P. & R. concluded, among other things, that quantum mechanics does not 
seem to describe reality completely. They believed that al l properties of any system 
are well-defined independently on whether they are measured or not [85]-the second 
assumption of local realism. The apparent randomness of measurement outcomes is 
according to E . , P. & R. caused by our mere deficiency of understanding of physical 
systems. Advocates of local realism proposed that this insufficient knowledge can be 
modelled in terms of an unknown (hidden) variable A , inaccessible for us, which is 
influencing behaviour of the state. Existence of such variable is referred to as local 
hidden variable theory ( L H V T ) . 

Later, in 1964, J . S. Be l l [86] theoretically derived inequalities and also predicted 
their violation in accordance to laws of quantum mechanics. If such violation were 
experimentally achieved, it would disprove the description by local hidden variable 
theory and, in affect, would indicate whether quantum mechanics describes reality 
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completely. Group of physicists J . Clauser, M . Home, A . Shimony, and R. Holt (often 
abbreviated as C H S H ) proposed in 1969 a more general C H S H inequalities [87] that 
could be more feasibly experimentally implemented than the original Bell 's inequalities. 
It was not unti l 1981 that A . Aspect, P. Grangier and G . Roger experimentally broke 
the inequalities proving that existence of hidden variable model is incompatible wi th 
quantum mechanics and that quantum entanglement is a real phenomenon [88, 89]. 
Since then Bel l inequalities are a subject of testing in various setups, quantum systems 
and using more accurate and modern equipment. A l l experiments are in favour of 
quantum-mechanical description of the Universe and contradict the L H V T [90-94]. 

To illustrate the contrast between quantum theory and L H V T , let us consider a 
simple model. Two experimentalists in two separate laboratories, Alice and Bob, share a 
bipartite quantum state. Alice and Bob chose to perform one of two mutually orthogonal 
projection measurements, denoted A and B, on their part of the state independently 
on one another. Each measurement outcome for A and B, respectively, can take two 
values a, b G {0,1}. After many measurements have been performed, a resulting 
statistics is revealed being described by a set of joint probabilities P = {P(ab\AB)}, 
where P(ab\AB) means probability that Al ice obtains upon measurement A result 
a and similarly Bob after measuring B gets b. L H V T suggests that the result of a 
measurement is not given merely on random but is rather governed by a probability 
distribution of hidden variable q(A) such that the joint probability is in the form 

P(ab\AB) = J ] g ( A ) P A ( a | , 4 ) P A ( & | P ) . (1.3) 
A 

Naturally, q(A) is non-negative and normalisable, J2A Q(A) = 1. When the joined 
probabilities P(ab\AB) obtained from experimental observations cannot be described 
in the form of Equatin (1.3) then these observations cannot be explained by any L H V T 
and, thus, break local realism. Whenever the respective joint probabilities of parties are 
not factorisable in manner of the above equation, they are called nonlocal [95, 96]. Usual 
way how to detect nonlocality is to test Bell 's (or various Bell-type, e.g. Svetlichny [97], 
C H S H , etc.) inequalities. For instance, C H S H inequality [87] is defined as 

C H S H = P(00\AB) - P(01\AB) + P(10\AB) + P ( 1 1 | A B ) . (1.4) 

When gathering the measurement statistics of C H S H factor, only events when detectors 
of both Al ice and Bob clicked, so-called coincident counts (detections) denoted CC, 
are considered. Joint probabilities are expressed in terms of these coincidence counts 
as P(ab\AB) = . It can be shown that for an example such as this one can 

always find L H V model if and only if | C H S H | < 2. Quantum mechanics, on the contrary, 
allows for | C H S H | < 2y/2. The states wi th C H S H factor 2 < | C H S H | do not meet the 
local realism assumptions and are referred to as nonlocal. 

A l l separable states (not entangled) can obviously produce joint probabilities ex­
pressed in the form of Equation (1.3). It, thus, follows that in order to violate C H S H 
inequalities the investigated quantum state must be entangled (nonlocality implies en­
tanglement). The opposite is, however, not always true [98]. There are states that 
cannot indeed be expressed as separable but the measurement results do not exclude the 
L H V T interpretation. Besides entanglement and nonlocality, there are other criteria of 
states describing properties inaccessible to classical physics. They constitute an open 
area of research like those considered in Chapter 4. Similarly, one can generalise all 
these criteria to multiparti te quantum state and formulate conclusions such as those 
experimentally studied in Chapter 3. 
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1.2 Linear-Optical Elements 
Goal of this Section is to introduce the reader to optical elements commonly used on 
the platform of linear optics to implement quantum experiments and tasks. In order 
to understand operation of more complex experimental setups, the following Section 
presents the main parts these setups consist of, i.e. (polarising) beam splitters, wave 
plates and beam displacers. Their action on photonic states wi l l be mathematically 
expressed. Even though, the considered components were used originally for purposes 
of classical wave optics, transformations these components impose on the annihilation 
operators (explained in Section 1.2.1) of individual modes are fairly similar. 

Apar t from these components there are also opto-mechanical parts playing an im­
portant role. They hold (post holders), rotate and ti l t (rotation stages), and move 
(translation and piezo motorised stage) the optical components. Since photons do not 
directly interact wi th those auxiliary parts, they wi l l not be described here. 

Extensive theory of optical fibres is also omitted here because they are considered 
only as much as a tool description of which does not directly relate to the topic of this 
Thesis. It is sufficient to mention that within presented experiments, single-mode (SM 
600) or multi-mode fibres by Thorlabs Inc. were used. Both the fibre core and cladding 
are manufactured of fused silica glass (SiO^) with typical value of refractive index being 
around 1.45. Single-mode fibres are much less prone to collect noise wi th respect to 
multi-mode fibres because their geometry, namely smaller so-called acceptance angle, 
complicates coupling of light into them. Another advantage is that the distribution 
of intensity of light guided by this fibre corresponds to the fundamental mode L P o i 
( T E M Q O ) with only one intensity maximum so higher spatial modes are cut off. Which 
is particularly important for perfect interference of two beams. 

1.2.1 Beam Splitters 
Principle of beam splitter (BS) or beamsplitter lies in partial reflection and transmission 
of incident light. It is compactly manufactured in the form of a glass plate or a prism 
features of which are obtained by depositing a thin film on its surface. Beam splitters 
are inseparable components of interferometers like (Mach-Zehnder, Sagnac, Michalson, 
etc.) because they allow splitt ing and subsequent rejoining of incident light beams. 
Alternatively BS can be manufactured on platform of fibre optics by means of coupling 
of evanescent waves between 2 fibres. Such BSs may even have various splitting ratios 
like 49:51, 30:70, 10:90, etc. Effective splitting ratio, caused by polarisation dependent 
losses, is important for quantum cloning discussed further in Chapter 2. 

If we neglect losses that each beam splitter intrinsically has, one can describe B S 
by it's intensity reflectance Ui and transmittance "J in the way that Ui = 1 — U~. In 
case when splitting ratio J' j(k equals 1, the incident beam power with intensity J i n c is 
evenly split into two output beams. As amplitude of an electromagnetic wave (field) A 
is proportional to \/Iinc, its transformation by a B S can be expressed in matrix form: 

(S)-Uil($)- <l5) 

with r and t being reflection and transmission amplitudes associated with A which can 
i 12 i 12 

be conveyed as: \r = 01 and t = J. The prime denotes these functions for the 
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second input port. From unitarity, as mentioned further, of a loss-less transformation 
it follows that r — r' and t = t'. 

Second quantisation [99, 100] of electromagnetic field postulates that amplitudes A 
are replaced by annihilation operators a resulting into quantum mechanical description 

1.6) 

The terms r and t have to follow normalisation condition | r | 2 + |£| 2 = 1. The B S 
is considered lossless, therefore energy during the transformation has to be conserved. 
This requirement ensures unitarity of the transformation done by the B S , i.e. it has to 
follow Wll = 1. For this reason, B S may be characterised by an effective parameter i?. 
Uti l is ing the general form of unitary matrix, equation (1.6) can be rewritten as 

}(2) V - s i n t f 
COS1? 

;i-7) 

where the minus sign is a consequence of a phase change that the light experiences 
while reflected from the B S [101]. 

The commonly used BSs have balanced splitt ing ratio, i.e. 50:50 or 01 = J = |, 
which allows for simplification of above unitary matrix 11 in Equation (1.7). In order to 
achieve this, i? has to equal to j . Then, the unitary matrix for balanced BS is expressed 
as 

WBS = ^ (_ 1

1 I) • (1-8) 

For annihilation a and creation operator er it follows from the algebra of quantum me­
chanics that [a,a'\ = aa^ — a^a — 1. It turns out that electromagnetic field has formally 
the same Hamil tonian 3 , di = ftwicfia + | ) wi th u representing angular frequency [100] 
as linear harmonic oscillator. Electromagnetic field has also its eigenstates (also called 
Fock or number states) \n): di \n) = hu^a + | ) |n), where n = 1,2,3,... stands for 
number of photons in the given mode. Annihi la t ion and creation operators act on Fock 
states in the following way: a |0) = 0, a \n) = \/n \n — 1) and a) \n) = \fn + 1 \n + 1). 
So, a decreases the number of photons by one whereas a* adds one photon, hence their 
names annihilation and creation operator, respectively. In other words, they denote 
absence or presence of a photon. 

B y use of this formalism, an effect of Hong-Ou-Mandel ( H O M ) interference [102] 
wi l l be shown here. It is a quantum phenomenon involving bunching of photons on B S . 
It is further discussed from the experimental point of view in dedicated Section 1.4. 
H O M interference occurs when there is one photon at each input port, denoted as 
ljn^lhf, i n the same time interacting with the other one. Naturally, there are 4 possible 
solutions shown in Figure 1.1. Moreover, bearing in mind that vacuum state, |0), of 
all input modes needs to yield vacuum output in all modes, it is possible to summarise 

3Hamiltonian is a function of energy of the system. 
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the equation as 

where we used unitarity of UBS a n d the Equat ion (1.8). Interestingly enough, cross 
terms of creation operators in Equation (1.9), a0ut^out\ cancel out leaving only bunching 
terms none-zero (Equation (1.10)). Obviously, photons tend to gather together and 
leave always only by one output port. The output state in Equation (1.11) is entangled, 
namely spatially, and the entanglement is the strongest for balanced beam splitter 

(m = \m)-
B y facilitating interactions between two spatial modes of light, the B S is a key 

component for implementation of a large number of quantum information experiments 
like teleportation [42], quantum logic gates (such as controlled N O T or controlled 
phase) [103-105], quantum cloning [106-110] discussed further in Chapter 2 and boson 
sampling [A2] which exploits scattering of identically prepared bosons, like for instance 
photons. 
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BS: |R | =\7\ 

Figure 1.1: Visual isat ion of H O M interference at balanced BS as derived in Equations (1.9) 
- (1.11). Couple of cube BSs in the middle of the Figure denotes scenarios where either both 
photons are transmitted or reflected. However, because of opposite signs respective creation 
operators cancel out and these scenarious will not occur. T h e only possible scenarios are 
those where photon f rom one input port is t ransmit ted and photon f rom the other input 
port is reflected (phenomenon of H O M interference). Th i s s i tuat ion is depicted as couple 
of BS in the bot tom of the Figure. 
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1.2.2 Polarisation-Dependent Beam Splitters 
A beam splitter introducing polarisation dependent splitting ratio wil l be called polarisa­
tion-dependent beam splitter ( P D B S ) . Description of how P D B S acts on single photons 
may be derived from relations obtained for BS (in Equation (1.6)). It is only necessary 
to incorporate polarisation degree of freedom in addition to spatial modes and dS2^. 
This effectively enlarges the transformation space from 2 to 4. The transformation 
relation then reads 

/ ° o u t \ / tH 
0 0 \ ( < \ 

a o u t tn 0 0 < 
a o u t 0 0 ty ry < 

\ 
~(2) ,V 

a o u t / V o 0 ry ty ) \ < 1 

(1.12) 

^PDBS 

where just for illustration, p-polarisation 4 was substituted by H and s-polarisation 5 by 
V. Further simplification is achieved when a fully polarising B S is considered. From 
the principle of its operation it is valid that tn = ry = 1 and rn = ty = 0. The unitary 
matrix has then the form of 

0 \ 
0 
1 

In its construction P D B S resembles B S just wi th the difference that deposited th in 
layer imparts various split t ing ratios to differently polarised light. However, both 
polarisations are not allowed to interact in the basis in which the transformation (1.12) 
is prescribed [111]. 

Polarising beam splitter (PBS) or sometimes beam-splitting polariser is a special 
case of P D B S . It is used to split incident light beam separating it into two beams with 
perpendicular polarisations as depicted in Figure 1.2. These polarisation components 
are often denoted as s-polarisation and p-polarisation. Usual P B S transmits p-polarised 
light and reflects s-polarised one. This is achieved by several methods. One of them is 
a cube prism made out of two triangular prisms formed by dense flint glass cemented 
together 6. Dielectric coating applied to the joint of the cube then mediates the beam 
separation (via interference [112, 113]). 

There are other principles of operation of P B S , one of them employs so-called 
birefringent prisms. Among the most known types are those of Glan-family, Wollastone, 
Rochon or Nicol prisms [114] which are made of materials like quartz or calcite. When 
optical axis is appropriately orientated wi th respect to the incident beam, this beam 
is, as a result of birefringence, split into two beams. One of them is polarised along 
ordinary (o) direction (or axis) and the second one along extraordinary (e) direction. 
Light incident on such a crystal is decomposed into two mutually orthogonal polarisation 

4from German word parallel, referring to polarisation laying in parallel direction to the plane of 
incidence 

5from German word senkrecht referring to polarisation laying in perpendicular direction to the 
plane of incidence 

6For technical specifications see directly the web side of the manufacturer: 
https: / / www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=739 

U PBS 

(1 
0 0 

0 1 0 
0 0 0 

0 1 

http://www.thorlabs.com/
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components. Similarly, as in the case of B S they find their application in quantum 
information tasks. 

Figure 1.2: Act ion of a polarising beam splitter. Incident beam is brought to the P B S by an 
input port (1) denoted by the index (in). T h e beam is then split into two perpendicularly 
polarised beams leaving P B S by two output ports (1) and (2). Polarisation of the reflected 
beam is perpendicular to the plane of incidence (not depicted in the Figure) which is given by 
incident beam and perpendicular to the boundary (visualised by a purple plane). Polarisation 
of the transmit ted beam is on the other hand parallel to this plane. 

1.2.3 Wave Plates 
Polarisation state of light may be easily transformed by use of an optical component, 
a wave plate ( W P ) , made of birefringent material. Two most notable examples are 
half-wave plate ( H W P ) and quarter-wave plate ( Q W P ) . W P s are made of uniaxial 
materials such as quartz or mica, where ordinary and extraordinary directions of elec­
tromagnetic field oscillations (polarisations) exist. This results in different refractive 
indices, nQ and ne. Light incident on such a crystal is decomposed into two mutually 
orthogonal polarisation components with different phase velocities. Direction for which 
light experiences higher (lower) refractive index is called slow (fast) axis. Difference of 
velocities unavoidably imposes phase shift or retardation between both polarisations 

AT = ^ \ n e - n 0 \ . (1.13) 

The crystal has to have carefully chosen width d to reach certain value of A r . Specifically, 
for A r = 7T the crystal is called H W P and for A r = f it is Q W P . 

A transformation matrix of W P , 1/WP, acting on a vector of annihilation operators 
mixes the respective modes in a similar manner as a B S works for spatial modes 
(Equation (1.6)) [115]. In general, the retardation (in Equat ion (1.13)) imposes a 
matr ix unitary transformation in the basis of o- and e-directions. It is customary 
to rotate the W P which produces the following effect in the basis of laboratory H 
and V polarisations [113]: 1/WP — R - -0 ^ W P ( O ) Re , where 9 is an angle between slow 
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axis and the direction of H polarisation, rotation matr ix = (_?°in6» cose) a n d the 
transformation matrix of W P in non-rotated state reads [115] 

/ e - i A r / 2 o \ 

l i w p ( O ) = I 0 e i A r / 2 J 

Particular solutions for rotated H W P and Q W P are: 

and 

_ . . cos 29 sin26 l  

U u w p - ~ l [ s m 2 e - c o s 26 

- _ ^ A — i cos 29 —i sin 29 \ 
Q W P ~ " 2 " V - i sin 20 l + z c o s 2 ^ 

Rotated by an angle 0, the effect of the H W P is as follows: It rotates incident linear 
polarisation by an angle 29 so output remains linearly polarised. Both H W P and Q W P 
change the global phase. Moreover, Q W P adds a phase between H and V polarised 
light. In other words, depending on the angle 9, it thus changes ellipticity. 

Unitary nature of Uwp(0) causes that W P transforms a pure polarisation state into 
another pure one. It can be shown that transformation of any general polarisation 
state can be accomplished by a set of Q W P , H W P and Q W P [116]. Similarly, a 
couple of H W P and Q W P is sufficient to produce any polarisation state from any 
linear polarisation state [117]. This quality was exploited for polarisation encoding and 
projections of qubits wi thin experiments presented in this Thesis (namely projections 
are treated in the Section 1.6). 

1.2.4 Beam Displacer and Beam Displacer Assembly 
Beam displacer (BD) is somewhat similar in its function to B S . B D s are typically 
fabricated from birefringent material such as calcite or y t t r ium orthovanadate (YVO4) 
for applications at longer wavelengths. P r i sm like Rochon or Wollastone may be also 
considered as B D s . Unlike B S , however, the separated beams upon leaving the B D 
continue in the parallel direction with respect to the input beam. Typically, after exiting 
the B D both modes remain displaced by a constant length, for instance few 7 mm. As a 
result of so-called walk-off effect, this component separates incident light beam into o-
and e-beam, each sensing different refractive index n0 and ne (Figure 1.3). Specifically, 
o-beam travels through the crystal along the direction of the incident beam. O n the 
other hand, e-beam has a different direction, dependent on an angle of crystal's optical 
axis and k-vector of incident beam. Notably, both o- and e-beams are by the action of 
birefringent crystal mutually orthogonally polarised [113, 118, 119]. W i t h i n experiments 
presented in this Thesis, B D s can be mounted in such a way that horizontally polarised 
light continues straight whereas vertically polarised light is deviated. 

W i t h i n the platform of linear optics, B D s are employed as BSs whenever the or­
thogonal separation of light beams is not desired. B D s were integral parts of setups 
discussed in Chapter 3 and formed an intermediate step towards construction of setup 
presented in Chapter 4. 

B D s can also implement polarisation dependent losses and a phase shift between 
polarisation components by means of an interferometric device, referred to as beam 

7 for instance BD40 by Thorlabs Inc. provides 4 mm separation 
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displacer assembly ( B D A ) depicted in the Figure 1.3. The term polarisation dependent 
losses means a change of transmittance of a given polarisation state or mode. To 
introduce such losses, one might simply employ even a single piece or a couple of plane-
parallel glass plates rotated close to Brewster's angle 8 . However, such method has a 
drawback that all polarisation modes are bound to undergo a change of transmittance. 
This issue is solved by the very B D A which by means of conversion of polarisation 
modes into two spatial modes allows to apply separately onto chosen mode some means 
of attenuation (like neutral density filter). 

The working principle of B D A is as follows: the first B D separates the incident 
beam creating two beams as discussed earlier. In order to rejoin these two beams back 
together the polarisation states have to be interchanged. For this purpose the setup 
contains a H W P set at 45° that switches polarisation states of o- and e-beam. Only 
now the two beams are brought to the second B D which reunites the two spatial modes. 
However, complicated adjusting process and reflection losses on surfaces of crystals are 
among the drawbacks of this method. 

Figure 1.3: Visual isat ion of a beam displacer assembly. It consists of two B D s and a H W P . 
First B D separates incident light into o- and e-beam while the second B D , by virtue of 
H W P at 45° f l ipped the polarisation states, joins those two beams back together [118]. 

1.3 Source of Photon Pairs 
In our experiments we used a laser system Paladin N d : Y A G by Coherent company with 
integrated th i rd harmonic generation at A = 355 nm. Its repetition rate is 120 M H z 
and mean power reaches 2 W which is further reduced to 215 mW. This beam is 
utilised to pump a pair of non-linear crystals ,3-BaB204 (/3-barium borate which is 
often abbreviated as /3-BBO). In both of these crystals, a photon pair is generated via 
phenomenon of spontaneous Type-I parametric down-conversion [1, 82, 83, 118]. W i t h 
some probability a pump beam photon wi th angular frequency u is transformed into 
two secondary photons of lower angular frequencies oj\ and u^. It holds that u = U1+U2 
and for wave vectors k = ki + k 2 (depicted in the upper part of Figure 1.4) so the 
energy and momentum are conserved in this process. Apar t of fulfilment of the law of 
conservation, the secondary photon's direction kj has no preferred space orientation and, 

8For light wave incident on the boundary between two media each with refractive index n\ and 
ri2, the value of Brewster's angle is expressed as &B = arctan^-. Then light transmitted through 
the medium is partially polarised whereas reflected wave is fully s-polarised. Controlling an angle of 
incidence provides an effective means to acquire polarised light from unpolarised one. 

B D i B D 2 

O p t i c a l 
a x i s 

H W P 
@45° 
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therefore, covers surface of a cone. Further to that, generated photons leave crystals 
in axially symmetric directions wi th respect to beam. Everywhere in this direction 
couplers may be positioned to collect these photons (visualised in the lower part of the 
Figure 1.4). It is worth stressing that if apex angles are small, for typical B B O crystal 
3° — 4°, the position of photons' origin is smeared and, thus, uncertain due to small size 
(orders of mm) of the B B O crystal. For this reason the down-converted photons from 
the 1st and 2nd crystal are indistinguishable. 

Figure 1.4: T h e process of Type-I spontaneous parametric down-conversion in a couple 
of nonlinear crystals / 3 - B B O (Kwia t source). Down-converted photons from the 1st (2nd) 
crystal cover surface of a deep red (light red) cone centred around the pump beam (blue 
line). Photons col lected in direct ions (an example of such ones marked by black ellipses) 
that fulfil the energy and momentum conservation law (visualised in the upper part of the 
Figure) are by virtue of small apex angle of these cones practically indistinguisable [1, 118]. 

In case of our source, the B B O crystals provides us wi th two output photons of 
equal angular frequencies at wavelength 9 A i ^ = 710 nm (= 2 • 355 nm). This process is 
interesting because created photons are correlated in polarisation, (angular) frequency 
(or energy) and in direction of their motion. For this reason it is widely used in quantum 
optical experiments. 

The crystals are positioned so that their optical axes lay in mutually orthogonal 
plains. W i t h respect to that, the 1st crystal produces H polarised photons when pumped 
by V polarised laser beam whereas the 2nd crystal produces V polarised photons 
when pumped by H polarised laser beam. Because of the pump beam coherence and 
indistinguishability of the photon coupling behind the crystals, we are able to generate 
a coherent superposition of photons from both the crystals. This technique is known as 
crystal cascade or a Kwiat source [120, 121]. The pump power together with geometrical 
and material properties of our crystals make simultaneous generation of multiple photon 
pairs negligible. 

9 The relation between angular frequency and wavelength is given by equation ui = 

Pump 
beam 
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In all experiments presented here we postselect solely on the cases when both photons 
were registered by the detectors. This procedure effectively eliminates situations when 
no photon pair was generated or at least one of the photons has not been detected. One 
can, thus, assume that the generated state takes the effective form 

where 9 and p are dependent on polarisation state of the pump beam. Specifically, 
the parameter 9 is controlled by rotation of H W P inserted to pump beam before the 
crystals while the <p> is controlled by pump beam ellipticity. 

Once the source is constructed its qualities have to be tested. We can verify indistin-
guishability and temporal coherence within separable state, e.g. \HH). Photons are 
governed by Bose-Einstein statistics that dictates photons in the same quantum state 
to gather together. So, in the case photons are genuinely indistinguishable, they bunch 
together at the BS and leave it together by the same output port, as demonstrated in 
Section 1.2.1. This special k ind of two-photon interference is called Hong-Ou-Mandel 
( H O M ) interference [102]. W h e n the photons may be distinguished for some reason, 
they leave B S wi th some probability by two different ports. Therefore, H O M inter­
ference is feasibly detected in terms of coincidence detections or counts ( C C ) , i.e. by 
means of electronic modules the events are counted when each photon of the pair was 
detected in different detector wi thin a short time interval referred to as coincidence 
window. Typical width of this window is several ns which is much more than the spread 
in time of creation of both photons. 

The measurement setup is depicted in Figure 1.5(a). Photons are entering the B S 
by input ports 1 and 2 and leaving it by ports 3 and 4. One arm of the interferometer 
has adjustable length which can be fine tuned by means of motorised translation stage 
coupler in order to scan the interferogram. Control software registers both the position 
of the motor and the C C from t iming electronics. Assuming photons are in the same 
quantum state, it is expected that when the motor reaches the position where the arms 
are just of the same length, C C wi l l abruptly decrease ideally to zero. Such observed 
shape is known as H O M dip and is visualised in Figure 1.5(b). 

As every interference pattern, the H O M interference may be evaluated according to 
its v i s ib i l i ty 1 0 . There are 3 options how to improve the visibility. As already mentioned 
the source has to be fine tuned to provide indistinguishable photons which have to be 
in a pure state [122]. In other words, if the generated state is influenced for instance by 
white noise, such noise increases the minimum of interference pattern and, as a result, 
visibili ty drops. Better indistinguishability of photons in terms of their energy may be 
achieved by frequency filtering by incorporating narrow bandwidth filters (also known as 
interference filters with typical spectral width of 10 nm and less). Finally, single-mode 

1 0 In order to obtain distinct interference within the experiment, one needs to achieve maximal 
separation between baseline or differently value of CC outside the interference pattern ( C C m a x ) and 
minimal value of the HOM dip (CC m ; n ) . Such quality is described by so-called visibility 

(1.14) 

1st crystal 2nd crystal 

1.4 Hong-Ou-Mandel interference 

c c 'max - c c mm (1.15) v = C C + C C 'max mm 
Visibility can maximally reach unit value. 
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optical fibres (TEMoo) make the photons spatially indistinguishable preserving high 
interference visibility. Employment of these elements, however, unavoidably results in 
decrease of the signal putt ing strict requirements on adjusting of the whole setup to 
obtain as high signal as possible. 

It is noteworthy that the dip (Figure 1.5(b)) is accompanied by two side maxima 
and its shape is of the form a — b • e^x~^> / / ^ s i n c ( ^ £ ) , where a, b, c, / and g are fit 
parameters. This shape is caused by specific shape of spectral filtering imposed on 
photons. Their spectrum is effectively a convolution of Gaussian function (due to setup 
geometry) wi th the rectangular shape of the interference filter used. Because of the 
high sensitivity of the H O M interference visibility, it serves as a precise indicator of 
imperfections of the source. 

Figure 1.5: (a) Sketch of a part of an experimental setup with which one could obtain H O M 
dip [122]. Length of one input port may be adjusted by means of a motorised t ranslat ion, 
(b) These data of H O M dip were obtained while adjust ing the experiment presented in 
Chapter 2. Error bars are smaller than markers' size. The dip was f i t ted according to the 
funct ion mentioned in the text. Vis ib i l i ty that equals to 0.96 was calculated according to 
Equat ion (1.15) where intensities were subst i tuted by min imum of the fit funct ion and by 
baseline of the dip. Each data point has been collected for 10 s. 

1.5 Encoding of Qubits 

Once the photon source has been described, the focus of this Section wi l l be how to 
make use of the photons to encode into them quantum information. (For the definition 
of qubit see again the Introduction: Basics of Quantum Information.) Generally, single 
photon is a quantum system that provides several means for information encoding. The 
aim of the following text w i l l be to acquaint the reader wi th polarisation and spatial 
encoding since these were used in experiments presented further. A s for the first one, 
it is readily available since it is feasible to change photon's polarisation and finds its 
application also in classical optics. Other prominent techniques include encoding into 
continuous variables of position and momentum of photon, x and p, respectively [123, 
124], and encoding into angular orbital moment [125-127]. Intrinsically photons carry 
spin (s = 1) and additionally under some circumstances they may have an orbital 
angular momentum, too. Because orbital angular momentum states are integers and 
symmetrical wi th respect to zero, a three- and more-level system is formed. A s such, 
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they have a potential to accommodate general qudits [126, 128]. Encoding by means of 
occupation numbers is also available [129, 130], or time-binning can be used [128, 131]. 

1.5.1 Polarisation Encoding 
Encoding into the polarisation state of light is relatively straightforward. As is depicted 
in Figure 1.6, there is a multiple choice of basis formed by mutually orthonormal vectors, 
e.g., \H) J \ V), \D) / \ A) and \R) / \L). So the encoding is done by choosing a basis, 
for example H/V, and denoting horizontal state \H) as logical qubit |0) and vertical 
state \V) as |1). A n y general superposition of logical states corresponds to a pure 
polarisation state 1 1 , e.g. |0) + |1). In this particular example, it would correspond to 
diagonal polarisation, but in general elliptic polarisation. 

Figure 1.6: A B loch sphere, depicted in this Figure, faci l i tates visual isat ion of polarisation 
states and corresponding qubit states. Polarisation basis are denoted as follows: horizontal 
|H), vertical |V ) , diagonal |D ) , anti-diagonal |A ) , right-handed circular |R) and left-handed 
circular |L) , respectively. Ending point of any vector reaching surface of the sphere describes 
a pure state. Pure states are those mentioned so far like that found in Equat ion (1.1). 
Uti l ising Euler angles the state can be expressed as \ip) = cos (tf/2) |H) + e'*'sin (#/2) |V ) . 
Mixed states (see the next Sect ion 1.6.1) are often expressed in a form of density matr ix 
(in Equat ion (1.16)) and they are visualised as vectors laying inside the sphere and start ing 
in its centre. 

As already mentioned, polarisation state of photons may be easily prepared. It can 
be shown that by combination of H W P and Q W P one may obtain any required pure 
polarised state from an original \H) state. For exact transformation of input light by a 
W P see again Section 1.2.3. There is only one drawback: Whi le propagating in standard 
circularly symmetric fibres, polarisation is easily changed by every bend of the fibre. 
Therefore, such changes have to be (i) prevented by employing this encoding in free 
space rather than in fibres or, one has to (ii) e.g. fix the polarisation change by fastening 
fibres to the optical table, and then (iii) compensate this change on several places within 

|H> 

IV) 

normalisation constant has been omitted for simplicity 
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every setup typically by mounting polarisation controller (PC) . The polarisation state 
is easily projected by means of P B S , as is dicussed i n Section 1.6, which is able to 
separate two mutually orthogonal polarisation states. It should be noted that Kwia t 
source inherently produces photons that are already found in a polarisation entangled 
state. 

1.5.2 Spatial Encoding 

Spatial encoding is also referred to as dual-rail encoding. In general, logical qubits 
denote two distinct paths a photon may take. There are several means of experimental 
implementation. W i t h i n experiments presented in this Thesis, encoding and subsequent 
decoding of qubits formed two paths, thus, effectively realising a Mach-Zehnder inter­
ferometer. Notably, the advantage of optical qubits is that one photon may be encoded 
into more than one degree of freedom. Such technique was used i n the experiment in 
Chapter 3, where both polarisation and spatial encoding caused creation of 3-qubit 
state by means of just 2 photons present in the setup. 

The very last step of each experiment is to analyse encoded qubits. In order to do so 
qubits have to be first projected into different bases corresponding to the given encoding 
method. Detectors capable of detection of such low signals are briefly mentioned in the 
following Section 1.6.2. 

1.6.1 Analysis of Polarisation Encoded Qubits 

W i t h i n presented experimental setups, polarisation encoding is the most frequently 
used one. Furthermore, another employed means of encoding, spatial encoding, may be 
converted into polarisation as well (see Chapter 3). The analysis of the encoded state 
is done by gradual projecting it into bases states and gathering event counts for some 
given time interval. In case of polarisation encoding the projection is done in the same 
manner as the encoding: by means of H W P and Q W P in addition to P B S that separates 
two polarisation states from each other. Specifically, by means of these components 
all 6 projections are set onto horizontal, vertical, diagonal, anti-diagonal, right-handed 
circular and left-handed circular polarisations while counts are simultaneously measured 
and cumulated. In case of a 2-photon state, analysis consists of all combinations of 6 • 6 
previously mentioned projections. 

Because of unavoidable experimental imperfections or deliberate noise introduction, 
the description of observed quantum states using the \ip) formalism is not sufficient. 
The state needs to be described in terms of a density matr ix g. States that were 
influenced, e.g. by white noise, are a statistical mixture of pure states which prevents 
them from being expressed as a simple sum of pure states. Thus, such states are fully 
characterised by a density matrix Q. T o estimate the density matrix of quantum state 
we employ the maximum likelihood algorithm [132] that searches for the most plausible 
density matr ix wi th respect to the observed projection counts. Generally, the density 
matrix is defined as 

1.6 Quantum State Analysis 

N 
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where it is summed over a general number of 7V states each included with a probability 
Pi. Specifically, for example density matrix for 2 logical qubit state is of the form of 

|00) 

|01) 

110) 

111) V 

(00| (01| (10| (11| 

/ 
For each density matrix it holds that Tr(^) = 1 and that it is hermitian, i.e. g* = g. 

Each diagonal component corresponds to projection probability onto a given basis state 
(depicted as kets in the above Equation). For the pure state, the density matr ix has 
a t r iv ia l form g = One can quantify purity P = Tr(g2) and fidelity of the 
observed density matr ix wi th the target pure state defined as F = {ip\g\ip). It should 
be noted that in density matr ix notation, an entangled state (see Section 1.1) cannot 
be expressed in the form gj%% = QJ% ® £>S. 

1.6.2 Detectors and Electronics 
Quantum information experiments presented in this Thesis are constructed such a way 
that two photons are, with certain probability, found in the same output arm, yet they 
do not to cause coincidences and, as a result, do not contribute to H O M dip. Further 
to that, postselection of C C guarantees a well defined source of photon pairs so it is 
not important to differentiate the exact number of impinging photons. The parameters 
that are crucial for here presented experiments are high detector efficiency in order to 
detect the incoming photons wi th high probability, low dark count rate so that the 
signal was not lost in noise and a short dead time because of high rate of the source to 
name just a few. 

W i t h i n the experiments we employed single-photon avalanche diodes S P C M - A Q R H -
14-FC by Excelitas company 1 3 and C O U N T ® - N I R by Laser Components 1 4 . Since 
the detectors produce a T T L pulse and Dua l Counter T i m e r 1 5 (by Ortec company), 
registering events from both detectors, is able to work only wi th N I M logics 1 6 , a T T L 
to N I M conversion has to take place. Coincidences are recorded by electronic modules 
T A C (an acronym of Time- to-Ampli tude Converter) together wi th S C A (from Single 
Channel Analyser) by Ortec company 1 7 . 

1 2 Tr stands for the trace of a matrix and it is defined as a sum of diagonal elements of that matrix. 
13https://www.excelitas.com/product/spcm-aqrh 
14https: / / www.lasercomponents.com / de-en / product / count-nir / 
15https://www.ortec-online.com/products/electronics/counters-timers-rate-meter-and-

multichannel-scaling-mcs/994 
1 6 N I M standart defines voltage 0 V as logical 0 and —0.8 V as logical 1. In addition to it, it is 

required 50 fl of input impedance. 
17https://www.ortec-online.com/products/electronics/time-to-amplitude-converters-tac/567 

https://www.excelitas.com/product/spcm-aqrh
http://www.lasercomponents.com
https://www.ortec-online.com/products/electronics/counters-timers-rate-meter-and-
https://www.ortec-online.com/products/electronics/time-to-amplitude-converters-tac/567
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Chapter 2 

Experimentally Attacking Quantum 
Money Schemes Based on Quantum 
Retrieval Games 

Contents of this Chapter is based on the Author 's article [Al ] . 

2.1 Introduction 
The concept of quantum money (QM) was proposed by Wiesner in the 1970s. Its main 
advantage is that every attempt to copy Q M unavoidably leads to imperfect counterfeits. 
In the Wiesner's protocol, quantum banknotes need to be delivered to the issuing bank 
for verification. Thus, Q M requires quantum communication which range is limited by 
noise and losses. Recently, Bozzio et al. (2018) have demonstrated experimentally how 
to replace challenging quantum verification wi th a classical channel and a quantum 
retrieval game ( Q R G ) . This brings Q M significantly closer to practical realisation, but 
still thorough analysis of the revised scheme Q M is required before it can be considered 
secure. We address this problem by presenting a proof-of-concept attack on QRG-based 
Q M schemes, where we show that even imperfect quantum cloning can, under some 
circumstances, provide enough information to break a QRG-based Q M scheme. 

A l l payment methods are potential targets of thieves and counterfeiters. Over the 
course of history, we have witnessed a race of arms between the counterfeiters and 
issuers of various currencies. Remarkably, Sir Isaac Newton, who became the master of 
Royal Min t , enforced laws against counterfeiting. Nevertheless, the methods used by 
Newton become obsolete when it comes to modern payment methods. W i t h the rapid 
technological progress, we are beginning to consider a situation where counterfeiting 
is no longer l imited by the available technology, but rather by the laws of nature. A n 
example of such fundamental l imitat ion is the no-cloning theorem, [133, 134] which 
guaranties security of quantum money [38, 39, 135-137]. 

In a recent paper, Bozzio et al. [78] reported on an implementation of a Q M scheme 
based on Q R G s [138-140]. Whi le this result brings Q M closer to practical implementa­
tion, here we demonstrate that QRG-based Q M schemes are sti l l vulnerable to a new 
kind of attack (for some typical attacks see Ref. [141-145]) which can be considered a 
quantum version of sniffing (a hacking method used to monitor classical information). 
The general idea of our attack can be used against a broader range of Q M schemes 
based on Q R G [146-148] and potentially on other quantum communication protocols. 
Thus, our results can facilitate future practical implementations of Q M by providing 
a method for exploring the security limits allowed in QRG-based protocols. For the 
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Figure 2.1: Scheme of encoding of classical banknotes using their serial number by the 
bank. T h e secret encoding process, like e.g. hash funct ion, is visualised by the Enigma 
machine [152]. 

purpose of our research we have experimentally recreated the original scheme of Ref. [78]. 
Its working principle can be described as follows: the bank encodes Q M (as a quantum 
token) using a secret sequence of qubit pairs chosen from the list of eight options: 

S = {|0+>, |0->, |1+), | l - > , I + 0), I - 0), I + 1), I - 1)} , (2.1) 

where |0), |1) are logical qubit states, and | ± ) = 4^ (|0) ± |1)) stand for their super­
positions. Note that three bits are needed by the bank to store information on one 
qubit pair on token. The tokens and their serial number are then stored on a quantum 
credit card [78, 149, 150] subsequently given to a client of the bank (Figure 2.1). Upon 
payment, the credit card is inserted into the vendor's terminal which is supposed to 
perform projection measurements on these pairs in a measurement basis requested by 
the bank (randomly chosen to be either 0/1 or + / - for an entire pair). Then, the 
terminal sends the classical outcomes of those measurements to the bank. The main 
advantage of this scheme is that the terminal measurement itself is sufficient for authen­
tication of the credit card, so quantum states do not have to be sent to the bank for 
verification. The bank just checks the results knowing the specific encoded states and 
either accepts or denies the payment. A small amount of errors is expected to appear in 
the verification procedure to account for implementation imperfections. The acceptable 
amount of errors needs to be small enough to ensure that payment by a cloned quantum 
credit card is denied. In contrast to the original Wiesner Q M scheme [38], no on-line 
quantum channel has to be used for payment. Thus, the verifiability problem as defined 
by Aaronson and Christiano [151] is at least partially solved. 

This protocol is secure against a dishonest terminal only if each quantum sequence 
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is generated using a truly random encoding. However, such condition would give rise 
to a giant database problem, as discussed in [151] and [153]. The random sequence 
approach is highly impractical or even infeasible. In practice, there has to be one secret 
encoding function shared by a certain number of quantum banknotes or tokens (i.e., 
sequences of quantum states and their serial numbers). Hence, in our research we test 
limitations of sharing a secret encoding by multiple tokens. The tokens are therefore 
encoded using a prescription based on the output of a classical algorithm. Inputs to 
the this algorithm are the publicly known serial numbers (SN) and secret salt (a secret 
number). 

The a im of suggested attack is not to copy single banknotes but to be able to 
generate new banknotes that pass as genuine. Note that by employing the studied 
attack strategy, a terminal can collect in principle unlimited data during its operation. 
This attack can be run in parallel while having many wiretapped terminals. Moreover, 
we show that by using optimal quantum cloning we can learn the secret faster than by 
l imit ing the attack only to classical data processing. 

Although quantum cloning has been already used to counterfeit Q M [39], the purpose 
of quantum cloning here is completely different and as such is virtually undetectable by 
the bank because we copy only parts of quantum tokens (i.e., quantum sequences). In 
terms of QRG-based Q M protocol, the attacker utilises a compromised payment terminal 
enabling quantum cloning of an input qubit (see F ig . 2.2). The terminal performs 
measurements on both copies of a qubit providing the attacker with some information 
on the encoding used by the bank, if two consecutive qubits from a sequence are cloned. 
The frequency of cloning can be arbitrarily small and therefore made unrecognisable 
from noise. After gathering enough data, the attacker reveals the secret encoding used 
by the bank for preparing credit cards. Since then, they can issue fake quantum credit 
cards indistinguishable from the original ones issued by the bank. 

Quantum cloning has been proposed and tested as a means of attack on quantum 
communications protocols [141-143, 154, 155]. There is, however, a significant con­
ceptual difference between cloning attack on quantum cryptography and the quantum 
money scheme discussed in this Chapter. The necessary condition for successful attack 
on quantum cryptography protocol is having ideally 100% of the quantum key eaves­
dropped. Otherwise, the security can be attained by privacy amplification arbitrarily 
lowering the attacker's probability of decoding the shared message [156]. On the other 
hand, attack on Q M based on Q R G described within our research only requires to clone 
a small fraction of the money tokens. Such infrequent cloning is basically undetectable 
in the noise, albeit gathering data would proceed slowly. A typical obstacle in cloning-
based Q M attacks is requirement of high cloning success rate as at least half of the 
token needs to be cloned successfully (i.e. not destroyed) [39]. This fact needs to be 
dealt wi th on probabilistic platforms such as linear optics. The method discussed in 
this Chapter is completely free of this l imitation. 

2.2 Results of a Quantum Sniffing Attack 
We have implemented the quantum sniffing attack on the platform of linear optics, 
where qubits are encoded as polarisation states of single photons. The optimal cloning 
strategy (i.e., maximizing single-copy cloning fidelity) for copying qubits from the set 
S is the symmetric phase-covariant cloning ( S P C C ) [39, 141, 157]. In the experiment, 
pairs of input qubits \ipiip2)m £ S were subjected to S P C C procedure obtaining two 
clones QIA ® £ 2 a and QIB <8> Q2B of the input qubit pair. These clones were then measured 
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in the same but random basis. In a QRG-based Q M protocol the basis is selected by 
the bank. Due to limitations of linear optics based implementations of quantum doners 
[108], the S P C C process is probabilistic and sometimes it fails to deliver the clones. 
The probability of successful cloning of one input qubit is denoted P. Therefore the 
probability of cloning the entire qubit pair is P2. Quali ty of the clones is expressed in 
terms of fidelity F defined as F = F^ = in{4>i\Qij\4>i)m, where % — 1, 2 and j = A , B 
denote the first and the second clone, respectively. The probability of finding both 
clones QiA and QIB in a given state \ipi)m reads F2. A n example of an attack on a 
particular qubit pair is shown in F ig . 2.2. 

Payment: 

Cloning: 

extracting 

donning 1 —2 

clones: |+1) 

measuring in diagonal (0/1) 
or circular (+/-) basis 

possible results(e.g. 0/1 basis): 
Measurement outcome: 

1 clone 1 s t 2nd 

|01) |01) 

tco
mf
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Figure 2.2: A t tack on a quantum credit card util ising a hacked terminal. Dur ing a transaction 
a pair of states (e.g., | + 1)) is extracted from the card and cloned. Here, for simplicity, we 
depict only the si tuat ion where all the qubits are perfectly copied (the probabil i ty of such 
event is proport ional to F2). T h e n , measurements are performed on all four copies in the 
basis randomly chosen by the bank (e.g. 0 / 1 ) . If the measurements on copied qubit pairs 
produces one of two results f rom the bot tom block of the table of outcomes, the attacker 
learns the originally encoded state (in this case | ?1 ) ) . Th is procedure is repeated until a 
relation between the quantum states and serial numbers is learned. Since then, the attacker 
can issue perfectly counterfeit quantum credit cards. 
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The theoretical limit for S P C C fidelity [157] is F = \ M + « 0.854 and on the 

platform of linear optics the cloning succeeds wi th probability P — | . Whi le the l imit 
on fidelity is fundamental in its nature, P depends on the physical platform used in a 
given implementation and can be arbitrarily close to 1. However, even on the platform 
of linear optics, it is possible to clone at arbitrarily high values of P but at the expense 
of reaching lower than optimal fidelity F (see hybrid quantum doners [141, 158]). 

The terminal registers two measurement outcomes per input qubit corresponding to 
the clones. If the two clones of one input qubit yield identical results, while for the other 
yield opposite results, the attacker gains information about the encoding. W i t h the 
probability P T O T = PC + PE the attacker eliminates six of the original eight encodings (see 
Eq . 2.1). One of the two remaining encodings have actually been used by the bank. The 
probability of obtaining correct information from the attack is PC = ^P2F2, whereas 
PE = T;P2(1 — F)2 + P2F{1 — F) stands for the probabili ty of getting an erroneous 
result due to l imited cloning fidelity. Similarly, if the two clones of each input qubit 
yield identical results, the attacker knows that only one of four encodings might have 
been sent by the bank. 

The attacker is able to learn the method of encoding tokens by accumulating mea­
surement results provided that the fidelity is F ^ | . The cloning operation inherently 
introduces errors in the measurement outcomes [133, 134]. Hence, the terminal might 
send to the bank incorrect results. If the error rate surpasses a given l imit (25% in 
Ref. [78]), the bank wi l l reject the payment. Thus, it is necessary to introduce a strategy 
of attack considering al l circumstances of the measurement (i.e., if cloning failed or 
not) and its outcomes to minimise the error rate. There are generally three distinct 
strategies: (i) to provide the bank with measurement outcome every time cloning takes 
place and even if it fails, send a random value, (ii) to send measurement outcome, only 
if it is registered by the terminal and report a lost qubit when cloning fails and (iii) to 
measure qubits after their extraction from the credit card in given measurement basis 
but do not perform cloning at al l . 

To quantify the correlations between the attacker and the genuine token we use 
mutual information J s e c , which expresses how many bits of information can the attacker 
obtain upon cloning one qubit pair. The exact value of mutual information depends 
on the strategy used, cloning success probability P and fidelity F. In case of the third 
strategy (without cloning), its value is \ . For more details on this strategy refer to 
section Methods. 

Simultaneously, we denote e the probability of an error being reported to the bank. 
The expressions for error rates e for the two above-mentioned strategies can be obtained 
by direct calculations based on analysis of probabilities of al l possible scenarios and 
read 

e ( i ) = 1 ( 1 - P ) + P ( 1 - F ) , (2.2) 

e(ii) = (2.3) 

Equation (2.2) takes into account two situations. In the first case, one or both qubits 
are lost during cloning and, therefore, random results are reported to the bank (50% 
chance of error). In the second case, even if cloning succeeds, non-unit fidelity may 
cause the measurement to yield an incorrect result. The error rate in case of strategy 
(ii) depends only on imperfect cloning fidelity. 

The relation between mutual information J s e c (between the bank and the attacker) 
and the error rate e for al l strategies is show in F ig . 2.3. In the figure, quantities 
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Figure 2.3: Mutua l information J s e c versus error rate e for two fixed probabilities P = { | ; l } . 
Vert ical black dotted line represents error rate associated with security threshold discussed 
in Ref. [146] and [147]. Crosses mark the smallest average error introduced by opt imal 
c loning for a fixed value of P. Error rates below these opt imal values cannot be reached 
by any physical operation (greyed curves). Circles stand for l imit of classical copying (F = 
0.75). Thus , the segments of curves between circles and crosses mark the regime of 
quantum copying. It fol lows from E q . (2.3) that classical copying l imit in strategy (ii) 
always corresponds to intersection between the relevant curve and the security threshold. 
For more details on strategy (iii) refer to section Methods. 

/ s e c and e are functions of cloning fidelity for | < F < 1 for two cloning success 
rates P — | (linear optics l imit [39, 108, 158]) and P = 1 (deterministic cloning [39, 
158-160]). In case of deterministic cloning the two attack strategies coincide, but for 
probabilistic cloning the second strategy provides better results. It is fair to note that the 
mutual information of any simple linear-optical cloning strategy is lower in comparison 
wi th the no-cloning strategy (iii). O n the other hand, wi th deterministic cloning, one 
can reach even higher values of mutual information and therefore cloning strategies 
need to be considered for security implications. Addit ionally, machine learning-based 
algorithms may require data wi th as little noise as possible even at the expense of the 
overall quantity. Post-selection on successful cloning events allows to distil such sample. 
Corresponding conditional mutual information yields a significantly higher value when 
both qubits are successfully cloned than for the no-cloning strategy (iii) (Fig. 2.4). 

To prove the working principle of the quantum sniffing attack, let us consider a 
specific encoding of the quantum tokens and demonstrate the attacker's approach to 
learning the encoding. Here, we assume that the bank uses a hash function to encode 
the tokens. Since the hash functions have become a worldwide standard for encryption 
and basis of many classical cryptosystems they would be easily deployable by the bank. 
Hash functions are designed to return very distinct results even for similar inputs 
making their output unique. Another advantages are, for instance: irreversibility, (i.e. 
impossibility to retrieve original message from a given hash), or their repeatability (they 
yield the same hash for the same message). 

The input can be additionally modified by using a specific secret number (salt). In 
this case the hash function is often referred to as salted. For simplicity, let us now 
assume that the hash function is known to the attacker, but the salt is secret. For each 
token passing through the terminal, the attacker calculates hashes (outputs of the hash 
function) of its serial number salted by numbers from a certain range. This way the 
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Figure 2.4: Condi t ional mutual information J s e c versus error rate e. Strategies (i) and (ii) 
are equal in this case. 

attacker investigates various encodings each corresponding to one secret number (or salt). 
Using the information gained by quantum sniffing, the attacker calculates the number 
of agreements (matching qubit pairs) between the predictions of the tested encoding 
and the measurement outcomes on real tokens. The encoding wi th highest number of 
agreements is most probably the one used by the bank, hence the one corresponding 
to the correct salt. 

To showcase the attack, we have implemented token encoding using several known 
hash-based functions, i.e. M D 5 [161], H M A C - S H A 5 1 2 , H M A C - S H A 2 5 6 , and H M A C -
S H A l ( H M A C - Hash-based Message A u t h e n t i c a t i o n Code [162]). Typ ica l example 
of encoding using SHA512 is depicted in F ig . 2.5. In our proof-of-concept experiment, 
the salt has been sought only among three-digit numbers. To distinguish the secret 
number from noise originating from random matches, a sample of 4 040 successfully 
cloned photon pairs (corresponding to 101 serial numbers used in the experiment) has 
been evaluated. To optimise the computational resources of the attacker, the algorithm 
gradually refines the set of evaluated secret numbers. Periodically it removes secret 
numbers with low number of agreements from the list of evaluated numbers. Once the 
number of agreements for one secret number surpasses the average number of agreements 
by selected multiple of standard deviation, the algorithm ends and returns that number. 
Note that due to some error tolerance, the attacker does not necessarily need to recreate 
the original hash function. It would be enough if they found a function which error 
rate is below the security threshold. 

The size of H M A C output of a l l used hash functions was set to be 40 bytes. As 
a consequence, the number of tokens necessary for guessing the secret number was 
independent on the number of digits of their serial number. For each hash function 
we have established how many photon pairs need to be successfully cloned in order 
to reveal the secret number wi th sufficient certainty. The results are summarised in 
Tab. 2.1. The number of cloned pairs needed does not scale with the length of the salt. 
The salt length only increases the classical computing time. According to our numerical 
simulation, number of photon pairs necessary for correct guess is linearly increasing 
wi th the number of output hash bits. However, wi th the length of output hash the 
frequency of cloning (number of cloned pairs/total number of transmitted photon pairs) 
does not change because the length of the token is also increasing. The output hash and 
the token have to have the same length in order to avoid incidents such as two inputs 
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Figure 2.5: Dependence of number of agreements on all possible three-digit secret numbers 
evaluated for 4 040 successful ly cloned photon pairs. The revealed secret number (salt) is 
marked by a red circle. 

Table 2.1: M in ima l number of photon pairs cloned for correct guess of the secret number 
(salt). 

hash-based funct ion number of pairs 

H M A C - M D 5 1 400 ± 16 
H M A C - S H A 5 1 2 1 192 ± 14 
H M A C - S H A 2 5 6 1 060 ± 14 
H M A C - S H A 1 1 272 ± 13 

to the hash function yielding the same output. Longer hash output would, therefore, 
result in increase of computer search time, however, it would not prevent the attacker 
from retrieving the secret number since the searching process is performed in parallel 
wi th the cloning attack. Note that these results were obtained using our experimental 
results where the average cloning fidelity was found to be above 80%. 

We have also performed a generalised attack in which the attacker did not know 
what hash function had been used for encoding. The attacker only assumes the hash 
function is one from a given set. In this situation, the attacker has to calculate hashes 
using a l l hash functions in this set to encode serial numbers and count numbers of 
agreements as described above. The plot in F ig . 2.6 shows the search for the secret 
number among four hash functions. The tokens were encoded using M D 5 . Our results 
indicate that the correct secret number and hash function can be revealed assuming the 
hash function is a member of a finite set. The size of which is l imited by the available 
time and computing power. 

2.3 Experimental Implementation 
Photonic qubits were encoded as four polarisation states located on the equator of 
Poincare sphere: \D), \A), \R) and \L) (i.e. diagonal linear, anti-diagonal linear, right-
handed and left-handed circular polarisations). Thus, the set of possible qubit pairs (2.1) 
is given as 

S' = {\DR), \DL), \AR), \AL), \RD), \LD), \RA), \LA)}. (2.4) 

Experimental setup used in our experiment is shown in F ig . 2.7. Photon pairs at A 
= 710 nm are generated in a process of type-I spontaneous parametric down-conversion 
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Figure 2.6: Dependence of number of agreements on all three-digit secret numbers. Four 
different hash funct ions are tested. T h e bank used M D 5 for encoding. In this plot, 4 040 
successfully cloned photon pairs were analysed. The revealed secret number (salt) is marked 
by a red circle. 

(SPDC) in a B B O (,3-BaB204) crystal. The crystal was pumped by Paladine (Coherent) 
laser operating at A = 355 nm. One photon from each SPDC-generated pair served 
as one qubit of the cloned banknote. We used a sequence of half and quarter wave 
plates ( H W P and Q W P , respectively) to implement encoding. The second photon from 
the SPDC-generated pair was meanwhile used as a cloning ancilla (kept horizontally 
polarised as it is the theoretically known optimum for S P C C ) . 

Given the nature of the attacked scheme, phase-covariant cloning is the optimal 
form of cloning attack. It has been used to attack distinguished quantum cryptography 
protocols such as BB84 [58] or R 0 4 [163, 164]. The attacked Q M scheme uses equatorial 
qubits in the state 

| ^ ) = l / v / 2 ( | 0 ) + e^ | l ) ) , (2.5) 

where |0) and |1) denote logical qubit states and r\ the phase. For this class of states, 
the phase-covariant doner reaches fidelity of 0.854. Equatorial states can be unitari ly 
transformed into states laying on the intersection of Bloch sphere and the plain running 
through the centre of the sphere for which the optimal cloning transformation is defined 
in E q . 2.6. 

Cloning is performed by an unbalanced polarisation-dependent beam splitter (BS) 
which implements the optimal S P C C process (for detailed theoretical description see 
Ref. [108, 157, 165], for experimental implementation see also Ref. [166]). Particular 
split t ing ratio for horizontal and vertical polarisations accounted for 0.21 and 0.79, 
respectively. Dur ing the experiment signal and ancillary photons overlap at the B S 
which results with success probability of | in the cloning transformation: 

| 0 ) i n | ^ a ) |00) , 

| l ) i n | ^ ) ^ ^ ( | 0 1 ) + |10)), ^ 

where \ipa) denotes the state of ancilla. 
Subsequently, each photon is projected in the D / A or R / L measurement basis as 

requested by the bank (using H W P s , Q W P s , and polarisers). The process of cloning 
is successful only if each photon leaves B S by different output port. Therefore, we are 
interested in coincidences between both output arms. The detection is handled by single-
photon detectors operating wi th detection efficiency of around 60% and subsequent 
electronics. In the experiment, we have registered individual coincident detections one 
by one thus genuinely implementing the protocol described in the text. 
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Figure 2.7: Laboratory setup for the quantum sniff ing experiment. T h e setup operates 
as the compromised terminal f rom F ig . 2.2. Its components are labelled as fol lows: B S -
partially polarising beam splitter, Q W P - quarter-wave plate, H W P - half-wave plate, P B S 
- polarisation beam splitter, P C - polarisation control ler, D - single-photon detector. 
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Figure 2.8: Average fidelity of the first and second clone of a qubit f rom the cloned set 
measured by projections in appropriate bases. 

Quali ty of the clones was quantified by fidelity for both clones and each possible 
sequence qubit state (Fig. 2.8) by evaluating statistics of observed individual coincidence 
events. The average cloning fidelity was calculated to be (80.3 ± 0.3)% while some 
clones in the two output arms had slightly different fidelities. Typ ica l detection rate 
was 120 pairs per second. 

In order to quantify the correlation between the attacker and the information en­
coded as a pair of qubits, we enter the value of mutual information I. This value 
determines how many bits of information an attacker can get after cloning one pair 
of qubits and depends on the strategy used, success probability of cloning P and its 
fidelity F. Mutua l information is calculated as 

i n 
PX,Y 

PXPY ' 
X,Y=000 r^ri 

I = ^2 PX,Y log 2 

where
 P x

 = EYL
000

PX,Y, PY = £ X = O O O P X , Y , and X,Y = 000, 001, 010,100,110,101, 
011, 111. The technical details on calculating probability distributions needed for calcu­
lating mutual information for all the considered strategies are given in the Supplement 
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in Appendix A . l . Here we provide a brief introduction into the working principle of 
strategy (iii). Without performing quantum cloning, the attacker measures the qubits 
as requested by the bank and simultaneously uses this information to obtain some 
knowledge about the encoding used. Whi le this approach enables to rule out some of 
8 encodings, these eliminated encodings depend on the order of encoding bases. The 
attacker can assume that the order of encoding bases for the received qubit pair is either 
Z/X or X/Z, where Z e {0; 1} and X e {+; —}. This order must be random because 
there is no way of gaining this information. Thus, maximum information to gain in this 
strategy is J m a x = 2 instead of J m a x = 3 when the order is known. Depending on the 
measurement outcomes, wi th probabili ty \ the attacker can exclude some encodings 
and can guess the order of bases correctly only in half of the cases. Only if successful, 
half of 4 encodings can be eliminated. This makes J s e c = \lmax — \-

2.4 Conclusion and Discussion 
We have successfully attacked a Q M scheme based on Q R G [78]. This scheme has 
been implemented in a form of quantum credit card containing quantum tokens. We 
retrieved the secret number (salt) used for preparing quantum tokens purely by means 
of imperfect quantum cloning and computational analysis of measured data (see F ig . 2.5 
and 2.6). B y learning the exact algorithm for encoding quantum tokens, the attacker 
is, in principle, able to produce perfect quantum money counterfeits. It is worth noting 
that the optimal strategy of our attack depends mainly on a particular implementation 
of bank's security tolerances (e.g., losses) and chosen physical platform for implementing 
the attack. For instance, if the attacker uses deterministic optimal cloning even less 
qubit pairs is needed to perform the attack (see F ig . 2.3). 

However, the attack was feasible because the bank encoded sufficiently high number 
of photon pairs using the same secret number (salt) and the same hash function. From 
the data summarised in Tab. 2.1 we can deduce that if the bank changes, e.g., the 
secret number after less then 1000 photon pairs, the attacker is not able to reveal the 
bank's secret wi th sufficient certainty. This leads to further v i ta l questions regarding 
tolerance of the bank to noise and threshold value losses. 

We hope that our results wi l l stimulate further research on security of Q M schemes 
based on Q R G bringing this concept closer to becoming a fully fledged quantum tech­
nology. Our results indicate that the correct secret number and hash function can be 
revealed assuming the hash function is a member of a finite set. The size of which is 
limited by the available time and computing power. However, this is not a fundamental 
l imitat ion which might be lifted if more advanced cryptanalysis or more computing 
power is applied. Our results indicate that while the idea of using hash functions might 
be tempting, it would be ultimately more secure to store truly random sequences since 
only these are not vulnerable to the attack described i n this Chapter. The recent 
progress in data storage technologies and quantum computing wi th its fast searching 
algorithms (e.g. Deutsch-Jozsa algorithm [167]) may in future enable this. W i t h current 
technology, the most secure strategy would depend on particular implementation of the 
protocol by the bank. 



38 C H A P T E R 2. A T T A C K I N G Q U A N T U M M O N E Y S C H E M E S 



Chapter 3 

Measuring Concurrence in Qubit 
Werner States Without an Aligned 
Reference Frame 

Contents of this Chapter is based on the Author 's article [A3]. 

3.1 Introduction 
Secure and reliable information exchange is of paramount importance worldwide, hence 
the practical implementation of quantum communications protocols outside the scien­
tific laboratory has become one of the main focuses of recent studies [168, 169]. Natu­
rally, such advances in quantum communication methods require the ability to perform 
quantum measurements in an unstable environment, where the strict requirements 
for alignment and calibration of remote devices are hard to meet (e.g., long-distance 
quantum communication [73, 170, 171] or satellite-based communications [72, 74, 172, 
173]). Specifically, the above-mentioned quantum communications experiments usually 
rely on quantum optical devices, where qubits are encoded into polarization states of 
light. However, this necessarily requires a common reference measurement frame to 
be shared that has to be well aligned and calibrated measurement devices (in a sense 
of well-defined scale of measurement apparatus such as the rotation angles of wave 
plates). Furthermore, it also needs to be maintained stable for the entire experiment or 
communication. From an experimental point of view, this is, however, never achieved 
without technical difficulties (see, for instance, [174]). Maintaining a common reference 
frame seems a t r iv ia l assumption when confined to a laboratory, but long-distance 
quantum communications beyond the Earth 's surface [72, 74, 172, 173] have already 
led scientists to re-evaluate the practicality of such an assumption [175, 176]. 

A possible solution to these problems in free space could be to use rotationally 
invariant states of light [177]. However, to the best of our knowledge, no one has yet 
applied these solutions in satellite quantum communication. Instead, much attention 
has been paid to so-called reference-frame-independent (RFI) protocols [178-185]. For 
instance, it was proved in Ref. [186] that a R F I quantum key distribution protocol 
[187] is more robust under reference frame fluctuations than its standard counterpart 
[58, 59]. 

Motivated by al l these observations, in this Chapter we also investigate the R F I 
approach. In particular, we focus on quantum entanglement, which is undoubtedly the 
essence of many quantum information procedures [42, 45, 188]. Therefore, it is neces-
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sary to be able to test for the presence of entanglement and, for the reason explained 
previously, it is practical to manage it in R F I mode [93, 189-192]. Over time, several 
methods for entanglement detection under these constraints have been proposed. They 
are based on various approaches, for example, on the violation of a Bel l inequality [193, 
194], the second moment of the distribution of correlations [195, 196], a geometrical 
threshold criterion [197], or interference between multiple copies of the investigated 
state [198]. However, all of them were so far limited to being mere witnesses to entangle­
ment rather than measures. Entanglement quantification is of considerable interest for 
both theoretical and practical reasons. Our goal is to introduce a device-independent 
entanglement quantification protocol operating in the R F I approach without calibrating 
measurement devices, which is of great importance from the experimental point of view. 
More specifically, we investigate the R F I measure of B e l l nonlocality and its relation 
wi th entanglement. A s B e l l nonlocality and entanglement are distinct resources, one 
cannot establish a direct link between them in the general case, and this is the price paid 
for the great simplification of the experimental requirements given previously. However, 
such a relationship can be identified for specific families of states. Because of this, we 
restrict our attention to two- and three-qubit states which are of practical importance in 
quantum information processes. One such example is the family of Werner states which 
have been instrumental for various important advancements in quantum information 
[199-201]. Moreover, the Werner states are "considered as the paradigmatic example of 
realistic noisy preparation of a pure entangled state subject to the action of white noise" 
[202]. Al though this family contains examples of states wi th nonclassical correlations, 
which nevertheless admit a hidden-variable model, the violation of a local-realistic 
description is s t i l l observed for highly entangled cases which are, in fact, applied in 
quantum information procedures. We also discuss to what extent the results obtained 
for the Werner states can be used to estimate the entanglement of other two- and three-
qubit states. In other words, we test how precisely one can estimate the entanglement 
of an unknown state if our R F I approach is applied. Surprisingly, we found that our 
calculations can be successfully applied to quantify the entanglement of more general 
states, for example, pure states, Greenberger-Horne-Zeilinger (GHZ) symmetric states. 
This result also justifies the experimental simplification wi thin which we st i l l obtain 
an instrument that can find its application in future practical long-distance quantum 
communications. Finally, we present an experimental verification of our predictions. 

3.2 Preliminaries 

3.2.1 Entanglement Measure 
We now introduce concepts that are relevant to the current investigation. Let us 
first consider a two-qubit pure state \ip)2, composed of subsystems A and B. The 
degree of entanglement between both subsystems is given by so-called concurrence [203], 
C ( | ^ ) 2 ) = A / 2 (1 — Tr(p^)), where PA denotes the reduced density matrix of subsystem 
A. For mixed states p the concurrence is defined by the convex-roof extension [204], 
G(p) = min YliPjCQipj)), where the min imum average concurrence is taken over 

all decomp. •> 
all possible convex decompositions p = J2jPj\'llJj)('llJj \ P u r e states. In a special case, 
when p2 denotes two-qubit mixed state, the mixed-state concurrence is given by 

1 

J=2 
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with being the decreasingly ordered eigenvalues of pi{o~y ® aV)p\(p~v ® a?0> where 
u 2 ' denotes the Paul i matrix and the transposition is performed in any product basis. 

The measure described previously can be further extended to describe the genuine 
multipartite entanglement ( G M E ) [205-208], that is, a scenario when a multipartite 
state has a min imum amount of entanglement in each biparti t ion. For instance, if 
the analysed pure state |f/>)3 is composed of three subsystems A, B, and C, one can 
distinguish three bipartitions { 7 ( 7 ' } , namely { A | i ? C } , {B\AC}, and { C | A B } . Then, 
the G M E concurrence is given by [207] 

e G M E ( | ^ ) 3 ) = jam t y/2(l-Tr(p*)), (3.2) 

where the minimum is taken over all possible bipartitions { 7 ) 7 ' } and p 7 denotes the cor­
responding reduced density matrix of subsystem 7 . The extension of G M E concurrence 
to mixed states also follows the convex-roof extension presented previously [207]. 

We stress that a general expression for mixed-state G M E concurrence still remains 
unknown. However, it has been successfully evaluated for the so-called X-matr ix states 
[209]. These states are represented by a density matr ix written in an orthonormal 
product basis, the non-zero elements of which are only the diagonal (denoted by a,j 
and bj, where j — {1, . . . , 2 A r ~ 1 }) and/or anti-diagonal elements (given by Zj and its 
conjugation). The X-mat r ix states are positive if \ZJ\ < \f(ijbj and we also expect 
Sj ( a j + fy) — 1 to ensure the normalisation of px- The G M E concurrence for these 
states is given by [210] 

C G M E ( P X ) = 2max{0, | ^ | - Xi}, (3-3) 
i 

where \i = E v^A-

3.2.2 Bell-Nonlocal Correlations 
Next, let us consider an A-par t i t e Be l l experiment where each party has a choice 
over two measurement settings Si = {0, 1} and each measurement results in one of 
two possible outcomes = {0, 1}. The corresponding B e l l experiment is then fully 
characterised by the set of joint conditional probability distributions P = {P(rAr|SAr)}, 
where = ( n , . . . , r^) and SN = (Si,..., SN). When the participants share a 
quantum state p and the correlations are generated by local measurements performed 

on their respective subsystems, then P takes the form of P(rAr|SAr) = Tr I (^) M r . | s . pJ , 

where Mn\Si is the positive operator-valued measure representing the measurement on 
the i - th party wi th measurement settings Si. 

To make it evident whether a given P can be described by a local realistic description, 
one can employ a linear function of probabilities called Be l l inequality [86]. It can be 
written as 

S{P) = J2 ^P(rN\SN) < CW, (3.4) 
rjv,Sjv 

where {pf^} a r e r e a l coefficients and C L H V refers to the upper threshold of 3(P) for 
the local realistic description. Consequently, if one observes a value of $(P) greater 
than C L H V , the correlations are said to be Be l l nonlocal. The value of coefficients 
{pf* } solely depends on the analysed model of local realistic description [87, 211-213]. 
For instance, when N = 2 the Be l l experiment (Eq. (3.4)) is characterised by the 
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Clauser-Horne-Shimony-Holt (CHSH) inequality [87]. O n the other hand, when 7V = 3 
the genuine multiparti te nonlocal correlations discussed i n this Chapter require the 
consideration of a set of 185 Bel l inequalities defined in Ref. [213]. 

The presence of Bell-nonlocal correlations clearly certifies the presence of entangle­
ment, and this conclusion follows regardless of how P is generated from the underlying 
state and measurements. Therefore, E q . (3.4) is said to be a device-independent witness 
for entanglement [214]. To date, the relation between entanglement and Bel l nonlocal-
ity has been studied intensively. For instance, in Ref. [215] the authors showed that 
C d V ^ ) = A / P | —1 , where ft denotes the maximal violation of the C H S H inequality 
[87]. Similar investigations have been performed for three-qubit states (see, for instance, 
[216, 217] and [218] for an experimental demonstration). 

Nevertheless, the previously described demonstration of nonlocal correlations em­
ploys carefully chosen measurements the implementation of which requires the spatially 
separated observers to share a complete reference frame and well-calibrated devices. 
Al though this assumption is typically made implicit in theoretical works, establishing 
a common reference frame, as well as aligning and calibrating measurement devices in 
experimental situations are never t r iv ia l tasks. Recently, L iang et al. [193] have pro­
posed a reference-frame-independent protocol to circumvent the previously mentioned 
problem. In their approach, the following quantity is considered [193, 219] 

Pv(p) = Juj(p, £l)dVl, (3.5) 

where the integration comprises a space of measurement parameters ft according to 
the Haar measure. The function oo(p, ft) is an indicator function that takes the value 
1 whenever the generated behaviour is nonlocal and 0 otherwise. Importantly, in this 
approach the nonlocal correlations are quantified without any prior assumptions about 
specific Be l l inequalities [194, 220, 221]. In other words, the generated behaviour is 
nonlocal if at least one inequality of the suitable set of Bel l inequalities is violated. The 
quantity py, if properly normalised, can be interpreted as a probability of violation of 
local realism for the measurement operators Mr.\st sampled randomly according to the 
Haar measure. To avoid confusion, we prefer to use the unique term nonlocal fraction 
Pv we prefer to use the unique term nonlocal fraction [220] to describe the quantity. 

3.3 Device-Independent Estimation of Entanglement 
In this work we consider a source producing copies of an unknown 7V-qubit state p i n , 
which is transmitted through randomly unitary evolving quantum channels to 7V local 
observers. During the j - t h transmission the state p-m is transformed by TV random local 
unitary operators Jjf^ according to 

N N 

Pont = 0 U ^ p i Q 0 U ^ . (3.6) 
i=l i=l 

We assume that the unitary transformation has a timescale that is sufficiently slow 
to obtain stable measurements for given projections together wi th their orthogonal 
counterparts, but the transformation is much faster to apply standard techniques of 
state analysis [222]. In other words, we can reliably accumulate signal for one particular 
measurement setting and its orthogonal-projection counterpart, but not for a l l the 
measurement settings in a row. A s the local unitary transformations remain unknown, 
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it is clear that a common reference frame can be established for the described scenario, 
nor can local devices be calibrated. 

We discuss the entanglement assessment protocol of the input state p-in based on the 
nonlocal correlations revealed by the output state p o u t . A s the unitary operators during 
the j - t h transmission remain unknown for the observers, the maximal violation of Bel l 
inequalities cannot be determined. Instead, we estimate the nonlocal fraction which 
is invariant under local unitary transformations applied by each party on the state if 
one uses the Haar measure for the integration [220]. However, the use of the nonlocal 
fraction has an important disadvantage which is the lack of analytical solutions [193, 
220] and, so, the numerical calculations are used to determine the nonlocal fraction. 

3.3.1 Quantifying Bipartite Entanglement 

Two-Qubit Werner-Like States 

First , we consider the scenario when the input state is given in a form of an arbitrary 
two-qubit pure state \9)2 = cos 9 100) + sin(9 111) subjected to white noise: 

P2(B,v) = v\B)2(B\ + ^ - U , (3.7) 

where H4 is the 4 x 4 identity matrix, v denotes the state visibili ty (0 < v < 1), and we 
assume without loss of generality that 0 < 9 < 45°. The concurrence is given by 

v(2sm(29) + l ) - 1 
e{

P2
) = -A _ — I — . (3.8) 

Such states play an important role in quantum information theory as they directly 
refer to the states generated at the output of the nonlinear process designed in real 
experiments based on entangled photons [120, 223]. In this context, the white noise 
which enters E q . (3.7) is a good approximation of the imperfections occurring in the 
experimental setup (see, for instance, [224]). 

A particular example of the states in E q . (3.7) is the two-qubit Werner state [98], 
P2\V) = P2.{B = 45°,v) [45, 199-201]. For the Werner states, concurrence depends 
only on the visibility, G{p\N) = Therefore, the estimation of this parameter is 
equivalent to the entanglement measurement. 

To do that we calculate the nonlocal fraction. Note that the nonlocal correlations of 
two-qubit states are fully characterised by the C H S H inequality, assuming the freedom 
in relabelling all measurement settings and/or outcomes and/or parties [225, 226]. B y 
straightforward calculations (see Appendix B . l ) one can show that pv of the Werner 
state is 

2((1 - v2) arctan(^g^) - 3^2v2 - l) 

(3.9) 

which is a monotonic function of v. In other words, a direct measurement of py allows 
the estimation of visibil i ty and, hence, the value of the concurrence G{p\N). 

Naturally, for general state (Eq. (3.7)) the nonlocal fraction depends on both the 
visibili ty v and angle 9 (see F ig . 3.1(a)). Al though the analytical solution of py remains 
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unknown in this case, one can always find its approximation. In particular, one can 
establish the visibil i ty v by 

v(B,pv) = vf(B) + MB) PT + f2(B) p\!2 + MO) Pv, 

(3.10) 

where 

M9) = (0.19674 - 1.3982 B + 4.712274 B2 

- 6.7193 B3 + 3.3384 B4)/^/lO., 

MO) = 0.11886 - 0.011544 - 0.363104 0 

+ 0.460436 B2 - 0.204953 B3, 

MB) = (0.03848 - 0.011 B~l - 0.02531 6 

- 0.018331 B2 + 0.017373 B3) • 10" 2 , 

and V2V(B) = 1/(32 denotes the critical visibility with the maximal violation of the C H S H 
inequality f32 = (sm2(2B) + I)1/2 [215]. 

0 5 10 15 20 25 30 
Nonlocal fraction py (%) 

Figure 3 .1: (a) Vis ib i l i ty and nonlocal f ract ion for two-qubi t Werner- l ike states given in 
Eq . (3.7). Symbols denote numerical results and solid curves correspond to their analytical 
approximation in Eq . (3.10). (b) Relation between concurrence C and nonlocal fraction p v 

for two-qubit Werner-l ike states. A s previously, symbols denote numerical results while solid 
curves correspond to analyt ical approximation. 

A s presented in F ig . 3.1(a), this approximation provides a good agreement wi th 
our numerical results. Therefore, substituting E q . (3.10) into E q . (3.8) one obtains 
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the concurrence G{p2) depending on the angle 9 and the nonlocal fraction py (see F ig . 
3.1(b)). Based on these outcomes, the following remarks can be made: 

(i) Whenever an observed py > 7%, the difference between G(p2

N) and G(p2) (here­
inafter A ^ ) is no greater than 0.02 and vanishes when py increases. This means, that 
the concurrence C(p 2 ) can be estimated (with precision A ^ ) assuming that p 2 = p^. 

(ii) For p v < 7%, remark (i) is stil l valid if 9 > 25° and py > 0.5%. In other words, 
the angle 9 is meaningless in such a regime and the concurrence can be estimated on 
G(pf). For other cases, the difference A ^ increases for decreasing angle 9. 

(iii) Finally, E q . (3.10) can be used to establish the lower bound of C(p 2 ) versus 
py. Specifically, for a given value of the nonlocal fraction there exists such angle 9Q 
so that the visibi l i ty v(9o,py) = 1 in E q . (3.10). Then, the lower bound is given by 
G{p2) > sin(2#0) and the equality is provided by the pure state \9o)2. The lower bound 
can be approximated by 

e(|*o>2) = ^ PT ~ 1-59 • I D " 2 pT + I D " 4 py. 

(3.11) 

Based on this result, one can find that the difference A ^ < 0.164 for an arbitrary angle 
9 and 0.5% < py < 7%. 

General Two-Qubit Mixed States 

In order to present the usefulness of our entanglement-assessment protocol for a broader 
range of two-qubit state p i n , we now consider two examples where we apply our protocol. 

Example 1: Two-qubit GHZ symmetric mixed state (GSMS) - These states represent 
the entire family of two-qubit mixed states wi th the same symmetry as the two-qubit 
G H Z state |45°) 2 [227]. For instance, the Werner states p^ but also the |45°) 2 state 
subjected to the local phase-damping or depolarising noise [228]. The G H Z symmetric 
states are defined as [227] 

p$SMS(x,y) = ( ^ y + x ) | 4 5 ° ) 2 ( 4 5 ° | 

+ (V2y - x) | - 4 5 ° ) 2 (-45"| + 1 " ^ 1 2 , 

where |y| < {2^)~1 and |x| < (1 + 2y/2y)/4. Using E q . (3.1) one obtains the 
concurrence G(p2SMS) = max{0, 2\x\ + y/2y - 1/2}. 

Next, the relation between G(x,y) and the nonlocal fraction for 10 4 randomly 
generated G S M S states has been analysed. As a result (Fig. 3.2), we find that the upper 
bound of such relation is provided by the Werner states p^ = p2SMS(v/2:v/(2\/2)). The 
lower bound, on the other hand, is established by the maximally nonlocal mixed states, 
i.e., Bel l diagonal states which produce a maximal value of for given concurrence [229]. 
These states are given by p^hN(x) = ± 4 p |45°) 2 (45°| + ^ | - 4 5 ° ) 2 ( - 4 5 ° | , and describe 
the |45°) 2 state subjected to the local phase-damping noise [228]. The relation between 
the concurrence and the nonlocal fraction in this case is given by C ( p 2

h N ) = G(\9Q)2) 
writ ten in E q . (3.11). Therefore, if one knows the nonlocal fraction of an arbitrary 
G H Z symmetric state, then its concurrence is limited by G(\9Q)2) < G(p2SMS) < G(p2

N). 
This l imitation is of great importance if remarks (i)-(iii) are taken into account. That is, 
the concurrence of an arbitrary G H Z symmetric state can be determined with accuracy 
not greater than A ^ if the measured py > 7%. Note that, in general, the G S M S may 
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Figure 3.2: The region of possible values of concurrence for given nonlocal fract ion. The grey 
region corresponds to two-qubit G H Z symmetr ic mixed states and the four curves represent 
maximally entangled mixed states (red dashed-dotted curve), Kagalwala states [230] (green 
dotted curve), Werner states (blue dashed curve), two-qubi t G H Z state subjected to the 
local phase-damping noise (red dotted curve). 

denote the experimentally generated state |45°) 2 subjected to an unknown source of 
noise if such noise does not change the symmetry of the input state. 

Example 2: Maximally entangled mixed state (MEMS) - A s a final example we 
consider the states which maximise the value of the concurrence for a given value of 
the violation of the C H S H inequality [231, 232] 

P M E M S ( 7 ) = 7 | 4 5 ° ) 2 ( 4 5 ° | + ( 1 - 7 ) | 0 1 ) (01| , 

where | < 7 < 1. Based on numerical calculation we have found that 

E ( P M E M S ) = 1 / ^ 2 + 0.1125/^/10 pH
4

- 9.0 - l O - 4 ^ 2 

+ 2.83 • 10" 5 py. 

A s we show in Fie;. 3.2, the concurrence C ( p 2

v I E M S ) exceeds C(pf) in the entire range 
of py. However, the difference between these two quantities is not greater that 0.173. 

Finally, our numerical calculations performed for randomly generated two-qubit 
mixed states p always satisfied the relation 

e(|fl„>2) < e(p) < e ( P ™ s ) , (3.12) 

if they reveal the same value of py. Therefore, we conjecture that the M E M S and pure 
states \9)2 provide an upper and lower l imit for C(p) versus py for two-qubit states. 

3.3.2 Quantifying Genuine Tripartite Entanglement 
Three-Qubit Werner-Like States 

Now we proceed to estimate the genuine multipartite entanglement. We follow the same 
procedure as before, that is, we analyse the relationship between the GME-concurrence 
and nonlocal fraction. First, we concentrate on the three-qubit Werner-like states which 
serve as a benchmark for the robustness of multipartite entanglement [233] 

p3(B,v) = v\B)s(B\ + ^ - U , (3.13) 
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where | 0 ) 3 = c o s 0 1000) + s i n 0 1111) is the generalised G H Z state (gGHZ) and Is is the 
8 x 8 identity matr ix denoting the presence of white noise. A s previously, v denotes 
the state visibi l i ty (0 < v < 1) and we assume 0 < 6 < 45°. Using E q . (3.3) one can 
find the GME-concurrence as 

(3 s i n ( 2 0 ) + 2)v-2 
CGME(P3) = 3 - ^ • (3.14) 

In order to certify the G M E , we estimate the nonlocal fraction for the genuine 
multipartite nonlocal correlations. Such an estimation requires testing all 185 families 
of Bel l inequalities (see [194]). A s a result (Fig. 3.3(a)), we find that the visibili ty v in 
E q . (3.13) can be approximated by py using 

v(0,pv) = vf(0) + 9l(6) pf + 92(6) pf + g3(6) py, 

where the critical visibil i ty v^v(6) = 1/P3 and 

(3.15) 

03 

1 + 0.06220 + 1.69702 for 0 < 6 < 14.94° 
-3 .3910 3 + 1.44204 

( l + 2y/l + sin 2(20)) /3 for 14.94° < 6 < 29.5C 

y/2 sin2(26) for 29.5° < 6 < 45° 

is the maximal strength of Bell-nonlocality for three-qubit Werner-like states (see [42]). 
The other functions which enter E q . (3.15) are given by 

&(0) = max{-0.061297 + 0.55512 6 - 0.42815 0 2 , 

-18.58393 + 57.9917 Ve - 50.2727 6 

+ 11.209 0 2 } / l O 1 / 3 , 

g2(6) = min{0,0.76306 - 4.13852 6 + 8.28077 0 2 

-7.2943 0 3 + 2.38884 0 4 }, 

g3(6) = max{0.0001151 - 0.0004063 6 + 0.0004321 0 2 , 

-0.015237 + 0.084803 6 - 0.17408 0 2 

+0.15723 63 - 0.052804 0 4 }. 

Based on E q . (3.14) and (3.15), the G M E concurrence has been obtained as a 
function of p v A s we see i n F ig . 3.3(b), in contrast to p2(6,v), here the angle 6 is 
meaningful in the entire range of attainable py. For instance, if one takes 0i = 45° (i.e., 
the three-qubit Werner state) and 62 = 35°, the G M E concurrence is explicitly written 
as 

C G ME(0I) = 0.512 +0.186 p y 7 ' - 7 - 1 - 1 0 - 3 p v / 2 

+1.12- 10" 4 py, 

C G ME(0 2 ) = 0.542 + 0.155 p y 7 6 - 8 - 2 - 1 0 - 3 p v

/ 2 

+1.52 • 10" 4 py. (3.16) 

Using these equations one can easily find the difference = CGME(0I) — CGME(#2) 
belongs to (0.032, 0.048) when py > 1%. Therefore, in order to establish G M E concur­
rence CGME(PS), w e need to evaluate not only the value of py but also the underlying 
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angle 6. Wi thout prior knowledge of the angle 6, its value can be determined from 
the distribution of the strength of violation for random measurements (Appendix B.2). 
This requires the accumulation of data on the strength of violation of local realism for 
a sequence of randomly chosen measurements. In a typical experimental investigation 
of py [93, 194, 221], such a set is known without any additional effort and, hence, one 
can establish the value of G M E concurrence. 

O n the other hand, by inserting v(8,py) = 1 into E q . (3.15) one can derive the 
G M E concurrence for pure states | . It can be approximated by [194] 

1/2 

CGME(|#>3) = (0.068 py + 0.06 2V/2) , (3.17) 

which denotes the lower bound of CQME(P3) wi th given py. 

Figure 3.3: (a) Vis ib i l i ty and nonlocal f ract ion for three-qubit Werner- l ike states given in 
Eq . (3.13). Symbols denote numerical results and solid curves correspond to their analytical 
approximation in E q . (3.15). (b) Relation between genuine concurrence CGME and nonlocal 
fract ion py for three-qubit Werner- l ike states. A s previously, symbols denote numerical 
results whereas solid curves correspond to analyt ical approximat ion. 

Other Examples of States 

We note that the general analysis of the three-qubit mixed states is beyond the scope 
of our research, as there is no general analytical formula of the genuine concurrence. 
Therefore, we examine a few examples which illustrate the usefulness of our approach. 

Example 3: Three-qubit GHZ symmetric mixed state (GSMS) - A natural extension 
of the three-qubit Werner-like states is the family of G H Z symmetric states. In the 
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three-qubit case, they are given by 

'2y/3 
pfMS(x: u) = [ ^fy + .r]\ 15°), (3.18) 

+ I—3—2/ - ^ 1 1—45 >3 <—45 I + — 118, 

where ^ < y < ^ , |x | < (1 + 4 \ /3y) /8 and the G M E concurrence C G M E ( p f S M S ) = 

max{0, 2\x\ + V3y - 3/4}. 
For these states, similar remarks can be drawn as in Example 1. Specifically, the 

upper bound of the G M E concurrence for a given value of py is provided by the 
three-qubit Werner state p^ (Fig. 3.4). The lower bound is observed for p^hN(x) = 
(\ + x) |45°) 3 (45°I + (\ — x) |—45°) 3 (—45°|, i.e., the G H Z state subjected to the local 
phase-damping noise [228]. The G M E concurrence is approximated by: 

e G M E ( P 3 h N ) = 0.4012 pi/6 - 0.0118 pi/2 + 9.0 • 10" 5 py, 

and, hence, the difference A ^ < 0.14. Interestingly, results obtained for P 3 h N are 
significantly different with respect to those of \9)3, as opposed to the case of two-qubit 
states. In summary, for all p 5 p M S states, the following relation is observed 

C GME ( | # ) 3 ) < C G M E ( P 3 h N ) < CGME(P3 1 S M S ) < CQME(P3V); 

where we assume that each state reveals the same value of the nonlocal fraction. 
Example 4-' GHZ state under the amplitude-damping noise (AD) - Let us recall that 

the GHZ-symmetric states describe two basic examples of the noisy G H Z state, that is, 
affected by local phase-damping and depolarising noise. Here we investigate another 
important example, namely the G H Z state subjected to the local amplitude-damping 
noise [228] 

2 

P 3 » = E l 4 5 ° > 3 < 4 5 ° l ( 3 - 1 9 ) 
i,j,k=l 

where 5^-^(a) = U(i(a) ®0{j(a)®0{k(a) denotes the tensor product of the appropriate 
Kraus operators [228] and 0 < a < 1. Our calculations reveal that the genuine 
concurrence CGME(P3"D) > CQME(P3V) in the entire range of py (Fig. 3.4). Furthermore, 
the calculation has been repeated for the bit flip noise, providing results slightly smaller 
than these of the Werner states. This means that if the G H Z state is transmitted via one 
of the basic quantum channels (unknown in principle), then the genuine concurrence 
of the output state is greater than or equal to that of P 3 h N . 

Example 5: Three-qubit pure states - Finally, we analyse the relationship between 
the genuine concurrence and the nonlocal fraction for other examples of three-qubit 
pure state that are important for quantum communication protocols [234], namely the 
tetrahedral (T) states [217, 235], the generalised W states [236], and the maximal slice 
(MS) states [237] 

| ^ T ) = t 0 (|001) + |010) + 1100» + sjl - 3t2

0 |111), 

| ^ w ) = ^ | ( | 0 0 1 ) + | 0 1 0 ) ) + W l | 1 0 0 ) , 

IVW = - J = ( | 0 0 0 ) + m 0 | 1 1 0 ) + m 1 | l l l ) ) , (3.20) 
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Figure 3.4: The region of possible values of genuine concurrence for given nonlocal fract ion. 
T h e grey region corresponds to three-qubit G H Z symmetr ic mixed states and the four 
blue curves represent Werner states (solid curve), three-qubit G H Z state subjected to the 
local phase-damping noise (short dashed curve), three-qubit G H Z state subjected to the 
local ampl i tude-damping noise (dotted curve), and generalised G H Z states (blue dashed 
curve). Furthermore, the three green curves show the tetrahedral states (dot-dashed curve), 
generalised W states (dotted curve), and maximal slice states (short dashed curve). 

where the standard normalisation condition is assumed. A s we show in F ig . 3.4 in all 
these cases the relationship between the genuine concurrence and the nonlocal fraction 
satisfy the relation 

CGMEG^) < CGME(|'0T,W,MS)) < CGME(P3"D)-

In other words, if one assumes that the state under the question remains unknown, 
then its genuine concurrence can be estimated from the bottom using CGME( |# ) 3 ) -

3.4 Experimental Implementation 

3.4.1 Experimental Setup 
We have constructed the experimental setup depicted in F ig . 3.5 to produce and charac­
terise three-qubit states. Our experiment is implemented on the platform of linear optics 
and it encodes qubits into spatial and polarisation states of single photons. The setup 
utilises entangled photon pairs generated using Type-I parametric down-conversion in 
a /9 -BBO crystal cascade (referred to as Kwia t source [121]) at A = 710 nm. A laser 
beam of a wavelength of A = 355 n m pumps two identically cut non-linear crystals, 
with optical axis in mutually perpendicular planes defining horizontal and vertical basis. 
If pumped by horizontally (vertically) polarised pump beam, pairs of vertically (hori­
zontally) polarised photons are generated. B y setting half-wave plate H W P z at angle 
| both crystals are coherently pumped and generate photons in a state of the form of 

cos9\HH) + smB\VV) . (3.21) 

The first (second) position in the ket stands for polarisation of the first (second) photon, 
respectively. Probabil i ty of generating two pairs simultaneously is negligible. 

In order to generate the three-qubit states, we incorporate spatial mode encoding 
to be used i n addition to polarisation encoding. For this purpose, the first photon is 
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PC 

Figure 3.5: Exper imental setup. Legend: P B S - polarisation beam splitter, B D - beam 
displacer, P C - polarisation control ler, / 3 - B B O - non-l inear crystal /3-barium borate, D -
detector, H W P - half-wave plate, Q W P - quarter wave-plate. 

subjected to the beam displacer ( B D i ) . Here B D i deviates vertically polarised photons 
upwards whereas horizontally polarised photons continue straightforward. Therefore, 
one can denote by |0) (|1)) spatial mode of photons in the upper (lower) arm. A t 
the same time by associating H (V) polarisation wi th logical states |0) (|1)) one can 
immediately identify that by the action of B D i the original two-qubit state (3.21) 
becomes a generalised G H Z state in its canonical form 

|0) 3 = c o s 0 | O O O ) + s i n 0 | l l l ) . (3.22) 

Here the first qubit in the ket denotes first photon's spatial mode and second (third) 
qubit stands for first (second) photon's polarisation state. 

Having the desired state prepared, al l 3 qubits are subjected to local projections 
(hereafter |IIi ® II2 <8> As))- The third qubit is projected simply by using a combination 
of quarter and half wave plates ( Q W P 3 and H W P 3 ) accompanied by polarising beam 
splitter (PBS) . The remaining two qubits are encoded into the spatial and polarisation 
state of the first photon. Using a similar sequence (QWP2, H W P 2 and P B S ) spreading 
over both spatial modes of this photon, we achieve projection of the second qubit. A t 
this stage, a B D 2 is used to convert the spatial encoding of the first qubit to polarisation 
encoding. Once polarisationally encoded, the sequence of Q W P i , H W P i and P B S is 
used to perform first qubit's projection. A t the end of the setup, both photons are led 
to single-photon detectors and the rate of coincident detections is measured for every 
projection setting. 

For the purposes of this experiment, we require the setup to prepare and characterise 
all pure computational basis states, i.e., |basis) = {|000), 1001),... , |111)}. This is 
simply achieved by setting 8 = 0° resulting in generation of the 1000) state and imposing 
single-qubit N O T gates in the modes where the qubit is required in the |1) state. These 
N O T gates are implemented by adding a 45° bias to the H W P associated with this qubit. 
A l l these states were later used to synthesise white noise. Then, various quasi-pure 
G H Z states were also prepared. A l l experimental data accumulated in this experiment 
are available on C D - R O M (see Appendix E) enclosed wi th the printed version of this 
Thesis. 
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Figure 3.6: Visual isat ion of the real part of the density matr ix p e x p t 9 = 35°. A l l values of 
the imaginary part of p e x p t are less than 0.025. 

The experiment is carried out in three steps. First , we generate the desired g G H Z 
states and verify their quality using standard state tomography (Sec. 3.4.2). For such 
verification, it is necessary to align the reference frame. Having the reconstructed 
density matrix, one can estimate experimental imperfections and also test the concept 
of nonlocal fraction by simulating 10 8 random projections imposed to this matrix. The 
second experimental step is the truly R F I scenario involving 8000 random projections 
directly imposed to the generated photons. This constitutes the main result of this 
Chapter (Sec. 3.4.3). Finally, in Sec. 3.4.4, we also perform experimental estimation of 
G M E concurrence measurement on arbitrarily mixed Werner states by adding white 
noise as explained previously. 

3.4.2 Nonlocal Fraction Measurements - Aligned Reference 
Frames 

First , we consider a scenario when the observers share common reference frames. The 
experimental setup has been adjusted in such a way to generate the g G H Z states, \0)3, 
for two different angles accounting for 35° and 45°. Note that the later case denotes 
the prototype G H Z state. For each adjustment of 9, the output-state density matrix, 
Pgxpt = p^pt(9), is reconstructed by evaluating the quantum state tomography and 
maximum-likelihood estimation [132, 238]. A n exemplary result is shown in F i g . 3.6. 
Then, we determined the fidelity F of p ^ x p t wi th respect to the ideal pure state |#)3, 
F ( p ^ x p t ) = Tr(pgX p t |#) 3(#|). A s a result, we find that F (pg X p t ) is always greater than 
0.980±0.002 for all values of 9 confirming the good quality of our source. The uncertainty 
of the fidelity has been determined by Monte Carlo simulations of Poissonian noise 
distribution. 

The fact that F ( p ^ x p t ) < 1 is naturally caused by the presence of experimental 
imperfections such as the improper setting of individual components or depolarisation 
effects. Consequently, an effective form of the generated state should be considered 
as the three-qubit Werner-like state p3(9,ve) in E q . (3.13), where VQ is associated 
wi th the strength of the effective noise inherently present during the experiment. The 
presence of such noise is certified by a reduction in purity, P(p) = Tr(p 2 ) , of the output 
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state. B y straightforward calculations we have found that P (pg X p ) = 0.982 ± 0.005 
and P(P45?*) = 0.976 ± 0.005. Then, using the relation P(p) = [95] the visibili ty 

VQ has been estimated. In our case the visibi l i ty is equal to ^»35° = 0.990 ± 0.003 and 
t>45° = 0.986 ± 0.003. These values are further utilised to establish an appropriate 
reference point of theoretical predictions. 

Next, using the reconstructed output state, p ^ x p t , and numerical procedure described 
in Sec. 3.2.2, the nonlocal fraction has been evaluated 

p v ( p l 5 ? t ) =9 .0 ± 0 . 9 % , 

PV{pT) =8 .2 ± 0 . 7 % . (3.23) 

For each state 10 8 different settings have been examined numerically. Al though the 
density matrix was obtained via tomography in an aligned reference frame scenario, pro­
cessing of probabilities corresponding to these random projection settings is identical to 
the R F I situation. Comparing these results wi th theoretical prediction, Pv(45°, w 4 5°) = 
8.830% and Pv(35°, w 3 5°) = 8.279%, we see a very good agreement between both sets of 
outcomes. 

3.4.3 Nonlocal Fraction Measurements - Reference Frames In­
dependent Approach 

In the second step, we relax the experimental requirements and consider the reference-
frame-independent approach. In this case, al l three qubits of the desired p ^ x p t state 
are subjected to randomly chosen local projections III! ® II2 ® l is)- Note that, by 
the definition of the nonlocal fraction, their actual value is not important and, so, 
there is no need to calibrate the experimental devices. The whole process includes 
n = 8000 projection settings. For each adjustment of 9 and |IIi ® I I 2 ® II3), we measure 
coincidence detections (CC) over approximately 20 s and we registered one value of CC 
per projection. The values of CC are used to determine all correlation coefficient (see [95, 
194]) and, then, to test al l 185 B e l l inequalities relevant for the genuine multipartite 
nonlocal correlations [213]. Note that in this test al l possible relabelling of parties, 
inputs, and outputs has been taken into account. The value of the Be l l inequality is 
determined wi th precision ±0 .015 . Div id ing the number of projection setting which 
provide violation of local realism by the total number of setting n, the nonlocal fraction 
has been estimated. We obtain the following results: 

p £ c ( 4 5 ° ) =8 .6 ± 1 . 6 % , 

p°c(35°) =8 .7 ± 1 . 2 % . (3.24) 

A s we show in F ig . 3.7, our results in E q . (3.24) match correctly to the attainable 
range of theoretical predictions if the precision of VQ is included. Specifically, for the 
error bar of Vo equal to ± 0 . 0 0 3 , one obtains 8.302% < pv(45°, ^45°) < 9.377% and 
7.735% < pv(35 0 ,w 3 5») < 8.848%. However, the values oi p%c(6) slightly differ from 
PV(pTP ) i n Eq- (3.23). In particular, py C (45° ) < p y C ( 3 5 ° ) . To explain such difference, 
we emphasise that owing to inherent experimental fluctuation, the generated state 
slightly varies over the course of the entire data acquisition time (about two days). For 
that reason, one may expect some fluctuations of the inherent noise arising due to, e.g., 
dephasing and depolarisation. 

In order to verify this conclusion, the distribution of the strength of violation for 
random measurements has been analysed. In other words, we simulate a robustness of 
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Figure 3.7: Compar ison of the nonlocal f ract ion est imated for the reconstructed density 
matr ix p v ( P e x p t ) ( g r a Y bar) and measured coincidence detections PyC(9) (blue bar) for angle 
9 = 35°, 45°. Horizontal hatched areas show theoretical predictions, solid lines correspond 
to pv(9,ve), and dashes lines denote py(9,vg±0.03). 

the nonlocal fraction pyC using the accumulated data for random sampling. A s we see 
in F ig . 3.8, for both values of angle 9 the simulated relationship between pyC and 5 m i „ 
has a similar shape as its theoretical counterpart (see Appendix B.2) . Furthermore, 
by fitting our experimental data wi th E q . (B7) we have found the following results 
{9, v 4 5 °} « {44.7°, 0.984} and {9, v 3 5 »} « {36.0°, 0.996} which is in line wi th our 
previous observations. Note that these fitted values are sufficient to establish the G M E 
concurrence using E q . (3.14) without prior knowledge about the generated state. 

3.4.4 Genuine Concurrence Measure - Reference-Frame-Inde­
pendent Approach 

The final stage of our experiment is to measure the G M E concurrence for the Werner­
like states. In order to do that, the Werner-like states p^pt(9,v) were synthesised with 
controlled visibili ty v in the range [0.9; vg\. This is accomplished by controlled mixing 
(with probability vc) the output state p^xpt and white noise, i.e., w c pg X p t +(l— t>c)Pwhite noise-
A s a result, one has 

pTpt(9,v) = vcve\9)3(9\ + 

+ l ^ a s ^ s ) (basis|, (3.25) 
basis 

where the total visibi l i ty v = vcvg wi th vg being a constant value defined above and 
controlled parameter vc varying wi th a step Sv = 0.01. 

Now, to synthesise projection results CC for any mixed state in E q . (3.25), the 
experimental setup was set to gradually generate 8 basis states |basis). Similarly as 
in Sec. 3.4.3, each of the states is subjected to the same set of random projections 
| i l l <8 I I 2 ® n 3 ) as those of p e x p t (including tomography projections). Finally, values of 
CC are probabilistically mixed according to the following routine (Fig. 3.9) 

CCi(6,v) = vcCCi{p^) + ^ p C a ( | b a s i s » , (3.26) 
basis 

where CCi(9,v) = C C j ( p g x p (9,v)) and CCj(p) denotes the values of CC for the state 
p and the i-th. projector \tl^ Cg) fl^ (8) ftg •'}. This procedure results in 8000 values of 
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Figure 3.8: Distr ibution of the strength of violation for randomly sampled measurements for 
(a) 9 = 35° and (b) 9 = 45°. In both panels, symbols denote experimental results whereas 
gray areas depict theoretical predictions for p 3 (0, VQ±0.003). Dashed lines correspond to 
theoretical calculations for (a) p 3 (35° , 1) and p 3 (35° , 0.985) (b) p 3 (45° , 0.990) and p 3 (45° , 
0.975). 
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Figure 3.9: Scheme of the synthesising procedure for all 8 000 random projections III! Cg) 
n 2 ® n 3 ) . On the left-hand side of this scheme we provide H W P settings for each three-qubit 
state. The final state pw is mixed according to a prescription given in Eq . (3.25). 
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CC for each generated state pg X p (0,v) that can be further analysed. Note that for 
every state, a l l CCi are normalised wi th respect to the overall generation rate for the 
particular state. 

Based on these results, the nonlocal fraction of p^pt(6,v) has been determined. 
A s we see in F ig . 3.10(a), our measurements are in good agreement wi th theoretical 
predictions given in E q . (3.15). Finally, using E q . (3.16) the G M E concurrence for 
the Werner-like states has been established and the accomplished results are in perfect 
agreement wi th theory (Fig. 3.10(b)). Specifically, for the exemplary states discussed 
in previous subsections, we obtain 

C G M E ( 4 5 ° ) =0 .97 ± 0 . 0 1 , 

C G M E ( 3 5 ° ) =0.93 ± 0 . 0 1 , (3.27) 

whereas theoretical predictions yield C G M E ( 4 5 ° , w 4 5°) = 0.977 and C G M E ( 4 5 ° , w 4 5°) = 
0.924. 

0 2 4 6 8 10 
Nonlocal fraction p v (%) 

Figure 3.10: (a) Dependence of the nonlocal f ract ion on the visibi l i ty and (b) the relation 
between genuine concurrence and nonlocal f ract ion for three-qubit Werner- l ike states. In 
both panels, symbols denote experimental measurements for 9 = 35° (triangles) and 9 = 
45° (squares) while curves depict theoretical predictions. 

3.5 Conclusions 
In conclusion, we have theoretically and experimentally investigated the entanglement-
assessment protocol for two- and three-qubit Werner-like states. Our proposal is based 
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on the concept of the nonlocal fraction which denotes the probability of detection of 
nonlocal correlation under random measurements. Using numerical calculations, we 
have found the relationship between the degree of entanglement and nonlocal fraction. 
Then, our method has been successfully applied to the experimental measurements of 
the G M E concurrence of the three-qubit Werner-like state, revealing perfect agreement 
wi th theoretical predictions. 

The advantage of using random sampling in our protocol is a great simplification 
of experimental procedures as the alignment and calibration of remote devices are no 
longer necessary. Therefore, our protocol can be applied in an unstable environment, 
where the previously mentioned requirements are hard to meet. 

Although in this Chapter we focus on the Werner-like states, our protocol can also be 
used for an arbitrary mixed state. In this broader context, the protocol can operate as 
an indicator of a lower bound of entanglement for the state under considerations. From 
the point of view of quantum communications, such finding is of great importance as it 
allows the characterisation of a minimal efficiency on the communication protocol. One 
should also emphasise that Werner states are considered as the paradigmatic examples 
of experimental noise. This fact justifies the choice of Werner-like states as a test bed 
for our protocol. 
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Chapter 4 

Experimental Hierarchy and Optimal 
Robustness of Quantum Correlations 
of Two-Qubit States With 
Controllable White Noise 

Contents of this Chapter is based on the Author 's article [A4]. 

4.1 Introduction 

4.1.1 Entanglement, Steering, and Bel l Nonlocality 
Quantum entanglement [79] and its generalizations, i.e., quantum steering [239, 240] 
and Bel l nonlocality [86], are fundamental types of quantum correlations between spa­
t ial ly separated systems (parties). These effects reveal the disparity between classical 
and quantum physics from a fundamental point of view, but also play a pivotal role 
in quantum information and its applications in quantum technologies of second gen­
eration [45, 241-243]. (i) Quantum entanglement (or quantum inseparability) occurs 
when the state of one party cannot be described independently of the state of the 
other party [45]. (ii) Quantum steering, also referred to as Einstein-Podolsky-Rosen 
( E P R ) steering, refers to the abili ty of one party (say, Alice) to affect the state of the 
other party (say, Bob) through the choice of her measurement basis, which cannot be 
explained by any local hidden state (LHS) models [242, 243]. Moreover, (iii) quantum 
nonlocality can be defined as the effect detectable by the violation of the Bel l inequality 
and, thus, which cannot be explained by any local hidden variable ( L H V ) models. Here 
we l imit our interest to the two-qubit Be l l inequality in the Clauser-Horne- Shimony-
Holt (CHSH) form [87]. Thus, we refer to this effect as Be l l ( -CHSH) nonlocality, having 
in mind that quantum nonlocality can also be understood in a much broader sense [241]. 

The distinction between these effects is fundamental, and their intuitive operational 
interpretation can be given from a measurement perspective, i.e., by referring to their 
detection using two types of measuring devices, which can be perfect or imperfect from 
physical and technological points of view, or trusted or untrusted from a cryptographic 
perspective, i.e., wi th or without prior knowledge about the devices [244]. Specifically, 
(i) quantum entanglement between two systems can be detected using trusted devices 
for both systems, (ii) E P R steering can be tested by trusted devices for one system 
and untrusted ones for the other, while (iii) quantum nonlocality can be detected by 
untrusted devices on both sides. Such interpretation has direct applications for quantum 
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cryptology, including secure communication. In the same measurement scenarios, Bel l 
nonlocality implies steering, and steering implies entanglement, but not vice versa, in 
general. Indeed, there exist entangled [98] and steerable states which do not violate 
Bel l inequalities as well as do exist unsteerable entangled states [242, 243]. 

4.1.2 Werner States and Their Experimental Generation 
Mixtures of a Be l l state and a maximally mixed state (i.e., white noise) are prototypal 
examples of states revealing the non-equivalence of entanglement and Bel l nonlocality, 
which was first demonstrated by Werner over 30 years ago [98]. The Werner states have 
been later used to show a hierarchy of criteria and a hierarchy of some classes of corre­
lations (CC) (which for short is here refereed to as CC hierarchy), including quantum 
steering (see, e.g., reviews in [45, 241-243] and the very recent Ref. [245] with references 
therein). The effect of white noise on B e l l states has also been studied theoretically 
to reveal a hierarchy of the following classes of temporal quantum correlations [246]: 
temporal inseparability [247], violations of temporal B e l l - C H S H inequalities [248], and 
temporal steering [249, 250]. 

We stress that we only consider von Neumann's projective measurements in this 
work. Note that the quantum-correlation regimes of states assumed for projective 
measurements are different from those based on positive-operator-valued measures 
( P O V M s ) . However, the same hierarchy relations, as studied here, st i l l hold assuming 
P O V M s . 

Generation of mixed states of discrete photons has been investigated both the­
oretically [251-253] and experimentally [254-267]. Temporal decoherence of optical 
polarization modes in a birefringent material seems to be a rather widely used tech­
nique in a number of experiments such as those reported in Refs. [258, 267]. This 
technique has also enabled the experimental generation of maximally entangled mixed 
states ( M E M S s ) [268] by Peters et al. [265] and later by Aiel lo et al. [263]. Recently, 
L i u et al. incorporated a tunable decoherence channel [269] to generate the Werner 
states [256]. Alternative methods to generate or simulate temporal decoherence include 
the generation of mixed states by exploiting a particular geometry of a spontaneous 
parametric down-conversion ( S P D C ) source [254, 264]. In 2004, Barbieri et al. [266] 
and Cinel l i et al. [260] reported their refined two-photon sources capable of preparing 
a broad range of mixed quantum states, including M E M S s . A highly birefringent ma­
terial, together with a wide momentum spectrum of generated photon pairs (resulting 
in effective spatial decoherence), was also used as an alternative method to generate 
temporal decoherence [258]. Puentes et al. applied wedge depolarisers and bucket de­
tectors [257], and later util ized scattering in various media [262]. Moreover, Zhang et 
al. incoherently combined photons generated in two separate S P D C sources to create 
mixed quantum states [259], while Caminati et al. reported an experiment, where mixed 
states were generated by attenuating a high-gain S P D C source [261]. The idea of using 
a wide-temporal detection window, such that a detected state appeared to be mixed, 
was also implemented in several experiments [255, 270]. It is also possible to use an 
experimental setup that can be tuned (to change properties of generated states) in 
times shorter than the measurement integration time [271]. 

In this work we report experimental generation of both Werner states and their 
generalizations, i.e., partially entangled pure states affected by white noise, which we 
refer to as generalised Werner states (GWSs) . These states were not in the focus of the 
above-reviewed experiments. Some of the experimental setups cannot generate these 
generalised states (e.g., Ref. [263]), some could be used after specific improvements 
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(e.g., Ref. [256]) and the others, possibly, might have such capabilities, but these (e.g., 
Ref. [259]) have not been used so far for demonstrating the C C hierarchy of the Werner 
states or their generalizations. In this research, our experimentally generated and 
reconstructed states are applied to reveal a C C hierarchy. 

The remainder of this Chapter is organised as follows. Two approaches to study 
hierarchies of correlations are specified in Sec. 4.2. Measures of quantum correlations 
of general two-qubit states are recalled in Sec. 4.3. These include popular measures of 
entanglement, steering, and Bel l nonlocality. Moreover, steering in the two-, three-, and 
multi-measurement scenarios is explicit ly discussed in Appendices C.3, C.2, and C.4, 
respectively. In Sec. 4.4 we define GWSs . Because G W S s are a direct generalization of 
the usual Werner states based on a Be l l state, we refer to them as Bell-non-diagonal 
G W S s . Our experiment is described in Sec. 4.4.1. We compare various predictions of 
the quantum correlations for the theoretical and experimental G W S s with those for the 
Werner states in Sec. 4.5. We also discuss fundamental differences in a C C hierarchy 
for the Bell-diagonal and -non-diagonal G W S s in this section. In Sec. 4.6 we present 
our most counterintuitive theoretical results. Specifically, we show in Sec. 4.6.1 that 
there exist G W S s , which are steerable in a two-measurement scenario (2MS) but st i l l 
admit L H V models. Such a regime cannot be observed for the standard Werner states. 
In Sec. 4.6.2 we show that some Bell-non-diagonal G W S s are more robust against 
white noise than the diagonal G W S s , i.e., the Werner states. In Sec. 4.6.3, we analyse 
lower and upper bounds on steering for a large number of measurements. We show 
better robustness against white noise of unsteerable entangled Bell-non-diagonal G W S s 
compared to the diagonal ones. A n example of a hierarchy of entanglement criteria is 
discussed in Appendix C.5 in comparison wi th the C C hierarchy for the G W S s . We 
conclude in Sec. 4.7. 

4.2 Two Approaches to Study a Hierarchy of Quan­
tum Correlations 

Here we study a C C hierarchy, which is the hierarchy of states wi th different correlation 
properties rather than types of probability distributions, as in the case of certain 
research in quantum information. We use the term correlation of a state by referring 
to its entanglement, steering, and Be l l nonlocality. For clarity, we recall that: (a) an 
entangled (separable) state is a state that cannot (can) be factored into individual 
states belonging to separate subspaces, (b) an E P R steerable (unsteerable) state is the 
one described by the statistics which cannot (can) be reproduced by an L H S model for 
a given measurement set (see Sec. 4.3.2 for more details), and (c) a quantum nonlocal 
(local) state is the one described by the statistics which cannot (can) be reproduced 
by an L H V model, which in turn implies the violation (fulfillment) of a Bel l inequality. 
Since we are focused on analysing two-qubit states, the Bel l inequalities can be limited to 
the C H S H inequality. Moreover, the steerability of states can be considered in the limit 
of an infinite number of measurements, but it is usually l imited to practical resources, 
including a finite number of measurements. In our research we focus on the G W S s 
which are steerable or unsteerable in two- and three-measurement scenarios (2MS and 
3MS) , corresponding to measuring two (three) Paul i operators. Thus, we can consider 
subclasses of steerable states depending on the number of performed measurements. In 
what follows, we study in detail the hierarchy of correlation classes limited to analysing 
the states which are: (i) separable, (ii) entangled but unsteerable in 3MSs, (iii) steerable 
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in 3MSs but not in 2MSs, (iv) 2MS steerable but local, and (v) nonlocal. The hierarchy 
is extended in Sec. 4.6.3 to include the analysis of the G W S s which are steerable for a 
larger number n of measurements (i.e., n = 136). 

In general, a hierarchy of quantum correlations can be understood in several ways 
including: (i) a hierarchy of conditions (or criteria) for the observation of a given class 
of quantum correlations and (ii) a hierarchy of different classes of quantum correlations 
(i.e., a C C hierarchy). This division is also closely related to experimental demonstra­
tions of a hierarchy by measuring (nonuniversal or universal) witnesses of quantum 
correlations corresponding to performing part ial or full quantum state tomography 
(QST) , respectively. 

In this work, we focus on analysing a C C hierarchy of the G W S s . We demonstrate 
different kinds of quantum correlations in question by performing full Q S T and then 
calculating the corresponding measures on the reconstructed states. 

Below we explain the main differences between the two approaches to study a hier­
archy of quantum correlations and explain why a complete experimental demonstration 
of the studied C C hierarchy. To our knowledge, this seems to be unfeasible within the 
present state of the art. 

Hierarchy of Criteria for a Given Class of Quantum Correlations 

Experimental demonstrations of Be l l nonlocality via the violations of the C H S H in­
equalities have been at the heart of quantum information since its early days starting 
from the pioneering experiments of Aspect et al. in the 1980s [272] and then refined in 
hundreds of experiments, including significant-loophole-free tests (see, e.g., [273-275] 
and the review in [241] for references). 

Thus, if one talks about "demonstrating" the nonlocality of a quantum state, one 
would normally expect to see a violation of a Be l l inequality, rather than Q S T . 

However, this approach usually reveals only a hierarchy of criteria (i.e., either 
sufficient or necessary conditions) for the observation of a specific class of quantum 
correlations. This is because it is usually based on measuring nonuniversal witnesses 
of quantum correlations by testing the violation of specific inequalities. Note that 
nonuniversal witnesses correspond usually to sufficient but not necessary conditions of 
a specific quantum (temporal or spatial) correlation effect. Thus, such a witness can 
usually be determined without a complete Q S T . 

W i t h i n this hierarchy approach, one can analyse a hierarchy of, e.g., different Be l l 
inequalities or even the B e l l - C H S H inequalities but for different angles of polarisers in a 
description of Be l l nonlocality, specifically, by choosing different angles 0 i , 02, 0'i, and 
0 2 as described in E q . (4.5). B y having a priori information about a given generated 
state, one can choose optimally angles of the polarisers to maximize the violation of 
the B e l l - C H S H inequalities and thus to be able to quantify Be l l nonlocality (i.e., to 
determine a nonlocality measure) for the state. However, without knowing a priori 
a given state, one has to measure many copies of the state at different angles of the 
polarisers, to find their optimal rotation. Such scanning of the angles corresponds to 
(complete or partial) Q S T . 

The hierarchy of criteria has also been studied based on the matrices of the moments 
of, e.g., the annihilation and creation operators of bosonic or fermionic states of any 
dimension. Indeed, a number of works demonstrated: (i) a hierarchy of sufficient 
conditions for observing entanglement (i.e., entanglement witnesses). These include 
the conditions based on the Shchukin-Vogel criterion [276, 277] which are related to 
the Peres-Horodecki criterion and its generalised versions using positive maps beyond 
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partial transpose [278], (ii) a hierarchy of sufficient conditions for observing quantum 
steering (i.e., steering witnesses) [279], (iii) a hierarchy of necessary conditions for 
revealing Bel l nonlocality (i.e., nonlocality requirements) [280], and (iv) a hierarchy of 
sufficient conditions for observing spatial [281] and spatio-temporal nonclassicality (i.e., 
nonclassicality witnesses) [282, 283]. 

A n illustrative detailed example of a hierarchy of entanglement criteria is discussed 
in Appendix C.5. 

Note that the upper and lower bounds of measures of quantum correlations, which 
correspond to their sufficient and necessary conditions, can be determined using such a 
hierarchy of matrices of moments without a complete Q S T . However, for an unknown 
state, to make these bounds tight to a true measure, one needs to increase the number 
of moments to be detected. This in turn leads to a partial moment-based Q S T , which 
approaches more and more a complete Q S T as explained in Appendix C.5.3. 

In conclusion, this approach, in general, enables a direct but partial demonstration 
of a hierarchy, which is discussed below. 

Hierarchy of Various Classes of Correlations 

A hierarchy of various classes of correlations can be revealed by their measures or by 
the conditions, which are both necessary and sufficient for their observation. It should 
be stressed that we are focused on demonstrating such a C C hierarchy in this Chapter. 

Indeed, experimental methods for a complete demonstration of a C C hierarchy can 
be based on experimentally reconstructed density matrices (in the case of standard 
single-time spatial correlations) or the Choi-Jamiolkowski matrices (in the case of 
temporal correlations) for a given system via quantum state or process tomographies, 
respectively. This approach enables the calculation of necessary and sufficient conditions 
for observing and quantifying the amount of any class of quantum temporal or spatial 
correlations for a given state or process. 

Experimental demonstration of such a C C hierarchy has usually been done using a 
complete Q S T , although it can also be done wi th an incomplete Q S T , as discussed in 
Appendix C . l . 

Here we apply an indirect approach based on experimental detecting and recon­
structing states via a full Q S T and only then calculating their correlation measures on 
the reconstructed states. This approach has important fundamental and experimental 
advantages, which include the following (in addition to the above-mentioned ones): 

(i) We want to test the above-mentioned five classes of quantum correlations on the 
same footing (preferably using the same setup) based on either complete or incomplete 
tomography. However, it is seen that we can determine experimentally the Horodecki 
nonlocality measure without Q S T , but detecting the negativity and the steerable weights 
(or, equivalently, steering robustness) can be done effectively only via a complete Q S T . 

(ii) We want to use the same experimental states for testing different quantum 
properties. The problem is that we do not have perfect control of especially the mixing 
parameter determining the amount of white noise in a pure state. Thus, we cannot 
generate the same G W S s even using the same setup. Such a state generation would be 
even more demanding using different setups for testing different classes of correlations. 
However, this is feasible using a full Q S T to reconstruct a state, which is only then 
numerically studied for its quantum correlations. 
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4.3 Measures of Quantum Correlations of General 
Two-Qubit States 

As a part of our introduction, we shortly recall standard measures of quantum correla­
tions for general two-qubit states p, which can be written in the Bloch representation 
as follows: 

1 3 

p = -(j <8 / + u • cr <8) I + I <8) v • cr + ^ Tnm an (8 crmj, (4.1) 
n,m=l 

where Ui = Tr[p(<7j (8 /)] and Vi = Tr[p(J (8 cTj)] are the elements of the Bloch vectors 
u — [ui, U2, us] and v = [v\, v2, v^} of the first and second qubits, respectively, and I is 
the single-qubit identity operator. Moreover, the correlation matrix Ty = Tr[p(<7j <8<7j)] 
and cr = [ci , a2, 03] = [ X , Y, Z] are expressed via the Paul i matrices. 

4.3.1 Entanglement Measures 
Here we recall the standard definitions and physical meaning of the two most popular 
measures of two-qubit entanglement, i.e., the negativity and concurrence, which are in 
the following sections compared with the measures of steering and Bel l nonlocality. 

The negativity is defined as N(p) = max{0, — 2 /x m i n } , where / x m i n = mine ig(p r ) 
and pr denotes a partial transpose of p. It was first introduced in Ref. [284] as a 
quantitative version of the Peres-Horodecki entanglement criterion [285]. The two-
qubit negativity (or, more directly, the logarithmic negativity log 2[iV(p) + 1]) has 
various quantum-information interpretations. Specifically: (i) it is a measure of the 
entanglement cost under operations preserving the positivity of the partial transpose for 
two-qubit systems [286, 287], (ii) it gives an upper bound of distillable entanglement [45], 
and (iii) it determines the dimensionality of entanglement, i.e., the number of the degrees 
of freedom of entangled subsystems [288]. 

The Wootters concurrence [289], which is monotonically related to the entanglement 
of formation, is given by C(p) = max{0, 2 A m a x — J2j where 

\ ) = eig[p(a 2 (8 a2)p*(a2 (8 a2)]j , (4.2) 

wi th a2 denoting the Paul i F-operator, and A m a x = maxj Xj. 
Note that both measures have been applied in quantifying not only entanglement 

but also, e.g., nonclassicality (quantumness) of single-qubit (or single-qudit) states [290-
292]. These two related measures reach unity for the Bel l states and vanish for separable 
states. For the brevity of our presentation, we have plotted the negativity as the only 
entanglement measure. 

These entanglement measures of various two-qubit states have been typically deter­
mined experimentally only indirectly, based on a full Q S T , which is also the case in this 
work. Note that an experimental universal test of entanglement without a complete 
Q S T was proposed in Ref. [293] (see Appendix C . l ) . This test is a necessary and 
sufficient criterion of two-photon polarization entanglement. It is based on measuring a 
collective universal witness of Ref. [294], which gives tight lower and upper bounds for 
the negativity and concurrence, and can be used as an entanglement measure on its own. 
However, since its quantum-information interpretation and applications are limited, we 
prefer to use the standard entanglement measures, even if they are determined indirectly 
using experimental density matrices. 
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4.3.2 Steerable Weight 
The steerable weight [295] and the steering robustness [296] are arguably the most 
popular measures of E P R steering [242, 243, 297]. They can be applied for quantifying 
not only standard spatial steering, but also (after a minor modification) to quantify 
temporal [246, 249, 250, 298, 299] and spatio-temporal [300] steering. 

A n intuitive and general idea behind the steerable weight, according to Skrzypczyk 
et al. [295], is based on the decomposition of a given assemblage of Al ice , aa\x, into 
its steerable (cr^x) and unsteerable (crM^) parts, for the values of a and x specified in 
Appendices C.2 and C.3, i.e., 

*a\X = pa^s

x + (1 - p)a%, (4.3) 

for p G [0, 1]. Note that the unsteerable assemblages <TH^ can be created v ia classi­
cal strategies, and a model based on <rM^ can be referred to as an L H S model. The 
steerable weight S = 1 — p* is defined as the maximum amount of unsteerable as­
semblage <TH^ necessary to reproduce Alice 's assemblage aa\x. This general definition 
can be formulated as solutions of semidefinite programs (SDPs) as demonstrated in 
Refs. [242, 295] and are given explicit ly in Appendices C.2 and C.3 for the 3 M S and 
2MS, respectively. Moreover, sufficient and necessary conditions for observing steering 
in multi-measurement scenarios are discussed in Appendix C.4. 

The L H S models are relevant to quantum steering as follows [244]: A given state 
p is referred to as quantum ( E P R ) unsteerable (in the communication from Al ice to 
Bob) for Alice 's measurement set { M a | s } if one can find a variable A allowing for the 
following Bel l local decomposition [242, 243] 

p(ab\xy) = Jd\ir(\) pA(a\x,X) Tr(Mb\yax), (4.4) 

where o~\ is the local (hidden) quantum state of Bob and PA(CI\X, A) is Alice 's response 
distribution. Otherwise a given state for the measurement set { M a u } is referred to as 
quantum ( E P R ) steerable, i.e., when its statistics cannot by reproduced by an L H S 
model. Note that E q . (4.8), which defines a B e l l local state, reduces in the special 
case to E q . (4.4) by setting ps(6|y, A) = Tr(Mb\ya\). It is usually assumed that Bob's 
measurements Mb\y enable a complete Q S T of his qubit. The collection of Bob's states 
o~a\x = T^A(Ma\x Cg) 1 p), conditioned on Alice 's measurements, is called an assemblage. 

The steerable weight and, equivalently, the steering robustness of Ref. [296] are 
defined via necessary and sufficient conditions for quantum-information characterization 
of quantum steering in the specified measurement scenarios. Thus, a spatially separated 
two-qubit state p is referred to as steerable (or more precisely ^-steerable) in the 
discussed n-measurement scenarios if there exists a set of measurements such that the 
steerable weight is nonvanishing, Sn(p) > 0. Otherwise it is referred to as unsteerable 
(or ^-unsteerable). 

The question arises why our interest is focused on analysing steering in two- and 
three- measurement scenarios only, except in Sec. 4.6.3 and Appendix C.4. In principle, 
one could also consider steering in the l imit of an infinite number (of the types) of 
measurements. But this would require knowing universal criteria (i.e., which are both 
sufficient and necessary) for detecting this type of steering. Unfortunately, such universal 
criteria are not known for the GWSs . Note that the upper and lower bounds for steering 
have only been calculated numerically so far for large but st i l l finite numbers n of 
measurements (i.e., at most for n = 136, as shown in F i g . 4.8(a) based on the results 



66 C H A P T E R 4. H I E R A R C H Y A N D R O B U S T N E S S O F 2 - Q U B I T S T A T E S 

of Refs. [301, 302]). Moreover, our analysis of steering includes not only criteria but 
also steering measures, as shown in Figs. 4.2-4.5. Unfortunately, the calculations of 
the steerable weight and the steering robustness are much more involved beyond 3MS. 
Finally, we remark that our experimentally generated states are not exactly G W S s , so 
the calculations of their measures or even universal criteria of steering beyond the 3MS 
are even more complicated compared to those for the perfect G W S s . 

4.3.3 Horodecki Measure of Bel l Nonlocality 
Here we recall the Horodecki measure [303, 304] of quantum nonlocality for two-qubit 
states. 

Note that quantum nonlocality is usually studied and interpreted in the context 
of Be l l inequalities (including the C H S H inequality) and then it is often referred to 
as Be l l ( -CHSH) nonlocality [241]. A Bel l inequality violation (BIV) demonstrates the 
impossibility of any L H V models to fully reproduce quantum-mechanical predictions [86]. 
For convenience, we use the terms B I V and Be l l ( -CHSH) nonlocality interchangeably, 
in the context of our two-qubit experiments. Note that B I V implies a violation of local 
realism. So B I V can in principle be explained by nonlocal (non)realistic theories, but 
also by local nonrealistic ones. Moreover, quantum nonlocality can be defined without 
referring to B I V . In addition, such (generalised) quantum nonlocality can occur without 
quantum entanglement in, e.g., three qubits or two qutrits (three-level systems) [305]. 
Thus, it should be stressed that, in general, neither B I V implies quantum nonlocality 
nor quantum nonlocality implies B I V (see, e.g., Refs. [241, 306]). 

The Horodecki measure of B e l l nonlocality for a two-qubit state p quantifies the 
amount of the maximal violation of the B e l l - C H S H inequality [87], 

| (©) | = 15(0!, 0 2 ) + £(<(>[, 0 2 ) + 5(0!,0 ' 2 ) - 5(0; , 0' 2)| < 2, (4.5) 

which is given in terms of the B e l l - C H S H operator (B = a-cr®(b+b')-(T+a'-cr®(b—b')-(T. 
Moreover, <fti and <̂  are two dichotomic variables of the i - th (i = 1,2) qubit correspond­
ing to the rotations of a polariser i n typical optical implementations; while <S(0i,0 2) 
is the expectation value of the joint measurement of 0 i and 0 2 , and, analogously, for 
the other expectation values. For a given two-qubit state p, the expected value of the 
B e l l - C H S H operator (B, which is maximized over real-valued three-dimensional unit 
vectors a, a', b, and 6', reads [303, 304]: 

max Tr (p © C H S H ) = 2 y/M(p), (4.6) 

where M ( p ) = maxj<fc {hj + hk] < 2, and hj (j = 1, 2, 3) are the eigenvalues of 
U = TT T , which is the real symmetric matrix constructed from the correlation matrix 
T (and its transpose T T ) defined below E q . (4.1). Thus, the B e l l - C H S H inequality is 
violated if M(p) > 1 [303, 304]. To quantify the degree of B I V and Bel l nonlocality we 
apply the parameter [307]: 

B(p) = V m a x [ 0 , M{p)-1\. (4.7) 

Note that this nonlocality measure is exactly equal to the concurrence and negativity 
for two-qubit pure states. For a given state p, the B e l l - C H S H inequality in Eq . (4.5) is 
satisfied if and only if B(p) = 0. If B(p) = 1 then the inequality is maximally violated, 
which is the case for Be l l states. We refer to B(p) as a Bel l nonlocality measure. 
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In this work we refer to Be l l nonlocal and local states wi th the following meaning. 
Usually, a spatially separated state is referred to as Be l l local if local measurements 
and classical communication can generate a correlation admitt ing an L H V model [86, 
241]. Otherwise, the state is referred to as Be l l nonlocal. 

More specifically, an L H S model can be introduced by considering two distant 
observers (Alice and Bob) who share an entangled two-qubit state p. Assume that 
Alice (Bob) performs a set of measurements {Ma\x} {{Mh\y}) satisfying Ma\x, Mb\y > 0 
and J2a Ma\x = J2b Mb\y = 1, where x and y label measurements and aand b are their 
outcomes. The resulting statistics p(ab\xy) = T r ( M a | x ® Mb\y p) is referred to as Be l l 
local (with respect to the measurement sets {Ma\x} and {Mh\y}) if they allow for a Bel l 
local decomposition [241]: 

where A is a shared local hidden variable distributed with density 7r(A), while PA(CI\X, A) 
and pB(b\y, A) are local response distributions. Thus, a state is called Bel l local if it can 
be reproduced by an L H V model with properly chosen {A, 7r(A), PA{O,\X, A), PB{b\y, A)}. 
Otherwise, the state is referred to as B e l l nonlocal for the measurement sets { M a u } 
and {Mf,\y}. This Bel l nonlocality can be witnessed by the violation of a Bel l inequality, 
which reduces to testing the B e l l - C H S H inequality in the case of two-qubit states. So, 
in terms of the Horodecki measure, a given two-qubit state is Be l l local (nonlocal) if 
and only if B(p) = 0 (B(p) > 0). 

The Horodecki measure of Be l l nonlocality can be determined without a complete 
Q S T , which was experimentally demonstrated in an entanglement-swapping device 
in [308] (see Appendix C . l ) . However, here, we apply a full Q S T for determining p^w 

and then calculating B(PQW). 

Note that various alternative approaches to quantifying nonlocality have been pro­
posed [241]. These include a nonlocality measure introduced by El i tzur et al. in 
Ref. [309], which can be interpreted as a fraction of a given ensemble that cannot 
be expressed v ia local correlations. Thus, this quantifier has been referred to as a 
fraction of nonlocality [310, 311]. 

4.4 Generalised Werner States and Their Experimen­
tal Generation 

In this work we focus on comparing quantum correlations of experimental states, which 
are special cases of those in E q . (4.1). Specifically, we directly generated Werner(-like) 
states (also referred to as isotropic states or Be l l states wi th white noise) [98]: 

which are mixtures of any Bel l state [say, \4>+) = (100) + | l l ) ) / \ / 2 ) ] and the maximally 
mixed state for various values of the mixing parameter p e [0,1]. Note that the original 
definition of the Werner state is based on the singlet state [98], instead of However, 
this local change does not effect measures of entanglement, steering, and nonlocality. 
Thus, the state defined in Eq . (4.9) is also often referred to as a Werner state (see, e.g, 
Refs. [268, 302, 307, 312, 313]). This terminology is used in this Chapter. 

We are also interested in partially entangled states with white noise, which we call 
G W S s , which are obtained from Eq . (4.9) by replacing \<ft+) by a general two-qubit pure 

(4.8) 

1 — p 
(4.9) 
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state \(j)q) = y^lOO) + \Jl — q |11) wi th the superposition coefficient q G [0,1]. Thus, 
the G W S s can be defined as 

PGWM = P\<t>q)(<t>q\ + ^—^-I®I- (4-10) 

These states for q = | can be referred to as the Bell-diagonal G W S s corresponding to 
the Werner states pw{p), which are diagonal in the Bel l basis. While for q ^ | we refer 
to them as the Bell-non-diagonal G W S s . These states have been generated by us in 
the experimental setup described below. 

4.4.1 Experimental Setup 
Here we describe our experimental setup, which is designed to be as much versatile as 
possible, being capable of generating a broad class of mixed quantum states in the form 
of 

(A 0 0 E\ 

(4.11) 

(A 0 0 E\ 
0 B F 0 
0 p* C 0 

\E* 0 0 

This class of states includes (i) the Werner [98] and Werner-like states, (ii) the Horodecki 
states, which are mixtures of a Be l l state and a separable state orthogonal to it [285], 
(iii) Bell-diagonal states [including the Werner states], and (iv) various types of M E M S s , 
e.g., those defined in [268]. Moreover, capabilities of our method are not limited to the 
Werner or Horodecki states based on a "balanced" Bel l state, but also allow for (v) their 
generalised forms based on unbalanced entangled states \/l — q 100) + y/q |11) for any 
q G [0,1] instead of considering only q — |. 

In this work we focus on experimental generation of the Werner states and G W S s , 
which are prepared on a platform of quantum linear optics using the experimental setup 
depicted in F ig . 4.1. Qubits were encoded into polarization states of single photons. 
The process of type-I spontaneous parametric down-conversion (SPDC) occurring in a 
cascade of two nonlinear /3-BBO crystals, served as a source of entangled photons [121]. 
When pumped by a beam at a wavelength of A = 355 nm, the source generated two 
polarization-entangled photons in mutually different spatial modes at A = 710 nm 
[Fig. 4.1(a)]. The state of these photons can be expressed in the form of \<fi+) = (100) + 

+ | l l ) ) / \ / 2 , where |0) and |1) denote horizontally (H) and vertically (V) polarized 
photons, respectively. Due to the geometry of type-I S P D C , photons are generated in 
symmetrically opposite directions on the surface of a cone wi th its axis coincidental 
with the pump beam. We choose to couple photon pairs propagating in the vertical and 
horizontal planes, denoting them by (1A,1B) and (2A,2B), respectively [see F ig . 4.1(a)]. 
Assuming that only two photons were generated (so higher-photon-number processes 
are negligible), these photons are simultaneously in either modes (1A,1B) or (2A,2B) . 
Employing a half-wave plate ( H W P ) at 45° in the 2B mode, the state is transformed 
into the Bel l state \tp+) = (|01) + |10))/\/2- Thus, we obtained states spanning the two 
subspaces \<f>+) and 

Our goal is to prepare the Werner states and their generalizations for various values 
of the mixing parameter p. The main idea behind the design of our setup is to decrease 
temporal coherence of the states (in the modes 1A and I B ) and (in the 
modes 2 A and 2B) using beam displacer assemblies ( B D A s ) . A B D A consists of a 
pair of beam displacers (BDs) wi th an H W P inserted between them. This allows us 
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(a) Two-photon source 

HWP QWP 

Laser | g 

2x ß-BBO 

(b) State synthesis 

PBS 

Figure 4.1: Our experimental setups for (a) photon-pairs generation and (b) state synthesis. 
Legend: 1A and I B (2A and 2B ) stand for photons propagat ing in vert ical (horizontal) 
planes, B D - a beam displacer, B D A - a beam displacer assembly, D - a detector, FC 
- a f iber coupler, H W P - a half-wave plate, P B S - a polar izat ion beam splitter, P C - a 
polarization controller, Q W P - a quarter-wave plate, I i , I 2 - irises 1, 2, and / 3 - B B O stands 
for a nonlinear crystal (/3-barium borate). 
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to split and subsequently rejoin the horizontal and vertical components of a photon 
polarization state. B y introducing a difference in the propagation time between these 
two components (which is done by t i l t ing one B D ) we can achieve their mutual phase 
difference (by fine tilting) and tunable distinguishability (by coarse tilting). Polarization-
sensitive losses can easily be implemented by partially blocking one of the polarization 
paths. Subsequently, the modes (1A,2A) and (1B,2B) are incoherently mixed in fiber 
couplers (FCs). 

Firstly, the subspace was adjusted while arms 2 A and 2B (belonging to the 
subspace were blocked. B y means of the polarization-sensitive losses in B D A i , 
we regulated the intensity ratio of the matrix elements A and D [see Eq . (4.11)] in the 
computational basis, i.e., 100) and |11) (or \HH) and \VV) in the polarization terms). 
The ratio accounts for 

_ Apq+l-p  
R A ' D ~ 4p(l-q) + l - p ' ( 4 1 2 ) 

where p and q are both tuned parameters. The next step consists of tuning the de-
coherence by observing coincidence counts in the projections |++) and |H—), where 
| ± ) = (|0) ± | l ) ) / \ / 2 stand for diagonal and anti-diagonal polarization states, respec­
tively. We found such a coarse tilt of B D i so that the visibil i ty accounts for 

2 E (4.13) 
A + D 

while the phase is set by fine-tuning, the t i l t using a piezo-actuator, which minimizes 
the signal in the |H—) projection by setting the effective value of E to be real. 

Secondly, when adjusting the subspace in turn, the arms 1A and I B were 
blocked. In analogy wi th the adjustment of the subspace, the same two steps were 
performed. This time, however, the target intensity ratio RB,C is equal to 1 because 
B = C. The coarse t i l t of BD3 needs to be sufficient to decrease the coherence of the 
state completely since v = 0, resulting in F = 0. The phase becomes meaningless. 

Finally, al l arms were unblocked and both subspaces were balanced to adjust the 
ratio between the matrix elements A and B. While having the projection 100) and |01), 
the required ratio was 

R ^ = I P Q + 1 - " . (4.14) 
1 — P 

For this purpose, we partially closed the irises in the 1A and 2 A couplers, which are 
depicted in F ig . 4.1(b) by labels I i and I2, respectively. 

After all the adjustments were implemented, the measurement itself was carried out 
and it consisted of a standard full Q S T [238]. Polarization projection was performed 
on both photons ut i l izing a set of quarter- and half-wave plates, as well as polarisers 
and single-photons detectors. Coincidence detections within 2 ns window were detected 
under al l 36 two-fold combinations of single-photon projections onto the basis states: 
|0), |1), |+), |—), and (|0) ± i |1) / \ / 2 , where the latter states are the right- and left-
hand circularly polarized states, respectively. Density matrices were estimated v ia a 
maximum likelihood method [132, 314-317]. 

Because of experimental imperfections, the setup produces states wi th the p and 
q parameters slightly different from those targeted by the above-described procedure. 
To observe better agreement wi th theoretical predictions, we have estimated the best-
fitting parameters pest and qest by finding such a pcw(Pest, <?est) that its fidelity with the 
experimentally reconstructed density matrix is maximized. We find that the deviations 
of the estimated value of the mixing parameter pest from the value of p, which was set 
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wi th a l imit precision in our experiment, are on average equal to 0.01 for the Werner 
states and 0.03 for the G W S s . For the estimated value of the superposition parameter 
g e st, the observed parameter deviations from a given value of q are equal on average to 
0.02. The maximal deviation values are 0.03 for both Werner states and G W S s . Note 
that the superposition parameter q was manually set by an H W P in the source part 
of the setup shown in F ig . 4.1(a). Experimental data as well as the estimated density 
matrices are provided on the C D - R O M attached to the printed version of this Thesis 
(Appendix E ) . 

The states pw and P G W can also be expressed by E q . (4.11) wi th F — 0. In this 
matrix, the subspace spanned by the states \<f>q) for q G [0, 1] is represented by the 
elements A, D, E, and E*, while the corresponding subspace for the white-noise term 
corresponds to only diagonal elements (A, B, C, D). For the reasons specified below, 
we set, in our experiments, the superposition coefficient at q = 0.9, in addition to 
q = 0.5. 

Note that it is irrelevant to replace \<f>q) by a four-term superposition state \<f>abcd) = 
a 100) + b |01) + c 110) + d |11) at least in the analysis of nonclassical correlations. This is 
because \4>abcd) can be reduced to \<f>q) solely by local rotations, so the studied two-qubit 
quantum correlations are unchanged. As mentioned above, the G W S s are not diagonal 
in the Be l l basis, except q — 0, | , 1. This property greatly complicates analytical 
calculations of correlation measures. So, for the Bell-non-diagonal G W S s , we present 
analytical formulas of the entanglement and nonlocality measures only, contrary to the 
corresponding results for the Werner states, which include also our formulas for the 
steerable weights. 

We begin our detailed comparative analysis by presenting various theoretical rela­
tions between chosen correlation measures for the Werner states and G W S s showed in 
Figs. 4.2 and 4.3, respectively. These curves show the negativity N (or equivalently 
the concurrence C), the steerable weights S2 and S3, and the Bel l nonlocality measure 
B as a function of the mixing parameter p. Each coloured region starts where a given 
correlation measure becomes non-zero with an increasing value of the mixing parameter 
p. We refer to these regions as quantum correlation regimes, which are also listed in 
Tables 4.1 and 4.2. 

Table 4 .1 : Hierarchy of classes of correlat ions for the Werner states pw(p) depending on 
the mixing parameter p. The four regimes of vanishing or nonvanishing different classes of 
quantum correlations correspond to the regimes shown in Figs. 4.2 and 4.4. 

p experiment 

p G [0, |] direct 

P e (§> 7s] d i r e c t 

P G (75' T i l d i r e c t 

p G 0 impossible 
p G (-7=, 1] direct 

Regime B S2: = 5 ? S 3 N 

#1 B = 0 s2 = 0 S3 = 0 N = 0 

#2 B = 0 s2 = 0 s3 = o N>0 

#3 B = 0 s2 
= 0 s 3 > o N > 0 

#4 B = 0 s2 
> 0 s 3 > o N>0 

#5 B>0 s2 > 0 s 3 > o N > 0 
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Mixing parameter p 

Figure 4.2: Four correlat ion regimes of the Werner states corresponding to those listed 
in Table 4 .1 . Note that regime # 4 is missing. Theoret ical plots for the negativity N (or, 
equivalently, the concurrence C), the steerable weights S2 and S3, and the Bell nonlocality 
measure B are shown as a funct ion of the mix ing parameter p. Exact definit ions of the 
depicted quantum correlation measures are given in Sec. 4.5. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Mixing parameter p 

Figure 4.3: Five correlation regimes of the G W S s corresponding to the regimes in Table 4.2. 
Curves are analogous to those in F ig . 4.2, but for the superposi t ion parameter q = 0.9 or, 
equivalently, q = 0.1. 



Table 4.2: Hierarchy of classes of correlations exhibited by the Bel l-non-diagonal G W S s P G W ( p , <?) f ° r different values of the mixing parameter p and 
a fixed value of the superposit ion parameter at q = 0.9 or, equivalently, q = 0.1. Th is table lists the five regimes shown in Figs. 4.3, 4.5, and 4.6(a). 
The threshold values read: p'N = pN(q) = 5 / 1 1 = 0.45(45) and p'B = pB(q) = 5/V32 = 0.8574- • •, are given by Eqs. (4.17) and (4.22) for q = 0.9 
(or 0.1), respectively, while p'Ss = ps3(q) = 0.7390- • • and p'S2 = PS2(Q) — 0.8370- • • were obtained numerically. The term hybrid experiment refers 
to averaging of two directly generated experimental states according to Eq. (4.24). 2 M S and 3 M S stand for two- and three-measurement scenarios, 
respectively. 
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4.5 Hierarchy of the Classes of Correlations for Werner-
Like States 

4.5.1 Entanglement of Werner-Like States 
It is well known that, for Werner states, the concurrence and negativity, which were 
defined in Sec. 4.3.1, are equal to each other and are given by a linear function of the 
mixing parameter p, i.e., 

N(pw) = C(pw) = max[0, (3p - l ) / 2 ] , (4.15) 

as shown in F ig . 4.2 by the dot-dashed curve. The good agreement of the negativities 
calculated for the theoretical and experimental Werner states is shown in F ig . 4.4(a). 

We find that the negativity and concurrence for the G W S s read: 

N(pGw) = C ( P G W ) = max {0, \ [p(l + A^/x) - l ] } , (4.16) 

wi th x = q(l — q), which is plotted in F ig . 4.3 by the dot-dashed curve. Figure 4.5(a) 
demonstrates the good fit of the negativities calculated for the theoretical and experi­
mental G W S s for different values of the superposition parameter q. Note that not only 
N(pw) but also A ( P Q W ) is a linear function of the mixing parameter p for a fixed value 
of the superposition coefficient q. In a special case for a pure state \<f>q) (i.e., when 
p = 1), E q . (4.16) reduces to N(\(f>q}) = C{\<j>q)) = 2y/q{\-q). 

Equation (4.16) vanishes for p e [0, PN(Q)] at the threshold value given by 

p
N
(q) = l/[l + Wq(l-q)], (4.17) 

which is plotted in F ig . 4.6. It is seen that N[pw(p)] > 0 if p > | and N[pGW(p, 0.9)] > 0 
if p > p'N = yy. These threshold values are below compared wi th those for the other 
measures of quantum correlations and also marked in Figs. 4.6 and 4.7. 

Note that A ( p c w ) = C ( P G W ) should hold for the ideal G W S s , including the Werner 
states. However, our experimental G W S s do not exactly satisfy this condition. Thus, 
we calculated both measures, because their difference shows how much our experimental 
states deviate from the ideal Werner states. These deviations quantify also the precision 
of our measurements. Specifically, the observed experimental differences between the 
negativity and concurrence were on the average 0.02% for the Werner states and 0.06% 
for the G W S s . Thus, on the scale of Figs. 4.4(a) and 4.5(a) one could not see any 
differences between A ( P Q W ) and C(PQW). 

4.5.2 Steering of Werner-Like States in the Three-Measurement 
Scenario 

Steering in a 3MS on Alice 's side can be quantified by the steerable weight S3 of 
Ref. [295], as defined as an S D P in Appendix C.2. We find that this steerable weight 
S 3 for the Werner states is a linear function of the mixing parameter p, specifically, 

S3(pw) = max ̂ 0 , ̂ |f^j , (4.18) 

which means that the state pw(p) is steerable in the 3MS if p > ^= [see F ig . 4.4(d) and 
Table 4.1]. B y contrast to this, the steerable weight S3 for the G W S s is a nonlinear 



4.5. H I E R A R C H Y O F C L A S S E S O F C O R R E L A T I O N S F O R W S 75 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter p e s t 

(a) 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter pest 

(c) 

• i—i 

JO 

o 

1 1 1 1 1 II 1 1 1 (¥ 
r 

• ®-

• * : 
H i 

• 

C
) 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter p e s t 
(b) 

1.0 

CO 
CO 

• i—i f—i o o 
CO 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter pest 

(d) 

Figure 4.4: Quan tum correlat ions for the theoret ical and experimental Werner states as 
a funct ion of the est imated mix ing parameter p e s t : (a) negativity N, (b) Bell nonlocal i ty 
measure B, as well as the steerable weights (c) S2 and (d) S3. 

function of the mixing parameter]? for q ^ | . This is shown for q = 0.9 in F ig . 4.5(d). It 
can be seen that these G W S s are steerable for p > p$3 = 0.7390 (see also Table 4.2). This 
means that PGW(P> 0.9) is steerable for a much shorter range of the mixing parameter p 
than that for pw{p) = PGW(P> \)- Figures 4.4(d) and 4.5(d) show the weight S 3 for our 
experimental states compared to those for the theoretical states. These results show 
good agreement of the theory wi th our experimental results. 

4.5.3 Steering of Werner-like States in Two-Measurement Sce­
narios 

To quantify steering of the Werner states and G W S s in 2MSs on Alice's side, we apply 
the steerable weights S^ °f R - e l [295] defined in Appendix C.3. 

We find that the weights S^ for the Werner states are equal to each other, 5*2 (pw) = 
y ( p w ) — S2Z(f>w) — Sjz(pw), being a linear function of the mixing parameter p. 



76 C H A P T E R 4. H I E R A R C H Y A N D R O B U S T N E S S O F 2 - Q U B I T S T A T E S 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter p e s t 

(a) 

1.0 

0.8 

bo 0.6 -
. i—i 

- 0 4 • 
CD u 

0.2 

0.0 e - Q' Q 1 O 
0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter pest 

(c) 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter p e s t 

(b) 

0.0 0.2 0.4 0.6 0.8 1.0 

Es t imated mix ing parameter pest 

(d) 

Figure 4.5: Same as in F ig . 4.4 but for the G W S s for the estimated superposit ion coefficient 
qest ~ q = 0.9 (see the text for details). 

5 2 (pw) = m a x ( 0 , * ) . (4.19) 

This implies the steerability of the states in the 2MS if p > [see F ig . 4.4(c) and 
Table 4.1]. However, the steerable weights for the G W S s become much more complicated. 
We find that 5 ,

2

Y y ( p G w ) < ^ ^ ( P G W ) = ^ ^ ( P G W ) = ^ ( P G W ) , and there exist two 
threshold values p'S2 and p'B, as listed in Table 4.2. Specifically, (i) S^^PGW) — 

Sr(PGw) > 0 if p > p'S2 = 0.8370 • • • and (ii) S?Y(pGW) > 0 if p > p'B = ^ L , which 
is the same threshold parameter as that for the B e l l nonlocality measure B > 0, as 
discussed above. Moreover, the dependence of ^ ( P G W ) on the mixing parameter p 
becomes nonlinear for q ^ \ - Different values of the threshold parameters for p'B and 
p'Si imply the occurrence of the region 7^4 for the G W S s , which is shown in Figs. 4.3, 
4.6(a), and 4.7(c), and explained in detail in Sec. 4.6.1. 
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Figure 4.6: Threshold mixing parameters Pi(q) versus the superposit ion parameter q for the 
G W S s . (a) The threshold curves separate the five regimes in the hierarchy of the classes of 
quantum correlations, which are listed in Table 4.2. (b) Transit ions between various curves, 
requiring the largest amount of white noise, are indicated by arrows. It is seen that the 
only arrow e for the Werner states (i.e., the G W S s at q = 1/2) is marked for the transit ion 
between the curves ps2(l) and Ps3(l)- A l l the other arrows are plotted at q ̂  1/2. Th is 
explains the meaning of enhanced robustness of the Bel l-non-diagonal G W S s against white 
noise compared to that of the Werner states. T h e locat ions at g o p t and lengths of the 
labelled arrows are listed in Table 4.3. The unlabelled arrows are located at q'opt = 1 — qopt. 

4.5.4 Nonlocality of Werner-Like States 

To estimate the degree of quantum nonlocality or, equivalently, to quantify the violation 
of the B e l l - C H S H inequality for two-qubit states [87], we use the Horodecki measure [303, 
304], which is as defined in Sec. 4.3.3. 

The Bel l nonlocality measure for the Werner states reads as 

B(pw) = v /max(0 , 2p 2 - 1), (4.20) 

which instantly implies a standard result that the Werner states are nonlocal if p > 
(see also Table 4.1). However, if p e ( | , 4^), the Werner states are entangled without 
B I V (admitting an L H V model), as already demonstrated by Werner in 1989 in [98]. 
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We find that the Bel l nonlocality measure for the G W S s is given by 

B(pGW) = max JO, ^p*[l + 4q(l - q)} - l] , (4.21) 

Note that for pure states (p = 1), E q . (4.21) reduces to the standard result B(\<f>q)) = 
N(\<!>q)) — 2-\/g(l — q). It can be seen that i?(pcw) is zero for the values of the mixing 
parameter in the range p G [0, PB{Q)] wi th the threshold value given by 

pB(q) = l / v / l + 4 g ( l - g ) , (4.22) 

which is plotted in F ig . 4.6. For the diagonal G W S s (with q = | ) , we can reproduce the 
well-known threshold value PB{\) = 7̂5 for the Werner states. In another special case 
for q = 0.9, which was set in our experiments, we have the threshold value p'B = ps(g = 
0-9) = pB(q = 0.1) = Thus, the G W S s p G w(p,0.9) for p e (p'N, p'B) = (£, ^) 
are entangled without B e l l nonlocality, which occurs for a wider range of the mixing 
parameter p compared to that for the Werner states, i.e., p'B —p'N ~ 0.4029 > 4g — | ~ 
0.3738, as it is explained in detail in Sec. 4.6.2. 

In F ig . 4.4(b) we plotted B(pw) in comparison to the numerically calculated B(p^) 
for the experimental Werner states p^j{p) for various values of the mixing parameter p 
and fixed q = 0.9. Analogous results for the Be l l nonlocality measure -B(pcw) for the 
G W S s generated experimentally, pGW{p', Q = 0-9), a r e shown in F ig . 4.5(b) in comparison 
to those for the ideal G W S s , PGW(P;<? — 0.9). Note that B(pGW) > 0 if p > p'B (see 
also Table 4.2), assuming q = 0.9 or 0.1, which is clearly larger than the corresponding 
threshold value 4^ for the Werner states. Both Figs. 4.4(b) and 4.5(b) show relatively 
good agreement of our experimental results compared to the corresponding theoretical 
predictions. More details about the accuracy of our experimental results were given in 
Sec. 4.4.1. 

4.6 Counterintuitive results 
Here we present, arguably, the most interesting theoretical results of our research for 
the states generated experimentally (either directly or in a hybrid way). 

4.6.1 Steerability S2 Without Bel l Nonlocality 
Here we show that Bell-non-diagonal G W S s are steerable in 2MSs on Alice 's side but 
st i l l admit an L H V model. So the existence of such quantum correlations cannot be 
revealed by the violation of the B e l l - C H S H inequality. The G W S s exhibiting the S2-
steerability without Be l l nonlocality correspond to the regime ^ 4 in Table 4.2 and are 
shown in Figs. 4.3, 4.6(a), and 4.7(c). 

Our analytical and numerical results clearly demonstrate that the regime #4 cannot 
be observed for the Werner states, for which PB{\) = Ps2{\) holds, as can be seen in 
F ig . 4.3. However, this degeneracy is broken for the G W S s wi th q 7̂  0, | , 1. 

We find this result interesting, although the amount of the required white noise 
destroying the correlations is small [i.e., max 9 ABts2(q) = 0.023] compared to al l the 
other cases shown in F ig . 4.7, except F ig . 4.7(e). 

Moreover, the regime #4 can be observed for the mixing parameter p l imited to a 
very narrow range [pg , p'B] ~ [0.837, 0.857] assuming q = 0.9 (or, equivalently, 0.1), 
as shown in Figs. 4.5(b) and 4.5(c). We have experimentally generated the G W S s for 
p = 0.8 and p = 0.9, but unfortunately they are outside the desired range \p'S2, p'B}. 
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To solve this problem, we recall that mixtures of any two G W S s , say P G W ( P I , Q) 

and p c w ( P 2 , q) for a fixed value of q, are also G W S s . Specifically, 

PGW(P> = — — - P G W ( P I , g) + - — — P G W ( P 2 , g). (4.23) 
P2 - P i P2 - P i 

Thus, we can use this property to produce (or simulate) a G W S , which was not measured 
directly in our experiment, e.g., 

pGw(0.85,g) = ^[piw(0-8,g) +piw(0-9 ,g) ] , (4.24) 

simply by balanced post-measurement numerical mixing of the two experimental G W S s 
P Q W ( P , q) for p = 0.8 and 0.9 assuming q = 0.9. We refer to this method as a hybrid 
experimental generation, as writ ten in Table 4.2 for the regime #4. B y contrast to 
this regime, we have directly generated experimental states in al l other regimes listed 
in Tables 4.1 and 4.2. Moreover, al l the states plotted in our figures correspond to 
those directly generated experimentally without using any post-measurement numerical 
mixing. 

Our prediction of the existence of states in the regime #4 is a surprising result 
and our experiment has just confirmed it. This prediction seems to be especially 
counterintuitive in the context of the Girdhar-Cavalcanti article on " A l l two-qubit 
states that are steerable via CHSH- type correlations are Bel l nonlocal" [318] (see also 
Refs. [319, 320]), which seemingly implies the impossibility of generating states in this 
regime. However, the Girdhar-Cavalcanti theorem is valid in 2-2 measurement scenario 
only, i.e., for "a scenario employing only correlations between two arbitrary dichotomic 
measurements on each party" [318]. Our steering measures S2 and S3 refer to a 2-3 and 
3-3 measurement scenarios, respectively. Indeed, we always assume a full tomography 
on Bob's side corresponding to the measurement of the three Stokes parameters: (o~x), 
(o~y), and (o~z), while the projective measurements on Alice 's side can be l imited to 
2MS or 3 M S . It is seen that our and Girdhar and Cavalcanti 's steering results refer 
to different measurement scenarios. Thus, the observation of the regime #4 in our 
steering scenarios does not imply the violation of the Girdhar-Cavalcanti theorem. 

4.6.2 Increased Robustness Against White Noise of Bell-Non-
diagonal Generalised Werner States 

Even a quick analysis of Figs. 4.6(b) and 4.7, and Table 4.3 shows one of the main 
theoretical results of this Chapter, i.e., increased robustness against white noise of Bel l -
non-diagonal G W S s compared to the standard (Bell-diagonal) Werner states. Below 
we give a more intuitive and detailed explanation of this result. 

We recall that B e l l diagonal (non-diagonal) G W S s are the maximal ly (partially) 
entangled states affected by white noise. Let us analyse the amount of white noise 
(i.e., 1 — p), which is necessary to make the transition of a G W S from one threshold 
value, say Pi(q), to another (final) value, Pf(q), for a given value of the superposition 
parameter q. Thus, the required white noise can be quantified by 

\f(q)=Pi(q)-pf(q) (4.25) 

for % 7̂  / G {N, S3, S2, B}, which is plotted in F ig . 4.7 and numerically given in 
Table 4.3. 
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Figure 4.7: Differences A y (9) = Pi(q) — Pj(q) of the threshold mix ing parameters versus 
the superposit ion parameter q for the G W S s corresponding to the transit ions shown by the 
red arrows in F ig . 4.6. T h e red-coloured regions show expl ici t ly the improved robustness 
against white noise of the Bel l -non-diagonal G W S s compared to the diagonal ones in the 
Bell basis (i.e., the standard Werner states), except the case shown in panel (e). Combined 
red and cyan regions correspond to the regimes indicated in the captions of all these panels 
and those listed in Table 4.2. 
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For example, let us consider the maximal ly entangled Werner state admitt ing an 
L H V model, i.e., pw(ps) . Our question is about the minimum amount of white noise 
which should be added to this state to make it separable, i.e., PW(PN)- The answer 
is ABN(Q = ^) = ^ — | ~ 0.3738. However, in the case of the G W S s , the min imum 
amount of white noise needed to convert the maximally entangled G W S PGW{PB{Q), Q), 

admitt ing an L H V model, to the closest separable state PGW(PN(Q),Q) can be larger 
than that for the Werner states, ABN{Q) > ABN{^), for some values of the superposition 
parameter q corresponding to the red regions in F ig . 4.7(a). Assuming that q = 0.9 (as 
set in our experiments), we obtain A B N ( 0 . 9 ) = 0.4029 > 0.3738. Actually, the largest 
value ma.xq ABN(Q) = ABN(Q') = 0.4037 can be achieved for q' = 0.8829 and 1 — q', 
which can be calculated by solving the following sixth-order equation (1 + 4x2)3 = x2(l + 
+ 4 x ) 4 wi th x = A / q ' ( l — q')-

The same conclusion about higher robustness of the Bell-non-diagonal G W S s against 
white noise compared to that of the Werner states can also be drawn for other transitions, 
indicated by the arrows in Figs. 4.6(b) and 4.7 and also listed in Table 4.3. The only 
exception is observed for the transition corresponding to AS2!S3(Q), which reaches the 
largest value for the Werner states, as shown in F ig . 4.7(e). 

More white noise should be added to a Be l l state to reach any threshold value pj 
compared to that for any partially entangled state, because 1 — Pj{\) > 1 — Pj(q) for 
q ^ \ and j G {A", S3, S2, B}, i.e., the amount of white noise destroying completely 
any quantum properties of the states, including entanglement, steering, and nonlocality. 
So, in that sense, the Werner states are more robust against white noise than the non-
diagonal G W S s . However, by choosing proper reference states or proper transitions, 
one can draw the opposite conclusion, as we have demonstrated in this section and it 
is clearly visualized in Figs. 4.6(b) and 4.7. 

4.6.3 Increased Robustness of Steering for a Larger Number of 
Measurements 

Our research is focused on analysing steering in only the two- and three-measurement 
scenarios. Nevertheless, in Appendix C.4 we also discuss steering in multi-measurement 
scenarios including the case of steering in the l imit of an infinite number of types of 
available measurements. 

Specifically, we analyse lower and upper bounds on steering for a much larger number 
n of measurements (even n = 136). We demonstrate that entangled G W S s , which are 
unsteerable for a very large (or in principle infinite) number of measurements, can 
be more robust against white noise if they are non-diagonal in the Bell-state basis 
compared to the diagonal ones (i.e., the Werner states). 

First , we recall that, while the analysed entanglement measures reveal the property 
of a given state independent of its measurements, the measures for steerability and Bel l 
nonlocality additionally depend on the available measurements. 

Thus, one can raise the following questions: (i) whether a larger spread (corre­
sponding to higher robustness) between different classes of correlations in the G W S s is 
an artefact stemming from the fact that the considered steering and Bell-nonlocality 
measures perform better on less entangled states? This question can also be rephrased 
differently: (ii) Can one expect to find the same robustness behaviour for some tight 
bounds for Bel l nonlocal states and steerable states (taking into account any measure­
ment scenario)? 

We answer these questions by calculating tight upper (p^p) and lower (p1™) bounds 
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on steering for the G W S s for a large number of measurements. These numerical bounds 
strongly suggest that the hierarchy also holds for an arbitrary number of measurements. 
Indeed, similar analysis can be performed for Bel l nonlocality of the G W S s , as discussed 
in [301], to show that the Horodecki measure fully describes the nonlocality in two-qubit 
states with no restriction on the number of measurements. 

Two bounds on multi-measurement steering are shown in F ig . 4.8. Specifically, 
the upper bound p^p, which corresponds to the border curve between the regimes #6 
and #7 in F ig . 4.8( sufficient condition for the steer ability of the G W S s . This 
bound was obtained numerically in Refs. [301, 302] from a criterion of Ref. [242] using 
an S D P technique for 13 measurements on the Bloch sphere. Moreover, the lower 
bound pl$w, which is shown by the curve between the regimes #7 and #8, corresponds 
to a sufficient condition of the unsteerability of the G W S s based on the algorithm of 
Refs. [301, 302] for constructing L H S models assuming 136 projective optimal (or almost 
optimal) measurements corresponding to the fourth level of their algorithm. The curves 
for both pl$w and p^p are plotted using the numerical data of Ref. [302]. Thus, any 
G W S above the p^ curve in F i g . 4.8(a) is steerable, while any state below the pl$w 

curve is unsteerable. The unsteerability of some of the states in the regime #7 (lying 
close to the border curve p1™) can be tested by applying the algorithm of Refs. [301, 
302] for higher levels, which corresponds to analysing a larger number of measurements 
{n 3> 136). However, it is unclear whether any G W S s lying inside the regime #7 can 
be steerable in the limit of n —> oo. 

Figure 4.8(a) shows that by including the criteria for steering in multi-measurement 
scenarios, in addition to 5*2 and «S3, one can study a C C hierarchy which is more refined 
than that in F ig . 4.6(a). Note that the regime #2 in F i g . 4.6(a) corresponds to the 
sum of the regimes #6, #7, and #8 shown in F ig . 4.8(a). 

To answer the questions raised above, we plotted the differences p^p—pN and P^—PN 
in Figs. 4.8(b) and 4.8(c), respectively. B o t h figures are quite similar and show that 
the optimal robustness against noise is observed for the Bel l non-diagonal G W S s with 
the superposition parameter q ^ \ (denoted by black solid lines). Thus, even without 
knowing the exact threshold values between the steerability and unsteerability of the 
G W S s in the l imit of an infinite number of measurements, one can conclude that the 
predicted optimal robustness is not an artefact, at least for the cases shown in Figs. 4.8(b) 
and 4.8(c). This is the answer to question (i). Concerning the above-mentioned question 
(ii), the robustness behaviour is different for different pi = p^p, p1™, ps2, ps3- Indeed, 
the optimal values of the superposition parameter q maximizing p^ — pN depend on i. 
However, this property does not weaken our conclusion about higher robustness against 
white noise of some Bel l non-diagonal G W S s compared to that of the Werner states. 

4.7 Conclusions 

The main purpose of this work was to analyse a C C hierarchy of theoretical and 
experimental Werner states and their generalization, i.e., the Bell-non-diagonal G W S s . 
We recall that the considered G W S s are the mixtures of partially entangled two-qubit 
pure states (not only of a Be l l state) and the maximally mixed state (white noise). 
We have shown that the Bell-non-diagonal G W S s exhibit a more refined C C hierarchy 
compared to that of the Bell-diagonal G W S s , i.e., the Werner states. 
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Figure 4.8: (a) Same as in F ig . 4.6(a) but wi th addit ional regions (regimes) # 6 , # 7 , and 
# 8 of steerabil i ty in the l imit of a large number of measurements. A lso shown are the 
differences (b) —PN and (c) plgw —PN, where pN is given by E q . (4.17). The curve pUg 
is the border between the regimes # 6 and #7 , which corresponds to a sufficient condit ion 
for steerability of Ref. [242], while the curve plgw is the border between the regimes # 7 and 
#8, which corresponds to a sufficient condi t ion of unsteerabil i ty based on the algori thm 
and numerical data of Refs. [301, 302] assuming 136 projective measurements. Panels (b,c) 
show, analogously to those in F ig . 4.7, that the opt imal robustness of steering assuming a 
large number of measurements compared to the entanglement of the G W S s is observed for 
the Bell non-diagonal G W S s with the superposit ion parameter q ^ 1/2 (as denoted by solid 
blue lines). 

B y tuning the mixing and superposition parameters of the G W S s , we have exper­
imentally generated and tomographically reconstructed such G W S s , which reveal the 
hierarchy of the following classes of correlations: #1 separability, #2 entanglement 
without steerability in 3 M S , #3 steerability in the 3MS but not steerable in the 2MS, 
# 4 steerability in the 2 M S without violating the B e l l - C H S H inequality (so admitting 
L H V models), and #5 Bel l nonlocality, which cannot be explained within L H V models. 
Note that the case of steering is a little more subtle since the measures assume specific 
measurements. Thus, we have also analysed a sufficient condition for unsteerability 
assuming a very large number (i.e., 136) of measurements. 
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In particular, we found five different parameter regimes of the G W S s , including 
the states which are steerable in a 2 M S without violating Be l l inequalities and thus 
corresponding to the regime #4. This is a counterintuitive result, especially when 
compared wi th the Girdhar-Cavalcanti theorem [318], which states that: " A l l two-
qubit states that are steerable via CHSH-type correlations are Bel l nonlocal" [318]. In 
Sec. 4.6.1 we have explained why the observation of the regime 7^4 i n our steering 
scenarios does not imply the violation of the Girdhar-Cavalcanti theorem. We also 
demonstrated that the regime $ 4 cannot be observed for the usual Werner states. 

Moreover, we have shown that the robustness against the white noise for, e.g., 
steerable states admitt ing L H V models can be stronger for some Bell-non-diagonal 
G W S s than that for the diagonal G W S s (i.e., the Werner states). This can be achieved 
by properly choosing the value of the superposition coefficient q, as shown in Figs. 4.6(b) 
and 4.7. Thus, we addressed the problem of optimal robustness of states against white 
noise. Specifically, we analysed threshold values (curves) separating the five regimes of 
quantum correlations. Then we could find optimal transitions between various curves 
corresponding to the largest amount of white noise or, in other words, to the largest 
spread in the hierarchy. Thus, we discovered the opt imal Bell-non-diagonal G W S s 
which are more robust against white noise than the Werner states. 

Furthermore, we considered lower and upper bounds on steering in multi-measurement 
scenarios. Aga in we demonstrated better robustness against white noise of some un-
steerable entangled Bell-non-diagonal G W S s compared to the diagonal ones. Thus, 
such enhanced robustness is not limited to only the two- and three-measurement steer­
ing scenarios; it can also be observed for steering in the l imit of a large number of 
measurements. 

Possible applications of the discovered optimal robustness against white noise can 
be found for quantum cryptography. For instance, imagine that legitimate users of some 
secure quantum communications system want to use steering (or entanglement) such 
that it should not be detected by the violations of Be l l inequalities by others. Thus, 
assuming that the communication is v ia a depolarizing channel, it is convenient to use 
partially steerable (or partially entangled) states which are Bel l local and are the most 
robust against white noise. Such optimal states are indicated by arrows in F ig . 4.6(b). 

Our study of the hierarchy of the classes of spatial quantum correlations can be gen­
eralised to analyse a hierarchy of their temporal or spatio-temporal analogues. Indeed, 
the concepts of spatial and temporal quantum correlations are closely related. For­
mally, it is enough to replace two-qubit measurements for testing spatial correlations by 
measurements on a single qubit, followed by transmission through a channel, to reveal 
temporal correlations, as explained in the example of spatial and temporal steering in 
Ref. [298]. Thus, many of the results discussed here for spatial correlations can also be 
generalised to temporal correlations. We explicitly indicated such relations in various 
sections of this Chapter. Analyses of C C hierarchies of temporal correlations can lead 
to a deeper understanding of, e.g., quantum causality [321] or enable designing new 
types of quantum cryptosystems and finding new methods of breaking the standard 
ones. 

We believe that analysing such C C hierarchies is interesting concerning both fun­
damental aspects of quantum mechanics and possible cryptographic applications for, 
e.g., secure communication, secure information retrieval, or zero-knowledge proofs of 
(quantum) identity. 
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Conclusion 

"God makes everything happen at the right time. Yet none of us 
can ever fully understand all he has done, and he puts questions in 
our minds about the past and the future." 
Ecclesiastes 3:11 in translation of Contemporary English Version 

"On ve svém čase učinil všechno krásné a do srdce j i m vložil touhu 
po věčnost i , jenže člověk není schopen pochopit ani počá t ek ani 
konec toho, co B ů h koná." 
Kazatel 3:11 v překladu Slovo na Cestu 

Nowadays, increasing number of companies has recognised that quantum physics 
is no longer a subject of academic discussions among physicists but rather it opens 
up unprecedented opportunities for solving intricate issues and tasks. They invest 
strenuous efforts and considerable funds to jump on the bandwagon of a very promising 
field, quantum computing, hoping to find solutions to, e.g., industrial, analytical and 
other practical tasks that have been difficult to tackle before. Quantum communications 
is another field that has found its application i n practice, especially for the prospect 
of security warranted by laws of Nature. Thus, quantum technologies are gradually 
becoming part of our lives. 

Since it was formulated more than 80 years ago, a phenomenon of quantum entan­
glement has become an indispensable part of quantum physics and in time it found 
its application (among others) in those above mentioned fields of significance. Thus, 
its detailed study is an imperative for further development of any practical application 
of quantum technologies. Addit ionally, entanglement is of interest even to theoretical 
perspective. 

The goal of this doctoral Thesis is to present three experiments aim of which is 
either to improve a quantum money protocol or to study quantum correlations and their 
hierarchy on Werner states made up of two and three qubits subjected to controllable 
white noise. The common feature of the two remaining experiments is the investigation 
of generalised Werner states, i.e., g G H Z states influenced by white noise. This family 
of states realistically showcases deterioration of entanglement during, e.g., quantum 
communication caused by presence of noise in the communications channel. Since 
two- and three-qubit Werner states are widely used to model quantum information 
transmissions through realistic channels, results of our research might eventually find 
its practical usage. A l l presented experiments were implemented on the platform of 
linear optics and information was encoded into polarisation and spatial modes of single 
photons. Therefore, the main components used for building of these experiments are 
described in the Chapter 1 along wi th source of photons and procedures of encoding 
and analysis of qubits. 

A successful attack on a quantum money (QM) scheme, which is based on quantum 
retrieval games, is presented wi th in the scope of the Chapter 2. This attack was 
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realised by means of imperfect cloning on a beam splitter with the frequency of cloning 
deliberately lowered in order to hide the eavesdropping in noise. We expected that the 
bank uses an unknown secret function, like for instance hash function, and a secret 
number - salt, to encode all issued banknotes. The main result of this experiment is that 
despite using hash function, the secret number has been guessed. Even though quantum 
physics possesses fundamental means (such as no-cloning theorem) to provide security 
of quantum communication, protection is not guaranteed unconditionally. Security 
of quantum communication is affected by several factors, such as the noise threshold, 
which the bank st i l l considers safe. Further assessment of security has to take place 
before this type of Q M protocol becomes a viable quantum technology. It is worth 
stressing that entangled states are present even in this experiment, although it may 
not be immediately obvious. The reason being that during the cloning transformation 
entangled states are inherently created (Eq. (2.6)) as signal and ancillary photons 
overlap on beam splitter. 

In the remainder of this Thesis, i.e., in Chapters 3 and 4, we addressed experimental 
preparation of Werner states and also their generalised form (in the later Chapter). We 
measured concurrence and nonlocal fraction (Chapter 3) on these states and demon­
strated hierarchy of several classes of quantum correlations (Chapter 4). Specifically, 
the aim of the third Chapter is to show how quantification of multipartite entanglement 
can be made more accessible for practical quantum communications where alignment 
and calibration of laboratory devices cannot be guaranteed due to, e.g., an unstable 
conditions. To implement it, the measurements were carried out i n reference-frame 
independent regime, i.e. by means of random sampling, instead of standard quantum 
tomography. Under these relaxed conditions we focused on quantification of entangle­
ment (by means of concurrence) v ia detection of nonlocal fraction. B o t h connection 
between entanglement and nonlocality and quantification of entanglement are of par­
ticular interest. A l l our results are well in agreement with the theory. 

Demonstration of hierarchy of separability, entanglement, steering (2- and 3-measure-
ment scenario) and B e l l nonlocality is discussed in the fourth Chapter. It turned out 
that this hierarchy reveals that generalised Werner states display fundamentally new 
features of quantum correlations. Particularly, unlike Werner state, their generalised 
form does not break Bel l inequality (i.e. they are Bel l local), yet they retain steerability 
in a 2-measurement scenario. Further, it was discovered, by means of both experiment 
and theoretical analysis, that some optimally prepared generalised Werner states exhibit 
increased robustness against white noise. To put it another way, quantum correlations 
of these optimal states are not disrupted upon addition of larger amount of white noise. 
Increased robustness also makes these states being an suitable tool for applications in 
secure quantum communications and cryptography. 

The Author has firm believe that the research presented within this Thesis meaning­
fully contributed to better understanding of such a thril l ing feature of quantum physics 
which entanglement certainly is. The Author is also particularly pleased that our results 
were published in journals with IF, namely Scientific Reports, Physical Review Appl ied 
and Physical Review A . Even though entanglement has found its stable role wi thin 
the context of several fields of quantum physics its study has not been completed, yet. 
There are some open fundamental questions still waiting to be satisfactorily answered, 
such as: "What is the relation between entanglement and nonlocality?" or "How to 
reliably quantify and detect entanglement?". This provides an opportunity for new 
discoveries. Nonetheless, it is a well-known t ruth that research brings actually more 
questions than answers which is in line wi th the quote above. This has a positive 
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effect that there wi l l always be something to research, as ongoing studies widen our 
view and insight into quantum mechanics and bring out new possibilities. St i l l , under 
no circumstances should this quote be viewed as a pessimistic view of the future of 
science. Quite the contrary: it means that the profession of physicist w i l l always find 
employment. 
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Appendix A Supplementary 
Material of Chapter 2 

A . l Strategies for assigning information to measure­
ments performed on cloned pairs 

During the transaction, a pair of states is taken from the card, which the hacker clones 
and from which we receive two pairs of copied qubits. To carefully consider the actual 
attack it is necessary to present a l l the situations in which the states are distorted. 
Using the knowledge of the protocol and assuming high fidelity of cloning, we can 
consider three strategies applied for analysing the results of measurements made on 
cloned pairs. For each measurement result, we assume the most likely situation. 

A . 1.1 Strategy a 

We assume that both pairs of qubits are cloned perfectly. The measurements result in 
the same outcome for clones of the first qubit from a given pair and different outcome 
for clones of the second qubit from the pair. This is a strategy that allows to reject 
the largest number of possible options and gives the most information about the cloned 
state. 
Example: 

• The hacker measures two pairs (|V^4), |V^4)) in the same basis, i.e., Qzz. 

• The result is: (\VH), \VV)) or (\VV), \VH)). 

• The last bit of the hacker's information is assigned at random: (Olr) . 

A . 1.2 Strategy b 
We assume that both qubits are cloned ideally, but the measurement results on each 
pair of clones are the same. This is a strategy allows us to reject half of the possible 
options, from which we are still able to obtain some information about the cloned state. 
Example: 

• The hacker measures two pairs (|V^4), |V^4)) in the same basis, i.e., Qzz. 

• The result is: (\VH), \VH)) or (\VV), \VV)). 

• The second or the third bit of the hacker's information is information is random: 
( O l r o r l r O ) = (010,011) or (100, 110), or (Olr or l r l ) = (010, 011) or (101, 111). 
This results in four random options. 
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A . 1.3 Strategy c 
We assume that one of the clones is orthogonal to the cloned state. This is a strategy 
that does not allow the elimination of any possibility. We do not get any information 
about the cloned state. 
Example: 

• The hacker measures two pairs (\HA), \VA)) in the same basis Qzz. 

• The result is: (\HH), \VV)) or (\HV), \VH)). 

• A l l bits of the hacker's information are random, i.e., 8 options are equally probable: 
(000, 001, 010, 100, 110, 101, 011, 111). 

A . 1.4 Additional variants 
There is also an option that two or more clones end up in the orthogonal state resulting 
in errors in the hacker's information. The probability of such situations is, however, 
for optimal phase-covariant doner no larger than (F — l ) 2 = 0.0213. In Tab. 4 we give 
the probability of a successful attack on a single pair when both qubits from a pair 
are cloned (variant 1) for strategies a\ and b\. The probability of a successful attack 
(assigning the correct information to a pair of qubits) for a single pair for measurement 
in any basis, when both qubits in the pair are cloned for strategy c (i.e., strategy Ci) 
is constant and equals to | ( F — 1)F. In Tab. 4 we also present the probabilities for 
the case where only one qubit from the pair has been cloned (variant 2, strategies a2 

and b2). The probability of a successful attack on a single pair for measurement in any 
basis for strategy c when only one qubit from a pair is cloned (i.e., variant 2, strategy 
c2) is constant and equals to JQ(F — F2 + | ) . Note that very similar analysis is valid 
for measurements Qxx. 

The table has been created using the following procedure. We assume that if the 
bank sends a bit sequence, let it be 000 (in general it is X - 8 possible sequences). 
Next, the cloning is performed. W i t h probability P2 it succeeds twice, with probability 
2(1 — P)P it succeeds once wi th only one of two qubits in the sequence, and wi th 
probability (1 — P)2 it fails and the attacker learns nothing. A t this point we have 
already 4 cases to consider for 8 inputs. To simplify our explanations, let us analyse a 
case where X = 000 — > \HD) (the same procedure is applied for all 8 inputs). 

• Variant 0: W i t h probability (1 — P)2 neither of the clones is created, thus, as in 
the case of erasure channel we get the following direct product of two probabilistic 
spaces: 

{[\HD), 1/4], [\HA), 1/4], [\VD), 1/4], [\VA), 1/4]} x 

{[\HD),l/4], [\HA),l/4], [\VD),l/4], [\VA),l/4]}. 

• Variant 1: For two clones the outcome of optimal cloning appearing with proba­
bili ty P2 is a direct product of two probabilistic spaces, i.e., wi th probability P2 

both clones are created and F is fidelity of cloning: 

{[\HD),F%[\HA),F(1-F)\, [\VD), F(l - F)], [\VA),(1 - F)2]} x 

{[\HD),F2},[\HA),F(1-F)},[\VD),F(1-F)},[\VA),(1-F)2}}. 

• Variant 2: W i t h probability (1 — P)P the first qubit is cloned resulting in the 
following direct product of two probabilistic spaces: 



A . l . S T R A T E G I E S F O R A S S I G N I N G I N F O R M A T I O N 117 

{[\HD), f ], [\HA), f ], [\VD), 1=£], !=£]} x 
{ [ | M > , f ] , [ | / M ) , f ] , [ | W ? > , ^ ] , [\VA),±f]} 

• Variant 2: W i t h probability (1 — P)P the second qubit is cloned resulting in the 
following direct product of two probabilistic spaces: 

{[\HD), f ], \\HA), i = £ ] , [|W?>, f ], [\VA), x 
{ [ | M > , f ] , [ | / M > , ^ ] , [ |W?>,?], [|1M>, 

To complete the stochastic trees we need to explain the decision process of the attacker 
as outlined above to guess three bits Y according to strategies a,b, and c. Let us choose 
query QXX. The attacker can measure (with some probability given by the above-listed 
probabilistic spaces): 

-> set Y = 000 or Y = 001 or Y = 101 or Y = 110 wi th equal 

set Y = 000 or Y = 001 with equal probability, 

set V = 1 0 0 o r V = 1 0 1 with equal probability, 

impossible, set any Y wi th equal probability O R do nothing, 

set Y = 000 or Y = 001 with equal probability. 

> set Y = 001 or Y = 011 or Y = 100 or Y = 101 wi th equal 

impossible, set any Y wi th equal probability O R do nothing, 

set V = 0 0 1 o r V = 011 wi th equal probability, 

set Y = 000 or Y = 010 with equal probability, 

impossible, set any Y wi th equal probability O R do nothing. 

> set Y = 110 or Y = 111 or Y = 000 or Y = 010 wi th equal 

set V = 1 1 0 o r V = l l l wi th equal probability, 

impossible, set any Y wi th equal probability O R do nothing, 

set V = 0 0 1 o r V = 011 wi th equal probability, 

set V = 1 1 0 o r V = l l l wi th equal probability. 

> set Y = 001 or Y = 011 or Y = 110 or Y = 111 wi th equal 

If the query is QZZ, the logic is the same. Finally, by tracking the relevant branches of 
stochastic tree, we create probability tables. Having explained al l the steps, a complete 
stochastic tree for a given query would have the following structure: 8 input states 
X — > 4 cloning failure/success events —> 16 qubit pairs —> 16 measurement outcomes 
—> 8 states Y. The complete analysis of the tree would correspond to tracking 8 nodes 
—> 32 nodes —> 512 nodes —> 8192 nodes —> 65536 nodes. Note that the attacker 

DD, DD -
probability. 

DD, DA — 

DD, AD — 

DD, AA — 

DA, DD — 

DA, DA -
probability 

DA, AD — 

DA, AA — 

AD, DD — 

AD,DA —) 

AD, AD -
probability. 

AD, AA — 

AA, DD — 

AA, DA — 

AA, AD — 

AA, AA — 
probability. 
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Table 4: Jo in t probabil i ty distr ibut ion descr ibing encoded bits and hacker 's knowledge Y 
gained from an at tack on a single pair of qubits encoding 3-bit sequence X for query Qzz 

or after swapping two last bits of X and Y for query Q x x . When cloning both qubits in the 
pair and deal wi th strategy a (i.e., strategy a i ) , we have pi = \F2

) p2 = \{1 — F)2, and 
p 3 = \F(1 — F). In the same regime, for strategy b (i.e., strategy b\), we have pi = | F 2 , 
P2 = f (1 — F)2, and p 3 = \F2 — | F + ^ . If successful c loning was achieved only with 
one qubit f rom a pair, we assume that the second qubit of the pair is associated with two 
completely mixed clones of the fidelity of 1/2. In this second regime we have for strategy 
a (i.e., strategy a2) P l = \F2 + ^ , p2 = \F2 - \F + | , and p3 = - \ F 2 + § F + ^ . 
Under the same assumpt ion on c loning in case of strategy b we have pi = j^F2 + ^ . 

000 001 010 011 100 101 110 111 
000 Pl Pl P2 P2 P3 P3 P3 P3 
001 Pl Pl P2 P2 P3 P3 P3 P3 
010 P2 P2 Pl Pl P3 P3 P3 P3 
011 P2 P2 Pl Pl P3 P3 P3 P3 
100 P3 P3 P3 P3 Pl Pl P2 P2 
101 P3 P3 P3 P3 Pl Pl P2 P2 
110 P3 P3 P3 P3 P2 P2 Pl Pl 
111 P3 P3 P3 P3 P2 P2 Pl Pl 

knows when the cloning succeeds/fails and what is measured. Thus, also for each 
cloning failure/success event and each query a separate probability table is created. 
Finally, three different probability tables are created depending on the decision strategy 
(the attacker differentiates between the strategies). 

The hacker, collecting the results of measurements, is able to learn the algorithm 
of encoding pairs of qubits. However, in order to make it possible the cloning fidelity 
must be optimized. Cloning operation unavoidably involves causing errors in the 
measurement results used for verification. If the level of incorrect results exceeds the 
specified l imit the transaction wi l l be rejected. In order to minimize the error rate 
it is, therefore, necessary to implement an attack strategy that takes into account all 
measurement circumstances. 

A.2 Attack-verification scenarios 
There are 3 attack-verification scenarios that we consider in our work: 

• Scenario (i): Providing the bank wi th results each time cloning takes place. If 
cloning fails, sending random values. 

• Scenario (ii): Providing the bank wi th results only when the measurement is 
recorded by the terminal. In case of unsuccessful cloning, the loss of the qubit is 
reported. 

• Scenario (iii): Measurement of qubits in the specified database after the card is 
removed from terminal, without cloning operation. Random results are sent to 
the bank. 
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Note that in the main text these cases are referred to as strategies. However, here it is 
more suitable to call them scenarios. 

From direct calculations based on the probabilities leading to verification error, we 
can derive an expression concerning the frequency of errors in the verification of a pair 
of qubits e. This is the probability of reporting an error to the bank. Note that it 
depends only on what happens to a qubit measured in a compatible basis. For each 
strategy, the error rate is described by the respective equation [see E q . (2) and (3) in 
the main text], i.e.: 

e ( i ) = P ( l - F) + (1 - P ) / 2 , 

1 
e(m) = J" 

The parameter em takes into account two situations. In the first case, one or both 
cubits are lost during cloning and therefore random results are reported to the bank 
(50% chance of getting an error). In the second case, even if the cloning is successful, 
imperfect fidelity may cause the measurement to give an incorrect result. The error 
rate in scenario (ii) depends only on the imperfect fidelity of the cloning. 

A.3 Mutual information 
In order to quantify the correlation between the attacker and the information encoded 
as a pair of qubits, we enter the value of mutual information J . This value determines 
how many bits of information an attacker can get after cloning one pair of qubits and 
depends on the strategy used, cloning the probability of success P and fidelity F. Mutua l 
information is calculated as 

i n 
PX,Y 

x,y=ooo PXPY 
IX,Y = IY,X = ^2 P X ' Y l o g 2 

where px = Y1Y=OOOPX,Y, PY = Y1XLOOOPX,Y, and X,Y — 000, 001, 010, 100, 110, 101, 
011, 111. When considering scenario (i) to calculate mutual information we need to 
utilise probabilities from Tabs. 1-4 and possibility uniform probability distribution 
(the cloned pair is lost) referred to as strategy 0. The mutual information for security 
analysis of scenarios (i) and (ii), respectively, reads 

-fsec(i) = -P 2(-^ai + hi + ICl) 

+2P(1 - P)(Ia2 + Ib2 + IC2) + (1 - Pfl0 

and 

-^sec(ii) lai ~~r~ Ibi ~r~ I a • 

where J 0 = 0 and the subscripts denote the strategy. These values are query independent. 
For scenario (iii) the information learned by the hacker is ISec(m) = \- Note that for 
this strategy while the attacker can eliminate some of 8 encodings (values of Y), these 
eliminated encodings depend on the order of basis. The attacker can assume/guess that 
the order of encoding bases for the received pair of qubits is XZ or ZX. The order 
must be random because there is no way of gaining this information (thus maximum 
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Table 5: Jo in t probabil i ty distr ibut ion descr ibing encoded bits and hacker 's knowledge Y 
gained from an at tack on a single pair of qubits encoding 3-bit sequence X for query QXX 

(i.e., X X - b a s i s measurement) for scenario (i i i), where the attacker assumes at random 
encoding XZ or ZX. 

000 001 010 011 100 101 110 111 

000 — 0 — 0 — — — — 
32 32 64 64 64 64 

001 0 — 0 — — — — — 
u w w 32 w 32 64 64 64 64 
010 J - 0 — 0 — — — — 
u u 32 w 32 w 64 64 64 64 
0 1 1 0 — 0 — — — — — 
u u 32 w 32 64 64 64 64 
1 0 0 ^ - i J - J - J - O — 0 
101 — — — — 0 0 ^ 
± y j ± 64 64 64 64 w 32 w 32 
n o — — — — — 0 — 0 

64 64 64 64 32 32 
111 — — — — 0 — 0 — 

64 64 64 64 w 32 w 32 Table 6: Jo in t probabil i ty distr ibut ion descr ibing encoded bits and hacker 's knowledge Y 
gained f rom an at tack on a single pair of qubits encoding 3-bit sequence Z for query QZZ 

(i.e., ZZ-bas\s measurement) for scenario (i i i), where the attacker assumes at random 
encoding XZ or ZX. 

000 001 010 011 100 101 110 111 

000 — — 0 0 — — — — 
u w w 32 32 w w 64 64 64 61 
001 ^ - ^ - 0 0 — — — — 
u w 32 32 w w 64 64 64 64 
010 0 0 — — — — — — 

32 32 64 64 64 64 
0 1 1 0 0 — — — — — — 
u u w 32 32 64 64 64 64 
1 0 0 ^ - J - J - i J - J - O 0 
±yjv 6 4 6 4 6 4 6 4 32 32 w w 

101 1 I 1 I I 1 o 0 
± y j ± 64 64 64 64 32 32 w w 

110 — — — — 0 0 — — ± ± y j 64 64 64 64 w w 32 32 
111 — — — — 0 0 — — 

64 64 64 64 w w 32 32 information to gain is here J m a x = 2 instead of J m a x = 3 when the order is known). 
Then, under this assumption, wi th probability 1/2 the attacker, depending on the 
measurement outcomes (query QXX or QZZ - honest but curious attacker), can exclude 
some encodings. The attacker can guess the order of bases correctly only in half of 
the cases. Only if successful, half of 4 encodings can be eliminated. This makes 
^sec(iii) — l-fmax = \- This is confirmed by direct calculations based on Tab. 5 or Tab. 6. 

Note that Figs. 2 and 3 presented in the main text are depict functions / s e c ( n ) [e(n)j 
for n = i , i i , i i i . In case of F ig . 3 depicting conditional mutual information, / s e c ( i ) is 
calculated assuming P = 1, because in this case the hacker infers the information only 
if both qubits are cloned. 
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Material of Chapter 3 

B . l Analytical Derivation of Eq. (3.9) 
The C H S H inequality for general two-qubit state p can be written as [322] 

| a 0 • PS • (b 0 + b i ) +a1-Rp- ( b 0 — t>x) | < 2, ( B l ) 

where ao, a i , bo, b i are unitary vectors in R 3 and Rp denotes the 3 x 3 correlation 
matr ix wi th elements i??- = Tr[p (<jj ® o~j)] given in terms of the three Paul i matrices. 
For the special case, when p stands for the Werner state (in the form proposed in Ref. 
[98]), the correlation matrix R = — w]l 3, where v is the visibility. 

Next we introduce a pair of unitary vectors c 0 and C i by b 0 + b i = c 0 A / 2 ( 1 + x 
b 0 — b i = C i A / 2 ( 1 — xj, where x = b 0 • b i . Substituting al l these quantities into E q . 
( B l ) , one has 

| a 0 • c0y/l + x + a i • C i \ / l — x\ < — . (B2) 
v 

To prove E q . (3.9) we shall find how often inequality (B2) is violated when unit 
vectors a 0 , a 1 ; c 0 , C i and the variable x are chosen independently, randomly, and 
isotropically. Following arguments presented in Ref. [193], to solve the above problem, 
it is sufficient to sample x and dot products ao • Co and a i • c i uniformly from the 
interval [—1, 1] as the actual direction of individual vectors is irrelevant (hereafter, we 
use a = a 0 • c 0 and (3 = a x • C i ) . 

From a geometrical point of view, this solution denotes the fraction of the cube's 
volume containing points (a, (3, x) violating the inequality (B2). For a particular fixed 
x, the regime of the cube containing points violating E q . (B2) are given by 

x 
V\/l — X 

P < _ y l ± ^ v T + ^ _ ( B 3 ) 

Vy/l — X 

Therefore, with some straightforward calculation, one can find that the fraction of Alice 
and Bob's measurement directions that would violate the C H S H inequality and, hence, 
the nonlocal fraction is given by 

w . 4 r ( ^ ™ £ ^ ( B 4 , 
Jx- V c u h e v W l - x 2 

where Vcn^e = 2 3 stand for the cube's volume, the integration is performed for x± = 

± \ / and the result is multiplied by 4 to take into account any possible relabelling 
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of measurement settings and/or outcomes. This is because, for any given measurement 
directions, at most one of the C H S H inequalities can be violated. The value of x± is 
caused by the fact that for fixed v and x > x+ (x < there are no pairs (a, (3) (both 
in the interval [—1, 1]) which satisfy constraints (B2). After appropriate integration in 
Eq . (B3), we obtain Eq . (3.9). Note that for v — 1 the nonlocal fraction pv = 2(ir — 3), 
which is in line with [193]. 

B.2 Nonlocal Fraction Based on the Distribution of 
the Strength of Violation 

Let us take a three-qubit state p and a finite set of measurement settings {Mi}, where 
% — 1, . . . , m. To verify whether the genuine nonlocal correlations are generated for the 
state p and given measurement setting Mi, one should test 185 Be l l inequalities [213] 
of the form 3j(p\Mi) < C ^ H V , where j = 1 , . . . , 185. To this end, it is expedient to 
consider C ^ H V = 1 and 3j(p\Mi) = * ? J ( P | M J ) / C L H V - Based on such a test, a maximal 
strength of violation for Mi is determined as $ j m a x (p ) = max{5j (p |Mj)} , where the 

3 
maximum is taken over 185 Bel l inequalities. Dividing the number of ^ m a x ( p ) , satisfying 
the constraints ffjnax(p) > 1, by the number of measurement settings m, the nonlocal 
fraction is estimated 

n ( { ^ m a x ( p ) A m a x ( p ) > l } ) 
PV(P) = L I M — -• (B5) 

Next, let us consider a state cr(v) — vp + (1 — v)/8 • lis, i-e., a statistical mixture 
of the state p and white noise. Then, one can easily prove that 3j(a\Mi) = v 3j(p\Mi) 
and, hence, the maximal strength of violation ^J4

m a x(cr) = v i J 4

m a x (p ) . Consequently, by 
analogy to E q . (B5), the nonlocal fraction of state a can be written 

n ( # r X ( p ) , # r X ( p ) > #min = I/V} 
pv(a) = l im ' - . (B6) 

In other words, if one knows the distribution of the strength of violation {^ m a x (p )} , 
then the nonlocal fraction of any state a(v) can be estimated by suitable shiftiness of 
the classical threshold denoted by 5 m i n - As a result, one can find a relationship between 
Pv(o~) and the visibil i ty v (c.f. F ig . 3.3(a)). 

In particular, if we assume that p = ps(9, VQ), then the state a(v) = v • vo \9)3 {9\ + 
_l_ i - | ^o i | 8 a n c ^ ^ e relationship between pv(cr) and v is described by E q . (3.15) wi th 
unknown values VQ and angle 9. Therefore, E q . (3.15) can be rewritten as 

v = - UT(9) + 9l(9) p]>* + g2{9) p]j2 + g3(9) py 

(B7) 

B y fitting the distribution pv(cr) versus v described previously wi th E q . (B7) one 
obtains an approximation of both parameters VQ and 9. 
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C . l Universal Detection of Quantum Correlations 
Without Full Quantum State Tomography 

In this work we determined quantum correlations from experimentally generated and 
reconstructed states using a full Q S T . Here we address the question of universal 
detection of quantum correlations without full Q S T . 

(a) Universal detection of an entanglement measure without QST.— The first exper­
imental universal detection of standard two-qubit entanglement without full Q S T has 
been proposed in Ref. [293] (see also [323]) based on the universal witness of Ref. [294]. 
This method has been later improved in Ref. [198] to show theoretically a direct exper­
imental method for determining the negativity of a general two-qubit state based on 
eleven measurements performed on multiple copies of the state using Hong-Ou-Mandel 
interference. To our knowledge, none of these methods of universal entanglement de­
tection without a full state tomography has been demonstrated experimentally yet 
because of the complexity of such setups and low probability of required multiple co­
incidences. Note that an experimental detection, without a complete tomography, of 
the fully entangled fraction of Bennett et al. [199] has been demonstrated by us in 
Ref. [308]. Unfortunately, the fully entangled fraction is not a universal entanglement 
witness in general, so it usually only gives a sufficient (but not necessary) condition of 
entanglement. 

(b) Universal detection of a steering measure without QST.— To our knowledge, 
such methods have been implemented or even proposed neither for the steering robust­
ness nor the steerable weight. The calculations of these popular steering measures 
for general states are based on numerical optimization (using semidefinite programs). 
Thus, in general, these measures up to now can only be determined experimentally 
for tomographically reconstructed states or processes, as it has been done in dozens of 
experimental works (see reviews [242, 243] and references therein). Of course, there are 
many experiments demonstrating quantum steering v ia nonuniversal witnesses (to re­
veal a hierarchy of criteria), i.e., by observing the violations of steering inequalities [242, 
243]. We note that measures of steering (e.g., that proposed for a 2 M S and a 3MS in 
Ref. [320]) which are based on the maximal violation of well-established steering inequal­
ities can be measured without a complete Q S T . For example, the optimal violation of 
the Cavalcanti-Jones-Wiseman-Reid inequality [324] can in principle be experimentally 
demonstrated with polarized photons without scanning all the angles of polarisers. This 
can be done, as we anticipate, in systems similar to those demonstrating the Horodecki 
measure of Bel l nonlocality [308]. 

(c) Universal detection of a nonlocality measure without QST.—The Horodecki mea­
sure [303, 304]) of B e l l - C H S H nonlocality of two-qubit states can indeed be measured 
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without a full Q S T , but, to our knowledge, it has been first determined experimentally 
only recently in our experiment [308] without scanning the angles of the polarisers 
to obtain an optimal value of the angles maximizing the violation of the B e l l - C H S H 
inequality for an unknown two-qubit state. To demonstrate the power of this method, 
we have implemented an entanglement-swapping device. To our knowledge, no other 
experimental universal detections of a nonlocality measure (without scanning the po­
larization angles or without a priori information about a given generated state) have 
been reported yet. 

C.2 Steerable Weight in a Three-Measurement Sce­
nario 

Here we consider two-qubit E P R steering in a 3 M S , when Al ice performs the mea­
surements of the three Paul i operators: X = |+) (+| — |—) (—|, Y = \R) (R\ — \L) (L\, 
Z = |0) (0| — |1) (1|, of qubits encoded in the polarization states of photons, as in our 
experiment. Thus, these measurements are just the projections onto the Pauli-operator 
eigenstates |±> = (|0> ± \l))/y/2, \R) = (|0> + i\l))/y/2, \L) = (|0> - i\l))/y/2, |0>, 
and |1), which correspond to the diagonal, anti-diagonal, right-circular, left-circular, 
horizontal, and vertical polarization states, respectively. These measurements of Alice 
generate unnormalized states o~a\x of Bob for x = X , Y, Z assuming measured eigenval­
ues a — ± 1 . B y denoting f(\m)) = Tr^[( |m) (m\ ® I)p], the six possible unnormalized 
Bob states aa\x read as: 

a + 1 ] x = /(|+)), a _ n x = /(|-», 

a + 1 { Y = f(\R)), a . 1 { Y = f(\L)), 

o- + 1 |z = / ( | 0 » , <7_nz = / ( | l » . (CI) 

Alice, after performing her measurements, holds a classical random variable A = [x, y, 
z] = [(x\ X \x), (y \ Y \y), (z\ Z \z)], where hereafter x, y, z = ± 1 . Thus, the variable 
A can take the values A i = [—1, — 1, — 1], A2 = [—1, — 1, 1], and As = [1, 1, 
1]. The unsteerable assemblage <rM ,̂ can now be expressed as: cr±f,x = ) ] J Z ( 7 ± i i ! ) | Z , 
a±t\Y = E x z

 ax,±i,z, and a ^ z = Y,xy

 ax,y,±i, where ax = a x y z are the states held by 
Bob. 

The steerable weight S3 in our 3 M S can be given by the solution of the following 
S D P (semidefinite program): 

S3 = 1 - max Tr a x y z , (C2) 

such that a x y z > 0 and 

0~±1\X — a±l,y,z > 0; 
y,z 

0~±1\Y — &x,±l,z > 0, 
x,z 

0~±1\Z - &x,y,±l > 0. (C3) 
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C.3 Steerable Weight in Two-Measurement Scenarios 
The above approach can be simplified when analysing E P R steering in 2MSs, i.e., when 
Alice is performing the measurements of only two Paul i operators (XY, XZ, and YZ). 
Thus, one can consider the following three measures: 

(i) The steerable weight S2

Y for the measurements of X and Y. In this case the 
corresponding unsteerable assemblage <rM^ can be expressed as cr±f,x = J2y

 a±i,y a n d 
c^jjy = J2X

 ax,±i, where o~\ = a x y are the states held by Bob. Then the corresponding 
steerable weig ht S*Y can be calculated as the solution of the following S D P : 

S^Y = 1 - max Tr aw > (C4) 

under the constraints: axy > 0 and 

°~±1\X / °~±l,y — 0) c"±i|y — ^2<rx,±i>0. (C5) 
y % 

(ii) The steerable weight S2

Z, based on Alice's measurements of the Paul i operators X 
and Z , is given by: 

S^z = 1 - max Tr a ^ (C6) 
x,z 

such that <TZZ > 0 and 

cr±i\x ~ ^2 a±1>z - °' a ± 1 \ z ~ <T:r'±1 - °- (C7) 
2 £ 

(iii) The steerable weight SYZ corresponding to measuring the Paul i operators Y and 
Z can be calculated as 

S\z = 1 - max Tr aV:Z, (C8) 

under the conditions cr^ > 0, and 

C ± I | Y -
2 J/ 

The optimized 2MS steerable weight (5*2) can be given as the maximum value of 
the steerable weights for specific measurement choices, i.e., 

S2 = m^x(S2

XY, S?z, SY

2

Z). ( C I O ) 

This definition of S2 can directly be applied to symmetric states, including the Werner 
states and G W S s . However, for non-symmetric states (including some of our experimen­
tal density matrices), the optimal projectors can be found numerically by maximizing 
the steerable weight over unitary transformations for any two Paul i operators. In our 
experiments and theoretical analysis, we apply only single Paul i operators (rather than 
their linear combinations) and then optimize them over their unitary transformations. 
Thus, we obtained the steerable weights, which were optimized over von Neumann's 
projection-valued measures ( P V M s ) , instead of the most general case of P O V M s . Note 
that the required optimization over P O V M s is more demanding both experimentally 
and theoretically and it is not applied in this work. We find that, on the scale of 
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Figs. 4.4(c) and 4.5(c), no differences can be seen for S2 if it is calculated by the 
optimized projectors and by applying directly Eq . (CIO) for any of the measured states. 

Note that, in this approach to determine S2, we are l imit ing the number of the 
types of measurements on Alice 's side, but a full Q S T is always assumed on Bob's 
side corresponding to measuring all the Paul i operators. Thus, the steerable weight S 3 
corresponds to a 3-3 measurement scenario, i.e., three types of measurements on Alice's 
and Bob sides (assuming that the efficiency of detectors is known). While the steerable 
weight S%2 (for the specific choice of two Paul i operators) corresponds to a 2-3 scenario, 
i.e., based on two types of measurements on Alice 's side and three on Bob's side. 

A l l these steerable weights in the two- and three-measurement scenarios can be 
efficiently calculated numerically as solutions of the described semidefinite programs 
using standard numerical packages for convex optimization. Our numerical programs are 
based on the software for disciplined convex programming of Ref. [325]. The steerable 
weights in our work were calculated using experimental density matrices, which were 
reconstructed using a full quantum tomography. 

C.4 Steerability in Multi-Measurement Scenarios 
A related question arises about the steerability using a larger number n of the types 
of measurements on Alice 's side, and especially in the l imit of an infinite number of 
measurements. The algorithms of Refs. [301, 302, 326] for constructing L H S models can 
be applied to arbitrary entangled states and thus can be used for finding numerically a 
sufficient condition of unsteerability (i.e., a lower bound on steerability) based on a given 
number of projective measurements. Note that for the G W S s , such a lower bound on 
steerability was determined up to n = 136 measurements in Ref. [302]. For convenience, 
we consider here a steering lower bound which can be numerically determined by 
the protocols of Refs. [301, 302] for a given number n of measurements. We also consider 
a steering upper bound p^in), being a sufficient condition for steerability, based on an 
S D P technique of Ref. [242] (see also [302]) assuming specifically 13 measurements on 
the Bloch sphere. 

The algorithm of Refs. [301, 302] has already been applied to the steerability of 
the Bell-diagonal states (including the Werner states) and G W S s (there referred to 
as partially entangled states wi th white noise). Sufficient conditions of unsteerability, 
corresponding to n — 6, 16, 46, and 136 types of measurements, were found for four 
levels of the algorithm [302]. These results can enable calculating pl$w (n). Note that 
each type of measurement is characterized by a Bloch vector, and all such vectors form 
a polyhedron on the Bloch sphere. 

It is quite challenging to numerically calculate the lower bound p £ w ( n ) of steerability 
in multi-measurement scenarios, even for the next layer of the protocol of Fil let taz et 
al. [302] (corresponding to the number of measurements greater than 136) because 
of the problem which is closely related to the "curse of dimensionality". Indeed, the 
number of deterministic strategies to be checked numerically grows exponentially with 
the number of measurements. The results should also be optimized for the orientation of 
the polyhedra; otherwise the results differ significantly, as explicitly shown in Ref. [301]. 

The ranges of the allowed values of the mixing (p) and superposition (q) parameters 
in pcw(p, <?), for which the G W S s are steerable, increase wi th the number of measure­
ments n. Thus, finding numerically a solution to these steering problems could in 
principle enable us to analyse a more refined hierarchy of the classes of steerability as a 
function of the number of measurements such that a given state is steerable using a given 
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number of measurements, but unsteerable using a smaller number of measurements. 
But an experimental demonstration of such a refined hierarchy is quite challenging, as 
explained below. 

Clearly, a direct experimental demonstration that a given state is indeed unsteer­
able based on 136 types of measurements is extremely demanding using linear optics. 
However, even theoretical demonstration of such a refined hierarchy of the classes of 
multi-measurement steerability for tomographically reconstructed experimental states 
is quite challenging. These problems include the following: 

First problem.—We recall that our experimental G W S s , PQW(p,q), have a high 
Bures fidelity F compared to the theoretical opt imal G W S s , pcw(Po Pt, <?oPt) which on 
average are equal to 0.97. Nevertheless, PQw(p,q) and pcw(Po Pt, <?oPt) can st i l l have 
very different steering properties such that one of the states is steerable and the other 
is unsteerable in the same n-measurement scenario, especially for n > 3. 

Note that a l l the examples of multi-measurement steerability, based on the proto­
cols of Refs. [301, 302, 326], were numerically tested only for highly-symmetric states 
(including the Werner states and G W S s ) . Unfortunately, our experimental states p^w 

have usually a broken symmetry compared to that of the theoretical G W S s , pew- So 
the calculation of the steerability of P Q W in the 2MS and 3MS is sometimes much more 
time-consuming and less precise. This is even the case for calculating the steerable 
weight and steering robustness using standard packages in the 2MS. For example, the 
calculations of these two steering measures for P Q W take at most a few seconds on a 
standard P C , while those for the generated P Q W require sometimes dozens of minutes 
assuming the same precision in both cases. These numerical problems grow very fast 
wi th the increasing number n of measurements. 

Second problem.—Our experimental tuning of the parameters p and q for the G W S s 
is not fine enough, as explained in greater detail in Sec. 4.4.1. Note that the ranges of 
parameters p and q of the G W S s are very small such that a given G W S is steerable 
wi th (n + 1) measurements and unsteerable wi th n measurements for n > 3. Our 
experimental tuning of p and q was good enough to directly generate states in the 
regime #3 corresponding to S3 > 0 and S2 = 0. However, we were not able to directly 
generate experimentally G W S s belonging to different regimes of steerability for a larger 
number n. Note that even our experimental G W S in the regime #4, corresponding 
to £ 2 > 0 and B = 0, was not generated directly. Indeed, we have obtained it in a 
hybrid way, i.e., by numerically mixing experimental states belonging to other regimes, 
as explained in Sec. 4.6.1. 

Third problem.—It is numerically very challenging to check whether a given p^w 

is n-measurement steerable and (n — 1)-measurement unsteerable, which is crucial 
in experimentally demonstrating such a refined hierarchy of the steerability classes 
for multi-measurement scenarios. Specifically, if we numerically obtain S'n(PGw) ~ 
10~ 1 2 , which is the precision of our numerical calculation of the steering measures, it 
is quite biased to decide whether this state p^w is indeed steerable or not. W i t h the 
increasing number n of measurements, the numerically estimated Sn(pQW) become less 
and less precise. So the question arises how to correctly classify the steerability of 
a given experimental state in the hierarchy of classes of steerability in various mult i-
measurement scenarios. 

Fourth problem.—The border between the steerable and unsteerable theoretical 
G W S s is not precisely determined in the limit of an infinite number n of measurements 
on Alice's side. Indeed, the border corresponds to the region #7 in F ig . 4.8(a) spanned 
by the curves plgw and p^p. Estimating p1™ for our experimental imperfect G W S s , PQW, 
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is even more demanding because P Q W usually exhibits a broken symmetry compared 
to that of the ideal G W S s pew-

Thus, for these numerical and experimental reasons, we have decided to analyse in 
detail the steerability of our experimental states for the two simplest types of measure­
ment scenarios only. We believe that this is good enough to show the hierarchy of some 
classes of correlations (including steerability in 2MS and 3MS) for experimental states. 

C.5 Hierarchy of Entanglement Criteria 

C.5.1 Hierarchy of the Shchukin-Vogel Entanglement Criteria 
Here we briefly recall the Shchukin-Vogel entanglement criteria for the universal detec­
t ion of distillable entanglement via the matrices of moments of the annihilation and 
creation operators [276]. This approach, in principle, does not require a full Q S T , so it 
is an alternative to the approach applied in our experiment using Q S T . We indicate 
some advantages and drawbacks of this approach for detecting two-qubit entanglement. 

The Shchukin-Vogel criteria are based on the Hermitian matrices of moments for a 
given two-mode state p, which are defined as follows 

M12 . • M1N 

M21 M 2 2 . • M2N 

Mm MN2 . • MNN 

( C l l ) 

where M y = (JKa^%2all¥ubl3){a^1a^2b^3b'4)) are the moments of the annihilation (a, b) 
and creation (a\ b') operators of two modes of arbitrary dimension. Here % and j label 
multi-indices, e.g., (ii, i2, 13, u ) . These moments can be detected experimentally (at 
least for not too high powers) using, e.g., the setup based on homodyne detection as 
described by Shchukin and Vogel [327]. A partially transposed matrix of moments can 
be obtained from 77l^g as follows: 

Ml = {{a^aila^aj2){b^bi3b^3bj4))r 

= ( (a t i 2 ah a)n an) (6 t i 4 bi3 b^3 V4Y) 

= ((ajfi2ailafjlaj2)(bjfj4bj3bj'i3bh)), (C12) 

where the superscript T denotes partial transposition applied here for the second mode. 
This relation between 77l^g and 77lv

N is a key observation of Ref. [276]. Let TRNXTI^,- ,r„) 
denotes the nxn submatrix of 771 having TflTiT. elements. The Shchukin-Vogel criteria 
are based on the following Sylvester's theorem [277]: 771 N is positive semidefinite if and 
only if its all principal minors are nonnegative, i.e., detjTT?}^ / r i r 2 . . . r ^ > 0. Thus, the 
Shchukin-Vogel criteria correspond to the positive partial transposition Peres-Horodecki 
criterion, but formulated in terms of the matrix moments as follows [276, 277]: 

p is P P T & V 7 V , V { r f c } : d e t { 7 7 Z } ^ ( r i ! r 2 ! . . . r n ) > 0 , 

p i s N P T & 3N,3{rk}: d e t { 7 7 Z } ^ ( r i r 2 . . . ^ < 0, 

(C13) 

where 1 < r-y < r2 < • • • < rn < N, n — 1, 2, • • •, N, and P P T ( N P T ) stands for 
positive (nonpositive) under partial transposition. Many popular entanglement criteria 
can be derived from the Shchukin-Vogel criteria [276, 283], including the Hillery-Zubairy 
inequalities, which are below recalled and applied to the G W S s . 



C.5. H I E R A R C H Y O F E N T A N G L E M E N T C R I T E R I A 129 

0 0.5 1 0 0.5 1 
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(a) (b) 

Figure 9: Hierarchy of criteria versus the C C hierarchy for the G W S s . Specif ical ly, the 
criterion hierarchy is based on different nonuniversal witnesses for a given class of quantum 
correlat ion, while the C C hierarchy reveals different types of correlat ions determined by 
their measures or universal witnesses. Th is is shown here by the example of nonuniversal 
entanglement witnesses using the (a) first and (b) second H Z witnesses. The colour regions 
reveal the C C hierarchy, as in Fig. 4.6(a), while the areas filled with parallel lines show the 
criterion hierarchy. T h e latter areas determine the allowed values of the mixing parameter 
p and the superposi t ion parameter q for the locally rotated G W S s , p<p(p,q), for which 
entanglement can be revealed by the corresponding H Z witnesses: (a) Hi(p<p) for 0 = 7r 
(area filled with blue lines), 0 = 0.87T (red4ine area), and 0 = 0.77T (black4ine area); and (b) 
H2(p<t>) for 0 = 0 (blue-line-fil led area), 0 = 0.2 (red-line area), and 0 = 0 . 3 (black-line-fi l led 
area). For 0 = 7r/2 neither of the H Z witnesses can detect the entanglement of the G W S s . 
T h e dashed curves are obtained from the analyt ical formulas in Eqs. (C22) , (C25) , (C28) , 
and (C29) . 

C.5.2 Hierarchy of the Hillery-Zubairy Entanglement Criteria 
The Hillery-Zubairy (HZ) entanglement criteria for nonuniversal detection of two-mode 
entanglement read as [328]: 

Hx(p) = {nin2) -\{atf)\2 < 0 , 

Hx(p) EE ( m ) ( n 2 ) - | < ^ ) | 2 < 0 , 

(C14) 

(C15) 

where ri\ = a)a and n2 = tfb. Thus, if Hi(p) < 0 or H2(p) < 0 then p is entangled. 
The criteria are simple and useful witnesses of entanglement and have already been 
experimentally tested in a number of setups (see, e.g., [329]). These two criteria can 
be derived from the Shchukin-Vogel criteria by calculating 

, r 
Hn{P) = det{myr 

for 

and 

777™ 

777' 

1 (ab) 

<"i> 
(a&t) 

(at&) 

<«2> 

i 

(ni) 
(ab) 

(afct) 

(n in 2 ) 

(at&t) 

<n2) 

(C16) 

(C17) 

(C18) 
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respectively. To analyse the H Z criteria on the same footing as the discussed measures 
of quantum correlations, one can redefine Hn to be the following H Z witnesses, 

Hn = m a x { 0 , - # „ } . (C19) 

Let us now analyse in detail the hierarchy and effectiveness of these criteria in 
detecting the entanglement of the G W S s compared to the true measures of entanglement 
and other correlations. 

We find the following H Z witnesses for the original G W S s : 

i J i (paw) = m a x { 0 , - f [ l + p ( 3 - 4 g ) ] } = 0 , (C20) 

H2(pGW) = max{0,p2qq-l(l+p-2Pq)2}, (C21) 

where q — 1 — q. It can be seen that H I ( P G W ) is useless in detecting the entanglement 
of the GWSs ; however, H2(PGW) c a n be nonzero. Thus, it detects entanglement for the 
G W S s corresponding to the blue-line-filled area in F i g . 9(a). The threshold (border) 
curve, as a function of the superposition parameter q in pcw{p, q), corresponds to the 
smallest allowed values of the mixing parameter p, for which the entanglement of the 
G W S s can be detected. This threshold is shown by the blue dashed curve in this figure, 
and is given by 

pH2{q) = l / [2(g + V ^ ) - l ] , (C22) 

for q e [|, 1]. Let us now apply the Paul i operator o\ (the N O T gate) to the second 
qubit in the G W S , which results in the state px — {I ® 0 I ) P G W ( - ^ <8> c i ) . Note that any 
local unitary operation does not change entanglement measures, but of course it can 
change entanglement witnesses, which is the case for the H Z criteria. Indeed, this local 
transformation results in the following H Z witnesses: 

i f i ( p x ) = m&x{0,p2qq-lp} , (C23) 

H2{px) = max{0,-1(1-p2)-p2qq} = 0, (C24) 

where p — 1 — p. It is seen that the sensitivities of the H Z witnesses are exchanged for 
Px compared to pew- The second criterion cannot detect entanglement, while the first 
reveals entanglement of some G W S s corresponding to those shown in the blue-line-filled 
area in F ig . 9(b). Analogously to Eq . (C22), the threshold curve for the first H Z witness 
for px(p, q) is given by 

pHlX(q) = 2 / [ l + V l + 16gg], (C25) 

for q e [0, 1]. Now let us apply an arbitrary rotation along the y-axis of the second qubit 
in the G W S s . Thus, we transform p G w into P<t> — [I ® RY(4>)}PGW[I ® -Ry (</>)]) where 
the rotation is described by RY{4>) — [c> — S J s> CL wi th c = cos(0/2) and s = sin(0/2). 
The H Z witnesses for the locally rotated G W S s read: 

H1(p4>) = m a x { 0 , - | [ c 2 [ l + p ( 3 - 4 g ) ] 

+s2(p-4s2p2qq)]} , (C26) 

H2{P4>) = max{0,c4p2qq-lf+(c2f+ + s2f.)}, (C27) 

where f± = 1 ± p ( l — 2q). The threshold curves for the H Z witnesses applied to p</,(p, q) 
are given by 

PHMA) = (fi + y/ft + 2f2)fc1, (C28) 

pH2(q,<P) = 2 / [ V ? + 2(1 + C 1 ) g - C 1 - 1 ] , (C29) 
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which are physically meaningful only in the regions of q for a given 0 such that 
PHMA) e [0, 1] (n = 1, 2). Here / = (1 - d ) 2 ( l - 2qf + 2(4<S\ + C2 + 3)qq, 
with C„ = cos(n0), fi = c 2(3 — 4g) — s2, and / 2 = 8ggs 4. A s seen in F ig . 9, the lowest 
value of q for which the entanglement of the G W S s can be detected via the H Z witness 
H^p^) [ff2(p</>)] is 0 ( |) for 0 = n (0 = 0). For both H Z witnesses, the largest allowed 
value of q is equal to 1. 

Figure 9 shows a comparison of the two approaches to analyse a hierarchy of quantum 
correlations, i.e., the criterion hierarchy, which is based on the H Z witnesses, and the 
C C hierarchy, which is based on the discussed quantum correlation measures. A n y 
good measure of entanglement results in the same C C hierarchy for the G W S s , while 
the criterion hierarchy depends on the applied nonuniversal witnesses and can reveal 
only a subset of the entangled G W S s , which correspond to the regimes j^-2-j^h. This 
figure explains our motivation of experimentally demonstrating in detail only the C C 
hierarchy instead of the hierarchy based on the H Z witnesses, or using other either 
sufficient or necessary conditions of quantum correlations. Unfortunately, by contrast 
to such a hierarchy of criteria, it is experimentally challenging to reveal such a C C 
hierarchy for the G W S s without Q S T . 

C.5.3 Quantum State Tomography via Moments of Annihila­
tion and Creation Operators 

Here we give an example showing that some very limited additional measurements on 
a given state can supplement a partial state reconstruction into a full Q S T . 

We recall that a general single-mode density matr ix p of a bosonic field can be 
reconstructed from the following moments of the annihilation and creation operators 
via the formula [330]: 

oo 1 

( ™ i | p K > = £ , ^ ( a t p + J o ™ ^ ) . (C30) 

Note that this formula can be divergent for some states of the radiation field including 
thermal field wi th the mean photon number (n) > 1. However, for finite-dimensional 
states, the above sum becomes finite. In particular, a two-mode version of E q . (C30) 
leads to the following moment-based representation: 

/ (»f> - (nitf) (at) - (a)n2) (aW) 
(6) - (nib) (n2) - (n in 2 ) (a)b) (a)n2) 
(a) - (an2) (atf) (ni) - (n in 2 ) (nitf) 

(ab) (an2) {nib) (n in 2 ) 

of a general two-qubit state p, where / = 1 — (ni) — (n 2) + ( n i n 2 ) , and the annihilation 
operator a — a\ (and analogously b = a2) is simply a = <r_ = [0, 1; 0, 0], i.e., the qubit 
lowering operator. Thus, an arbitrary two-qubit state can be completely reconstructed 
by measuring only the following moments: (rii), ( n i n 2 ) , (aj), (71*02-1), ( 0 1 O 2 ) , and 
(aia 2 ) for i — 1,2. 

Note that experimental implementations of the H Z witnesses require measuring (n*), 
(n\n2), ( a ia 2 ) , and (a ia 2 ) . Thus, by measuring additionally only the following moments 
(a*) and ( T I J 0 2 _ J ) , one can collect all the information required for a complete Q S T , with 
which one can thus calculate any properties of an experimentally-reconstructed two-
qubit state. 

(C31) 
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Appendix E Contents of Enclosed 

• folder data_Concurence_WS: 

— folder Maps: 

Mapa4. .GHZ03. .35deg. dat 

* Mapa4. .GHZ03. _45deg. ,dat 
* Mapa4. .SEP03. _2_000. .dat 
* Mapa4. .SEP03. .3_001. .dat 
Mapa4. .SEP03. .4_010. .dat 

* Mapa4. .SEP03. .5.011, .dat 
* Mapa4. .SEP03. _6_100 .dat 
Mapa4. .SEP03. _7_101 .dat 

* Mapa4. .SEP03. .8_110 .dat 
* Mapa4. .SEP03. .9_111 .dat 
* README_map.txt 

- folder Tomography: 

* README_Tom.txt 

* tom200114a_GHZ45deg.dat 

* tom200114a_GHZ45deg.mat 

* tom200221a_GHZ35deg.dat 

* tom200221a_GHZ35deg.mat 

• folder data_hierarchy_QCorrelations: 

- folder GWS_densityMat_data: 

* GWS_densityMat_p_0_15.mat 

* GWS_densityMat_p_0_4.mat 

* GWS_densityMat_p_0_6.mat 

* GWS_densityMat_p_0_8.mat 

* GWS_densityMat_p_0_9.mat 

* GWS_densityMat_p_l_bl.mat 

* GWS_densityMat_p_l.mat 

- folder GWS_RAW_data: 

* GSW_RAW_p_0_6.dat 

* GWS_RAW_p_0_15.dat 
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* GWS_RAW_p_0_4.dat 

* GWS_RAW_p_0_8.dat 

* GWS_RAW_p_0_9.dat 

* GWS_RAW_p_l_bl.dat 

* GWS_RAW_p_l.dat 

* README.txt 

- folder WS_densityMat_data: 

* WS_densityMat_p_0_15.mat 

* WS_densityMat_p_0_333.mat 

* WS_densityMat_p_0_5.mat 

* WS_densityMat_p_0_577.mat 

* WS_densityMat_p_0_6.mat 

* WS_densityMat_p_0_65.mat 

* WS_densityMat_p_0_707.mat 

* WS_densityMat_p_0_73.mat 

* WS_densityMat_p_0_8.mat 

* WS_densityMat_p_0_9.mat 

* WS_densityMat_p_l.mat 

- folder WS_RAW_data: 

* README.txt 

* WS_RAW_p_0_15.dat 

* WS_RAW_p_0_333.dat 

* WS_RAW_p_0_5.dat 

* WS_RAW_p_0_577.dat 

* WS_RAW_p_0_6.dat 

* WS_RAW_p_0_65.dat 

* WS_RAW_p_0_707.dat 

* WS_RAW_p_0_73.dat 

* WS_RAW_p_0_8.dat 

* WS_RAW_p_0_9.dat 

* WS_RAW_p_l.dat 

folder data_Quantum_Money: 

- clonesl71121aDx.dat 

- clonesl71121bDo.dat 

- clonesl71121cAx.dat 

- clonesl71121dAo.dat 

- clonesl71121eRx.dat 

- clonesl71121fRo.dat 

- clonesl71121gLo.dat 

- clonesl71121hLx.dat 

- dipl71010d.dat 

j irakovaK_doctoral_thesis.pdf 
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