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Abstrakt 

Tato Disertační práce se zabývá vývojem nové hybridní metody pro současné odha
dování stavů a parametrů nelineárních dynamických systémů, založené na myšlence 
lokálních lineárních modelů, která využívá odhad nejistoty parametrů modelu pro 
automatické nastavení některých parametrů Kalmanova filtru (KF), čímž se výrazně 
zjednodušuje její nasazení a nastavení v praktických aplikacích. V první části se 
disertační práce věnuje shrnutí aktuálního stavu poznání v oblasti dynamických 
systémů, simultánní estimace, K F a modelování nelineárních dynamických systémů. 
Následně se ve dvou samostatných kapitolách věnuje modifikaci K F pro situace, kde 
dominantním vlivem způsobujícím procesní šum jsou nepřesné parametry modelu, a 
dále modifikaci metody Receptive field weighted regression (RFWR) tak, aby mohla 
být použita pro duální estimaci. Nakonec práce popisuje vyvinutou hybridní metodu 
složenou z modifikovaných algoritmů R F W R a K F nazvanou Receptive field duál 
estimation - (RFDE) a demonstruje její funkčnost na simulačních i reálných datech. 
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Abstract 

This Doctoral thesis deals with the development of a new hybrid method for the 
dual estimation of states and parameters of nonlinear dynamic systems based on 
the idea of local linear models, which uses the estimation of the uncertainty of the 
model parameters to automatically adjust the parameters of the Kalman filter (KF), 
thus greatly simplifying its deployment and adjustment in practical applications. In 
the first part, the dissertation summarises the current state of knowledge in the 
field of dynamic systems, simultaneous estimation, K F and modelling of nonlinear 
dynamic systems. Then, in two separate chapters, it discusses the modification of 
K F for situations where inaccurate model parameters are the dominant influence 
causing process noise, and the modification of the Receptive field weighted regres
sion (RFWR) method so that it can be used for dual estimation. Finally, the 
paper describes the developed hybrid method composed of modified R F W R and K F 
algorithms called Receptive field dual estimation - (RFDE) and demonstrates its 
performance on simulation and real data. 
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1 Introduction 

Dynamic systems often occur in both research and engineering projects across vari
ous scientific fields. When working with such systems, the need to control or other
wise influence the system often arises. Controlling the system can simply mean to 
achieve a target value or follow a set trajectory of a single state or multiple states 
(physical quantities) of the dynamic system, maintaining the system in a stable 
or unstable state, initiation, maintaining or damping oscillations, and many other 
forms. 

In this thesis, we deal primarily with systems that are typical for the field of 
mechatronics. These are systems with concentrated parameters of low order, of
ten nonlinear, which typically originated in several other domains, e.g., electronics, 
electromagnetics, solid body mechanics, thermo- or hydromechanics, etc. A very 
common property is the existence of an algebraic or differential relationship be
tween the system states, meaning that we can often find pairs or larger groups of 
states being in the time domain derivative/integral relation, e.g., position - veloc
ity, charge current, etc., which gives the system special properties that we further 
investigate. A typical example of such a mechatronic system is an electric drive. 

When implementing a control algorithm, especially when dealing with nonlinear 
systems, there are three distinct tasks which need to be solved: 

• creating a model of the system, 

• choosing and tuning a signal processing filter or state observer, 

• designing n and tuning the control algorithm itself. 

Usually, the model of the system we want to control, often called the plant, is 
required to be able to simulate the system response in various situations and in 
combination with various filters and controllers without the risk of destroying the 
real plant. There are many different approaches to modelling dynamic systems, 
and the choice is often very application-specific. For the purpose of this thesis, we 
assume that we can deduce a set of ordinary differential equations (ODEs) based on 
the first-principles approach, which describes or approximates the system at hand 
with reasonable precision. By reasonable precision, we mean that we can use it to 
identify the system states and significant nonlinearities, at least on what states the 
nonlinearities depend on. This set of ODEs can be directly used as a model of the 
system (assuming that we are able to estimate or measure the unknown parameters) 
or it can be further approximated by one of many various methods which loosely 
fall into categories called local and global methods. 

The global methods work with a single, usually very complex model structure 
(equation, function) that is valid over the whole state space of the system. Com
mon examples of such methods are polynomial models, neural networks, symbolic 
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1 I N T R O D U C T I O N 

programming, Autoregressive Exogenous (ARX) , Autoregressive Moving Average 
exogenous ( A R M A X ) , linear state space models, transfer functions, etc. On the 
other hand, local methods usually work with multiple simple model structures that 
are valid only over a portion of the state space. Most notably, these methods are 
based on local linear models such as Locally weighted learning (LWL), Receptive 
field-weighted regression (RFWR), Locally weighted projection regression (LWPR), 
locally linear model tree (LOLIMOT), etc. 

In practical applications, it is rare for the system structure to change sponta
neously, however, its parameters can change over time. For example, some parts of 
a mechanism may wear, clog, or degrade, the electric resistance may change with 
temperature, etc. Also, the model parameters could have been estimated with data 
measured on a reference system and then the model could have been used to simulate 
a second system of the same type, manufactured with finite production tolerances, 
thus, having slightly different parameters. In similar cases, it is necessary to use 
model types that are adaptive. For this reason, we mainly focus on local modelling 
techniques, which generally adapt more easily to new data and are considered more 
stable during the adaptation process. 

The second base task that needs to be dealt with when developing a control 
algorithm can be summarised as estimating the states of the system to be controlled. 
This task is important as it provides the necessary feedback information for any 
control algorithm, and the signal quality (accuracy, delay, signal-to-noise ratio, etc.) 
greatly influences the quality and stability of the control process. Solutions to 
this task generally fall into two categories: filters and state estimators. Putting 
aside obvious low-pass and anti-aliasing filters, derivative filters are often used in 
situations where one of the states is not measured directly, such as central difference 
or Savitzky-Golay type filters. For example, when we only measure the position of 
a mechanism and its speed, which is also one of the system states that needs to be 
determined using a derivative filter. 

In cases when common filtration techniques are not sufficient, a state estimator 
should be used. The theory of state estimator methods is well developed and verified 
by many practical applications. The most common ones are the Luenberger state 
observer and the Kalman filter with its many variations. A l l the methods use a 
similar approach: predict the system behaviour based on a model and correct the 
prediction using the measurement of the states that are available. In this way, 
states that are not measured directly can also be estimated, provided that they are 
observable. The standard variants of both of these estimators can be properly (and 
optimally) applied on linear dynamic systems only, however, there are variations to 
the Kalman filter designed to work with nonlinear systems too. Namely, these are 
the Extended Kalman filter (EKF) , the Unscented Kalman filter (UKF), and the 
Particle filter. 

The third task is the design of the control algorithm itself. Aside from the 
common linear control design methods (PID, L Q R , etc.), there are many methods 
and approaches for the design of a control law for nonlinear dynamic systems. At 
random, we can mention feedback linearisation, reinforcement learning, model pre
dictive control (MPC), State-Dependent Riccati Equation (SDRE), gain scheduling, 
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1 I N T R O D U C T I O N 

and many others. Independent of the method we choose to implement, the control 
design methods mostly have to assume the knowledge of all the controlled system 
states. This requirement is often not mentioned when describing the design of com
plex nonlinear control algorithms and is left for the reader to deal with on their 
own, based on the specific application. In practice, this presents a problem which is 
neither trivial nor exact and usually requires the use of one of the above-mentioned 
state estimation techniques. 

To simplify the design process, the three tasks are, in most practical applica
tions, being solved independently. First, the models of the system are created, then 
filters or state estimators are implemented and tuned in simulation or with the real 
plant. Lastly, both are used to implement a suitable control algorithm. The de
sign methods for all three tasks have many parameters which need to be set by 
the developer, while some are not exact, lacking a guide or criterion function to be 
correctly set. This is the most common, independent design process, even though 
the results of all the tasks are highly intertwined and, in the end, serve to solve a 
single criterion, the control process quality. A n example of such problematic param
eters is that of the Kalman filter, especially process noise covariance, or others like 
the number of particles used in a Particle filter, a Model predictive control (MPC) 
horizon, an R F W R local model distribution optimisation step, and many others, 
which mostly (vaguely) represent the confidence embedded in some of the infor
mation sources or convergence aggressiveness. Most of these parameters, in most 
practical applications, cannot be exactly set and tuning several parameters at once 
by hand is complicated and requires a great deal of knowledge and intuition from 
the developer. 

The problems described above often result in a suboptimal control design and 
push developers to choose the design method out of the great variety of available 
algorithms they know and have experience tuning, as implementing a new, previously 
unknown algorithm requires acquiring enough experience to tune it properly. With 
that in mind, the main goal of this dissertation is to simplify the control design 
process by removing, or at least minimising, the need to tune some of the most 
critical design parameters. Based on previous research and experience, this goal 
can be achieved by combining independent tasks into a single adaptive method or 
algorithm, which would only be subject to the overall control quality. We will mainly 
focus on combining the first two tasks, modelling and state estimation, as these have 
practical applications on their own and may serve as a basis for future research in 
combining all three tasks. To summarise, the goal is not to achieve better results, 
but to achieve a simpler practical implementation by the end user of the algorithms. 

These approaches fall into the category called simultaneous estimation, which 
allow the estimation of both system states and parameters of a fixed model struc
ture and work exclusively with nonlinear Kalman filters. Simultaneous estimation 
methods can be further divided into subcategories, the so-called joint estimation 
that considers the system parameters as constant states, and dual estimation, which 
uses two parallel filters sharing their best estimates of the states and parameters re
spectively. Both these approaches, their advantages and disadvantages are described 
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in more detail in Section 2.4. 
Our goal is to develop a hybrid method for the simultaneous estimation of states 

and parameters of nonlinear dynamic systems, which would adapt, online, the model 
of the system and tune a state estimator as new data become available. It is an 
approach similar to dual estimation, where one of the filters is replaced by a more 
complex approximation method, preferably based on local linear models. Both par
allel algorithms share not only their best estimates, but also confidence in that 
estimate, which allows the automatic parameter tuning. 

Naturally, there is also the idea of linking all three tasks, but in this thesis, we 
shall only work with the first two as the first step in this research direction. 
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2 Theoretical Survey 

This chapter deals primarily with the description and summary of the most impor
tant methods and algorithms upon which the rest of the thesis is based. First, we 
briefly describe the common notation used throughout this thesis in Section 2.1, and 
then in Section 2.2, we provide a detailed description of dynamic systems from an 
abstract and mathematical point of view to establish and explain what we mean by 
different dynamic model types in the following chapters. 

Furthermore, in Section 2.3, we describe the classical linear Kalman filter to 
summarise the notation we use in this thesis and the assumptions with which it 
works, so that we can expand the algorithm in the next chapters. 

Lastly, Sections 2.4 and 2.5 provide a brief introduction to simultaneous estima
tion and local approximation methods, respectively, to describe the current state of 
the art in these fields. 

2.1 Notation 

In addition to common notation and rules, we use the following throughout the 
thesis: 

• scalar quantity - math script: x 

• column vector - bold math script: x = [xi,X2, •••}T 

• vector element - lower case math script with index: X, 

• matrix - upper case bold math script: A 

• matrix element - lower case math script with double index: Ojj 

• set (common) - double struck upper case: M 

• set (other) - Greek upper case: Q 

• scalar or vector valued function - lower case math script or Greek: / or <p 

• time domain derivative - dot over the sign: ^ = x, = x 

• null vector - boldface zero math script: 0 

• value estimate - hat over the sign: x 

• technical term - cursive: state space 

Further notations that require a more detailed description are introduced when 
first used. 
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2 T H E O R E T I C A L S U R V E Y 

2.2 Dynamic systems 

In this section, we provide a definition of compact dynamic systems, together with 
the most common terms used in this research area. Keeping in mind that refor
mulating common theoretical knowledge when existing sources can be used may be 
redundant work, Section 2.2.1 is necessary to provide meaning to the various model 
types and terms used in Section 2.2.2 and in the following chapters. 

2.2.1 Definition 

Under the term dynamic system, we can imagine a somewhat simplified representa
tion (model) of a real system that we have in mind, specifically a system that evolves 
over time. By "simplified", we mean that we only observe the outward behaviour of 
the system and the specific physical quantities we want to observe or predict, whose 
model is usually in the form of a set of differential equations. The level of detail is 
highly dependent on the actual application. 

We can find dynamic systems in almost every research field, economics, biology, 
chemistry, engineering, physics, and more. A n electrical circuit, a motor, swinging 
a pendulum, the spread of an epidemic, and chemical reactions can all be viewed 
as dynamic systems. In the literature, for example, in [1, 2], we can find various 
mathematical definitions of a dynamic system, however, all of them define it using 
similar terms: a state, a phase/state space and an evolution function. 

A state or a state vector of a dynamic system is any set of values of such quantities 
at any given time instant that they completely describe the future behaviour of the 
system, without the necessity of knowing the past. To give a few examples, the state 
of a mathematical pendulum is completely described by two quantities - the angle 
and angular velocity, or a DC motor usually has three states - the current, angle, 
and angular velocity. A n alternative definition comes from energy conservation laws 
- a state of a dynamic system is a set of values of such quantities that can describe 
the energy accumulated in the system at any given time. The quantities assembled 
in the state vector form the state space. 

To give a more erudite definition, the state space of a dynamic system S ] C I " 
where n is the number of quantities assembled in a state (i.e., the order of the 
dynamic system), is a set of all possible states xt G Q in which the system can 
be at any given time instant t. In addition, the term phase space has a similar 
meaning. In some texts both are used interchangeably, some others like [1] use 
it in the context of classical mechanics, where momentum and position are used 
to describe the dynamics of each degree of freedom of the mechanism, instead of 
velocity and position. For the purpose of this thesis, these terms can be considered 
equivalent. 

Theoretically, the state space of a real system has various mathematical proper
ties depending on the quantities we choose, but, for the systems we deal with, it is 
enough to say that we deal with systems with concentrated parameters with con
tinuous, complete, and finite state spaces. These assumptions prevent n from being 
infinite (although, in the applications that we deal with, n is usually lower than 10). 
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Also, this means that we can use sets of ordinary differential equations (ODEs) to 
describe models of dynamic systems instead of partial differential equations (PDEs). 

We can theoretically form infinitely many state spaces for any dynamic system 
(e.g. by a linear transformation), however, not all of them are practical. Also, for 
convenience, sometimes we choose to artificially increase the system order and add 
another quantity to the state vector. 

Depending on the type of the set of all possible time instants T, a system can 
be in, we can differentiate dynamic systems into continuous in time (T C M) and 
discrete in time (T = {kTs : k C Z}, where Ts is a sampling period). 

Then, for both discrete and continuous systems, the evolution function (2.1) 

(f>(t,t0, x0) : T x T x S l 4 l ] (2.1) 

unequivocally describes the state xt G of the system at time instant t G T defined 
by the initial state XQ G Q at time instant to G T. The evolution function can be 
applied recursively to track a trajectory in the state space of a system. For example, 
the state of a system X2 at time instant t2 can be written based on a transformation 
from state X\ at time instant t\ or based on Xo at to as in (2.2). 

x2 = (/>(t2,t0,x0) =<t>(t2,t1,x1) (2.2) 

Since state X\ can also be induced from state Xo as in (2.3), 

sci = 0 ( t i , t 0 , x0) (2.3) 

we can also apply <f> recursively as in (2.4). 

x2 = (/>(t2,t1,(/>(t1,t0,x0)) (2.4) 

Usually, when describing a dynamic system, we start from a set of differential 
equations of various orders derived using the first principle methods, such as the 
Lagrange equations. Using an appropriate choice of the state quantities, the set can 
be reassembled as a set of first-order differential equations and written as (2.5), 

x(t) = f (x(t) ,t) (2.5) 

where x(t) 6 R™ is a vector of the time domain derivatives of each of the state 
quantities contained in x(t) and / in (2.6), 

/ (x(t),t) : fl x T 4 R" (2.6) 

where / is a vector-valued function that describes the dynamics of the system. Then, 
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the evolution function (2.1) is the solution to the initial value problem (IVP) of the 
set of equations (2.6) [1]. 

It is important to note that Equation (2.5) represents an explicit form of the 
set of ODEs. In some special cases, the transformation to the explicit form is not 
possible, and we need to work with an implicit form of the equation instead. In this 
thesis, we work with systems that can always be transformed this way. 

Equation (2.5) describes a dynamic system without an external input, a so-called 
autonomous system. It is important to note that the equation defines a vector field 
across the entire state space Q, which means that any trajectory throughout that 
space would be tangent to the vector field in any given state. 

- 3 - 2 - 1 0 1 2 3 
X 

Figure 2.1: An example of a vector field defined by the Equation (2.5) over the state space 
for the specific example of a Van der Pol oscillator [3]. 

Naturally, finding the exact analytical solution to an IVP with (2.5) is generally 
possible only in trivial cases, especially with linear systems. As such, the most 
common solution to the problem is through numerical integration methods using 
one of the standard O D E solvers (Euler, Runge-Kutta, etc.) [4]. In situations like 
these, we effectively replace systems which are naturally continuous in time by a 
discrete version. Furthermore, with systems that use T = {kTs : fc 6 Z + } , we will 
denote a state cc at a time instant tk G T by a subscript index k, i.e., xtk = x^. 

It is useful to develop the evolution function for this special case of a system 
with a discrete set T to be able to make a transformation between two consecutive 
time instants as in (2.7). 

xk = <t> (h , tk-i, ttfc-i) (2.7) 
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We will refer to this special case of the evolution function as evolution operator 
$ : Q x T —> Q. Then, we can write a discrete model of an autonomous dynamic 
system as (2.8). 

x f c = $(a: f c _i,t f c _i) (2.8) 

2.2.2 Dynamic system models 

In practice, we often deal with systems that are not autonomous and have an external 
input. For this reason, we must extend our description of dynamic systems by a 
set of all possible inputs \1/ C M m , where m is the number of external inputs and 
u(t) G \& is a specific set of inputs applied to the system at any given time instant 
t G T. Then, we can expand the models (2.5) and (2.8) by an additional argument, 
acquiring a model of the dynamics of a controlled system (2.9). Also, to further 
simplify the notation, we will be marking arguments which are functions of time, 
e.g. x(t), simply as x as the time dependence is obvious in most cases. 

x = f(x,u,t) (2.9) 

Assuming a known time signal of the input u, the evolution function (2.10) can 
also be a solution to the IVP of (2.9). 

(f>(t,t0, x0, u0) : T x T x f l x $ 4 l ] (2.10) 

and we can also define the evolution operator for a discrete system with an input as 
(2.11). 

xk = $ (ccfc_i , u f c _ i ,t f c_i) (2.11) 

Apart from models (2.9) and (2.11), which we refer to as forward models, it 
is useful in some applications, especially in control design, to use an inverse of the 
forward models, i.e. the continuous and discrete inverse models in the form of (2.12) 
and (2.13), respectively. 

u = r1{x,x,t) (2.12) 

uk = $ 1 (xk ,xk-i ,t f c_i) (2.13) 

2.2.3 Additional models 

Together with the basic system models and dynamic systems themselves, there are 
a number of additional models being used for convenience in practice. Often, it 
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is useful to separate the output of the system from its state. Generally, it can be 
described by Equation (2.14). 

y = g(x,u,t) (2.14) 

where y is the output of the system corresponding to state x and input u. Often, 
the output is simply a subset of state y C x. The output often represents one or 
more quantities that we are interested in tracking or controlling. 

Furthermore, we can also use a measurement model to link the quantities that 
we actually measure with the state, using Equation (2.15). 

z = h(x,t) (2.15) 

where z is the measurement vector corresponding to state x. The measurement can 
also be a subset of the state vector z C x. 

A very important special case of all the above mentioned models is a linear 
system. Assuming that the system at hand is linear, time-invariant, and continuous, 
the general model of the system dynamics (2.9), the model of the output (2.14), and 
the model of the measurement (2.15), can be transformed into linear case equations 
(2.16), (2.17), and (2.18), respectively, forming the so-called state space model of a 
dynamic system. 

x = Ax + Bu (2.16) 

y = Cx + Du (2.17) 

z = Hx (2.18) 

Similarly, for linear time-invariant discrete systems, the discrete dynamic model 
(2.11) with input and measurement models can be transformed into (2.19), (2.20), 
and (2.21), respectively, forming the so-called discrete state space model of a dy
namic system. 

xk = Fxk-! + Guk-i (2.19) 

yk = Cxk + Duk (2.20) 

zk = Hxk (2.21) 

Lastly, by adding the assumption that the model of a continuous system (2.9) 
and a discrete system (2.11) is not dependent on time, but F and $ depend on a 
set of parameters 6 6 l p instead, where p is the number of parameters, both can be 
rewritten in the form of (2.22) and (2.23), respectively. Both will be useful in the 
later chapters. 
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x = f(x,u,b) (2.22) 

xk = $ (ccfc_i , u f c _ i A - i ) (2-23) 

Also, when talking about parameters, it is useful to note a special case of models 
linear in parameters. This is a weaker condition than a linear system, it allows for 
nonlinearities, but the parameter b must only occur as an argument of the linear 
functions. [5] 

Typical examples of functions linear in parameters are a linear model (2.24), a 
polynomial model (2.25) or a nonlinear model (2.26). 

x = xTb (2.24) 

x = b1 + b1x + bsx2 + ... (2.25) 

x = bi sin x\ + 62 expx\ (2.26) 

On the other hand, examples of models that do not fall into this category are 
(2.27), (2.28), and (2.29). 

x = hxb2 (2.27) 

x = bi + 62 sin b3x (2.28) 

x = h exp b2xb

1

3 (2.29) 

This property can be defined by fulfilling the condition (2.30). A model of a 
dynamic system F (x ,u ,b) is linear in parameters exactly when 

m ^ ^ O A a ^ M = o y b a b ( 2 3 0 ) 

The advantage of models linear in parameters is in the great simplification in the 
process of parameter estimation. It allows the use of the least square method and 
its variants (LS, WLS, RLS), gaining the best estimate in terms of the M S E criteria 
in a single calculation without the need for iterative optimisation methods [5]. 

2.3 Kalman filter 

The Kalman filter was developed by several mathematicians and physicists in the 
late 1950s and is named after the Hungarian mathematician and engineer Rudolf E. 
Kalman, who published his now famous paper [6] in 1960. The algorithm was first 
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used in aircraft and spacecraft navigation applications. Nowadays, it is a standard 
method for dynamic system state filtering and estimation, and sensor fusion in 
various fields of research and engineering. 

The filter falls into the category of Recursive Bayesian filters and combines a 
model of the system and measurement data to create the best possible estimation 
of the state vector of the system. We can find many detailed descriptions of the 
algorithm, for example, in [6, 7, 8, 9, 10]. 

In the common implementation, the Kalman filter (KF) is based on a model of a 
linear discrete dynamic system with continuous state space, which can be described 
by (2.19) and a model of the measurement process as described by (2.21). Both 
of these models are assumed to be imprecise, and the imprecision is modelled by 
Gaussian zero-mean noise. Specifically, a noise term is added to both models as in 
(2.31) and (2.32), 

where Wk ~ N{Qki 0) represents the process noise term and Vk ~ M(Rk, 0) rep
resents the measurement noise term, where Qk = cov{wk) is the process noise 
covariance and Rk = cov(vk) is the measurement noise covariance. 

The Kalman filter iteratively predicts the behaviour of the system based on the 
process model and corrects the prediction using the measurement. Obviously, the 
noise terms are not known, which means that both the process prediction and the 
measurement have some degree of uncertainty. It is very important to note, here 
,that the noise terms may represent an unknown or unmodeled effect that corrupts 
the results, an inherently stochastic disruption effect, or an imperfection in the 
model itself. In Equation (2.31), both the previous state Xk-i and the current state 
Xk are the true (unknowable) states of the system, which means that the noise term 
Wk can also be viewed as a complement to the rest of the equation to make the 
model fit. 

In practice, the true states are not known, and we work with the best estimates 
we have, together with a probability density function in the form of a covariance 
matrix, which represents the possible spread or the level of confidence we have in 
our estimates. A l l probabilities are assumed to be Gaussian. 

Various notations are used to describe K F . In this thesis, we will use the hat 
symbol over a variable symbol (e.g. x) to mark that it is an estimate of the true value 
and expand the lower indexing notation by the number of the iteration the estimate 
is based on. For example, x^u represents an estimate of the value of x in iteration 
i based on information from iteration j. Typically, we use either information from 
the previous iteration (j = % — 1), which is called the a priori or the prior estimate, 
or information from the actual iteration (i = j), which is called the a posteriori or 
the posterior estimate. 

Then, every state estimate that we work with is a tuple (2.33), 

xk = FkXk-i + GkUk-i + wk (2.31) 

zk = HkXk + vk (2.32) 
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( % , (2-33) 

where £Cj|j is the estimate of the state vector X;t and is the estimate of the 
covariance matrix Pi that describes the confidence of the state estimate in the form 
of a Gaussian probability density function (PDF). We can also say that the true 
state position in the state space is described by Xi ~ N{Pi\j, Xi\j) with M as the 
PDF. To simplify the notation, we will drop the hat symbol on the covariance matrix 
estimate and simply refer to it as Piu, as is common in most texts, as we never deal 
with true covariance, only with its estimate, making the estimate symbol obsolete. 

Specifically, the Kalman filter algorithm is as follows. We start with an initial 
guess of the state estimate and the covariance matrix (^o|o, -Po|o)- Then, in every 
iteration k of the tracking process (usually every time we get a new measurement), 
we perform the prediction step to acquire the a priori estimate of the state vector 
and its covariance according to (2.34) and (2.35). 

£ f c | f c_i = P f c x f c _ i | f c _ i + Gkuk_x (2.34) 

Pk\k-i = FkPk_i\k_iFk

T + Hk (2.35) 

After that, we use the measurement zk to perform the update step to acquire the 
a posteriori estimates. First, we calculate the Kalman gain K according to (2.36) 
and then perform the updates (2.37) and (2.38), where I is the identity matrix of 
the appropriate order. 

Hk = Pk\k_iH^ [HkPk\k_iH^ + Rk) (2.36) 

xk\k = xk\k-i + Hk [zk — Hkxk\k-i) (2.37) 

Pk\k — {I — HkHk) Pk\k-\ (2.38) 

After the update, we acquire the new estimates (xk\k, Pk\k), which can be used 
again in the next iteration k + 1. 

Notice that the only parameters (apart from the system and measurement models 
described by F, G and H) that we need to set are the process and measurement 
covariance matrices Q and R. They are usually set as constant, which results in the 
Kalman gain K and the estimate covariance P rapidly approaching stable optimal 
values. However, the algorithm allows all the matrices F, G, H, Q, R to change 
values between the iterations as the conditions of the system change. In such a 
case, K and P do not stabilise, but adjust at each step according to the changing 
parameters. This property will be used in later chapters. 

Generally, correctly setting both the process and the measurement noise covari-
ances is the main problem when implementing K F in a practical implementation. 
The measurement noise covariance R can usually be measured, estimated, guessed, 
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or read from a sensor datasheet. Correctly setting the process noise covariance Q is 
another issue, and the question How to set the process noise covariance for a Kalman 
filter? is probably one of the most googled questions by students, engineers, and 
researchers implementing their first filters [7]. 

We can find several ad hoc methods to set Q in some special cases where the 
perfect Kalman conditions are met, for example in [7, 6], also several adaptive 
autotuning algorithms were proposed, for example in [11, 12, 13, 14, 15]. However, 
in most practical applications, the Q matrix is set experimentally by intuition. This 
problem is described and developed in more detail in Section 4.1. 

The Kalman filter is proven to be the optimal state estimator in the least mean 
square sense, however, only if all of the initial assumptions are met. In practice, 
it is often used, even if some of them are not met precisely. For example, some 
sensors (e.g., an encoder) do not produce Gaussian noise, most systems contain at 
least some nonlinearities, etc., the K F can still be used in most applications as long 
as the violations are not overly significant. 

For situations when we deal with significant nonlinearities, there are modifica
tions to the Kalman filter, namely the Extended Kalman Filter (EKF) , which works 
with a more general system and measurement model in the form of Equations (2.39) 
and (2.40) and allows / and h to be nonlinear. 

xk = f{xk-i, uk-i) +wk (2.39) 

zk = h(xk_1) + wk (2.40) 

The filter algorithm is similar to the linear version. The only change is in the 
prediction step, where we can directly use the nonlinear model of the system as 
Equation (2.41). 

x k\k-\ f (scfc_i|fc_i, u f c _i) (2.41) 

Then, wherever the system and measurement matrices F and H are required 
throughout the calculations, they are acquired as the Jacobian matrix of the non
linear functions according to (2.42) and (2.43), respectively. 

Fk = d/(&fc-H*-i , t t f c - i ) ( 2 . 4 2 ) 

dx y 1 

Ht = d" <£gt±> (2.43) 

The E K F is the simplest and generally computationally faster extension of the 
linear K F that is suitable for nonlinear systems, see [16] for more details. 

For more complex problems with more significant nonlinearities, the Unscented 
Kalman Filter (UKF) is often used as an alternative. The U K F relies on heuristi-
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calfy chosen Sigma points which propagate through the nonlinear model and only 
then are used to construct the covariance. As opposed to the linearisation used in 
E K F , this method, sometimes called the Unscented transformation, is known to give 
much better results for highly nonlinear systems, at the cost of computational and 
implementation complexity. For more details on the Unscented Kalman filter, see 
[17, 7, 18]. 

Lastly, both the E K F and the U K F fail when the system is nonlinear in such 
a way that the probability distributions of the state estimates propagated through 
the system dynamics function are not unimodal, or otherwise unfit to be modelled 
by Gaussians. The most computationally expensive estimator for such nonlinear 
systems is the particle filter, which drops most assumptions and simulates the prop
agated PDFs numerically using Monte Carlo-like methods. Again, for more details 
on the Particle filter, see [7]. 

2.4 Simultaneous Estimation 

The purpose of simultaneous estimation is, in the course of the measurement process, 
striving to estimate both the states and the parameters of a model of a dynamic 
system at the same time. Assuming a model in the form of (2.22) or (2.23), we 
target the state vector xk and the parameters bk, iteratively estimating them as 
best as possible based on the known input uk and the measurement vector zk. We 
also consider the structure of the model, the function / for continuous or the $ for 
discrete systems, to be completely known. 

Typically, a suitable variant of the Kalman filter is used for the estimation of 
the state vector, outputting the estimate of the state vector xk\k together with its 
covariance matrix Pk\k, as described in Section 2.3 or, in more detail, regarding the 
choice of the most suitable method for a specific task, in [19, 20]. 

There are many various methods for parameter estimation (PE), which would 
iteratively adjust the estimate based on new data points (online). In case of a system 
which is linear or linear in parameters, for example, the recursive least squares 
method (RLS) can be used (see [5] for further details on RLS and other P E methods). 

In the case where we need to estimate both the states and the parameters, there 
are two distinct approaches that can be used. These are joint estimation and dual 
estimation, which we outline in further detail in the subsequent sections. Regardless 
of the chosen approach, all the applications utilise some of the Kalman filter variants 
in different configurations. Common characteristics, typical for the K F , also follow 
from this. It is always necessary to correctly set the critical tuning parameters, 
especially the process noise covariance. 

2.4.1 Joint estimation 

The simplest way to implement simultaneous estimation is joint estimation. As 
mentioned in the Introduction, while using this approach, we consider the param
eters of the dynamic system to be estimated as constant states. This means that 
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we can create an extended state vector xk = [x^ , &j[]T and reformulate the initial 
models (2.22) and (2.23) into (2.44) and (2.45), respectively. 

Wk = f (xk , uk) (2.44) 

where xk = [x^, 0]T. 

xk = ,u f c _i) (2.45) 

Similarly to any other system, we can use the K F to estimate the state vector 
of the system (2.44) or (2.45). The state extension, in most cases, causes the sys
tem to be highly nonlinear, which forces us to use one of the nonlinear Kalman 
filter versions. The nonlinearity occurs even if the initial system was linear, as the 
parameters now considered states usually are in product with the original states, 
causing a significant nonlinearity. 

The extension of the state vector is simple to implement, however, it has signifi
cant drawbacks. The most important one is the great variation between the original 
states and the parameters dynamics. Usually, the extended system is numerically 
stiff, which makes it hard to simulate and raises numerical problems. Another issue 
is the exponentially increased computational complexity of the K F caused by the 
increase in the system order, which makes all the matrices of the rank n + p instead 
of n. 

2.4.2 Dual estimation 

The second method, which is used more frequently, is dual estimation. In this 
variant, we do not alter the system model or state vector in any way, but implement 
two parallel Kalman filters. The first filter estimates the system states as usual. The 
second filter is based on the same system model as the first, but we swap what we 
consider states and parameters, i.e. the parameters are considered constant states, 
and the states are considered parameters that vary in time. In every iteration, both 
filters exchange information about their best estimates of the current states and 
parameters. Typically, two identical filters ( E K F or U K F ) are used. 

A significant advantage of the n is the relatively lower computational complex
ity, thanks to working with systems of lower order and better numerical stability, 
avoiding the issues of joint estimation. However, there may be a disadvantage in 
not considering correlations between the estimates of the states and the parameters, 
which may cause slower or biased convergence or even instability, as was suggested 
in [21]. 

2.4.3 Example research applications 

This section lists several important research papers that serve both as example 
applications of simultaneous estimation and support the claims and goals of this 
thesis. They can also be used as resources for more detailed descriptions of the 

35 



2 T H E O R E T I C A L S U R V E Y 

algorithms described above. 

A double-scale and adaptive particle filter-based online parameter and 
state of charge estimation method for lithium-ion batteries 

The publication [22] from 2018 illustrates the use of a dual Particle filter to simul
taneously estimate the state of charge and the fixed model structure parameters of 
lithium-ion batteries. Figure 2.2 shows the scheme of the algorithm. Using this 
method, the authors were able to gain an algorithm capable of tracking the actual 
state of the charge of the battery while simultaneously adjusting the imprecise initial 
guess of the model parameters throughout the battery life cycle. 

State estimation 
Initialization 
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k=k+\ 
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Importance 
sampling 
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State estimation 
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Parameter estimation 

-N Output 

Fig. 2. Flowchart of the proposed double-scale D-PF estimator. 

Figure 2.2: The scheme of the dual estimation of a lithium-ion battery equivalent circuit 
and its state of charge. Taken from [22]. 

Joint unscented Kalman filter for state and parameter estimation in Man
aged Pressure Drilling 

The article [23] from 2013 describes a typical implementation of the joint Unscented 
Kalman filter for the estimation of states and parameters in a dynamic system. 
The example application is controlled high-pressure drilling for undersea deposits 
of raw materials. The authors used a hydraulic model of the entire system and a 
state vector extended by the model parameters. In several simulation examples, 
they illustrate the accuracy and precision of the estimation. Figure 2.3 shows the 
hydraulic scheme of the system and the simulation process. 
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Fig. I. Schematic of an MPD system, courtesy of Glenn-Ole Kaasa, Statoil. Fig. 3. Measured and estimated choke pressure. 

(a) (b) 

Figure 2.3: Hydraulic scheme of the controlled high-pressure drilling process (a) and the 
head pressure simulation process (b). Taken from [23]. 

A Bayesian adaptive ensemble Kalman filter for sequential state and pa
rameter estimation 

In the paper [24] from 2018, the authors use dual estimation with a so-called En
semble Kalman filter (EnKF), which is another modification of the U K F , and in 
both simulation and real-data experiments, they compare three different ways for 
the probability density function representation - data grid, normal distribution, and 
an ensemble of particles. First, they target high-dimensional problems, where other 
methods typically fail. 

Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation 
Based on H-Infinity and Unscented Kalman Filters 

In the article [25] from 2017, the authors developed and successfully tested two U K F 
modifications (HIT-UKF and PSO-UKF) for te joint estimation of the lithium-Ion 
battery state of charge (SoC) and the level of degradation, which is a very actual 
task. They conclude that while the P S O - U K F method gives better results and 
converges faster, it is more than 200 times more computationally expensive. 

2.5 Model approximation methods 

When we work with a dynamic system in the form of (2.9), there is a question of 
finding the structure of the function / based on the measured data. Generally, this 
task falls into the field of dynamic system identification [5, 26]. 
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Fco. 6. For data simulated from the Lorenz-% model (see section 4b), contours of the joint posterior distribution 
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Figure 2.4: Convergence of the estimate of the posterior probability density function. 
Taken from [24]. 

In a case where acquiring the function based on the knowledge of the system 
using one of the general analytical modelling methods is not possible, we may choose 
to use one of many general approximation methods to construct a fitting model 
of the function based on measured data, usually the inputs and outputs of the 
system. As we mentioned earlier, these methods can be divided into local and global 
approximation methods. In the context of machine learning, these groups are called 
lazy learning and eager learning [5], where the difference is described based on the 
willingness of the method to generalise new information. Generally, we can say that 
local (lazy) methods are better suited for applications where we require adaptiveness 
and constantly acquire new data across the entire reachable state space of the system, 
which is exactly the situation that we are dealing with. The other advantages of 
local approximation methods may be the higher stability and the sometimes easier 
interpretation for humans. 
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These are the reasons that we decided to mainly use local approximation meth
ods, specifically local linear models as these bring other benefits which will become 
clearer in later chapters. 

When using the local approximation method to model a dynamic system, we try 
to approximate the general form of the model (2.22) or (2.23) using a predefined 
model structure in a limited part of the entire state space. There is a so-called 
kernel function assigned to every local model that determines the area of validity of 
the local model. Various kernel functions are available, usually we choose functions 
that are symmetrical, with single maximum at the centre of the validity area, ap
proaching zero outside. Most commonly, we choose the Gaussian function because 
of its smoothness and the ability to acquire its derivative analytically. The kernel 
functions are usually defined using the Mahalanobis distance metric over the state 
space [27]. The kernel function is often called the validity function, basis function, 
or the weight function. 

Figure 2.5 demonstrates the approximation of a one-dimensional nonlinear func
tion using local linear modes with Gaussian weight functions. 

Nonlinear function approximation by local linear models 
44 -
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Figure 2.5: An example of approximation of a one-dimensional nonlinear function using 
local linear models with Gaussian weight functions using the RFWR algorithm. Taken 
from [28]. 

The structure of the local model is usually linear or at least linear in parame
ters, and therefore most approximation methods utilise some variant of the Least 
Squares method [5]. Various approximation methods differ mainly in the algorithm 
for the placement and shape optimisation of the validity functions. See [28] or [29] 
for more details. In Figure 2.6, we can see an example of the approximation of 
a two-dimensional nonlinear function using the R F W R (Receptive Field-weighted 
Regression) method, which uses a gradient optimisation method of a custom criteria 
function for the weight function, which it calls the receptive field, size and shape op
timisation and, in Figure 2.7, the same function approximated using the L O L I M O T 
(Locally Linear Model Tree) method, which uses heuristic rules to place the new 
model and splits the state space using orthogonal cuts. 
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Two-dimensional RFWR approximation Original nonlinear function 

Figure 2.6: An example of the approximation of a two-dimensional nonlinear function 
using local linear models with Gaussian weight functions using the RFWR algorithm. 
Taken from [28]. 

Two-dimensional RFWR approximation Original nonlinear function 

Figure 2.7: An example of the approximation of a one-dimensional nonlinear function 
using local linear modes with Gaussian weight functions using the LOLIMOT algorithm. 
Taken from [28]. 

2.5.1 Receptive field weighted regression 

In this thesis, we will focus on the R F W R method with the further experiments. 
The original algorithm was first presented in [29] and then expanded for control 
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applications and higher-dimensional problems in [30]. 
A significant advantage of the R F W R method is that, thanks to the gradient op

timisation of the receptive fields, it has the ability to approximate complex shapes 
using a relatively low number of local models. However, it has several tuning pa
rameters which need to be set correctly, otherwise the approximation process may 
be unstable, imprecise, or on the contrary lead to overfitting. 

A detailed description of the algorithm can be found in [29, 31, 32]. Here, we will 
only briefly describe the process to give an overview of the methods we will build 
upon in later chapters. As an example, we chose a simple scalar function (2.46) to 
approximate, but it can be applied in a similar way on whichever model described 
in the previous sections, for example (2.22) or (2.23). 

y = f(x) (2.46) 

The function / will be approximated (or replaced) by local models in the form 
of (2.47). 

Vi = xh (2.47) 

with 

x x (2.48) 

where x G M.n+1 is the input of the local model, jji G K. is the output of the local 
model (and the estimate of the value of the function / ) , x G M " input of the function 
/ , Cj G I™ the location of the centre of the validity function in the input space, and 
bi G M n + 1 the parameters of the local model %. Note that the local model structure 
(2.47) copies the structure of the first-order Taylor polynomial approximation of the 
function (2.46), it is a linear model, and the unity added to the vector of inputs 
corresponds to the constant coefficient of the Taylor polynomial (bias). 

There is a validity function assigned to each local model that defines its weight 
(validity) Wi based on (2.49) 

W i = e -£(*-ci) T A(*-ci) (2.49) 

where Di = Mf Mi is a symmetric positive definite matrix that induces the size and 
shape of the validity function of the local model based on the Mahalanobis distance 
[27] and M is a positive upper triangle matrix. In the algorithm, we usually work 
with M instead of D for numerical stability reasons [29]. 

At any given point in time, we may want to use the set of local models to produce 
the current best estimate of the function / approximation. To calculate the estimate 
y(xq) at any given point xq in the input space, we use the weighted average of the 
local models supplied with the same input according to (2.50). xq is often called 
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the query point of the output estimate. 

Y, Wi{xq)yi{xq) 
y(xq) = (2.50) 

Y,Wi(xq) 
i=i 

with I the number of local models. 
The set of local models (total number, model parameters, and kernel parameters) 

is gradually adjusted with each new available data point (xk ,yk) at each time step 
k. 

The existing local model parameters are optimised using the recursive squares 
(RLS) method. First, the estimate covariance matrix Pk-i is updated according to 
(2.51), and then the parameters bk-i are updated using (2.52). 

+ XiPk-xXk 

bk = 6 f c-i + wi:kPkxk (yk - xlbk-i) (2.52) 

In addition to the quantities described above, there is also a forgetting factor 
A G (0; 1) used in (2.51) to favour more current data points, thus labelling the 
method as adaptive. With A convergent with 1, the effect of forgetting, and thus 
the adaptivity speed, decreases. Usually, A is set between 0.95 and 0.999, depending 
on the specific application. [32]. 

The spatial distribution of the local models is also updated with every new data 
point. The update process follows the gradient optimisation method of the weighted 
quadratic criterion function (2.53). 

Y wi,k (Vk - Vi,k) 
J(x, Miik) = — j (2.53) 

E Wi,k 
i=l 

where Mijk, as mentioned above, is the upper triangular decomposition of the 
distance-inducing matrix Dijk of the i-th local mode at the time step k. 

Note that the value of the criteria function J is a function of M because the 
weight w is also a function of M when calculated through (2.49). 

Then, the gradient optimisation of the criteria J to adjust M follows (2.54). 

dJ 
MiM1 = Miik - a— (2.54) 
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where a is a damping factor. 
The true gradient term in (2.54) is difficult to calculate analytically, as the 

update is performed incrementally and the entire data set is not available. As 
described in more detail in [29], the gradient term is calculated stochastically using 
an incremental implementation of leave-one-out cross-validation. 

The final, similarly important part of the algorithm is the ability to add new and 
prune unnecessary local models according to simple rules: 

1. If no existing local model has weight w > wgen when a new data point is 
acquired, a new model is created with its centre at that point in the input 
space. 

2. In contrast, if more than one local model has weight wiy Wj > wprun, the model 
covering a smaller area is pruned. 

Setting the parameters wgen and wprun can greatly influence the final number 
of local models. wgen is usually set to 0.01, wprun to 0.7. Setting both values to 
be larger leads to more models being used, although, it may lead to overfitting in 
extreme cases. 

2.5.2 Example research applications 

This section lists several important research papers that serve both as example 
applications of local approximation techniques and describe the algorithms used in 
this thesis in more detail. 

Constructive Incremental Learning from Only Local Information 

The paper [29] from the authors S. Schaal and Ch. G. Atkeson was the first to 
introduce the R F W R method mentioned in the Section 2.5. The authors base their 
research on their previous papers [31, 32] which deal with identification algorithms 
for local linear models and their use in control applications. 

In Figure 2.8, we can see a comparison of the R F W R method with a neural 
network using sigmoidal activation functions. It shows that, given the same data 
set, the R F W R method is able to achieve a better fit. In particular, the global 
approximating network is not able to cope with an expanding data set after being 
trained for only a part of it. 

Later, the author followed up with articles [33] and [30] that dealt with the 
R F W R method named Locally Weighted Projection Regression (LWPR) primarily 
aimed at stochastic systems with a very high number of dimensions in the state 
space. 

Locally Weighted Regression Pseudo-Rehearsal for Online Learning of 
Vehicle Dynamics 

Article [34] from 2019 utilises the L W P R method as a pre-learning step to adapt 
a global approximating neural network. The L W P R step is supposed to prevent 
the neural network from naively adapting to new, noise-corrupted data points and 
quickly forgetting the whole model when incrementally added data points come only 
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Figure 1: a) Results of function approximation of the function y=sin(2x)+2exp(-16x^)+N(0,0.16) 
with a sigmoidal neural network, b) results of function approximation by a local receptive 
field-based algorithm, fitting locally linear models in each receptive field (note that the data 
traces "true y", "predicted y", and "predicted y after new training data" largely coincide), c) 
the organization of the (Gaussian) receptive fields of b) after training. 

Figure 2.8: Comparison of approximations of a nonlinear function using the RFWR 
method and a sigmoidal neural network. Taken from [29]. 

from a small area of the state space. The L W P R method uses the raw measured 
data and then the neural network is presented with simulated data points based 
on the L W P R model. Using such an interesting synthetic data generator enables 
the author to create a data set with a different placement of data points than the 
original one, which helps avoid overfitting in overexposed areas of the state space 
while preserving the accumulated knowledge. This application is a great example of 
using the advantages of both local and global approximation. 

The authors apply the method to the modelling of the dynamics of a terrain 
four-wheeled vehicle (laboratory model). They were able to achieve the stable in
cremental adaptation of the neural network with the L W P R pre-learning to changing 
system dynamics more successfully when compared to a neural network alone. 

A Hierarchical Bayesian Linear Regression Model with Local Features 
for Stochastic Dynamics Approximation 

The article [35] from 2018 presents a combination of global stochastic models with 
local methods based on R F W R learning to model typical laboratory mechanical 
systems with stochastic inputs. The authors deal with the R F W R as a method 
that inspired the development of other highly specialised methods. Mainly, they 
aim at modelling the dynamic systems for optimal control design, especially in the 
reinforcement learning framework. 
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Fig. 1: LW-PR2 Algorithm. The GMM produces synthetic input points which are combined with predictions from LWPR to 
create synthetic training pairs. These are combined with randomized mini-batches created from recently collected data in order 
to compute the constrained gradient update. 

Figure 2.9: Block scheme of the algorithm - LWPR forming a database for a neural network 
to approximate vehicle dynamics. Taken from [34]. 

Incremental Receptive Field Weighted Actor-Critic 

The paper [36] from 2013 describes the use of the R F W R method with dynamic 
systems with the continuous state space to model the V-function, a necessary part 
of the reinforcement learning framework to design an optimal control law. 
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3 Formulation of the thesis goals 

The significance and need for the simultaneous estimation are outlined in Chapter 
1 in relation to the typical control design process and related tasks. In Chapter 
2, we described several existing variants of methods for the individual as well as 
the simultaneous estimation of states and parameters of dynamic systems, and local 
linear models of dynamic systems. 

These methods are functional, however, none of them are universally applicable 
and there is no clear metric or methodology for the correct method choice. In prac
tice, developers and scientists often choose the approach with which they have the 
most experience, regardless of the other methods. The existing methods also have 
significant disadvantages as described in Chapter 2, especially requiring intuition-
based tuning of many application specific parameters, the implementation is often 
very layman unfriendly and deals with the estimation of the states and parame
ters (in terms of parameter tuning criteria) separately, even though they are closely 
intertwined. 

Based on previous experiments and research, the goal of this thesis is to con
tribute to the solution of the dual estimation problem by developing a hybrid dual 
estimation method based on local approximation (RFWR for example) for the pa
rameter estimation and the Kalman filter for the state estimation, instead of using 
the same algorithm for both estimation tasks. One of the main issues to deal with is 
the correct (preferably automated or adaptive) tuning of the Kalman filter's process 
noise covariance matrix so that the dual estimation is stable and performs well, at 
least for a specific, limited case of a typical mechatronic system, defined in Chapter 
1. 

It is important to note that we are not primarily aimed at improving the over
all estimation quality, but to simplify the implementation process while keeping 
the quality good enough. That being said, however, improving the quality of the 
estimation will be a secondary target. 

Specifically, we defined four goals for this research, which correlate with the goals 
set and approved at the State doctoral exam: 

Survey and research of the mutual relationship of typical state and pa
rameter estimation methods for dynamic systems 

Chapter 2 describes the relationship of two common tasks that often occur while 
working with nonlinear dynamic systems - state estimation and parameter estima
tion. The first part of the thesis is to research, in detail, the most common methods 
and algorithms used for both these tasks with the goal of finding and exploring 
the possibilities of their mutual interconnection. We will mainly deal with methods 
from the Bayesian recursive filter category (variants of the Kalman filter) for the 
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state estimation task and with local linear approximation methods (LWL, R F W R , 
L O L I M O T , LWPR, etc.) for the modelling and parameter estimation task. 

The interconnection of both tasks can be found, for example, in the imprecision 
or uncertainty of the estimation of parameters, which also translates into the states 
and output of the system. This influences the process noise of the system model, 
which is one of the most important effects that affects the implementation of the 
Kalman filter or variants. Some parameter estimation methods (such as Recursive 
least squares (RLS)) directly deal with the parameter estimation imperfection model 
in the form of Gaussian noise uncertainty. Specifically, questions arise concerning 
what is the effect of the known parameter uncertainty covariance on the process 
noise covariance in case of a linear system or what other effects influence it. 

The output of this step will be an analysis of the signal and parameters occurring 
in both tasks and determining which of them may be used to better tie the said 
algorithms together. 

Modification of the R F W R method for its use on typical mechatronic 
systems 

The original algorithm described in [29] was successfully used in several practical ap
plications mentioned in Section 2.5.2, however, it almost exclusively involves offline 
data processing. As Chapter 2 describes its potential in local linear approximation, 
the original algorithm has several disadvantages that limit its capabilities when ap
plied in the context of the three tasks leading to the control design, especially on 
typical mechatronic systems. 

Namely, these are: 

• problematic stability while incrementally adapting to new data, e.g. when the 
data is asymmetrically localised with respect to the local model centre, 

• vulnerability to overly local data, 

• the validity function dimension is determined by the order of the system, 

• possible inconsistencies between neighbouring local models. 

The goal of this thesis is to modify the original R F W R algorithm in a way that 
it does not suffer from the above-mentioned issues and would be possible to tie the 
algorithm with a state estimation method resulting from the first goal. Specifically, 
these modifications will be made: 

• combining local and global parameters to lower the dimension of the local 
models and validity functions, 

• allowing separate dimension orders for the local models and the validity func
tions, 

• improving the adaptation convergence stability while applying the algorithm 
incrementally, 
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• reducing the user defined parameters, 

• allowing the interconnection if the algorithm with the state estimation methods 
according to the results of the first goal. 

The output of this goal will be a modified adaptive R F W R algorithm for mod
elling nonlinear dynamic systems in the form of a Matlab library. 

Hybrid method for the simultaneous modelling and state estimation of 
nonlinear dynamic systems 

Following up on the previous goals, the third goal of this research is to further 
develop and implement the results from the first goal into the modified R F W R 
algorithm created in the second goal, resulting in a new hybrid method for both the 
modelling and state estimation of nonlinear dynamic systems. The main task is to 
achieve a reduction in the number of parameters a user needs to set and tune while 
simultaneously maintaining or even improving the overall performance of both the 
modelling and state estimation. 

Again, the work will result in a Matlab library. 

Case study on a real system 

The algorithms developed in the second and third goals will need to be tested, first 
in a simulation and on a real system afterwards, which might reveal some possible 
shortcomings that may remain hidden when using simulated data (e.g., due to non-
white noise or unexpected types of nonlinearity). Both algorithms will be tested 
throughout the development process on a suitable system (e.g., a rotary inverse 
pendulum, a magnetic ball levitation system or an automotive actuator, such as a 
throttle valve or an exhaust gas recirculation (EGR) valve) to ensure that the results 
are applicable in the real world. 

These experiments will serve both as proof that the algorithms are working as 
intended and as an example implementation for a possible new user who intends to 
use the results in their own application or research. 
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4 Kaiman filter with uncertain pa
rameters 

In this chapter, we deal with the Kalman filter as a well-known tool for the state esti
mation and tracking of dynamic systems with known parameters. First, in Sections 
4.1 and 4.2, we study the algorithm under ideal conditions, following all the assump
tions where optimality is guaranteed, and try to study and categorise the various 
sources of the estimate error and uncertainty which may occur in real applications. 

Then, in Section 4.3, we introduce a modification to the state covariance predic
tion step of the Kalman algorithm, which is better suited for the specific situation 
where the dominant source of error is the uncertainty of the model parameters. The 
Section 4.4 further elaborates on the topic, and we suggest a partially empirical 
method for setting the process noise covariance in this very specific situation. 

The last Sections 4.5 and 4.6 expands on the previous one by connecting the 
modified Kalman filter to a parameter estimation algorithm (RLS) and applying it 
to a linear model with local validity in the state space of a nonlinear system, and 
expand the algorithm into higher-dimensional space. 

4.1 Kalman filter under ideal conditions 

Generally, the K F can work with a system of arbitrary order, however, to make the 
results more intuitive, we started the research by looking at a first-order system of 
the simplest form (4.1). The system has a single parameter b, state x and input u. 
This trivial model may represent many real dynamic systems, such as the charge 
of a capacitor, the velocity of a point mass in one direction, the temperature of an 
object, and many others. 

x = bx + u (4.1) 

For the purpose of Kalman filtration, we need a discrete representation of such 
a system, which may be acquired by the Euler discretisation method [37], resulting 
in (4.2). 

x = Fxk-x + G m h (4.2) 

where F = 1 — Tsb and G = Ts, where Ts = 5 • 10~3 s is the sampling period. We 
intentionally chose the sampling period as being very short, relative to the system 
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time constant, so that the discretisation effect is negligible. Nonetheless, this effect 
would not influence the results as we consider the discrete system (4.2) to be the 
reference in which we will compare our results to. The continuous version will be 
useful later. 

Figure 4.1 shows sample signals of the system evolving over time. The input 
u was generated as random steps with both the value and the length of the steps 
generated from a uniform distribution. 
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Figure 4.1: Sample signals of the system (4.2) evolving over time. Simulated with Ts = 
5 • 10"3 s, b = 20, the value of u is generated from the uniform random distribution within 
the interval (—10; 10) and the lengths of the input steps are generated from the uniform 
random distribution within the interval (0.05; 0.3) s. 

For this very simple system, we implemented the Kalman filter to track the 
state x, according to Euations (2.34) through (2.38). To study the filter with ideal 
conditions, Gaussian noise was introduced as w in the input signal u and v in the 
measurement step according to (4.3) and (4.4). 

&k\k-i — FkXk-i\k-i + GtUk-i (4.3) 

zk = xk + vk (4.4) 

with wk ~ J\f(Qt, 0) and vk ~ Af(Rt, 0) representing the process and measurement 
corruption noise, and Qt — 9 • 10~4 and Rt = 2.5 • 10~3 are known Gaussian noise 
variances, respectively. 

Since the corruption noise variances and the true state x signal are known in 
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this case, which is not true in most practical applications, it allows us to study the 
effect of imprecise Q and R settings on the filter performance. To evaluate the 
performance, we chose to use a common M S E metric defined as 

n 
*) ( 4- 5) 

k=l 

With the above-described set up, we performed and evaluated the M S E for var
ious Q and R settings independently, resulting in Figure 4.2. Each point on the 
depicted surface represents an individual test with different Q and R settings. 

Figure 4.2: The Kalman filter performance measured as an MSE as a function of the Q 
and R values. Each point on the surface is the average of 50 simulations over a 30 second 
interval with the same settings. The figure also depicts the expected optimal point, the 
direction of symmetry and the cross-section plane that we work with in the subsequent 
simulations. 

The shape of the M metric values forms a surface that reveals several important 
properties, which correspond with theoretical expectations. First of all, the optimal 
setting is achieved for Q = Qt and R = Rt, as expected. Also, it is known that, for 
the corresponding states, the performance of the Kalman filter depends on the ratio 
of not on the specific values. In fact, we can see that the surface is symmetric 
along the line R = Q^, which is also shown as a line if both the Q and R axes are 

M 
\ 
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on a logarithmic scale. 
The symmetry allows us to study the whole situation in a one-dimensional plot 

along the axis perpendicular to the optimal line, in effect looking at a cross-section 
of the surface shown in Figure 4.2. The line perpendicular to the optimal line would 
represent a hyperbola on a linear scale, allowing us to look for its specific shape in 
the form of (4.6), which has only one parameter k. 

R=^ (4.6) 

To determine the parameter, we can specify a single condition as we want it to 
pass through the optimal point (Qt;Rt). Expressing from Equation (4.6), we get 
k = RtQt- The resulting plot is shown in Figure 4.3. For better understanding, the 
plot shows both the Q and R axes, even though R is mapped on Q using (4.6). 
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Figure 4.3: The Kalman filter performance measured as an MSE as a function of the Q 
and R values chosen along the axis of symmetry. The figure depicts the comparison of 
the performance metric to the true noise variance values and shows both the extreme and 
optimal cases of various Q and R settings. 

First of all, the figure shows the optimal setting of Qt and Rt, which overlap on 
the horizontal axes thanks to the mapping, and corresponds with the best metric M 
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value acquired through the simulation as expected. The plot may be separated into 
three regions. For situations where Q « Qt while R » Rt the filter basically 
only considers the prediction step and the measurement is disregarded. In contrast, 
when Q » Qt and R << Rt the filter behaves like only the measurement matters 
and ignores the prediction value. Only in between those two extremes both the 
prediction and measurement values complement each other and the filter has the 
best possible performance. 

It is important to note that the interval where the filter performs well is quite 
wide, which means that it is mostly important to choose the correct order for the 
Q and R values, fine-tuning them is hard to do in practice and does not bring high 
benefits. 

In addition, since the M S E metric M has a similar meaning to the Q and R 
variances, it is interesting to compare it to the optimal values. As can theoretically 
be expected, the value of M converges to the value of Rt with an increasing Q 
(higher confidence in the measurement). On the other hand, the value of M is much 
higher than Qt when the filter regards only the prediction model. This disparity is 
caused by the accumulation of the estimation error as the filter prediction becomes 
unstable or drifts away from the true state value when the measurement value is 
disregarded. 

We can infer from the previous statements that even very noisy measurements 
can be beneficial to a good quality model in terms of long-term stability. 

4.2 Sources of errors and uncertainties 

Based on our experience and previous research, as well as the current scientific 
literature [18, 7, 38, 39, 40, 41], it is safe to say that of the two covariance matrices 
Q and R representing the process and measurement noise, respectively, the process 
noise is the bigger issue. The measurement noise value can usually be estimated, 
measured, or acquired from the equipment datasheet. For this reason, and for the 
fact that only the ratio between Q and R matters, we will consider R to be known 
(at least in its order) throughout the rest of this thesis and focus on the methods 
on how to deal with Q. 

Before we discuss how to set Q correctly, we need to address various sources 
of imperfection and uncertainty that might cause it in the first place. We were 
able to identify several categories of effects that play a dominant role in practical 
applications. 

The process noise can be caused by: 

• a stochastic or an immeasurable input to the system 

• a discretisation (or numerical integration) error 

• a prediction model imperfection 

— wrong, incomplete, or imprecise model structure 
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— inaccurate or uncertain parameters 

The first item, a stochastic or an immeasurable input to the system, is the most 
studied case. We can find several algorithms for tuning the Q matrix, for example, 
in [7]. There is usually nothing that can be done about this issue to diminish its 
influence, as it is mostly part of the application. Examples are wind blowing, human 
behaviour, Brownian motion, or quantum effects. In our case, we can consider this 
issue negligible as we try to model or measure every effect influencing the system 
that we try to track. 

The effect of discretisation can be serious and is often disregarded, however, with 
most dynamic systems in mechatronics, it can be diminished by using higher order 
discretisation methods or shorter sampling periods. Again, in our case, this effect 
can be considered negligible if treated carefully. 

Speaking of discretisation, when the Kalman filter is applied to a truly discrete 
system, not discretised, which contains an integration part, the error of the in
tegration is not only negligible, but truly zero. However, it is advisable to set the 
corresponding element of the Q matrix to be low, but non-zero, to prevent disregard
ing the state measurement completely and causing potential instability or long-term 
drift. A n example of such a system may be (4.7), where Ts is the sampling period 
of the discrete system and k\ and k2 are the system parameters. 

xk-i (4.7) 

The last item on the list is the prediction model imperfection, which can be 
further divided into two categories. The first category covers situations where the 
model structure simply cannot represent the system it is supposed to model well 
enough. For example, when a linear model is applied on a nonlinear system or 
when special kinds of nonlinearities, such as friction effects, are not considered in 
the model structure. This is an issue that is very hard to deal with, and setting the 
Q matrix correctly is left as an ad hoc implementation. However, in the case of our 
research where we decided to use local linear approximation methods, it is safe to 
assume that this effect becomes negligible once the approximation converges. 

That leaves us with the second category of the last item - inaccurate or uncertain 
model parameters. This issue is often regarded as the same problem as the imperfect 
model structure and receives very little scientific attention. We were able to locate 
only a single paper [42] dealing with a similar problem, however, especially in the 
case of local models, this issue becomes the dominant effect causing the process 
noise. We also believe that this issue is the dominant effect far more often than 
not, except when stochastic or immeasurable effects are present. Furthermore, as 
opposed to most of the other issues, we will show, in the following sections, that 
the parameter uncertainty can be dealt with and offers a unique way to set the Q 
matrix accordingly. 

1 Ts 

h k2 
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4.3 Reformulating K F for uncertain parameters 

In the previous section we summarised the effects causing the process noise and 
determined that the parameter uncertainty is the dominant effect that we should 
deal with. Similarly, as the Kalman filter algorithm deals with imprecisions in a 
stochastic way, we will consider the parameter uncertainties stochastic in the same 
Gaussian way. The reason for this assumption is that most parameter estimation 
algorithms use the Least squares method or one of its variants to determine the 
parameters, and this allows for the estimation of the uncertainty. We will expand 
on this idea in the following section. 

First, consider an autonomous one-dimensional discrete system (4.8). 

xk+1 = bxk (4.8) 

where b is the only system parameter replacing the state matrix F, meaning, in this 
case, F = b. 

The Kalman filter assumes the prediction model in the form (4.9), where Wk is 
the process noise, but it can also be seen as the complement to the model to make 
it fit perfectly. 

x f c + i = bxk + wk (4.9) 

Assume that we use an estimated parameter bk with an uncertainty represented 
by its variance Sk = var(bk), meaning that the true value of b ~ A/"(<Sfc, bk)- We can 
reformulate the model (4.8) into (4.10) 

Xk+i = (h + sk)xk (4.10) 

with Sk ~ A/"(<Sfc, 0) being the parameter noise in the same sense as the process noise 
Wk, meaning it is the complement to the perfect value. With this in mind, we can 
further expand the model according to (4.11). 

xk+i = (b + sk)xk 

= bxk + skxk (4-11) 

= bxk + wk 

where Wk = SkXk-
This model corresponds to the original K F model (4.9) with the additional fact 

that the process noise Wk is now a function of the state Xk- This is an important and 
also expected fact when we consider the uncertainty of the parameters as the domi
nant source of the process noise. Figure 4.4 shows such a situation for a very simple, 
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one-dimensional system and graphically reveals that the assumption we arrived at 
that the process noise depends on the actual value of the state, is correct. 

• - Xk+i = bxk (true system 
— Xt+i = bxt (estimate model) 

] model standard deviation 
• Wk (process noise 

xn+i 

Xk(~ 

Figure 4.4: A one-dimensional discrete system with a single parameter b and a compara
ble estimated model of the system depicting the expected model standard deviation and 
resulting process noise. 

The process noise covariance is used in the regular Kalman filter algorithm to 
predict the value of the state estimate covariance according to (2.35), assuming 
Wk ~ N{Qki 0) =>• Qk = var(wk)- From this, we can expand the process noise 
covariance matrix Qk as (4.12). 

Qk = var(wk) 

= var(skXk) (4.12) 

= Skx\ 

Using this expansion, we can modify the state estimate prediction step (2.35) 
as (4.13). This specific expansion only works for one-dimensional systems, we will 
deal with its expansion to higher dimensions in a later section, after experimentally 
verifying the modification. 

Pk\k-i = FkPk-i\k-iF^ + Skxl (4.13) 

The estimate covariance prediction step in the K F basically expands the covari-
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ance by an amount attributed to the process noise, thus keeping track with the state 
prediction step. First of all, (4.13) assumes that all the process noise comes from the 
parameter uncertainty and is covered by the term SkX2

k1 which depends on the ac
tual state Xk as opposed to the regular term Qk. To verify that all the process noise 
indeed comes from the parameter uncertainty, we performed a stochastic simulation 
using the same system as in the previous experiment with Q set precisely to Rt and 
the covariance prediction made using (4.14). Since the system is not changing, we 
set S and Q as being constant during each individual simulation, thus dropping the 
subscript k in this and the subsequent equations throughout the rest of the chapter. 

P f c | f c_! = FfcPfc.xifc.xJf + Q + Sx2

k (4.14) 

We performed a number of simulations for each combination of S and Q, while 
randomly picking the parameter estimate b ~ N{B, 60) =>- B = var(b), for 
each simulation. By averaging the K F performance for each (S, Q) combination, we 
arrive at Figure 4.5. 

Figure 4.5: The simulation compares the effect of the original (Q) and modified (S) K F 
estimate covariance prediction step. Each point on the surface represents an average from 
500 simulations with the randomly picked parameter b with a 10% standard deviation. 
A part of the surface with poor K F performance (high M values) is omitted to make it 
visible. 

The simulation proves that both ways of representing the process noise are viable 
when used individually (we arrive at the optimal results when one of the parameters 
is relatively negligible) and that there is no clear optimum for a combination of 
both. Furthermore, the simulation suggests that the state-dependent prediction 

57 



4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

variant may have slightly better performance. 
Since we can be sure that the combination of both methods is not meaningful, we 

can now study and compare both methods independently in mode detail, in Figure 
4.6. This figure corresponds to Figure 4.3, which represents a similar simulation but 
compares the two methods directly. 

0.04 

0.035 

- - original K F (Q) 
modified K F (5) 

* Qoptimal) ^optimal 

Q, s (-) 

Figure 4.6: The simulation compares the effect of the original (Q) and modified (S) K F 
estimate covariance prediction step applied individually. Each point in the simulation 
represents an average of 25 simulations with the randomly picked parameter b with a 10% 
standard deviation. The results show that the modified version outperforms the original 
K F algorithm by about 35% in this specific scenario with uncertain parameters, with 
^optimal — 

2.75 • 10 3 and Qoptimai = 3.73 • 10 3. 

The results show that with the correct setting, the modified state-dependent 
method for the K F estimate covariance prediction according to (4.13) performs 
comparably or even marginally better when set correctly as opposed to the origi
nal prediction method (2.35) in situations where the parameter uncertainty is the 
dominant cause of the process noise. The question that remains is how to set S 
correctly. 
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4.4 Setting the process noise covariance 

In this section, we try to find the answer to the question of finding or estimating 
the optimal setting for the process noise covariance S when using the modified 
prediction method (4.13) introduced above. 

In Section 4.3 we made the assumption that the imprecise estimation or stochas
tic uncertainty of the model parameters can be modelled as white Gaussian noise 
variance S. Obviously, this is a simplification to a certain degree and this kind of 
assumption cannot always be met, however, there are several reasons to make it. 
First of all, it makes it possible to work with the uncertainty represented by a single 
number (or a matrix in a multidimensional case) and since it is the same assump
tion the Kalman filter framework makes (and guarantees optimality for), it makes 
it compatible with the rest of the K F algorithm. Second, often while estimating the 
model parameters, we also acquire a measure of how well the model fits the data, 
which may lead to an estimate of the correct setting for the S value. Especially in 
our case, when we chose to use the local linear approximation using LS and RLS for 
the parameter estimation, the model comes directly with the parameter uncertainty 
estimate. For the least squares method (LS), the uncertainty covariance estimate is 
known to be calculated according to (4.15), 

where a2 is the estimate error variance, which is theoretically unknown, hence, it 
is replaced by the estimate residual variance e2 and XTX is the so-called cofactor 
matrix based on the data matrix X used for the LS estimate. See [43, 44, 45] for 
further details on the topic. Also, this parameter variance estimate corresponds 
to the P matrix in the RLS algorithm described in Section 2.5, specifically Equa
tions (2.51) and (2.52), where the variance-covariance estimate is generalised for a 
multidimensional case and calculated iteratively, which will become useful later. 

We may come to the conclusion that the best estimate for the value of S is 
B = var(b), however, we were able to disprove this conclusion experimentally, since 
an analytical solution to this issue does not exist. The proof of this claim will 
become clear from experiments in the subsequent sections. 

Furthermore, we introduced an empirical formula which proved to be a very good 
estimate of the value of S. This formula (4.16) is derived from the assumption that 
S must depend on the long-term variance w.r.t. zero of the signal we are tracking. 

Starting from the same simulation as in Figure 4.6, we estimate the value of S 
using the empirical formula (4.16), see Figure 4.7. We can see that the estimate is 
very close to the optimal value, at least in terms of the resulting filter performance. 
Table 4.1 summarises the results numerically. 

(4.15) 

- l (4.16) 
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As we concluded earlier, it is mostly important to tune the value of S (or Q) in 
the correct order of magnitude, as the interval with the 20% best performing values 
spans roughly several (2-3) orders of magnitude. Note, that the K F performance 
with S still outperforms the K F with Qoptimal-

Parameter Value (-) K F performance M (-) 
Qf optimal 1.57 • 10" 3 3.73 • 10" 3 

^optimal 1.80 • 10" 2 2.57- 10" 3 

s 1.60 • IQ" 2 2.75 • 10" 3 

Table 4.1: Comparison of the K F performance with the optimal Q or S values with S 
estimated using the empirical formula (4.16). 

Figure 4.7: Using the same data as in Figure 4.6, the figure shows the estimate of Soptimai 
made using equation (4.16). 

The previous experiments only test the numerical formula (4.16) in a single 
situation with set parameters. To be sure of its robustness and that there is no 
other quantity that should be included, we performed experiments with varying 
parameters, again comparing the performance of the modified K F with estimated 
values of S with the optimal settings, found using gradient optimisation. 

Before describing the experiments, we need to add one more assumption, which 
limits the use of this modified K F (or, in fact, any K F version) to real situations. 
This assumption comes from the ratio between the noise and any given signal that 
we deal with, often called the signal-to-noise ratio, or the SNR metric. There are 
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various ways to calculate it, but we will define it here as (4.17). It is reasonable 
to say that we are only interested in situations where roughly SNR e (1; 100). In 
situations where SNR << 1, the noise is effectively more significant than the signal 
we are trying to track, rendering the estimation task impossible. On the other hand, 
in situations where SNR » 100, the noise is practically negligible, making the use 
of any filter obsolete. This applies to both the measurement and the process noise. 

SNR = EJf9Ual2J (4.17) 
E \noisez\ 

The first experiment, shown in Figure 4.8, studies the comparison of the optimal 
K F setting Sopumai and the estimated setting S acquired from (4.16) with respect 
to the varying parameter noise (the term s in (4.11)) and the amplitude A of the 
system input u . Otherwise, all the parameters remained similar to the previous 
simulations. 

parameter noise ,s (-) 

input amplitude A (-) 

Figure 4.8: A simulation comparing the estimate and optimal value of S for the modified 
Kalman filter with varying parameter noise S and system input amplitude A. Each point 
on the surface represents the average value of 50 independent simulations. The optimal 
value Soptimai was found using a gradient search optimisation method and R was set 
optimally in each simulation. 

The resulting shapes show that the formula (4.16) is a good estimate of S o p t i m a i 

with varying parameters, except for situations that violate the reasonable SNR as
sumption, where the estimate undershoots for very large amplitudes and overshoots 
for very small amplitudes relative to the parameter noise. 

The second experiment was carried out to rule out the potential influence of the 
measurement noise represented by the parameter R and its potential dependence 
on the parameter noise s. Figure 4.9 shows that the results are not dependent on 
the parameter noise, if R is set properly. 
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parameter noise s (-) 

Figure 4.9: A simulation comparing the estimate and the optimal value of S for the 
modified Kalman filter with varying parameter noise s and the measurement noise R. 
Each point on the surface represents the average value of 50 independent simulations. 
The optimal value Sopumai was found using a gradient search optimisation method and R 
was set optimally in each simulation. 

The third experiment, shown in Figure 4.10 expands on the previous one by 
studying only the effect of the parameter noise s in more detail, providing not only 
the average values but also the 95% confidence intervals for both the optimal and 
the estimated S values. 

This experiment demonstrates that the S value estimate slightly overshoots the 
true optimal values in the interval with a reasonable SNR. The overshoot, at 0-
2 orders of magnitude should still provide good enough performance only slightly 
under-performing the optimal values while keeping on the more stable side, providing 
more confidence in the measurement relative to the process prediction. 

62 



4 K A L M A N F I L T E R W I T H U N C E R T A I N P A R A M E T E R S 

E I .1 1 I ,1 1 , 
1 Q-4 1 Q-3 1 Q-2 1Q-1 1Q0 1Q1 1Q2 

parameter noise s(-) 

Figure 4.10: A simulation comparing the estimate and the optimal value of S for the 
modified Kalman filter with varying parameter noise s. Each point represents the average 
value of 100 independent simulations and its 95% confidence interval. The optimal value 
Soptimai was found using a gradient search optimisation method and R was set optimally 
in each simulation. 

4.5 Dual estimation on a local linear model 

The previous experiments were performed with a simple, one-dimensional dynamic 
system. In this section, we will first extend the modified K F presented earlier on 
a more general case and then interlink it with a parameter estimation model on 
a single local linear model of a nonlinear system to provide the basis for further 
development. 

We start with a continuous, nonlinear, non-autonomous, first-order dynamic 
system described by an O D E (4.18). 

a0x + a\X + a2xz = u (4-18) 

where ao through a2 are the system parameters, x is the system state, x the state 
time domain derivative and u the system input. To approximate the system with a 
local linear model, a single model would take the form of (4.19). 

x = b0 + bl(x-c) + b2u (4.19) 

where ao trough a2 are the local model parameters and c the position of the local 
model centre in the state space of x. 

Generally, we require that the system be written in the form consistent with 
(2.31). To achieve this, we use the Euler discretisation method, setting Xk+i ~ 
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(4.20) 

Xk + XkTs with Ts the sampling time in (4.19) acquiring (4.20). 

Xk+i — c = Xk — c + xTs 

xk+i - c = xk - c + (b0 + bi(xk - c) + b2uk) Ts 

xk+i - c = xk - c + Tsb0 + T s6i(x f c - c) + Tsb2uk 

xk+i - c = (1 + T s6i)(x f c - c) + T s(6 0 + b2uk) 

4 + i = ^ 4 + G u*k 

With the simple substitutions F = 1+Tsbi, x* = x — c, G = Ts and u* = 60 + ^ 2 « , 
the Kalman filter framework can be applied to track the state of the system as usual. 
The same approach can be applied to systems with a higher number of dimensions. 

Using the same processes as in the previous sections, we can propagate the 
parameter inaccuracies /3 ~ N(B, 0) through the system as (4.21). 

x*k+1 = (1 + Ts(t>i + ^)){xk - c) + Ts(b0 + (30 + (b2 + I32)uk) 

x*k+1 = Fx*k + Gu*k + Ts(30 + Tsf3lXl + Ts(32uk 

(4.21) 
x*k+1 = Fx*k + Gu*k + wk 

where the term Wk = Ts(30 + Ts(3iX*k + Ts(32Uk represents the process noise generated 
by the parameter inaccuracies in the same way as in (4.11). Then, again using the 
same thought processes as in the previous sections, the process noise covariance (or 
variance in this case) can be calculated as (4.22), while assuming /3Q through (32 are 
independent. Assuming independence in this case is no doubt a simplification, as 
with most parameter estimation methods, the parameter inaccuracies will be cor
related, however, in most practical cases the covariance will be negligible compared 
to the own parameter variances. 

var(wk) = var(Ts(30 + Ts(3ix*k + Tsf32uk) 

var(wk) = var(Ts(30) + var{Tsf3iX*k) + var(Ts(32Uk) 
( 4 - 2 2 ) 

var(wk) = TgVar(f3o) + TgX*kvar(f3i) + T^u2

kvar((32) 

Finally, using the empirical formula (4.16) in a piecewise manner, we can calcu
late the process noise covariance estimate S for each of the terms in (4.22) separately 
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and predict the state covariance according to (4.23). 

P f c | f c _! = FPk.^F7 + S0 + SlXf + S2u\ (4.23) 

where So through S2 are the respective covariance estimates of the propagated 
parameter inaccuracies. Note that the term corresponding to So does not contain 
any state or input and remains constant, only changing when a new parameter 
estimate is available. S0 through S2 are, with respect to the empirical formula 
(4.16) calculated according to (4.24). 

So = \T'B0 

S, = V i ^ x * 2 ] 
2 (4.24) 

S2 = \T2

SB2E[U2] 

To test these conclusions, we performed a simulation experiment comparing the 
state tracking and parameter estimation accuracy using the above-described ap
proach for Kalman filtering and a common Recursive least squares parameter es
timation as a benchmark. Therefore, the RLS method was applied on the raw 
data and also as part of the hybrid state / parameter estimation approach with the 
modified Kalman filter as is depicted in Figure 4.11. 

I 
Local model 

receptive field 

measured r \ 

Modified KF 
> 

X RLS Modified KF 
> 

RLS 
J 

B 

> b 
RLS B , 

> 

Figure 4.11: The diagram depicts the experiment comparing the hybrid state/parameter 
estimation using the modified K F approach together with RLS for the parameter estima
tion and the RLS method on its own. x represents the state of the system, w represents 
the actual local model weight, b represents the local model parameters and B represents 
the local model parameter bias covariance. 

The experiment simulates the behaviour of a nonlinear dynamic system in the 
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form of (4.18) with a randomised input signal, the same as in the previous sections. 
We apply the hybrid estimation to a local linear model in the form of (4.19). The 
validity interval in the state space of the dynamic system of the local linear model 
is described by a Gaussian weight function (2.49), the same as with any single local 
model used in the R F W R algorithm described in Section 2.5.1. In this case, D = 1 
and c = 5. 

The weight w in any given state x is used to discount our belief in the overall 
model prediction. Specifically, (4.23) becomes (4.25). The actual model weight 
is also used in the weighted version of the RLS algorithm, which is also further 
described in Section 2.5.1, specifically (2.51) and (2.52). 

To compare the parameters estimated using both approaches, we use a metric 
described by (4.26), which takes the squared relative error of each of the parameters 
of the local model into account. In this configuration, the best possible estimate 
would have the metric value Mp = 0. We acquired the ideal parameters by means 
of analytical linearisation. 

Figure 4.12 depicts the tracking of the state x of the system by the modified K F 
with hybrid parameter estimation. We can see that outside the validity region the 
K F does not trust the model prediction at all (this corresponds to the R « Q 
situation with the ideal K F described in Section 4.1). 

However, inside the validity region, the filter closely follows the true signal value 
with a minimal tracking error. This behaviour, when the filter prefers and follows 
the measurement outside the validity region of the local model is expected and 
beneficial as it ensures the stability of the tracking task in regions with low model 
validity or high parameter inaccuracy. 

In Figure 4.13, we can see the comparison of the local model parameters, overlaid 
on the (x, x) space, acquired through both approaches. Clearly, the hybrid approach 
achieves the better results, almost completely eliminating the estimation bias even 
though the SNR is significant. 

Furthermore, to compare the results as they evolved over time, Figure 4.14 shows 
the value of the Mp metric calculated using (4.26) every time a new datapoint 
was measured for both methods. Initially, the metric values were high for both 
the approaches, but as the parameter estimate precision was growing, the hybrid 
K F approach started taking the model prediction into account, arriving at a much 
superior result in the end. 

The last figure concerning this experiment is Figure 4.15, which shows the signal 
of the cumulative process noise variance at any given time (without the weight 

(4.25) 

(4.26) 
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0 5 10 15 20 25 
t(s) 

Figure 4.12: State estimation of a nonlinear system using a hybrid K F with online param
eter estimation using RLS. We only estimate the parameters of a single local linear model 
described by D = 1 and c = 5. Outside the validity region of the local model the K F does 
not take the process prediction into account and strongly prefers the measurement signal, 
ensuring stability. 

discounting). The plot demonstrates that the model inaccuracy estimate drops over 
time. Also, the periodical rises in the variance value correspond with the actual 
state being outside of the local model validity range. 
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Figure 4.13: Local model parameters acquired using the two different approaches. The true 
nonlinear system dynamics is represented by the dashed line, the actual noisy datapoints 
are also depicted here. 

Figure 4.14: Comparison of the online parameter estimation process using the RLS alone 
and the hybrid K F + RLS state and parameter estimation. Only datapoints with w > 
0.001 are plotted here as the estimation process essentially stops for w < 0.001, meaning 
the datapoint is outside of the local model validity range. 
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Figure 4.15: The plot shows the cumulative process noise from all the sources, as de
scribed in Equation (4.25) evolving over time. The decreasing trend represents the overall 
improvement in the model parameters while the occasional rises represent the increased 
model variance due to the actual state being outside the validity region of the local model. 
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4.6 Dual estimation in multiple dimensions 

The last experiment in this section extends the previous one by working with a 
dynamic system of a higher order, specifically described by (4.27). 

a\X + a2x + a3x3 + a 4 x + a 5 x 3 + a 6 x 5 = u (4.27) 

with ai = 0.03, a2 = 0.04, 0 3 = 0.0008, 0 4 = 20, 0 5 = —50, 0 5 = 40. These specific 
parameters generate a system with non-monotonic nonlinearity with respect to the 
state x. In this case, we work with a local linear model in the form (4.28). 

x = b0 + b1(x- ci) + b2{x - c2) + b3u (4.28) 

With a system of a higher order, there is one more step to consider before arriving 
at a general formulation of the modified K F framework suitable for systems with 
dominant parameter uncertainty, e.i., the multidimensional state space. To develop 
a proper formulation, we start with an n-dimensional autonomous discrete system 
in the form (4.29) 

xk+1 = Fxk (4.29) 

where xk and xk+\ are n-by-1 vectors and F is an n-by-n square matrix. Assuming 
that the system is written in canonical form, F has the shape of (4.30), meaning 
that the state vector cc is a sequence of derivatives. 

1 Ts 0 0 
0 1 Ts 0 

0 . . . 0 0 
fi h In 

(4.30) 

Using the same thought process as with the one-dimensional case (4.11), we 
can now expand the prediction step of the K F algorithm in the same way as for a 
higher-dimensional case in (4.31). 

xk+1 = (F + s)xk 

= Fxk + sxk (4.31) 

= Fxk + wk 

where F is the state matrix estimate, wk = sxk is an n-by-1 vector of process noises 
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and s is an n-by-n parameter noise matrix. 
Since F is constructed through the discretisation of the continuous form of the 

system, and assuming the discretisation error is negligible, the parameter estimation 
noise takes the form of (4.32). 

0 

0 
si s2 

0 

(4.32) 

Then, the covariance matrix Q can be derived from (4.33). 

Qk = cov(wk) 

= cov(sXk) 

"0 . . . 0 

0 . . . 0 0 
0 . . . 0 xlSxk 

(4.33) 

where S = diag([Si, S2, • • •, Sn]), with Si through Sn are the variance estimates of 
the corresponding noise terms Si through sn calculated using the empirical formula 
(4.16), respectively. 

We can see that the only non-zero element in the Qk matrix used in the prediction 
step of the K F corresponds to the specific case with one input and one state described 
in (4.25). 

In this manner, we can calculate the actual process noise covariance matrix with 
the parameter noise that only influences the highest-order derivative state in the 
state vector. This can also be seen intuitively, as the other states are calculated 
using integration, which does not bring any parameter noise to the system. 

However, it is advisable not to leave the other diagonal elements as exactly zero, 
but to use a very small number, with respect to the corresponding elements of R, to 
ensure the higher stability and prevent the long-term drift of the higher-order states 
even if they are being measured. Also, these elements can be nonzero if the other 
process noise causing effects categorised in Section 4.2 are not negligible, especially 
the effect of discretisation. 

Applying these findings to the multidimensional case used in our experiment, the 
overall process noise covariance used in the prediction step at each step is calculated 
through (4.34). 

qn 0 
. 0 S0 + SlXfk + S2xfk + S3u2

k 

(4.34) 
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where So through S3 correspond to the optimal variance estimates calculated using 
the empirical formula (4.16) for the corresponding parameters bo through 63 in the 
local linear model in the form (4.28). 

Using (4.34), the prediction step is performed through (4.35). 

P f c | f c _! = FPk_1]k_1FT + -Qk (4.35) 

ment noise covariance is set to R corresponding to the artificially 

As we commented earlier, the term Qn is not set as zero. In this experiment, 
it is set as Q n = 10~4 to account for the discretisation error, while the measure-

~10"3 0 
0 K T 1 

generated measurement noise during the simulation experiment. 
Throughout the experiment, the local model centre was placed at c\ = 0.85 and 

C2 = 5, with the corresponding Gaussian validity function described by the size 
"100 0.4444" 

0 10" 1 ' 
Figures 4.16 and 4.17 demonstrate the results of the experiment, similar to the 

one-dimensional case. We can see that the hybrid approach was able to stably 
achieve better results, while requiring no parameters to be set manually. 

inducing matrix D 

Figure 4.16: Local model parameters acquired using the two different approaches. The 
true nonlinear system dynamics is represented by the transparent mesh. 

The results show that the simultaneous state and parameter estimation approach 
using a hybrid K F with the modified process covariance prediction step and the RLS 
algorithm is viable and can provide significant benefits over simply applying the RLS 
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•RLS 
•RLS + modified K F 

Figure 4.17: Comparison of the online parameter estimation process using the RLS alone 
and the hybrid K F + RLS state and parameter estimation. 

method on the raw data and over the other dual estimation methods by not requiring 
manual parameter tuning. 

4.7 Chapter summary 

In this chapter, we first studied in Section 4.1 the Kalman filter under ideal condi
tions with all theoretical assumptions met to demonstrate the performance of the 
algorithms with correct and incorrect settings and to come to an important conclu
sion that the interval with optimal setting usually spans over one or two orders of 
magnitude. Therefore it is not the exact value of the parameter that needs to be 
set, but only its correct order to achieve close-to-optimal behaviour. 

Then, in Section 4.2, we studied the various sources of error which cause and 
influence the process noise and framed the exact situation we are dealing with when 
the dominant source is the parameter estimation error or uncertainty. 

Further on, in Section 4.3, we reformulated the process covariance prediction step 
of the Kalman filter to better suit our case and showed in simulation experiments 
that it performs marginally better that the original algorithm. 

Building upon previous findings, in Section 4.4, we describe an empirical formula 
to estimate the process noise variance in this specific scenario and show in statistical 
simulation experiments that it is able to provide a reasonably accurate and robust 
estimate. 

Then in the last two Sections 4.5 and 4.6 we form the hybrid dual estimation 
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algorithm for a single local model and then expand the idea to a higher-dimension 
space, respectively. In both Sections the simulation experiments show that this 
parameterless hybrid dual estimation performs better than a simple recursive least 
squares method while not using any tunable parameter. 
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5 RFWR modification 

In the previous chapter, we developed and experimentally verified a modified version 
of the Kalman filter suitable for hybrid dual estimation with local linear models. 
Before applying this modification at scale, in this chapter, we return to the original 
local modelling algorithm that we chose as our starting point, the Receptive Field 
Weighted Regression, to further develop and modify this method to be more suitable 
for use in the situations that we are dealing with in this thesis. The main topics of 
the research are summarised in Chapter 3, Section 3. 

We implemented all the modifications to the R F W R algorithm as a part of a 
new function library developed for Matlab, which served to simplify the experiments 
and also represents a notable output of this research on its own, as it can be used 
in the future by other researchers and engineers. 

The library is represented by a Matlab class called rfdelib that implements all the 
core functions and presents the user with public access methods for use and plotting. 
The name of the library (RFDE) stands as an acronym for Receptive Field Dual 
Estimation, which comes from the idea of merging the R F W R algorithm with the 
Kalman filter for dual estimation, presented in Chapter 6. In this chapter, we only 
describe a part of the library connected to the R F W R algorithm itself, as it can be 
used as an approximation tool on its own. These two Chapters 5 and 6 describe 
both the algorithms and their implementations in the library. The reason behind 
this kind of presentation is that it may also serve as a quick guide for a potential 
library user. 

This chapter is divided into two sections. First, in Section 5.1, we present the 
modified R F W R algorithm implemented in the library, and then, in Section 5.2, we 
present experimental simulations that demonstrate the library functions.1 

5.1 R F W R library for M A T L A B 

The main functionality of the library is accessible to the user through just three 
methods, presented with their inputs and outputs in Figure 5.1. Throughout the 
library, x and y are used to mark the input and the output of the set of local models 
that approximate a relation y = f(x). The library is implemented assuming that y is 
a scalar, since there is no reason for multiple outputs to be simultaneously modelled 
by the same set of local models. In a case where more outputs are needed, the 
library can be initialised in several independent instances existing in parallel. The 
first method, the constructor bearing the name of the library, is used to initialise the 

In this chapter, we assume the reader is familiar with the basic concepts of (object-oriented) 
programming and Matlab programming language syntax. 
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object with user-defined parameters, while only the datalnputSize, which specifies 
the number of inputs in x, is compulsory. 

f u n c t i o n h = r f d e l i b ( d a t a l n p u t S i z e , o p t i o n s ) 
f u n c t i o n l e a r n (x, y) 
f u n c t i o n [ y , C o n f I ] = g e t _ e s t i m a t e (x) 

Figure 5.1: Main publicly accessible methods of the rfdelib Matlab class. 

Next, there is the learn function, which takes both x and y as input, which 
have the meaning of a single corresponding data sample (x, y) used to update the 
set of local models stored inside the object. The method has no output. This 
method implements the core functionality of the R F W R algorithm as described in 
[29], namely adding new and pruning obsolete local models, and updating the model 
parameters and their respective receptive fields. A l l the functions called inside the 
learn method are privately accessed methods of the rfdelib class. Figure 5.2 shows 
a simplified implementation of the learn method. 

f u n c t i o n l e a r n (h,x,y) 

W = h . g e t _ l m _ w e i g h t ( x , 0 , 0 ) ; % c a l c u l a t e w e i g h t f o r e v e r y lm 

h.update_lm(x,y,W); % update 1ms u s i n g RLS and d i s t a n c e m e t r i c 

h.add_lm(x,y,W); % add new lm & r f i f n e c e s s a r y 

h.prune.lm(W)% prune o b s o l e t e lm & r f i f n e c e s s a r y 
end 

Figure 5.2: Implementation of the basic RFWR functionality in the learn method. 

Lastly, there is the method get-estimate, which is used to calculate the actual y 
estimate corresponding to the input query point x. The method also returns the 
size of the 95% confidence interval corresponding to the estimate. The confidence 
interval can be calculated using the LS parameter bias based on (4.15) or, since 
the parameters are being estimated using the RLS algorithm, we can utilise the 
covariance estimate P the algorithm provides and iteratively updates anyway. The 
covariance matrix P in (2.51) represents the variances of and covariances between 
the individual parameters with var \ = Pa the variance of the i-the parameter 

itself, and cov (hiy b^j = Pij = Pji the covariance of the two parameter estimates. 
The estimated variance of a single model output can then be calculated by propa
gating P to the output space, and we can calculate the standard error sey by taking 
the square root of the variance as in (5.1). 

sey = \Jvar(y) = \JxTPx (5.1) 
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Naturally, sey corresponds to the 68% confidence interval and 2sey to the 95% 
confidence interval of y. The get-estimate method returns the weighted average of 
sey according to the validity value of the local models for the given x. 

We experimented with various implementations of (5.1) to improve the perfor
mance, for example, by only working with diagonal elements of the matrices, but in 
the end, the original method proved to be the most robust, and the lower compu
tational complexity of any simplification did not outweigh the loss in precision and 
numerical stability. 

It is actually quite simple to use the library as is shown in the pseudocode 
presented in Figure 5.3. 

LM = r f d e l i b ( 2 ) ; % i n i t i a l i s e t h e LM o b j e c t f o r two i n p u t s 

f o r i = % each d a t a p o i n t i n d e x 
x ( : , i ) = g e t _ s y s t e m _ i n p u t ( ) ; % measure or l o a d i n p u t d a t a 
y ( i ) = g e t _ s y s t e m _ o u t p u t ( ) ; % measure or l o a d o u t p u t d a t a 
LM. l e a r n ( x ( : , i ) , y ( i ) ) 

end 

xq = [0 0 ] ; % t h e query p o i n t - t h e p o i n t o f i n t e r e s t 
yq = L M . g e t . e s t i m a t e ( x q ) ; % c a l c u l a t e o u t p u t e s t i m a t e 

Figure 5.3: Simple example of the library usage. 

For user convenience, there are also publicly accessible methods which gener
ate data for various possible visualisations describing the set of local models and 
the current approximation result, especially in lower-dimensional cases. These are 
summarised in Figure 5.4. If these methods do not suffice, there are also some 65 
publicly accessible properties that contain all the data representing the set of local 
models and a number of more advanced parameters in case a user wants to tune 
them. For a detailed list of the class properties and method description, see the 
library code. 

f u n c t i o n [ r f D a t a X , r f D a t a W ] = g e t _ r f _ d a t a _ l D ( p o i n t s ) 
f u n c t i o n [C,lmDataX,lmDataY] = g e t _ l m _ d a t a _ l D ( p o i n t s , s c a l e ) 
f u n c t i o n d a t a = g e t . r f _ d a t a _ 2 D ( p o i n t s , s c a l e ) 
f u n c t i o n params = g e t _ l o c a l _ p a r a m s (xq) 
f u n c t i o n h n d l s = i n i t _ p l o t _ l D 

( e s t X I V a l u e s , i d e a l E s t i m a t e F c n , t r S t a t e , m s r S t a t e ) 
f u n c t i o n h n d l s = u p d a t e _ p l o t _ l D (xNew,yNew,i) 
f u n c t i o n h n d l s = i n i t _ p l o t _ 2 D 

( e s t X I V a l u e s , e s t X 2 V a l u e s , i d e a l E s t i m a t e F c n , t r S t a t e , m s r S t a t e ) 
f u n c t i o n h n d l s = u p d a t e _ p l o t _ 2 D ( i ) 
f u n c t i o n c a p t u r e _ p l o t _ f r a m e () 

Figure 5.4: Convenience and plotting functions of the rfdelib Matlab class. 
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5.1.1 Local models and receptive fields 

Compared to the original algorithm, the R F W R method was modified to be used 
incrementally in an online setting. The RLS learning algorithm is incremental by 
default, however, the approach for optimisation of the distribution of the receptive 
fields was supposed to be used on batch basis. To address this issue, we developed 
different optimisation strategies, which are further described in Section 5.1.2. 

That being said, the original R F W R algorithm can be implemented in an incre
mental way, however, it turned out to be very hard to set the parameters correctly 
as the incremental model parameter estimation and receptive field distribution op
timisation have low stability, especially with uneven data distribution in the input 
space. For example, with an incorrect parameter setting and a high data sampling 
rate, individual models would adjust to data points collected at one location much 
smaller than the local model validity region defined by the receptive field and would 
completely neglect past data gathered at different locations, sort of overfitting. 

To address this issue, we added a datapoint buffer for every local model which is 
used to update the model parameter every time a new datapoint is collected, while 
the datapoints in the buffer are replaced by new ones on a random basis. Figure 
5.5 depicts the specific algorithm of the data buffer update when a new datapoint 
is available. 

f u n c t i o n [ d a t a B u f f e r , b u f f S t a t e ] = b u f f e r . u p d a t e 
(dataBuffer,xNew,yNew,w,buffState) 

i f w > WAct/3 
i f b u f f S t a t e < l e n g t h ( d a t a B u f f e r ) % add i f b u f f not f u l l 

b u f f S t a t e = b u f f S t a t e + 1; 
p o i n t e r = b u f f S t a t e ; 

e l s e % change random e n t r y ( c l o s e s t 1/5 of e n t r i e s ) i f f u l l 
x D i s t = s u m ( ( d a t a B u f f e r ( : , 1:end-1) - xNew).~2,2); 
[~,ind] = s o r t ( x D i s t , 'ascend'); 
p o i n t e r = i n d ( r a n d i ( [ l r o u n d ( l e n g t h ( d a t a B u f f e r ) / 5 ) ] ) ) ; 

end 
d a t a B u f f e r ( p o i n t e r , : ) = [xNew yNew]; % w r i t e d a t a i n t o b u f f e r 

end 
end 

Figure 5.5: Data buffer update method pseudocode. 

Now, the updateJm method used inside the learn method when a new datapoint 
is collected follows the algorithm described by the pseudocode in Figure 5.6. This 
can increase the computational complexity, so the buffer size needs to be reasonable, 
but experiments proved that even buffer sizes between 15-30 significantly improve 
the learning stability, without any major performance issues. 

Another major modification which has the potential to greatly simplify the use of 
the library is the introduction of the option to set apart the dimensions of the local 
models and their respective receptive fields. In effect, this causes the local model to 
distribute receptive fields along only a subset of the input dimensions. This may be 
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% c a l c u l a t e model w e i g h t s c o r r e s p o n d i n g t o t h e new d a t a p o i n t 
W = g e t . w e i g h t ( x ) ; 

f o r i = % e v e r y e x i s t i n g l o c a l model 
i f W(i) > w_act % i f t h e model i s a c t i v a t e d by t h i s d a t a p o i n t 

b u f f e r _ u p d a t e ( i , x ) ; %update t h e b u f f e r o f t h e a c t u a l lm 

f o r j = % e v e r y d a t a p o i n t i n t h e b u f f e r 
w = g e t . w e i g h t ( x _ b u f f ( j ) ) ; 

r l s . u p d a t e ( ) ; % update model parameter 

r f _ u p d a t e ( ) ; % update r f parameters 
end 

end 
end 

Figure 5.6: updateJm method pseudocode describing the use of the data buffer when a 
new datapoint is acquired. 

useful in situations where we expect the nonlinearity in the approximated function 
to be dependent only on some of the input quantities and be linear in others. This 
greatly improves the performance and stability, especially when there is only one 
nonlinear dimension. Typically, with mechanical systems, we expect the system 
to be linear in velocity while being nonlinear in position, also with multi-domain 
systems, typically only some of them contain nonlinearities. 

This ability is implemented in the form of rflnputToggling property, which is one 
of the optional constructor parameters. By default, this is a row vector of ones, with 
the length of datalnputSize. However, if we set the vector manually, for example as 
in Figure 5.7, the library starts to ignore the first and the third input when placing 
the local model receptive fields, behaving the same way as if the centre location along 
the ignored dimension was zero and the size was infinite for all the local models. 

% i n i t i a l i s e t h e LM o b j e c t f o r t h r e e i n p u t s w h i l e o n l y t h e second 
% i n p u t i s c o n s i d e r e d i n r f d i s t r i b u t i o n 
LM = r f d e l i b ( 3 , ' r f l n p u t T o g g l i n g ' , [ 0 1 0 ] ) ; 

Figure 5.7: Initialisation of the library with three expected model inputs, but only one-
dimensional receptive field distribution. 

This behaviour presents a secondary issue. That is the fact that different local 
models can have different parameters along the ignored axes due to noise and un
even data distribution, even though we can expect them to end up being equal. We 
solved this issue by adding further functionality to the library, the so-called global 
parameter matching. When turned on (the function is turned off by default), this 
function slowly brings the parameters to a common value (average or user speci-
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fied). This has the benefit of slowly sharing information between the models, while 
not disturbing the stability of the RLS update process. Figure 5.8 shows various 
examples of how to use this functionality. 

% g l o b a l parameter m a t c h i n g f o r t h e r e m a i n i n g i n p u t d i m e n s i o n 
% towards t h e mean v a l u e o f a l l 1ms 
LM = r f d e l i b ( 2 , ' r f I n p u t T o g g l i n g ' , [ 0 1 ] ) ; % i n i t i a l i s e t h e LM o b j e c t 
L M . g l obalParamMatchingSourse = 'mean'; 

% g l o b a l parameter m a t c h i n g f o r t h e r e m a i n i n g i n p u t d i m e n s i o n 
% towards a s p e c i f i c v a l u e 
LM = r f d e l i b ( 2 , ' r f I n p u t T o g g l i n g ' , [ 0 1 ] ) ; % i n i t i a l i s e t h e LM o b j e c t 
L M . g l obalParamMatchingSourse = ' v a l u e ' ; 
L M . g l obalParamMatchingSourse = ' v a l u e ' ; 
L M . g l o b a l P a r a m M a t c h i n g V a l u e = 0.01; % t a r g e t v a l u e 

% t u r n g l o b a l parameter m a t c h i n g o f f a t any ti m e 
LM.globalParamMatchingSourse = 'none'; 

The third significant add-on is the generalisation of the model input vector. In 
the original R F W R algorithm, there is the assumption that the local models generate 
and estimate a parameter for each of the system inputs plus a bias parameter, which 
is implemented through expanding the input vector by a unit constant. The library 
treats the data input vector and the model input vector as two separate things, 
linked by a private method called ImJnputshuffter. By default, this method acts 
the same way as the original algorithm - expands the input vector by the number 
one to generate the bias parameter, however, it allows for much more customisation. 
Generally, the local models used inside the R F W R framework do not have to be 
only linear combinations of input quantities, it can take the form of any function 
of the inputs that is linear in parameters. For example, using a local model in the 
form of (5.2) instead of (4.19). 

The method is prepared to work with linear, quadratic and cubic terms and 
special terms used to model mechanical friction (the sign function, etc.) and allows 
the user to easily implement their own version of the local model form. 

5.1.2 Receptive fields update algorithms 

As we mentioned earlier, one separate modification to the original R F W R algo
rithm that we made is the addition of several different methods for optimising the 
distribution of the receptive fields. 

Naturally, the first method that the rfdelib class implements is the original al-

Figure 5.8: Usage of the global parameter matching functionality 

(5.2) 
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gorithm described in [29]. This is the only part of the library taken from another 
source (the authors' implementation published in [46]) and is only modified to fit 
the library framework. 

The original algorithm, based on estimating the true first- and second-order 
gradient of the quadratic cost function (2.53) as precisely as possible, is quite com
putationally heavy, requires a lot of tuning parameters and is better suited for batch 
(offline) learning applications. As opposed to this approach, we developed and im
plemented three other methods, each with different properties. 

Heuristic update 

The first method uses the analytical Jacobian matrix of the weight function (2.49) to 
be able to correctly adjust the elements of the distance inducing matrix M, however, 
it uses a simple heuristic decision rule to choose if the region of validity of the given 
local model should be made larger, smaller, or stay the same with respect to the 
actual datapoint and the local model's long-term performance. This method was 
first introduced in [28] and later improved. The heuristic is best described by Figure 
5.9. 

Model is OK Model is too large 

Model is too small ~ ~ ~ _ _ 

' 2eiim 
e [-] - model error 

Figure 5.9: Heuristic decision function diagram. Taken from [28]. 

The heuristic is designed in a way which ensures that the receptive field updat
ing effectively stops when the average model error with new datapoints achieves a 
reasonable value eum with a model weight wum, assuming the error will be smaller 
for larger weights (closer to the model centre) and larger for smaller weights, to 
prevent overfitting. 

The algorithm is best described by its (redacted) code for each individual update 
made with a new datapoint depicted in Figure 5.10 for one and two-dimensional 
cases. The algorithm starts with the model error value err = abs (y — y) with 
respect to the actual model prediction y = xTb and the actual datapoint y and 
uses the heuristic to decide on the action required. The other inputs to the private 
method are the direction vector ve = x — c from the R F centre c to the input 
datapoint x, the actual model weight w and the actual state of the upper triangular 
decomposition M of the distance inducing matrix D = MTM. 
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f u n c t i o n M = d i s t a n c e _ u p d a t e _ h e u r i s t i c (err,v_e,w,M) 

Wl = k _ l i m * e r r + w_lim; % Weight l i m i t f o r c u r r e n t model e r r o r 

p = 0; % m e t r i c s update d i r e c t i o n s i g n 
i f w < 0.9*wi % model i s t o o s m a l l 

p = min([0.9*Wl-w w-WAct]); 
e l s e i f w > 1.1*W1 && e > e _ l i m % model i s t o o l a r g e 

p = - m i n ( [ e - e _ l i m w - l . l * W l w-WAct]); 
end 

dwdM = -w*v_e~2*M; % c a l c u l a t e w e i g h t g r a d i e n t 
M = M + p*alph*dwdM; % p e r f o r m m e t r i c s update 

end 

Figure 5.10: (Simplified) Implementation of the Heuristic Receptive Field update algo
rithm. 

The method also uses the parameters (implemented as object properties) eum 

representing the error limit for updating the distance metrics, Wum representing the 
weight limit for updating the distance metrics and kum = — Wu™~WAct representing 
the slope of the learning threshold line. The values wum = 0.6, eum depend on the 
specific case and need to be set appropriately by the library user, for normalised 
inputs, 0.1 is reasonable. 

The method also uses the weight gradient, which is a simplification of the proper 
gradient of the criterion function as in (2.54), where ~ J ^ . This simplification 
can be made thanks to the fact that the criterion function J(w) is a function of the 
weight w as well as other terms, which can be neglected at the cost of the loss of 
some precision, however, in gradient optimisation, we mainly care about the gradient 
direction, the size is not as important and can be compensated by the optimisation 
step size parameter a. See [29] and [33] for further details on this simplification. A n 
important benefit of this simplification is that the gradient can be calculated 
analytically as in (5.3) for a one-dimensional case where all the quantities become 
scalars, although it can be calculated for a higher-dimensional case as well. The 
rfdelib library implements one- and two-dimensional cases. 
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dw 
Q (e-\(x-c)TMTM(X-c) ) 

DM DM 

DM 

d (e-^M2) 
(5.3) 

DM 

-v2

eM (e~^M2) 

-v2Mw 

Random update 

The second update method that the library implements is based on the stochastic 
optimisation approach. It only works with diagonal distance inducing matrices 
which, on the one hand, do not allow for such precise receptive field optimisation and 
usually require a few more local models to cover the same input space, however, on 
the other hand, it requires much less computational power and brings more stability. 
In effect, the R F basis functions only scale along the R F input dimensions. 

Every time there is a new datapoint, the method picks a random R F input axis 
and only updates the R F size along that axis. The algorithm chooses the size and 
direction of the update iteration based on the overall long-term performance of each 
local model. The local model performance is calculated as the long-term sum of the 
weighted squared estimation errors (WSE) with a forgetting factor A, every update 
of the metric at each time step k is made through (5.4). 

Then, Figure 5.11 shows the (simplified) implementation of the update method 
used in the library. 

The random update method performs the update on C = M~x instead of up
dating M directly, which corresponds to the direct size of the R F validity function 
since we use a Gaussian kernel. This also allows for the easy limit check of the 
minimal and maximal sizes directly in the R F input space domain compared to the 
domain of M, which is much more intuitive and easier to set up. 

Numerical update 

The last update algorithm that the rfdelib class implements is a method using the 
numerical approximation of the criterion function J gradient. In this case, we work 
directly with the true criterion gradient instead of the simplified J ^ , optimising 
the criterion (2.53). Naturally, we cannot calculate the true value of J on all the 

WSEk+1 \WSEk + w (yk+1 - yk+if (5.4) 
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f u n c t i o n M = d i s t a n c e . u p d a t e . r a n d o m (M,WSE) 
n = r a n d i ( [ l l e n g t h ( M ) ] ) ; 
p = (WSE - WSE.lim)/WSE_lim; 

C = i n v ( M ) ; 

C(n,n) = C(n,n) - p * a l p h * r a n d o m S t e p S i z e ; % p e r f o r m m e t r i c s update 

M = i n v ( C u t ) ; 
end 

Figure 5.11: (Simplified) Implementation of the Random Receptive Field update algo
rithm. 

datapoints since we want the method to work incrementally. However, the library 
has a data buffer for each of the local models (described in the Section 5.1.1) that 
brings up the synergy and allows us to calculate at least a partial estimate of J 
based on the values stored in each of the local buffers every time a new datapoint 
is acquired and the buffer is updated. 

Again, the best way to describe the methods is through its implementation in 
the library shown in Figure 5.12. 

f u n c t i o n [M] = distance_update_numerical(M,DB,c,b,w,ID) 
x = DB(:,1:end-1); % r e a d x d a t a from l o c a l model b u f f e r 
y = DB(:,end); % r e a d x d a t a from l o c a l model b u f f e r 

% c a l c u l a t e e s t i m a t i o n e r r o r f o r each o f t h e d a t a p o i n t s 
xn = h . l m _ i n p u t _ s h u f f l e r ( x - c ) ; 
e = y - xn*b'; 

m = det(M)/1000; % e s t i m a t e M d i f f e r e n t i a l 
wl = h.get_lm_weight(DB(:,1:end-1),ID, m) ; 

JO = e'*diag(w)*e/sum(w)/M~2; 

J l = e'*diag(wl)*e/sum(w)/(M+m)"2; 

dJdM = ( J l - JO)/m; 

dM = a l p h * d J d M * n u m e r i c a l S t e p S i z e ; 

M = M - dM; % p e r f o r m m e t r i c s update 
end 

Figure 5.12: (Simplified) Implementation of the Numeric Receptive Field update algo
rithm. 
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5.1.3 Further modifications 

In the previous sections, we described the major modifications and extensions made 
on the original R F W R algorithm. There are also a number of smaller, yet important, 
extensions that the rfdelib library implements. 

First, the library allows for three different variants regarding the setting of the 
initial size of a newly added RF . The three methods are a fixed pre-set size (original 
version), a random size, and the maximal size to intersect with the nearest existing 
R F to cover the vacant space. 

Another modification which is minor in its implementation, but has significant 
consequences, is the use of the weighted version of the RLS parameter estimation 
algorithm for the local model parameters. This modification allows us to also con
sider the assumed accuracy of the input datapoint, which will become useful when 
implementing the hybrid dual estimation in Chapter 6. In addition, every parameter 
estimation iteration is calculated on a batch of data present in the data buffer of 
each local model, which significantly improves the stability. 

Also, the library implements a number of ease-of-use methods that allow the 
user to easily get, set, save, or load all the necessary data describing the set of local 
models and their parameters as well as plot the results in a visually understandable 
way for the one- and two-dimensional R F cases. Figure 5.13 lists these publicly 
accessible methods. 

f u n c t i o n [ r f D a t a X , r f D a t a W ] = g e t _ r f _ d a t a _ l D ( p o i n t s ) 
f u n c t i o n [C,lmDataX,lmDataY] = g e t _ l m _ d a t a _ l D ( p o i n t s , s c a l e ) 
f u n c t i o n d a t a = g e t . r f _data_2D ( p o i n t s , s c a l e ) 
f u n c t i o n params = g e t - l o c a l _ p a r a m s (xq) 
f u n c t i o n h n d l s = i n i t _ p l o t _ l D ( e s t X I V a l u e s , 
i d e a l E s t i m a t e F c n , t r S t a t e , m s r S t a t e ) 
f u n c t i o n h n d l s = u p d a t e . p l o t . l D (xNew,yNew, i ) 
f u n c t i o n h n d l s = i n i t _ p l o t _ 2 D ( e s t X I V a l u e s , 
e s t X 2 V a l u e s , i d e a l E s t i m a t e F c n , t r S t a t e , m s r S t a t e ) 
f u n c t i o n h n d l s = u p d a t e _ p l o t _ 2 D ( i ) 
f u n c t i o n c a p t u r e _ p l o t - f r a m e 0 

Figure 5.13: Ease-of-use function of the rfdelib library. 

5.2 Simulation experiments 

In this section, we demonstrate the use of the rfdelib library in two simulation 
experiments. The first experiment in Section 5.2.1 works with a model of a nonlinear 
mechanical oscillator where the nonlinearity is only a function of one state, allowing 
us to distribute the receptive fields only along one axis. The second experiment in 
Section 5.2.2 shows the approximation of a two-dimensional nonlinear function. 
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5.2.1 Nonlinear oscillator 

To test the behaviour of the rfdelib library, we use a second-order nonlinear system, 
which might represent a mechanical oscillator with a nonlinear spring. The system 
(5.5) is based on (4.27), extended by a second nonlinearity that spans only a part 
of the state space of the system, to force the algorithm to deal with nonlinearities 
on different scales. The system parameters are summarised in Table 5.1. 

( x - k 7 ) 2 

rax, = bx + k\X + k3xs + k5x5 + k6e~ k» + u (5.5) 

Parameter Value 
m 0.03 
h 0.04 

20 
h -50 
h 40 
k6 7 
k7 0.6 
k$ 0.001 

Table 5.1: Table of the nonlinear oscillator parameters. 

The system was simulated with a randomised input term u with a sampling rate 
Ts = 10~3 s and we also added random noise with normal distribution to the system 
output to simulate an imperfect measurement. Figure 5.14 shows a trajectory in 
the state space of the system. 

We used the noise-corrupted data to generate the system dynamics approxima
tion using the rfdelib library with the numeric receptive field update method, default 
settings, and one-dimensional R F input space. Figures 5.15, 5.16, and 5.17 show the 
state on the system dynamics approximation with different amounts of datapoints. 
The figures depict both the shape and confidence interval of the approximation 
function and the spacing of the receptive fields. 

In the first one, Figure 5.15, we can see that, with just 500 datapoints, a part 
of the receptive field input space (x > 0) is already covered by the well-learnt local 
models with narrow confidence intervals, however, the other part (x < 0) is covered 
by local models with very wide confidence intervals due to lack of datapoints in that 
region. Indeed, we can see that these models do not fit the true nonlinear function 
properly yet. 

In the second one, Figure 5.16, we can see that the approximation is much better 
with 1500 datapoints, however, the distribution of receptive fields is not ideal and 
the highly nonlinear part of the function around x ~ —0.6 is not covered properly. 

The last one, Figure 5.17, shows the situation with 6000 datapoints. It is clear 
that the distribution of the receptive fields is more optimised, meaning there are 
fewer, larger receptive fields in regions with less significant nonlinearities and the 
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-1.5 -0.5 0 0.5 1.5 

Figure 5.14: State space trajectory of the nonlinear system used for testing the rfdelib 
library, the plot shows both the ideal trajectory and noise-corrupted data used to generate 
the datapoints for the library to learn upon. 
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Figure 5.15: rfdelib approximation of the nonlinear system dynamics with 500 datapoints. 

87 



5 R F W R MODIFICATION 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 5.16: rfdelib approximation of the nonlinear system dynamics with 1500 datapoints. 

local models begin to cluster more around x ~ —0.6 to fit the highly nonlinear part 
of the function. Also, the confidence interval overall is much narrower. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 5.17: rfdelib approximation of the nonlinear system dynamics with 6000 datapoints. 
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5.2.2 2D nonlinear function 

In this section, we demonstrate the function of the modified R F W R algorithm im
plemented in the rfdelib class on an example of a two-dimensional nonlinear function 
described by (5.6). In this case, the library is set up for a two-input local model 
with both inputs used for the R F distribution. 

We generated uniformly distributed random points in the input space with 
xi, X2in < —1; 1 > and then used them to generate noise-corrupted datapoints 
to teach the approximation as in Figure 5.18. 

f e n = @(xl,x2) s i n ( 5 * x l ) + x2.~2; 
x l = l i n s p a c e (-1,1,50) ' ; 
x2 = l i n s p a c e (-1,1,50) ' ; 

LM = r f d e l i b ( 2 , ' r f I n p u t T o g g l i n g ' , [ 1 1 ] ) ; % i n i t l i b r a r y 

% parameters 
LM.confTarget = 0.1; 
LM.alpha = 0.0 8; 
L M . d e f a u l t D i s t a n c e U T = 0.2; 
Ndata = l e 5 ; 

L M . i n i t _ p l o t _ 2 D ( x l , x 2 , f e n , [ ] , [ ] ) ; 

% t e a c h f e n a p r o x i m a t i o n 
f o r i = l : N d a t a 

x = r a n d ( l , 2 ) * 2 - 1; 
y = fc n 2 D ( x ( 1 ) , x ( 2 ) ) + randn*0.1; 

L M . l e a r n ( x , y ) ; 

i f mod(i,100) == 0 
LM.update_plot_2D ( [] ) ; 

end 
end 

Figure 5.18: Code example for the two-dimensional nonlinear function approximation. 

The results are summarised in Figures 5.19, 5.20, and 5.21. Each figure dis
plays the approximated function, confidence interval estimation, and receptive field 
distribution corresponding to the incremental number of datapoints: 250, 750 and 
3500, respectively. To validate the results, we calculated the RMSE value between 
the approximated function and the true analytical function on a 50-by-50 grid in 
the input space. In Table 5.2, we can see that the RMSE values decrease with an 
increasing number of datapoints. 

(5.6) 
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Number Confidence Number of 
of data- R M S E interval size local mod
points average els 
250 0.233 0.745 22 
750 0.149 0.322 36 
3500 0.087 0.112 51 

Table 5.2: Summary of the 2D function approximation by the RFWR algorithm with a 
different number of datapoints. 

Function approximation Approximation confidence r f distribution 

Figure 5.19: Nonlinear two-dimensional function approximation using RFWR after 250 
datapoints with the approximation RMSE = 0.233. 

Furthermore, Figure 5.22 shows a detailed comparison of the absolute error of 
the approximation of the function and the estimated confidence interval size maps 
depicted using the greyscale colourmap. Both maps are highly correlated which 
proves that the confidence interval estimation algorithm is working correctly. 
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Function approximation Approximation confidence RF distribution 

Figure 5.20: Nonlinear two-dimensional function approximation using RFWR after 750 
datapoints with the approximation RMSE = 0.149. 

Function approximation Approximation confidence RF distribution 

Figure 5.21: Nonlinear two-dimensional function approximation using RFWR after 3500 
datapoints with the approximation RMSE = 0.087. 
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 
Xi (-) XX (-) 

Figure 5.22: Nonlinear two-dimensional function approximation absolute error and confi
dence interval map comparison with 1125 datapoints, right after a new local model was 
added. 
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5.3 Chapter summary 

In this chapter, we present the modification of the R F W R algorithm suitable for in
cremental, low-dimensional approximation tasks on multi-domain mechatronic sys
tems together with a user library for the Matlab language which contains a number 
of modifications and improvements compared to the original R F W R algorithm de
scribed in [33]. The most important modifications are: several different methods for 
the receptive field spacing update, separating the receptive field and the local model 
state space, adding a stabilising data buffer for each local model etc. 

Then, in Section 5.2 we demonstrate the performance of the algorithm in the one-
and two-dimensional cases to prove that it is able to learn the system dynamics. 
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6 Dual estimation based on RFWR 
and Kaiman filter 

In this chapter, we describe the final extension of the rfdelib library introduced in 
the Chapter 5. The extension implements the ideas on the Kalman filter modi
fication presented in Chapter 4. In terms of the various simultaneous estimation 
approaches described in Section 2.4, the combination of the R F W R algorithm for 
model and parameter estimation and the modified K F for state estimation forms 
a hybrid dual estimation algorithm, hence, the abbreviation R F D E in rfdelib that 
stands for Receptive Field Dual Estimation. 

The R F D E implementation is described in Section 6.1, and then, in Sections 6.2 
and 6.3, we present simulations and experiments with real dynamic systems that 
demonstrate the function of the library. 

6.1 Hybr id dual estimation library for M A T L A B 

In Section 4.5, we presented the dual estimation with a single local linear model. The 
rfdelib library implements this algorithm separately for each existing local model in 
the R F W R structure. Building on the diagram in Figure 4.11 which presents the 
algorithm for a single, fixed, local model, Figure 6.1 presents a similar diagram for 
the R F D E algorithm, showing the interconnection between the R F W R local model 
set and the modified K F calculated for each of the local models. 

The dual estimation function must be turned on when the library is initialised, 
see Figure 6.2 for a code example. Note that the library assumes that the system 
matrix F is in discrete canonical form with the system state forming a sequence 
of derivatives (discrete time continuous state space system), where all the states 
are being measured. The library also requires the user to set the discrete sampling 
time TS, the measurement noise covariance matrix R and the default process noise 
covariance matrix QQ, which is added to the process noise covariance estimated 
based on the modified K F algorithm. The library allows for QQ — 0. 

There can be a discussion whether to use discrete or continuous state space, 
meaning whether the state vector should be a list of past states or a sequence of 
corresponding derivatives. Both approaches are valid and theoretically equivalent 
and the use of a discrete state space would lead to several simplifications in the im
plementation while linking the modified K F and the R F W R algorithms. However, 
previous experiments and publications on the topic, such as [47, 28] led us to the 
conclusion that the continuous state vector is better suited for parameter estimation 
and more often than not corresponds to the measurements made on the system. In 
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measured 

Local model 1 

Local model 
receptive field 

f \ 
Modified KF x . RLS 

f \ 
Modified KF RLS 

Local model 2 

Local model 
receptive field 

Modified KF x . RLS Modified KF RLS 

Local model n 

Local model 
receptive field 

s \ 

Modified KF x . RLS 
s \ 

Modified KF RLS B 

Output X 
estimation 

Figure 6.1: The diagram of the RFDE algorithm showing the interconnection between the 
RFWR local model set and the modified K F calculated for each of the local models, x 
represents the system state, w represents the actual local model weight, b represents 
the local model parameters and B represents the model parameter covariance. 

LM = r f d e l i b ( 3 , ' r f I n p u t T o g g l i n g ' , [1 0 0 ] , 
' d u a l E s t i m a t i o n ' , ' o n ' , ' T s ' , T s , . . . 
' k f M e a s u r e N o i s e C o v a r i a n c e ' , d i a g ( [ r l l r22\ 
' k f P r o c e s s N o i s e C o v a r i a n c e ' , d i a g ( [ q l l q22| 

Figure 6.2: Example code demonstrating the initialisation of the rfdelib library to use the 
RFDE functionality. 

R F D E , the R F W R local models are built upon continuous-time continuous-state 
space systems, however, the modified K F uses the Euler discretization of the corre
sponding local model. 

The last assumption that the library requires is that the new datapoints come as 
a sequence of measurements in time, since the K F tracks the states of the system. 
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This is a requirement which is not necessary for the use of the R F W R algorithm in 
general as it performs the optimisation on a static basis without any internal states. 

It is also important to consider the behaviour of a single K F with local validity. 
As the state being tracked goes out of the validity region described by the R F of 
the corresponding local model, the filter starts to give increasingly more weight to 
the measurement compared to the model prediction. From a certain point, the 
filter basically only passes the measurement without any correction, which ensures 
the stability of the filter while the system is in a state where the local model is 
not valid. The rfdelib even implements this behaviour in such a way that from the 
weight limit corresponding to the wact R F activation limit it skips the K F prediction 
and correction step and only passes the measurement through to save computational 
power. 

When a new datapoint is presented, rfdelib uses an extended learn method which 
implements the link between the state and parameter estimation. The new learn 
method code is shown in Figure 6.3. 

f u n c t i o n l e a r n (h,x,y) 
W = h . g e t _ l m _ w e i g h t ( x , 0 , 0 ) ; 

% update lm params u s i n g RLS and d i s t a n c e m e t r i c 
i f h . d u a l E s t i m a t i o n O n == 1 

xKf = h.update.kf(x,W); 
h.update_lm (xKf,y,W); 

e l s e 
h.update_lm(x,y,W); 

end 

h.add_lm (x, y, W); % add new lm&rf i f n e c e s s a r y 

h.prune.lm(W)% p r u n i n g o b s o l e t e r f i f n e c e s s a r y 

h . g l o b a l _ p a r a m e t e r _ m a t c h i n g ( ) ; 

end 

Figure 6.3: Implementation of the learn method in the rfdelib class with the RFDE func
tionality. 

6.2 Simulation experiments 

In this section, we present the results of a simulation experiment that corresponds 
directly to those presented in Section 5.2.1. We used the same system, the nonlinear 
oscillator, with the same parameters as in (5.5) but instead of using the modified 
R F W R algorithm presented in the Chapter 5, we applied R F D E to approximate the 
system dynamics. 
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Figures 6.4, 6.5, and 6.6 show the results of the simulation in different stages of 
the learning process, i.e. with 1480, 3860 and 7800 datapoints, respectively. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 6.4: rfdelib approximation of nonlinear system dynamics with 1480 datapoints. 

Lastly, Figure 6.7 shows the tracking signal of the x state of the system for the 
first 1 s of the learning process. We can see that in the beginning (t < 0.55s), the 
signal is noisy, faithfully following the measurement signal. After that, the RFDE 
algorithm was able to increase the precision and subsequently narrow the confidence 
interval in a few local models placed around x ~ —0.7 to such a degree that the 
K F started taking these models' predictions into account and the noise vanished 
while the signal closely followed the true state. In addition, the figure also shows 
the running RMSE value of the K F tracking error, corresponding to the previous 
observation, the RMSE value drops almost one order of magnitude when the precise 
models with high confidence are taken into account. 
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6.3 Case study - Magnetic manipulator 

To test the rfde library under real conditions, we decided to perform a case study of 
hybrid simultaneous estimation on a laboratory model of a magnetic manipulator, 
the same one that was used in [47] and initially presented in [48]. 

The magnetic manipulator, shown in Figure 6.8, consists of a row of four coils and 
an iron ball. The position of the ball, measured using a laser distance sensor can be 
controlled by varying currents in the coils, which are driven by a specialised power 
electronic unit set through Matlab commands. The communication between the 
Matlab environment and the power control unit is carried out using the Humusoft 
MF634 PCIe 10 card [49]. 

Figure 6.8: Photo and a 3D render of the magnetic manipulator with a row of coils and 
an iron ball in a linear pathway. Taken from [48] and [47], respectively. 

The main dimensions and functional parameters of the manipulator are sum
marised in Table 6.1. When studying the dynamics of the system, it is important 
to create a model for a single coil, as the effect of multiple coils can be viewed as 
additive ([48, 47]), especially when the system is intended to be controlled in such 
a way that only a single coil is active at any time. For this reason, we focus on the 
simultaneous estimation of a system with the iron ball and a singe coil. This system 
can generally be described using an explicit state model (6.1). 

x — f (x, x, u) (6.1) 
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Parameter Value unit 
Ball mass 53 g 
Ball diameter 20 mm 
Distance between the coil edge and the ball position limit 20 mm 
Distance between the coil centres 25 mm 
Maximal coil current 0.6 A 
Sampling period 0.005 s 

Table 6.1: Magnetic manipulator parameters. [47] 

where x is the position of the ball and u is the system input corresponding to the 
coil current. 

According to [48], considering zero velocity, the force exerted on the ball in the 
longitudinal direction along the ball's pathway is highly nonlinear. The shape of the 
nonlinear function is depicted in Figure 6.9. 

Visualization of one-dimensional (x) Empencal force model 

Distance front ball to coil centre (m) 

Figure 6.9: Nonlinear magnetic force exerted on the iron ball along the ball's pathway 
direction as a function of the position and current. Taken from [48]. 

Using the R F D E method, the system can be studied in multiple ways. Figure 
6.9 shows that the system is highly nonlinear along the ball's position x and less 
significantly along the current u. Also, [47] shows that there is a less significant 
nonlinear dependence on the ball's velocity x too. In Section 6.3.1, we study various 
combinations of the receptive fields distributions in one and two dimensions. 

To acquire a database for the subsequent experiments, we created a data set 60 
s long with sampling period Ts = 10~3 s containing the time, coil current, position, 
velocity, and acceleration of the iron ball. Figure 6.10 shows a 7 s interval of the 
ball's position x and the coil current u that was generated randomly with uniform 
random distribution of both the current level, where u G < 0; 0.6 > A , and the pulse 
length Tpuise e< 0.05; 1 >. 
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Figure 6.10: Part of the data-set used in the later experiments with RFDE. The Input 
signal u was generated using the random - random amplitude signal generation procedure 
with uniform random sampling. 

6.3.1 Hybrid dual estimation with the Magnetic Manipulator 

In this section, we present the results of the R F D E algorithm applied to the iron ball 
magnetic manipulator. In all the cases, the algorithm is set for three local model 
inputs (x, x and u) and one output (x), generating local models in the form of (6.2). 

x bTx = b0x + b\X + b2u + b3 (6.2) 

where 'x is the local model output: acceleration of the ball, bT = [b0, bi, b2, b3] is the 
vector of parameters of any given local modal and xT = [x, x, u, 1] is the vector of 
local model inputs: position, velocity, and coil current, respectively, with respect to 
the centre of the corresponding receptive field. 

First, we set the R F D E algorithm so that only the position of the ball is consid
ered when plating the receptive fields of the local models, making the distribution 
one-dimensional. The result is shown in Figure 6.11 after learning with 7400 dat-
apoints. We can see that the algorithm was able to adapt and to find the shape 
of the underlying nonlinear function similar to Figure 6.9, however, it contains a 
great deal of uncertainty and the shape of the function is not precise. The cause of 
this imprecision is that the ball velocity also brings a nonlinear effect to the system 
behaviour. According to [47], the effect is caused by the induced eddy currents 
generated in the iron ball material while it moves through the changing magnetic 
field. 
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X(-) 

Figure 6.11: The model shape learned by the RFDE algorithm with one-dimensional RF 
distribution along the x dimension after 7400 datapoints. The figure shows the dynamic 
function shape for u = 0.5 A and also the distribution of the RFs. 

In the second experiment, we set the R F D E algorithm so that both the ball's 
position and the velocity are considered when placing the receptive fields. The result 
is shown in Figure 6.12. The figure shows the shape of the dynamics of the system 
in the R F space for u = 0.5, as well as the size of the model confidence interval, 
after 17400 datapoints. Again, we can see that the characteristic nonlinear shape 
is present along the x axis, however, the coil effects are lower in higher velocities, 
representing the effects of the eddy currents. We can also see that the model is 
imprecise on the edges of the space, corresponding to wider confidence intervals, 
which is caused by the lack of enough datapoint in those regions. Also, the confidence 
interval size is much lower than in the one-dimensional case. 

Lastly, Figure 6.13 shows the distribution of the receptive fields corresponding 
the the result shown in Figure 6.12. 
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System approximation Approximation confidence 

Figure 6.12: The model shape learned by the RFDE algorithm with two-dimensional RF 
distribution along the x and x dimensions after 17400 datapoints. The figure shows the 
dynamic function shape for u = 0.5 A and the corresponding size of the confidence interval. 

RF distribution 
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x (m) 

0.8 0.9 

Figure 6.13: The model RF distribution learned by the RFDE algorithm with two-
dimensional RF distribution along the x and x dimensions after 17400 datapoints. 

6.4 Chapter summary 

In this Chapter, we combined the results developed and presented in the previous 
two Chapters, the modified Kalman filter and the modified R F W R algorithm, to 
form the Hybrid dual estimation algorithm called the Receptive Field Dual Esti-
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mation (RFDE). The algorithm is able to track the states of a dynamic system 
while continually learning the system dynamics with minimal requirements on user 
parameter tuning compared to other simultaneous estimation algorithms. 

In Sections 6.2 and 6.3 respectively, we performed simulation and practical ex
periments to demonstrate the results and to show that the algorithm is able to 
robustly learn even from very noisy data. 
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7 Conclusion 

The research described in this thesis was motivated by engineering experience and 
previous research, published in [50], concerning all three basic tasks described in 
the Introduction, that is, the modelling, state estimation, and control algorithm 
design for nonlinear dynamic systems. It turns out that, individually, these tasks 
are theoretically mostly solved and that the used methods work. However, their 
practical implementation raises many questions for which there are no clear answers. 
Also, while solving these tasks separately, we often arrive at suboptimal solutions due 
to the criteria used for the separate model parameter estimation, and the observer 
or controller tuning is defined as being unrelated even though they all contribute to 
the overall control quality. 

The four main goals for this dissertation were defined in the presented thesis and 
approved at the State Doctoral Exam: 

1. Research of the mutual relationships in typical algorithms used for estimating 
the states and parameters of dynamic system models. 

2. Modification of the R F W R method for its use with typical mechatronic sys
tems. 

3. Developping a Hybrid method for the simultaneous modelling and state esti
mation of nonlinear dynamic systems. 

4. Implementation and testing of the resulting algorithms in a real system. 

Within the first goal, we mainly studied the uncertainty of dynamic system 
parameters estimated on the basis of noisy data. This uncertainty is one of the 
sources of estimation errors in state estimation algorithms. We identified it as 
being dominant in situations where the structure (ordinary differential equation) 
of the model can be reliably determined, we do not work with principally stochastic 
systems, and the discretisation error is also not significant due to the sampling period 
being orders of magnitude shorter than the natural time constants of the system in 
question. Chapter 4 further describes the use of our discoveries for the reformulation 
of the classical Kalman filter algorithm for this very specific situation. We were able 
to achieve recognisable improvement in the state estimation accuracy, but most 
importantly, we were able to find an empirical approach for determining the tuning 
parameter most critical for the Kalman filter's practical implementation - the process 
noise covariance. Thanks to this development, we were able to create a parameterless 
link between the modified Kalman filter and a method for the parameter estimation 
of a local linear model of an otherwise nonlinear system. This link forms a hybrid 
dual estimation approach. We were also able to demonstrate its functionality and 
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improved state and parameter estimation accuracy compared to that of a typical 
approach, thus fulfilling the first goal of the thesis. 

Chapter 5 deals with the modification of the Receptive Field Weighted Regression 
(RFWR) originally described in [29, 31] and the development of a user library for 
M A T L A B . We have rewritten the method into an incremental version to be used 
online without the need for batch data processing. This modification was motivated 
by the inherent potential of incremental methods to work as adaptive approximators 
in situations in which the system that we observe can change its behaviour. For 
example, due to the wear and tear of its parts, changing external conditions, etc. 

Additionally, we expanded the modified R F W R algorithm by several useful ele
ments. Most importantly, allowing for a separate number of dimensions in the local 
models and the corresponding receptive fields. This is useful in situations where the 
nonlinearity of the system is exclusively or dominantly dependent on a subset of the 
system states and when other system dynamics are presumed to be linear. Other 
modifications included minor adjustments, such as four different variants of the 
receptive field optimisation algorithm, an improved computational performance, a 
learning data buffer for each local model, calculation of the resulting approximation 
confidence interval, etc. Thus, the second goal can also be considered achieved. 

Furthermore, in Chapter 6, we describe the Hybrid Method for the Simultane
ous Modelling and State Estimation of Nonlinear Dynamic Systems built upon the 
results of previous research goals. This method, in the form of dual estimation, com
bines the R F W R and K F modified for the situation with uncertain parameters. We 
tested the hybrid dual estimation approach through several simulation experiments 
and finally on data measured in a real system of a magnetic manipulator, achieving 
the third and fourth research goal of the thesis. 

7.1 Thesis achievements 

• Categorisation of error sources for the Kalman filter (KF) process 
model 
In Chapter 4, we described and categorised the possible sources of errors that 
influence the K F process model, which may arise in common engineering ap
plications. This methodology can be helpful in practical K F implementations 
and especially in tuning the values of the process noise covariance. 

• Modification of the K F for situations with inaccurate and uncertain 
process model parameters 
Based on previous research, published in [51], we modified a part of the Kalman 
filter algorithm, specifically the state vector covariance prediction step, to 
better suit the situation where the dominant source of the error is inaccurate or 
contains uncertain process model parameters, especially parameters estimated 
based on noisy data. In our experience, this situation is far more common 
than is assumed, although very little scientific attention is paid to it. The 
results show that this modified K F gives better results in conditions with the 
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parameter uncertainty being the dominant source of the process noise. 

• Empirical approach for setting the process noise covariance 
We found and experimentally verified an empiric formula to find the value of 
the process noise covariance for the Kalman filter in this very specific situation, 
greatly simplifying the practical implementations. It turned out that it is 
mostly important to set the correct order of the process noise covariance values 
and this empirical formula proved to give an a reasonably accurate and robust 
estimate. 

• Linking the K F and RLS algorithms for the dual estimation over a 
local linear model 
We further modified the Kalman filter algorithm so that it can be used with 
local linear models that are linked to a parameter estimation method, for 
example, RLS. Mainly, this means implementing the K F in a way that it can 
work in a shifted state and input space corresponding to the centre of the 
local model validity function and using the validity function to weight the 
RLS estimate as well as the K F prediction. 

• Modification of the R F W R algorithm 
We modified the R F W R function approximation method, which is based on 
the principle of local linear models described in [29], so that it is better suited 
to be used with common low-order mechatronic systems, which typically have 
a significant nonlinearity dependence on a subset of states, and the state space 
is formed by sequences of quantities in integral-derivative relationships. Some 
of these modifications were published in [47]. We also developed a user library 
for the M A T L A B language. 

• Hybrid dual estimation 
By combining the modified R F W R method and the modified Kalman filter, 
we developed a Hybrid Method for the Simultaneous Modelling and State Es
timation of Nonlinear Dynamic Systems, which uses a separate Kalman filter 
for each local model whose parameters are estimated. We validated the func
tionality of this method both in simulation and experimentally, and further 
developed a user library for the M A T L A B language, which allows for its simple 
and fast practical implementation. 

7.2 Future research possibilities 

The research described in this thesis can be further continued in several areas. 
First, the idea of a Kalman filter applied in situations with uncertain parameters 
could also be used with other filters from the Bayesian recursive filter family - the 
Extended Kalman filter (EKF) , Unscented Kalman filter (UKF) , or Particle filter 
(PF) - designed for nonlinear systems. 

Second, there is the possibility for further research of the simultaneous estimation 
methods, especially applied directly on nonlinear systems, e.g., using the Particle 
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filter and a different (possibly global) approximation method or focussing on higher 
order systems [30]. 

Lastly, going back to the original motivation for this thesis, another research 
direction that comes to mind is linking the simultaneous estimation with the third 
basic task, i.e., designing the control algorithm. This would make the quality of the 
control process the only criterion for both the state and parameter estimation. 
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