
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SYNTHETIC FINGERPRINT GENERATION USING GAN
GENEROVÁNÍ SYNTETICKÉHO OTISKU PRSTU POMOCÍ GAN

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JIŘÍ DVOŘÁK
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ KANÍCH, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
22574

Student: Dvořák Jiří
Programme: Information Technology
Title: Synthe t ic F ingerpr in t Generat ion Us ing GAN
Category: Security
Assignment:

1. Study the literature on fingerprint biometric recognition and the generation of synthetic
fingerprints. Learn the concepts of GAN (Generative Adversarial Network).

2. Design an algorithm using GAN to generate synthetic fingerprints.
3. Implement the proposed algorithm from the previous step.
4. Analyse the algorithm results from the previous step by generating a synthetic fingerprint

database.
5. Summarise and discuss the results. Suggest possible extensions of your solution.

Recommended literature:
• Minaee, S., Abdolrashidi, A.: Finger-GAN: Generating Realistic Fingerprint Images Using

Connectivity Imposed GAN, Preprint, 2018.
• Maltoni, D., Maio, D., Jain, A.K. and Prabhakar, S.: Handbook of Fingerprint Recognition.

Springer, 2009, pages 512. ISBN 978-1-8488-2254-2.
• Kanich, O.: Fingerprint Damage Simulation, LAP LAMBERT Academic Publishing GmbH &

Co. KG, 2014, p. 57. ISBN 978-3-659-63942-5.
Requirements for the first semester:

• Parts 1 and 2.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Kan ich Ondře j , Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 3 1 , 2020
Approval date: January 10, 2020

Bachelor's Thesis Specification/22574/2019/xdvora2u Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis is focused on the generation of synthetic fingerprints using a model based on
the principle of generative adversarial networks. The work summarizes the basic theoretical
information about biometrics w i th emphasis on fingerprints. It also describes the principle
of one of the popular synthetic fingerprint generators called S F i n G e . The model based
on a deep convolutional generative adversarial network is discussed together wi th several
methods that improved its performance. The results were evaluated by computing the
Frechet Inception Distance between the generated and real fingerprints. The generated
dataset of 100 samples was also evaluated by N F I Q 2.0 which proved that the proposed
model is able to generate fingerprints w i th almost the same quali ty of the t ra ining samples.

Abstrakt
Tato b a k a l á ř s k á p r á c e se zabývá gene rován ím syn te t i ckých o t i sků p r s t ů za pomoci modelu
za loženém na pr inc ipu gene ra t ivn ích soupeř íc ích sí t í . P r á c e shrnuje z á k l a d n í teore t ické in
formace z biometrie se z a m ě ř e n í m na otisky p r s t ů . Zaob í r á se t a k é pr incipem jednoho
z p o p u l á r n í c h g e n e r á t o r ů syn te t i ckých o t i sků p r s t ů - n á s t r o j e m S F i n G e . P r á c e před
stavuje model p o s t a v e n ý na h l u b o k é konvoluční gene ra t i vn í soupeř íc í s í t i a p ř eds t avu je
několik metod, k t e r é vedly ke z lepšení jeho výkonu . V y h o d n o c e n í výs ledků bylo provedeno
v ý p o č t e m „Fréchet Inception Distance" mezi vygene rovanými a exis tu j ími otisky. Dá le by l
vygene rován dataset obsahuj íc í 100 s n í m k ů . Ten by l vyhodnocen n á s t r o j e m N F I Q 2.0,
k t e r ý ukáza l , že model je schopný generovat otisky p r s t ů kval i ty s rovna t e lné s r eá lnými
t r énovac ími daty.

Keywords
fingerprints, synthetic fingerprints, fingerprint generation, deep neural networks, G A N ,
Frechet Inception Distance, N F I Q 2.0

Klíčová slova
otisky p r s t ů , syn te t i cké otisky p r s t ů , generování o t i sků p r s t ů , h l u b o k é neu ronové sí tě , G A N ,
Fréchet Inception Distance, N F I Q 2.0

Reference
D V O Ř Á K , J i ř í . Synthetic Fingerprint Generation Using GAN. Brno , 2020. Bachelor's
thesis. B rno Universi ty of Technology, Facul ty of Information Technology. Supervisor
Ing. O n d ř e j K a n i c h , P h . D .

Rozšířený abstrakt
V dnešn í d o b ě jsou již technologie za ložené na s n í m á n í o t i sků p r s t ů součás t í b ě ž n é h o ž ivota .
Umožňu j í rychlé o d e m k n u t í mob i ln ího telefonu či dokonce v s t u p n í c h dveř í p o u h ý m dotykem
prstu. Vývoj t ě ch to technologi í ovšem vyžadu je d ů k l a d n é t es tován í , k čemuž je z a p o t ř e b í
d o s t a t e č n ě velká d a t a b á z e o t i sků p r s t ů . Vy tvořen í v l a s tn í d a t a b á z e je v šak časově a f inančně
n á r o č n ý proces a sdí lení j iž existuj ící d a t a b á z e je mnohdy složi té z d ů v o d u ochrany osobních
ú d a j ů . Pro to je v h o d n é využ í t g e n e r á t o r ů syn te t i ckých o t i sků p r s t ů , k t e r é tyto p r o b l é m y
eliminují .

Ot i sky p r s t ů ma j í velmi komplexn í s t rukturu, kterou je mnohdy složi té napodobit . Jed
n í m z p o p u l á r n í c h g e n e r á t o r ů o t i sků p r s t ů je n á s t r o j S F i n G e , k t e r ý př i generování ot isku
nejprve vy tvo ř í dokona lý otisk, k t e r ý je n á s l e d n ý m i transformacemi upraven tak, aby pů
sobil realisticky. Tato p r á c e se zabývá v y t v o ř e n í m g e n e r á t o r u syn te t i ckých o t i sků p r s t ů
za loženého na modelu h l u b o k é h o učení . K o n k r é t n ě se j e d n á o g e n e r a t i v n í soupeř íc í síť,
k t e r á se stala velmi p o p u l á r n í v oblasti generování dat. C í lem je n a u č i t tento model gene
rovat syn te t i cké otisky p r s t ů , k t e r é budou ne rozezna t e lné od těch reá lných.

Teore t i cká čás t p r á c e nejprve shrnuje zák l adn í informace o biometr i i se z a m ě ř e n í m na
otisky p r s t ů . Z t ě c h t o informací je č t e n á ř s chopný zhodnotit v izuá ln í kval i tu výs ledků
t é t o p r áce . Také je blíže p o p s á n pr incip j iž z m í n ě n é h o n á s t r o j e S F i n G e . V dalš í čás t i
jsou p ř e d s t a v e n y umě lé neu ronové s í tě a ze jména jejich speciá ln í typy, jako jsou konvoluční
a gene ra t i vn í soupeř íc í s í tě . T y tvoř í z á k l a d n í s t a v e b n í p rvky n a v r ž e n é h o modelu. V prak
t ické čás t i p r á c e jsou poskytnuty de t a i ln í informace o n a v r ž e n é m modelu, vče tně popisu
datasetu, k t e r ý by l využ i t př i jeho t r énován í . P ro za j i š tění s tabil i ty t r énovac ího procesu
a zvýšení kval i ty výs ledných o t i sků p r s t ů bylo i m p l e m e n t o v á n o několik metod, k t e r é jsou
t a k é p o p s á n y v t é t o čás t i . V pos ledn í kapitole se p r á c e věnuje i m p l e m e n t a č n í m d e t a i l ů m
n a v r ž e n é h o modelu a v y h o d n o c e n í jeho výs ledků .

Navržený model je založený na pr inc ipu gene ra t i vn í soupeř íc í s í tě , k t e r á obsahuje dvě
dílčí neu ronové s í tě . P r v n í z nich je gene rá to r , j ehož úko lem je vygenerovat ze v s t u p n í h o
vektoru hodnot syn te t i cký otisk prstu v rozlišení 96 x 96 pixelů . Napro t i t omu d r u h á síť,
n a z ý v a n á d i sk r iminá to r , m á na vs tupu dva s n í m k y o t i sků p r s t ů - jeden z r eá lného datasetu
a d r u h ý v y p r o d u k o v a n ý g e n e r á t o r e m . N a zák l adě t ěch to s n í m k ů p rovád í klasifikaci, zda se
j e d n á o reá lné či syn te t i cké sn ímky. Cí lem g e n e r á t o r u je, aby d i s k r i m i n á t o r nebyl schopný
rozlišit r eá lný sn ímek od syn te t i ckého . C í lem d i s k r i m i n á t o r u p ř i t o m je, aby dosáh l co
nejvyšší rozlišovací schopnosti. Jel ikož jsou tyto dvě neu ronové s í tě t r é n o v á n y současně
a soupeř í n a v z á j e m mezi sebou, je s těžejní u d r ž e t proces t r énován í s t ab i ln í . Tedy zajis
t i t , aby jedna ze s í t í z n a t e l n ě nep řekonáva la druhou. Toho bylo dosaženo po implementaci
metody s p e k t r á l n í normalizace a modifikaci označen í t ř í d y dat. N ě k t e r é reá lné s n í m k y byly
b ě h e m t r énován í označeny jako synte t ické a naopak. Zároveň reá lné otisky p r s t ů nebyly
označeny expl ic i tn í hodnotou 1, ale n á h o d n o u hodnotou v rozmezí 0.9 až 1. T y t o uvedené
metody vedly k v ý r a z n é stabil izaci t r énován í modelu. P ř e t r v á v a l v šak p r o b l é m s n ízkou
diverzitou generovaných s n í m k ů . Tento p r o b l é m b y l r edukován i m p l e m e n t a c í metody klasi
fikace n a p ř í č d á v k o u dat, k t e r á dává d i s k r i m i n á t o r u m o ž n o s t ohodnotit sn ímek s ohledem
na o s t a t n í š m i n k y ve s te jné dávce . To mu umožňu je rozpoznat n ízkou diverzi tu mezi s n í m k y
a t í m t a k é snadně j i u rč i t , že se j e d n á o v ý s t u p g e n e r á t o r u . T í m je g e n e r á t o r nucen k tomu,
aby generoval data s vyšší diverzi tou. Dá le pomohla t a k é metoda opakován í zkušenos t í
d i s k r i m i n á t o r u , př i k t e r é jsou d i s k r i m i n á t o r u po u r č i t é m p o č t u k roků znovu u k á z á n y něk
t e r é ze s ta r š ích vygenerovaných s n í m k ů . To n u t í gene rá to r , aby n e z ů s t a l u s h o d n ý c h s n í m k u
a více je modifikoval.

Mode l , po implementaci metod pro zlepšení výkonu , p rokáza l , že je schopný generovat
syn te t ické otisky p r s t ů , k t e r é jsou t é m ě ř n e r o z p o z n a t e l n é od s n í m k ů z r eá lného datasetu.
Výs ledky byly v y h o d n o c o v á n y b ě h e m t r énován í podle „Fréchet Inception Distance" (F ID) ,
k t e r á je p o p u l á r n í metr ikou p ř i v y h o d n o c o v á n í gene ra t ivn ích soupeř íc ích sí t í jej ichž cí lem
je generování ob razových dat. M e t o d a F I D do výs l edného skóre p r o m í t á jak kva l i tu vygen
erovaných s n í m k ů , tak jejich diverzi tu. N á s l e d n ě b y l vygene rován dataset obsahuj íc í 100
sn ímků , k t e r é byly vyhodnoceny n á s t r o j e m N F I Q 2.0, k t e r ý se stal referenční i m p l e m e n t a c í
standardu I S O / I E C 29794-4. Nej lepších výs ledků bylo dosaženo s modelem implementu
j íc ím veškeré p o p s a n é rozšiřující metody po 60 epochách . V t é fázi model dosáh l F I D 36,8
a p r ů m ě r n é h o skóre kval i ty vygenerovaných o t i sků p r s t ů 18,21 podle n á s t r o j e N F I Q 2.0.

Synthetic Fingerprint Generation Using G A N

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of M r . Ing. Ondfej K a n i c h , P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

J i ř í D v o ř á k
Ju ly 31, 2020

Acknowledgements
I would like to thank my supervisor Ing. O n d ř e j K a n i c h , P h . D . , for his professional support
during both good and hard times. I would also like to extend my gratitude to my friends,
who helped me w i t h proofreading Engl i sh . Computa t iona l resources were supplied by the
project "e-Infrastruktura C Z " (e - I N F R A LM2018140) provided wi th in the program Projects
of Large Research, Development and Innovations Infrastructures.

Contents

1 Introduction 2

2 Fingerprints and introduction to biometrics 3
2.1 Biometrics 3
2.2 Physiological information about fingerprints 4
2.3 Classification of fingerprints 5
2.4 Fingerprint minutiae 5
2.5 Fingerprint acquirement 6
2.6 Synthetic fingerprints 8

3 Artif ic ial neural networks 11
3.1 Transformation of biological principle into a computat ional model 11
3.2 Discr iminat ive vs. generative models 13
3.3 Deep feedforward networks 14
3.4 Convolut ional neural networks 18
3.5 Generative adversarial networks 19
3.6 Deep convolutional generative adversarial networks 21

4 Solution design 23
4.1 Datasets 23
4.2 Proposed model 26

5 Implementation and results 29
5.1 P y t h o n deep learning platforms 29
5.2 Hyperparameters of the proposed model 30
5.3 Implementation of the proposed model 31
5.4 Implementation of methods for performance improvement 32

5.5 Results evaluation 35

6 Conclusion 42

Bibl iography 43

A Contents of the included storage media 47

B Proposed model with extensions implemented in Keras 49

C Generated samples 50

1

Chapter 1

Introduction

Since their formal acceptance i n the nineteenth century for identifying an individual ' s iden
tity, fingerprints became the most popular biometric characteristics [16]. T h e y proved to
be a very reliable method of authentication, and technologies based on their recognition
are cheap and easy to use. These advantages are the main reasons why this technology
carried over to our everyday life. However, as the popular i ty of fingerprints is rising, so
does the need for more sophisticated recognition algorithms. These algorithms need large
datasets of fingerprints to be tested appropriately; however, acquiring such a database is a
very t ime and money consuming process. Once the database is collected, it is also compli
cated to share it because of privacy issues. These problems lead us to synthetic fingerprint
generators. There are many existing approaches to generating synthetic fingerprints, but
many fail to generate realistic-looking fingerprints since they are not able to express their
complicated structure.

Less than a decade ago, an up-and-coming model for realistic image generation was
proposed in paper [12] by Goodfellow et a l . Th is model, called generative adversarial
network, became a powerful tool for many computer vision and pattern recognition tasks.
It is successfully used i n areas like image-to-image translation, text-to-image synthesis,
resolution enhancement, tex t / image/video content generation, and many more. Its usage
in deep fakes, which became famous and frightening at the same time, has shown that they
can capture detailed biometric characteristics.

In this thesis, a synthetic fingerprint generator based on the generative adversarial net
work is proposed. Current ly only one publ ic ly accessible project has implemented this
approach and reached excit ing results [27]. The goal is to generate highly realistic finger
prints that are indistinguishable from the real fingerprints.

Chapter 2 provides information about biometrics w i t h emphasis on fingerprints, so the
reader gets insight into the intent of this work. In Chapter 3, artificial neural networks are
described, together w i th more advanced models such as convolutional neural networks, and
generative models based on adversarial t ra ining that are important for this work. Chap
ter 4 describes the proposed solution, including the used dataset, the model architecture,
and methods implemented to improve the performance of the proposed model . Chapter 5
provides implementat ion details of the proposed solution and evaluation of the results based
on the Frechet Inception Distance [14] as well as one of the conventional methods for the
fingerprints quali ty evaluation. The last Chapter 6 provides a summary of this work and
suggests possibilities for future work.

2

Chapter 2

Fingerprints and introduction to
biometrics

People are i n contact w i th fingerprint-sensing technologies so commonly that many of them
accepted this technology as part of their everyday lives. People can easily log into their
phones or notebooks, and they can even open a locked door w i t h only the touch of a finger.
In this section, the general information needed to understand this work is described. Since
this thesis is focused on the generation of synthetic fingerprints, this chapter w i l l cover a
description of the term biometrics w i th the emphasis on fingerprints. F ina l ly , the principle
of conventional synthetic fingerprint generators is described.

2.1 Biometrics

In today's world, when technology is on the rise, there is also a risk of stolen identity
growing. G iven this, the reliable method of authentication of an individual ' s identity is
more and more crucial .

W h e n ta lk ing about how to prove our d ig i ta l identity, there are three basic approaches:

• Showing the knowledge of a secret (e.g., password, P I N) .

• Demonstrat ing the possession of something unique enough (e.g., I D card, security
token).

• Satisfying physiological or behavioral requirements called biometric characteristics,
or s imply biometrics [15] (e.g., fingerprint, face, iris, signature). [17, 25]

One of the main reasons why biometrics is so widely used nowadays is that these char
acteristics cannot be easily lost, shared, guessed, copied, or eventually forged. Based on
these aspects, biometrics is considered to be significantly more difficult to abuse than tra
di t ional authentication methods (knowledge, possession) [16]. However, once the biometric
of a person is revealed, there is no simple way to change it [17].

A l though fingerprints are probably the most widely known biometrics, any physiological
or behavioral characteristic can be used as a biometric characteristic. Accord ing to [25],
the basic properties, when comparing different biometrics, are:

• Universal i ty - each person should have this trait .

3

• Distinctiveness - two persons should not have the same trait .

• Permanence - the trait should not vary over t ime.

• Col lectabi l i ty - the trait should be easy to acquire.

• Performance - the trait should not change or age.

• Acceptabi l i ty - the public should allow the trait to be recorded and used.

• Circumvent ion - how difficult it is to forge this trait .

One of the reasons that make fingerprints one of the most widely used biometrics is their
uniqueness. Sir Francis Gal ton 's calculations stated that the l ikel ihood of two fingerprints
being the same is 1 to 64 bi l l ion [25]. Other pr imary advantages of this biometric are
permanence, performance, circumvention, and the low price of deploying a biometric system
[17].

2.2 Physiological information about fingerprints

Fingerprints are created by papi l lary lines, protrusions on the inner side of hands (and feet).
Papi l la ry lines are fully formed at about seven months of fetal development, and the process
of their formation is also a reason why there is such a smal l chance of two individuals having
the same fingerprint [25].

The general form of the fingerprint emerges as the skin on the fingertip begins to differ
entiate. This process is caused by the basal layer of the epidermis, which grows faster than
dermis (inner layer) and epidermis (outer layer) layers around. Tha t causes compressive
stress in the basal layer, as shown i n Figure 2.1. If the stress is large enough, a buckling
causes the formation of the papi l lary line [22]. Addi t ional ly , the environment around the
fetus continuously affects the process, including the posit ion and movement of the fetus in
the womb and the density of amniotic fluid [25].

Papi l la ry lines can be seen and captured as a fingerprint; however, they are just a
projection from the dermis layer to the epidermis layer. Tha t means that it is not possible
to change or delete the fingerprint by superficial injury because it w i l l regenerate as the
skin grows back [17, 25].

upper layers of the epidermis

v-v C< £ < <-<

'bed' of springs

Figure 2.1: Basa l layer of epidermis trapped between dermis and intermediate epidermis
layers (inspired by [22]).

4

2.3 Classification of fingerprints

The F B I ' s I A F I S (Federal Bureau of Investigation's Integrated Automat ic Fingerprint Iden
tification System) processes tens of thousands of requests dai ly w i th hundreds of mil l ions
of records i n a database [33]. W i t h so many incoming requests, it would be challenging and
inefficient to s imply compare any two fingerprints against each other. Therefore, finger
prints are divided into classes to make this process more efficient. This allows us to reject
immediately those from another class and focus just on those that belong to the same class
[17].

I A F I S system uses Henry 's classification system, which contains three basic classes -
arch, loop, and whorl . Examples of these fingerprint classes can be seen i n Figure 2.2.
F rom these basic classes, other more specific ones are derived. The ma in characteristics to
distinguish fingerprint classes are called delta and core. De l t a is a place where papil lary
lines run to three different directions. Core is located i n the innermost loop of a fingerprint
[17].

Lef t L o o p R i g h t L o o p T w i n L o o p

Figure 2.2: Different classes of fingerprints according to the Henry 's classification (taken
from [17]).

2.4 Fingerprint minutiae

The previous section defined how fingerprints can be separated into different classes, which
helps to reduce the number of fingerprints that need to be checked. However, this s t i l l does
not solve an issue wi th unambiguously identifying a person's identity.

To be able to dist inguish every finger i n the world, analyzing fingerprint minutiae is
needed. M i n u t i a is a specific formation created by papil lary lines. M a n y of them are
distinguished, each of them wi th a different l ikel ihood of appearance [17]. Since it would be
too demanding to work wi th a l l these complicated patterns, just two basic minutiae types
for automatic recognition are being recognized i n practice - ridge ending and bifurcation.
Examples of those minutiae types can be seen in Figure 2.3. Nevertheless, these provide
enough information to identify an individual 's identity successfully [25].

5

Figure 2.3: Fingerprint minutiae - bifurcation and ridge ending (taken from [17] and mod
ified).

2.5 Fingerprint acquirement

For the automatic fingerprint recognition, getting a fingerprint into a d igi ta l form is the
start of the process. Even though there are different methods for achieving that, the most
convenient way is getting the fingerprint into the computer directly using a fingerprint
sensor [17].

In this work, different fingerprint datasets for t ra ining a synthetic fingerprint generator
were used to see how the best results can be achieved. These datasets were acquired using
different sensor technologies. Th is section w i l l present the standard sensor technologies
used nowadays to get a better understanding of how fingerprints were acquired and what
the l imitat ions of these methods are.

2.5.1 O p t i c a l t echnology

One of the oldest fingerprint sensor technologies is based on a relatively simple optical
principle indicated i n Figure 2.4. A finger is placed onto a protective glass, so ridges
(papillary lines) touch the glass, and valleys are i n the distance. F r o m a light source
(L E D) , ray falls on the finger surface and is reflected by ridges and absorbed at valleys.
C C D / C M O S camera then captures reflected rays through optics, which creates the final
image of the fingerprint. The finger does not have to be necessarily placed on a surface -
also, contactless sensors based on this technology exist [9]. The main advantages of this
technology are the resistance to temperature fluctuations and possible operation in 3D. The
disadvantage is a high sensitivity to d i r ty fingers. Except for the contactless technology,
there is also a problem wi th latent fingerprints [17].

2.5.2 T h e r m a l technology

This technology is based on thermal radiat ion. Ridges have higher thermal radiat ion than
valleys. W h e n a person sweeps a finger over a pyroelectric cell, it generates a current accord
ing to the temperature, which can be measured. Since the temperature equalizes quickly,
it is necessary to use sweeping sensors. The advantage of these sensors is high resistance to
electrostatic discharge [17]. The basic principle of sensors based on the technology described
above is shown i n Figure 2.5.

2.5.3 E- f i e ld technology

The sensor consists of a finger drive r ing and a mat r ix of antennas as shown in Figure 2.6.
The drive r ing generates a sinusoidal radio frequency signal, and the mat r ix receives that

6

Finger drive r ing

ExcitatiorJ
generator

cross-section of finger skin Live skin layer

Outer dead
skin layer

Sk in surface

Antenna array

Figure 2.6: E-field sensor principle (inspired by [2]).

7

signal modulated by skin structure (dermis layer, because the electric field passes the upper
layer of skin). This technology is resistant to fake fingers and dir t . The disadvantages
of these sensors are high sensitivity to electrostatic charges and possible sensitivity to a
disturbance i n its R F modula t ion [17, 2]. A n example of a fingerprint acquired by an e-field
sensor can be seen in Figure 2.7.

Figure 2.7: The example of the fingerprint acquired by an e-field sensor (taken from [4]
D B l _ A _ d a t a s e t) .

2.6 Synthetic fingerprints

A s the popular i ty of fingerprint recognition technologies is rising, many new methods need
to be invented to be more resistant to impostors. These methods need thorough testing,
which can be a problem because of the lack of enough fingerprints i n the database. It is
because acquiring such a number of fingerprints is very t ime and money consuming. Since
collecting such a database is a very tiresome process for technicians and users, it is also
easy to make a mistake. Once such a database is available, it is problematic to share it
because of privacy legislation that protects personal information [17, 25].

W h e n no large databases are available for testing, developers have to work wi th small
databases, making it easy to make algorithms data-dependent. Tha t led to the invention of
synthetic fingerprint generators, which allow for the creation of large fingerprint databases
[17].

2.6.1 G e n e r a t i o n of synthet ic fingerprints

There are several methods used for this purpose; however, most of them are based on the
same principle [17]. The typica l representative of tools for this purpose is S F i n G e , which
stands for "Synthetic Fingerprint Generator". It is the oldest and most common method for
generating synthetic fingerprints. Beside creating realistically looking fingerprints, S F i n G e
brings several other advantages such as low costs of the fingerprint database and the pos
sibi l i ty of producing large databases. A l l the mentioned factors result i n easy testing and
opt imizat ion of recognition algorithms [25].

The latest version of this method is 5.0, which upgraded the algorithms of previous
versions and came wi th the new parameter, which can set up the probabil i ty of generating
a low-quality fingerprint [41].

8

The generation process of S F i n G e consists of four steps that result i n the so-called master
fingerprint (perfect fingerprint) [17, 25]. Other steps then make this perfect fingerprint more
realistically looking. A t first, the fingerprint shape is determined. The basic shape is oval
and can be changed in a l l directions to create the required shape. In the second step, a
class of fingerprint is chosen together w i th defining a number and positions of cores and
deltas. Based on this information, a consistent direction field is generated. For the arch
class, S F i n G e uses a sinusoidal function whose frequency and ampli tude control the arch
curvature [25]. One can notice that the density of papil lary lines varies over the entire area
of a fingerprint. Tha t is solved by the th i rd step of the process when a density map is
created. The density map is generated based on the positions of cores and deltas. The last
step of the generation chain is a ridge pattern generating. It combines a l l previous steps
wi th some in i t i a l seeds. Gabor filters then refine the image. Minut iae are generated in
random places wi th random types. After that, the master fingerprint is generated [17, 25].
Figure 2.8 shows the example of master fingerprint generation and applicat ion of scratches
to it.

5tep 1 - Fingerprint mask generation
5tep 2 - Directional map generation

Fingerprint mask

Left |

Right §

Top

Fmger Index v I

Generate

0 W e w fid siie

Fingerprint class

Orientation conedäcn

• Mew correction

Core

Level! 1
Levd2 1
Direction perturbation

Tu
((}>>}*>

• Mew full size

Step 3 - Density map and r idge pattern generation Step 4 - Permanent scratches

Ridge density

Pores

• Add pores

1^1 View minutiae

• Mew full size

0 Auto it

0 Mew minutiae

• Mew full sue

Figure 2.8: Images show four steps of the generation chain (taken from [37]).

9

The process of making the master fingerprint more realistically looking starts w i th the
selection of the contact region. The ridge patterns are translated to simulate different
placements of the finger on the sensor; however, the fingerprint's posi t ion and shape are
not changed i n this step [17].

The second step modifies ridge thickness, which simulates skin dampness and finger
pressure. Wet skin or higher pressure lead to thicker ridges, and in that case, the di la tat ion
operator is applied. Otherwise, the erosion operator is applied to simulate dry skin or low
pressure [25]. This step is followed by the phase of the fingerprint non-linear distortion,
which simulates skin deformation according to different finger placements on a sensor. For
this distort ion, the Lagrangian interpolat ion is used [17, 25].

The next step is noising and rendering, which simulates many smal l adjustments. These
include non-uniform pressure of the finger, different contact of ridges wi th a sensor, small
cuts or abrasions on the fingertip, presence of smal l pores wi th in the ridges, and other noise.
The process continues w i t h translat ion and rotation. Tha t simulates that the finger was
not placed on the sensor precisely, so it translates or rotates the whole fingerprint.

The final step is the generation of a realistic background generated randomly from the
existing set of background images transformed by mathematical methods to create new
backgrounds. Different background models can be created to simulate different acquisit ion
technologies (e.g. optical , capacitive - as mentioned i n Section 2.5) [17, 25].

10

Chapter 3

Artif icial neural networks

Art i f i c i a l neural networks (A N N s) are a set of algorithms based on the operating principle
of a mammal ian brain. Neurons are its fundamental units of computat ion. In the brain,
neurons are connected wi th synapses i n more complex structures creating networks used to
process data. Each neuron receives input signals from its dendrites and generates output
signals along its axon. The axon branches out and connects through synapses to dendrites of
other neurons [19]. People learn and improve their capacities to process data by establishing
reconnections between neurons [26].

A N N s can be used for a wide range of information processing tasks. They can learn
to recognize structures in a set of t ra ining data and generalize what they have learned to
other datasets, which means they can handle supervised learning problems [26]. They also
work well in analyzing large sets of high-dimensional data, where it could be challenging
to determine which features are important . They can detect clusters and other structures
i n the input data. In this case, it is talked about unsupervised learning problems [26].
In many problems, some information about targets is known but is incomplete. In such
cases, algorithms that combine bo th supervised and unsupervised learning are used. That
approach is called reinforcement learning [26].

3.1 Transformation of biological principle into a computa
tional model

The A N N algorithms use significantly simplified neuron models compared wi th real neu
rons, as can be seen in Figure 3.1; however, the basic principle is s t i l l the same. In the
computat ional model, the signals that travel along the axons are called inputs (e.g., xn, x\).
These signals interact w i th the dendrites of the other neuron based on the synaptic strength
at that synapse. This connection w i t h a given strength is called weight (e.g., u>n, u>i), and
the operation caused by the interaction wi th the signal has a character of mul t ip l ica t ion
(e.g., WQXQ). The idea of reconnections mentioned above is represented by learnable weights
which control the strength of the influence of one neuron on another one. Then , the signals
get to the cell body, where they a l l get summed together w i t h the bias b. A n activation
function / is applied to the final result, which decides whether the neuron should fire or not
[19]. More detailed information about act ivat ion functions are provided in Section 3.3.1. A
model which utilizes just a single neuron described above, is called a perceptron [1], which
can be used as a simple binary classifier; however, such classifier works well just on linearly
separable data.

11

A s mentioned in the introduct ion to this chapter, neurons in a brain are interconnected
into complex networks. W i t h a single neuron, we can express binary information, which is
based on whether a neuron fires or not; however, to express more than just a binary value, a
structure needs to be extended by addi t ional interconnected neurons just like i n the brain.
These neurons are connected in a parallel manner, as shown i n Figure 3.2. Th is structure,
called a layer of neurons, is an essential bui ld ing block for multi layer networks described in
Section 3.3.

xo wo

Figure 3.1: Compar ison between a biological neuron (left) and its common mathematical
model (right) (taken from [19]).

Figure 3.2: Mul t i -neuron neural network diagram.

12

3.2 Discriminative vs. generative models

Three essential steps are needed to create a synthetic fingerprint generator based on real
data samples, as can be seen in Figure 3.3. A t first, the a lgori thm needs to go through the
existing fingerprint images and learn their characteristics and appearances. Specifically,
it needs to learn a dis t r ibut ion throughout the dataset, so it knows how to represent a
fingerprint image. In the end, the model needs to generate a new sample from the distr ibu
t ion it has learned. Th is process corresponds to the principle of generative models, which
is a subclass of machine learning algorithms. This section describes the principle of both
generative models and discriminative models, which are their opposite.

Source dataset
wi th real

images

Learned
dis t r ibut ion of the

real images

New image generated
from the learned

dis tr ibut ion

Figure 3.3: The basic principle of a generative model.

The goal of supervised learning is to learn a mapping function x —>• y, where x represents
a piece of data, and y represents a target variable (label) [23]. Examples of supervised
learning tasks can be classification, regression, or semantic segmentation. Discr iminat ive
models are models for supervised learning. These models estimate a posterior probabil i ty
dis tr ibut ion p(y\x) [13]. W h e n x is an input image, and y is a label of a class, then the
dis tr ibut ion reveals the extent to which the model calculates the image to be representative
of a part icular class.

O n the contrary, unsupervised learning aims to learn some underlying structure of data
x even when there are no labels available [23]. Examples of unsupervised learning are
clustering, density estimation, or dimensionality reduction. Generative models are models
pr imar i ly for unsupervised learning but can also be used i n a supervised setting. These
models address a density estimation, which is one of the core problems i n unsupervised
learning. Generally, their goal is to learn a dis t r ibut ion pmodei(x), which is as s imilar as
possible to a dis t r ibut ion of t ra ining data Pdata(x) [23].

It is useful to demonstrate a difference between the approach of generative and discrim
inative models on a task that they both can be used for - classification. A s mentioned
above, the goal of a discriminative classifier is to learn a posterior dis t r ibut ion p(y\x), while
the goal of a generative classifier is to learn a joint probabil i ty p(y, x). Th is joint probabi l i ty
can be learned directly, or by computing it using a chain rule as p(y,x) = p(y\x) • p{x).
That shows the relation between a posterior probabil i ty learned by discriminative models
and a joint probabil i ty learned by generative models. Generative models need to learn a
density function p(x) to be able to represent the input data well.

In comparison, generative models have a more difficult task, since their goal is signifi
cantly more complex. A s can be seen i n Figure 3.4, discriminative models learn boundaries
between data classes, while generative models learn the dis t r ibut ion of ind iv idua l classes.
However, the advantage in learning the dis t r ibut ion of t ra ining data is that generative
models have significant addi t ional value at generating new samples similar to t ra ining ones.

13

y = o

y=l
X 4

y = 0

y = l

Figure 3.4: Example of discriminative and generative models' goals in classification task
represented in the graph (inspired by [13]).

3.3 Deep feedforward networks

W h e n a perceptron model, mentioned in Section 3.1, is described as a layered structure,
there are two layers - the input layer and the output layer. The input layer transmits
the data to the output layer, which is a computat ional one. Mul t i l ayer networks improve
the architecture by at least one addi t ional computat ional layer between input and output
layers, referred to as a hidden layer. Based on the increasingly used multi layer structure in
neural networks, they are known as deep learning models. The specific k ind of architecture
of multi layer networks is a feedforward network, which means that outputs of neurons from
one layer are fed as inputs to the successive layer. Therefore, the whole structure represents
an acyclic graph [1, 24]. Since deep feedforward networks (D F N s) , also known as multi layer
perceptrons, are essential models of deep learning, it is convenient to describe a l l neural
networks' fundamental components i n this section.

3.3.1 A c t i v a t i o n funct ion

A n activation function is a mathematical function, that allows to decide whether a neuron
is activated or not. Below is the basic formula for a single neuron from Figure 3.1.

a = 's^2/wixi + b (3.1)
i.

It is clear that a £ 1 , so there is no information about value bounds. Tha t makes it
impossible to decide whether a neuron should fire (be activated) or not. For this purpose,
the activation function f{a) transforms the value a into a given range, making it possible to
decide whether the neuron should be considered activated. A l l of the activation functions
described i n this section are based on the information from [10] and [24].

The most straightforward act ivation function is a step function. Th is function works
well w i th a perceptron model as a binary classifier. However, it cannot be used for more
complex tasks, where the structure consists of mult iple neurons.

, , , _ J 1 for x > threshold, , ,
Istepix) - | Q Q t h e r w i s e _ (3 .2)

A binary output problem can be solved by a linear activation function, which scales its
input by a constant c. O n the other hand, it brings other problems. Us ing this function,

14

it is not possible to use backpropagation (see Section 3.3.3) to t ra in the model . Since
backpropagation uses gradient descent, and the derivative of a linear function is a constant,
the gradient has no relation to the input . A l so , the model loses the strength of multiple
layers because they a l l collapse into a single layer. Tha t is because a linear combination
of linear functions is s t i l l a linear function. A range of output values causes one more
problem. A s already mentioned, it is convenient to transform values into a specific range:
however, w i th a linear activation function, output values can s t i l l be i n a range (—oo;oo).
It is possible to uti l ize these values, for example, for classification using a function maxQ
or softmaxQ, and make a final decision based on the result. However, it does not allow
generating probabil ist ic scores from neurons.

flinear(x) = c x (3-3)

It is necessary to use non-linear activation functions i n deep learning models to avoid the
problems mentioned above. One of the well-known is a sigmoid function. It squashes the
output values into range (0; 1), which allows generating probabil ist ic scores from neurons.
Also , the gradient is steep near the origin and saturates as going along the x-axis. That
helps i n classification tasks because the function tries to keep output values close to either
zero or one. The main problem wi th this activation function is its smal l gradient as getting
further from the origin. Tha t can cause a vanishing gradient problem, which leads to slow
learning of the network, or eventually, a stop of learning.

fsiqmoid(.%) = Z : T (3-4)
1 + e x

Similar to sigmoid function is the Tanh function, which squashes the output values into
range (—1; 1), instead of (0; 1). It is a scaled sigmoid function, which has a steeper gradient.
However, the main problem w i t h vanishing gradients remains the same.

ftanhix) = 2 - 1 (3.5)
1 + e i X

Currently, the most widely used activation function is the R e L u function. The main
advantage against functions above is that R e L u outputs 0 for a l l negative input values
and therefore deactivates neurons that produce negative values. Most of the neurons fire
in an analog way wi th functions like sigmoid or Tanh, so most of the activations need to
be processed to contribute to the network output. R e L u helps to make these activations
more sparse, resulting i n a lighter network. Addi t ional ly , R e L u is significantly less compu
tat ional ly expensive because it involves simpler mathematical operations then sigmoid or
Tanh.

freiu(x) = max(0,x) (3.6)

The problem of R e L u function is the zero output for values i n range (—oo; 0). Since a
gradient i n that range is also a zero, weights are not adjusted for these activations during
backpropagation. Tha t leads to a dying R e L u problem when a part of the network can
become passive. A modified version of this function was proposed to address this problem,
which reduces the effect of neurons by a factor c i n negative range instead of deactivating
them. This modified version is called a leaky R e L u .

f (\ - / x for x - °> (*7\ J leaky relu\x) — \ r , n \"m'J y - [cx for X < 0.

15

3.3.2 Loss funct ion

Once a model predicts the output value y dur ing training, it needs to be evaluated against
the expected output value y. For this purpose, a loss function is used, which defines the
error of the model . In other words, it reflects how far from the correct output, the generated
output is. The result is then used to tune the network parameters during backpropagation
(see Section 3.3.3). The information about loss functions provided i n this section was
obtained from [24].

Loss functions are generally separated into two categories - regression loss and classi
fication loss. In regression tasks, bo th the expected output values and predicted output
values are direct. Therefore, it allows calculat ing the loss based on the difference between
these two values.

The most straightforward loss function would then be a direct difference between the
expected and predicted outputs, as shown below. However, this allows positive as well as
negative results, which is undesirable.

There is a couple of regression loss functions; however, the two most common similar
loss functions are used to avoid the problem wi th a sign of the result - M e a n squared error
(M S E) and M e a n absolute error (M A E) . M S E loss function squares the difference between
predicted and expected values, which makes a l l values positive, and then computes the
mean to normalize the result. For n predicted values y and corresponding expected values
y, the M S E is defined as shown below.

The problem wi th M S E is that it is prone to outliers i n the data. A n y sample, which
outputs value far from the expected value, contributes significantly to the loss. W h e n many
out lying data are present in the dataset, M S E causes a problem. Tha t can be solved by
the M A E loss function, which computes the absolute value of error instead of squaring it.
Th is approach is not as sensitive to outliers as M S E ; however, calculat ing absolute values
makes the loss function non-differentiable, which is a problem during backpropagation.

Classification tasks do not predict direct values as regression tasks. Instead, they predict
a discrete class label, which is generally a positive integer value. Since bo th the expected
value and predicted value are integers from a set of discrete values, computing the differ
ence between those two numbers does not provide any useful information about the loss.
Therefore, classification loss functions are developed over probabil i ty distributions.

Cross-entropy is one of the most common loss functions for classification models that
output probabi l i ty values between 0 and 1. It compares the probabil i ty dis t r ibut ion of
prediction wi th the expected labels. Cross-entropy loss is m in ima l when these two distr ibu
tions are the same, and increases as they diverge from each other. The formula is defined
for the expected label y and predicted label y as:

L(w) = y - y

E = (3.9)

n
(3.10)

i=l

16

3.3.3 B a c k p r o p a g a t i o n process

In order to effectively t ra in a neural network model, there is a need to update its weights (in
a biological analogy - a need for establishing reconnections between neurons), which reflects
how a neural network learns. Once a neural network is constructed wi th its in i t i a l weights,
a forward pass is performed. Tha t means inputs from a t ra ining set are fed into the network
and passed through unt i l the network eventually generates an output. After that, the loss
function is computed, which reflects the error of the model as described in Section 3.3.2.
Once the information about the error is known, it needs to be reflected in the network
structure. Tha t is the point where a backpropagation algori thm takes place. If a function
is differentiated, we get the gradient of that function. The gradient represents the direction
along which the function increases/decreases the most. Backpropagat ion calculates par t ia l
derivatives, going back from the error function to a specific neuron and its weight. The
backpropagation results i n a set of weights that minimize the error function [28].

This process could be repeated for every sample i n the t ra ining set; however, this would
be ineffective. Typical ly , a couple of samples are grouped i n one batch. The whole batch is
then passed through the network, and the backpropagation is performed on the aggregated
result. The batch size and the number of batches, called iterations, are two hyperparameters
that can be opt imized [28]. Once an entire dataset is passed through a neural network, it
is referred to as one epoch. So, the number of iterations i n one epoch can be computed by
the equation below:

3.3.4 A d a m o p t i m i z e r

In practice, the backpropagation algori thm is used by more sophisticated algorithms that
use the backpropagation for computing the gradient of the error function and they control
the update of weights. One of the common opt imizat ion algorithms for this purpose is
called A d a m [8]. The size of the step i n the direction of the decreasing gradient of the
error function is defined by the hyperparameter called a learning rate. The learning rate
has a significant impact on neural network performance and it is hard to set. A d a m is one
of the algorithms that automatical ly adapt the learning rate throughout learning. It uses
a momentum, which accumulates exponentially decaying moving average of past gradients
and continues to move i n their direction, which optimizes the learning process of neural
networks [11].

3.3.5 N e u r a l ne twork h y p e r p a r a m e t e r s

In the last section, a term hyperparameter was mentioned. This section gives a closer
look at its meaning. M o d e l parameters are internal properties of t ra ining data that are
learned during t raining. The objective of the network t ra ining is to learn the values of the
model parameters. Hyperparameters, on the other hand, are external parameters set by the
programmer. Different values of hyperparameters can have a significant impact on network
performance [28].

Hyperparameters that are related to the network structure can be, for example, number
of hidden layers i n the network architecture, an act ivation function, that determines the
output of each element in the neural network, in i t ia l iza t ion values of weights, or a dropout
(one of the methods to avoid network underrating). Other hyperparameters related to the

iterations epOCh
size of a training dataset

batch size

17

t ra ining algori thm are, for example, a learning rate, a batch size, number of iterations, or
an optimizer a lgori thm [28].

Op t imiz ing the hyper parameters of a neural network model means retraining the net
work using each set of hyperparameters and evaluating the results. There are a few more or
less sophisticated methods to do this. M a n u a l search requires just testing of hyperparam
eters that the operator chooses. Unless the operator is experienced, this method can be a
dead end. A more systematic approach brings a method called gr id search, which involves
systematically testing different hyperparameters' values and retraining the model for each
combination [28]. However, James Bergstra's and Yoshua Bengio's paper [3] showed that
it is more efficient to use random hyperparameter values than using the manual search or
grid search. The last commonly used opt imizat ion method is Bayesian opt imizat ion [34].
The idea is to t ra in the model w i th different hyperparameters values and observe the shape
of the function generated by these values. The method then predicts the best possible
hyperparameters values, which provide higher accuracy than a random search [28].

3.4 Convolutional neural networks

Since the great success of convolutional neural network (C N N) architecture in 2012 [21],
the concept of C N N s became highly used pr imar i ly for computer vision tasks (e.g., image
classification, face recognition, image processing i n robots and autonomous vehicles). C N N
scans an image one area at a t ime, identifies and extracts essential features that are used
for image classification [18].

P l a i n neural network model, i n which layers are fully connected (meaning that a l l neu
rons i n one layer are connected wi th a l l neurons i n the following layer), is inefficient when
it should process extensive high-dimensional data, such as images or videos. Since an im
age wi th hundreds of pixels and three color channels (R G B) results i n mill ions of model
parameters, there is a high chance of overfitting. To l imi t the number of parameters, C N N
uses a structure i n which each set of neurons analyzes just a part of the image. The general
form of this structure can be wri t ten as height x width x depth, where depth relies on the
color channel of the image. W h e n working wi th grayscale images, this structure is a single
matr ix w i th values i n a range from 0 (black) to 255 (white) for each pixel . In a case of the
R G B image, the structure would contain three matrices, each having values in a range from
0 to 255 [20].

3.4.1 C N N archi tec ture

Three ma in layers of a network are used to bu i ld the C N N architecture - convolutional
layer, pooling layer, and fully-connected layer. The fully connected layer works as a classical
neural network. It is usually at the end of the C N N and outputs the vector of probabilities
as i n the standard classification task. The process that makes C N N s different and very
powerful happens in the unique architecture between the input and the output layer.

The convolutional layer's parameters are a set of filters that map each of the neurons
in the convolutional layer on a spatially smal l area of the input volume. The basic idea
is indicated i n Figure 3.5. That reduces the total number of model parameters needed.
The size of the filter is a hyperparameter called the receptive field of the neuron. Dur ing
the forward pass, the filter moves across the input height and wid th axis, and products
are computed using a convolution operation. Three hyperparameters are important for
the size of the convolutional layer's output - depth, stride, and zero-padding. The depth

18

hyper parameter corresponds to the number of filters that a developer wants to use. Since
each neuron learns to find a different feature i n the input, this hyperparameter is important
to optimize how detailed the convolutional layer should be. The value of stride defines how
the filter is shifted. The stride of value one means that the filter moves one pixel at a
t ime. W h e n the value of stride is increased, the convolutional layer w i l l produce smaller
outputs spatially. Zero-padding is used to pad the input w i t h zeros around. Its size is a
hyperparameter. In the C N N s , the zero-padding is usually used to ensure that the input
and output volume w i l l have the same size [20].

W i t h the mentioned values, the size of the output volume can be computed using the
following formula:

(W -F + 2P)

S + 1, (3.12)

where W is the input volume size, F is the receptive field size, S is the value of stride, and
P is the amount of zero-padding used [20].

The pool ing layer is commonly inserted between convolutional layers i n the C N N archi
tecture to reduce the spatial size of the input, and together w i th that, the number of model's
parameters. It works on each depth slice of the input and resizes it by applying some op
eration on values wi th in the filter. The most common operations that the filter applies are
max-pooling, average pooling, or L2-norm pooling. The average pooling is not commonly
used nowadays since, in practice, the max-pool ing proved to work better. The principle of
max-pooling is shown i n Figure 3.6. The usage of pool ing layers turned out to be a l i t t le bit
controversial since there are models that showed that pool ing layers are unnecessary, and
to reduce the size of input data using higher stride i n the convolutional layer works well [20].

Figure 3.5: Example of neurons i n the convolutional layer connected to a local region of
the input data. These neurons that are connected wi th the same regions are referred to as
depth column (taken from [20]).

3.5 Generative adversarial networks

Models described up to this section (D F N s , C N N s) are the common types of discriminative
models. However, based on the information i n Section 3.2, it is clear that the generative
model is needed for the purpose of this work, so that new data samples can be generated. In
2014, one, called generative adversarial networks (G A N s) [12], was proposed, which became
a state-of-the-art generative model for the following years.

19

Single depth slice

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

max pool with 2x2 filters
and stride 2 6 8

3 4

Figure 3.6: Example of how the pooling layer applies a filter using the max operation,
(taken from [20]).

G A N s belong to the class of direct impl ic i t density generative models. Therefore, their
goal is to sample from the probabil i ty density function pmodei{x) without expl ic i t ly defining
it [23].

Even though generative adversarial networks are generative models because their goal
is to learn a data dis t r ibut ion of the t ra ining dataset, they also use a discriminative model
in their architecture. The generative model is referred to as a generator and discriminative
model as a discriminator. The goal of a generator is to learn how to produce data as similar
to real images as possible. The goal of a discriminator is to evaluate its input data and
decide whether they look real or fake. These two models are adversaries i n the zero-sum
minimax game. This game has a nash-equil ibrium when a generator learns the t raining
data dis t r ibut ion, and a discriminator is not able to distinguish whether the input sample
is real or fake, which means that preai{x) = \ and pjake(x) = \ , where x is the input
sample. The basic structure of generative adversarial networks is shown i n Figure 3.7.

m i n max V(D,G) = ^Pdata{x)[logD(x)] + E ^ (z) [l o g (l - D(G(z)))] (3.13)

The equation above shows a value function of the min imax game between a generator
and a discriminator [12]. The mapping of the input noise features defined by prior p(z)
into a data space is given by a differentiable function G(z, 99) represented by a generative
model w i th parameters 9g. The discriminative model w i th parameters 9d defined as D(x, 9d)
outputs a single scalar value representing the probabi l i ty that data x came from the Pdata
rather than pg. The discriminator is trained to maximize the probabil i ty of assigning correct
labels to both real samples and samples coming from the generator. The generator is trained
to minimize l o g (l — D{G{z))). Tha t works well theoretically; however, i n practice, t raining
a generator to maximize \ogD{G(z)) is preferred instead of min imiz ing l o g (l — D(G(z))),
which provides significantly stronger gradients i n the early stage of t ra ining and therefore
helps generator to learn well [12].

The reason why G A N s are so popular in processing high-dimensional data is the idea
behind them. The problem is that there is no direct way to sample from a complex,
high-dimensional dis t r ibut ion of t ra ining data. This model allows to sample from a simple
dis tr ibut ion and learn transformation to the t ra ining dis t r ibut ion using a neural network
[23].

20

Real
images ft

Latent
space

Generator

Discr iminator
Rea l

Fake

Figure 3.7: Basic schema of generative adversarial networks.

3.6 Deep convolutional generative adversarial networks

The original model of G A N proposed by [12] used a multi layer perceptron for bo th a
discriminator and a generator. However, as mentioned i n Section 3.4, to process high-
dimensional data, it is convenient to use a convolutional neural network, which significantly
reduces the number of parameters of the model . In paper [31], a modified version of
G A N was proposed, which uses convolutional layers for a discriminator, and fractionally-
strided convolutional layers for a generator. Th is model, called a deep convolutional G A N
(D C G A N) , proved to work well and became one of the most popular generative models for
high-dimensional data.

3.6.1 D C G A N arch i tec ture

A s already mentioned, the discriminator network in D C G A N uses convolutional layers that
downsample input data. The last convolutional layer is flattened and then fed into a single
sigmoid output. The generator network then reshapes an input noise first and then uses
fractionally-strided convolutional layers, also called transposed convolutional layers. These
layers upsample input data into the desired shape, which needs to be the same as the
shape of real samples. The example of generator and discriminator networks is shown in
Figure 3.8.

Alongside the updated architecture of the original G A N model using C N N architectures,
paper [31] also proposed several changes that lead to a stable t ra ining of a D C G A N . These
changes include replacing any pool ing layers w i th strided convolutional and fractionally-
strided convolutional layers, which allows discriminator and generator networks to learn
their own spatial downsampling and upsampling, respectively. The other proposed change
is to apply a batch normalizat ion to a l l layers, except the input layer of a discriminator, and
the output layer of a generator, which stabilizes learning by normalizing the input to each
unit to have zero mean and unit variance. The th i rd change is removing any fully-connected
hidden layers since they can reduce convergence speed. The last proposed change deals w i th
activation functions. The recommended activation for a discriminator is Leaky R e L u for
al l layers. For a generator, using R e L u activation is recommended for a l l layers except the
last one, which uses Tanh. A l l activation functions are described i n Section 3.3.1.

21

Ful ly
connected

layer
(b) E x a m p l e o f a genera tor ne twork (T C F = t r ansposed c o n v o l u t i o n a l filter).

Figure 3.8: Example of networks i n D C G A N model (inspired by [24]).

22

Chapter 4

Solution design

Designing a synthetic fingerprint generator requires two ma in steps. The first one is the
acquirement of a sufficient dataset. Since the model is designed wi th respect to the input
data, this step is crucial , and any later change can affect the model architecture. In Sec
t ion 4.1 are described two popular fingerprint datasets for research purposes. B o t h of them
provide a significant amount of data; however, the S O C O F i n g dataset was chosen for the
purpose of this work due to its higher complexity. The second step is then the design of
a generator model . In Section 4.2 is presented the proposed model based on a D C G A N
architecture together w i th methods implemented to improve its performance.

4.1 Datasets

A s mentioned i n Section 2.6, one of the main problems wi th biometrics databases is privacy
protection. Therefore, it is not easy to share a database once it is acquired. In order to
create a synthetic fingerprint generator, it is essential to get a sufficient database that our
model can t ra in on. Lucki ly , for non-commercial purposes, there are s t i l l a few accessible
databases wi th anonymized data, usually owned by academic insti tutions. Th is section
presents two popular fingerprint databases meant for research purposes - S O C O F i n g [35, 36]
and F V C 2 0 0 6 [4].

4.1.1 F V C 2 0 0 6 dataset

Even though this dataset was in i t ia l ly designed for a fingerprint verification competi t ion,
it became a popular source of fingerprint images for research purposes. Also , the original
paper [27] used the F V C 2 0 0 6 dataset i n their solution. F V C team grants access to four
distinct subsets D B 1 , D B 2 , D B 3 , and D B 4 , each of them acquired by a different method.
Each subset is d ivided into two parts: A and B . Par t A contains the first 1,680 fingerprint
images from 140 fingers. Par t B contains the other 120 fingerprint images from 10 fingers.
In total , there are 1,800 fingerprints acquired by four different methods. The example
samples from the F V C 2 0 0 6 dataset can be seen in Figure 4.1.

The image format is B M P , and the images are i n 256 shades of gray. Image resolution
varies depending on the subset. Table 4.1 shows a resolution, an image size and a sensor
type for each subset.

23

Figure 4.1: Examples of F V C 2 0 0 6 datasets i n the following order: D B 1 , D B 2 , D B 3 , and
D B 4 .

Table 4.1: Properties of the F V C 2 0 0 6 datasets (taken from [40] and modified).

Subset Sensor T y p e Image Size Resolution
D B 1 Elect r ic field sensor 96x96 250 dpi
D B 2 Opt i ca l sensor 400x560 569 dpi
D B 3 Thermal sweeping sensor 400x500 500 dpi
D B 4 S F i n G e v3.0 288x384 about 500 dp i

4.1.2 S O C O F i n g dataset

Sokoto Coventry Fingerprint Dataset (S O C O F i n g) is designed specifically for academic re
search purposes. A n extensive dataset of fingerprint images also contains useful information
about gender, hand, and finger name for each image. The dataset contains two parts. In
the first part, 6,000 fingerprints acquired from 600 Afr ican individuals are located. The
second part provides over 49,000 altered fingerprint images i n total . The altered images are
further separated into three parts by the S T R A N G E framework's level of alteration - easy,
medium, and hard. S T R A N G E is a framework for the generation of realistic alterations on
fingerprint images. In the S O C O F i n g dataset, samples are altered by obliteration, central
rotation, and z-cut. Information about the applied alteration is incorporated in the image
ti t le. The S O C O F i n g dataset was chosen for the purpose of this work due to its complexity.

A l l images have the same resolution of 1 x 9 6 x 1 0 3 (gray channel x w id th x height),
and a l l real images were acquired using an opt ical sensor. Table 4.2 contains information
about the number of images i n each part of the dataset. In Figure 4.2, different levels of
alteration are shown. The first column contains a real image example, and each successive
column contains a higher level of an alteration.

Table 4.2: Number of fingerprint images i n each part of the S O C O F i n g dataset.

Subset N u m b e r of images
Easy 17,934

Altered M e d i u m 17,067
H a r d 14,272

Real 6,000

24

Figure 4.2: Examples of altered images from the S O C O F i n g dataset. E a c h line includes
one type of alteration - central rotation, obliteration, and z-cut i n the respective order.

4.1.3 D a t a a u g m e n t a t i o n

The common method to reduce overfitting of convolutional neural networks is applying
data augmentation. That means applying transformations on the original data to increase
the generalizability of the model, especially when working wi th smal l datasets. Since the
proposed D C G A N model contains a discriminator, which is a convolutional neural network,
and the real part of the S O C O F i n g dataset contains just about six thousand images, it is a
convenient use case of data augmentation. The altered images from the S O C O F i n g dataset
were not used during t ra ining due to their quite rough modifications of the original finger
prints. Instead, the custom data augmentation was implemented using Keras framework,
which is further described in Section 5.4.1. Examples of augmented samples that were used
to t ra in the proposed solution are shown i n Figure 4.3.

Figure 4.3: Examples of augmented samples from the S O C O F i n g dataset.

25

4.2 Proposed model

D C G A N model, which was described i n Section 3.6, was chosen for this work. It also
proved to work well i n paper [27], where it was used for the same purpose as a synthetic
fingerprint generator. The basic D C G A N architecture that was used for this work is shown
in Figure 4.4. The discriminator consists of four convolutional layers. E a c h of them has a
kernel size of 5 x 5, and stride is set to value two. That means that each layer downsamples
data to half of their size. D a t a get flattened at the end of the network, and then they are
fed into a dense layer w i th sigmoid activation function, which generates a single scalar value
representing how much the discriminator believes that given data came from the t ra ining
dataset. The generator contains five fractionally-strided convolutional layers. Each of these
layers upsamples data to double their size spatially. A dense layer precedes these layers.
Output values from this dense layer are s imply reshaped into the selected input shape of
the network. The last layer in the generator network is a convolutional layer, which changes
the data dimension to the required number of channels. In this case, where images are in
greyscale, the number of channels is one.

In Section 3.6 were mentioned several tips proposed by [31] for a stable t ra ining of
D C G A N s . However, the research of techniques for stable t ra ining models based on G A N
architecture is s t i l l an active field, and many methods were proposed to improve and stabilize
their performance. Some of them were implemented in this work and are described further
in this section. In Section 5.3, changes to the proposed D C G A N model after implementat ion
of these methods are described.

Discr iminator network

(96, 96, 1)

io
n

R
eL

u

ao
n

io
n

ns
e

T3

R
eL

u

"A ° H ° ns
e 0
S

w 1 £
o

M
a

w § s s -°
w D

e

Si
gr

Input image
U o

O 6

Si
gr

48, 64) (24, 24, 128) (12, 12, 256) (6, 6, 512) Scalar output

Generator network

100

Input noise

m B

o s ^

EH 8

o B ^

£ 8

(3, 3, 512)

on

C
on

vo
lu

ti

la
ye

r
C

on
vo

lu
ti

la

ye
r

T
ai

(6, 6, 256) (12, 12, 128) (24, 24, 64) (48, 48, 32) (96, 96, 32) (96, 96, 1)

C o n v o l u t i o n
b lock

T r a n s p o s e d
c o n v o l u t i o n -\

b lock

Figure 4.4: The proposed architecture of discriminator (top) and generator (bottom) mod
els.

26

4.2.1 L a b e l s m o o t h i n g a n d noisy labels

W h e n t ra ining the discriminator model, real images are generally represented by label ' 1 '
and fake images by label '0'. However, these hard labels are good to be replaced by smooth
labels, which proved to work well against discriminator being overconfident about its pre
dictions. Tha t can have a regularizing effect when t ra ining G A N s . In [32] is recommended
using one-sided label smoothing when only positive labels are smoothed, and negative la
bels are kept at value '0'. G iven the parameter a, values of positive labels were randomly
transformed into range (1 — a, 1).

Another method related to labels is using noisy labels [5]. Tha t means flipping some real
and fake labels when t ra ining the discriminator, which can be represented as ynew = l — y0id-
That introduces an error to those labels and helps to reduce discriminator 's overconfidence.
In this work was used a 5 % probabi l i ty of flipping the label dur ing training.

4.2.2 M i n i b a t c h d i s c r i m i n a t i o n

To address the mode collapse, which is one of the main failure modes i n t ra ining G A N s ,
[32] proposed a method called minibatch discr iminat ion. The mode collapse is a state
where the generator produces the same output for different input data. The problem
is that the discriminator processes each sample separately and therefore has no way to
inform the generator to produce more distinctive outputs. The minibatch discr iminat ion
method is based on a simple principle al lowing the discriminator to look at mult iple samples
simultaneously. However, it is focused pr imar i ly on similar samples wi th in the batch - the
similar i ty of generated samples increases, when the mode starts to collapse. The s imilar i ty
o{xi) is computed between the image Xi and a l l other images i n the same batch. Th is
s imilar i ty is then appended to one of the intermediate layers of the discriminator, and it
can use this score to detect generated samples and penalize the generator. The example of
the discriminator architecture together w i th extended dense layer by the s imilar i ty at the
end of the network is shown i n Figure 4.5.

Set of convolutional layers /(#)

(/ W , o (x))

n
Output

Input image x

Ful ly
connected

layer

Figure 4.5: Example of the discriminator network wi th s imilar i ty appended to the interme
diate dense layer.

27

4.2.3 S p e c t r a l n o r m a l i z a t i o n

G A N s have a general problem wi th the unstable t raining process. One of the main chal
lenges is controll ing the performance of a discriminator. W h e n the support of the learned
dis tr ibut ion pmodei and the support of the real dis t r ibut ion pdata are disjoint, the discr imi
nator, which can perfectly dist inguish these distributions, exists. Such discriminator then
leads to a stop of the generator's t raining, because its derivative wi th respect to the input
turns out to be 0. That leads to a need for a restriction on the choice of a discriminator.
In 2018 was proposed a method for weight normalizat ion called spectral normalizat ion [29],
which stabilizes the t ra ining of the discriminator.

The method restricts the choice of the discriminator to the set of Lipschi tz continu
ous functions, assuring the boundedness of those functions [29]. In practice, the method
computes the spectral norm a(Wl) for each layer I, which is the largest singular value
of the layer's weights W. The spectral norm a(W) could be computed using a singular
value decomposition; however, that showed to be computat ional ly heavy. Therefore, the
method uses the power i teration method [29] to estimate a(W), which results i n a short
computat ional t ime compared wi th the overall computat ional cost of the G A N training.

4.2.4 E x p e r i e n c e replay

The mode collapse problem can also be addressed by mit igat ing the opportuni ty of the
discriminator to overfit for a part icular t ime instance of data batches. One generated data
sample is preserved i n each t ra ining step. W h e n it reaches the given number of steps, the
discriminator is fed by recently generated images together w i th the current batch. This
method is based on a stabil i ty t r ick proposed for reinforcement learning problems i n [30].

28

Chapter 5

Implementation and results

This chapter provides an overview of the implementat ion details of the proposed solution
and its results evaluation. T h e solution was implemented in P y t h o n language as it is one of
the most popular languages for creating deep learning models. P y t h o n provides s implic i ty
by its own syntax, but also by support ing many deep learning platforms specifically designed
to make the development of deep learning models even more comfortable. In Section 5.1,
some of the most popular deep learning platforms are discussed. Section 5.2 provides details
about the hyperparameters of the proposed model . In Section 5.3, the models that were
used for results evaluation are discussed.

5.1 Python deep learning platforms

P y t h o n supports many deep learning frameworks and libraries that make it significantly
more comfortable to create deep learning models. Some of the popular ones are described
in this section. Since most of the described libraries were in i t ia l ly released after 2015, it is
clear that Python ' s deep learning environment grows very fast. Keras framework was used
to implement the proposed solution because it provides a high-level easy-to-learn A P I wi th
addi t ional benefits: real-time data augmentation, image preprocessing features, pre-trained
models, and many more.

5.1.1 T h e a n o

Theano [38] is a P y t h o n l ibrary that provides efficient ways of working wi th mult i-dimensional
arrays. Since deep learning problems involve large amounts of data, this feature is crucial .
Theano also works as an opt imiz ing compiler, it can compile parts of an expression graph
into C P U or G P U instructions, which improves computat ional performance. Theano can
also find some of the numerically unstable expressions and compute them using more stable
algorithms. Addi t ional ly , it supports an efficient symbolic differentiation.

This l ibrary provides many advantages, most of a l l its flexibility. O n the other hand,
since Theano is a lower-level A P I , it requires good knowledge to write effective code. There
fore, Theano is used to power some of the other deep learning frameworks that work on a
higher level, such as Keras.

29

5.1.2 Tensor F l o w

TensorFlow is an open-source l ibrary that provides mult iple levels of abstraction. In coop
eration wi th Keras A P I , it allows a high-level approach to developing deep learning models.
However, it s t i l l offers a lot of flexibility. TensorFlow's basic data structures are tensors
that are mult i-dimensional arrays. Therefore, TensorFlow effectively allows us to work
wi th mult i -dimensional arrays, which provides excellent support for the development of
deep learning models. The same code can be computed on either C P U or G P U , which
can accelerate the computat ional process. Computat ions i n TensorFlow are described by
computat ional graphs, where each edge represents data (tensor), and each node represents
a mathematical operation performed on the input data. The computat ional graph is buil t
in advance of running the computat ional process, allowing, for example, using placehold
ers i n code, which represent data that are not known before running the model and can
be added during runtime from external resources. Since Google L L C backs TensorFlow,
there is a large community of developers that share their knowledge and experience, which
is a significant benefit of using this l ibrary. TensorFlow provides mainly computat ional ly
well-performing platform; however, it does not provide many addi t ional features that would
help wi th the whole process, such as data preprocessing and others. It is more convenient
to use the Keras high-level framework w i t h TensorFlow as its backend.

5.1.3 P y T o r c h

W i t h the in i t i a l release i n 2016, P y T o r c h [39] is the youngest deep learning framework
discussed i n this section. M a n y of its features are s imilar to TensorFlow and Theano.
For example, it works w i t h tensors that can be computed on both C P U and G P U , which
can significantly increase the computat ional performance. Another similar feature, yet
the one that makes the most significant difference, is bui ld ing a computat ional graph.
P y T o r c h is designed to handle dynamic computat ional graphs, which is not possible in
either TensorFlow or Theano platforms. It provides features of both high-level and low-
level A P I s , which provides flexibil i ty and s implic i ty at the same time. Keras was chosen
for the implementat ion of the proposed solution because there is s t i l l a higher number of
relevant resources that use TensorFlow or Keras for development in the t ime of creating
this work.

5.1.4 K e r a s

The Keras P y t h o n l ibrary is a popular deep learning A P I , which was developed to run
mainly on top of the TensorFlow and Theano machine learning platforms. The Keras
A P I provides two core data structures - layers and models, which makes it fast and easy to
create and t ra in the proposed solution. There are two approaches to create models i n Keras
- sequential [6] or functional [7]. The sequential model is a linear stack of layers, which
works well for simple models. More complex structures require using the Keras functional
A P I . For example, it allows defining models w i t h mult iple inputs or outputs, models w i th
shared layers, and much more.

5.2 Hyperparameters of the proposed model

The proposed model was trained for 300 epochs on an N v i d i a Tesla T 4 G P U , w i th a batch
size of 128. Weights were ini t ia l ized from a zero-centered Gaussian dis t r ibut ion wi th a

30

standard deviat ion of 0.02, as recommended in [31]. The input noise to the generator
network was sampled from 100-dimensional Gaussian dis t r ibut ion wi th zero mean and unit
variance. A D A M optimizer was used to optimize the loss function wi th the learning rate of
0.0002 and the momentum of 0.5 [31]. The factor a of label smoothing was set to 0.1 wi th
a 5 % probabil i ty of flipping the label dur ing training. Experience replay happens after
each 32 t ra ining steps (batches). For minibatch discriminat ion, 100 discr iminat ion kernels
were used, which results i n the extension of the flattening layer's output 's dimensionality
by 100. The s imilar i ty of samples is computed i n the 30-dimensional space.

5.3 Implementation of the proposed model

A s mentioned i n Section 5.1, the proposed solution was implemented using Python ' s deep
learning framework called Keras . TensorFlow version 2.1.0 was used as its backend because
it proved to be the most stable version i n the t ime of creating this thesis. For the imple
mentation of the purposed model, using sequential models was sufficient. The proposed
model consists of three sequential models - the discriminator and generator networks and
the G A N model, which combines both of them. The reason for creating the combined
model is that the discriminator and generator networks are trained separately; however,
the generator needs to access the discriminator to receive the information about its error,
which is then reflected in the update of weights. Keras 's tr ick is to achieve this behavior by
setting the model's weights as not trainable. Tha t means the discriminator itself is trained
separately, and the generator is trained using the combined model, which sets the discrim
inator's weights as not trainable. The implementat ion of the combined model is shown in
L i s t ing 5.1.

In Section 5.1.4 was mentioned, that the core data structures in Keras are models and
layers. Therefore, the generator and discriminator models were implemented as a sequence
of layers already provided by the Keras framework. Visual izat ions of the generator and
discriminator Keras models are shown i n Figure 5.1 and Figure 5.2 respectively.

def define_gan(g_model, d_model, adam_learning_rate=0.0002):
// sets the discriminator's weights as not trainable
d_model.trainable = False

// defines the combined sequential model
model = Sequential(name=,GAN-model,)
model.add(g_model)
model.add(d_model)

// sets the Adam optimizer

opt = Adam(lr=adam_learning_rate, beta_l=0.5)

// creates the model
model.compile(loss = ,binary_crossentropy', optimizer=opt)
return model

Lis t ing 5.1: Implementation of the G A N model which combines the generator and discrim
inator networks.

31

C o n v 2 D _ l Input: (None, 96, 96, 1) Output : (None, 48, 48, 64)

1
Leaky R e l u _ l Input: (None, 48, 48, 64) Output : (None, 48, 48, 64)

1
C o n v 2 D _ 2 Input: (None, 48, 48, 64) Output : (None, 24, 24, 128)

1
Batch normal iza t ion_1 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128)

1
Leaky R e l u _ 2 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128)

1
C o n v 2 D _ 3 Input: (None, 24, 24, 128) Output : (None, 12, 12, 256)

1
Batch normal iza t ion_2 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256)

1
Leaky R e l u _ 3 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256)

1
C o n v 2 D _ 4 Input: (None, 12, 12, 256) Output : (None, 6, 6, 512)

1
Batch normalizat ion 3 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512)

1
Leaky R e l u _ 4 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512)

1
Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432)

1
Dense wi th sigmoid Input: (None, 18432) Output : (None, 1)

Figure 5.1: Visua l iza t ion of the proposed discriminator model implemented i n Keras.

5.4 Implementation of methods for performance improve
ment

Several methods were proposed i n Section 4.2 to improve the performance of the D C G A N
model. The i r implementat ion is discussed i n this section. A t first, Section 5.4.1 provides
information about the implementat ion of data augmentation described in Section 4.1.3. Im
plementation of spectral normalizat ion and minibatch discr iminat ion methods is described
in Section 5.4.2. These two methods share the same feature - they could be implemented
as layers in Keras . Other methods that were implemented outside the implemented model
itself are described i n Section 5.4.3.

5.4.1 I m p l e m e n t a t i o n of d a t a a u g m e n t a t i o n

Since the solution was coded using the Keras framework, the most convenient way to incor
porate data augmentation to the solution is v ia the ImageDataGenerator class. One can
choose from many possible transformations that are then applied to the original dataset.
Choosing transformations is an important step because it can significantly affect the gener
ated images. For example, i n case of fingerprints, it would not make sense to use a vertical

32

Dense Input: (None, 100) Output : (None, 4608)
1

Batch normal iza t ion_1 Input: (None, 4608) Output : (None, 4608)
1

R e l u _ l Input: (None, 4608)
1

Output : (None, 4608)

Reshape Input: (None, 4608)
1 1—

Output : (None, 3, 3, 512)

C o n v 2 D T r a n s p o s e d _ l Input: (None, 3, 3, 512)
1

Output : (None, 6, 6, 256)

Ba tch normal iza t ion_2 Input: (None, 6, 6, 256)
1

Output : (None, 6, 6, 256)

R e l u _ 2 Input: (None, 6, 6, 256)
1

Output : (None, 6, 6, 256)

Conv2DTransposed_2 Input: (None, 6, 6, 256)
1

Output : (None, 12, 12, 128)

Ba tch normalizat ion 3 Input: (None, 12, 12, 128)
1

Output : (None, 12, 12, 128)

R e l u _ 3 Input: (None, 12, 12, 128)
1

Output : (None, 12, 12, 128)

Conv2DTransposed_3 Input: (None, 12, 12, 128)
1

Output : (None, 24, 24, 64)

Ba tch normal iza t ion_4 Input: (None, 24, 24, 64)
1

Output : (None, 24, 24, 64)

R e l u _ 4 Input: (None, 24, 24, 64)
1

Output : (None, 24, 24, 64)

Conv2DTransposed_4 Input: (None, 24, 24, 64)
1

Output : (None, 48, 48, 32)

Ba tch normal iza t ion_5 Input: (None, 48, 48, 32)
1

Output : (None, 48, 48, 32)

R e l u _ 5 Input: (None, 48, 48, 32)
1 | •

Output : (None, 48, 48, 32)

Conv2DTransposed_5 Input: (None, 48, 48, 32)
1

Output : (None, 96, 96, 32)

Ba tch normalizat ion 6 Input: (None, 96, 96, 32)
1

Output : (None, 96, 96, 32)

R e l u _ 6 Input: (None, 96, 96, 32)
1

Output : (None, 96, 96, 32)

C o n v 2 D Input: (None, 96, 96, 32)
1

Output : (None, 96, 96, 1)

Tanh Input: (None, 96, 96, 1) Output : (None, 96, 96, 1)

Figure 5.2: Visua l iza t ion of the proposed generator model implemented i n Keras.

flip, because the images could cause a problem dur ing their evaluation. It is more convenient
to use a horizontal flip, which keeps images realistically looking. Another transformation
that can be used is the featurewise normalizat ion. It includes f eaturewise_center, which
sets input mean to zero over the dataset, and featurewise_std_normalization, which
divides inputs by standard deviat ion of the dataset. To be able to apply standard normal
ization, the ImageDataGenerator needs to learn the mean and the standard deviation of
the dataset before generating the actual data.

33

5.4.2 I m p l e m e n t a t i o n of spectra l n o r m a l i z a t i o n a n d m i n i b a t c h d i s c r i m i
na t ion

The implementat ion of spectral normalizat ion and minibatch discr iminat ion methods caused
a few changes in the structure of the discriminator 's Keras model . The updated model can
be seen in Append ix B .

Spectral normalizat ion described i n Section 4.2.3 provides a great advantage, because
its definition allows the implementat ion w i th in a model 's layer. Therefore, spectral nor
malizat ion was implemented using the updated version of existing Keras layers used i n the
discriminator, as visualized i n Figure 5.3.

A s mentioned in Section 4.2.2, the minibatch discr iminat ion method computes the sim
i lar i ty of samples wi th in the batch and appends it to the dense intermediate layer of the
discriminator. Cus tom Keras layer was implemented and added to the model structure
right after the flattening layer, as shown i n Figure 5.4.

C o n v 2 D C o n v S N 2 D C o n v 2 D C o n v S N 2 D

Dense wi th sigmoid '— DenseSN w i t h sigmoid Dense wi th sigmoid DenseSN w i t h sigmoid

Figure 5.3: Changes i n the discriminator model caused by the spectral normalizat ion
method. Elements highlighted by green color show the updated layers that implement
the spectral normalizat ion.

I 1 r r
i i i i

Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432)
1

M i n i b a t c h
discr iminat ion

Input: (None, 18432) Output : (None, 18532)

1

DenseSN wi th sigmoid Input: (None, 18532) Output : (None, 1)

Figure 5.4: Changes in the discriminator model caused by the minibatch discr iminat ion
method. Elements highlighted by red color show newly added layer that is responsible
for minibatch discriminat ion, which changed the input data shape of the subsequent dense
layer.

5.4.3 I m p l e m e n t a t i o n of m e t h o d s that d i d not affect the m o d e l itself

The methods that are not a part of the discriminator model itself are incorporated in
the t ra ining loop. To be able to better describe the implementat ion of these methods,
L i s t ing 5.2 shows the t raining loop wri t ten in pseudocode. E a c h step represents t raining
on one batch of data.

Smoothing the labels and making them noisy takes place during the preparation of a
batch of data, as can be seen i n rows 6-8 and 12-13 of the t ra ining loop. Since the label
smoothing is one-sided, only the real data labels are smoothed; however, bo th the real and
fake data labels are randomly flipped.

34

M a k i n g the labels noisy is implemented as a function that takes the input vector of
labels y and the probabil i ty of flipping the labels. It computes the number of labels that
should be inverted based on the probabi l i ty using the following formula:

num_to_flip = flip_prob • input_vect_length, (5-1)

where flip_prob is the probabil i ty of flipping the label, and input_vect_length stands
for the length of the input vector. The given number of indices is then randomly chosen,
that are inverted using the rule y n e w = 1 — yold-

Label smoothing is implemented as a function, which takes the vector of randomly
flipped real labels ynoisy and the value of factor a , and returns the updated vector of values
i n range (1 — a , 1).

Experience replay happens after the t ra ining of the discriminator, as can be seen in
rows 17-21 of the t ra ining loop. Each t ra ining step, one of the generated samples is added
to the buffer. Once the given number of t ra ining steps defined by replay_step is reached,
the discriminator is trained of the batch of samples from the buffer. Then the buffer is
cleared and on the following t ra ining step it starts to save the generated samples again.

1 def train(dataset, batch size, number of epochs, replay_step):
2 variables i n i t i a l i z a t i o n
3 train_steps = (size of dataset / batch size) * number of epochs
4
5 for step i n train_steps:
6 x_real, y_real = prepare r e a l data and labels
7 make re a l labels noisy
8 smooth real labels
9

10 t r a i n the discriminator on real data
11
12 x_fake, y_fake = prepare fake data and labels
13 make fake labels noisy
14
15 t r a i n the discriminator on fake data
16
17 i f step == replay_step:
18 t r a i n discriminator on samples i n the buffer
19 empty the buffer
20 else:
21 add one random fake sample into the buffer
22
23 prepare data and t r a i n the generator

Lis t ing 5.2: Pseudocode of the t ra ining loop.

5.5 Results evaluation

One of the common methods for evaluating D C G A N models is called Frechet Inception Dis
tance [14]. It measures both the quali ty of generated images and their diversity. However,

35

since this thesis aims to generate fingerprints, there is a considerable advantage in using
other tools specifically designed for measuring the quali ty of fingerprint images. One of
those tools is a publ ic ly available software from N I S T (Nat ional Institute of Standards and
Technology), called N F I Q (N I S T Finger Image Qual i ty) . The performance of the proposed
model dur ing t ra ining is discussed i n Section 5.5.1. The results of the proposed model
evaluated by both methods mentioned above are provided later i n this section.

5.5.1 T r a i n i n g evaluat ion

A s already mentioned, t ra ining G A N s often leads to problems wi th stability. Tha t is the
reason why the proposed solution implements addi t ional methods that proved to be able to
help wi th this issue. In Figure 5.5, losses tracked during the t ra ining of the proposed model
visualized i n Figure 4.4, are shown. This model does not implement any of the addi t ional
methods. Further i n this work, this model w i l l be referred to as " D C G A N B A S E " . One
can see that the loss of the discriminator remains relatively stable during the training:
however, the generator's loss is significantly unstable and collapses to zero several times
during t raining. That suggests that the generator is not able to generate fake samples i n a
consistent way, and it is easy for the discriminator to identify the generated samples.

d-real

0 5C 1L>0 150 2m 250 3&0
epoch

Figure 5.5: Losses tracked on each epoch during the t ra ining of the proposed model without
any addi t ional methods for performance improvement.

To stabilize the training, label smoothing and noisy labels methods were implemented,
because they can have a regularizing effect as mentioned i n Section 4.2.1. Together w i th
the mentioned methods, the spectral normalizat ion, which is used to stabilize the t raining
of G A N s , was implemented. This model w i l l be referred to as " D C G A N E X T " . A s can
be seen in Figure 5.6, the implemented methods had a significant impact on the t raining
process of the proposed model.

However, even though the t ra ining became more stable by implementing the methods
mentioned above, the mode-collapse showed to be a big problem. To address this problem,
the minibatch discr iminat ion and experience replay methods were implemented. F r o m now
on, this model w i l l be referred to as " D C G A N F U L L " . In Figure 5.7, one can see that
apart from the noise at the start of the training, the process remained stable.

5.5.2 Frechet Incept ion D i s t a n c e

One of the conventional methods to measure the performance of G A N s is the Inception
Score. It uses an inception model pre-trained on the ImageNet dataset, which classifies
the generated images and predicts the condit ional probabil i ty p(y\x), where y is the label
and x is the generated data. The idea behind measuring the quali ty of images is that the

36

'3
Ml
a

150
epoch

Figure 5.6: Losses tracked on each epoch during the t ra ining of the proposed model after
the implementat ion of methods for t ra ining stabil izat ion: spectral normalizat ion, label
smoothing, and noisy labels.

' 3

O J

l d-real

ill - d-fakE

m gen

'DO 150
epoch

200 250 300

Figure 5.7: Losses tracked on each epoch during the t ra ining of the proposed model af
ter the implementat ion of methods that reduce the mode-collapse: experience replay, and
minibatch discriminat ion.

probabil i ty p(y\x) should have low entropy, which reflects that the images belong to just
a few classes. O n the other hand, the entropy across those images should be high, which
reflects the diversity of the images. The problem wi th the Inception Score is that it does
not use real samples statistics for their comparison wi th the generated ones.

The improved method based on the Inception Score is called the Frechet Inception Dis
tance (FID) [14]. This method uses features from an intermediate layer of the previously
mentioned inception model . For the given features, F I D uses a mult i-dimensional Gaussian
dis tr ibut ion wi th the mean \i and the covariance X . The difference of gaussian distr ibu
tions of synthetic and real images is measured by the Frechet distance d. The formula for
computing the F I D is the following [14]:

d 2((ng, Eg), (fix, E s)) = 11/is - /j,g\\l + T r (£ x + T,g - 2 (E s E f l) 5) , (5.2)

where fix and T,x represent a Gaussian dis t r ibut ion of real samples, and fig and T,g

represent a Gaussian dis t r ibut ion of generated samples. T r stands for the sum of the
diagonal elements.

The average, min imal , and max ima l F I D score for each model discussed i n Section 5.5.1
is shown in Table 5.1. Figure 5.8 presents the progression of the F I D score during the
t raining. A l l models tend to have a worse F I D score after about 100 t ra ining epochs. That
suggests that there are either samples w i t h low quali ty or that the diversity of samples
decreases due to the mode-collapse. In Figure 5.9 can be seen that the F I D score corre
sponds to the visual quali ty of images. The th i rd row, which is highlighted by a red frame,
represents samples after 60 epochs. The i r quali ty is decent, and they also have significant

37

variance. However, then the quali ty and variance start to get worse (and the F I D score
rises). Therefore, Table 5.2 provides the information about the F I D score values just for
the first 100 epochs. In the rest of this thesis, only the model trained to the 100th epoch is
considered.

Table 5.1: The Frechet Inception Distance of the proposed model over 300 epochs.

Model /Datase t
F I D

Mode l /Datase t
Average M i n M a x

D C G A N - B A S E / S O C O F i n g
D C G A N - E X T / S O C O F i n g

D C G A N - F U L L / S O C O F i n g

71.47
66.71
54.56

38.93
38.56
34.21

101.04
121.94
98.41

Table 5.2: The Frechet Inception Distance of the proposed model over 100 epochs.

Mode l /Datase t
F I D

Mode l /Datase t
Average M i n M a x

D C G A N - B A S E / S O C O F i n g
D C G A N - E X T / S O C O F i n g

D C G A N - F U L L / S O C O F i n g

65.44
54.94
48.52

41.96
38.56
34.21

93.19
85

93.05

Since the original paper [27] reached F I D score 70.5, it is clear that the solution proposed
by this work achieves better results. The i r achieved F I D score is mostly comparable wi th
the average score of the proposed D C G A N - B A S E model, which does not implement any
of the methods for performance improvement. Tha t suggests, that the addi t ional methods
proposed in this work have a significant impact on the quali ty of generated fingerprints.

5.5.3 N I S T F i n g e r Image Q u a l i t y

The original version of N F I Q was developed back i n 2004 as the first publ ic ly accessible fin
gerprint quali ty assessment tool . N F I Q was the first tool to allow a universal interpretation
of fingerprint quality, which resulted i n better fingerprint recognition systems by identifying
appropriate samples for their testing. Later, i n 2011, started the collaboration between sev
eral institutions, including N I S T , Federal Office for Information Security, Federal C r i m i n a l
Police Office, and others, which resulted i n a new version of this tool called N F I Q 2.0. It
became the reference implementat ion of I S O / I E C 29794-4 Biometr ic sample quali ty - Par t
4: Finger image data standard. Accord ing to that standard, it provides a quali ty score
ranging from 0 to 100, where 100 is the best result. N F I Q 2.0 was expl ic i t ly developed for
images captured at 500 dp i using opt ical sensors or scanned from inked cards. Tha t suits
great for the S O C O F i n g dataset because it satisfies both requirements. However, to be
able to get a quali ty score of the real samples, their bits-per-pixel values needed to be con
verted from 32 bits to 8 bits. N F I Q 2.0 is also not able to identify minutiae for S O C O F i n g
and F V C 2 0 0 6 D B 1 datasets, which suggests that the smaller image size leads to problems
wi th minutiae identification since both datasets have a smaller image size than the other
datasets. Table 5.3 shows the average quali ty score for each dataset. The size of images
was then doubled just to get more meaningful information about S O C O F i n g and F V C 2 0 0 6
D B 1 datasets. Table 5.4 shows the average N F I Q 2.0 score for those resized images.

38

~i 1 1 1 1 1 r -

D 10 20 30 40 50 60
training step (results tracked each 5th epoch)

D 10 20 30 40 50 60
training step (results xacked each 5th epoch)

training step (results tracked each 5th epoch)

Figure 5.8: The F I D score tracked on each 5th epoch dur ing the t ra ining of the proposed
models: D C G A N - B A S E , D C G A N - E X T , and D C G A N - F U L L in the respective order.

Based on the results from Section 5.5.2 and based on the evaluation of the visual quali ty
of the generated fingerprint images, models w i th the following t ra ining phases were selected
for evaluation by N F I Q 2.0: D C G A N - B A S E trained for 80 epochs, D C G A N - E X T trained
for 100 epochs and D C G A N - F U L L , which was trained for 60 epochs. Table 5.3 provides
information about the average N F I Q 2.0 quali ty score obtained over the generated dataset
of 100 samples from each of the models. The obtained score proves that even for newly
generated data samples, N F I Q 2.0 has a problem wi th identifying minutiae. Therefore, the
generated samples were also resized to double their original size. The average score reached
by the resized images is shown in Table 5.4. One can notice, that the N F I Q 2.0 quali ty
score is even higher for the generated images than it is for those from the original dataset.
This was a surprising result. In the case of samples generated by the D C G A N - B A S E model,
this could be caused by a significantly higher number of minutiae detected. However, the
results of the D C G A N - F U L L model present a higher quali ty score wi th almost the same
number of minutiae detected. These results proved, that the proposed model can generate
samples highly s imilar to those from the original dataset.

39

Table 5.3: Average N F I Q 2.0 quali ty score and minutiae count of samples from each dataset.
The generated samples were produced by models trained on the S O C O F i n g dataset.

Dataset N F I Q 2.0 Score Minut iae count
F V C 2 0 0 6 - D B 1 2.35 0
F V C 2 0 0 6 - D B 2 39.2 71.3
F V C 2 0 0 6 - D B 3 48.33 80.26
F V C 2 0 0 6 - D B 4 29.96 43.7

S O C O F i n g 3.4 0

Generated samples
D C G A N - B A S E 4.13 0
D C G A N - E X T 5 0

D C G A N - F U L L 4.42 0

Table 5.4: Average N F I Q 2.0 quali ty score and minutiae count of 500 randomly selected
samples from F V C 2 0 0 6 D B 1 and S O C O F i n g datasets. The generated samples were pro
duced by models trained on the S O C O F i n g dataset. A l l images were resized to double of
their original size.

Dataset N F I Q 2 .0 Score Minut iae count
F V C 2 0 0 6 - D B 1 23.24 32.72

S O C O F i n g 15.33 37.34

Generated samples
D C G A N - B A S E 16.21 83.52
D C G A N - E X T 17.65 74.09

D C G A N - F U L L 18.21 41.26

40

Figure 5.9: The generated fingerprint images for five input latent vectors generated using
the D C G A N - F U L L model . The first row contains the results after 20 t raining epochs. Each
subsequent row contains samples after another 20 epochs, except for the last row, which
contains a more advanced phase of t ra ining after 220 epochs.

41

Chapter 6

Conclusion

The goal of this thesis was to create a synthetic fingerprint generator based on the principle
of generative adversarial networks (G A N s) . The proposed solution proved that the deep
convolutional G A N (D C G A N) model is capable of generating fingerprints that are highly
similar to samples from the original dataset. Alongside the proposed D C G A N architecture,
there are several methods discussed, that were implemented to increase the stabil i ty of the
t ra ining process and the quali ty of generated fingerprints. Compared wi th the results of
the work F i n g e r - G A N [27], which originally purposed the D C G A N model for generating
synthetic fingerprints, the addi t ional methods implemented wi th in this work proved to have
a significant impact on the quali ty of the generated fingerprints.

The results were evaluated using the Frechet Inception Distance (F ID) , and the N I S T
Finger Image Qual i ty 2.0 (N F I Q 2.0). B y implementing the proposed methods, the average
F I D score over 100 t ra ining epochs was improved by 25 % and the N F I Q 2.0 score by
12 %, compared wi th the results of the pla in model, which does not implement any of
these methods. The best results were achieved w i t h the model that implements a l l of the
proposed methods. Fingerprint images generated after 60 epochs were evaluated as the best
results. A t this point, the model achieved the F I D score of 36.8 and the average N F I Q 2.0
quali ty score of 18.21.

Even though the proposed solution proved the model's capabil i ty of generating a com
plex structure of fingerprints, it is s t i l l affected by the mode-collapse problem. Therefore,
future work should be focused on reducing its impact . One of the options to improve the
results is using fingerprint labels from the dataset and consequently creating a conditional
GAN model . Another improvement could be reached by the implementat ion of unrolled
GAN model, which is focused pr imar i ly on the reduction of the mode-collapse problem.

In Chapter 2, this thesis provides basic information about biometrics w i th emphasis
on fingerprints and describes the principle of S F i n G e . Chapter 3 describes the common
principles of art if icial neural networks, together w i th a closer look at G A N and D C G A N
models. In Chapter 4 is described the proposed model, including the methods implemented
for the improvement of its performance. This chapter also provides an overview of accessible
fingerprint datasets. Final ly , Chapter 5 describes technical details of the implementat ion of
the proposed solution and provides the evaluation of results on the generated datasets. The
surprising result was that the average N F I Q 2.0 quali ty score over the generated database
of 100 samples was even higher than for the original samples from the S O C O F i n g dataset.
Given the information above, the main a i m of the thesis has been reached.

42

Bibliography

[1] A G G A R W A L , C . C . Neural Networks and Deep Learning. C h a m , Switzerland:
Springer, 2018. I S B N 978-3-319-94463-0.

[2] A U T H E N T E C , I N C . The Fundamentals. TruePrint™ Technology [online].
AuthenTec, Inc., June 2002 [cit. 2019-10-15]. Available at:
h t tp ://www.zvet cobiometrics.com/Documents/Trueprinttechnology.ppt.

[3] B E R G S T R A , J . and B E N G I O , Y . R a n d o m Search for Hyper-Parameter Opt imiza t ion .
Journal of Machine Learning Research [online]. J M L R , Inc. February 2012, vol . 13,
p. 281-305, [cit. 2019-01-17]. I S S N 1533-7928. Available at:
http://www. jmlr .org /papers /volumel3/bergs t ra l2a /bergs t ra l2a .pdf .

[4] C A P P E L L I , R . , F E R R A R A , M . , F R A N C O , A . and M A L T O N I , D . Fingerprint verification

competi t ion 2006. Biometric Technology Today [online]. Elsevier. Ju ly 2007, vol . 15,
no. 7, p. 7-9, [cit. 2019-12-15]. D O I : 10.1016/S0969-4765(07)70140-6. I S S N
0969-4765. Available at: https://doi.org/10.1016/S0969-4765(07)70140-6.

[5] C H I N T A L A , S. et a l . How to Train a GAN? Tips and tricks to make GANs work
[online]. G i t H u b , Inc., © 2 0 2 0 . revised 2020-03-05 [cit. 2020-04-15]. Available at:
h t tp s : / /g i thub.com/ soumith/ganhacks.

[6] C H O L L E T , F . The Sequential model . Keras [online]. Keras Team, Google, A p r i l 2020
[cit. 2020-06-16]. Available at: h t t p s : / / ke ra s . i o /gu ides / sequen t i a l_mode l / .

[7] C H O L L E T , F . The Funct ional A P I . Keras [online]. Keras Team, Google, A p r i l 2020
[cit. 2020-06-16]. Available at: h t t p s : / / k e r a s . i o / g u i d e s / f u n c t i o n a l _ a p i / .

[8] D I E D E R I K P . K I N G M A , J . B . A d a m : A M e t h o d for Stochastic Opt imiza t ion .
ArXiv.org [online], version 9. January 2017, revised 2017-01-30, [cit. 2020-06-07].
arXiv:1412.6980. Available at: https://arxiv.org/abs/1412.6980.

[9] D R A H A N S K Y , M . et a l . Biometrie. Brno : Computer Press, s.r.o, 2011. I S B N
978-80-254-8979-6.

[10] E R T E L , W . Lntroduction to Artificial Lntelligence. 2nd ed. C h a m , Switzerland:
Springer International Publ i sh ing , 2017. I S B N 978-3-319-58486-7.

[11] G O O D F E L L O W , I., B E N G I O , Y . and C O U R V I L L E , A . Deep learning. Cambridge, M A :
M I T Press, 2016. I S B N 9780262035613.

[12] G O O D F E L L O W , I. J . et a l . Generative Adversar ia l Networks. ArXiv.org [online]. June
2014, [cit. 2019-01-07]. arXiv:1406.2661. Available at:
h t tp s : //arxiv.org/abs/1406.2661.

43

http://www.zvet
http://cobiometrics.com/Documents/Trueprinttechnology.ppt
http://www
http://jmlr.org/papers/volumel3/bergstral2a/bergstral2a.pdf
https://doi.org/10.1016/S0969-4765
https://keras.io/guides/sequential_model/
https://keras.io/guides/functional_api/
http://ArXiv.org
https://arxiv.org/abs/1412.6980
http://ArXiv.org

[13] G O O G L E . Generative Adversarial Networks: Background: What is a Generative
Model? [online]. U S A : Google. Last updated 2019-05-24 [cit. 2020-06-05]. Available at:
https://developers, google.com/machine-learning/gan/generative.

[14] H E U S E L , M . , R A M S A U E R , H . , U N T E R T H I N E R , T . , N E S S L E R , B . and H O C H R E I T E R , S.
G A N s Trained by a Two Time-Scale Update Rule Converge to a L o c a l Nash
Equ i l i b r i um. ArXiv.org [online], version 6. January 2018, revised 2018-01-12, [cit.
2019-06-07]. a r X i v : 1706.08500. Available at: https://arxiv.org/abs/1706.08500.

[15] I N T E R N A T I O N A L O R G A N I Z A T I O N F O R S T A N D A R D I Z A T I O N . International Standard
ISO/IEC 2382-37 Information technology - Vocabulary - Part 37: Biometrics. 2017.
Retrieved from https://standards.iso.org/ittf/PubliclyAvailableStandards/.

[16] J A I N , A . K . Technology: Biometr ie recognition. Nature [online]. London: Nature
Publ i sh ing Group . September 2007, vol . 449, no. 7158, p. 38-40, [cit. 2019-01-17].
D O I : 10.1038/449038a. Available at: https://doi.org/10.1038/449038a.

[17] K A N I C H , O . Fingerprint damage simulation: a simulation of fingerprint distortion,
damaged sensor, pressure and moisture. Saa rb rücken : Lamber t academic publishing,
2014. I S B N 978-3-659-63942-5.

[18] K A R N , U . A n Intuitive Exp lana t ion of Convolut ional Neura l Networks. The data
science blog [online]. August 2016 [cit. 2019-01-17]. Available at:
https : / / u j jwalkarn.me/2016/08/11/intuit ive-explanat ion-convnets/.

[19] K A R P A T H Y , A . Neura l networks. CS231n Convolutional Neural Networks for Visual
Recognition [online]. Stanford Universi ty [cit. 2019-12-15]. Available at:
https: / / cs231n.github . io/neural-networks-l/.

[20] K A R P A T H Y , A . Convolut ional neural networks. CS231n Convolutional Neural
Networks for Visual Recognition [online]. Stanford Universi ty [cit. 2019-01-24].
Available at: https://cs231n.github . io /convolut ional-networks/.

[21] K R I Z H E V S K Y , A . , S U T S K E V E R , I. and H I N T O N , G . E . ImageNet Classification wi th
Deep Convolut ional Neura l Networks. Communications of the ACM. New York:
Associat ion for Comput ing Machinery. M a y 2017, vol . 60, no. 6, p. 84-90. D O I :
10.1145/3065386. I S S N 0001-0782.

[22] K Ü C K E N , M . and N E W E L L , A . C . Fingerprint formation. Journal of Theoretical
Biology. Elsevier. 2005, vol . 235, no. 1, p. 71-83. I S S N 0022-5193.

[23] L i , F . , J O H N S O N , J . and Y E U N G , S. Lecture 13: Generative Models [online].
Stanford, C A : S V L L a b , Stanford University, M a y 2017 [cit. 2020-05-25]. Course slides.
Available at: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecturel3 .pdf .

[24] L i u , Y . and M E H T A , S. Hands-On Deep Learning Architectures with Python.
Birmingham, U K : Packt Publ i sh ing L t d . , A p r i l 2019. I S B N 978-1-78899-808-6.

[25] M A L T O N I , D . et a l . Handbook of Fingerprint Recognition. Dordrecht: Springer, 2006.
I S B N 9780387954318.

44

https://developers
http://google.com/machine-learning/gan/generative
http://ArXiv.org
https://arxiv.org/abs/1706.08500
https://standards.iso.org/ittf/PubliclyAvailableStandards/
https://doi.org/10.1038/449038a
http://cs231n.github.io/neural-networks-l/
https://cs231n.github.io/convolutional-networks/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecturel3.pdf

[26] M E H L I G , B . Ar t i f i c i a l Neura l Networks. ArXiv.org [online], version 2. February 2019,
revised 2019-02-01, [cit. 2019-12-15]. arXiv:1901.05639. Available at:
h t tp s : / /arxiv.org/abs/1901.05639.

[27] M I N A E E , S. and A B D O L R A S H I D I , A . F i n g e r - G A N : Generat ing Realis t ic Fingerprint
Images Using Connect iv i ty Imposed G A N . ArXiv.org [online]. December 2018, [cit.
2019- 12-15]. arXiv:1812.10482. Available at: h t tps : / /a rx iv .org/abs /1812.10482.

[28] M I S S I N G L I N K . A I . The Complete Guide to Ar t i f i c i a l Neura l Networks: Concepts and
Models . Neural Network Concepts [online]. Miss ingLink .a i [cit. 2019-12-15] . Available
at: h t tps : / /mi s s ing l ink . a i /gu ides /neura l -ne twork -concep t s / comple te -gu ide -
a r t i f i c i a l - n e u r a l - n e t w o r k s / .

[29] M I Y A T O , T . et a l . Spectral Normal iza t ion for Generative Adversar ia l Networks.
ArXiv.org [online]. February 2018, [cit. 2020-05-20]. arXiv:1802.05957. Available at:
h t tp s : / /arxiv.org/pdf/1802.05957.pdf.

[30] P F A U , D . and V I N Y A L S , O . Connect ing Generative Adversar ia l Networks and
A c t o r - C r i t i c Methods. ArXiv.org [online], version 2. January 2017, revised
2017-01-18, [cit. 2020-06-13]. arXiv:1610.01945. Available at:
h t tp s : / /arxiv.org/abs/1610.01945.

[31] R A D F O R D , A . et a l . Unsupervised Representation Learning w i t h Deep Convolut ional
Generative Adversar ia l Networks. ArXiv.org [online], version 2. January 2016,
revised 2016-01-07, [cit. 2019-01-17]. arXiv:1511.06434. Available at:
h t tp s : / /arxiv.org/abs/1511.06434.

[32] S A L I M A N S , T . et a l . Improved Techniques for Tra in ing G A N s . ArXiv.org [online].
June 2016, [cit. 2020-05-20]. arXiv:1606.03498. Available at:
h t tp s : / /arxiv.org/pdf/1606.03498.pdf.

[33] S H A F F E R , D . FIRS IAFIS — FBI: Privacy Impact Assessment for the Fingerprint
Identification Records System (FIRS) Integrated Automated Fingerprint Identification
System (IAFIS) Outsourcing for Noncriminal Justice Purposes - Channeling [online].
U S A : Federal Bureau of Investigation, M a y 2008 [cit. 2020-05-30]. Available at:
https://www.fbi.gov/services/information-management/foipa/privacy-impact-
assessments / f i r s - i a f i s .

[34] S H A H R I A R I , B . et a l . Taking the H u m a n Out of the Loop: A Review of Bayesian
Opt imiza t ion . Proceedings of the IEEE. I E E E . January 2016, vol . 104, no. 1,
p. 148-175. I S S N 0018-9219.

[35] S H E H U , Y . I., R U I Z G A R C I A , A . , P A L A D E , V . and J A M E S , A . Detect ion of

Fingerprint Alterat ions Using Deep Convolut ional Neura l Networks. In: Proceedings
of the International Conference on Artificial Neural Networks (ICANN 2018)
[online]. C h a m , Switzerland: Springer International Publ i sh ing , October 2018 [cit.
2020- 01-20]. D O I : 10.1007/978-3-030-01418-6_6. I S B N 978-3-030-01418-6. Lecture
Notes i n Computer Science.

[36] S H E H U , Y . I., R U I Z G A R C I A , A . , P A L A D E , V . and J A M E S , A . Sokoto Coventry

Fingerprint Dataset. ArXiv.org [online]. J u l y 2018, [cit. 2020-01-20].
arXiv:1807.10609. Available at: h t tps : / /a rx iv .org/abs /1807.10609.

45

http://ArXiv.org
http://ArXiv.org
https://arxiv.org/abs/1812.10482
http://ArXiv.org
http://ArXiv.org
http://ArXiv.org
http://ArXiv.org
https://www.fbi.gov/services/information-management/foipa/privacy-impact-
http://ArXiv.org
https://arxiv.org/abs/1807.10609

[37] S V O R A D O V Á , V . Generování onemocnění kůže do syntetických otisků prstů z SFinGe.
Brno , 2019. Bachelor's thesis. B r n o Univers i ty of Technology, Facul ty of Information
Technology.

[38] T H E A N O D E V E L O P M E N T T E A M . Theano: A P y t h o n framework for fast computat ion

of mathematical expressions. ArXiv.org [online]. M a y 2016, [cit. 2020-06-20].
arXiv:1605.02688. Available at: http://arxiv.org/abs/1605.02688.

[39] T O R C H C O N T R I B U T O R S . P Y T O R C H D O C U M E N T A T I O N . PyTorch [online]. Torch
Contr ibutors , © 2 0 1 9 [cit. 2020-06-16]. Available at:
https: //pytor ch.org/docs/stable/index.html.

[40] U N I V E R S I T Y O F B O L O G N A . Databases. FVC 2006: Fingerprint Verification

Competition [online]. Universi ty of Bologna, © 2 0 0 6 [cit. 2019-12-15]. Available at:
http: //bias, csr.unibo.it/fvc2006/dat abases, asp.

[41] U N I V E R S I T Y O F B O L O G N A . Fingerprint Generation. Biometric System Laboratory -
Webpage [online]. Universi ty of Bologna, © 2 0 2 0 [cit. 2019-12-15]. Available at:
http ://biolab.csr.unibo.it/resear ch.asp?organize=Activities&select=&selOb j =
12&pathSubj=lll%7C%7C12&Req=&.

46

http://ArXiv.org
http://arxiv.org/abs/1605.02688
http://ch.org/docs/
http://csr.unibo.it/fvc2006/
http://unibo.it/resear

Appendix A

Contents of the included storage
media

training_samples
base_model

1
2

_ 5 0
extended_model
full_model

keras_models_plots
base_models
extended_models
full_models

saved_generator_models
base_model
extended_model
full_model

source
thesis

• F i l e " R E A D M E . T X T "

- This file, located in the root directory, contains a similar text to this one
clarification of the contents of the included storage media.

Directory tree of the included storage media looks like the following:

base_model
extended_model
f u l l model

17

Folder "generated_examples"

— This folder contains exported examples by the proposed Keras models. In the
subfolder „ f m a l _ d a t a s e t s " , 100 samples exported from the proposed models after
the certain number of epochs are located. D C G A N - B A S E model was trained for
80 epochs, D C G A N - E X T model for 100 epochs and D C G A N - F U L L model for
60 epochs. The subfolder contains also the csv files w i t h N F I Q 2.0 score of a l l
of the results presented in Section 5.5.3.

— The second subfolder „ t r a i n i n g _ s a m p l e s " provides samples generated from 50
different input noise vectors by each of the proposed models - D C G A N - B A S E ,
D C G A N - E X T and D C G A N - F U L L . These images were saved each 20th epoch
over 300 t ra ining epochs i n total .

Folder "keras_models_plots"

— This folder contains exported visualizations of the proposed Keras models. It
includes subfolders for base models that do not implement any of the proposed
addit ional methods, as wel l as extended models implementing some of the pro
posed methods and final models that implement a l l of the methods described in
this thesis.

Folder "saved_generator_models"

— The saved weights of the generator models that provide the best results as dis
cussed i n Section 5.5.3 are provided in this folder. One can easily use these
pretrained models to generate new data and create more extensive datasets.

Folder "source"

— This folder contains a l l of the source files. There is also the license file " L I
C E N S E " , which belongs to the file "SpectralNormalizat ionKeras .py", which im
plements Keras layers for spectral normalizat ion. The folder also contains the
" R E A D M E . T X T " file, which provides information about running the imple
mented solution. The reader is encouraged to instal l the packages defined in the
file „ r e q u i r e m e n t s . t x t " to his local system, which assures that the solution works
correctly.

Folder "thesis"

— This folder contains electronic version of this text.

18

Appendix B

Proposed model wi th extensions
implemented in Keras

C o n v S N 2 D _ l Input: (None, 96, 96, 1) Output : (None, 48, 48, 64)
1

Leaky R e l u _ l Input: (None, 48, 48, 64) Output : (None, 48, 48, 64)
1

C o n v S N 2 D _ 2 Input: (None, 48, 48, 64) Output : (None, 24, 24, 128)
1

Batch normal iza t ion_1 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128)
1

Leaky R e l u _ 2 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128)
1

C o n v S N 2 D _ 3 Input: (None, 24, 24, 128) Output : (None, 12, 12, 256)
1

Batch normal iza t ion_2 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256)
1

Leaky R e l u _ 3 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256)
1

C o n v S N 2 D _ 4 Input: (None, 12, 12, 256) Output : (None, 6, 6, 512)
1

Batch normalizat ion 3 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512)
1

Leaky R e l u _ 4 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512)
1

Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432)
1

M i n i b a t c h
discr iminat ion

Input: (None, 18432) Output : (None, 18532)

1
DenseSN wi th sigmoid Input: (None, 18532) Output : (None, 1)

Figure B . l : The proposed model architecture after the implementat ion of spectral normal
izat ion and minibatch discr iminat ion methods. Elements highlighted by green color are
layers that were changed to equivalent layers that implement spectral normalizat ion. E l
ements highlighted by red color show newly added layer that is responsible for minibatch
discrimination, which changed the input data shape of the subsequent dense layer.

49

Appendix C

Generated samples

Figure C . l : The generated fingerprint images by the D C G A N - B A S E model after 80 t raining
epochs. Each sample was generated from a random latent vector. It is clear that this model
is significantly affected by the mode-collapse problem.

50

Figure C .2 : The generated fingerprint images by the D C G A N - E X T model after 100 training
epochs. E a c h sample was generated from a random latent vector. The mode-collapse
problem s t i l l persists.

51

Figure C .3 : The generated fingerprint images by the D C G A N - F U L L model after 60 t rain
ing epochs. Each sample was generated from a random latent vector. The implemented
methods significantly reduced the mode-collapse.

5 2

