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Abstract 
This thesis is focused on the generation of synthetic fingerprints using a model based on 
the principle of generative adversarial networks. The work summarizes the basic theoretical 
information about biometrics w i th emphasis on fingerprints. It also describes the principle 
of one of the popular synthetic fingerprint generators called S F i n G e . The model based 
on a deep convolutional generative adversarial network is discussed together wi th several 
methods that improved its performance. The results were evaluated by computing the 
Frechet Inception Distance between the generated and real fingerprints. The generated 
dataset of 100 samples was also evaluated by N F I Q 2.0 which proved that the proposed 
model is able to generate fingerprints w i th almost the same quali ty of the t ra ining samples. 

Abstrakt 
Tato b a k a l á ř s k á p r á c e se zabývá gene rován ím syn te t i ckých o t i sků p r s t ů za pomoci modelu 
za loženém na pr inc ipu gene ra t ivn ích soupeř íc ích sí t í . P r á c e shrnuje z á k l a d n í teore t ické in
formace z biometrie se z a m ě ř e n í m na otisky p r s t ů . Zaob í r á se t a k é pr incipem jednoho 
z p o p u l á r n í c h g e n e r á t o r ů syn te t i ckých o t i sků p r s t ů - n á s t r o j e m S F i n G e . P r á c e před
stavuje model p o s t a v e n ý na h l u b o k é konvoluční gene ra t i vn í soupeř íc í s í t i a p ř eds t avu je 
několik metod, k t e r é vedly ke z lepšení jeho výkonu . V y h o d n o c e n í výs ledků bylo provedeno 
v ý p o č t e m „Fréchet Inception Distance" mezi vygene rovanými a exis tu j ími otisky. Dá le by l 
vygene rován dataset obsahuj íc í 100 s n í m k ů . Ten by l vyhodnocen n á s t r o j e m N F I Q 2.0, 
k t e r ý ukáza l , že model je schopný generovat otisky p r s t ů kval i ty s rovna t e lné s r eá lnými 
t r énovac ími daty. 
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Rozšířený abstrakt 
V dnešn í d o b ě jsou již technologie za ložené na s n í m á n í o t i sků p r s t ů součás t í b ě ž n é h o ž ivota . 
Umožňu j í rychlé o d e m k n u t í mob i ln ího telefonu či dokonce v s t u p n í c h dveř í p o u h ý m dotykem 
prstu. Vývoj t ě ch to technologi í ovšem vyžadu je d ů k l a d n é t es tován í , k čemuž je z a p o t ř e b í 
d o s t a t e č n ě velká d a t a b á z e o t i sků p r s t ů . Vy tvořen í v l a s tn í d a t a b á z e je v šak časově a f inančně 
n á r o č n ý proces a sdí lení j iž existuj ící d a t a b á z e je mnohdy složi té z d ů v o d u ochrany osobních 
ú d a j ů . Pro to je v h o d n é využ í t g e n e r á t o r ů syn te t i ckých o t i sků p r s t ů , k t e r é tyto p r o b l é m y 
eliminují . 

Ot i sky p r s t ů ma j í velmi komplexn í s t rukturu, kterou je mnohdy složi té napodobit . Jed
n í m z p o p u l á r n í c h g e n e r á t o r ů o t i sků p r s t ů je n á s t r o j S F i n G e , k t e r ý př i generování ot isku 
nejprve vy tvo ř í dokona lý otisk, k t e r ý je n á s l e d n ý m i transformacemi upraven tak, aby pů
sobil realisticky. Tato p r á c e se zabývá v y t v o ř e n í m g e n e r á t o r u syn te t i ckých o t i sků p r s t ů 
za loženého na modelu h l u b o k é h o učení . K o n k r é t n ě se j e d n á o g e n e r a t i v n í soupeř íc í síť, 
k t e r á se stala velmi p o p u l á r n í v oblasti generování dat. C í lem je n a u č i t tento model gene
rovat syn te t i cké otisky p r s t ů , k t e r é budou ne rozezna t e lné od těch reá lných. 

Teore t i cká čás t p r á c e nejprve shrnuje zák l adn í informace o biometr i i se z a m ě ř e n í m na 
otisky p r s t ů . Z t ě c h t o informací je č t e n á ř s chopný zhodnotit v izuá ln í kval i tu výs ledků 
t é t o p r áce . Také je blíže p o p s á n pr incip j iž z m í n ě n é h o n á s t r o j e S F i n G e . V dalš í čás t i 
jsou p ř e d s t a v e n y umě lé neu ronové s í tě a ze jména jejich speciá ln í typy, jako jsou konvoluční 
a gene ra t i vn í soupeř íc í s í tě . T y tvoř í z á k l a d n í s t a v e b n í p rvky n a v r ž e n é h o modelu. V prak
t ické čás t i p r á c e jsou poskytnuty de t a i ln í informace o n a v r ž e n é m modelu, vče tně popisu 
datasetu, k t e r ý by l využ i t př i jeho t r énován í . P ro za j i š tění s tabil i ty t r énovac ího procesu 
a zvýšení kval i ty výs ledných o t i sků p r s t ů bylo i m p l e m e n t o v á n o několik metod, k t e r é jsou 
t a k é p o p s á n y v t é t o čás t i . V pos ledn í kapitole se p r á c e věnuje i m p l e m e n t a č n í m d e t a i l ů m 
n a v r ž e n é h o modelu a v y h o d n o c e n í jeho výs ledků . 

Navržený model je založený na pr inc ipu gene ra t i vn í soupeř íc í s í tě , k t e r á obsahuje dvě 
dílčí neu ronové s í tě . P r v n í z nich je gene rá to r , j ehož úko lem je vygenerovat ze v s t u p n í h o 
vektoru hodnot syn te t i cký otisk prstu v rozlišení 96 x 96 pixelů . Napro t i t omu d r u h á síť, 
n a z ý v a n á d i sk r iminá to r , m á na vs tupu dva s n í m k y o t i sků p r s t ů - jeden z r eá lného datasetu 
a d r u h ý v y p r o d u k o v a n ý g e n e r á t o r e m . N a zák l adě t ěch to s n í m k ů p rovád í klasifikaci, zda se 
j e d n á o reá lné či syn te t i cké sn ímky. Cí lem g e n e r á t o r u je, aby d i s k r i m i n á t o r nebyl schopný 
rozlišit r eá lný sn ímek od syn te t i ckého . C í lem d i s k r i m i n á t o r u p ř i t o m je, aby dosáh l co 
nejvyšší rozlišovací schopnosti. Jel ikož jsou tyto dvě neu ronové s í tě t r é n o v á n y současně 
a soupeř í n a v z á j e m mezi sebou, je s těžejní u d r ž e t proces t r énován í s t ab i ln í . Tedy zajis
t i t , aby jedna ze s í t í z n a t e l n ě nep řekonáva la druhou. Toho bylo dosaženo po implementaci 
metody s p e k t r á l n í normalizace a modifikaci označen í t ř í d y dat. N ě k t e r é reá lné s n í m k y byly 
b ě h e m t r énován í označeny jako synte t ické a naopak. Zároveň reá lné otisky p r s t ů nebyly 
označeny expl ic i tn í hodnotou 1, ale n á h o d n o u hodnotou v rozmezí 0.9 až 1. T y t o uvedené 
metody vedly k v ý r a z n é stabil izaci t r énován í modelu. P ř e t r v á v a l v šak p r o b l é m s n ízkou 
diverzitou generovaných s n í m k ů . Tento p r o b l é m b y l r edukován i m p l e m e n t a c í metody klasi
fikace n a p ř í č d á v k o u dat, k t e r á dává d i s k r i m i n á t o r u m o ž n o s t ohodnotit sn ímek s ohledem 
na o s t a t n í š m i n k y ve s te jné dávce . To mu umožňu je rozpoznat n ízkou diverzi tu mezi s n í m k y 
a t í m t a k é snadně j i u rč i t , že se j e d n á o v ý s t u p g e n e r á t o r u . T í m je g e n e r á t o r nucen k tomu, 
aby generoval data s vyšší diverzi tou. Dá le pomohla t a k é metoda opakován í zkušenos t í 
d i s k r i m i n á t o r u , př i k t e r é jsou d i s k r i m i n á t o r u po u r č i t é m p o č t u k roků znovu u k á z á n y něk
t e r é ze s ta r š ích vygenerovaných s n í m k ů . To n u t í gene rá to r , aby n e z ů s t a l u s h o d n ý c h s n í m k u 
a více je modifikoval. 



Mode l , po implementaci metod pro zlepšení výkonu , p rokáza l , že je schopný generovat 
syn te t ické otisky p r s t ů , k t e r é jsou t é m ě ř n e r o z p o z n a t e l n é od s n í m k ů z r eá lného datasetu. 
Výs ledky byly v y h o d n o c o v á n y b ě h e m t r énován í podle „Fréchet Inception Distance" (F ID) , 
k t e r á je p o p u l á r n í metr ikou p ř i v y h o d n o c o v á n í gene ra t ivn ích soupeř íc ích sí t í jej ichž cí lem 
je generování ob razových dat. M e t o d a F I D do výs l edného skóre p r o m í t á jak kva l i tu vygen
erovaných s n í m k ů , tak jejich diverzi tu. N á s l e d n ě b y l vygene rován dataset obsahuj íc í 100 
sn ímků , k t e r é byly vyhodnoceny n á s t r o j e m N F I Q 2.0, k t e r ý se stal referenční i m p l e m e n t a c í 
standardu I S O / I E C 29794-4. Nej lepších výs ledků bylo dosaženo s modelem implementu
j íc ím veškeré p o p s a n é rozšiřující metody po 60 epochách . V t é fázi model dosáh l F I D 36,8 
a p r ů m ě r n é h o skóre kval i ty vygenerovaných o t i sků p r s t ů 18,21 podle n á s t r o j e N F I Q 2.0. 
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Chapter 1 

Introduction 

Since their formal acceptance i n the nineteenth century for identifying an individual ' s iden
tity, fingerprints became the most popular biometric characteristics [16]. T h e y proved to 
be a very reliable method of authentication, and technologies based on their recognition 
are cheap and easy to use. These advantages are the main reasons why this technology 
carried over to our everyday life. However, as the popular i ty of fingerprints is rising, so 
does the need for more sophisticated recognition algorithms. These algorithms need large 
datasets of fingerprints to be tested appropriately; however, acquiring such a database is a 
very t ime and money consuming process. Once the database is collected, it is also compli
cated to share it because of privacy issues. These problems lead us to synthetic fingerprint 
generators. There are many existing approaches to generating synthetic fingerprints, but 
many fail to generate realistic-looking fingerprints since they are not able to express their 
complicated structure. 

Less than a decade ago, an up-and-coming model for realistic image generation was 
proposed in paper [12] by Goodfellow et a l . Th is model, called generative adversarial 
network, became a powerful tool for many computer vision and pattern recognition tasks. 
It is successfully used i n areas like image-to-image translation, text-to-image synthesis, 
resolution enhancement, tex t / image/video content generation, and many more. Its usage 
in deep fakes, which became famous and frightening at the same time, has shown that they 
can capture detailed biometric characteristics. 

In this thesis, a synthetic fingerprint generator based on the generative adversarial net
work is proposed. Current ly only one publ ic ly accessible project has implemented this 
approach and reached excit ing results [27]. The goal is to generate highly realistic finger
prints that are indistinguishable from the real fingerprints. 

Chapter 2 provides information about biometrics w i t h emphasis on fingerprints, so the 
reader gets insight into the intent of this work. In Chapter 3, artificial neural networks are 
described, together w i th more advanced models such as convolutional neural networks, and 
generative models based on adversarial t ra ining that are important for this work. Chap
ter 4 describes the proposed solution, including the used dataset, the model architecture, 
and methods implemented to improve the performance of the proposed model . Chapter 5 
provides implementat ion details of the proposed solution and evaluation of the results based 
on the Frechet Inception Distance [14] as well as one of the conventional methods for the 
fingerprints quali ty evaluation. The last Chapter 6 provides a summary of this work and 
suggests possibilities for future work. 
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Chapter 2 

Fingerprints and introduction to 
biometrics 

People are i n contact w i th fingerprint-sensing technologies so commonly that many of them 
accepted this technology as part of their everyday lives. People can easily log into their 
phones or notebooks, and they can even open a locked door w i t h only the touch of a finger. 
In this section, the general information needed to understand this work is described. Since 
this thesis is focused on the generation of synthetic fingerprints, this chapter w i l l cover a 
description of the term biometrics w i th the emphasis on fingerprints. F ina l ly , the principle 
of conventional synthetic fingerprint generators is described. 

2.1 Biometrics 

In today's world, when technology is on the rise, there is also a risk of stolen identity 
growing. G iven this, the reliable method of authentication of an individual ' s identity is 
more and more crucial . 

W h e n ta lk ing about how to prove our d ig i ta l identity, there are three basic approaches: 

• Showing the knowledge of a secret (e.g., password, P I N ) . 

• Demonstrat ing the possession of something unique enough (e.g., I D card, security 
token). 

• Satisfying physiological or behavioral requirements called biometric characteristics, 
or s imply biometrics [15] (e.g., fingerprint, face, iris, signature). [17, 25] 

One of the main reasons why biometrics is so widely used nowadays is that these char
acteristics cannot be easily lost, shared, guessed, copied, or eventually forged. Based on 
these aspects, biometrics is considered to be significantly more difficult to abuse than tra
di t ional authentication methods (knowledge, possession) [16]. However, once the biometric 
of a person is revealed, there is no simple way to change it [17]. 

A l though fingerprints are probably the most widely known biometrics, any physiological 
or behavioral characteristic can be used as a biometric characteristic. Accord ing to [25], 
the basic properties, when comparing different biometrics, are: 

• Universal i ty - each person should have this trait . 
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• Distinctiveness - two persons should not have the same trait . 

• Permanence - the trait should not vary over t ime. 

• Col lectabi l i ty - the trait should be easy to acquire. 

• Performance - the trait should not change or age. 

• Acceptabi l i ty - the public should allow the trait to be recorded and used. 

• Circumvent ion - how difficult it is to forge this trait . 

One of the reasons that make fingerprints one of the most widely used biometrics is their 
uniqueness. Sir Francis Gal ton 's calculations stated that the l ikel ihood of two fingerprints 
being the same is 1 to 64 bi l l ion [25]. Other pr imary advantages of this biometric are 
permanence, performance, circumvention, and the low price of deploying a biometric system 
[17]. 

2.2 Physiological information about fingerprints 

Fingerprints are created by papi l lary lines, protrusions on the inner side of hands (and feet). 
Papi l la ry lines are fully formed at about seven months of fetal development, and the process 
of their formation is also a reason why there is such a smal l chance of two individuals having 
the same fingerprint [25]. 

The general form of the fingerprint emerges as the skin on the fingertip begins to differ
entiate. This process is caused by the basal layer of the epidermis, which grows faster than 
dermis (inner layer) and epidermis (outer layer) layers around. Tha t causes compressive 
stress in the basal layer, as shown i n Figure 2.1. If the stress is large enough, a buckling 
causes the formation of the papi l lary line [22]. Addi t ional ly , the environment around the 
fetus continuously affects the process, including the posit ion and movement of the fetus in 
the womb and the density of amniotic fluid [25]. 

Papi l la ry lines can be seen and captured as a fingerprint; however, they are just a 
projection from the dermis layer to the epidermis layer. Tha t means that it is not possible 
to change or delete the fingerprint by superficial injury because it w i l l regenerate as the 
skin grows back [17, 25]. 

upper layers of the epidermis 

v-v C< £ < <-< 

'bed' of springs 

Figure 2.1: Basa l layer of epidermis trapped between dermis and intermediate epidermis 
layers (inspired by [22]). 
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2.3 Classification of fingerprints 

The F B I ' s I A F I S (Federal Bureau of Investigation's Integrated Automat ic Fingerprint Iden
tification System) processes tens of thousands of requests dai ly w i th hundreds of mil l ions 
of records i n a database [33]. W i t h so many incoming requests, it would be challenging and 
inefficient to s imply compare any two fingerprints against each other. Therefore, finger
prints are divided into classes to make this process more efficient. This allows us to reject 
immediately those from another class and focus just on those that belong to the same class 
[17]. 

I A F I S system uses Henry 's classification system, which contains three basic classes -
arch, loop, and whorl . Examples of these fingerprint classes can be seen i n Figure 2.2. 
F rom these basic classes, other more specific ones are derived. The ma in characteristics to 
distinguish fingerprint classes are called delta and core. De l t a is a place where papil lary 
lines run to three different directions. Core is located i n the innermost loop of a fingerprint 
[17]. 

Lef t L o o p R i g h t L o o p T w i n L o o p 

Figure 2.2: Different classes of fingerprints according to the Henry 's classification (taken 
from [17]). 

2.4 Fingerprint minutiae 

The previous section defined how fingerprints can be separated into different classes, which 
helps to reduce the number of fingerprints that need to be checked. However, this s t i l l does 
not solve an issue wi th unambiguously identifying a person's identity. 

To be able to dist inguish every finger i n the world, analyzing fingerprint minutiae is 
needed. M i n u t i a is a specific formation created by papil lary lines. M a n y of them are 
distinguished, each of them wi th a different l ikel ihood of appearance [17]. Since it would be 
too demanding to work wi th a l l these complicated patterns, just two basic minutiae types 
for automatic recognition are being recognized i n practice - ridge ending and bifurcation. 
Examples of those minutiae types can be seen in Figure 2.3. Nevertheless, these provide 
enough information to identify an individual 's identity successfully [25]. 
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Figure 2.3: Fingerprint minutiae - bifurcation and ridge ending (taken from [17] and mod
ified). 

2.5 Fingerprint acquirement 

For the automatic fingerprint recognition, getting a fingerprint into a d igi ta l form is the 
start of the process. Even though there are different methods for achieving that, the most 
convenient way is getting the fingerprint into the computer directly using a fingerprint 
sensor [17]. 

In this work, different fingerprint datasets for t ra ining a synthetic fingerprint generator 
were used to see how the best results can be achieved. These datasets were acquired using 
different sensor technologies. Th is section w i l l present the standard sensor technologies 
used nowadays to get a better understanding of how fingerprints were acquired and what 
the l imitat ions of these methods are. 

2.5.1 O p t i c a l t echnology 

One of the oldest fingerprint sensor technologies is based on a relatively simple optical 
principle indicated i n Figure 2.4. A finger is placed onto a protective glass, so ridges 
(papillary lines) touch the glass, and valleys are i n the distance. F r o m a light source 
( L E D ) , ray falls on the finger surface and is reflected by ridges and absorbed at valleys. 
C C D / C M O S camera then captures reflected rays through optics, which creates the final 
image of the fingerprint. The finger does not have to be necessarily placed on a surface -
also, contactless sensors based on this technology exist [9]. The main advantages of this 
technology are the resistance to temperature fluctuations and possible operation in 3D. The 
disadvantage is a high sensitivity to d i r ty fingers. Except for the contactless technology, 
there is also a problem wi th latent fingerprints [17]. 

2.5.2 T h e r m a l technology 

This technology is based on thermal radiat ion. Ridges have higher thermal radiat ion than 
valleys. W h e n a person sweeps a finger over a pyroelectric cell, it generates a current accord
ing to the temperature, which can be measured. Since the temperature equalizes quickly, 
it is necessary to use sweeping sensors. The advantage of these sensors is high resistance to 
electrostatic discharge [17]. The basic principle of sensors based on the technology described 
above is shown i n Figure 2.5. 

2.5.3 E- f i e ld technology 

The sensor consists of a finger drive r ing and a mat r ix of antennas as shown in Figure 2.6. 
The drive r ing generates a sinusoidal radio frequency signal, and the mat r ix receives that 
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Finger drive r ing 

ExcitatiorJ 
generator 

cross-section of finger skin Live skin layer 

Outer dead 
skin layer 

Sk in surface 

Antenna array 

Figure 2.6: E-field sensor principle (inspired by [2]). 
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signal modulated by skin structure (dermis layer, because the electric field passes the upper 
layer of skin). This technology is resistant to fake fingers and dir t . The disadvantages 
of these sensors are high sensitivity to electrostatic charges and possible sensitivity to a 
disturbance i n its R F modula t ion [17, 2]. A n example of a fingerprint acquired by an e-field 
sensor can be seen in Figure 2.7. 

Figure 2.7: The example of the fingerprint acquired by an e-field sensor (taken from [4] 
D B l _ A _ d a t a s e t ) . 

2.6 Synthetic fingerprints 

A s the popular i ty of fingerprint recognition technologies is rising, many new methods need 
to be invented to be more resistant to impostors. These methods need thorough testing, 
which can be a problem because of the lack of enough fingerprints i n the database. It is 
because acquiring such a number of fingerprints is very t ime and money consuming. Since 
collecting such a database is a very tiresome process for technicians and users, it is also 
easy to make a mistake. Once such a database is available, it is problematic to share it 
because of privacy legislation that protects personal information [17, 25]. 

W h e n no large databases are available for testing, developers have to work wi th small 
databases, making it easy to make algorithms data-dependent. Tha t led to the invention of 
synthetic fingerprint generators, which allow for the creation of large fingerprint databases 
[17]. 

2.6.1 G e n e r a t i o n of synthet ic fingerprints 

There are several methods used for this purpose; however, most of them are based on the 
same principle [17]. The typica l representative of tools for this purpose is S F i n G e , which 
stands for "Synthetic Fingerprint Generator". It is the oldest and most common method for 
generating synthetic fingerprints. Beside creating realistically looking fingerprints, S F i n G e 
brings several other advantages such as low costs of the fingerprint database and the pos
sibi l i ty of producing large databases. A l l the mentioned factors result i n easy testing and 
opt imizat ion of recognition algorithms [25]. 

The latest version of this method is 5.0, which upgraded the algorithms of previous 
versions and came wi th the new parameter, which can set up the probabil i ty of generating 
a low-quality fingerprint [41]. 
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The generation process of S F i n G e consists of four steps that result i n the so-called master 
fingerprint (perfect fingerprint) [17, 25]. Other steps then make this perfect fingerprint more 
realistically looking. A t first, the fingerprint shape is determined. The basic shape is oval 
and can be changed in a l l directions to create the required shape. In the second step, a 
class of fingerprint is chosen together w i th defining a number and positions of cores and 
deltas. Based on this information, a consistent direction field is generated. For the arch 
class, S F i n G e uses a sinusoidal function whose frequency and ampli tude control the arch 
curvature [25]. One can notice that the density of papil lary lines varies over the entire area 
of a fingerprint. Tha t is solved by the th i rd step of the process when a density map is 
created. The density map is generated based on the positions of cores and deltas. The last 
step of the generation chain is a ridge pattern generating. It combines a l l previous steps 
wi th some in i t i a l seeds. Gabor filters then refine the image. Minut iae are generated in 
random places wi th random types. After that, the master fingerprint is generated [17, 25]. 
Figure 2.8 shows the example of master fingerprint generation and applicat ion of scratches 
to it. 

5tep 1 - Fingerprint mask generation 
5tep 2 - Directional map generation 

Fingerprint mask 

Left | 

Right § 

Top 

Fmger Index v I 

Generate 

0 W e w fid siie 

Fingerprint class 

Orientation conedäcn 

• Mew correction 
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Level! 1 
Levd2 1 
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• Mew full size 

Step 3 - Density map and r idge pattern generation Step 4 - Permanent scratches 

Ridge density 
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• Add pores 

1^1 View minutiae 
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Figure 2.8: Images show four steps of the generation chain (taken from [37]). 
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The process of making the master fingerprint more realistically looking starts w i th the 
selection of the contact region. The ridge patterns are translated to simulate different 
placements of the finger on the sensor; however, the fingerprint's posi t ion and shape are 
not changed i n this step [17]. 

The second step modifies ridge thickness, which simulates skin dampness and finger 
pressure. Wet skin or higher pressure lead to thicker ridges, and in that case, the di la tat ion 
operator is applied. Otherwise, the erosion operator is applied to simulate dry skin or low 
pressure [25]. This step is followed by the phase of the fingerprint non-linear distortion, 
which simulates skin deformation according to different finger placements on a sensor. For 
this distort ion, the Lagrangian interpolat ion is used [17, 25]. 

The next step is noising and rendering, which simulates many smal l adjustments. These 
include non-uniform pressure of the finger, different contact of ridges wi th a sensor, small 
cuts or abrasions on the fingertip, presence of smal l pores wi th in the ridges, and other noise. 
The process continues w i t h translat ion and rotation. Tha t simulates that the finger was 
not placed on the sensor precisely, so it translates or rotates the whole fingerprint. 

The final step is the generation of a realistic background generated randomly from the 
existing set of background images transformed by mathematical methods to create new 
backgrounds. Different background models can be created to simulate different acquisit ion 
technologies (e.g. optical , capacitive - as mentioned i n Section 2.5) [17, 25]. 
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Chapter 3 

Artif icial neural networks 

Art i f i c i a l neural networks ( A N N s ) are a set of algorithms based on the operating principle 
of a mammal ian brain. Neurons are its fundamental units of computat ion. In the brain, 
neurons are connected wi th synapses i n more complex structures creating networks used to 
process data. Each neuron receives input signals from its dendrites and generates output 
signals along its axon. The axon branches out and connects through synapses to dendrites of 
other neurons [19]. People learn and improve their capacities to process data by establishing 
reconnections between neurons [26]. 

A N N s can be used for a wide range of information processing tasks. They can learn 
to recognize structures in a set of t ra ining data and generalize what they have learned to 
other datasets, which means they can handle supervised learning problems [26]. They also 
work well in analyzing large sets of high-dimensional data, where it could be challenging 
to determine which features are important . They can detect clusters and other structures 
i n the input data. In this case, it is talked about unsupervised learning problems [26]. 
In many problems, some information about targets is known but is incomplete. In such 
cases, algorithms that combine bo th supervised and unsupervised learning are used. That 
approach is called reinforcement learning [26]. 

3.1 Transformation of biological principle into a computa
tional model 

The A N N algorithms use significantly simplified neuron models compared wi th real neu
rons, as can be seen in Figure 3.1; however, the basic principle is s t i l l the same. In the 
computat ional model, the signals that travel along the axons are called inputs (e.g., xn, x\). 
These signals interact w i th the dendrites of the other neuron based on the synaptic strength 
at that synapse. This connection w i t h a given strength is called weight (e.g., u>n, u>i), and 
the operation caused by the interaction wi th the signal has a character of mul t ip l ica t ion 
(e.g., WQXQ). The idea of reconnections mentioned above is represented by learnable weights 
which control the strength of the influence of one neuron on another one. Then , the signals 
get to the cell body, where they a l l get summed together w i t h the bias b. A n activation 
function / is applied to the final result, which decides whether the neuron should fire or not 
[19]. More detailed information about act ivat ion functions are provided in Section 3.3.1. A 
model which utilizes just a single neuron described above, is called a perceptron [1], which 
can be used as a simple binary classifier; however, such classifier works well just on linearly 
separable data. 
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A s mentioned in the introduct ion to this chapter, neurons in a brain are interconnected 
into complex networks. W i t h a single neuron, we can express binary information, which is 
based on whether a neuron fires or not; however, to express more than just a binary value, a 
structure needs to be extended by addi t ional interconnected neurons just like i n the brain. 
These neurons are connected in a parallel manner, as shown i n Figure 3.2. Th is structure, 
called a layer of neurons, is an essential bui ld ing block for multi layer networks described in 
Section 3.3. 

xo wo 

Figure 3.1: Compar ison between a biological neuron (left) and its common mathematical 
model (right) (taken from [19]). 

Figure 3.2: Mul t i -neuron neural network diagram. 
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3.2 Discriminative vs. generative models 

Three essential steps are needed to create a synthetic fingerprint generator based on real 
data samples, as can be seen in Figure 3.3. A t first, the a lgori thm needs to go through the 
existing fingerprint images and learn their characteristics and appearances. Specifically, 
it needs to learn a dis t r ibut ion throughout the dataset, so it knows how to represent a 
fingerprint image. In the end, the model needs to generate a new sample from the distr ibu
t ion it has learned. Th is process corresponds to the principle of generative models, which 
is a subclass of machine learning algorithms. This section describes the principle of both 
generative models and discriminative models, which are their opposite. 

Source dataset 
wi th real 

images 

Learned 
dis t r ibut ion of the 

real images 

New image generated 
from the learned 

dis tr ibut ion 

Figure 3.3: The basic principle of a generative model. 

The goal of supervised learning is to learn a mapping function x —>• y, where x represents 
a piece of data, and y represents a target variable (label) [23]. Examples of supervised 
learning tasks can be classification, regression, or semantic segmentation. Discr iminat ive 
models are models for supervised learning. These models estimate a posterior probabil i ty 
dis tr ibut ion p(y\x) [13]. W h e n x is an input image, and y is a label of a class, then the 
dis tr ibut ion reveals the extent to which the model calculates the image to be representative 
of a part icular class. 

O n the contrary, unsupervised learning aims to learn some underlying structure of data 
x even when there are no labels available [23]. Examples of unsupervised learning are 
clustering, density estimation, or dimensionality reduction. Generative models are models 
pr imar i ly for unsupervised learning but can also be used i n a supervised setting. These 
models address a density estimation, which is one of the core problems i n unsupervised 
learning. Generally, their goal is to learn a dis t r ibut ion pmodei(x), which is as s imilar as 
possible to a dis t r ibut ion of t ra ining data Pdata(x) [23]. 

It is useful to demonstrate a difference between the approach of generative and discrim
inative models on a task that they both can be used for - classification. A s mentioned 
above, the goal of a discriminative classifier is to learn a posterior dis t r ibut ion p(y\x), while 
the goal of a generative classifier is to learn a joint probabil i ty p(y, x). Th is joint probabi l i ty 
can be learned directly, or by computing it using a chain rule as p(y,x) = p(y\x) • p{x). 
That shows the relation between a posterior probabil i ty learned by discriminative models 
and a joint probabil i ty learned by generative models. Generative models need to learn a 
density function p(x) to be able to represent the input data well. 

In comparison, generative models have a more difficult task, since their goal is signifi
cantly more complex. A s can be seen i n Figure 3.4, discriminative models learn boundaries 
between data classes, while generative models learn the dis t r ibut ion of ind iv idua l classes. 
However, the advantage in learning the dis t r ibut ion of t ra ining data is that generative 
models have significant addi t ional value at generating new samples similar to t ra ining ones. 
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Figure 3.4: Example of discriminative and generative models' goals in classification task 
represented in the graph (inspired by [13]). 

3.3 Deep feedforward networks 

W h e n a perceptron model, mentioned in Section 3.1, is described as a layered structure, 
there are two layers - the input layer and the output layer. The input layer transmits 
the data to the output layer, which is a computat ional one. Mul t i l ayer networks improve 
the architecture by at least one addi t ional computat ional layer between input and output 
layers, referred to as a hidden layer. Based on the increasingly used multi layer structure in 
neural networks, they are known as deep learning models. The specific k ind of architecture 
of multi layer networks is a feedforward network, which means that outputs of neurons from 
one layer are fed as inputs to the successive layer. Therefore, the whole structure represents 
an acyclic graph [1, 24]. Since deep feedforward networks ( D F N s ) , also known as multi layer 
perceptrons, are essential models of deep learning, it is convenient to describe a l l neural 
networks' fundamental components i n this section. 

3.3.1 A c t i v a t i o n funct ion 

A n activation function is a mathematical function, that allows to decide whether a neuron 
is activated or not. Below is the basic formula for a single neuron from Figure 3.1. 

a = 's^2/wixi + b (3.1) 
i. 

It is clear that a £ 1 , so there is no information about value bounds. Tha t makes it 
impossible to decide whether a neuron should fire (be activated) or not. For this purpose, 
the activation function f{a) transforms the value a into a given range, making it possible to 
decide whether the neuron should be considered activated. A l l of the activation functions 
described i n this section are based on the information from [10] and [24]. 

The most straightforward act ivation function is a step function. Th is function works 
well w i th a perceptron model as a binary classifier. However, it cannot be used for more 
complex tasks, where the structure consists of mult iple neurons. 

, , , _ J 1 for x > threshold, , , 
Istepix) - | Q Q t h e r w i s e _ (3 .2) 

A binary output problem can be solved by a linear activation function, which scales its 
input by a constant c. O n the other hand, it brings other problems. Us ing this function, 
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it is not possible to use backpropagation (see Section 3.3.3) to t ra in the model . Since 
backpropagation uses gradient descent, and the derivative of a linear function is a constant, 
the gradient has no relation to the input . A l so , the model loses the strength of multiple 
layers because they a l l collapse into a single layer. Tha t is because a linear combination 
of linear functions is s t i l l a linear function. A range of output values causes one more 
problem. A s already mentioned, it is convenient to transform values into a specific range: 
however, w i th a linear activation function, output values can s t i l l be i n a range (—oo;oo). 
It is possible to uti l ize these values, for example, for classification using a function maxQ 
or softmaxQ, and make a final decision based on the result. However, it does not allow 
generating probabil ist ic scores from neurons. 

flinear(x) = c x (3-3) 

It is necessary to use non-linear activation functions i n deep learning models to avoid the 
problems mentioned above. One of the well-known is a sigmoid function. It squashes the 
output values into range (0; 1), which allows generating probabil ist ic scores from neurons. 
Also , the gradient is steep near the origin and saturates as going along the x-axis. That 
helps i n classification tasks because the function tries to keep output values close to either 
zero or one. The main problem wi th this activation function is its smal l gradient as getting 
further from the origin. Tha t can cause a vanishing gradient problem, which leads to slow 
learning of the network, or eventually, a stop of learning. 

fsiqmoid(.%) = Z : T (3-4) 
1 + e x 

Similar to sigmoid function is the Tanh function, which squashes the output values into 
range (—1; 1), instead of (0; 1). It is a scaled sigmoid function, which has a steeper gradient. 
However, the main problem w i t h vanishing gradients remains the same. 

ftanhix) = 2 - 1 (3.5) 
1 + e i X 

Currently, the most widely used activation function is the R e L u function. The main 
advantage against functions above is that R e L u outputs 0 for a l l negative input values 
and therefore deactivates neurons that produce negative values. Most of the neurons fire 
in an analog way wi th functions like sigmoid or Tanh, so most of the activations need to 
be processed to contribute to the network output. R e L u helps to make these activations 
more sparse, resulting i n a lighter network. Addi t ional ly , R e L u is significantly less compu
tat ional ly expensive because it involves simpler mathematical operations then sigmoid or 
Tanh. 

freiu(x) = max(0,x) (3.6) 

The problem of R e L u function is the zero output for values i n range (—oo; 0). Since a 
gradient i n that range is also a zero, weights are not adjusted for these activations during 
backpropagation. Tha t leads to a dying R e L u problem when a part of the network can 
become passive. A modified version of this function was proposed to address this problem, 
which reduces the effect of neurons by a factor c i n negative range instead of deactivating 
them. This modified version is called a leaky R e L u . 

f ( \ - / x for x - °> (*7\ J leaky relu\x) — \ r , n \"m'J y - [ cx for X < 0. 
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3.3.2 Loss funct ion 

Once a model predicts the output value y dur ing training, it needs to be evaluated against 
the expected output value y. For this purpose, a loss function is used, which defines the 
error of the model . In other words, it reflects how far from the correct output, the generated 
output is. The result is then used to tune the network parameters during backpropagation 
(see Section 3.3.3). The information about loss functions provided i n this section was 
obtained from [24]. 

Loss functions are generally separated into two categories - regression loss and classi
fication loss. In regression tasks, bo th the expected output values and predicted output 
values are direct. Therefore, it allows calculat ing the loss based on the difference between 
these two values. 

The most straightforward loss function would then be a direct difference between the 
expected and predicted outputs, as shown below. However, this allows positive as well as 
negative results, which is undesirable. 

There is a couple of regression loss functions; however, the two most common similar 
loss functions are used to avoid the problem wi th a sign of the result - M e a n squared error 
( M S E ) and M e a n absolute error ( M A E ) . M S E loss function squares the difference between 
predicted and expected values, which makes a l l values positive, and then computes the 
mean to normalize the result. For n predicted values y and corresponding expected values 
y, the M S E is defined as shown below. 

The problem wi th M S E is that it is prone to outliers i n the data. A n y sample, which 
outputs value far from the expected value, contributes significantly to the loss. W h e n many 
out lying data are present in the dataset, M S E causes a problem. Tha t can be solved by 
the M A E loss function, which computes the absolute value of error instead of squaring it. 
Th is approach is not as sensitive to outliers as M S E ; however, calculat ing absolute values 
makes the loss function non-differentiable, which is a problem during backpropagation. 

Classification tasks do not predict direct values as regression tasks. Instead, they predict 
a discrete class label, which is generally a positive integer value. Since bo th the expected 
value and predicted value are integers from a set of discrete values, computing the differ
ence between those two numbers does not provide any useful information about the loss. 
Therefore, classification loss functions are developed over probabil i ty distributions. 

Cross-entropy is one of the most common loss functions for classification models that 
output probabi l i ty values between 0 and 1. It compares the probabil i ty dis t r ibut ion of 
prediction wi th the expected labels. Cross-entropy loss is m in ima l when these two distr ibu
tions are the same, and increases as they diverge from each other. The formula is defined 
for the expected label y and predicted label y as: 

L(w) = y - y 

E = (3.9) 

n 
(3.10) 

i=l 

16 



3.3.3 B a c k p r o p a g a t i o n process 

In order to effectively t ra in a neural network model, there is a need to update its weights (in 
a biological analogy - a need for establishing reconnections between neurons), which reflects 
how a neural network learns. Once a neural network is constructed wi th its in i t i a l weights, 
a forward pass is performed. Tha t means inputs from a t ra ining set are fed into the network 
and passed through unt i l the network eventually generates an output. After that, the loss 
function is computed, which reflects the error of the model as described in Section 3.3.2. 
Once the information about the error is known, it needs to be reflected in the network 
structure. Tha t is the point where a backpropagation algori thm takes place. If a function 
is differentiated, we get the gradient of that function. The gradient represents the direction 
along which the function increases/decreases the most. Backpropagat ion calculates par t ia l 
derivatives, going back from the error function to a specific neuron and its weight. The 
backpropagation results i n a set of weights that minimize the error function [28]. 

This process could be repeated for every sample i n the t ra ining set; however, this would 
be ineffective. Typical ly , a couple of samples are grouped i n one batch. The whole batch is 
then passed through the network, and the backpropagation is performed on the aggregated 
result. The batch size and the number of batches, called iterations, are two hyperparameters 
that can be opt imized [28]. Once an entire dataset is passed through a neural network, it 
is referred to as one epoch. So, the number of iterations i n one epoch can be computed by 
the equation below: 

3.3.4 A d a m o p t i m i z e r 

In practice, the backpropagation algori thm is used by more sophisticated algorithms that 
use the backpropagation for computing the gradient of the error function and they control 
the update of weights. One of the common opt imizat ion algorithms for this purpose is 
called A d a m [8]. The size of the step i n the direction of the decreasing gradient of the 
error function is defined by the hyperparameter called a learning rate. The learning rate 
has a significant impact on neural network performance and it is hard to set. A d a m is one 
of the algorithms that automatical ly adapt the learning rate throughout learning. It uses 
a momentum, which accumulates exponentially decaying moving average of past gradients 
and continues to move i n their direction, which optimizes the learning process of neural 
networks [11]. 

3.3.5 N e u r a l ne twork h y p e r p a r a m e t e r s 

In the last section, a term hyperparameter was mentioned. This section gives a closer 
look at its meaning. M o d e l parameters are internal properties of t ra ining data that are 
learned during t raining. The objective of the network t ra ining is to learn the values of the 
model parameters. Hyperparameters, on the other hand, are external parameters set by the 
programmer. Different values of hyperparameters can have a significant impact on network 
performance [28]. 

Hyperparameters that are related to the network structure can be, for example, number 
of hidden layers i n the network architecture, an act ivation function, that determines the 
output of each element in the neural network, in i t ia l iza t ion values of weights, or a dropout 
(one of the methods to avoid network underrating). Other hyperparameters related to the 

iterations epOCh 
size of a training dataset 

batch size 
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t ra ining algori thm are, for example, a learning rate, a batch size, number of iterations, or 
an optimizer a lgori thm [28]. 

Op t imiz ing the hyper parameters of a neural network model means retraining the net
work using each set of hyperparameters and evaluating the results. There are a few more or 
less sophisticated methods to do this. M a n u a l search requires just testing of hyperparam
eters that the operator chooses. Unless the operator is experienced, this method can be a 
dead end. A more systematic approach brings a method called gr id search, which involves 
systematically testing different hyperparameters' values and retraining the model for each 
combination [28]. However, James Bergstra's and Yoshua Bengio's paper [3] showed that 
it is more efficient to use random hyperparameter values than using the manual search or 
grid search. The last commonly used opt imizat ion method is Bayesian opt imizat ion [34]. 
The idea is to t ra in the model w i th different hyperparameters values and observe the shape 
of the function generated by these values. The method then predicts the best possible 
hyperparameters values, which provide higher accuracy than a random search [28]. 

3.4 Convolutional neural networks 

Since the great success of convolutional neural network ( C N N ) architecture in 2012 [21], 
the concept of C N N s became highly used pr imar i ly for computer vision tasks (e.g., image 
classification, face recognition, image processing i n robots and autonomous vehicles). C N N 
scans an image one area at a t ime, identifies and extracts essential features that are used 
for image classification [18]. 

P l a i n neural network model, i n which layers are fully connected (meaning that a l l neu
rons i n one layer are connected wi th a l l neurons i n the following layer), is inefficient when 
it should process extensive high-dimensional data, such as images or videos. Since an im
age wi th hundreds of pixels and three color channels ( R G B ) results i n mill ions of model 
parameters, there is a high chance of overfitting. To l imi t the number of parameters, C N N 
uses a structure i n which each set of neurons analyzes just a part of the image. The general 
form of this structure can be wri t ten as height x width x depth, where depth relies on the 
color channel of the image. W h e n working wi th grayscale images, this structure is a single 
matr ix w i th values i n a range from 0 (black) to 255 (white) for each pixel . In a case of the 
R G B image, the structure would contain three matrices, each having values in a range from 
0 to 255 [20]. 

3.4.1 C N N archi tec ture 

Three ma in layers of a network are used to bu i ld the C N N architecture - convolutional 
layer, pooling layer, and fully-connected layer. The fully connected layer works as a classical 
neural network. It is usually at the end of the C N N and outputs the vector of probabilities 
as i n the standard classification task. The process that makes C N N s different and very 
powerful happens in the unique architecture between the input and the output layer. 

The convolutional layer's parameters are a set of filters that map each of the neurons 
in the convolutional layer on a spatially smal l area of the input volume. The basic idea 
is indicated i n Figure 3.5. That reduces the total number of model parameters needed. 
The size of the filter is a hyperparameter called the receptive field of the neuron. Dur ing 
the forward pass, the filter moves across the input height and wid th axis, and products 
are computed using a convolution operation. Three hyperparameters are important for 
the size of the convolutional layer's output - depth, stride, and zero-padding. The depth 
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hyper parameter corresponds to the number of filters that a developer wants to use. Since 
each neuron learns to find a different feature i n the input, this hyperparameter is important 
to optimize how detailed the convolutional layer should be. The value of stride defines how 
the filter is shifted. The stride of value one means that the filter moves one pixel at a 
t ime. W h e n the value of stride is increased, the convolutional layer w i l l produce smaller 
outputs spatially. Zero-padding is used to pad the input w i t h zeros around. Its size is a 
hyperparameter. In the C N N s , the zero-padding is usually used to ensure that the input 
and output volume w i l l have the same size [20]. 

W i t h the mentioned values, the size of the output volume can be computed using the 
following formula: 

(W -F + 2P) 

S + 1, (3.12) 

where W is the input volume size, F is the receptive field size, S is the value of stride, and 
P is the amount of zero-padding used [20]. 

The pool ing layer is commonly inserted between convolutional layers i n the C N N archi
tecture to reduce the spatial size of the input, and together w i th that, the number of model's 
parameters. It works on each depth slice of the input and resizes it by applying some op
eration on values wi th in the filter. The most common operations that the filter applies are 
max-pooling, average pooling, or L2-norm pooling. The average pooling is not commonly 
used nowadays since, in practice, the max-pool ing proved to work better. The principle of 
max-pooling is shown i n Figure 3.6. The usage of pool ing layers turned out to be a l i t t le bit 
controversial since there are models that showed that pool ing layers are unnecessary, and 
to reduce the size of input data using higher stride i n the convolutional layer works well [20]. 

Figure 3.5: Example of neurons i n the convolutional layer connected to a local region of 
the input data. These neurons that are connected wi th the same regions are referred to as 
depth column (taken from [20]). 

3.5 Generative adversarial networks 

Models described up to this section ( D F N s , C N N s ) are the common types of discriminative 
models. However, based on the information i n Section 3.2, it is clear that the generative 
model is needed for the purpose of this work, so that new data samples can be generated. In 
2014, one, called generative adversarial networks ( G A N s ) [12], was proposed, which became 
a state-of-the-art generative model for the following years. 
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Figure 3.6: Example of how the pooling layer applies a filter using the max operation, 
(taken from [20]). 

G A N s belong to the class of direct impl ic i t density generative models. Therefore, their 
goal is to sample from the probabil i ty density function pmodei{x) without expl ic i t ly defining 
it [23]. 

Even though generative adversarial networks are generative models because their goal 
is to learn a data dis t r ibut ion of the t ra ining dataset, they also use a discriminative model 
in their architecture. The generative model is referred to as a generator and discriminative 
model as a discriminator. The goal of a generator is to learn how to produce data as similar 
to real images as possible. The goal of a discriminator is to evaluate its input data and 
decide whether they look real or fake. These two models are adversaries i n the zero-sum 
minimax game. This game has a nash-equil ibrium when a generator learns the t raining 
data dis t r ibut ion, and a discriminator is not able to distinguish whether the input sample 
is real or fake, which means that preai{x) = \ and pjake(x) = \ , where x is the input 
sample. The basic structure of generative adversarial networks is shown i n Figure 3.7. 

m i n max V(D,G) = ^Pdata{x)[logD(x)] + E ^ ( z ) [ l o g ( l - D(G(z)))] (3.13) 

The equation above shows a value function of the min imax game between a generator 
and a discriminator [12]. The mapping of the input noise features defined by prior p(z) 
into a data space is given by a differentiable function G(z, 99) represented by a generative 
model w i th parameters 9g. The discriminative model w i th parameters 9d defined as D(x, 9d) 
outputs a single scalar value representing the probabi l i ty that data x came from the Pdata 
rather than pg. The discriminator is trained to maximize the probabil i ty of assigning correct 
labels to both real samples and samples coming from the generator. The generator is trained 
to minimize l o g ( l — D{G{z))). Tha t works well theoretically; however, i n practice, t raining 
a generator to maximize \ogD{G(z)) is preferred instead of min imiz ing l o g ( l — D(G(z))), 
which provides significantly stronger gradients i n the early stage of t ra ining and therefore 
helps generator to learn well [12]. 

The reason why G A N s are so popular in processing high-dimensional data is the idea 
behind them. The problem is that there is no direct way to sample from a complex, 
high-dimensional dis t r ibut ion of t ra ining data. This model allows to sample from a simple 
dis tr ibut ion and learn transformation to the t ra ining dis t r ibut ion using a neural network 
[23]. 
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Figure 3.7: Basic schema of generative adversarial networks. 

3.6 Deep convolutional generative adversarial networks 

The original model of G A N proposed by [12] used a multi layer perceptron for bo th a 
discriminator and a generator. However, as mentioned i n Section 3.4, to process high-
dimensional data, it is convenient to use a convolutional neural network, which significantly 
reduces the number of parameters of the model . In paper [31], a modified version of 
G A N was proposed, which uses convolutional layers for a discriminator, and fractionally-
strided convolutional layers for a generator. Th is model, called a deep convolutional G A N 
( D C G A N ) , proved to work well and became one of the most popular generative models for 
high-dimensional data. 

3.6.1 D C G A N arch i tec ture 

A s already mentioned, the discriminator network in D C G A N uses convolutional layers that 
downsample input data. The last convolutional layer is flattened and then fed into a single 
sigmoid output. The generator network then reshapes an input noise first and then uses 
fractionally-strided convolutional layers, also called transposed convolutional layers. These 
layers upsample input data into the desired shape, which needs to be the same as the 
shape of real samples. The example of generator and discriminator networks is shown in 
Figure 3.8. 

Alongside the updated architecture of the original G A N model using C N N architectures, 
paper [31] also proposed several changes that lead to a stable t ra ining of a D C G A N . These 
changes include replacing any pool ing layers w i th strided convolutional and fractionally-
strided convolutional layers, which allows discriminator and generator networks to learn 
their own spatial downsampling and upsampling, respectively. The other proposed change 
is to apply a batch normalizat ion to a l l layers, except the input layer of a discriminator, and 
the output layer of a generator, which stabilizes learning by normalizing the input to each 
unit to have zero mean and unit variance. The th i rd change is removing any fully-connected 
hidden layers since they can reduce convergence speed. The last proposed change deals w i th 
activation functions. The recommended activation for a discriminator is Leaky R e L u for 
al l layers. For a generator, using R e L u activation is recommended for a l l layers except the 
last one, which uses Tanh. A l l activation functions are described i n Section 3.3.1. 
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Figure 3.8: Example of networks i n D C G A N model (inspired by [24]). 
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Chapter 4 

Solution design 

Designing a synthetic fingerprint generator requires two ma in steps. The first one is the 
acquirement of a sufficient dataset. Since the model is designed wi th respect to the input 
data, this step is crucial , and any later change can affect the model architecture. In Sec
t ion 4.1 are described two popular fingerprint datasets for research purposes. B o t h of them 
provide a significant amount of data; however, the S O C O F i n g dataset was chosen for the 
purpose of this work due to its higher complexity. The second step is then the design of 
a generator model . In Section 4.2 is presented the proposed model based on a D C G A N 
architecture together w i th methods implemented to improve its performance. 

4.1 Datasets 

A s mentioned i n Section 2.6, one of the main problems wi th biometrics databases is privacy 
protection. Therefore, it is not easy to share a database once it is acquired. In order to 
create a synthetic fingerprint generator, it is essential to get a sufficient database that our 
model can t ra in on. Lucki ly , for non-commercial purposes, there are s t i l l a few accessible 
databases wi th anonymized data, usually owned by academic insti tutions. Th is section 
presents two popular fingerprint databases meant for research purposes - S O C O F i n g [35, 36] 
and F V C 2 0 0 6 [4]. 

4.1.1 F V C 2 0 0 6 dataset 

Even though this dataset was in i t ia l ly designed for a fingerprint verification competi t ion, 
it became a popular source of fingerprint images for research purposes. Also , the original 
paper [27] used the F V C 2 0 0 6 dataset i n their solution. F V C team grants access to four 
distinct subsets D B 1 , D B 2 , D B 3 , and D B 4 , each of them acquired by a different method. 
Each subset is d ivided into two parts: A and B . Par t A contains the first 1,680 fingerprint 
images from 140 fingers. Par t B contains the other 120 fingerprint images from 10 fingers. 
In total , there are 1,800 fingerprints acquired by four different methods. The example 
samples from the F V C 2 0 0 6 dataset can be seen in Figure 4.1. 

The image format is B M P , and the images are i n 256 shades of gray. Image resolution 
varies depending on the subset. Table 4.1 shows a resolution, an image size and a sensor 
type for each subset. 
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Figure 4.1: Examples of F V C 2 0 0 6 datasets i n the following order: D B 1 , D B 2 , D B 3 , and 
D B 4 . 

Table 4.1: Properties of the F V C 2 0 0 6 datasets (taken from [40] and modified). 

Subset Sensor T y p e Image Size Resolution 
D B 1 Elect r ic field sensor 96x96 250 dpi 
D B 2 Opt i ca l sensor 400x560 569 dpi 
D B 3 Thermal sweeping sensor 400x500 500 dpi 
D B 4 S F i n G e v3.0 288x384 about 500 dp i 

4.1.2 S O C O F i n g dataset 

Sokoto Coventry Fingerprint Dataset ( S O C O F i n g ) is designed specifically for academic re
search purposes. A n extensive dataset of fingerprint images also contains useful information 
about gender, hand, and finger name for each image. The dataset contains two parts. In 
the first part, 6,000 fingerprints acquired from 600 Afr ican individuals are located. The 
second part provides over 49,000 altered fingerprint images i n total . The altered images are 
further separated into three parts by the S T R A N G E framework's level of alteration - easy, 
medium, and hard. S T R A N G E is a framework for the generation of realistic alterations on 
fingerprint images. In the S O C O F i n g dataset, samples are altered by obliteration, central 
rotation, and z-cut. Information about the applied alteration is incorporated in the image 
ti t le. The S O C O F i n g dataset was chosen for the purpose of this work due to its complexity. 

A l l images have the same resolution of 1 x 9 6 x 1 0 3 (gray channel x w id th x height), 
and a l l real images were acquired using an opt ical sensor. Table 4.2 contains information 
about the number of images i n each part of the dataset. In Figure 4.2, different levels of 
alteration are shown. The first column contains a real image example, and each successive 
column contains a higher level of an alteration. 

Table 4.2: Number of fingerprint images i n each part of the S O C O F i n g dataset. 

Subset N u m b e r of images 
Easy 17,934 

Altered M e d i u m 17,067 
H a r d 14,272 

Real 6,000 
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Figure 4.2: Examples of altered images from the S O C O F i n g dataset. E a c h line includes 
one type of alteration - central rotation, obliteration, and z-cut i n the respective order. 

4.1.3 D a t a a u g m e n t a t i o n 

The common method to reduce overfitting of convolutional neural networks is applying 
data augmentation. That means applying transformations on the original data to increase 
the generalizability of the model, especially when working wi th smal l datasets. Since the 
proposed D C G A N model contains a discriminator, which is a convolutional neural network, 
and the real part of the S O C O F i n g dataset contains just about six thousand images, it is a 
convenient use case of data augmentation. The altered images from the S O C O F i n g dataset 
were not used during t ra ining due to their quite rough modifications of the original finger
prints. Instead, the custom data augmentation was implemented using Keras framework, 
which is further described in Section 5.4.1. Examples of augmented samples that were used 
to t ra in the proposed solution are shown i n Figure 4.3. 

Figure 4.3: Examples of augmented samples from the S O C O F i n g dataset. 
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4.2 Proposed model 

D C G A N model, which was described i n Section 3.6, was chosen for this work. It also 
proved to work well i n paper [27], where it was used for the same purpose as a synthetic 
fingerprint generator. The basic D C G A N architecture that was used for this work is shown 
in Figure 4.4. The discriminator consists of four convolutional layers. E a c h of them has a 
kernel size of 5 x 5, and stride is set to value two. That means that each layer downsamples 
data to half of their size. D a t a get flattened at the end of the network, and then they are 
fed into a dense layer w i th sigmoid activation function, which generates a single scalar value 
representing how much the discriminator believes that given data came from the t ra ining 
dataset. The generator contains five fractionally-strided convolutional layers. Each of these 
layers upsamples data to double their size spatially. A dense layer precedes these layers. 
Output values from this dense layer are s imply reshaped into the selected input shape of 
the network. The last layer in the generator network is a convolutional layer, which changes 
the data dimension to the required number of channels. In this case, where images are in 
greyscale, the number of channels is one. 

In Section 3.6 were mentioned several tips proposed by [31] for a stable t ra ining of 
D C G A N s . However, the research of techniques for stable t ra ining models based on G A N 
architecture is s t i l l an active field, and many methods were proposed to improve and stabilize 
their performance. Some of them were implemented in this work and are described further 
in this section. In Section 5.3, changes to the proposed D C G A N model after implementat ion 
of these methods are described. 
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Figure 4.4: The proposed architecture of discriminator (top) and generator (bottom) mod
els. 

26 



4.2.1 L a b e l s m o o t h i n g a n d noisy labels 

W h e n t ra ining the discriminator model, real images are generally represented by label ' 1 ' 
and fake images by label '0'. However, these hard labels are good to be replaced by smooth 
labels, which proved to work well against discriminator being overconfident about its pre
dictions. Tha t can have a regularizing effect when t ra ining G A N s . In [32] is recommended 
using one-sided label smoothing when only positive labels are smoothed, and negative la
bels are kept at value '0'. G iven the parameter a, values of positive labels were randomly 
transformed into range (1 — a, 1). 

Another method related to labels is using noisy labels [5]. Tha t means flipping some real 
and fake labels when t ra ining the discriminator, which can be represented as ynew = l — y0id-
That introduces an error to those labels and helps to reduce discriminator 's overconfidence. 
In this work was used a 5 % probabi l i ty of flipping the label dur ing training. 

4.2.2 M i n i b a t c h d i s c r i m i n a t i o n 

To address the mode collapse, which is one of the main failure modes i n t ra ining G A N s , 
[32] proposed a method called minibatch discr iminat ion. The mode collapse is a state 
where the generator produces the same output for different input data. The problem 
is that the discriminator processes each sample separately and therefore has no way to 
inform the generator to produce more distinctive outputs. The minibatch discr iminat ion 
method is based on a simple principle al lowing the discriminator to look at mult iple samples 
simultaneously. However, it is focused pr imar i ly on similar samples wi th in the batch - the 
similar i ty of generated samples increases, when the mode starts to collapse. The s imilar i ty 
o{xi) is computed between the image Xi and a l l other images i n the same batch. Th is 
s imilar i ty is then appended to one of the intermediate layers of the discriminator, and it 
can use this score to detect generated samples and penalize the generator. The example of 
the discriminator architecture together w i th extended dense layer by the s imilar i ty at the 
end of the network is shown i n Figure 4.5. 
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Figure 4.5: Example of the discriminator network wi th s imilar i ty appended to the interme
diate dense layer. 
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4.2.3 S p e c t r a l n o r m a l i z a t i o n 

G A N s have a general problem wi th the unstable t raining process. One of the main chal
lenges is controll ing the performance of a discriminator. W h e n the support of the learned 
dis tr ibut ion pmodei and the support of the real dis t r ibut ion pdata are disjoint, the discr imi
nator, which can perfectly dist inguish these distributions, exists. Such discriminator then 
leads to a stop of the generator's t raining, because its derivative wi th respect to the input 
turns out to be 0. That leads to a need for a restriction on the choice of a discriminator. 
In 2018 was proposed a method for weight normalizat ion called spectral normalizat ion [29], 
which stabilizes the t ra ining of the discriminator. 

The method restricts the choice of the discriminator to the set of Lipschi tz continu
ous functions, assuring the boundedness of those functions [29]. In practice, the method 
computes the spectral norm a(Wl) for each layer I, which is the largest singular value 
of the layer's weights W. The spectral norm a(W) could be computed using a singular 
value decomposition; however, that showed to be computat ional ly heavy. Therefore, the 
method uses the power i teration method [29] to estimate a(W), which results i n a short 
computat ional t ime compared wi th the overall computat ional cost of the G A N training. 

4.2.4 E x p e r i e n c e replay 

The mode collapse problem can also be addressed by mit igat ing the opportuni ty of the 
discriminator to overfit for a part icular t ime instance of data batches. One generated data 
sample is preserved i n each t ra ining step. W h e n it reaches the given number of steps, the 
discriminator is fed by recently generated images together w i th the current batch. This 
method is based on a stabil i ty t r ick proposed for reinforcement learning problems i n [30]. 
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Chapter 5 

Implementation and results 

This chapter provides an overview of the implementat ion details of the proposed solution 
and its results evaluation. T h e solution was implemented in P y t h o n language as it is one of 
the most popular languages for creating deep learning models. P y t h o n provides s implic i ty 
by its own syntax, but also by support ing many deep learning platforms specifically designed 
to make the development of deep learning models even more comfortable. In Section 5.1, 
some of the most popular deep learning platforms are discussed. Section 5.2 provides details 
about the hyperparameters of the proposed model . In Section 5.3, the models that were 
used for results evaluation are discussed. 

5.1 Python deep learning platforms 

P y t h o n supports many deep learning frameworks and libraries that make it significantly 
more comfortable to create deep learning models. Some of the popular ones are described 
in this section. Since most of the described libraries were in i t ia l ly released after 2015, it is 
clear that Python ' s deep learning environment grows very fast. Keras framework was used 
to implement the proposed solution because it provides a high-level easy-to-learn A P I wi th 
addi t ional benefits: real-time data augmentation, image preprocessing features, pre-trained 
models, and many more. 

5.1.1 T h e a n o 

Theano [38] is a P y t h o n l ibrary that provides efficient ways of working wi th mult i-dimensional 
arrays. Since deep learning problems involve large amounts of data, this feature is crucial . 
Theano also works as an opt imiz ing compiler, it can compile parts of an expression graph 
into C P U or G P U instructions, which improves computat ional performance. Theano can 
also find some of the numerically unstable expressions and compute them using more stable 
algorithms. Addi t ional ly , it supports an efficient symbolic differentiation. 

This l ibrary provides many advantages, most of a l l its flexibility. O n the other hand, 
since Theano is a lower-level A P I , it requires good knowledge to write effective code. There
fore, Theano is used to power some of the other deep learning frameworks that work on a 
higher level, such as Keras. 
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5.1.2 Tensor F l o w 

TensorFlow is an open-source l ibrary that provides mult iple levels of abstraction. In coop
eration wi th Keras A P I , it allows a high-level approach to developing deep learning models. 
However, it s t i l l offers a lot of flexibility. TensorFlow's basic data structures are tensors 
that are mult i-dimensional arrays. Therefore, TensorFlow effectively allows us to work 
wi th mult i -dimensional arrays, which provides excellent support for the development of 
deep learning models. The same code can be computed on either C P U or G P U , which 
can accelerate the computat ional process. Computat ions i n TensorFlow are described by 
computat ional graphs, where each edge represents data (tensor), and each node represents 
a mathematical operation performed on the input data. The computat ional graph is buil t 
in advance of running the computat ional process, allowing, for example, using placehold
ers i n code, which represent data that are not known before running the model and can 
be added during runtime from external resources. Since Google L L C backs TensorFlow, 
there is a large community of developers that share their knowledge and experience, which 
is a significant benefit of using this l ibrary. TensorFlow provides mainly computat ional ly 
well-performing platform; however, it does not provide many addi t ional features that would 
help wi th the whole process, such as data preprocessing and others. It is more convenient 
to use the Keras high-level framework w i t h TensorFlow as its backend. 

5.1.3 P y T o r c h 

W i t h the in i t i a l release i n 2016, P y T o r c h [39] is the youngest deep learning framework 
discussed i n this section. M a n y of its features are s imilar to TensorFlow and Theano. 
For example, it works w i t h tensors that can be computed on both C P U and G P U , which 
can significantly increase the computat ional performance. Another similar feature, yet 
the one that makes the most significant difference, is bui ld ing a computat ional graph. 
P y T o r c h is designed to handle dynamic computat ional graphs, which is not possible in 
either TensorFlow or Theano platforms. It provides features of both high-level and low-
level A P I s , which provides flexibil i ty and s implic i ty at the same time. Keras was chosen 
for the implementat ion of the proposed solution because there is s t i l l a higher number of 
relevant resources that use TensorFlow or Keras for development in the t ime of creating 
this work. 

5.1.4 K e r a s 

The Keras P y t h o n l ibrary is a popular deep learning A P I , which was developed to run 
mainly on top of the TensorFlow and Theano machine learning platforms. The Keras 
A P I provides two core data structures - layers and models, which makes it fast and easy to 
create and t ra in the proposed solution. There are two approaches to create models i n Keras 
- sequential [6] or functional [7]. The sequential model is a linear stack of layers, which 
works well for simple models. More complex structures require using the Keras functional 
A P I . For example, it allows defining models w i t h mult iple inputs or outputs, models w i th 
shared layers, and much more. 

5.2 Hyperparameters of the proposed model 

The proposed model was trained for 300 epochs on an N v i d i a Tesla T 4 G P U , w i th a batch 
size of 128. Weights were ini t ia l ized from a zero-centered Gaussian dis t r ibut ion wi th a 
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standard deviat ion of 0.02, as recommended in [31]. The input noise to the generator 
network was sampled from 100-dimensional Gaussian dis t r ibut ion wi th zero mean and unit 
variance. A D A M optimizer was used to optimize the loss function wi th the learning rate of 
0.0002 and the momentum of 0.5 [31]. The factor a of label smoothing was set to 0.1 wi th 
a 5 % probabil i ty of flipping the label dur ing training. Experience replay happens after 
each 32 t ra ining steps (batches). For minibatch discriminat ion, 100 discr iminat ion kernels 
were used, which results i n the extension of the flattening layer's output 's dimensionality 
by 100. The s imilar i ty of samples is computed i n the 30-dimensional space. 

5.3 Implementation of the proposed model 

A s mentioned i n Section 5.1, the proposed solution was implemented using Python ' s deep 
learning framework called Keras . TensorFlow version 2.1.0 was used as its backend because 
it proved to be the most stable version i n the t ime of creating this thesis. For the imple
mentation of the purposed model, using sequential models was sufficient. The proposed 
model consists of three sequential models - the discriminator and generator networks and 
the G A N model, which combines both of them. The reason for creating the combined 
model is that the discriminator and generator networks are trained separately; however, 
the generator needs to access the discriminator to receive the information about its error, 
which is then reflected in the update of weights. Keras 's tr ick is to achieve this behavior by 
setting the model's weights as not trainable. Tha t means the discriminator itself is trained 
separately, and the generator is trained using the combined model, which sets the discrim
inator's weights as not trainable. The implementat ion of the combined model is shown in 
L i s t ing 5.1. 

In Section 5.1.4 was mentioned, that the core data structures in Keras are models and 
layers. Therefore, the generator and discriminator models were implemented as a sequence 
of layers already provided by the Keras framework. Visual izat ions of the generator and 
discriminator Keras models are shown i n Figure 5.1 and Figure 5.2 respectively. 

def define_gan(g_model, d_model, adam_learning_rate=0.0002): 
// sets the discriminator's weights as not trainable 
d_model.trainable = False 

// defines the combined sequential model 
model = Sequential(name=,GAN-model,) 
model.add(g_model) 
model.add(d_model) 

// sets the Adam optimizer 

opt = Adam(lr=adam_learning_rate, beta_l=0.5) 

// creates the model 
model.compile(loss = ,binary_crossentropy', optimizer=opt) 
return model 

Lis t ing 5.1: Implementation of the G A N model which combines the generator and discrim
inator networks. 
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C o n v 2 D _ l Input: (None, 96, 96, 1) Output : (None, 48, 48, 64) 

1 
Leaky R e l u _ l Input: (None, 48, 48, 64) Output : (None, 48, 48, 64) 

1 
C o n v 2 D _ 2 Input: (None, 48, 48, 64) Output : (None, 24, 24, 128) 

1 
Batch normal iza t ion_1 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128) 

1 
Leaky R e l u _ 2 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128) 

1 
C o n v 2 D _ 3 Input: (None, 24, 24, 128) Output : (None, 12, 12, 256) 

1 
Batch normal iza t ion_2 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256) 

1 
Leaky R e l u _ 3 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256) 

1 
C o n v 2 D _ 4 Input: (None, 12, 12, 256) Output : (None, 6, 6, 512) 

1 
Batch normalizat ion 3 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512) 

1 
Leaky R e l u _ 4 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512) 

1 
Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432) 

1 
Dense wi th sigmoid Input: (None, 18432) Output : (None, 1) 

Figure 5.1: Visua l iza t ion of the proposed discriminator model implemented i n Keras. 

5.4 Implementation of methods for performance improve
ment 

Several methods were proposed i n Section 4.2 to improve the performance of the D C G A N 
model. The i r implementat ion is discussed i n this section. A t first, Section 5.4.1 provides 
information about the implementat ion of data augmentation described in Section 4.1.3. Im
plementation of spectral normalizat ion and minibatch discr iminat ion methods is described 
in Section 5.4.2. These two methods share the same feature - they could be implemented 
as layers in Keras . Other methods that were implemented outside the implemented model 
itself are described i n Section 5.4.3. 

5.4.1 I m p l e m e n t a t i o n of d a t a a u g m e n t a t i o n 

Since the solution was coded using the Keras framework, the most convenient way to incor
porate data augmentation to the solution is v ia the ImageDataGenerator class. One can 
choose from many possible transformations that are then applied to the original dataset. 
Choosing transformations is an important step because it can significantly affect the gener
ated images. For example, i n case of fingerprints, it would not make sense to use a vertical 
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Dense Input: (None, 100) Output : (None, 4608) 
1 

Batch normal iza t ion_1 Input: (None, 4608) Output : (None, 4608) 
1 

R e l u _ l Input: (None, 4608) 
1 

Output : (None, 4608) 

Reshape Input: (None, 4608) 
1 1— 

Output : (None, 3, 3, 512) 

C o n v 2 D T r a n s p o s e d _ l Input: (None, 3, 3, 512) 
1 

Output : (None, 6, 6, 256) 

Ba tch normal iza t ion_2 Input: (None, 6, 6, 256) 
1 

Output : (None, 6, 6, 256) 

R e l u _ 2 Input: (None, 6, 6, 256) 
1 

Output : (None, 6, 6, 256) 

Conv2DTransposed_2 Input: (None, 6, 6, 256) 
1 

Output : (None, 12, 12, 128) 

Ba tch normalizat ion 3 Input: (None, 12, 12, 128) 
1 

Output : (None, 12, 12, 128) 

R e l u _ 3 Input: (None, 12, 12, 128) 
1 

Output : (None, 12, 12, 128) 

Conv2DTransposed_3 Input: (None, 12, 12, 128) 
1 

Output : (None, 24, 24, 64) 

Ba tch normal iza t ion_4 Input: (None, 24, 24, 64) 
1 

Output : (None, 24, 24, 64) 

R e l u _ 4 Input: (None, 24, 24, 64) 
1 

Output : (None, 24, 24, 64) 

Conv2DTransposed_4 Input: (None, 24, 24, 64) 
1 

Output : (None, 48, 48, 32) 

Ba tch normal iza t ion_5 Input: (None, 48, 48, 32) 
1 

Output : (None, 48, 48, 32) 

R e l u _ 5 Input: (None, 48, 48, 32) 
1 | • 

Output : (None, 48, 48, 32) 

Conv2DTransposed_5 Input: (None, 48, 48, 32) 
1 

Output : (None, 96, 96, 32) 

Ba tch normalizat ion 6 Input: (None, 96, 96, 32) 
1 

Output : (None, 96, 96, 32) 

R e l u _ 6 Input: (None, 96, 96, 32) 
1 

Output : (None, 96, 96, 32) 

C o n v 2 D Input: (None, 96, 96, 32) 
1 

Output : (None, 96, 96, 1) 

Tanh Input: (None, 96, 96, 1) Output : (None, 96, 96, 1) 

Figure 5.2: Visua l iza t ion of the proposed generator model implemented i n Keras. 

flip, because the images could cause a problem dur ing their evaluation. It is more convenient 
to use a horizontal flip, which keeps images realistically looking. Another transformation 
that can be used is the featurewise normalizat ion. It includes f eaturewise_center, which 
sets input mean to zero over the dataset, and featurewise_std_normalization, which 
divides inputs by standard deviat ion of the dataset. To be able to apply standard normal
ization, the ImageDataGenerator needs to learn the mean and the standard deviation of 
the dataset before generating the actual data. 
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5.4.2 I m p l e m e n t a t i o n of spectra l n o r m a l i z a t i o n a n d m i n i b a t c h d i s c r i m i 
na t ion 

The implementat ion of spectral normalizat ion and minibatch discr iminat ion methods caused 
a few changes in the structure of the discriminator 's Keras model . The updated model can 
be seen in Append ix B . 

Spectral normalizat ion described i n Section 4.2.3 provides a great advantage, because 
its definition allows the implementat ion w i th in a model 's layer. Therefore, spectral nor
malizat ion was implemented using the updated version of existing Keras layers used i n the 
discriminator, as visualized i n Figure 5.3. 

A s mentioned in Section 4.2.2, the minibatch discr iminat ion method computes the sim
i lar i ty of samples wi th in the batch and appends it to the dense intermediate layer of the 
discriminator. Cus tom Keras layer was implemented and added to the model structure 
right after the flattening layer, as shown i n Figure 5.4. 

C o n v 2 D C o n v S N 2 D C o n v 2 D C o n v S N 2 D 

Dense wi th sigmoid '— DenseSN w i t h sigmoid Dense wi th sigmoid DenseSN w i t h sigmoid 

Figure 5.3: Changes i n the discriminator model caused by the spectral normalizat ion 
method. Elements highlighted by green color show the updated layers that implement 
the spectral normalizat ion. 

I 1 r r 
i i i i 

Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432) 
1 

M i n i b a t c h 
discr iminat ion 

Input: (None, 18432) Output : (None, 18532) 

1 

DenseSN wi th sigmoid Input: (None, 18532) Output : (None, 1) 

Figure 5.4: Changes in the discriminator model caused by the minibatch discr iminat ion 
method. Elements highlighted by red color show newly added layer that is responsible 
for minibatch discriminat ion, which changed the input data shape of the subsequent dense 
layer. 

5.4.3 I m p l e m e n t a t i o n of m e t h o d s that d i d not affect the m o d e l itself 

The methods that are not a part of the discriminator model itself are incorporated in 
the t ra ining loop. To be able to better describe the implementat ion of these methods, 
L i s t ing 5.2 shows the t raining loop wri t ten in pseudocode. E a c h step represents t raining 
on one batch of data. 

Smoothing the labels and making them noisy takes place during the preparation of a 
batch of data, as can be seen i n rows 6-8 and 12-13 of the t ra ining loop. Since the label 
smoothing is one-sided, only the real data labels are smoothed; however, bo th the real and 
fake data labels are randomly flipped. 
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M a k i n g the labels noisy is implemented as a function that takes the input vector of 
labels y and the probabil i ty of flipping the labels. It computes the number of labels that 
should be inverted based on the probabi l i ty using the following formula: 

num_to_flip = flip_prob • input_vect_length, (5-1) 

where flip_prob is the probabil i ty of flipping the label, and input_vect_length stands 
for the length of the input vector. The given number of indices is then randomly chosen, 
that are inverted using the rule y n e w = 1 — yold-

Label smoothing is implemented as a function, which takes the vector of randomly 
flipped real labels ynoisy and the value of factor a , and returns the updated vector of values 
i n range (1 — a , 1). 

Experience replay happens after the t ra ining of the discriminator, as can be seen in 
rows 17-21 of the t ra ining loop. Each t ra ining step, one of the generated samples is added 
to the buffer. Once the given number of t ra ining steps defined by replay_step is reached, 
the discriminator is trained of the batch of samples from the buffer. Then the buffer is 
cleared and on the following t ra ining step it starts to save the generated samples again. 

1 def train(dataset, batch size, number of epochs, replay_step): 
2 variables i n i t i a l i z a t i o n 
3 train_steps = (size of dataset / batch size) * number of epochs 
4 
5 for step i n train_steps: 
6 x_real, y_real = prepare r e a l data and labels 
7 make re a l labels noisy 
8 smooth real labels 
9 

10 t r a i n the discriminator on real data 
11 
12 x_fake, y_fake = prepare fake data and labels 
13 make fake labels noisy 
14 
15 t r a i n the discriminator on fake data 
16 
17 i f step == replay_step: 
18 t r a i n discriminator on samples i n the buffer 
19 empty the buffer 
20 else: 
21 add one random fake sample into the buffer 
22 
23 prepare data and t r a i n the generator 

Lis t ing 5.2: Pseudocode of the t ra ining loop. 

5.5 Results evaluation 

One of the common methods for evaluating D C G A N models is called Frechet Inception Dis
tance [14]. It measures both the quali ty of generated images and their diversity. However, 
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since this thesis aims to generate fingerprints, there is a considerable advantage in using 
other tools specifically designed for measuring the quali ty of fingerprint images. One of 
those tools is a publ ic ly available software from N I S T (Nat ional Institute of Standards and 
Technology), called N F I Q ( N I S T Finger Image Qual i ty ) . The performance of the proposed 
model dur ing t ra ining is discussed i n Section 5.5.1. The results of the proposed model 
evaluated by both methods mentioned above are provided later i n this section. 

5.5.1 T r a i n i n g evaluat ion 

A s already mentioned, t ra ining G A N s often leads to problems wi th stability. Tha t is the 
reason why the proposed solution implements addi t ional methods that proved to be able to 
help wi th this issue. In Figure 5.5, losses tracked during the t ra ining of the proposed model 
visualized i n Figure 4.4, are shown. This model does not implement any of the addi t ional 
methods. Further i n this work, this model w i l l be referred to as " D C G A N B A S E " . One 
can see that the loss of the discriminator remains relatively stable during the training: 
however, the generator's loss is significantly unstable and collapses to zero several times 
during t raining. That suggests that the generator is not able to generate fake samples i n a 
consistent way, and it is easy for the discriminator to identify the generated samples. 

d-real 

0 5C 1L>0 150 2m 250 3&0 
epoch 

Figure 5.5: Losses tracked on each epoch during the t ra ining of the proposed model without 
any addi t ional methods for performance improvement. 

To stabilize the training, label smoothing and noisy labels methods were implemented, 
because they can have a regularizing effect as mentioned i n Section 4.2.1. Together w i th 
the mentioned methods, the spectral normalizat ion, which is used to stabilize the t raining 
of G A N s , was implemented. This model w i l l be referred to as " D C G A N E X T " . A s can 
be seen in Figure 5.6, the implemented methods had a significant impact on the t raining 
process of the proposed model. 

However, even though the t ra ining became more stable by implementing the methods 
mentioned above, the mode-collapse showed to be a big problem. To address this problem, 
the minibatch discr iminat ion and experience replay methods were implemented. F r o m now 
on, this model w i l l be referred to as " D C G A N F U L L " . In Figure 5.7, one can see that 
apart from the noise at the start of the training, the process remained stable. 

5.5.2 Frechet Incept ion D i s t a n c e 

One of the conventional methods to measure the performance of G A N s is the Inception 
Score. It uses an inception model pre-trained on the ImageNet dataset, which classifies 
the generated images and predicts the condit ional probabil i ty p(y\x), where y is the label 
and x is the generated data. The idea behind measuring the quali ty of images is that the 
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Figure 5.6: Losses tracked on each epoch during the t ra ining of the proposed model after 
the implementat ion of methods for t ra ining stabil izat ion: spectral normalizat ion, label 
smoothing, and noisy labels. 
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200 250 300 

Figure 5.7: Losses tracked on each epoch during the t ra ining of the proposed model af
ter the implementat ion of methods that reduce the mode-collapse: experience replay, and 
minibatch discriminat ion. 

probabil i ty p(y\x) should have low entropy, which reflects that the images belong to just 
a few classes. O n the other hand, the entropy across those images should be high, which 
reflects the diversity of the images. The problem wi th the Inception Score is that it does 
not use real samples statistics for their comparison wi th the generated ones. 

The improved method based on the Inception Score is called the Frechet Inception Dis
tance (FID) [14]. This method uses features from an intermediate layer of the previously 
mentioned inception model . For the given features, F I D uses a mult i-dimensional Gaussian 
dis tr ibut ion wi th the mean \i and the covariance X . The difference of gaussian distr ibu
tions of synthetic and real images is measured by the Frechet distance d. The formula for 
computing the F I D is the following [14]: 

d 2((ng, Eg), (fix, E s ) ) = 11/is - /j,g\\l + T r ( £ x + T,g - 2 ( E s E f l ) 5 ) , (5.2) 

where fix and T,x represent a Gaussian dis t r ibut ion of real samples, and fig and T,g 

represent a Gaussian dis t r ibut ion of generated samples. T r stands for the sum of the 
diagonal elements. 

The average, min imal , and max ima l F I D score for each model discussed i n Section 5.5.1 
is shown in Table 5.1. Figure 5.8 presents the progression of the F I D score during the 
t raining. A l l models tend to have a worse F I D score after about 100 t ra ining epochs. That 
suggests that there are either samples w i t h low quali ty or that the diversity of samples 
decreases due to the mode-collapse. In Figure 5.9 can be seen that the F I D score corre
sponds to the visual quali ty of images. The th i rd row, which is highlighted by a red frame, 
represents samples after 60 epochs. The i r quali ty is decent, and they also have significant 
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variance. However, then the quali ty and variance start to get worse (and the F I D score 
rises). Therefore, Table 5.2 provides the information about the F I D score values just for 
the first 100 epochs. In the rest of this thesis, only the model trained to the 100th epoch is 
considered. 

Table 5.1: The Frechet Inception Distance of the proposed model over 300 epochs. 

Model /Datase t 
F I D 

Mode l /Datase t 
Average M i n M a x 

D C G A N - B A S E / S O C O F i n g 
D C G A N - E X T / S O C O F i n g 

D C G A N - F U L L / S O C O F i n g 

71.47 
66.71 
54.56 

38.93 
38.56 
34.21 

101.04 
121.94 
98.41 

Table 5.2: The Frechet Inception Distance of the proposed model over 100 epochs. 

Mode l /Datase t 
F I D 

Mode l /Datase t 
Average M i n M a x 

D C G A N - B A S E / S O C O F i n g 
D C G A N - E X T / S O C O F i n g 

D C G A N - F U L L / S O C O F i n g 

65.44 
54.94 
48.52 

41.96 
38.56 
34.21 

93.19 
85 

93.05 

Since the original paper [27] reached F I D score 70.5, it is clear that the solution proposed 
by this work achieves better results. The i r achieved F I D score is mostly comparable wi th 
the average score of the proposed D C G A N - B A S E model, which does not implement any 
of the methods for performance improvement. Tha t suggests, that the addi t ional methods 
proposed in this work have a significant impact on the quali ty of generated fingerprints. 

5.5.3 N I S T F i n g e r Image Q u a l i t y 

The original version of N F I Q was developed back i n 2004 as the first publ ic ly accessible fin
gerprint quali ty assessment tool . N F I Q was the first tool to allow a universal interpretation 
of fingerprint quality, which resulted i n better fingerprint recognition systems by identifying 
appropriate samples for their testing. Later, i n 2011, started the collaboration between sev
eral institutions, including N I S T , Federal Office for Information Security, Federal C r i m i n a l 
Police Office, and others, which resulted i n a new version of this tool called N F I Q 2.0. It 
became the reference implementat ion of I S O / I E C 29794-4 Biometr ic sample quali ty - Par t 
4: Finger image data standard. Accord ing to that standard, it provides a quali ty score 
ranging from 0 to 100, where 100 is the best result. N F I Q 2.0 was expl ic i t ly developed for 
images captured at 500 dp i using opt ical sensors or scanned from inked cards. Tha t suits 
great for the S O C O F i n g dataset because it satisfies both requirements. However, to be 
able to get a quali ty score of the real samples, their bits-per-pixel values needed to be con
verted from 32 bits to 8 bits. N F I Q 2.0 is also not able to identify minutiae for S O C O F i n g 
and F V C 2 0 0 6 D B 1 datasets, which suggests that the smaller image size leads to problems 
wi th minutiae identification since both datasets have a smaller image size than the other 
datasets. Table 5.3 shows the average quali ty score for each dataset. The size of images 
was then doubled just to get more meaningful information about S O C O F i n g and F V C 2 0 0 6 
D B 1 datasets. Table 5.4 shows the average N F I Q 2.0 score for those resized images. 
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~i 1 1 1 1 1 r -

D 10 20 30 40 50 60 
training step (results tracked each 5th epoch) 

D 10 20 30 40 50 60 
training step (results xacked each 5th epoch) 

training step (results tracked each 5th epoch) 

Figure 5.8: The F I D score tracked on each 5th epoch dur ing the t ra ining of the proposed 
models: D C G A N - B A S E , D C G A N - E X T , and D C G A N - F U L L in the respective order. 

Based on the results from Section 5.5.2 and based on the evaluation of the visual quali ty 
of the generated fingerprint images, models w i th the following t ra ining phases were selected 
for evaluation by N F I Q 2.0: D C G A N - B A S E trained for 80 epochs, D C G A N - E X T trained 
for 100 epochs and D C G A N - F U L L , which was trained for 60 epochs. Table 5.3 provides 
information about the average N F I Q 2.0 quali ty score obtained over the generated dataset 
of 100 samples from each of the models. The obtained score proves that even for newly 
generated data samples, N F I Q 2.0 has a problem wi th identifying minutiae. Therefore, the 
generated samples were also resized to double their original size. The average score reached 
by the resized images is shown in Table 5.4. One can notice, that the N F I Q 2.0 quali ty 
score is even higher for the generated images than it is for those from the original dataset. 
This was a surprising result. In the case of samples generated by the D C G A N - B A S E model, 
this could be caused by a significantly higher number of minutiae detected. However, the 
results of the D C G A N - F U L L model present a higher quali ty score wi th almost the same 
number of minutiae detected. These results proved, that the proposed model can generate 
samples highly s imilar to those from the original dataset. 

39 



Table 5.3: Average N F I Q 2.0 quali ty score and minutiae count of samples from each dataset. 
The generated samples were produced by models trained on the S O C O F i n g dataset. 

Dataset N F I Q 2.0 Score Minut iae count 
F V C 2 0 0 6 - D B 1 2.35 0 
F V C 2 0 0 6 - D B 2 39.2 71.3 
F V C 2 0 0 6 - D B 3 48.33 80.26 
F V C 2 0 0 6 - D B 4 29.96 43.7 

S O C O F i n g 3.4 0 

Generated samples 
D C G A N - B A S E 4.13 0 
D C G A N - E X T 5 0 

D C G A N - F U L L 4.42 0 

Table 5.4: Average N F I Q 2.0 quali ty score and minutiae count of 500 randomly selected 
samples from F V C 2 0 0 6 D B 1 and S O C O F i n g datasets. The generated samples were pro
duced by models trained on the S O C O F i n g dataset. A l l images were resized to double of 
their original size. 

Dataset N F I Q 2 .0 Score Minut iae count 
F V C 2 0 0 6 - D B 1 23.24 32.72 

S O C O F i n g 15.33 37.34 

Generated samples 
D C G A N - B A S E 16.21 83.52 
D C G A N - E X T 17.65 74.09 

D C G A N - F U L L 18.21 41.26 
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Figure 5.9: The generated fingerprint images for five input latent vectors generated using 
the D C G A N - F U L L model . The first row contains the results after 20 t raining epochs. Each 
subsequent row contains samples after another 20 epochs, except for the last row, which 
contains a more advanced phase of t ra ining after 220 epochs. 
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Chapter 6 

Conclusion 

The goal of this thesis was to create a synthetic fingerprint generator based on the principle 
of generative adversarial networks ( G A N s ) . The proposed solution proved that the deep 
convolutional G A N ( D C G A N ) model is capable of generating fingerprints that are highly 
similar to samples from the original dataset. Alongside the proposed D C G A N architecture, 
there are several methods discussed, that were implemented to increase the stabil i ty of the 
t ra ining process and the quali ty of generated fingerprints. Compared wi th the results of 
the work F i n g e r - G A N [27], which originally purposed the D C G A N model for generating 
synthetic fingerprints, the addi t ional methods implemented wi th in this work proved to have 
a significant impact on the quali ty of the generated fingerprints. 

The results were evaluated using the Frechet Inception Distance (F ID) , and the N I S T 
Finger Image Qual i ty 2.0 ( N F I Q 2.0). B y implementing the proposed methods, the average 
F I D score over 100 t ra ining epochs was improved by 25 % and the N F I Q 2.0 score by 
12 %, compared wi th the results of the pla in model, which does not implement any of 
these methods. The best results were achieved w i t h the model that implements a l l of the 
proposed methods. Fingerprint images generated after 60 epochs were evaluated as the best 
results. A t this point, the model achieved the F I D score of 36.8 and the average N F I Q 2.0 
quali ty score of 18.21. 

Even though the proposed solution proved the model's capabil i ty of generating a com
plex structure of fingerprints, it is s t i l l affected by the mode-collapse problem. Therefore, 
future work should be focused on reducing its impact . One of the options to improve the 
results is using fingerprint labels from the dataset and consequently creating a conditional 
GAN model . Another improvement could be reached by the implementat ion of unrolled 
GAN model, which is focused pr imar i ly on the reduction of the mode-collapse problem. 

In Chapter 2, this thesis provides basic information about biometrics w i th emphasis 
on fingerprints and describes the principle of S F i n G e . Chapter 3 describes the common 
principles of art if icial neural networks, together w i th a closer look at G A N and D C G A N 
models. In Chapter 4 is described the proposed model, including the methods implemented 
for the improvement of its performance. This chapter also provides an overview of accessible 
fingerprint datasets. Final ly , Chapter 5 describes technical details of the implementat ion of 
the proposed solution and provides the evaluation of results on the generated datasets. The 
surprising result was that the average N F I Q 2.0 quali ty score over the generated database 
of 100 samples was even higher than for the original samples from the S O C O F i n g dataset. 
Given the information above, the main a i m of the thesis has been reached. 
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Appendix A 

Contents of the included storage 
media 

training_samples 
base_model 

1 
2 

_ 5 0 
extended_model 
full_model 

keras_models_plots 
base_models 
extended_models 
full_models 

saved_generator_models 
base_model 
extended_model 
full_model 

source 
thesis 

• F i l e " R E A D M E . T X T " 

- This file, located in the root directory, contains a similar text to this one 
clarification of the contents of the included storage media. 

Directory tree of the included storage media looks like the following: 

base_model 
extended_model 
f u l l model 
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Folder "generated_examples" 

— This folder contains exported examples by the proposed Keras models. In the 
subfolder „ f m a l _ d a t a s e t s " , 100 samples exported from the proposed models after 
the certain number of epochs are located. D C G A N - B A S E model was trained for 
80 epochs, D C G A N - E X T model for 100 epochs and D C G A N - F U L L model for 
60 epochs. The subfolder contains also the csv files w i t h N F I Q 2.0 score of a l l 
of the results presented in Section 5.5.3. 

— The second subfolder „ t r a i n i n g _ s a m p l e s " provides samples generated from 50 
different input noise vectors by each of the proposed models - D C G A N - B A S E , 
D C G A N - E X T and D C G A N - F U L L . These images were saved each 20th epoch 
over 300 t ra ining epochs i n total . 

Folder "keras_models_plots" 

— This folder contains exported visualizations of the proposed Keras models. It 
includes subfolders for base models that do not implement any of the proposed 
addit ional methods, as wel l as extended models implementing some of the pro
posed methods and final models that implement a l l of the methods described in 
this thesis. 

Folder "saved_generator_models" 

— The saved weights of the generator models that provide the best results as dis
cussed i n Section 5.5.3 are provided in this folder. One can easily use these 
pretrained models to generate new data and create more extensive datasets. 

Folder "source" 

— This folder contains a l l of the source files. There is also the license file " L I 
C E N S E " , which belongs to the file "SpectralNormalizat ionKeras .py", which im
plements Keras layers for spectral normalizat ion. The folder also contains the 
" R E A D M E . T X T " file, which provides information about running the imple
mented solution. The reader is encouraged to instal l the packages defined in the 
file „ r e q u i r e m e n t s . t x t " to his local system, which assures that the solution works 
correctly. 

Folder "thesis" 

— This folder contains electronic version of this text. 
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Appendix B 

Proposed model wi th extensions 
implemented in Keras 

C o n v S N 2 D _ l Input: (None, 96, 96, 1) Output : (None, 48, 48, 64) 
1 

Leaky R e l u _ l Input: (None, 48, 48, 64) Output : (None, 48, 48, 64) 
1 

C o n v S N 2 D _ 2 Input: (None, 48, 48, 64) Output : (None, 24, 24, 128) 
1 

Batch normal iza t ion_1 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128) 
1 

Leaky R e l u _ 2 Input: (None, 24, 24, 128) Output : (None, 24, 24, 128) 
1 

C o n v S N 2 D _ 3 Input: (None, 24, 24, 128) Output : (None, 12, 12, 256) 
1 

Batch normal iza t ion_2 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256) 
1 

Leaky R e l u _ 3 Input: (None, 12, 12, 256) Output : (None, 12, 12, 256) 
1 

C o n v S N 2 D _ 4 Input: (None, 12, 12, 256) Output : (None, 6, 6, 512) 
1 

Batch normalizat ion 3 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512) 
1 

Leaky R e l u _ 4 Input: (None, 6, 6, 512) Output : (None, 6, 6, 512) 
1 

Fla t t en Input: (None, 6, 6, 512) Output : (None, 18432) 
1 

M i n i b a t c h 
discr iminat ion 

Input: (None, 18432) Output : (None, 18532) 

1 
DenseSN wi th sigmoid Input: (None, 18532) Output : (None, 1) 

Figure B . l : The proposed model architecture after the implementat ion of spectral normal
izat ion and minibatch discr iminat ion methods. Elements highlighted by green color are 
layers that were changed to equivalent layers that implement spectral normalizat ion. E l 
ements highlighted by red color show newly added layer that is responsible for minibatch 
discrimination, which changed the input data shape of the subsequent dense layer. 
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Appendix C 

Generated samples 

Figure C . l : The generated fingerprint images by the D C G A N - B A S E model after 80 t raining 
epochs. Each sample was generated from a random latent vector. It is clear that this model 
is significantly affected by the mode-collapse problem. 
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Figure C .2 : The generated fingerprint images by the D C G A N - E X T model after 100 training 
epochs. E a c h sample was generated from a random latent vector. The mode-collapse 
problem s t i l l persists. 
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Figure C .3 : The generated fingerprint images by the D C G A N - F U L L model after 60 t rain
ing epochs. Each sample was generated from a random latent vector. The implemented 
methods significantly reduced the mode-collapse. 

5 2 


