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Abstract
This thesis is focused on the generation of synthetic fingerprints using a model based on
the principle of generative adversarial networks. The work summarizes the basic theoretical
information about biometrics with emphasis on fingerprints. It also describes the principle
of one of the popular synthetic fingerprint generators called SFinGe. The model based
on a deep convolutional generative adversarial network is discussed together with several
methods that improved its performance. The results were evaluated by computing the
Fréchet Inception Distance between the generated and real fingerprints. The generated
dataset of 100 samples was also evaluated by NFIQ 2.0 which proved that the proposed
model is able to generate fingerprints with almost the same quality of the training samples.

Abstrakt
Tato bakalářská práce se zabývá generováním syntetických otisků prstů za pomoci modelu
založeném na principu generativních soupeřících sítí. Práce shrnuje základní teoretické in-
formace z biometrie se zaměřením na otisky prstů. Zaobírá se také principem jednoho
z populárních generátorů syntetických otisků prstů – nástrojem SFinGe. Práce před-
stavuje model postavený na hluboké konvoluční generativní soupeřící síti a představuje
několik metod, které vedly ke zlepšení jeho výkonu. Vyhodnocení výsledků bylo provedeno
výpočtem „Fréchet Inception Distance“ mezi vygenerovanými a existujími otisky. Dále byl
vygenerován dataset obsahující 100 snímků. Ten byl vyhodnocen nástrojem NFIQ 2.0,
který ukázal, že model je schopný generovat otisky prstů kvality srovnatelné s reálnými
trénovacími daty.
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Rozšířený abstrakt
V dnešní době jsou již technologie založené na snímání otisků prstů součástí běžného života.
Umožnují rychlé odemknutí mobilního telefonu či dokonce vstupních dveří pouhým dotykem
prstu. Vývoj těchto technologií ovšem vyžaduje důkladné testování, k čemuž je zapotřebí
dostatečně velká databáze otisků prstů. Vytvoření vlastní databáze je však časově a finančně
náročný proces a sdílení již existující databáze je mnohdy složité z důvodu ochrany osobních
údajů. Proto je vhodné využít generátorů syntetických otisků prstů, které tyto problémy
eliminují.

Otisky prstů mají velmi komplexní strukturu, kterou je mnohdy složité napodobit. Jed-
ním z populárních generátorů otisků prstů je nástroj SFinGe, který při generování otisku
nejprve vytvoří dokonalý otisk, který je následnými transformacemi upraven tak, aby pů-
sobil realisticky. Tato práce se zabývá vytvořením generátoru syntetických otisků prstů
založeného na modelu hlubokého učení. Konkrétně se jedná o generativní soupeřící síť,
která se stala velmi populární v oblasti generování dat. Cílem je naučit tento model gene-
rovat syntetické otisky prstů, které budou nerozeznatelné od těch reálných.

Teoretická část práce nejprve shrnuje základní informace o biometrii se zaměřením na
otisky prstů. Z těchto informací je čtenář schopný zhodnotit vizuální kvalitu výsledků
této práce. Také je blíže popsán princip již zmíněného nástroje SFinGe. V další části
jsou představeny umělé neuronové sítě a zejména jejich speciální typy, jako jsou konvoluční
a generativní soupeřící sítě. Ty tvoří základní stavební prvky navrženého modelu. V prak-
tické části práce jsou poskytnuty detailní informace o navrženém modelu, včetně popisu
datasetu, který byl využit při jeho trénování. Pro zajištění stability trénovacího procesu
a zvýšení kvality výsledných otisků prstů bylo implementováno několik metod, které jsou
také popsány v této části. V poslední kapitole se práce věnuje implementačním detailům
navrženého modelu a vyhodnocení jeho výsledků.

Navržený model je založený na principu generativní soupeřící sítě, která obsahuje dvě
dílčí neuronové sítě. První z nich je generátor, jehož úkolem je vygenerovat ze vstupního
vektoru hodnot syntetický otisk prstu v rozlišení 96 × 96 pixelů. Naproti tomu druhá síť,
nazývaná diskriminátor, má na vstupu dva snímky otisků prstů – jeden z reálného datasetu
a druhý vyprodukovaný generátorem. Na základě těchto snímků provádí klasifikaci, zda se
jedná o reálné či syntetické snímky. Cílem generátoru je, aby diskriminátor nebyl schopný
rozlišit reálný snímek od syntetického. Cílem diskriminátoru přitom je, aby dosáhl co
nejvyšší rozlišovací schopnosti. Jelikož jsou tyto dvě neuronové sítě trénovány současně
a soupeří navzájem mezi sebou, je stěžejní udržet proces trénování stabilní. Tedy zajis-
tit, aby jedna ze sítí znatelně nepřekonávala druhou. Toho bylo dosaženo po implementaci
metody spektrální normalizace a modifikaci označení třídy dat. Některé reálné snímky byly
během trénování označeny jako syntetické a naopak. Zároveň reálné otisky prstů nebyly
označeny explicitní hodnotou 1, ale náhodnou hodnotou v rozmezí 0.9 až 1. Tyto uvedené
metody vedly k výrazné stabilizaci trénování modelu. Přetrvával však problém s nízkou
diverzitou generovaných snímků. Tento problém byl redukován implementací metody klasi-
fikace napříč dávkou dat, která dává diskriminátoru možnost ohodnotit snímek s ohledem
na ostatní smínky ve stejné dávce. To mu umožňuje rozpoznat nízkou diverzitu mezi snímky
a tím také snadněji určit, že se jedná o výstup generátoru. Tím je generátor nucen k tomu,
aby generoval data s vyšší diverzitou. Dále pomohla také metoda opakování zkušeností
diskriminátoru, při které jsou diskriminátoru po určitém počtu kroků znovu ukázány něk-
teré ze starších vygenerovaných snímků. To nutí generátor, aby nezůstal u shodných snímku
a více je modifikoval.



Model, po implementaci metod pro zlepšení výkonu, prokázal, že je schopný generovat
syntetické otisky prstů, které jsou téměř nerozpoznatelné od snímků z reálného datasetu.
Výsledky byly vyhodnocovány během trénování podle „Fréchet Inception Distance“ (FID),
která je populární metrikou při vyhodnocování generativních soupeřících sítí jejichž cílem
je generování obrazových dat. Metoda FID do výsledného skóre promítá jak kvalitu vygen-
erovaných snímků, tak jejich diverzitu. Následně byl vygenerován dataset obsahující 100
snímků, které byly vyhodnoceny nástrojem NFIQ 2.0, který se stal referenční implementací
standardu ISO/IEC 29794-4. Nejlepších výsledků bylo dosaženo s modelem implementu-
jícím veškeré popsané rozšiřující metody po 60 epochách. V té fázi model dosáhl FID 36,8
a průměrného skóre kvality vygenerovaných otisků prstů 18,21 podle nástroje NFIQ 2.0.
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Chapter 1

Introduction

Since their formal acceptance in the nineteenth century for identifying an individual’s iden-
tity, fingerprints became the most popular biometric characteristics [16]. They proved to
be a very reliable method of authentication, and technologies based on their recognition
are cheap and easy to use. These advantages are the main reasons why this technology
carried over to our everyday life. However, as the popularity of fingerprints is rising, so
does the need for more sophisticated recognition algorithms. These algorithms need large
datasets of fingerprints to be tested appropriately; however, acquiring such a database is a
very time and money consuming process. Once the database is collected, it is also compli-
cated to share it because of privacy issues. These problems lead us to synthetic fingerprint
generators. There are many existing approaches to generating synthetic fingerprints, but
many fail to generate realistic-looking fingerprints since they are not able to express their
complicated structure.

Less than a decade ago, an up-and-coming model for realistic image generation was
proposed in paper [12] by Goodfellow et al. This model, called generative adversarial
network, became a powerful tool for many computer vision and pattern recognition tasks.
It is successfully used in areas like image-to-image translation, text-to-image synthesis,
resolution enhancement, text/image/video content generation, and many more. Its usage
in deep fakes, which became famous and frightening at the same time, has shown that they
can capture detailed biometric characteristics.

In this thesis, a synthetic fingerprint generator based on the generative adversarial net-
work is proposed. Currently only one publicly accessible project has implemented this
approach and reached exciting results [27]. The goal is to generate highly realistic finger-
prints that are indistinguishable from the real fingerprints.

Chapter 2 provides information about biometrics with emphasis on fingerprints, so the
reader gets insight into the intent of this work. In Chapter 3, artificial neural networks are
described, together with more advanced models such as convolutional neural networks, and
generative models based on adversarial training that are important for this work. Chap-
ter 4 describes the proposed solution, including the used dataset, the model architecture,
and methods implemented to improve the performance of the proposed model. Chapter 5
provides implementation details of the proposed solution and evaluation of the results based
on the Fréchet Inception Distance [14] as well as one of the conventional methods for the
fingerprints quality evaluation. The last Chapter 6 provides a summary of this work and
suggests possibilities for future work.
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Chapter 2

Fingerprints and introduction to
biometrics

People are in contact with fingerprint-sensing technologies so commonly that many of them
accepted this technology as part of their everyday lives. People can easily log into their
phones or notebooks, and they can even open a locked door with only the touch of a finger.
In this section, the general information needed to understand this work is described. Since
this thesis is focused on the generation of synthetic fingerprints, this chapter will cover a
description of the term biometrics with the emphasis on fingerprints. Finally, the principle
of conventional synthetic fingerprint generators is described.

2.1 Biometrics
In today’s world, when technology is on the rise, there is also a risk of stolen identity
growing. Given this, the reliable method of authentication of an individual’s identity is
more and more crucial.

When talking about how to prove our digital identity, there are three basic approaches:

∙ Showing the knowledge of a secret (e.g., password, PIN).

∙ Demonstrating the possession of something unique enough (e.g., ID card, security
token).

∙ Satisfying physiological or behavioral requirements called biometric characteristics,
or simply biometrics [15] (e.g., fingerprint, face, iris, signature). [17, 25]

One of the main reasons why biometrics is so widely used nowadays is that these char-
acteristics cannot be easily lost, shared, guessed, copied, or eventually forged. Based on
these aspects, biometrics is considered to be significantly more difficult to abuse than tra-
ditional authentication methods (knowledge, possession) [16]. However, once the biometric
of a person is revealed, there is no simple way to change it [17].

Although fingerprints are probably the most widely known biometrics, any physiological
or behavioral characteristic can be used as a biometric characteristic. According to [25],
the basic properties, when comparing different biometrics, are:

∙ Universality – each person should have this trait.

3



∙ Distinctiveness – two persons should not have the same trait.

∙ Permanence – the trait should not vary over time.

∙ Collectability – the trait should be easy to acquire.

∙ Performance – the trait should not change or age.

∙ Acceptability – the public should allow the trait to be recorded and used.

∙ Circumvention – how difficult it is to forge this trait.

One of the reasons that make fingerprints one of the most widely used biometrics is their
uniqueness. Sir Francis Galton’s calculations stated that the likelihood of two fingerprints
being the same is 1 to 64 billion [25]. Other primary advantages of this biometric are
permanence, performance, circumvention, and the low price of deploying a biometric system
[17].

2.2 Physiological information about fingerprints
Fingerprints are created by papillary lines, protrusions on the inner side of hands (and feet).
Papillary lines are fully formed at about seven months of fetal development, and the process
of their formation is also a reason why there is such a small chance of two individuals having
the same fingerprint [25].

The general form of the fingerprint emerges as the skin on the fingertip begins to differ-
entiate. This process is caused by the basal layer of the epidermis, which grows faster than
dermis (inner layer) and epidermis (outer layer) layers around. That causes compressive
stress in the basal layer, as shown in Figure 2.1. If the stress is large enough, a buckling
causes the formation of the papillary line [22]. Additionally, the environment around the
fetus continuously affects the process, including the position and movement of the fetus in
the womb and the density of amniotic fluid [25].

Papillary lines can be seen and captured as a fingerprint; however, they are just a
projection from the dermis layer to the epidermis layer. That means that it is not possible
to change or delete the fingerprint by superficial injury because it will regenerate as the
skin grows back [17, 25].

basal layer of epidermis

upper layers of the epidermis

’bed’ of springs

dermis

pressure pressure

Figure 2.1: Basal layer of epidermis trapped between dermis and intermediate epidermis
layers (inspired by [22]).
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2.3 Classification of fingerprints
The FBI’s IAFIS (Federal Bureau of Investigation’s Integrated Automatic Fingerprint Iden-
tification System) processes tens of thousands of requests daily with hundreds of millions
of records in a database [33]. With so many incoming requests, it would be challenging and
inefficient to simply compare any two fingerprints against each other. Therefore, finger-
prints are divided into classes to make this process more efficient. This allows us to reject
immediately those from another class and focus just on those that belong to the same class
[17].

IAFIS system uses Henry’s classification system, which contains three basic classes –
arch, loop, and whorl. Examples of these fingerprint classes can be seen in Figure 2.2.
From these basic classes, other more specific ones are derived. The main characteristics to
distinguish fingerprint classes are called delta and core. Delta is a place where papillary
lines run to three different directions. Core is located in the innermost loop of a fingerprint
[17].

Figure 2.2: Different classes of fingerprints according to the Henry’s classification (taken
from [17]).

2.4 Fingerprint minutiae
The previous section defined how fingerprints can be separated into different classes, which
helps to reduce the number of fingerprints that need to be checked. However, this still does
not solve an issue with unambiguously identifying a person’s identity.

To be able to distinguish every finger in the world, analyzing fingerprint minutiae is
needed. Minutia is a specific formation created by papillary lines. Many of them are
distinguished, each of them with a different likelihood of appearance [17]. Since it would be
too demanding to work with all these complicated patterns, just two basic minutiae types
for automatic recognition are being recognized in practice – ridge ending and bifurcation.
Examples of those minutiae types can be seen in Figure 2.3. Nevertheless, these provide
enough information to identify an individual’s identity successfully [25].
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Figure 2.3: Fingerprint minutiae – bifurcation and ridge ending (taken from [17] and mod-
ified).

2.5 Fingerprint acquirement
For the automatic fingerprint recognition, getting a fingerprint into a digital form is the
start of the process. Even though there are different methods for achieving that, the most
convenient way is getting the fingerprint into the computer directly using a fingerprint
sensor [17].

In this work, different fingerprint datasets for training a synthetic fingerprint generator
were used to see how the best results can be achieved. These datasets were acquired using
different sensor technologies. This section will present the standard sensor technologies
used nowadays to get a better understanding of how fingerprints were acquired and what
the limitations of these methods are.

2.5.1 Optical technology

One of the oldest fingerprint sensor technologies is based on a relatively simple optical
principle indicated in Figure 2.4. A finger is placed onto a protective glass, so ridges
(papillary lines) touch the glass, and valleys are in the distance. From a light source
(LED), ray falls on the finger surface and is reflected by ridges and absorbed at valleys.
CCD/CMOS camera then captures reflected rays through optics, which creates the final
image of the fingerprint. The finger does not have to be necessarily placed on a surface –
also, contactless sensors based on this technology exist [9]. The main advantages of this
technology are the resistance to temperature fluctuations and possible operation in 3D. The
disadvantage is a high sensitivity to dirty fingers. Except for the contactless technology,
there is also a problem with latent fingerprints [17].

2.5.2 Thermal technology

This technology is based on thermal radiation. Ridges have higher thermal radiation than
valleys. When a person sweeps a finger over a pyroelectric cell, it generates a current accord-
ing to the temperature, which can be measured. Since the temperature equalizes quickly,
it is necessary to use sweeping sensors. The advantage of these sensors is high resistance to
electrostatic discharge [17]. The basic principle of sensors based on the technology described
above is shown in Figure 2.5.

2.5.3 E-field technology

The sensor consists of a finger drive ring and a matrix of antennas as shown in Figure 2.6.
The drive ring generates a sinusoidal radio frequency signal, and the matrix receives that

6



Figure 2.4: Optical sensor principle (taken from [17]), and the example of the fingerprint
acquired by an optical sensor (taken from [4] DB2_A_dataset).

Figure 2.5: Thermal sensor principle (taken from [17]), and the example of the fingerprint
acquired by a thermal sensor (taken from [4] DB3_A_dataset).

cross-section of finger skin Live skin layer
Outer dead
skin layer

Skin surface

Antenna array
Excitation
generator

Finger drive ring

Figure 2.6: E-field sensor principle (inspired by [2]).
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signal modulated by skin structure (dermis layer, because the electric field passes the upper
layer of skin). This technology is resistant to fake fingers and dirt. The disadvantages
of these sensors are high sensitivity to electrostatic charges and possible sensitivity to a
disturbance in its RF modulation [17, 2]. An example of a fingerprint acquired by an e-field
sensor can be seen in Figure 2.7.

Figure 2.7: The example of the fingerprint acquired by an e-field sensor (taken from [4]
DB1_A_dataset).

2.6 Synthetic fingerprints
As the popularity of fingerprint recognition technologies is rising, many new methods need
to be invented to be more resistant to impostors. These methods need thorough testing,
which can be a problem because of the lack of enough fingerprints in the database. It is
because acquiring such a number of fingerprints is very time and money consuming. Since
collecting such a database is a very tiresome process for technicians and users, it is also
easy to make a mistake. Once such a database is available, it is problematic to share it
because of privacy legislation that protects personal information [17, 25].

When no large databases are available for testing, developers have to work with small
databases, making it easy to make algorithms data-dependent. That led to the invention of
synthetic fingerprint generators, which allow for the creation of large fingerprint databases
[17].

2.6.1 Generation of synthetic fingerprints

There are several methods used for this purpose; however, most of them are based on the
same principle [17]. The typical representative of tools for this purpose is SFinGe, which
stands for “Synthetic Fingerprint Generator”. It is the oldest and most common method for
generating synthetic fingerprints. Beside creating realistically looking fingerprints, SFinGe
brings several other advantages such as low costs of the fingerprint database and the pos-
sibility of producing large databases. All the mentioned factors result in easy testing and
optimization of recognition algorithms [25].

The latest version of this method is 5.0, which upgraded the algorithms of previous
versions and came with the new parameter, which can set up the probability of generating
a low-quality fingerprint [41].

8



The generation process of SFinGe consists of four steps that result in the so-called master
fingerprint (perfect fingerprint) [17, 25]. Other steps then make this perfect fingerprint more
realistically looking. At first, the fingerprint shape is determined. The basic shape is oval
and can be changed in all directions to create the required shape. In the second step, a
class of fingerprint is chosen together with defining a number and positions of cores and
deltas. Based on this information, a consistent direction field is generated. For the arch
class, SFinGe uses a sinusoidal function whose frequency and amplitude control the arch
curvature [25]. One can notice that the density of papillary lines varies over the entire area
of a fingerprint. That is solved by the third step of the process when a density map is
created. The density map is generated based on the positions of cores and deltas. The last
step of the generation chain is a ridge pattern generating. It combines all previous steps
with some initial seeds. Gabor filters then refine the image. Minutiae are generated in
random places with random types. After that, the master fingerprint is generated [17, 25].
Figure 2.8 shows the example of master fingerprint generation and application of scratches
to it.

Figure 2.8: Images show four steps of the generation chain (taken from [37]).
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The process of making the master fingerprint more realistically looking starts with the
selection of the contact region. The ridge patterns are translated to simulate different
placements of the finger on the sensor; however, the fingerprint’s position and shape are
not changed in this step [17].

The second step modifies ridge thickness, which simulates skin dampness and finger
pressure. Wet skin or higher pressure lead to thicker ridges, and in that case, the dilatation
operator is applied. Otherwise, the erosion operator is applied to simulate dry skin or low
pressure [25]. This step is followed by the phase of the fingerprint non-linear distortion,
which simulates skin deformation according to different finger placements on a sensor. For
this distortion, the Lagrangian interpolation is used [17, 25].

The next step is noising and rendering, which simulates many small adjustments. These
include non-uniform pressure of the finger, different contact of ridges with a sensor, small
cuts or abrasions on the fingertip, presence of small pores within the ridges, and other noise.
The process continues with translation and rotation. That simulates that the finger was
not placed on the sensor precisely, so it translates or rotates the whole fingerprint.

The final step is the generation of a realistic background generated randomly from the
existing set of background images transformed by mathematical methods to create new
backgrounds. Different background models can be created to simulate different acquisition
technologies (e.g. optical, capacitive – as mentioned in Section 2.5) [17, 25].
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Chapter 3

Artificial neural networks

Artificial neural networks (ANNs) are a set of algorithms based on the operating principle
of a mammalian brain. Neurons are its fundamental units of computation. In the brain,
neurons are connected with synapses in more complex structures creating networks used to
process data. Each neuron receives input signals from its dendrites and generates output
signals along its axon. The axon branches out and connects through synapses to dendrites of
other neurons [19]. People learn and improve their capacities to process data by establishing
reconnections between neurons [26].

ANNs can be used for a wide range of information processing tasks. They can learn
to recognize structures in a set of training data and generalize what they have learned to
other datasets, which means they can handle supervised learning problems [26]. They also
work well in analyzing large sets of high-dimensional data, where it could be challenging
to determine which features are important. They can detect clusters and other structures
in the input data. In this case, it is talked about unsupervised learning problems [26].
In many problems, some information about targets is known but is incomplete. In such
cases, algorithms that combine both supervised and unsupervised learning are used. That
approach is called reinforcement learning [26].

3.1 Transformation of biological principle into a computa-
tional model

The ANN algorithms use significantly simplified neuron models compared with real neu-
rons, as can be seen in Figure 3.1; however, the basic principle is still the same. In the
computational model, the signals that travel along the axons are called inputs (e.g., 𝑥0, 𝑥1).
These signals interact with the dendrites of the other neuron based on the synaptic strength
at that synapse. This connection with a given strength is called weight (e.g., 𝑤0, 𝑤1), and
the operation caused by the interaction with the signal has a character of multiplication
(e.g., 𝑤0𝑥0). The idea of reconnections mentioned above is represented by learnable weights
which control the strength of the influence of one neuron on another one. Then, the signals
get to the cell body, where they all get summed together with the bias 𝑏. An activation
function 𝑓 is applied to the final result, which decides whether the neuron should fire or not
[19]. More detailed information about activation functions are provided in Section 3.3.1. A
model which utilizes just a single neuron described above, is called a perceptron [1], which
can be used as a simple binary classifier; however, such classifier works well just on linearly
separable data.
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As mentioned in the introduction to this chapter, neurons in a brain are interconnected
into complex networks. With a single neuron, we can express binary information, which is
based on whether a neuron fires or not; however, to express more than just a binary value, a
structure needs to be extended by additional interconnected neurons just like in the brain.
These neurons are connected in a parallel manner, as shown in Figure 3.2. This structure,
called a layer of neurons, is an essential building block for multilayer networks described in
Section 3.3.

Figure 3.1: Comparison between a biological neuron (left) and its common mathematical
model (right) (taken from [19]).
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Figure 3.2: Multi-neuron neural network diagram.
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3.2 Discriminative vs. generative models
Three essential steps are needed to create a synthetic fingerprint generator based on real
data samples, as can be seen in Figure 3.3. At first, the algorithm needs to go through the
existing fingerprint images and learn their characteristics and appearances. Specifically,
it needs to learn a distribution throughout the dataset, so it knows how to represent a
fingerprint image. In the end, the model needs to generate a new sample from the distribu-
tion it has learned. This process corresponds to the principle of generative models, which
is a subclass of machine learning algorithms. This section describes the principle of both
generative models and discriminative models, which are their opposite.

Source dataset
with real
images

Learned
distribution of the

real images

New image generated
from the learned

distribution

Figure 3.3: The basic principle of a generative model.

The goal of supervised learning is to learn a mapping function 𝑥 → 𝑦, where 𝑥 represents
a piece of data, and 𝑦 represents a target variable (label) [23]. Examples of supervised
learning tasks can be classification, regression, or semantic segmentation. Discriminative
models are models for supervised learning. These models estimate a posterior probability
distribution 𝑝(𝑦|𝑥) [13]. When 𝑥 is an input image, and 𝑦 is a label of a class, then the
distribution reveals the extent to which the model calculates the image to be representative
of a particular class.

On the contrary, unsupervised learning aims to learn some underlying structure of data
𝑥 even when there are no labels available [23]. Examples of unsupervised learning are
clustering, density estimation, or dimensionality reduction. Generative models are models
primarily for unsupervised learning but can also be used in a supervised setting. These
models address a density estimation, which is one of the core problems in unsupervised
learning. Generally, their goal is to learn a distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥), which is as similar as
possible to a distribution of training data 𝑝𝑑𝑎𝑡𝑎(𝑥) [23].

It is useful to demonstrate a difference between the approach of generative and discrim-
inative models on a task that they both can be used for – classification. As mentioned
above, the goal of a discriminative classifier is to learn a posterior distribution 𝑝(𝑦|𝑥), while
the goal of a generative classifier is to learn a joint probability 𝑝(𝑦, 𝑥). This joint probability
can be learned directly, or by computing it using a chain rule as 𝑝(𝑦, 𝑥) = 𝑝(𝑦|𝑥) · 𝑝(𝑥).
That shows the relation between a posterior probability learned by discriminative models
and a joint probability learned by generative models. Generative models need to learn a
density function 𝑝(𝑥) to be able to represent the input data well.

In comparison, generative models have a more difficult task, since their goal is signifi-
cantly more complex. As can be seen in Figure 3.4, discriminative models learn boundaries
between data classes, while generative models learn the distribution of individual classes.
However, the advantage in learning the distribution of training data is that generative
models have significant additional value at generating new samples similar to training ones.
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Figure 3.4: Example of discriminative and generative models’ goals in classification task
represented in the graph (inspired by [13]).

3.3 Deep feedforward networks
When a perceptron model, mentioned in Section 3.1, is described as a layered structure,
there are two layers - the input layer and the output layer. The input layer transmits
the data to the output layer, which is a computational one. Multilayer networks improve
the architecture by at least one additional computational layer between input and output
layers, referred to as a hidden layer. Based on the increasingly used multilayer structure in
neural networks, they are known as deep learning models. The specific kind of architecture
of multilayer networks is a feedforward network, which means that outputs of neurons from
one layer are fed as inputs to the successive layer. Therefore, the whole structure represents
an acyclic graph [1, 24]. Since deep feedforward networks (DFNs), also known as multilayer
perceptrons, are essential models of deep learning, it is convenient to describe all neural
networks’ fundamental components in this section.

3.3.1 Activation function

An activation function is a mathematical function, that allows to decide whether a neuron
is activated or not. Below is the basic formula for a single neuron from Figure 3.1.

𝑎 =
∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝑏 (3.1)

It is clear that 𝑎 ∈ R, so there is no information about value bounds. That makes it
impossible to decide whether a neuron should fire (be activated) or not. For this purpose,
the activation function 𝑓(𝑎) transforms the value 𝑎 into a given range, making it possible to
decide whether the neuron should be considered activated. All of the activation functions
described in this section are based on the information from [10] and [24].

The most straightforward activation function is a step function. This function works
well with a perceptron model as a binary classifier. However, it cannot be used for more
complex tasks, where the structure consists of multiple neurons.

𝑓𝑠𝑡𝑒𝑝(𝑥) =

{︂
1 for 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
0 otherwise. (3.2)

A binary output problem can be solved by a linear activation function, which scales its
input by a constant 𝑐. On the other hand, it brings other problems. Using this function,
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it is not possible to use backpropagation (see Section 3.3.3) to train the model. Since
backpropagation uses gradient descent, and the derivative of a linear function is a constant,
the gradient has no relation to the input. Also, the model loses the strength of multiple
layers because they all collapse into a single layer. That is because a linear combination
of linear functions is still a linear function. A range of output values causes one more
problem. As already mentioned, it is convenient to transform values into a specific range;
however, with a linear activation function, output values can still be in a range (−∞;∞).
It is possible to utilize these values, for example, for classification using a function 𝑚𝑎𝑥()
or 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(), and make a final decision based on the result. However, it does not allow
generating probabilistic scores from neurons.

𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑐𝑥 (3.3)

It is necessary to use non-linear activation functions in deep learning models to avoid the
problems mentioned above. One of the well-known is a sigmoid function. It squashes the
output values into range (0; 1), which allows generating probabilistic scores from neurons.
Also, the gradient is steep near the origin and saturates as going along the x-axis. That
helps in classification tasks because the function tries to keep output values close to either
zero or one. The main problem with this activation function is its small gradient as getting
further from the origin. That can cause a vanishing gradient problem, which leads to slow
learning of the network, or eventually, a stop of learning.

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
(3.4)

Similar to sigmoid function is the Tanh function, which squashes the output values into
range (−1; 1), instead of (0; 1). It is a scaled sigmoid function, which has a steeper gradient.
However, the main problem with vanishing gradients remains the same.

𝑓𝑡𝑎𝑛ℎ(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (3.5)

Currently, the most widely used activation function is the ReLu function. The main
advantage against functions above is that ReLu outputs 0 for all negative input values
and therefore deactivates neurons that produce negative values. Most of the neurons fire
in an analog way with functions like sigmoid or Tanh, so most of the activations need to
be processed to contribute to the network output. ReLu helps to make these activations
more sparse, resulting in a lighter network. Additionally, ReLu is significantly less compu-
tationally expensive because it involves simpler mathematical operations then sigmoid or
Tanh.

𝑓𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.6)

The problem of ReLu function is the zero output for values in range (−∞; 0). Since a
gradient in that range is also a zero, weights are not adjusted for these activations during
backpropagation. That leads to a dying ReLu problem when a part of the network can
become passive. A modified version of this function was proposed to address this problem,
which reduces the effect of neurons by a factor 𝑐 in negative range instead of deactivating
them. This modified version is called a leaky ReLu.

𝑓𝑙𝑒𝑎𝑘𝑦_𝑟𝑒𝑙𝑢(𝑥) =

{︂
𝑥 for 𝑥 ≥ 0,
𝑐𝑥 for 𝑥 < 0.

(3.7)
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3.3.2 Loss function

Once a model predicts the output value 𝑦 during training, it needs to be evaluated against
the expected output value 𝑦. For this purpose, a loss function is used, which defines the
error of the model. In other words, it reflects how far from the correct output, the generated
output is. The result is then used to tune the network parameters during backpropagation
(see Section 3.3.3). The information about loss functions provided in this section was
obtained from [24].

Loss functions are generally separated into two categories - regression loss and classi-
fication loss. In regression tasks, both the expected output values and predicted output
values are direct. Therefore, it allows calculating the loss based on the difference between
these two values.

The most straightforward loss function would then be a direct difference between the
expected and predicted outputs, as shown below. However, this allows positive as well as
negative results, which is undesirable.

𝐿(𝑤) = 𝑦 − 𝑦 (3.8)

There is a couple of regression loss functions; however, the two most common similar
loss functions are used to avoid the problem with a sign of the result - Mean squared error
(MSE) and Mean absolute error (MAE). MSE loss function squares the difference between
predicted and expected values, which makes all values positive, and then computes the
mean to normalize the result. For 𝑛 predicted values 𝑦 and corresponding expected values
𝑦, the MSE is defined as shown below.

𝐸 =

∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

𝑛
(3.9)

The problem with MSE is that it is prone to outliers in the data. Any sample, which
outputs value far from the expected value, contributes significantly to the loss. When many
outlying data are present in the dataset, MSE causes a problem. That can be solved by
the MAE loss function, which computes the absolute value of error instead of squaring it.
This approach is not as sensitive to outliers as MSE; however, calculating absolute values
makes the loss function non-differentiable, which is a problem during backpropagation.

Classification tasks do not predict direct values as regression tasks. Instead, they predict
a discrete class label, which is generally a positive integer value. Since both the expected
value and predicted value are integers from a set of discrete values, computing the differ-
ence between those two numbers does not provide any useful information about the loss.
Therefore, classification loss functions are developed over probability distributions.

Cross-entropy is one of the most common loss functions for classification models that
output probability values between 0 and 1. It compares the probability distribution of
prediction with the expected labels. Cross-entropy loss is minimal when these two distribu-
tions are the same, and increases as they diverge from each other. The formula is defined
for the expected label 𝑦 and predicted label 𝑦 as:

𝐻(𝑦, 𝑦) = −
𝑛∑︁

𝑖=1

(𝑦𝑖 log 𝑦𝑖) (3.10)
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3.3.3 Backpropagation process

In order to effectively train a neural network model, there is a need to update its weights (in
a biological analogy – a need for establishing reconnections between neurons), which reflects
how a neural network learns. Once a neural network is constructed with its initial weights,
a forward pass is performed. That means inputs from a training set are fed into the network
and passed through until the network eventually generates an output. After that, the loss
function is computed, which reflects the error of the model as described in Section 3.3.2.
Once the information about the error is known, it needs to be reflected in the network
structure. That is the point where a backpropagation algorithm takes place. If a function
is differentiated, we get the gradient of that function. The gradient represents the direction
along which the function increases/decreases the most. Backpropagation calculates partial
derivatives, going back from the error function to a specific neuron and its weight. The
backpropagation results in a set of weights that minimize the error function [28].

This process could be repeated for every sample in the training set; however, this would
be ineffective. Typically, a couple of samples are grouped in one batch. The whole batch is
then passed through the network, and the backpropagation is performed on the aggregated
result. The batch size and the number of batches, called iterations, are two hyperparameters
that can be optimized [28]. Once an entire dataset is passed through a neural network, it
is referred to as one epoch. So, the number of iterations in one epoch can be computed by
the equation below:

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑝𝑜𝑐ℎ =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
(3.11)

3.3.4 Adam optimizer

In practice, the backpropagation algorithm is used by more sophisticated algorithms that
use the backpropagation for computing the gradient of the error function and they control
the update of weights. One of the common optimization algorithms for this purpose is
called Adam [8]. The size of the step in the direction of the decreasing gradient of the
error function is defined by the hyperparameter called a learning rate. The learning rate
has a significant impact on neural network performance and it is hard to set. Adam is one
of the algorithms that automatically adapt the learning rate throughout learning. It uses
a momentum, which accumulates exponentially decaying moving average of past gradients
and continues to move in their direction, which optimizes the learning process of neural
networks [11].

3.3.5 Neural network hyperparameters

In the last section, a term hyperparameter was mentioned. This section gives a closer
look at its meaning. Model parameters are internal properties of training data that are
learned during training. The objective of the network training is to learn the values of the
model parameters. Hyperparameters, on the other hand, are external parameters set by the
programmer. Different values of hyperparameters can have a significant impact on network
performance [28].

Hyperparameters that are related to the network structure can be, for example, number
of hidden layers in the network architecture, an activation function, that determines the
output of each element in the neural network, initialization values of weights, or a dropout
(one of the methods to avoid network underfitting). Other hyperparameters related to the
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training algorithm are, for example, a learning rate, a batch size, number of iterations, or
an optimizer algorithm [28].

Optimizing the hyperparameters of a neural network model means retraining the net-
work using each set of hyperparameters and evaluating the results. There are a few more or
less sophisticated methods to do this. Manual search requires just testing of hyperparam-
eters that the operator chooses. Unless the operator is experienced, this method can be a
dead end. A more systematic approach brings a method called grid search, which involves
systematically testing different hyperparameters’ values and retraining the model for each
combination [28]. However, James Bergstra’s and Yoshua Bengio’s paper [3] showed that
it is more efficient to use random hyperparameter values than using the manual search or
grid search. The last commonly used optimization method is Bayesian optimization [34].
The idea is to train the model with different hyperparameters values and observe the shape
of the function generated by these values. The method then predicts the best possible
hyperparameters values, which provide higher accuracy than a random search [28].

3.4 Convolutional neural networks
Since the great success of convolutional neural network (CNN) architecture in 2012 [21],
the concept of CNNs became highly used primarily for computer vision tasks (e.g., image
classification, face recognition, image processing in robots and autonomous vehicles). CNN
scans an image one area at a time, identifies and extracts essential features that are used
for image classification [18].

Plain neural network model, in which layers are fully connected (meaning that all neu-
rons in one layer are connected with all neurons in the following layer), is inefficient when
it should process extensive high-dimensional data, such as images or videos. Since an im-
age with hundreds of pixels and three color channels (RGB) results in millions of model
parameters, there is a high chance of overfitting. To limit the number of parameters, CNN
uses a structure in which each set of neurons analyzes just a part of the image. The general
form of this structure can be written as ℎ𝑒𝑖𝑔ℎ𝑡×𝑤𝑖𝑑𝑡ℎ× 𝑑𝑒𝑝𝑡ℎ, where depth relies on the
color channel of the image. When working with grayscale images, this structure is a single
matrix with values in a range from 0 (black) to 255 (white) for each pixel. In a case of the
RGB image, the structure would contain three matrices, each having values in a range from
0 to 255 [20].

3.4.1 CNN architecture

Three main layers of a network are used to build the CNN architecture – convolutional
layer, pooling layer, and fully-connected layer. The fully connected layer works as a classical
neural network. It is usually at the end of the CNN and outputs the vector of probabilities
as in the standard classification task. The process that makes CNNs different and very
powerful happens in the unique architecture between the input and the output layer.

The convolutional layer’s parameters are a set of filters that map each of the neurons
in the convolutional layer on a spatially small area of the input volume. The basic idea
is indicated in Figure 3.5. That reduces the total number of model parameters needed.
The size of the filter is a hyperparameter called the receptive field of the neuron. During
the forward pass, the filter moves across the input height and width axis, and products
are computed using a convolution operation. Three hyperparameters are important for
the size of the convolutional layer’s output – depth, stride, and zero-padding. The depth
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hyperparameter corresponds to the number of filters that a developer wants to use. Since
each neuron learns to find a different feature in the input, this hyperparameter is important
to optimize how detailed the convolutional layer should be. The value of stride defines how
the filter is shifted. The stride of value one means that the filter moves one pixel at a
time. When the value of stride is increased, the convolutional layer will produce smaller
outputs spatially. Zero-padding is used to pad the input with zeros around. Its size is a
hyperparameter. In the CNNs, the zero-padding is usually used to ensure that the input
and output volume will have the same size [20].

With the mentioned values, the size of the output volume can be computed using the
following formula:

(𝑊 − 𝐹 + 2𝑃 )

𝑆
+ 1, (3.12)

where W is the input volume size, F is the receptive field size, S is the value of stride, and
P is the amount of zero-padding used [20].

The pooling layer is commonly inserted between convolutional layers in the CNN archi-
tecture to reduce the spatial size of the input, and together with that, the number of model’s
parameters. It works on each depth slice of the input and resizes it by applying some op-
eration on values within the filter. The most common operations that the filter applies are
max-pooling, average pooling, or L2-norm pooling. The average pooling is not commonly
used nowadays since, in practice, the max-pooling proved to work better. The principle of
max-pooling is shown in Figure 3.6. The usage of pooling layers turned out to be a little bit
controversial since there are models that showed that pooling layers are unnecessary, and
to reduce the size of input data using higher stride in the convolutional layer works well [20].

Figure 3.5: Example of neurons in the convolutional layer connected to a local region of
the input data. These neurons that are connected with the same regions are referred to as
depth column (taken from [20]).

3.5 Generative adversarial networks
Models described up to this section (DFNs, CNNs) are the common types of discriminative
models. However, based on the information in Section 3.2, it is clear that the generative
model is needed for the purpose of this work, so that new data samples can be generated. In
2014, one, called generative adversarial networks (GANs) [12], was proposed, which became
a state-of-the-art generative model for the following years.
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Figure 3.6: Example of how the pooling layer applies a filter using the max operation.
(taken from [20]).

GANs belong to the class of direct implicit density generative models. Therefore, their
goal is to sample from the probability density function 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) without explicitly defining
it [23].

Even though generative adversarial networks are generative models because their goal
is to learn a data distribution of the training dataset, they also use a discriminative model
in their architecture. The generative model is referred to as a generator and discriminative
model as a discriminator. The goal of a generator is to learn how to produce data as similar
to real images as possible. The goal of a discriminator is to evaluate its input data and
decide whether they look real or fake. These two models are adversaries in the zero-sum
minimax game. This game has a nash-equilibrium when a generator learns the training
data distribution, and a discriminator is not able to distinguish whether the input sample
is real or fake, which means that 𝑝𝑟𝑒𝑎𝑙(𝑥) = 1

2 and 𝑝𝑓𝑎𝑘𝑒(𝑥) = 1
2 , where 𝑥 is the input

sample. The basic structure of generative adversarial networks is shown in Figure 3.7.

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))] (3.13)

The equation above shows a value function of the minimax game between a generator
and a discriminator [12]. The mapping of the input noise features defined by prior 𝑝(𝑧)
into a data space is given by a differentiable function 𝐺(𝑧, 𝜃𝑔) represented by a generative
model with parameters 𝜃𝑔. The discriminative model with parameters 𝜃𝑑 defined as 𝐷(𝑥, 𝜃𝑑)
outputs a single scalar value representing the probability that data 𝑥 came from the 𝑝𝑑𝑎𝑡𝑎
rather than 𝑝𝑔. The discriminator is trained to maximize the probability of assigning correct
labels to both real samples and samples coming from the generator. The generator is trained
to minimize log(1−𝐷(𝐺(𝑧))). That works well theoretically; however, in practice, training
a generator to maximize log𝐷(𝐺(𝑧)) is preferred instead of minimizing log(1 −𝐷(𝐺(𝑧))),
which provides significantly stronger gradients in the early stage of training and therefore
helps generator to learn well [12].

The reason why GANs are so popular in processing high-dimensional data is the idea
behind them. The problem is that there is no direct way to sample from a complex,
high-dimensional distribution of training data. This model allows to sample from a simple
distribution and learn transformation to the training distribution using a neural network
[23].
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Figure 3.7: Basic schema of generative adversarial networks.

3.6 Deep convolutional generative adversarial networks
The original model of GAN proposed by [12] used a multilayer perceptron for both a
discriminator and a generator. However, as mentioned in Section 3.4, to process high-
dimensional data, it is convenient to use a convolutional neural network, which significantly
reduces the number of parameters of the model. In paper [31], a modified version of
GAN was proposed, which uses convolutional layers for a discriminator, and fractionally-
strided convolutional layers for a generator. This model, called a deep convolutional GAN
(DCGAN), proved to work well and became one of the most popular generative models for
high-dimensional data.

3.6.1 DCGAN architecture

As already mentioned, the discriminator network in DCGAN uses convolutional layers that
downsample input data. The last convolutional layer is flattened and then fed into a single
sigmoid output. The generator network then reshapes an input noise first and then uses
fractionally-strided convolutional layers, also called transposed convolutional layers. These
layers upsample input data into the desired shape, which needs to be the same as the
shape of real samples. The example of generator and discriminator networks is shown in
Figure 3.8.

Alongside the updated architecture of the original GAN model using CNN architectures,
paper [31] also proposed several changes that lead to a stable training of a DCGAN. These
changes include replacing any pooling layers with strided convolutional and fractionally-
strided convolutional layers, which allows discriminator and generator networks to learn
their own spatial downsampling and upsampling, respectively. The other proposed change
is to apply a batch normalization to all layers, except the input layer of a discriminator, and
the output layer of a generator, which stabilizes learning by normalizing the input to each
unit to have zero mean and unit variance. The third change is removing any fully-connected
hidden layers since they can reduce convergence speed. The last proposed change deals with
activation functions. The recommended activation for a discriminator is Leaky ReLu for
all layers. For a generator, using ReLu activation is recommended for all layers except the
last one, which uses Tanh. All activation functions are described in Section 3.3.1.
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Figure 3.8: Example of networks in DCGAN model (inspired by [24]).
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Chapter 4

Solution design

Designing a synthetic fingerprint generator requires two main steps. The first one is the
acquirement of a sufficient dataset. Since the model is designed with respect to the input
data, this step is crucial, and any later change can affect the model architecture. In Sec-
tion 4.1 are described two popular fingerprint datasets for research purposes. Both of them
provide a significant amount of data; however, the SOCOFing dataset was chosen for the
purpose of this work due to its higher complexity. The second step is then the design of
a generator model. In Section 4.2 is presented the proposed model based on a DCGAN
architecture together with methods implemented to improve its performance.

4.1 Datasets
As mentioned in Section 2.6, one of the main problems with biometrics databases is privacy
protection. Therefore, it is not easy to share a database once it is acquired. In order to
create a synthetic fingerprint generator, it is essential to get a sufficient database that our
model can train on. Luckily, for non-commercial purposes, there are still a few accessible
databases with anonymized data, usually owned by academic institutions. This section
presents two popular fingerprint databases meant for research purposes – SOCOFing [35, 36]
and FVC2006 [4].

4.1.1 FVC2006 dataset

Even though this dataset was initially designed for a fingerprint verification competition,
it became a popular source of fingerprint images for research purposes. Also, the original
paper [27] used the FVC2006 dataset in their solution. FVC team grants access to four
distinct subsets DB1, DB2, DB3, and DB4, each of them acquired by a different method.
Each subset is divided into two parts: A and B. Part A contains the first 1,680 fingerprint
images from 140 fingers. Part B contains the other 120 fingerprint images from 10 fingers.
In total, there are 1,800 fingerprints acquired by four different methods. The example
samples from the FVC2006 dataset can be seen in Figure 4.1.

The image format is BMP, and the images are in 256 shades of gray. Image resolution
varies depending on the subset. Table 4.1 shows a resolution, an image size and a sensor
type for each subset.
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Figure 4.1: Examples of FVC2006 datasets in the following order: DB1, DB2, DB3, and
DB4.

Table 4.1: Properties of the FVC2006 datasets (taken from [40] and modified).

Subset Sensor Type Image Size Resolution
DB1 Electric field sensor 96×96 250 dpi
DB2 Optical sensor 400×560 569 dpi
DB3 Thermal sweeping sensor 400×500 500 dpi
DB4 SFinGe v3.0 288×384 about 500 dpi

4.1.2 SOCOFing dataset

Sokoto Coventry Fingerprint Dataset (SOCOFing) is designed specifically for academic re-
search purposes. An extensive dataset of fingerprint images also contains useful information
about gender, hand, and finger name for each image. The dataset contains two parts. In
the first part, 6,000 fingerprints acquired from 600 African individuals are located. The
second part provides over 49,000 altered fingerprint images in total. The altered images are
further separated into three parts by the STRANGE framework’s level of alteration - easy,
medium, and hard. STRANGE is a framework for the generation of realistic alterations on
fingerprint images. In the SOCOFing dataset, samples are altered by obliteration, central
rotation, and z-cut. Information about the applied alteration is incorporated in the image
title. The SOCOFing dataset was chosen for the purpose of this work due to its complexity.

All images have the same resolution of 1×96×103 (gray channel × width × height),
and all real images were acquired using an optical sensor. Table 4.2 contains information
about the number of images in each part of the dataset. In Figure 4.2, different levels of
alteration are shown. The first column contains a real image example, and each successive
column contains a higher level of an alteration.

Table 4.2: Number of fingerprint images in each part of the SOCOFing dataset.

Subset Number of images
Easy 17,934

Altered Medium 17,067
Hard 14,272

Real 6,000
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Figure 4.2: Examples of altered images from the SOCOFing dataset. Each line includes
one type of alteration - central rotation, obliteration, and z-cut in the respective order.

4.1.3 Data augmentation

The common method to reduce overfitting of convolutional neural networks is applying
data augmentation. That means applying transformations on the original data to increase
the generalizability of the model, especially when working with small datasets. Since the
proposed DCGAN model contains a discriminator, which is a convolutional neural network,
and the real part of the SOCOFing dataset contains just about six thousand images, it is a
convenient use case of data augmentation. The altered images from the SOCOFing dataset
were not used during training due to their quite rough modifications of the original finger-
prints. Instead, the custom data augmentation was implemented using Keras framework,
which is further described in Section 5.4.1. Examples of augmented samples that were used
to train the proposed solution are shown in Figure 4.3.

Figure 4.3: Examples of augmented samples from the SOCOFing dataset.
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4.2 Proposed model
DCGAN model, which was described in Section 3.6, was chosen for this work. It also
proved to work well in paper [27], where it was used for the same purpose as a synthetic
fingerprint generator. The basic DCGAN architecture that was used for this work is shown
in Figure 4.4. The discriminator consists of four convolutional layers. Each of them has a
kernel size of 5×5, and stride is set to value two. That means that each layer downsamples
data to half of their size. Data get flattened at the end of the network, and then they are
fed into a dense layer with sigmoid activation function, which generates a single scalar value
representing how much the discriminator believes that given data came from the training
dataset. The generator contains five fractionally-strided convolutional layers. Each of these
layers upsamples data to double their size spatially. A dense layer precedes these layers.
Output values from this dense layer are simply reshaped into the selected input shape of
the network. The last layer in the generator network is a convolutional layer, which changes
the data dimension to the required number of channels. In this case, where images are in
greyscale, the number of channels is one.

In Section 3.6 were mentioned several tips proposed by [31] for a stable training of
DCGANs. However, the research of techniques for stable training models based on GAN
architecture is still an active field, and many methods were proposed to improve and stabilize
their performance. Some of them were implemented in this work and are described further
in this section. In Section 5.3, changes to the proposed DCGAN model after implementation
of these methods are described.
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(3, 3, 512) (6, 6, 256) (12, 12, 128) (24, 24, 64) (48, 48, 32) (96, 96, 32) (96, 96, 1)

Scalar output

Discriminator network
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Figure 4.4: The proposed architecture of discriminator (top) and generator (bottom) mod-
els.
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4.2.1 Label smoothing and noisy labels

When training the discriminator model, real images are generally represented by label ’1’
and fake images by label ’0’. However, these hard labels are good to be replaced by smooth
labels, which proved to work well against discriminator being overconfident about its pre-
dictions. That can have a regularizing effect when training GANs. In [32] is recommended
using one-sided label smoothing when only positive labels are smoothed, and negative la-
bels are kept at value ’0’. Given the parameter 𝛼, values of positive labels were randomly
transformed into range ⟨1 − 𝛼, 1⟩.

Another method related to labels is using noisy labels [5]. That means flipping some real
and fake labels when training the discriminator, which can be represented as 𝑦𝑛𝑒𝑤 = 1−𝑦𝑜𝑙𝑑.
That introduces an error to those labels and helps to reduce discriminator’s overconfidence.
In this work was used a 5 % probability of flipping the label during training.

4.2.2 Minibatch discrimination

To address the mode collapse, which is one of the main failure modes in training GANs,
[32] proposed a method called minibatch discrimination. The mode collapse is a state
where the generator produces the same output for different input data. The problem
is that the discriminator processes each sample separately and therefore has no way to
inform the generator to produce more distinctive outputs. The minibatch discrimination
method is based on a simple principle allowing the discriminator to look at multiple samples
simultaneously. However, it is focused primarily on similar samples within the batch – the
similarity of generated samples increases, when the mode starts to collapse. The similarity
𝑜(𝑥𝑖) is computed between the image 𝑥𝑖 and all other images in the same batch. This
similarity is then appended to one of the intermediate layers of the discriminator, and it
can use this score to detect generated samples and penalize the generator. The example of
the discriminator architecture together with extended dense layer by the similarity at the
end of the network is shown in Figure 4.5.

Flatten
Output

Input image 𝑥

Set of convolutional layers 𝑓(𝑥)

(𝑓(𝑥), 𝑜(𝑥))

Fully
connected

layer

Figure 4.5: Example of the discriminator network with similarity appended to the interme-
diate dense layer.
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4.2.3 Spectral normalization

GANs have a general problem with the unstable training process. One of the main chal-
lenges is controlling the performance of a discriminator. When the support of the learned
distribution 𝑝𝑚𝑜𝑑𝑒𝑙 and the support of the real distribution 𝑝𝑑𝑎𝑡𝑎 are disjoint, the discrimi-
nator, which can perfectly distinguish these distributions, exists. Such discriminator then
leads to a stop of the generator’s training, because its derivative with respect to the input
turns out to be 0. That leads to a need for a restriction on the choice of a discriminator.
In 2018 was proposed a method for weight normalization called spectral normalization [29],
which stabilizes the training of the discriminator.

The method restricts the choice of the discriminator to the set of Lipschitz continu-
ous functions, assuring the boundedness of those functions [29]. In practice, the method
computes the spectral norm 𝜎(𝑊 𝑙) for each layer 𝑙, which is the largest singular value
of the layer’s weights 𝑊 . The spectral norm 𝜎(𝑊 ) could be computed using a singular
value decomposition; however, that showed to be computationally heavy. Therefore, the
method uses the power iteration method [29] to estimate 𝜎(𝑊 ), which results in a short
computational time compared with the overall computational cost of the GAN training.

4.2.4 Experience replay

The mode collapse problem can also be addressed by mitigating the opportunity of the
discriminator to overfit for a particular time instance of data batches. One generated data
sample is preserved in each training step. When it reaches the given number of steps, the
discriminator is fed by recently generated images together with the current batch. This
method is based on a stability trick proposed for reinforcement learning problems in [30].
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Chapter 5

Implementation and results

This chapter provides an overview of the implementation details of the proposed solution
and its results evaluation. The solution was implemented in Python language as it is one of
the most popular languages for creating deep learning models. Python provides simplicity
by its own syntax, but also by supporting many deep learning platforms specifically designed
to make the development of deep learning models even more comfortable. In Section 5.1,
some of the most popular deep learning platforms are discussed. Section 5.2 provides details
about the hyperparameters of the proposed model. In Section 5.3, the models that were
used for results evaluation are discussed.

5.1 Python deep learning platforms
Python supports many deep learning frameworks and libraries that make it significantly
more comfortable to create deep learning models. Some of the popular ones are described
in this section. Since most of the described libraries were initially released after 2015, it is
clear that Python’s deep learning environment grows very fast. Keras framework was used
to implement the proposed solution because it provides a high-level easy-to-learn API with
additional benefits: real-time data augmentation, image preprocessing features, pre-trained
models, and many more.

5.1.1 Theano

Theano [38] is a Python library that provides efficient ways of working with multi-dimensional
arrays. Since deep learning problems involve large amounts of data, this feature is crucial.
Theano also works as an optimizing compiler, it can compile parts of an expression graph
into CPU or GPU instructions, which improves computational performance. Theano can
also find some of the numerically unstable expressions and compute them using more stable
algorithms. Additionally, it supports an efficient symbolic differentiation.

This library provides many advantages, most of all its flexibility. On the other hand,
since Theano is a lower-level API, it requires good knowledge to write effective code. There-
fore, Theano is used to power some of the other deep learning frameworks that work on a
higher level, such as Keras.
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5.1.2 TensorFlow

TensorFlow is an open-source library that provides multiple levels of abstraction. In coop-
eration with Keras API, it allows a high-level approach to developing deep learning models.
However, it still offers a lot of flexibility. TensorFlow’s basic data structures are tensors
that are multi-dimensional arrays. Therefore, TensorFlow effectively allows us to work
with multi-dimensional arrays, which provides excellent support for the development of
deep learning models. The same code can be computed on either CPU or GPU, which
can accelerate the computational process. Computations in TensorFlow are described by
computational graphs, where each edge represents data (tensor), and each node represents
a mathematical operation performed on the input data. The computational graph is built
in advance of running the computational process, allowing, for example, using placehold-
ers in code, which represent data that are not known before running the model and can
be added during runtime from external resources. Since Google LLC backs TensorFlow,
there is a large community of developers that share their knowledge and experience, which
is a significant benefit of using this library. TensorFlow provides mainly computationally
well-performing platform; however, it does not provide many additional features that would
help with the whole process, such as data preprocessing and others. It is more convenient
to use the Keras high-level framework with TensorFlow as its backend.

5.1.3 PyTorch

With the initial release in 2016, PyTorch [39] is the youngest deep learning framework
discussed in this section. Many of its features are similar to TensorFlow and Theano.
For example, it works with tensors that can be computed on both CPU and GPU, which
can significantly increase the computational performance. Another similar feature, yet
the one that makes the most significant difference, is building a computational graph.
PyTorch is designed to handle dynamic computational graphs, which is not possible in
either TensorFlow or Theano platforms. It provides features of both high-level and low-
level APIs, which provides flexibility and simplicity at the same time. Keras was chosen
for the implementation of the proposed solution because there is still a higher number of
relevant resources that use TensorFlow or Keras for development in the time of creating
this work.

5.1.4 Keras

The Keras Python library is a popular deep learning API, which was developed to run
mainly on top of the TensorFlow and Theano machine learning platforms. The Keras
API provides two core data structures – layers and models, which makes it fast and easy to
create and train the proposed solution. There are two approaches to create models in Keras
- sequential [6] or functional [7]. The sequential model is a linear stack of layers, which
works well for simple models. More complex structures require using the Keras functional
API. For example, it allows defining models with multiple inputs or outputs, models with
shared layers, and much more.

5.2 Hyperparameters of the proposed model
The proposed model was trained for 300 epochs on an Nvidia Tesla T4 GPU, with a batch
size of 128. Weights were initialized from a zero-centered Gaussian distribution with a

30



standard deviation of 0.02, as recommended in [31]. The input noise to the generator
network was sampled from 100-dimensional Gaussian distribution with zero mean and unit
variance. ADAM optimizer was used to optimize the loss function with the learning rate of
0.0002 and the momentum of 0.5 [31]. The factor 𝛼 of label smoothing was set to 0.1 with
a 5 % probability of flipping the label during training. Experience replay happens after
each 32 training steps (batches). For minibatch discrimination, 100 discrimination kernels
were used, which results in the extension of the flattening layer’s output’s dimensionality
by 100. The similarity of samples is computed in the 30-dimensional space.

5.3 Implementation of the proposed model
As mentioned in Section 5.1, the proposed solution was implemented using Python’s deep
learning framework called Keras. TensorFlow version 2.1.0 was used as its backend because
it proved to be the most stable version in the time of creating this thesis. For the imple-
mentation of the purposed model, using sequential models was sufficient. The proposed
model consists of three sequential models – the discriminator and generator networks and
the GAN model, which combines both of them. The reason for creating the combined
model is that the discriminator and generator networks are trained separately; however,
the generator needs to access the discriminator to receive the information about its error,
which is then reflected in the update of weights. Keras’s trick is to achieve this behavior by
setting the model’s weights as not trainable. That means the discriminator itself is trained
separately, and the generator is trained using the combined model, which sets the discrim-
inator’s weights as not trainable. The implementation of the combined model is shown in
Listing 5.1.

In Section 5.1.4 was mentioned, that the core data structures in Keras are models and
layers. Therefore, the generator and discriminator models were implemented as a sequence
of layers already provided by the Keras framework. Visualizations of the generator and
discriminator Keras models are shown in Figure 5.1 and Figure 5.2 respectively.

def define_gan(g_model, d_model, adam_learning_rate=0.0002):
// sets the discriminator’s weights as not trainable
d_model.trainable = False

// defines the combined sequential model
model = Sequential(name=’GAN-model’)
model.add(g_model)
model.add(d_model)

// sets the Adam optimizer
opt = Adam(lr=adam_learning_rate, beta_1=0.5)

// creates the model
model.compile(loss=’binary_crossentropy’, optimizer=opt)
return model

Listing 5.1: Implementation of the GAN model which combines the generator and discrim-
inator networks.
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Output:Input: (None, 48, 48, 64)(None, 96, 96, 1)Conv2D_1

Leaky Relu_1 Output:Input: (None, 48, 48, 64)(None, 48, 48, 64)

Conv2D_2 Output:Input: (None, 24, 24, 128)(None, 48, 48, 64)

Batch normalization_1 Output:Input: (None, 24, 24, 128)(None, 24, 24, 128)

Leaky Relu_2 Output:Input: (None, 24, 24, 128)(None, 24, 24, 128)

Conv2D_3 Output:Input: (None, 12, 12, 256)(None, 24, 24, 128)

Batch normalization_2 Output:Input: (None, 12, 12, 256)(None, 12, 12, 256)

Leaky Relu_3 Output:Input: (None, 12, 12, 256)(None, 12, 12, 256)

Conv2D_4 Output:Input: (None, 6, 6, 512)(None, 12, 12, 256)

Batch normalization_3 Output:Input: (None, 6, 6, 512)(None, 6, 6, 512)

Flatten Output:Input: (None, 18432)(None, 6, 6, 512)

Dense with sigmoid Output:Input: (None, 1)(None, 18432)

Leaky Relu_4 Output:Input: (None, 6, 6, 512)(None, 6, 6, 512)

Figure 5.1: Visualization of the proposed discriminator model implemented in Keras.

5.4 Implementation of methods for performance improve-
ment

Several methods were proposed in Section 4.2 to improve the performance of the DCGAN
model. Their implementation is discussed in this section. At first, Section 5.4.1 provides
information about the implementation of data augmentation described in Section 4.1.3. Im-
plementation of spectral normalization and minibatch discrimination methods is described
in Section 5.4.2. These two methods share the same feature – they could be implemented
as layers in Keras. Other methods that were implemented outside the implemented model
itself are described in Section 5.4.3.

5.4.1 Implementation of data augmentation

Since the solution was coded using the Keras framework, the most convenient way to incor-
porate data augmentation to the solution is via the ImageDataGenerator class. One can
choose from many possible transformations that are then applied to the original dataset.
Choosing transformations is an important step because it can significantly affect the gener-
ated images. For example, in case of fingerprints, it would not make sense to use a vertical
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Output:Input: (None, 6, 6, 256)(None, 3, 3, 512)Conv2DTransposed_1

Relu_2 Output:Input: (None, 6, 6, 256)(None, 6, 6, 256)

Conv2DTransposed_2 Output:Input: (None, 12, 12, 128)(None, 6, 6, 256)

Batch normalization_3 Output:Input: (None, 12, 12, 128)(None, 12, 12, 128)

Relu_3 Output:Input: (None, 12, 12, 128)(None, 12, 12, 128)

Conv2DTransposed_3 Output:Input: (None, 24, 24, 64)(None, 12, 12, 128)

Batch normalization_4 Output:Input: (None, 24, 24, 64)(None, 24, 24, 64)

Relu_4 Output:Input: (None, 24, 24, 64)(None, 24, 24, 64)

Conv2DTransposed_4 Output:Input: (None, 48, 48, 32)(None, 24, 24, 64)

Batch normalization_5 Output:Input: (None, 48, 48, 32)(None, 48, 48, 32)

Dense Output:Input: (None, 4608)(None, 100)

Relu_5 Output:Input: (None, 48, 48, 32)(None, 48, 48, 32)

Batch normalization_1 Output:Input: (None, 4608)(None, 4608)

Relu_1 Output:Input: (None, 4608)(None, 4608)

Reshape Output:Input: (None, 3, 3, 512)(None, 4608)

Batch normalization_2 Output:Input: (None, 6, 6, 256)(None, 6, 6, 256)

Conv2DTransposed_5 Output:Input: (None, 96, 96, 32)(None, 48, 48, 32)

Batch normalization_6 Output:Input: (None, 96, 96, 32)(None, 96, 96, 32)

Relu_6 Output:Input: (None, 96, 96, 32)(None, 96, 96, 32)

Conv2D Output:Input: (None, 96, 96, 1)(None, 96, 96, 32)

Tanh Output:Input: (None, 96, 96, 1)(None, 96, 96, 1)

Figure 5.2: Visualization of the proposed generator model implemented in Keras.

flip, because the images could cause a problem during their evaluation. It is more convenient
to use a horizontal flip, which keeps images realistically looking. Another transformation
that can be used is the featurewise normalization. It includes featurewise_center, which
sets input mean to zero over the dataset, and featurewise_std_normalization, which
divides inputs by standard deviation of the dataset. To be able to apply standard normal-
ization, the ImageDataGenerator needs to learn the mean and the standard deviation of
the dataset before generating the actual data.
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5.4.2 Implementation of spectral normalization and minibatch discrimi-
nation

The implementation of spectral normalization and minibatch discrimination methods caused
a few changes in the structure of the discriminator’s Keras model. The updated model can
be seen in Appendix B.

Spectral normalization described in Section 4.2.3 provides a great advantage, because
its definition allows the implementation within a model’s layer. Therefore, spectral nor-
malization was implemented using the updated version of existing Keras layers used in the
discriminator, as visualized in Figure 5.3.

As mentioned in Section 4.2.2, the minibatch discrimination method computes the sim-
ilarity of samples within the batch and appends it to the dense intermediate layer of the
discriminator. Custom Keras layer was implemented and added to the model structure
right after the flattening layer, as shown in Figure 5.4.

DenseSN with sigmoidDense with sigmoid

ConvSN2DConv2D

Figure 5.3: Changes in the discriminator model caused by the spectral normalization
method. Elements highlighted by green color show the updated layers that implement
the spectral normalization.

Flatten Output:Input: (None, 18432)(None, 6, 6, 512)

DenseSN with sigmoid Output:Input: (None, 1)(None, 18532)

Minibatch
discrimination

Output:Input: (None, 18532)(None, 18432)

Figure 5.4: Changes in the discriminator model caused by the minibatch discrimination
method. Elements highlighted by red color show newly added layer that is responsible
for minibatch discrimination, which changed the input data shape of the subsequent dense
layer.

5.4.3 Implementation of methods that did not affect the model itself

The methods that are not a part of the discriminator model itself are incorporated in
the training loop. To be able to better describe the implementation of these methods,
Listing 5.2 shows the training loop written in pseudocode. Each step represents training
on one batch of data.

Smoothing the labels and making them noisy takes place during the preparation of a
batch of data, as can be seen in rows 6–8 and 12–13 of the training loop. Since the label
smoothing is one-sided, only the real data labels are smoothed; however, both the real and
fake data labels are randomly flipped.
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Making the labels noisy is implemented as a function that takes the input vector of
labels 𝑦 and the probability of flipping the labels. It computes the number of labels that
should be inverted based on the probability using the following formula:

𝑛𝑢𝑚_𝑡𝑜_𝑓𝑙𝑖𝑝 = 𝑓𝑙𝑖𝑝_𝑝𝑟𝑜𝑏 · 𝑖𝑛𝑝𝑢𝑡_𝑣𝑒𝑐𝑡_𝑙𝑒𝑛𝑔𝑡ℎ, (5.1)

where 𝑓𝑙𝑖𝑝_𝑝𝑟𝑜𝑏 is the probability of flipping the label, and 𝑖𝑛𝑝𝑢𝑡_𝑣𝑒𝑐𝑡_𝑙𝑒𝑛𝑔𝑡ℎ stands
for the length of the input vector. The given number of indices is then randomly chosen,
that are inverted using the rule 𝑦𝑛𝑒𝑤 = 1 − 𝑦𝑜𝑙𝑑.

Label smoothing is implemented as a function, which takes the vector of randomly
flipped real labels 𝑦𝑛𝑜𝑖𝑠𝑦 and the value of factor 𝛼, and returns the updated vector of values
in range ⟨1 − 𝛼, 1⟩.

Experience replay happens after the training of the discriminator, as can be seen in
rows 17–21 of the training loop. Each training step, one of the generated samples is added
to the buffer. Once the given number of training steps defined by replay_step is reached,
the discriminator is trained of the batch of samples from the buffer. Then the buffer is
cleared and on the following training step it starts to save the generated samples again.

1 def train(dataset, batch size, number of epochs, replay_step):
2 variables initialization
3 train_steps = (size of dataset / batch size) * number of epochs
4
5 for step in train_steps:
6 x_real, y_real = prepare real data and labels
7 make real labels noisy
8 smooth real labels
9

10 train the discriminator on real data
11
12 x_fake, y_fake = prepare fake data and labels
13 make fake labels noisy
14
15 train the discriminator on fake data
16
17 if step == replay_step:
18 train discriminator on samples in the buffer
19 empty the buffer
20 else:
21 add one random fake sample into the buffer
22
23 prepare data and train the generator

Listing 5.2: Pseudocode of the training loop.

5.5 Results evaluation
One of the common methods for evaluating DCGAN models is called Fréchet Inception Dis-
tance [14]. It measures both the quality of generated images and their diversity. However,
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since this thesis aims to generate fingerprints, there is a considerable advantage in using
other tools specifically designed for measuring the quality of fingerprint images. One of
those tools is a publicly available software from NIST (National Institute of Standards and
Technology), called NFIQ (NIST Finger Image Quality). The performance of the proposed
model during training is discussed in Section 5.5.1. The results of the proposed model
evaluated by both methods mentioned above are provided later in this section.

5.5.1 Training evaluation

As already mentioned, training GANs often leads to problems with stability. That is the
reason why the proposed solution implements additional methods that proved to be able to
help with this issue. In Figure 5.5, losses tracked during the training of the proposed model
visualized in Figure 4.4, are shown. This model does not implement any of the additional
methods. Further in this work, this model will be referred to as “DCGAN_BASE”. One
can see that the loss of the discriminator remains relatively stable during the training;
however, the generator’s loss is significantly unstable and collapses to zero several times
during training. That suggests that the generator is not able to generate fake samples in a
consistent way, and it is easy for the discriminator to identify the generated samples.

Figure 5.5: Losses tracked on each epoch during the training of the proposed model without
any additional methods for performance improvement.

To stabilize the training, label smoothing and noisy labels methods were implemented,
because they can have a regularizing effect as mentioned in Section 4.2.1. Together with
the mentioned methods, the spectral normalization, which is used to stabilize the training
of GANs, was implemented. This model will be referred to as “DCGAN_EXT”. As can
be seen in Figure 5.6, the implemented methods had a significant impact on the training
process of the proposed model.

However, even though the training became more stable by implementing the methods
mentioned above, the mode-collapse showed to be a big problem. To address this problem,
the minibatch discrimination and experience replay methods were implemented. From now
on, this model will be referred to as “DCGAN_FULL”. In Figure 5.7, one can see that
apart from the noise at the start of the training, the process remained stable.

5.5.2 Fréchet Inception Distance

One of the conventional methods to measure the performance of GANs is the Inception
Score. It uses an inception model pre-trained on the ImageNet dataset, which classifies
the generated images and predicts the conditional probability 𝑝(𝑦|𝑥), where 𝑦 is the label
and x is the generated data. The idea behind measuring the quality of images is that the
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Figure 5.6: Losses tracked on each epoch during the training of the proposed model after
the implementation of methods for training stabilization: spectral normalization, label
smoothing, and noisy labels.

Figure 5.7: Losses tracked on each epoch during the training of the proposed model af-
ter the implementation of methods that reduce the mode-collapse: experience replay, and
minibatch discrimination.

probability 𝑝(𝑦|𝑥) should have low entropy, which reflects that the images belong to just
a few classes. On the other hand, the entropy across those images should be high, which
reflects the diversity of the images. The problem with the Inception Score is that it does
not use real samples statistics for their comparison with the generated ones.

The improved method based on the Inception Score is called the Fréchet Inception Dis-
tance (FID) [14]. This method uses features from an intermediate layer of the previously
mentioned inception model. For the given features, FID uses a multi-dimensional Gaussian
distribution with the mean 𝜇 and the covariance Σ. The difference of gaussian distribu-
tions of synthetic and real images is measured by the Fréchet distance 𝑑. The formula for
computing the FID is the following [14]:

𝑑2((𝜇𝑔,Σ𝑔), (𝜇𝑥,Σ𝑥)) = ‖𝜇𝑥 − 𝜇𝑔‖22 + Tr(Σ𝑥 + Σ𝑔 − 2(Σ𝑥Σ𝑔)
1
2 ), (5.2)

where 𝜇𝑥 and Σ𝑥 represent a Gaussian distribution of real samples, and 𝜇𝑔 and Σ𝑔

represent a Gaussian distribution of generated samples. Tr stands for the sum of the
diagonal elements.

The average, minimal, and maximal FID score for each model discussed in Section 5.5.1
is shown in Table 5.1. Figure 5.8 presents the progression of the FID score during the
training. All models tend to have a worse FID score after about 100 training epochs. That
suggests that there are either samples with low quality or that the diversity of samples
decreases due to the mode-collapse. In Figure 5.9 can be seen that the FID score corre-
sponds to the visual quality of images. The third row, which is highlighted by a red frame,
represents samples after 60 epochs. Their quality is decent, and they also have significant
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variance. However, then the quality and variance start to get worse (and the FID score
rises). Therefore, Table 5.2 provides the information about the FID score values just for
the first 100 epochs. In the rest of this thesis, only the model trained to the 100th epoch is
considered.

Table 5.1: The Fréchet Inception Distance of the proposed model over 300 epochs.

Model/Dataset FID
Average Min Max

DCGAN-BASE/SOCOFing 71.47 38.93 101.04
DCGAN-EXT/SOCOFing 66.71 38.56 121.94
DCGAN-FULL/SOCOFing 54.56 34.21 98.41

Table 5.2: The Fréchet Inception Distance of the proposed model over 100 epochs.

Model/Dataset FID
Average Min Max

DCGAN-BASE/SOCOFing 65.44 41.96 93.19
DCGAN-EXT/SOCOFing 54.94 38.56 85
DCGAN-FULL/SOCOFing 48.52 34.21 93.05

Since the original paper [27] reached FID score 70.5, it is clear that the solution proposed
by this work achieves better results. Their achieved FID score is mostly comparable with
the average score of the proposed DCGAN-BASE model, which does not implement any
of the methods for performance improvement. That suggests, that the additional methods
proposed in this work have a significant impact on the quality of generated fingerprints.

5.5.3 NIST Finger Image Quality

The original version of NFIQ was developed back in 2004 as the first publicly accessible fin-
gerprint quality assessment tool. NFIQ was the first tool to allow a universal interpretation
of fingerprint quality, which resulted in better fingerprint recognition systems by identifying
appropriate samples for their testing. Later, in 2011, started the collaboration between sev-
eral institutions, including NIST, Federal Office for Information Security, Federal Criminal
Police Office, and others, which resulted in a new version of this tool called NFIQ 2.0. It
became the reference implementation of ISO/IEC 29794-4 Biometric sample quality – Part
4: Finger image data standard. According to that standard, it provides a quality score
ranging from 0 to 100, where 100 is the best result. NFIQ 2.0 was explicitly developed for
images captured at 500 dpi using optical sensors or scanned from inked cards. That suits
great for the SOCOFing dataset because it satisfies both requirements. However, to be
able to get a quality score of the real samples, their bits-per-pixel values needed to be con-
verted from 32 bits to 8 bits. NFIQ 2.0 is also not able to identify minutiae for SOCOFing
and FVC2006 DB1 datasets, which suggests that the smaller image size leads to problems
with minutiae identification since both datasets have a smaller image size than the other
datasets. Table 5.3 shows the average quality score for each dataset. The size of images
was then doubled just to get more meaningful information about SOCOFing and FVC2006
DB1 datasets. Table 5.4 shows the average NFIQ 2.0 score for those resized images.
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Figure 5.8: The FID score tracked on each 5th epoch during the training of the proposed
models: DCGAN-BASE, DCGAN-EXT, and DCGAN-FULL in the respective order.

Based on the results from Section 5.5.2 and based on the evaluation of the visual quality
of the generated fingerprint images, models with the following training phases were selected
for evaluation by NFIQ 2.0: DCGAN-BASE trained for 80 epochs, DCGAN-EXT trained
for 100 epochs and DCGAN-FULL, which was trained for 60 epochs. Table 5.3 provides
information about the average NFIQ 2.0 quality score obtained over the generated dataset
of 100 samples from each of the models. The obtained score proves that even for newly
generated data samples, NFIQ 2.0 has a problem with identifying minutiae. Therefore, the
generated samples were also resized to double their original size. The average score reached
by the resized images is shown in Table 5.4. One can notice, that the NFIQ 2.0 quality
score is even higher for the generated images than it is for those from the original dataset.
This was a surprising result. In the case of samples generated by the DCGAN-BASE model,
this could be caused by a significantly higher number of minutiae detected. However, the
results of the DCGAN-FULL model present a higher quality score with almost the same
number of minutiae detected. These results proved, that the proposed model can generate
samples highly similar to those from the original dataset.
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Table 5.3: Average NFIQ 2.0 quality score and minutiae count of samples from each dataset.
The generated samples were produced by models trained on the SOCOFing dataset.

Dataset NFIQ 2.0 Score Minutiae count
FVC2006-DB1 2.35 0
FVC2006-DB2 39.2 71.3
FVC2006-DB3 48.33 80.26
FVC2006-DB4 29.96 43.7

SOCOFing 3.4 0
Generated samples

DCGAN-BASE 4.13 0
DCGAN-EXT 5 0
DCGAN-FULL 4.42 0

Table 5.4: Average NFIQ 2.0 quality score and minutiae count of 500 randomly selected
samples from FVC2006 DB1 and SOCOFing datasets. The generated samples were pro-
duced by models trained on the SOCOFing dataset. All images were resized to double of
their original size.

Dataset NFIQ 2.0 Score Minutiae count
FVC2006-DB1 23.24 32.72

SOCOFing 15.33 37.34
Generated samples

DCGAN-BASE 16.21 83.52
DCGAN-EXT 17.65 74.09
DCGAN-FULL 18.21 41.26
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Figure 5.9: The generated fingerprint images for five input latent vectors generated using
the DCGAN-FULL model. The first row contains the results after 20 training epochs. Each
subsequent row contains samples after another 20 epochs, except for the last row, which
contains a more advanced phase of training after 220 epochs.
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Chapter 6

Conclusion

The goal of this thesis was to create a synthetic fingerprint generator based on the principle
of generative adversarial networks (GANs). The proposed solution proved that the deep
convolutional GAN (DCGAN) model is capable of generating fingerprints that are highly
similar to samples from the original dataset. Alongside the proposed DCGAN architecture,
there are several methods discussed, that were implemented to increase the stability of the
training process and the quality of generated fingerprints. Compared with the results of
the work Finger-GAN [27], which originally purposed the DCGAN model for generating
synthetic fingerprints, the additional methods implemented within this work proved to have
a significant impact on the quality of the generated fingerprints.

The results were evaluated using the Fréchet Inception Distance (FID), and the NIST
Finger Image Quality 2.0 (NFIQ 2.0). By implementing the proposed methods, the average
FID score over 100 training epochs was improved by 25 % and the NFIQ 2.0 score by
12 %, compared with the results of the plain model, which does not implement any of
these methods. The best results were achieved with the model that implements all of the
proposed methods. Fingerprint images generated after 60 epochs were evaluated as the best
results. At this point, the model achieved the FID score of 36.8 and the average NFIQ 2.0
quality score of 18.21.

Even though the proposed solution proved the model’s capability of generating a com-
plex structure of fingerprints, it is still affected by the mode-collapse problem. Therefore,
future work should be focused on reducing its impact. One of the options to improve the
results is using fingerprint labels from the dataset and consequently creating a conditional
GAN model. Another improvement could be reached by the implementation of unrolled
GAN model, which is focused primarily on the reduction of the mode-collapse problem.

In Chapter 2, this thesis provides basic information about biometrics with emphasis
on fingerprints and describes the principle of SFinGe. Chapter 3 describes the common
principles of artificial neural networks, together with a closer look at GAN and DCGAN
models. In Chapter 4 is described the proposed model, including the methods implemented
for the improvement of its performance. This chapter also provides an overview of accessible
fingerprint datasets. Finally, Chapter 5 describes technical details of the implementation of
the proposed solution and provides the evaluation of results on the generated datasets. The
surprising result was that the average NFIQ 2.0 quality score over the generated database
of 100 samples was even higher than for the original samples from the SOCOFing dataset.
Given the information above, the main aim of the thesis has been reached.
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Appendix A

Contents of the included storage
media

Directory tree of the included storage media looks like the following:
/

generated_examples
final_datasets

nfiq_score
samples

base_model
extended_model
full_model

training_samples
base_model

1
2

50
extended_model
full_model

keras_models_plots
base_models
extended_models
full_models

saved_generator_models
base_model
extended_model
full_model

source
thesis

∙ File “README.TXT”

– This file, located in the root directory, contains a similar text to this one for
clarification of the contents of the included storage media.
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∙ Folder “generated_examples”

– This folder contains exported examples by the proposed Keras models. In the
subfolder ”final_datasets“, 100 samples exported from the proposed models after
the certain number of epochs are located. DCGAN-BASE model was trained for
80 epochs, DCGAN-EXT model for 100 epochs and DCGAN-FULL model for
60 epochs. The subfolder contains also the csv files with NFIQ 2.0 score of all
of the results presented in Section 5.5.3.

– The second subfolder ”training_samples“ provides samples generated from 50
different input noise vectors by each of the proposed models – DCGAN-BASE,
DCGAN-EXT and DCGAN-FULL. These images were saved each 20th epoch
over 300 training epochs in total.

∙ Folder “keras_models_plots”

– This folder contains exported visualizations of the proposed Keras models. It
includes subfolders for base models that do not implement any of the proposed
additional methods, as well as extended models implementing some of the pro-
posed methods and final models that implement all of the methods described in
this thesis.

∙ Folder “saved_generator_models”

– The saved weights of the generator models that provide the best results as dis-
cussed in Section 5.5.3 are provided in this folder. One can easily use these
pretrained models to generate new data and create more extensive datasets.

∙ Folder “source”

– This folder contains all of the source files. There is also the license file “LI-
CENSE”, which belongs to the file “SpectralNormalizationKeras.py”, which im-
plements Keras layers for spectral normalization. The folder also contains the
“README.TXT” file, which provides information about running the imple-
mented solution. The reader is encouraged to install the packages defined in the
file ”requirements.txt“ to his local system, which assures that the solution works
correctly.

∙ Folder “thesis”

– This folder contains electronic version of this text.
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Appendix B

Proposed model with extensions
implemented in Keras

Output:Input: (None, 48, 48, 64)(None, 96, 96, 1)ConvSN2D_1

Leaky Relu_1 Output:Input: (None, 48, 48, 64)(None, 48, 48, 64)

ConvSN2D_2 Output:Input: (None, 24, 24, 128)(None, 48, 48, 64)

Batch normalization_1 Output:Input: (None, 24, 24, 128)(None, 24, 24, 128)

Leaky Relu_2 Output:Input: (None, 24, 24, 128)(None, 24, 24, 128)

ConvSN2D_3 Output:Input: (None, 12, 12, 256)(None, 24, 24, 128)

Batch normalization_2 Output:Input: (None, 12, 12, 256)(None, 12, 12, 256)

Leaky Relu_3 Output:Input: (None, 12, 12, 256)(None, 12, 12, 256)

ConvSN2D_4 Output:Input: (None, 6, 6, 512)(None, 12, 12, 256)

Batch normalization_3 Output:Input: (None, 6, 6, 512)(None, 6, 6, 512)

Flatten Output:Input: (None, 18432)(None, 6, 6, 512)

DenseSN with sigmoid Output:Input: (None, 1)(None, 18532)

Leaky Relu_4 Output:Input: (None, 6, 6, 512)(None, 6, 6, 512)

Minibatch
discrimination

Output:Input: (None, 18532)(None, 18432)

Figure B.1: The proposed model architecture after the implementation of spectral normal-
ization and minibatch discrimination methods. Elements highlighted by green color are
layers that were changed to equivalent layers that implement spectral normalization. El-
ements highlighted by red color show newly added layer that is responsible for minibatch
discrimination, which changed the input data shape of the subsequent dense layer.
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Appendix C

Generated samples

Figure C.1: The generated fingerprint images by the DCGAN-BASE model after 80 training
epochs. Each sample was generated from a random latent vector. It is clear that this model
is significantly affected by the mode-collapse problem.
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Figure C.2: The generated fingerprint images by the DCGAN-EXT model after 100 training
epochs. Each sample was generated from a random latent vector. The mode-collapse
problem still persists.
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Figure C.3: The generated fingerprint images by the DCGAN-FULL model after 60 train-
ing epochs. Each sample was generated from a random latent vector. The implemented
methods significantly reduced the mode-collapse.

52


	Introduction
	Fingerprints and introduction to biometrics
	Biometrics
	Physiological information about fingerprints
	Classification of fingerprints
	Fingerprint minutiae
	Fingerprint acquirement
	Synthetic fingerprints

	Artificial neural networks
	Transformation of biological principle into a computational model
	Discriminative vs. generative models
	Deep feedforward networks
	Convolutional neural networks
	Generative adversarial networks
	Deep convolutional generative adversarial networks

	Solution design
	Datasets
	Proposed model

	Implementation and results
	Python deep learning platforms
	Hyperparameters of the proposed model
	Implementation of the proposed model
	Implementation of methods for performance improvement
	Results evaluation

	Conclusion
	Bibliography
	Contents of the included storage media
	Proposed model with extensions implemented in Keras
	Generated samples

