Semantic mining and analysis of information from heterogeneous data sets – Bc. Jakub Drábik
Bc. Jakub Drábik
Bachelor's thesis
Semantic mining and analysis of information from heterogeneous data sets
Semantic mining and analysis of information from heterogeneous data sets
Abstract:
Cieľom tejto práce je preskúmať dostupné nástroje a techniky na umožnenie sémantického vyhľadávanie v elektronických dokumentoch rôznych formátov a pomocou nich implementovať riešenie podporujúce sémantické vyhľadávanie vo viacerých jazykoch. V prvej časti práca skúma nástroje a techniky na extrakciu textu a metadát, vrátane optického rozpoznávania znakov (OCR). Následne skúma rôzne metodológie z oblasti …moreAbstract:
This thesis aims to explore available tools and techniques for enabling semantic search in electronic documents of diverse formats and use them to implement a solution supporting semantic search across multiple languages. In the first part, the thesis explores tools and techniques for text and metadata extractions, including optical character recognition (OCR). Then, it examines various methodologies …more
Language used: English
Date on which the thesis was submitted / produced: 19. 12. 2023
Identifier:
https://is.muni.cz/th/fxjj1/
Thesis defence
- Date of defence: 15. 2. 2024
- Supervisor: RNDr. Tomáš Rebok, Ph.D.
- Reader: RNDr. Michal Batko, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Informatics
Theses on a related topic
-
Enhancing Quality of Optical Character Recognition for Financial Document Processing
Dávid Meluš -
Optical character recognition using deep learning
Pavel ANDRLÍK -
Automatic Recognition of Mobile Phone Screenshots Content
Timotej Cirok -
Text Recognition in Historic Birth, Death and Marriage Records
Radoslav Palkovič -
Practical use of natural language processing in education technology
Dominik Hartinger -
Application of Natural language processing to enhance qualitative research used for marketing
Poj Nuangniyom Netsiri -
Scalability of Semantic Analysis in Natural Language Processing
Radim Řehůřek -
Named Entity Recognition in Historical Text Documents
Milan VACEK