
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

NATIVNÍ PODPORA DEB BALIČKU PRO SPACEWALK
NATIVE SUPPORT FOR DEB PACKAGES IN SPACEWALK

DIPLOMOVÁ P R A C E
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Be. LUKAS DURFINA

Ing. RADEK KOČÍ, Ph.D.

BRNO 2010

Abstrakt
Systém Spacewalk je určený pre správu linuxových operačných systémov používajúcich
balíčkový systém R P M . Cieľom práce je rozšírenie systému Spacewalk o podporu balíčkového
systému D E B , ktorý je spojený s distribúciou linuxového operačného systému Debian.
Výsledok je natívna podpora spravovania systému Debian pomocou Spacewalku, čo zahŕňa
jeho registráciu, distribúciu konfiguračných súborov, vzdialené spúšťanie skriptov a správu
D E B balíkov.

Abstract
The system Spacewalk is a managment tool for the linux operating systems based on R P M
package manager. The aim of thesis is adding support to Spacewalk for D E B package
managment system, which is connected with Debian, a distribution of linux operating
system. The result is native support of managing Debian system by the Spacewalk, what
includes a registration of system, distribution of configuration files, remote scripts running
and managment of D E B packages.

Klíčová slova
Spacewalk, balíčkové systémy, Debian, R P M , D E B

Keywords
Spacewalk, package managment systems, Debian, R P M , D E B

Citace
Lukáš Durfina: Native Support for D E B Packages in Spacewalk, diplomová práce, Brno,
FIT V U T v Brně, 2010

Native Support for DEB Packages in Spacewalk

Prohlášení
Prehlasujem, že som túto diplomovú prácu vypracoval samostatne pod vedením Ing. Radka
Kočího, Ph.D. a Mgr. Miroslava Suchého. Uviedol som všetky literárne pramene a pub­
likácie, z ktorých som čerpal.

Lukáš Ďurfina
May 13, 2010

Poděkování
Ďakujem svojmu vedúcemu práce Ing. Radkovi Kočímu, Ph.D. a môjmu konzultantovi
z firmy RedHat Mgr. Miroslavovi Suchému za odbornú pomoc a podporu pri vytváraní
práce.

© Lukáš Ďurfina, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulte in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Description of technologies 4
2.1 Spacewalk 4

2.1.1 A n overview of the capabilities 6
2.1.2 Spacewalk architecture 8
2.1.3 Software channels 11
2.1.4 Configuration 12
2.1.5 Monitoring 12
2.1.6 Similar systems as Spacewalk 13

2.2 Package management systems 13
2.2.1 A P T 14
2.2.2 Y U M 15

2.3 Package formats 16
2.3.1 D E B 16
2.3.2 R P M 21
2.3.3 Differences between D E B and R P M 24
2.3.4 ebuild 26

3 Analysis of the client tools 27
3.1 rhnlib 27
3.2 rhn-client-tools 28
3.3 rhncfg 29
3.4 rhnsd 29
3.5 rhnpush 30
3.6 yum-rhn-plugin 32

4 Client tools for Debian 35
4.1 Design 35
4.2 Process of creating D E B package 39

5 Analysis of the server side 40
5.1 Database schema 40
5.2 Backend 42

5.2.1 Receiving and storing the package 42
5.2.2 Providing package to client 43

1

6 The implementation of the server side changes 44
6.1 Database 4 4

6.2 Accepting D E B package 4 5

6.3 Providing D E B package 4 6

7 The testing 4 9

7.1 Registration of client to Spacewalk 4 9
7.2 The configuration file distribution 4 9
7.3 Running of the script 50
7.4 Removing the package from client 51

7.5 Uploading D E B package to Spacewalk 52

8 Conclusion 54

A Content of C D 57

B Screenshots 58

2

Chapter 1

Introduction

Managing and controlling the larger number of the operating systems is not easy task. The
Spacewalk is tool, which makes these activities much more simple. It stores hardware and
software information about the systems, it can handle virtual systems, deploy files, run
scripts or supply the software packages. The Spacewalk is free and it comes from Red Hat,
what ensures its continual development.

The Spacewalk naturally supports Red Hat Enterprise Linux, CentOS and Fedora sys­
tems, in other words, the systems based on R P M packages. The aim of my thesis is to add
support of the Debian operating system, based on D E B packages. This support can open
a gate for supporting the all debian based systems such as Ubuntu and other derivations.

The thesis analyses the Spacewalk system, designs functional Debian client tools, and
makes changes on the server side to provide the base functions for Debian systems. The
aim is to add a possibility to register debian systems to Spacewalk, deploy configuration
files and run scripts on these systems, also enable Spacewalk to manage D E B packages,
what takes in receiving them from client and provides them to the other clients.

This paper describes the Spacewalk, the format of D E B and R P M files and differences
between them. In the chapters 3 and 4 the client tools are analysed and their changes are
designed there. The chapter 5 and 6 analyse the server code and introduce its implemen­
tation. Realized tests are described in the chapter 7. In the end there is discussion about
the results and future work is proposed.

3

Chapter 2

Description of technologies

The main used technologies are Spacewalk and deb packaging system. In next paragraphs
they will be introduced and important parts for this work will be described in more details.

2.1 Spacewalk

Spacewalk [15] is open-source management software for Linux systems. It is realesed under
GPLv2 and is derived from Red Hat Network Satellite, which gives customers added values
such as: supporting for 5 years, supported upgrade from an arbitrary previous version,
direct synchronization from rhn.redhat.com, telephone support or the higher prirority of
fixing the bugs reported from customers. The differences between Spacewalk and Satellite
are introduces in the table 2.1.

Spacewalk provides these important services:

• systems inventory - you can review software and hardware information

• install, update or delete software packages on system

• collect and distribute custom software packages into manageable groups

• provision, system kickstarts

• manage and deploy the configuration files

• system monitoring

• manage virtual X E N and K V M guests - start, stop, configure and monitor

• efficient distributing of content across various geographical locations

At this time Fedora, R H E L and CentOS systems are officially supported by the Space-
walk. It is given by fact, that Spacewalk comes from Red Hat. However it supports R P M
packages, so it is possible to use it on other rpm based distributions, it should be easygoing
on OpenSuse and the same way for Mandriva, but there packages have to be compiled by
the users from source.

Spacewalk provides the user web interface for whole available actions, this is a great
feature, because you have an access to your systems from every place connected to a same
network as spacewalk server and from any operating system. This interface is accesible
through H T T P S protocol.

4

http://rhn.redhat.com

Spacewalk Satellite
Primary benefits the latest technology released

early and often
stable and supported

Feature selection and Red Hat and developer com­ Red Hat
integration munity
Development model open source open source
Architectures i386, x86.64 i386, x86.64, s390, s390x
Managed systems Fedora, CentOS Red Hat Enterprise Linux
Red Hat support op- none (community supported) many, including 24x7 pre­
tions mium with unlimited inci­

dents
Content stream manual import direct via Red Hat Network
Release interval 1-3 months 6-9 months
Testers Community Red Hat
Maintenance and up- Community-driven Available via Red Hat Net­
dates work

Table 2.1: The differences between Spacewalk and Satellite [16]

Registered users are divided by the assigned roles. These roles point out the operations,
which can be done by user. Division of the roles:

• Administrative roles

— Spacewalk administrator

— Organization administrator

• Roles

— Channel administrator

— System group administrator

— Activation Key administator

— Configuration administator

— Monitoring administrator

A Spacewalk administrator is the person with the highest rights. He can create new
organizations managed by the Spacewalk and also he can add or manage an organization
administrators. "The organization administrator is a user role with the highest level of
control over an organization's account. Members of this role can add other users, systems,
and system groups to the organization as well as remove them. A organization must have
at least one organization administrator. A Channel Administrator is a user role with full
access to channel management capabilities. Users with this role are capable of creating
channels, assigning packages to channels, cloning channels, and deleting channels." [13] The
capabilities of the other administrators are the same, but there are linked with the the
concrete function like monitoring or configuration.

Spacewalk consists of the several components[13], this is the listing of them and short
description:

5

• Database - Spacewalk supports the Oracle database, but there is ongoing work on
a support of PostrgeSQL. The database can be installed on the same machine as
Spacewalk or on the separate machine.

• Spacewalk - core „business logic" and entry point for yum, the package manager
running on client systems. The Spacewalk also includes an Apache H T T P Server
(serving X M L - R P C requests).

• Web interface - advanced system, system group, user, and channel management in­
terface.

• R P M Repository - package repository for R P M packages.

• Management Tools

— Database and file system synchronization tools

— R P M importing tools

— Channel maintenance tools (Web-based)

— Errata management tools (Web-based)

— User management tools (Web-based)

— Client system and system grouping tools (Web-based)

When a client requests updates, the Spacewalk queries its database, authenticates the
client system by the client ID, identifies the updated packages available for the client system,
and sends the requested R P M s back to the client system. Depending upon the client's
preferences, the package may also be installed. If the packages are installed, the client
system sends an updated package profile to the Spacewalk and it is updated in the database.
And finally those packages are removed from the list of outdated packages for the client.

2.1.1 A n overview of the capabilities

Each Spacewalk capability contains the set of functions, for the better imagination of the
Spacewalk power and value for its users we can take a closer look on the each capability.
The information is taken out of [14].

Management

Spacewalk Management is based upon the concept of an organization. Each Management-
level Spacewalk Administrator has the ability to establish users who have administration
privileges to system groups. A n Organization Administrator has overall control over each
organization with the ability to add and remove systems and users. When users other
than the Spacewalk Administrator log into the Spacewalk web interface, they see only the
systems they have permission to administer.

Wi th each Management subscription, you receive these functionality:

• Package Profile Comparison - compare the package set on a system with the package
sets of similar systems

• Search Systems - search through systems based on a number of criteria: packages,
networking information, even hardware asset tags

6

• System Grouping - web servers, database servers, workstations and other workload-
focused systems may be grouped so that each set can be administered in common
ways

• Multiple Administrators - administrators may be given rights to particular system
groups, easing the burden of system management over very large organizations

• System Set Manager - it is possible to apply actions to sets of systems instead of
single systems, work with members of a predefined system group, or work with an
ad-hoc collection of systems. Install a single software package to each, subscribe the
systems to a new channel, or apply all Errata to them with a single action

• Batch Processing - compiling a list of outdated packages for a thousand systems would
take days for a dedicated sysadmin. Spacewalk Management service can do it for you
in seconds

Provisioning

Like Management, Provisioning is based upon an organization. It takes this concept a step
further by enabling customers with Provisioning entitlements to kickstart, reconfigure,
track, and revert systems on the fly. Provisioning provides:

• Kickstarting - systems with Provisioning entitlements may be re-installed with a whole
host of options established in kickstart profiles. Options include everything from the
type of bootloader and time zone to packages included/excluded and IP address ranges
allowed. Even G P G and SSL keys can be pre-configured.

• Client Configuration - Spacewalk users may use it to manage the configuration files
on Provisioning-entitled systems. Users can upload files to custom configurations
channels on the Spacewalk, verify local configuration files against those stored on the
Spacewalk, and deploy files from the Spacewalk.

• Snapshot Rollbacks - users have the ability to revert the package profile and settings of
systems. Spacewalk users can also roll back local configurations files. This is possible
because snapshots are captured whenever an action takes place on a system. These
snapshots identify groups, channels, packages, and configuration files.

• Custom System Information - users may identify any type of information they choose
about their registered systems. This differs from System Profile information, which is
generated automatically, and the Notes, which are unrestricted, in that the Custom
System Information allows you to develop specific keys of your choosing and assign
searchable values for that key to each Provisioning-entitled system. For instance, this
feature allows you to identify the cubicle in which each system is located and search
through all registered systems according to their cubicle.

Monitoring

Monitoring allows an organization to install probes that can immediately detect failures and
identify performance degradation before it becomes critical. Used properly, the Monitoring
entitlement can provide insight into the applications, services, and devices on each system.
Monitoring provides:

7

• Probes - dozens of probes can be run against each system. These range from simple
ping checks to custom remote programs designed to return valuable data.

• Notification - alerts can be sent to email and pager addresses with contact methods
identified by you when a probe changes state. Each probe notification can be sent to
a different method, or address.

• Central Status - the results of all probes are summarized in a single Probe Status
page, with the systems affected broken down by state.

• Reporting - by selecting a probe and identifying the particular metric and a range
of time, you can generate graphs and event logs depicting precisely how the probe
has performed. This can be instrumental in predicting and preventing costly system
failures.

• Probe Suites - groups of probes may be assigned to a system or set of systems at
once rather than individually. This allows administrators to be certain that similar
systems are monitored in the same way and saves time configuring individual probes.

• Notification Filters - probe notifications may be redirected to another recipient,
halted, or sent to an additional recipient for a specified time based on probe criteria,
notification method, scout or organization.

2.1.2 Spacewalk architecture

Spacewalk is implemented in the several languages and has a classic three-tier architecture
[10]. The presentation tier consists of both a web UI, command line clients, and X M L - R P C
clients (which can in turn be command line or even full blown web applications). Behind the
presentation tier lies the logic tier, which in Spacewalk is spread across the four languages:
Java, perl, python, and P L / S Q L . In reality, there is only a small bit of code that overlaps
between the languages, each language is usually used for separated purposes. Finally, the
last tier, the data tier, is backed by an Oracle database and work for PostgreSql support
has started. Simple diagram of Spacewalk architecture is shown on diagram 2.1.

Web UI

The web UI consisted entirely of perl running through an Apache web server from the first
versions of Spacewalk. Several years ago, a Java migration was started and most of the
commonly used features of the application have been migrated. In general, the perl pages
are only modified to fix bugs or to support the new features in the Java side. Any new web
UI development is being done in Java.

Frontend A P I

One of the most sought-after features of Spacewalk has been its X M L - R P C A P I . Many
users want to write automated scripts to perform repetitive tasks, usually tasks that are
available via the web UI. While a web UI is useful for performing a few tasks on either one
or more servers, sometimes, there is no replacement for a good script. The frontend A P I
attempts to expose as much of the web UI functionality as possible through X M L - R P C .
The frontend A P I is written completely in Java and runs in Tomcat, in conjunction with

8

XMLRPC client Browser OS client

Figure 2.1: Spacewalk Architecture [11]

web UI, within the web application. Because of this, the manager layer is shared between
them.

Backend

The backend provides a set of APIs that the different client utilities (rhn_register, up2date,
yum) can connect to. They are solely used by the client utilities and they are not docu­
mented, but I will write some informatation about them in analysis of client tools.

Taskomatic

Taskomatic is a daemon whose job is to perform long running tasks that are scheduled
to run asynchronously, such as clean up the sessions table, or send out email notifications
for new errata. Taskomatic is written in Java which allows it to take advantage of the
same manager layer as the rest of the Java tier. It runs as a daemon with the help from

9

t anukiwrapper , what is special Java service wrapper.

Search server

One of the most important things of any application which supports large amounts of data
is finding that data. Typically, an application will show pages containing lists of items
which one must page through to find the item you are looking for. While Spacewalk has
the page lists, it also has a search feature which allows one to find the system, package or
errata quickly as opposed to paging through hundreds of items on a list. Spacewalk uses
a standalone search server that run as a daemon, also with the help of tanukiwrapper. The
search server is written in Java.

Java part design

Java version implements standard three tier web application model. It made the sizable
code, what are showing unnecessarily on same places, but there was a speed as a very good
argument to do that.

• User Interface is created by Struts 2 as a controller and J S P 3 as the view. The Struts
servlet gets all web requests and then each request is directed to correct Java code.
Therefore there is no business logic done in this presentation layer. A l l data values
from web forms are encapsulated by UI logic in Data Transfer Object (DTO) and
forwarded to the appropriate manager class in business tier. After processing D T O
are returned to UI layer and result is presented by JSP. Same way as Struts part
JSP does not implement any business logic. It has only one aim, take the objects
associated with the requests and format that information correctly for the UI. Next
technology for UI layer is taglibs, it is used for centralization common display tasks,
for example: displaying a list of data.

• Business logic tier is implemented as a set of static methods, which perform all security
checks, and then make calls to the correct business objects to perform the work. This
tier is slightly muddied today, because it is much heavier weight than it should be.
The problem is the amount of logic that is embedded in stored procedures. Because so
much of this logic is in the database, the manager classes have to make calls directly to
the D B instead of utilizing business objects to do that work. Manager classes are only
allowed to call directly into their related Factory class. For example, the UserManager
can call the UserFactory, but it can not call the ServerFactory. If the UserManager
wishes to retrieve server information, it must call through the ServerManager to do
so. This ensures that no matter what is happening, security checks are performed,
because the Managers take care of all security checks.

• Persistence layer is implemented by Hibernate, which allows to persist standard Java
objects. There is created a standard HibernateFactory class, which implements all of
persistence logic. Each major business object class has its own factory, which extends
the HibernateFactory. For example, the User object has a UserFactory class, which
knows how to persist users, addresses, emailAddresses and other user info.

xhttp://wrapper.tanukisoftware.org/
2 http://struts.apache.org/
3JavaServer Pages

10

http://wrapper.tanukisoftware.org/
http://struts.apache.org/

Python part design

Python part is divided into 2 parts:

• Client part - it is the set of client side libraries that run on the managed system.
The client code periodically checks in with the server, which sends instructions to the
client for executing, for example: rhn.check, rhn_register or yum-rhn-plugin. There
is the only one exception, it is rhnsd, which is written in C.

• Server part - it exposes an X M L - R P C interface which the clients interact with. It
encapsulates a good portion of R H N Satellite's business rules and validation. In order
to service up this X M L - R P C interface a hand coded python object mapping of RHN's
database schema was developed. Schema on 2.2 shows, how server backend is placed
in architecture.

Client

rhn-check

Apache
+

server backend
+

XMLRPC handlers

Filesystem

> Database

Osad
jabber

Satellite
exporter

Channel

dumps

Osa
dispatcher

Satellite
sync

Figure 2.2: Spacewalk server backend architecture

2.1.3 Software channels

A software channel is a list of R P M packages grouped by use. Channels are used to choose
packages to be installed on a system. There are two types of software channels: base
channels and child channels [14]. Channels can be further broken down by their relevance
to your systems, including A l l Channels, Popular Channels, M y Channels, Shared Channels,
and Retired channels.

Base channels

A base channel consists of a list of packages based on a specific architecture. For example,
all of the packages for the x86 architecture make up a base channel. The list of packages
for the Itanium or Alpha architecture make up a different base channel.

A system must be subscribed to one base channel only. This base channel is assigned
automatically during registration based upon server system architecture or to channel,
which is associated with the activation key used during the registration. In the case of public
free channels, the action will succeed. In the case of private or protected base channels,
this action will fail if the channel belongs to another organization or your organization does
not fall into the trusted organizations.

Child channels

A child channel is a channel associated with a base channel that contains extra packages.
For instance, an organization can create a child channel associated with Fedora 10 for the

11

x86 architecture that contains extra packages needed only for the organization, such as
a custom engineering application.

A system can be subscribed to multiple child channels of its base channel. Only packages
included in a system's subscribed channels can be installed or updated on that system.
Therefore channel management is an important task and it has its own administrator role.
This authority has the ability to create and manage organization custom channels.

2.1.4 Configuration

This section is about managing your configuration channels and files, whether they are
centrally managed or limited to a single system. You must be the Configuration Admin­
istrator for having enabled the configuration actions. In addition, you must have at least
one Provisioning entitlement.

„Centrally-managed files are those that are available to multiple systems; changes to
a single file in a central configuration channel can affect many systems. In addition, there
are local configuration channels. Each system with a Provisioning entitlement has a local
configuration channel (also referred to as an override channel) and a Sandbox channel. "[14]

Central configuration management allows user to deploy configuration files to multiple
systems. Local configuration management allows user to specify overrides, or configuration
files that are not changed by subscribing the system to a central channel. Central confi­
guration channels must be created via the web interface. Local configuration channels are
not created this way. They automatically exist for each system to which a Provisioning
entitlement has been applied.

The adding files to the configuration channels can be done by three methods. Files can
be uploaded, imported or created. The upload of file is made by browsing for the file on the
local system. The importing of files works from other configuration channels, including any
locally-managed channels. Finally, file can be created from scratch, that includes entering
the ownership and permissions.

2.1.5 Monitoring

If the machine has Monitoring entitlements, that it enables to view the results of probes,
which have been set to run against Monitoring-entitled systems and manage the configura­
tion of monitoring infrastructure. The probes can have several differant statuses:

• Critical

• Warning

• Unknown

• Pending

• O K

Monitoring data and probe status information that was previously availble only through
the web interface of the Spacewalk can now be exported as a C S V file. The exported data
may include, but is not limited to probe status, all probes in a given state (OK, W A R N ,
U N K N O W N , C R I T I C A L , P E N D I N G) and a probe event history.

12

2.1.6 Similar systems as Spacewalk

The similar system as Spacewalk is Landscape, but it is aimed on Ubuntu systems. "Land­
scape is an easy-to-use systems management and monitoring service that enables you to
manage multiple Ubuntu machines as easily as one through a simple Web-based interface.
Landscape provides powerful, automated systems administration capabilities such as ma­
nagement, monitoring and provisioning of packages across multiple machines lowering your
per-systems cost of management and administration. Landscape simplifies the complex
task of monitoring and administrating multiple servers by enabling IT administrators to
manage multiple machines through a single Web-based interface. At its most basic level,
Landscape securely enables updates and provisioning of packages across multiple (stand­
alone or virtual) machines. In addition, Landscape provides a host of additional monitoring,
user control, process management, inventory control and support enhancement tools that
can help increase your productivity immediately." [2]

Landscape is commercial product from company Canonical, so there is no possibility to
use it free as Spacewak. It is distributed in two version

• Hosted edition - delivered over the internet as Software as a Service (SaaS)

• Dedicated server edition - is installed locally, giving complete control over the envi-
roment

Main features of Landscape are:

• System managment - allows creating groups of systems, managing the software pac­
kages, intergrating custom repositories.

• System monitoring - provides system info tool, maintaining a detailed hardware in­
ventory or security audits.

• Cloud managment - configures, starts, stops and updates a private Ubuntu Enterprise
Cloud.

2.2 Package management systems

" A package management system is a collection of tools to automate the process of installing,
upgrading, configuring, and removing software packages from a computer. Distributions
of Linux and other Unix-like systems typically consist of hundreds or even thousands of
distinct software packages; in the former case a package management system is nice, in the
latter case it is essential" [22]. Because it is almost not possible to handle all packages by
human.

Packages are bundles of software and its metadata, metadata usually contains full name
of software, short and long description, version and release number, vendor, checksums, list
of dependencies on other packages, which is needed for correctly running of software. After
installation is all that metadata stored in a local package database.

These systems are sometimes incorrectly called as installers. There are a lot of differen­
ces between package management systems and installers:

13

Package management system Installer
part of operating system each product has own installer
single installation database handle installation info by own way
can verify and install all packages on system works only with bundled product
single package management system vendor multiple installer vendors
single package format multiple installation formats

Main task of package management systems is maintaining all of the packages installed
on the operating system and ensures their usability. This maintainance consists of these
functions:

• installing and removing selected packages

• verifying correctness and completness of packages by checksums controls

• authenticating the origin of package by verifying digital signatures

• upgrading packages with lastest version from a software repository

• providing info about packages to users

• managing dependencies to ensure a package is installed with all packages it requires

Critical state is dependency hell, which have to be avoided by good package management
system. It can be caused by requiring different versions of dynamicly linked libraries, which
are widely used on linux based systems. Dependency hell is well known on windows systems
as D L L hell, but it is known on linux systems too, for example R P M hell on systems with
R P M package manager, but this problems are solved by intelligent wrappers as yum.

The next problem with package management systems connected with the upgrading
of packages is upgrading of configuration files. Package management systems are usually
based on file archiving utilities, so they used to only either owerwrite or retain configuration
files, rather than applying rules to them. There are some exceptions for example kernel
configuration, because error in these files can caused unusability of system. Main problem
is change in format of the configuration files. For instance, if the old configuration file does
not explicitly disable new options that should be disabled. Possible solutions is allowing
configuration during installation or if it is desirable, install packages with the new default
configuration and then owerwrite it.

2.2.1 A P T

A P T is an abbreviation for Advanced Packaging Tool. " A P T is a free user interface that
works with core libraries to handle the installation and removal of software on the Debian
G N U / L i n u x distribution and its variants. A P T simplifies the process of managing software
on Unix-like computer systems by automating the retrieval, configuration and installation
of software packages, either from binary files or by compiling source code." [18]

A P T can work on more platforms. Originally, it was designed for Debian as dpkg front-
end, but later the support for work with R P M was added via apt-rpm. A P T is also available
for Mac OS X , OpenSolaris, and currently it was ported to iPhone OS and there is work
for porting it to other certain mobile operating systems.

There is no single apt program, because it is the set of tools and libraries. The main
important programs are apt-get and apt-cache. Apt-get is command-line tool for installing,
updating or deleting packages and it knows other usefull functions like cleaning or autore-
moving.

14

2.2.2 Y U M

"The Yellowdog Updater, Modified (YUM) is an open-source command-line package man­
agement utility for R P M compatible Linux operating systems and has been released under
the G N U General Public License. It was developed by Seth Vidal and a group of volun­
teer programmers. Though yum has a command-line interface, several other tools provide
graphical user interfaces to yum functionality." [23]

The predecessor of yum was Y U P - Yellowdog Update, yum was created as its full
rewrite. Various provided actions are called by commands in format yum command_name
parameters. The most important commands are install, remove, info, list, clean or update.
Yum repository is a simply directory, where can be optionally the next subdirectories, with
meta information in X M L format, which contains standard info about dependencies, file
lists and similar. Yum can access the repository over ftp, http or a file U R L

Y U M plugins

"Yum has a simple but powerful plugin architecture which allows external modules to
add new features and/or modify Yum's behaviour. Yum plugins are Python modules (.py
files) which are loaded when Yum starts. Plugins were created partially as a place to
put functionality that was seen as either less common or undesirable for the main yum
package. Functionality in plugins will generally not be moved or included in the core yum
package." [12]

The architecture is similar to event-based architecture. There are a functions, called
hooks, which corresponds to given slots. A slot is a point in yum's execution chain. When
the point for exact slot is reached, all the hook functions, which were registered for that
slot, are called. The registration of hooks is automatic, and it is made by plugin module
according to the functions names. If the function name is in the format slotname_hook, the
function is automatically registred as the hook function for that slot. A l l hook functions take
one argument, a conduit instance. This is object, which provides methods and parameters
for communication with the Yum. Conduit differs depending on the plugin slot.

The following slots exist and time of their execution:

• config - initialization of plugins

• postconfig - after yum config object is initialised

• init - start of yum initialization

• predownload - before start of downloading packages

• postdownload - after finishing package downloads

• prereposetup - before initialization of repository information

• postreposetup - after initialization of repository information

• exclude - after package exclusion or inclusion is processed

• preresolve - before package resolution

• postresolve - after package resolution

• pretrans - before update transaction

15

• posttrans - after update transaction

• close - on the yum exit

• clean - during clean up invoked by commands clean all or clean plugins

2.3 Package formats

There are different package formats for distributing software on various Linux systems. Ba­
sic kinds are binary and source packages. The next kinds are according to their architecture.
In the next paragraphs the two most known package formats will be introduced.

2.3.1 D E B

"Debian packages are also used in distributions based on Debian, such as Ubuntu and
others. Debian packages are standard Unix ar archives that include two gzipped, bzipped
or lzmaed tar archives: one that holds the control information and another that contains
the data" [20].

The file header of ar archive is as follows [19].
Field Offset from Field Offset to Field Name Field Format

0 15 File name ASCII
16 27 File modification timestamp Decimal
28 33 Owner ID Decimal
34 39 Group ID Decimal
40 47 File mode Octal
48 57 File size in bytes Decimal
58 59 File magic 0x60 OxOA

Main tool for managing deb packages is dpkg, but it is easier to use higher level tools
as apt, aptitude or synaptic, which use dpkg as the backend. These tools provide graphical
interface so it is more confident for begginers, but they can solve much more things than
dpkg for example installing dependencies.

Structure of the package

• debian-binary: file with deb format version number, currently it is 2.0

• data.tar.gz: or other type of archive according to used archiver. This archive contains
installable files.

• control.tar.gz: contains files with meta-information:

— control - base meta-information with package name, version, architecture, main-
tainer, size, dependencies and description

— conffiles - list of the configuration files
— md5sums - list of the md5 checksums for each file in data archive
— preinst - script, which is run before package installation
— postinst - script, which is run after package installation
— prerm - script, which is run before package removing
— postrm - script, which is run after package removing

16

Creating deb packages

Creating of deb packages is relatively easy and there is no need of special tools as you need
for creating R P M packages, you can create package with only tools ar and tar [24], but it is
comfortable to use tools, which make some tasks automatically.

Very good tool is debhelper, which is widely used. It contains various small tools like
dh_make, which can help with creating a basic directory tree and required files for package
creation. It takes information from console parameters and from enviroment variables.
Name and email of packager should be set in enviroment variables D E B F U L L N A M E and
D E B E M A I L . Third important information is type of license, which can be set by parameter.
Other info will be asked by tool during the preparation of package. This tool is creating
example files too, they are marked by extension .ex or . E X , this is usefull for begginers, else
it is good to remove them[17].

Files for building package are created in directory debian, there will be listed and
described:

• compat - version of debhelper used for building package, it is important for compati­
bility, because debhelper is still developing

• control - information with package name, version, architecture, maintainer, size, de­
pendencies and description

• copyright - license of package, Debian is very strict on this issue

• docs - list of documentation

• dirs - list of the directories, where files from package will be stored

• changelog - list of changes between packages revisions

• rules - rules for make, which are needed for package compilation

• watch - script for tool uscan, which can control if package is up-to-date

• N E W S - important messages for users

• README.Deb ian - information about changes of debian package from original one
for other package system

We can take a look on the very important file control, show the example of this file
and then introduce the parameters used in it:

Source: rhn-client-tools

Section: admin

Priority: extra

Maintainer: Lukas Durfina <lukas.durfinaOgmail.com>

Build-Depends: python-all-dev, python-support (>= 0.8), debhelper (>= 7),

gettext, intltool, pychecker

Standards-Version: 3.7.3

Homepage: http://rhn.redhat.com

Package: rhn-client-tools

17

http://rhn.redhat.com

Architecture: a l l

Essential: no

Depends: ${python:Depends},${shlibs:Depends}, ${misc:Depends}, gnupg, hal,

rhnlib (>= 2 . 1) , python-dbus, python-ethtool, python-rpm
Provides: ${python:Provides}

Description: Red Hat Network Client Tools provides programs and libraries

Red Hat Network Client Tools provides programs and libraries to allow

your system to receive software updates from Red Hat Network.

Description of parameters [5]:

• Source - contains a name of the source package. The name consist only of lower case
letters (a-z), digits (0-9), plus (+) and minus (-) signs, and periods (.). The name
must be at least two characters long and must start with an alphanumeric character.

• Section - This field specifies an application area into which the package has been
classified.

• Priority - Priority represents how important it is that the user have the package
installed.

• Maintainer - The package maintainer's name and email address. The name should
come first, then the email address inside angle brackets.

• Build-Depends - The Build-Depends field must be satisfied when any of the follow­
ing targets is invoked: build, clean, binary, binary-arch, build-arch, build-indep and
binary-indep.

• Standards-Version - The most recent version of the standards (the policy manual and
associated texts) with which the package complies.

• Homepage - The U R L of the web site for this package, preferably (when applicable)
the site from which the original source can be obtained and any additional upstream
documentation or information may be found. The content of this field is a simple
U R L without any surrounding characters.

• Package - The name of the binary package. Binary package names must follow the
same syntax and restrictions as source package names.

• Architecture - Depending on context and the control file used, the Architecture field
can include the following sets of values:

— A unique single word identifying a Debian machine architecture

— all, which indicates an architecture-independent package.

— any, which indicates a package available for building on any architecture.

— source, which indicates a source package.

• Essential - If set to yes then the package management system will refuse to remove
the package (upgrading and replacing is still possible). The other possible value is
no, which is the same as not having the field at all.

18

• Depends - This declares an absolute dependency. A package will not be configured
unless all of the packages listed in its Depends field have been correctly configured.

• Provides - The field contains a list of provided packages, virtual packages can be listed
too.

• Description - The field contains a description of the binary package, consisting of two
parts, the synopsis or the short description, and the long description.

Debian repository

" A Debian repository is a set of Debian packages organized in a special directory tree which
also contains a few additional files containing indexes and checksums of the packages. If
user adds a repository to his /etc/apt/sources.list file, he can easily view and install
all the packages available in it just like the packages contained in Debian.A repository can
be both online and offline (for example on a C D - R O M) , although the former is the more
common case." [4]

A repository consists of at least one directory with some D E B packages in it, and special
index files, there are two index files: Packages . gz for the binary packages, and Sources .gz
for the source packages. According to the listing of the repository in sources.list, apt-get
will fetch Packages.gz for the entry with the keyword deb (binary packages) and Sources.gz
if the keyword is deb-src (source packages).

Packages.gz contains the name, version, size, the short and the long description, and
the dependencies of each package, plus some additional information. A l l that information is
listed (and used by) the Debian package managers such as aptitude. Sources.gz contains the
name, version and the build dependencies (the packages needs for building) of each package
(plus some other information). That information is used by apt-get source and similar
tools. There's an optional Release file containing some informations about the repository.

A structure of the repository

(repository root)

I-conf

|-db

I-dists

I |-etch

I | |-main

I I I I-binary-all

I I I I-binary-i386

I I I I-binary-...

I | | +-source

I | |-contrib

I I I I-binary-all

I I I I-binary-i386

I I I I-binary-...

19

I I I +-source

I | +-non-free

I | |-binary-all

I | |-binary-i386

I | |-binary-...

I | +-source

I +-lenny

I |-main

I | |-binary-all

I | |-binary-i386

I | |-binary-...

I | +-source

I |-contrib

I | |-binary-all

I | |-binary-i386

I | |-binary-...

I | +-source

I +-non-free

I |-binary-all

I |-binary-i386

I |-binary-...

I +-source

+pool

The conf directory contains a file distributions, which has general information about
the repository content. Every item in this file has these parameters: origin, label, suite,
codename, version, architectures, components and description. Directory db involves files
with specific repository data in berkeley database format: checksums.db, content.cache.db,
files.db, packages.db, references.db, relese.caches.db and version. In the dists directory
are be listed the supported distributions of Debian. In our example we have there etch and
lenny, but there also can be much more values like sid, sarge or higher level specifications
like experimental, stable, unstable or testing. In the pool directory the packages are stored
and the are separated in the subdirectory according to a first letter int their name.

There is a several tools for easier creating Debian repository [7]:

• dak (Debian Archive Kit) - packaging of the tools handling the official Debian repo­
sitories

• reprepro (formerly known as mirrorer) - local Debian package repository storing files
in a directory pool.

• debpool - lightweight replacement for dak using a pool layout

• debarchiver - a simpler version of dak

• mini-dinstall - miniature version of dak

• apt-ftparchive - superset of dpkg-scanpackages and dpkg-scansources

20

• dpkg-scanpackages and dpkg-scansources - can not create Release nor Contents files

• mini-dak - partial and lightweight reimplementation of dak in shell script and with
no database dependencies

• DebMarshal - maintain multiple snapshots from upstream distros, to permit staging

2.3.2 R P M

R P M was created by Red Hat for Red Hat Linux, but now it is used on many Linux
distributions. R P M file format is also the baseline package format for Linux Standard
Base, what is the standard managed by Linux Foundation.

R P M files has specific naming convention: name-version-release.architecture.rpm[l].
Name and version is of course name and version of packaged software, release is the num­
ber of times this version of the software has been packaged and architecture is a shorthand
name describing the type of computer hardware the packaged software is meant to run on.
It can be src or nosrc. The nosrc string means that the file contains only package building
files, while the src string means the file contains the necessary package building files and
the software's source code.

Every R P M package file can be divided into four distinct sections: lead, signature,
header, archive. Package files are written to disk in network byte order. If required, R P M
will automatically convert to host byte order when the package file is read.

The lead

The lead is the first part of R P M package file. It was used for storing information used
internally by R P M in older versions of R P M . Now it is used for easy identification of R P M
file by tools like file in unix. A l l the information contained in the lead has been duplicated
or superseded by information contained in the header.

The lead starts with magic number, that identify the file as R P M package. Next two
bytes indicate R P M file format version. After them there are next two bytes for determining
binary or source package. Next two bytes store architecture, that the package was built for.
If the package is source package, these bytes should be ignored. Next bytes contain name
of the package and it is ended by null character. The next bytes represent the operating
system for which this package was built. Translations between number and coresponding
operating systems are written in file rpmrc, it is same for translations between numbers
and architectures. The last bytes are identification for type of a signature.

The lead is an abandoned data structure, because it is not flexible, for example the
name of package is limited by 66 chars. The solution of this problem is header section.

The signature

The signature section follows the lead in the R P M package file. It contains information
that can be used to verify the integrity, and optionally, the authenticity of the part of the
package file. Only the header and archive parts can be verified, because the data in the lead
and header of signature are not included when the signature information is created. This
is not a weakness of R P M design, because the lead is used only for easily indentification
and the change of that part would cause only unsuccesfull identification of the package.
The change to the signature header structure would make it impossible to verify the file's
integrity and therefore it would be unusable.

21

The first bytes of the signature is the magic number for the start of the header structure.
The next byte indicates the header structure's version. The next four bytes are reserved.
After that the number of index entries is following. The next number indicates how many
bytes of data are stored in the signature. Following the first 16 bytes is the index. Each
of the index entriy in the header structure consists of four numbers: tag, type, offset and
count.

The header

The header section contains all available information about the package. Entries such as
the package's name, version, and file list, are contained in the header. Like the signature
section, the header is in header structure format. Unlike the signature, which has only
three possible tag types, the header has more than sixty different tags.

The easiest way to find the start of the header is to look for the second header structure
by scanning for its magic number. The sixteen bytes, starting with the magic, are the
header structures's header. The byte following the magic identifies this header structure
format. Following the four reserved bytes, we find the count of entries stored in the header.
The next four bytes tell us how many bytes of data is in the store. Next is the tag for the
package name, and it finishes with data types values.

The archive

At the end after the header part is the archive, that holds the actual files that comprise
the package. Before rpm version 4.7 the archive was compressed by G N U zip. The archive
started with magic number for a gzipped file. The following byte was flag used by G N U zip
to indicate compression method. The next byte stored strength of compression and the last
byte was mark of the operating system under which the archive had been compressed. Now
L Z M A archive format is used. L Z M A has higher compression and faster decompression, so
downloading and installing of package is faster and it makes the lower data traffic on the
net.

The creation of R P M package

For building R P M package the packager needs source of the program and . spec file. Source
can be prepared as tar file or .src.rpm package. A l l other things are described in .spec file.
There is an example of this file and explanation of its parts according to [8]:
Name: python-debian

Version: 0.1.16

Release: 1

Summary: Modules for Debian-related data formats

debfile.py, arfile.py, debtags.py are release under GPL v3 or above

everything else is GPLv2+

License: GPLv2+ and GPLv3+

Group: Development/Libraries

SourceO : http: //ftp. debian. org/debian/pool/main/p/python-debian/python-debian_'/,{version}.tar. gz

URL: http://git.debian.org/?p=pkg-python-debian/python-debian.git

BuildRoot: °/
0
(mktemp -ud %{ Jtmppath}/°/o{name}-°/o{version}-°/

0
{release}-XXXXXX)

BuildArch: noarch

Requires: python >= 2.4

22

http://git.debian.org/?p=pkg-python-debian/python-debian.git

BuildRequires: python-devel, python-setuptools

"/description

This package provides Python modules that abstract many formats of Debian

related f i l e s . Currently handled are:

* Debtags information (debian.debtags module)

* debian/changelog (debian.changelog module)

* Packages f i l e s , pdiffs (debian.debian_support module)

* Control fi l e s of single or multiple RFC822-style paragraphs, e.g.

debian/control, .changes, .dsc, Packages, Sources, Release, etc.

(debian.deb822 module)

* Raw .deb and .ar f i l e s , with (read-only) access to contained

fil e s and meta-information

°/prep

"/setup -q

'/.build

'/{--python} setup.py build

'/install

rm -rf $RPM_BUILD_R00T

'/.{_.python} setup.py install —prefix=°/{_prefix} —root=$RPM_BUILD_ROOT

"/clean

rm -rf $RPM_BUILD_R00T

°/{__python} setup.py clean

"/files

°/def attr (- ,root, root, -)

°/dir °/{python_sitelib}/debian

°/dir °/{python_sitelib}/debian_bundle

°/{python_sitelib}/* .py*

°/{python_sitelib} /debian/* .py*

°/{python_sitelib}/debian_bundle/__init py*

°/{python_sitelib}/python_debian*

°/doc README README.changelog README.deb822 HISTORY.deb822 ACKNOWLEDGEMENTS

'/changelog

* Thu Apr 22 2010 Lukas Durfina <lukas.durfina@gmail.com> 0.1.16-1

- Creation of package

Description of parameters:

• Name - package name

• Version - current version of software in package

23

mailto:lukas.durfina@gmail.com

• Release - mark of build revision

• Summary - short description, should be visible on one line in terminal

• License - license of application

• Group - type of application

• SourceO - path to source of packed application

• U R L - U R L to program in package

• BuildRoot - directory for program building

• BuildArch - aimed architecture

• Requires - required packages for correct using of program

• BuildRequires - required packages for building of package

• %description - expanded text about package

• %prep - creation of a build enviroment

• %build - steps for compiling of program

• %install - installation commands

• %clean - cleaning the build enviroment

• %files - the list of package files

• %doc - documentation files

• %changelog - log with changes

2.3.3 Differences between D E B and R P M

The short comparison of the formats D E B and R P M [3]:

24

Description D E B R P M
Security, authentication, and verification

Signed packages (internal support for a G P G or P G P signature) yes yes
Checksums (for all files in the package) yes yes

Permissions, owners, sizes etc. yes yes
Usability by standard linux tools

Recognizable by a tool file yes yes
Data unpackable by standard tools yes no 1

Metadata accessible by standard tools yes no
Creatable by standard tools yes no

Metadata
Name yes yes

Version yes yes
Description yes yes

Dependencies yes yes
Recommendations yes no

Suggestions yes no
Conflicts yes yes

Virtual packages and provides yes yes
Versioned dependencies and conflicts yes yes

Boolean package relationships 2 yes no
File dependencies 3 no yes

Copyright info 4
no

yes
Assigning to a group yes yes

Priority yes no
Special files

Config files yes yes
Documentation files no yes

Ghost files no yes
Package programs

Binary programs allowed yes no
Pre-install program yes yes
Post-install program yes yes
Pre-remove program yes yes
Post-remove program yes yes

Verify program no yes
Triggers yes yes

Scalability
No hard-coded limits yes yes

New metadata yes yes
New section yes no

Format version data yes yes

1rpm2cpio can do it, but it's not a standard tool, except on rpm-based systems.
2This means that a package can depend, conflict, etc on a package AND (another package OR a third

package). Any boolean expression must be representable, no matter how complex.
3The package can require that some other package be installed that contains a given file (like /bin/sh)
4Copyright info is included in deb packages, but not in an easily extractable format.

25

2.3.4 ebuild

" A n ebuild is a specialized bash script format created by the Gentoo Linux project for use
in its Portage software management system, which automates compilation and installation
procedures for software packages." [21]

The application is installed by command: emerge name_of_application, emerge is also in­
stalling all dependencies. The ebuild name format is usually following: name_of_application-
version. ebuild

"Each version of an application or package in the Portage repository has a specific ebuild
script written for it. The script is used by the emerge tool, also created by the Gentoo
Linux project, to calculate any dependencies of the desired software installation, download
the required files (and patch them, if necessary), configure the package (based on „USE
flag" settings), compile, and perform a sandboxed installation (in /var/tmp/portage/[ebuild
name]/image/ by default). Upon successful completion of these steps, the installed files are
merged into the live system, outside the sandbox.

Although most ebuilds found in the Gentoo Portage repository are used to compile pro­
grams from source code, there are also ebuilds to install binary packages, ebuilds that install
only documentation or data such as fonts, and basic ebuilds called „metabuilds" which solely
trigger the installation of other ebuilds (such as the G N O M E or K D E metabuilds)." [21]

26

Chapter 3

Analysis of the client tools

Client tools have to be installed on each machine, which should has been registered and
managed by Spacewalk. There is more tools, which have the speficic purposes like regis­
tering, running scripts or distributing configurafion files. The description is based on the
source code of tools [9].

3.1 rhnlib
Rhnlib is a collection of python modules used by the Spacewalk. It is the base package
for all client packages. It provides a secured communication channel between server and
client using SSL, therefore it requires pyOpenSSL. Rhnlib provides X M L - R P C interface for
sending and receiving messages from the server. These messages are processed by the other
client tools.

Server
rpclib.py

+default_transport()

+allow_redirect(}

+redirected 0

+set_refresh_callback()

+set_buffer_size()

+set_progress_callba ck<)

+e t_re spon s e_he ader s 0

+get_response_status 0

+get_response_reason 0

+get_content_range()

+accept_ranges()

+set_transport_flags 0

+get_transport_flags 0

+set_header 0

+add_header(}

+setlang 0

+use_CA_chain()

+add_trusted_cert 0

+close<! I
GETServer

rpclib.py

httplib.HTTPResponse I
HTTPResponse

I
HTTPS Proxy Response

httplib.HTTPConnection I
HTTPConnection

+set_callbacM)

+getresponse 0

I
HTTPProxyConnection

connections.py
HTTPSConnection

connections.py - J

+connect () +connect<>

+putreguest()

HTTPSProxyConnection

+putrequest()

SSLSocket
SSL.py

- a d d _ t r u s t e d _ c e r t (f i l e)

- i n i t _ s s l <)

+makefile(mode,bufsize)

lose(}

e l l O

p o r t _ f l a g s ()

nsport ()

Figure 3.1: The most important classes of rhnlib

27

3.2 rhn-client-tools

Rhn-client-tools is the package with collection of tools and libraries for the managing of the
client system. The tools:

• rhn_check - polls the Spacewalk server and receives queued actions for the system.
After receiving the actions, rhn.check will then process them, and return the results
to Spacewalk.

• rhn-profile-sync - connects to Spacewalk and refreshes the data stored for the sys­
tem. It updates data about installed packages, machine hardware, and virtual guest
instances.

• rhn_register - is a client program that registers the system to Spacewalk. It can run
both in graphical and text modes.

• rhnreg_ks - is a client program for registering a system to Spacewalk. It is designed
to be used in a non-interactive environment. A l l the information can be specified on
the command line or stdin.

Config

up2date_client/co
nfig.py

Error

up2date_client/up
2dateErrors.py

< .

<:

RhnCli

up2date_client/rh
ncli.py

+run ()

+ i n i t i a l i z e ()

+saveConfig()

+main()

+_testRhnLogin()

+_warning_dialog()

Log

up2date_client/up
2dateLog.py

CheckCli
bin/rhn_ check.py

+main ()

+submit_response ()

+handle_action()

+is_valid_action()

- get_action ()

- run_remote_actions ()

- v e r i f y _ s e r v e r _ c a p a b i l i t i e s ()

Lockfile

up2date_client/rh
nLockFile.py

ClientCapabilities

up2date_client/cl
ientCaps.py

ProfileCli

bin/rhn-profile-s
ync.py

+main ()

Capabilities

up2date_client/ca
pabilities.py

RhnRegister

bin/rhn_regi$ter.

py
+main()

+_get_ui()

RegisterKsCli
bin/rhnreg_k$.py

there i s dependency

on the many classes

for several windows

Start Window

up2date_client/tu
i.py

Figure 3.2: The class design of the client tools

A l l libraries from this package are supporting for tools, which were noted in a previous
paragraph. Main capabilities are focused in hardware and packages information. For hard­
ware control is used Hardware Abstraction Layer and linux system's tool uname. Library

28

provides complete information about cpu, this is parsed from file /proc/cpuinf o. The data
about memory is found out from file /proc/meminf o, but this proces is different between
kernel version 2.4 and 2.6, what is given by various formats. Functions gethostname () and
gethostbyname () are providing a base data about networking.

Python has the modules transaction and rpm, which are used for getting information
about packages. For each package is stored name, version, release, architecture and op­
tionally epoch and cookie. The name is name of package, the version is version of packed
content, the release is a number of this version build, the architecture describes an aimed
architecture. If package is indepedent on architecture, it is marked as noarch. The epoch
term allows package manager to replace old packages with a bit different names, for example
packages, which are release candidates and have rc in name.

3.3 rhncfg

Rhncfg contains all libraries and functions for running configuration actions scheduled via
Spacewalk. Main actions are distribution of the configuration files and running scripts.
Each script can be run with the privileges of selected user and group, there can be set
timeout and time, when running of that script will be allowed, this is done by Spacewalk
web GUI .

Another actions are diff of the configuration files, uploading the files or mtime. Diff is
needed by compare function of Spacewalk, which can compare all or selected managed files
by Spacewalk. The uploading files is usefull, if the configuration files are created on the one
managed systems, then they are upload to configuration channel on Spacewalk and after
that they are distributed on all systems registered to this configuration channel.

This package provides three binaries:

• rhn-actions-control - tool for allowing or disabling features (deploying, running scripts,
uploading, diff) and for getting report of actual status of these features settings.
Configuration is stored in directory /etc/sysconf ig/rhn/allowed-actions/, there
are two subdirectories configfiles and script, in each subdirectory is file, which appoints
allowed actions, for example if rhn-actions-control was run with a parameter -enable-
all there is the file named all in each of these two subdirectories. Another names for
this files are deploy, diff, upload, mtime_upload, these files can be combined, if there
is not used file all. The design of this program is presented on the figure 3.3.

• rhncfg-client - supports all actions for configuration files: diff, deploying, verifying
and listing. The architecture of the tool is shown on the figure 3.4

• rhncfg-manager - maintains parts connected with server part, like creating, listing,
removing or downloading configuration channels. The architecture is designed by the
same way as the rhncfg-client.

3.4 rhnsd

Rhnsd is a query daemon, which automatically queries the Spacewalk server by running the
rhn.check tool, which gets scheduled actions and takes care about them. Rhnsd is written
in C language, so it is not architecture independent like other client tools, which are created
in python.

29

ModeControllerCreator
actions/ModeControllerCreator.py

+set_controller_class()

+populate_list()

+create_controller()

1
, i

ConfigFilesModeController
actions/Mode Controller.py

t +i s_on (mode_name)

+is_off (mode_name)

+on (mode_name)

+of f(mode_name)

+all_on()

t +i s_on (mode_name)

+is_off (mode_name)

+on (mode_name)

+of f(mode_name)

+all_on()

I

• I

I

ModeCont roller
actions/ModeController.py

+on(mode_name)

+of f(mode_name)

+all_on ()

+all_of ()

+is_on(mode_name)

+is_off(mode_name)

+add_mode(mode_obj)

+del_mode (mode_obj)

+set_force(force)

Figure 3.3: The design of classes for controlling configuration modes

Main BaseMain

config_clisnt/rhn - config_common/rhn
cfg-client.py main.py
actions: diff,
get, list, elist, +main<)

channels, verify +usage{)

Handler
rhncfgc/i_diff.py

action: diff

+_process_file{)

Handler
rhnctgcti_get.py

action: get

+run{)

Handler
rhnctgctijist.py

action: list

+run{)

Handler

rhnctgcti_etist.p
y

action: etist

+run{)

+ostr_to_sym {)

Handler

rhncfgcli_channel
spy

action: channels

Handler

rhncfgcli_verify.
py

action: verify

Figure 3.4: The class design of the rhncfg-client

This daemon has only the one configuration parameter, it is interval in minutes, which
is stored in file / e t c / sysconf ig / rhn / rhnsd and it schedules how often rhn.check should
be run. Due to using rhn_check this package depends on package rhn-client-tools.

Rhnsd checks if it is running with root privileges, other way it ends. After that it makes
control, if the only one instance is running. Wi th function openlogO is opened connection
to the system logger and the log messages are written by s y s l o g O . After setting the
signals handlers is made final initialization and the the infinite while loop is started. There
is run the rhn.check after waiting the interval.

3.5 rhnpush

Rhnpush uploads binary or source packages and their headers to the Spacewalk into speci­
fied channel and allows several other channel management operations relevant to controlling

30

what packages are available per channel. The action can be done only by the channel ad­
ministrator for selected channel, so the username and the password have to be provided.

Process of uploading package:

• Parse given console parameters by class OptionParser, which is a part of standard
Python module optparse or optik

• Get configuration from configuration files by class ConfManager, which is included in
rhnpush package

• Create instance of UploadClass with given parameters and configuration

• According to parsed options take an appropriate action (in our case the uploading of
package)

• Set force flag, organization name, U R L , channels, server and finally authenticate

• Ping the url for uploading packages and get an answer

• Check the answer of server for header X-RHN-Check-Package-Exists to know if the
server supports the capability fo check existence of file on the server

— If the capability is supported, the client will compute MD5 sum of the package
and create a base information about package like name, version, release, epoch
and architecture and add the information of an aimed software channel. This
information is pushed to Spacewalk and the answer of an existence of this package
is returned.

• If the package does not exist on the server or force flag is set, the package will be
uploaded to Spacewalk. The header is created and it is sent with the data stream of
the whole package. There are two methods of sending, which are selected according
to the result of the ping from the previous step:

— P O S T - uses http protocol, rhnpush identifies itself as agent rhn-package-upload
and all headers have prefix X-RHN-Upload. There are these headers: Package-
Name, Package-Version, Package-Release, Package-Arch, Packaging and File-
MD5sum. The body of the http packet is filled with the package.

— X M L - R P C - standard X M L - R P C call is used with given username and password
or the identificator of open and autorizated session. To this data is attached hash
with information about package, target channel and packaging type. This call
use the public Spacewalk A P I .

In the previous text some important classes was mentioned, the design and methods of
these classes are presented on the figure 3.5. The packages can be uploaded into specific
channels or generally to Spacewalk, and then they are marked as unmanaged and the
channel administrators can move them into a concrete channel later. The condition of
succesfull upload to channel is compatible archicture of package and channel. In the case
of an incompatibility the package becomes unmanaged and is not subscripted into any
channel.

31

RHNPushSession
rhnpush_cache .py

t s e t s e s

+getSes.

+readSess.

r i t e S e s .

o n S t r i n g ()

o n S t r i n g O
-<

UploadClass
uptoadLib.py

ord()

namePassword()

-warn ()

- d i e d

- set URL ()

-setUsernameP.

-setP roxyU.

-setCAchain ()

-setP roxy ()

-setForce ()

-setServer ()

-setChannels()

-setOrg ()

-setCount()

- s e t R e l a t i v e D i r ()

- d i r e c t o r y ()

- f i l t e r _ e x c l u d e s ()

-readStdin ()

- l i s t ()

-newest ()

-get_newest_binary_packages()

-get_miss ing_source_packages()

-test ()

-uploadHeaders()

-checkSes s i o n ()

-readSession()

-writeSession()

-a_iLhe:iL±caLe ()

UploadClass
rhnpush.py

-setURL ()

-setOrg ()

-setForce ()

-s e t R e l a t i v e D

-setChannels(

. s t _ f o r c e ()

. s t _ s e t _ o r g ()

. s t _ s e t _ u r l ()

ist_set_channe

. s t _ s e t _ r ()

+_Le,sL_a_iLhe:iL±caLe ()

+extended_test()

+packages()

+package()

+_push_package_v2()

+_push_package_xmlrpc()

MPM_Package
rhn_mpm.py

r i t e ()

r e a d _ l e a d ()

r e a d _ b y t e s ()

read_header()

read_payload()

+add_header_flag()

+add_payload_flag()

+ r e s e t _ h e a d e r _ f l a g s (

+ r e s e t _ p a y l o a d _ f l a g s

+_encode_header()

+_encode_payload()

+stream_copy()

RPM_Header
rhn_rpm.py

- i s _ s igned()

-_ext r a c t _ s i g n a t u

MPMJHeader
rhn_mpm.py

+packaging

Figure 3.5: The design of the main classes from rhnpush

3.6 yum-rhn-plugin

Yum-rhn-plugin is a plugin for yum, the package management utility. It provides support
for accessing Spacewalk to get software updates. Plugin uses standard yum plugin archi­
tecture. On the figure 3.6 the plugin classes are shown. In the following text there will be
a description and an explanation of the plugin.

YumRepository
from yum.yumRepo

I
RhnRepo

1-setupRhnHttpHead.ers ()

>-_getFile ()

h_noExceptionWrappingGet()

i-_setupGrab ()

h_getgrabfunc()

h_getgrab()

i-_setChannelEnable ()

i-enablePersistent ()

1-d.isablePersistent ()

h_getRepoXML ()

yum.YumBase

YumAction

+doTransaction()

+gpgsigcheck()

+isRepoUs±ngRedHatGPG()

+getInstalledPkgObject()

+add_transaction_data()

RunTransactionCommand

^execute()

Figure 3.6: The classes used by yum-rhn-plugin

The plugin is formed by 2 source files: rhnplugin.py, which contains hook functions for
implementation of yum plugin, and packages.py, which is implementing provided actions
similar to other spacewalk client tools. There is a list of these actions, each action has the
function with a same name:

32

• update - gets a list with packages, which have to be installed. From that list the
transaction data are created, these data are represented by the python dictionary
type and contain the array, where each package is stored with the requested action,
what is „install" in that case. Then the transaction is run with these data. The
transaction is an ability of yum, which can ensure that the failed action will be
completly rollback and it will have no bad influence to the state of the system.

• remove - works the same way as the update action, but the important difference is the
action, which is done with the packages in the received list. In that case the packages
are removed from the system with all dependencies, which can not be installed on the
system without the packages marked for deletion.

• refreshJist - gets an actual list of installed packages from the client. This action is
called everytime, when some modification with packages is done by the other function.

• fullUpdate - calls the update command on the yum. It checks all available package
updates and install them.

• checkNeedUpdate - checks if the locally installed package list changed. If there was
a change, the update would be ensure by the refreshdist action.

• runTransaction - gets the transaction data as a parameter and it runs the transaction
on a group of packages. This was historicaly meant as generic call, but is only called
for a rollback. Therefore all install actions are changed to rollback actions, where
dependencies and obsoletes will not be checked, because plugin assumes that state to
which it is rolling back should be correct.

• verify - gets the list of packages, which have to be verified. The verification is com­
posite from the control of the package, which has to be installed and in correct state.

• verify A l l - verifies all the packages on the client system.

Transactions use help class RunTransactionCommand, which depends on class YumAc-
tion, what is shown on figure 3.6, and that class calls inherited method execute from yum-
Base to accumulate transaction data, then by method buildTransaction the transaction
is prepared, and if there is no error, the transaction is performed by softly reimplemented
method doTransaction.

In the file rhnplugin. py is the communication with yum granted by 2 hook functions:
init_hook and posttrans_hook. In init_hook the R H N channels are setup. Function logins
into Spacewalk using backend A P I and gets a list of R H N channels from the server, then
make a repo object (class RhnRepo) for each one. This list of repos is then added to
yum's list of repos via the conduit (see 2.2.2). As we see, that code creates the ability to
get the packages from our Spacewalk server without need to download packages from other
extraneous repositories and also it makes easier way to manage and distribute our packages,
which are not public. There is an exception for command clean, because for that command
it is not neccesary to login to Spacewalk, so only dummy repositories are produced instead
of channel's repositories.

The function posttrans_hook is called after transaction. The aimed of the action is
update of spacewalk profile, exactly part with information about packages. This is done
by rhnPackagelnfo modul, which is provided by package rhn-client-tools, so it is clear, that

33

this plugin requires that package. From that package the modul for handling the software
channels is also used.

The class RhnRepo is inherited from YumRepository and it is used for each software
channel as it was mentioned above in the description about the init_hook. The class can
login to Spacewalk and setup special headers for downloading requested package, then
the package is normally downloaded from Spacewalk. The information about obtainable
packages from channel join with the concrete instance of this class are included in repodata
X M L file, which is stored and get from url:

http: / / spacewalk_address/XML-RPC/GET-REQ/channel-id/repodata/repomd. xml

This file contains information about other files, which are needed for correct repository
structure: filelists.xml.gz, other.xml.gz and primary.xml.gz, this files are down­
loaded by plugin in the next step and according to information from them the packages
can be installed or updated from the repository. A l l these requests have to contain special
headers with authorized session identification.

34

Chapter 4

Client tools for Debian

A l l the packages in the previous chapter have to be ported for Debian. The advantage is
the same operating system type, the both R P M and D E B packages are for Linux, if there
would be required porting for another operating system like Haiku, it could bring more
problems. Due to that fact, the porting has included only resolving the problems caused
by the differences between Debian and the systems based on Red Hat Enterprise Linux.

4.1 Design

The changes, that have to be done, were searched by the code reviews and the following
compiling D E B packages on aimed platform for the tests. Each package needs the different
alternations, which will be described in the next paragraphs.

A l l the packages with client tools depends on package rhpl, which is a library of python
code used by programs in Red Hat Enterprise Linux and is no more developed. According
to this knowledge I create patch, which removes dependencies on rhpl and uses standard
python modules. This will make porting for Debian easier and it will help the original
packages to be not dependent on no longer supported package. There are 2 libraries, which
are used in client tools and will be replaced:

• rhpl.translate - module gettext is the perfect replacer, and now it is a lot more func­
tional than rhpl.translate

• rhpl.ethtool - there is python package python-ethtool, which provides almost the same
functions

rhnlib

Rhnlib consists of the few python files, so there have not been necessary any changes in the
code, the important thing was correct compilation of the package. The compilation was
made by class setup from distutils.core.

rhn-client-tools

The code from this package needs more changes, because it works with hardware, packages
and system information. The hardware information seems to be correct, so now there are
not designed any patches, but it could be changed in the the next development cycles after
more detailed testing. The dependencies of this package are shown on the figure 4.1. There

35

are the both types of dependencies: Depends and Build-Depends, the differences between
them are explained in section 2.3.1.

r
B u i l d - D e p e n d s

p y t h o n — a l l - d e v

T
p y t h o n - s u p p o r t

T T T
i

r
r h n - c l i e n t - t o o l s

p y t h o n - d b u s

' v

p y t h o n — e t h t o o l

Figure 4.1: The dependencies of rhn-client-tools deb package

The system information is parsed from file in /etc/issue and from function uname().
The content of issue file on Debian Lenny is Debian G N U / L i n u x 5.0. From this data two
parameters are get, the operating system release: Debian G N U / L i n u x and the version: 5.0.
The next parameter is the release and the kernel version was choosen for this purpose, it
is get by function uname() from the module os. The architecture of the system is get from
this function too.

The most amount of work will require an elaboration with packages and info about
them. On the R P M systems this process is done by modules R P M and transaction. On the
Debian system it has to be replaced with some alternative for processing D E B packages.
The good choice seems to be python module apt.

Class apt. Cache accesses all available packages. From this cache is possible to find out
which packages are installed and get info about them. There are differences between R P M
and D E B , D E B has not epoch and cookie, so this properties will be leaved empty. Wi th
the architecture and the name there is no problem, but D E B has only version and R P M
has version and release. That would be solved by trying parse release number from version,
if there is last number in version separated by char - , else it would be leaved as an empty
string.

rhncfg

Rhncfg seems to be simple for porting same way as rhnlib. The process of deploying
configuration files has no specific parts, that would require changes. The same situation is
for running scripts, where standard linux functions are used. The changes will have to be
make to Makefiles due to a little bit different compilation of the package, but this is needed
for every package.

36

rhnsd

Rhnsd will need rework, because the package with daemon for the Debian system has
a different structure. In the R P M package the script, which will run daemon is in the
path /etc/rc .d/init .d/ and after package installation the commnad /sbin/chkconf ig
—add rhnsd is run. In the D E B package that script is in the path /etc/init .d and after
installation it is registerd to the operating system by command update-rc.d rhnsd defaults.
Similar way it is removed from system registration, on R P M system by /sbin/chkconf ig
— d e l rhnsd and on the D E B system by update-rc.d -f rhnsd remove. More over on
the D E B system there has to be added an option force-reload in the starting script.

On the R P M system there is file functions in the directory /etc/rc.d/init.d. This
file contains functions, which are used by most or all shell scripts from the directory
/etc/init.d. This file is used by rhnsd too, and because it is not part of the Debian,
it will be neccesary to make package with this file and find an appropriate directory for it
such as /usr/share/rhn.

rhnpush

First step is removing the files with classes for R P M packages, which are no more needed,
concretely it was files: rhn_mpm.py, rhn_rpm.py, rpm2mpm.py and solaris2mpm.py. Then
there has to be created file with class to do the same work with D E B package. The client
needs to send the base information about the package to server, so the there are no so big
requirements on the client side, because the detailed information about package is gained
from it on the server.

For that purpose the file rhn_deb.py was created. The main class of that file is
deb-Header, which gets the name, version and architecture of the package. R P M pac­
kages has also parameter release, which is required for uploading package. The solution
with D E B packages is an attempt to find char „-" in the version parameter. If this char is
found, the version is divided into two parts by this char. The first part is taken as version
and the second part as release. If the char is not found, the char X is inserted as the release.

For getting information about D E B package the python modul apt [6] was used. It is
used also in rhn-client-tools. The class apt-inst.DebFile takes filename of the package, this
class provides attributes:

• control - the package version, as contained in debian-binary. - returns the TarFile
object associated with the control.tar.gz member

• data - the TarFile object associated with the data.tar.gz,bz2,lzma member

• debian_binary - the package version, as contained in debian-binary

With the method control the information from control file is unpacked, but it is returned
as a string. The better manipulation would be if the parameters can be accesible as an
attributes. For that purspose apt-pkg. TagSection class is proposed. It takes the string as
a parameter, parses it and produces the object, which provides helpful methods for example
as:

• find_flag(key) - returns boolean value for the key. A n example for such a field is
Essential

• get(key, default=") - returns the value of the field key if available, else return default

37

• keys() - returns a list of available keys

Except this, the keys are accesible in the way: instance [key], so the package version can
be easily get by instance ['Version']. The next modification affects the package architecture
value. The suffix -deb has to be added to string value obtained from control information.
This modification reflects the updates on the server side and will be made more clearly in
the following text about server changes.

In the sent headers the parameter X-RHN-Upload-Packaging, there was value rpm

changed to deb, and also Content-Type was overwritten to application/x-deb.

The other supporting packages

These packages were created to make work with client tools easier or to support some
functions of these tools.

rhn-setup

Rhn-setup is something like metapackage. It does not provides any data or funcionality.
Its task is to install all the client tools, what is reached by insertion of these client tools
packages in Depends field.

osad

This package provides OSA deamon agent. Agent receives commands over jabber protocol
from Spacewalk Server and commands are instantly executed. This package effectively
replace rhn.check command, which check in Spacewalk Server only in some period usually
given by paramter interval for deamon rhnsd and also run automatically by rhnsd. This way
of executing commnands on client is very worthwhile for commands, where time between
submission and execution of command is critical, for example the security updates for
packages or the restart of system.

Osad is written in python and is completly independent on platform, so the creation
of the D E B package was the task without any bigger problems, just the correct names for
debian packages in Depends field had to be find.

jabberpy

Jabberpy is simple python module, which is used by osad. It is a python module for the
jabber instant messaging protocol. It deals with the X M L parsing and socket code, leaving
the programmer to concentrate on developing jabber based applications. It produces richly
featured easy to use library for creating both jabber clients and servers.

Jabberpy is also system independent and can be use on Windows systems too, so the
process of packaging was identical to osad package.

python-ethtool

Python-ethtool provides python bindings for the ethtool kernel interface, that allows query­
ing and changing of ethernet card settings, such as speed, port, autonegotiation, and P C I
locations. It is used by rhn-client-tools for getting network information. It is written in

38

language C, so the built package will be available only for the same architecture as the com­
piling machine has, what is in our case i386. This is difference to python moduls written
directly in python, which are independent on architecture.

The package python-ethtool exists for Fedora and creating D E B package follows stan­
dard procedure noted in the next section.

rhn-functions

The linux systems based on R P M contains contain file /etc/init .d/functions, what is
bash script and provides functions to be used by most or all shell scripts in the /etc/init. d
directory. This file is missing on the Debian systems, but it is used for example by rhnsd.
So the package rhn-functions was created for distribution of this file. There was a change in
placing of file and was moved to /usr/share/rhn/functions, because it will be probably
used only by our ported packages.

The file functions affords usefull functions for checking process id, getting information
from fstab, killing or finding out the status of process, or running daemons.

4.2 Process of creating DEB package

We can take a look on the process of creating deb package. This procedure will not go into
the details, but it should show main steps.

• get package.src.rpm

• extract payload from package by

rpm2cpio package.src.rpm | cpio -idmv —no-absolute-filenames

• mv package.tar.gz package.orig.tar.gz

• tar xfz package.orig.taz.gz

• set name of packager by export DEBFULLNAME=name

• set email of packager by export DEBEMAIL=e-mail

• run dh_make -c gpl to create base structure of debian package

• remove example files by rm debian*. ex debian*. EX

• remake source files to make program functional on Debian

• edit files in directory debian, mainly dirs, control and rules files

• use dpkg-buildpackage -rf akeroot to build package

39

Chapter 5

Analysis of the server side

On the server side the changes had to be done for correct accepting and handling D E B
packages. The first step was an editing a database schema. The next changes patched the
backend code for parsing D E B packages and storing information about these packages in
the database.

5.1 Database schema

The Spacewalk does not know the type of package a l l , because on the R P M systems there
is used an equivalent noarch. Moreover there are differences on the supported platforms
between systems from Red Hat and Debian, which implicates the another distinct types of
packages.

The table with architectures has to extended with architecture D E B . The same way
there has to be added channels for debian packages connected to an archicture type deb.
The name for the D E B channels can be derived from R P M channels by adding -deb on
the end of the name. In the table with the types of the packages the connection has to
be created between deb architecture and types of packages for this architecture. To the
server architectures the debian types have to be added with similar name to rpm types, for
example from i386-redhat-linux will be deduced i386-debian-linux with difference in
the connected architecture type.

Description of the tables:

• rhnArchType - The list of the supported architectures. The deb architecture has to
be added to this table.

• rhnChannelArch - The table with channels for specific processor architectures such
as intel or alpha. These software channels are connected to the base architecture
(rhnArchType) and that fact influences the packages, which can be added to these
channels.

• rhnPackageArch - The supported package's architectures are inserted in this table.
They are connected to rhnArchType by the same way as it is done in rhnChannelArch.

• rhnServerArch - The list of supported machines types. The client machine sends one
label from that list, when the registration to the Spacewalk is proccesing. These
servers are connected to the their architecture from rhnArchType too.

40

• rhnChannelPackageArchCompat - This table stored the connection between chan­
nels and packages, which can be added to channels. They have to have the same
architecture.

• rhnServerPackageArchCompat - This table stores the connection between servers and
packages, which can be installed on that servers. The same architecture of server and
package is necessary.

• rhnServerChannelArchCompat - The connections between servers and channels are
inserted into this table. The server can be subscribed into the software channel only
if it the connection between them is stored in that table.

• rhnServerServerGroupArchCompat - The table stores the entitlements for servers.
The enabled Spacewalk's actions like managment or provisioning for servers are given
by that table.

rhnArchType

1

rhnChannelArch

i i
I L -

1

rhnPackageArch

A
rhnServerArch

I I
- I rhnServerServerGroupArchCompat

rhnChannelPackageArchCompat
1

rhnServerPackageArchCompat

rhnServerChannelArchCompat

Figure 5.1: The connection between sql tables

The dependencies between database tables are shown on the figure 5.1. For easier
creating the connections, there are several stored procedures:

• L O O K U P _ A R C H _ T Y P E (arch) - search architecture type id according to given label
(examples: deb, rpm)

• LOOKUP_SERVER_ARCH(server) - search server architecture type id according to
given server label (examples: i386-redhat-linux, amd64-debian-linux)

• LOOKUP_CHANNEL_ARCH(server) - search channel architecture type id according
to given channel label (examples: channel-ia64, channel-alpha-deb)

• LOOKUP_PACKAGE_ARCH(package) - search package architecture type id accord­
ing to given package label (examples: noarch, all-deb)

• LOOKUP_SG_TYPE(server_group) - search server group type id according to given
label (examples: sw_mgr.entitled, provisioning.entitled)

41

5.2 Backend

There are two different parts of backend, which have to be modified. The first part is
code, that receives the package from rhnpush, parses and stores the package on filesystem
and inserts its header information to database. The second part has the goal to supply
these packages for all clients, which have authorization to download these packages. This
authorization is declared by subscription to the software channel, where the package is
saved.

5.2.1 Receiving and storing the package

This part can parse and store R P M package, the way how it is done will be introduced in
the following text and based on that knowledge there should be designed the changes for
doing these actions with D E B packages.

The request for uploading package from rhnpush is received by Apache and it is redi­
rected to the appropriate handler, what is in this case handler A P P , this handler recog­
nizes, that the package should be uploaded and redirect the process of uploading to handler
P A C K A G E - P U S H .

This handler stores package in the temporary file and then calls the function to parse
that package and this function returns the object with header information, and object
represent the payload stream. From header data the type of checksum is found out and
that checksum method is run on the payload. The result is compared to the value, that
was received in the H T T P headers, it they are different, that error about mismatching
information is returned back to the client.

In the next step the path for storing package on the filesystem is computed. This
file path is checked for existence and if there exists file with the same name, the error
about the fact, that file already exists, is returned. In other case the file is saved to
that path, the path seems like that /var/satellite/redhat/l/bl2/python2.6/2.6.4-6/i386-
deb/bl2350499229636b605a607429d0c340/python2.6-2.6.4-6.i386-deb.deb where we can see,
that the files are stored to directories named by the first three letters of checksum, the next
subdirectories are named according to package name, version, architecture and the final
directory, where the package is stored is named according to checksum value.

The following step is creation of the object, that represents the package. It contains all
the information from header such as name, version, dependencies, files in package, etc. and
some other computed values like the size of package. That object is added to batch, which
is given to the instance of Oracle backend. This instance handles storing the information
in all tables, where it has to be inserted. In the end the transactions are commited.

Design for accepting D E B package

The upper analysis implies the two main parts for adjustments. It is parsing of received
package. The first step will be naming of temporary files to know, that it is D E B package,
this naming can be based on the packaging type, which is sent in the H T T P headers.

The second part of modification will be consists from the fabrication of the class for
the D E B package representation. It will be similar to the class for R P M package, because
we want to have these classes compatible at the high level, because then there will not be
required the changes in the Oracle backend class, which converts information from that
classes to the database.

42

5.2.2 Providing package to client

R P M packages are provided by repository for the package manager yum. This repository
consists of X M L files with packages metadata and it is generated by Taskomatic. Tasko-
matic is run automatically, when there is some change in the software channel. Taskomatic
has to be extended for capability to generate files for A P T repository, what would ensure
access to packages by Debian systems. The design for this feature is shown on the figure
5.2. The A P T repository requires existence of file Packages. gz, which contains information
about all packages in the repository.

RepositoryWriter

- p a t h P r e f i x : S t r i n g

-mountPoint: S t r i n g

+ R e p o s i t o r y W r i t e r (}

+ w r i t e R e p o m d F i l e s (c h a n n e l : C h a n n e l }

- w r i t e D e b R e p o F i l e s (c h a n n e l : C h a n n e l)

5>

DebPackageWriter

- f i l e n a m e P a c k a a e s : S t r i n g

+ D e b P a c k a g e W r i t e r (p r e f i x : S t r i n g)

+addPackage(pkgDto:PackageDto): v o i d

+ g e n e r a t e P a c k a g e s G z () : v o i d

-addPackageDepData(): v o i d

Figure 5.2: The design of modification for Taskomatic

The next step is accesing the file Packages.gz. Repository files for R P M channels are
obtainable through X M L - R P C request, which is controlled by the backend code for H T T P
headers with an authorization data. On R P M systems this data is sent by yum-rhn-plugin.
There is a problem, that A P T on Debian systems does not provide similar plugin architec­
ture as yum, so it is not easy to add these authorization steps for getting Packages.gz from
A P T repository.

43

Chapter 6

The implementation of the server
side changes

The implementation can be divided into 3 logical parts:

• database

• accepting D E B package(s) from client

• providing D E B package(s) to clients

In the following sections these modifications will be introduced into more details.

6.1 Database

According to analysis of database schema there were added these values to tables. The
architecture deb was added to supported architecture types:

insert into rhnArchType (id, label, name) values

(rhn_archtype_id_seq.nextval, 'deb', 'DEB');

The channels names was were adapted by addind suffix -deb as it can be seen on this:

insert into rhnChannelArch (id, label, name, arch_type_id) values

(rhn_channel_arch_id_seq.nextval, 'channel-ia64-deb',

'IA-64 Debian', lookup_arch_type('deb'));

The same way of naming was used for package's architectures. There are some architectures
like A R M , which are not supported by R P M , so the name has not to be necessary extended
by the suffix, but for better recognitation the suffix was used.

insert into rhnPackageArch (id, label, name, arch_type_id) values

(rhn_package_arch_id_seq.nextval, 'arm-deb', 'arm-deb',

lookup_arch_type('deb'));

The server architecture name was created easily by using label debian instead of redhat,
but only for the architectures, which are supported by Debian.

insert into rhnServerArch (id, label, name, arch_type_id) values

(rhn_server_arch_id_seq.nextval, 'alpha-debian-linux', 'alpha Debian',

lookup_arch_type('deb'));

44

New channels for D E B packages were connected with the packages, which can be uploaded
into these channels.

insert into rhnChannelPackageArchCompat (channel_arch_id, package_arch_id)

values (LOOKUP_CHANNEL_ARCH('channel-amd64-deb'),

LOOKUP_PACKAGE_ARCH('amd64-deb'));

The same procedure was done for the server types.

insert into rhnServerPackageArchCompat (server_arch_id,

package_arch_id, preference) values

(LOOKUP_SERVER_ARCH('ia64-debian-linux'),

LOOKUP_PACKAGE_ARCH('all-deb'), 1000);

When the system is registering to the software channel, the control if the channel has correct
packages for that system has to be done. For that purpose the channels and server types
were connected.

insert into rhnServerChannelArchCompat (server_arch_id, channel_arch_id)

values (LOOKUP_SERVER_ARCH('powerpc-debian-linux'),

L00KUP_CHANNEL_ARCH('channel-powerpc-deb'));

Finnaly there were established the capabilities, which can be done with the systems.

insert into rhnServerServerGroupArchCompat (server_arch_id,

server_group_type) values

(lookup_server_arch('s390-debian-linux'),

lookup_sg_type('sw_mgr_entitled'));

6.2 Accepting DEB package

After accepting H T T P request the package is stored as temporary file. We need to recognize,
that it is D E B package, what is done by checking H T T P header X-RHN-Upload-Packaging
and setting parameter packaging for function, which stores the package in directory for
temporary files. This parameter was added to this function too, the new declaration of
function is: def write_temp_f i l e (req, buffer_size, packaging=None), also then the
temporary file has to be created with the name, which satisfies rule, that it ends with .deb.
For that purpose was used the method tempfile.NamedTemporaryFile(suffix=suffix),
which takes the suffix set to .deb.

The next step is parsing header of D E B package. The class for the header information
was named deb-Header and its code is in the new file rhn_deb.py. The parsing of D E B
package is not easy process and it would be redudant work to program python modul for
it, if there exists another one. For Debian the python-debian package is available. As part
of this work this package was rebuild as R P M package and then it was simply connected
with class deb-Header to gain needed data about package. The structure of the classes from
that package is shown on figure 6.2.

As it was said before, the class for Oracle backend is required. For that intention a class
debBinaryPackage was developed. It inherits from rpmBinaryPackage and the diagram of
class is evinced on 6.1

The attribute tagMap contains the list of parameters, that are stored in the database.
These parameters are accesible as fields of the debBinaryPackage instance. The values are

45

debBinaryPackage

+tagMap

+ a l r e a d y mapped

_ i n i t _ _(header,size,checksum_type,checksum,
p a t h , o r g _ i d , c h a n n e l)

+ _ p o p u l a t e F i l e s ()

+—populateDependencylnformation()

+—populateChangeLog()

+_populateChannels()

IncompletePackage

Package rpmPackage

rpmBinaryPackage
+populate()

+populateFromFile{)
+

— p o p u l a t e F i l e s { {)

+_populateDependencyInformation{)

+_populateChangeLog()

+_populateChannels {)

+_populateTag()

Figure 6.1: The class diagram for debBinaryPackage

checked, if the value is empty, then None is assigned or if it is string in Unicode, then it is
encode in UTF-8 .

6.3 Providing DEB package

Implementation of providing package was not succesfull at all. The repository is generated
correctly, but now there is no way how to access it. As it was said before, we need add
capability for A P T to send authentication data to Spacewalk. The problem is creating
plugin for A P T , which could modify H T T P request and add headers into it, concretly these
headers have to be added:

• X-RHN-Server-Id - ID of registered client system

• X-RHN-Auth-User-Id - ID of user, which has active open session

The creation of this plugin can be theme of some other next work on that project. It is
possible to create extension to A P T , but it more difficult than plugin for Y U M , because
A P T does not have standard plugin interface, but there can be found some extension written
in Python 1 , what is the good presumption for communication with other Spacewalk client
tools, which for instance contain modul for creating active session for user.

The generating of A P T repository was easier task and it was implemented by adding
code to Taskomatic. Taskomatic is written in Java and the package, which had to be modi­
fied, was com.redhat .rhn.taskomatic .task.repomd. After every change on the software
channel Taskomatic runs the task for updating repository data and this task is handled
by that package. Writing repository files is done by class Repository Writer, exactly in the
method writeRepomdFilesO, which gets the channel reference. There was inserted check,
if the channel is for D E B packages, the method generateDebRepository () is called. This
method takes iterator over packages in the channel and information about all packages are

xhttp: / / g i t . debian. org/?p=collab-maint/apt-listchaiiges. git;a=summary

46

put into repository files (Packages and Packages.gz). This method uses class DebPackage-
Writer. The overview of this cooperation is shown on figure 5.2.

This class writes file Packages by using method addPackage, which adds these tags
about package:

• Package - name of package

• Version - is composited from version and release values stored in database

• Architecture - supported architecture, the value ends with -deb, so this suffix has to
be removed before writing it into file

• Maintainter - name and email of maintainer

• Provides, Depends, Conflicts, Replaces - these values are added by own method
addPackageDepData()

• Filename - path to package, Apache has to have permission to read this file, but this
is solved by the python code, which stores package on the filesystem

• Size - size of package, it is checked after download by apt (same as checksum)

• MD5sum, SHA1, SHA256 - one of this checksum is written to file (this tag is required).
The checksum type is selected according to checksum stored in database, currently it
is only MD5, but in the next versions of the Spacewalk new SHA checksum will be
added.

• Section - package group

• Description - text information about the package

After this section the new line is inserted and the section with next package can be
written. When all packages are proccesed, Packages.gz has to be created by method
generatePackagesGzO, which reads file Packages, and using GZIPOutputStream produces
the result.

47

+ d i s t r i b u t i

Ar Member
arfile.py

I .11 i.u •

• t e l l O

•next ()

• _ i t e r _ (]

Exception

Changelog
changekx/.py

_(f±le,max_bloc.:<3, a l l o i

:_blocks, allow_emp;y_iuzh

+get_package()

+get_versions()

raw_versions()

e t _ d i s t r i b u t i o n s (d i s t r i b u t e

et_urgency(urgency)

dd_change(change)

et_author(author)

et_date(date)

ew_block(**kwargs)

r±te_to_open_file(file)

ArFile
arfile.py

I .11 ' .LI.:" ' _ '

- members_dic.i

- f name

- f i l e o b i

+ i n i t (filename, mod

- index_archive()

-l-getmember (name]

-l-getmembers ()

+getnames 0

+extractall(]

textract(member,path)

+extractfile(member)

+ _ i t e r _ ()

+ getitem_(name)

- pkgna:

+ i n i t (filename,mode,fileobj)

+debcontrol()

^ s c r i p t s ()

+md5sums <)

fchangelog()

- updatePkgWame()

Standard Error

ChangelogParse Error
changelog. py

ChangeBlock
changelcg.py

• i n i t 0

+other_keys_i

-l-changes ()

+add_trailin<

+ = dd_

DebError ArError
debflle.py arfile.py

+ i n i t (member)

+tgz(]

+has_file(fname]

+get_file(fname)

+get_content(fname)

.'I.' _.Tl'.l± _ • .11 • .LI.:" ' _ : _ .'I

_()

DebData
debflle.py

+scripts 0

+debcontrol0

+md5sums()

- r—

Deb822
deb822.py

+ i n i t (sequence,fields,_parsed,encoding)

+iter_paraqraphat)

+_internal_parser()

+get_as_string()

i dumpi;

+is _ s i n g l e _ l i n e ()

+is_multi_line()

+_merge_fields()

+merge_fields()

+ split_gpg_and_payload()

+gpg_stripped_paragraph()

+get_gpg_info 0

Deb822Dict
deb822.py

- diet

- _ k e y s

+ i n i t (_dict,_parsed,_fieIds,encoding)

+_set i t e m _ (key, value)

+ getitem (key)

+ delitem (key)

+has_key(key)

+keys()

+ repr ()

+copy()

Figure 6.2: The class diagram for classes in python-debian

48

Chapter 7

The testing

In this chapter we will test all important and ported features. The schema of the tests will
be approximatelly running some client tool and showing the printscreen of Spacewalk web
interface to see the result.

7.1 Registration of client to Spacewalk

The first step is registration of client system to Spacewalk server. This can be done by
rhnreg_ks or by rhn_register. We will show the case with rhnreg_ks. The package rhn-
client-tools has to be installed.

rhnreg_ks —profilename Debianl —serverUrl=http://192.168.122.81/XML-RPC

—act ivat ionkey=1-debian

The explanation of parameters:

• profilename - the name of system, which will be showed as system name in Spacewalk

• serverUrl - the U R L of Spacewalk, where client will be registered

• activationkey - is used to register system, system registered with an activation key
will inherit the characteristics defined by that key (for example subscribed software
channel) and it makes the registration more easier, because no username and password
is required, when the key is used.

The result of registration is visible on Spacewalk web interface and is shown on the
following schemas B . l , B.2 and B.3.

7.2 The configuration file distribution

The next test will try the distribution of configuration file to registered system. The package
rhncfg has to be installed. The configuration file can be created directly in Spacewalk or
can be uploaded, we will create our file with web interface as it is shown on B.4. The file is
automaticcaly pushed into Sandbox (B.5), because it is marked as under development. To
enable distribution of this file it has to be copied into central or system channel. Central
channel will provide this configuration file to all client systems registered to this channel
and system channel will provide it only for the our system. We will choose system channel.

49

http://192.168.122.81/XML-RPC

In the tab for deploying files we will select our file and confirm distribution of this file by
clicking on the button Deploy Files B.6. On the next screen the time of deployment can be
choose, we will choose a option as soon as possible (B.7). This is the finish of the process
on Spacewalk side and we can move to client and check the result.

On the client we will run command rhn.check (with parameter -vvv to see debug output)
to take actions and run them. The output from console:

debianhost:/home/lukas# Is /root/

debianhost:/home/lukas# rhn_check -vvv

updateLoginlnfo() login info

D: login(forceUpdate=True) invoked

logging into up2date server

D: writeCachedLoginO invoked

D: Wrote pickled loginlnfo at 12725442.82 with expiration of 12729042.82

seconds successfully retrieved authentication token from up2date server

D: logininfo: {'X-RHN-Server-Id': 1000010022, 'X-RHN-Auth-Server-Time':

'1272535443.61', 'X-RHN-Auth': '7RwMZ9oWPw60IX03d9haSA==',

'X-RHN-Auth-Channels': [['debian', '20100429105127', '1', '1']],

'X-RHN-Auth-User-Id': " , 'X-RHN-Auth-Expire-0ffset': '3600.0'}

D: handle_action actionid = 59, version = 2

D: do_call configfiles.deploy ({'files': [{'config_channel': '1000010022',

'username': 'root', 'encoding': 'base64', 'checksum':

'7b53845bel4ba0bdeb54361d3fc5690', 'filetype': ' f i l e ' , 'delim_start': '{|',

'file_contents': 'I3Rlc3QgY29uZmlndXJhdGlvbBmaWxlCnRpbWU9MTAWJlZzlvZmY=\n',

'groupname': 'root', 'delim_end': '|}', 'selinux_ctx': '', 'filemode': 644,

'checksum_type': 'md5', 'path': '/root/test.conf', 'revision': 1}]},)

configfiles.deploy

D: Sending back response (0, 'Files successfully deployed', {})

debianhost:/home/lukas# Is /root/

test.conf

debianhost:/home/lukas# cat /root/test.conf

#test configuration f i l e

time=1000

debug=off

We can see, that the file was successfully deployed and is stored correctly on the given
place.

7.3 Running of the script

Running of the script requires package rhncfg and also it has to be enabled by configuration
file in local rhn configuration directory, it is enabled if file allowed-actions/script/run
exists. The script has to be written before the running. In the tab Remote Command in
the web interface we will create script (B.8).

The same situaiton on client side as it was for the previous test, we will run command
rhn.check (with parameter -vvv) to take up script and to run it. We got the following
output to the console, there are common parts with the previous console output, so these
parts were removed:

50

debianhost:/home/lukas# cat /etc/group | grep spacewalk-test

debianhost:/home/lukas# rhn_check -vvv

D: logininfo: {'X-RHN-Server-Id': 1000010022,

D: handle_action actionid = 60, version = 2

D: do_call script.run (60, {'username': 'root', 'groupname': 'root', 'now':

'2010-04-29 13:04:49', 'timeout': 60,

'script': '#!/bin/sh\naddgroup spacewalk-test'})

script.run

D: Sending back response (0, 'Script executed',

{'output': 'QWRkaW5nIGdyb3VwIGBzcGFjZXdhbGstdGVzdCcgKEdJRCAxMDAyKSAuLi4KRG9

uZS4K\n', 'base64enc': 1, 'process_end': '2010-04-29 13:04:49',

'return_code': 0, 'process_start': '2010-04-29 13:04:49'})

debianhost:/home/lukas# cat /etc/group | grep spacewalk-test

spacewalk-test:x:1002:

7.4 Removing the package from client

We can select the packages to be removed from package list of client as we see on B.9. We
will select one package and then confirm the removal of this package by clicking on the
Remove Packages button and on the following form the time of action is set. As it before
we choose the option as soon as possible. The package rhn-client-tools is required for this
action on the client.

We will run rhn.check again to undertake the action and see the result cleaned from
loging info:

debianhost:/home/lukas# aptitude search abiword

i abiword

debianhost:/home/lukas# rhn_check -vvv

D: handle_action actionid = 61, version = 2

D: do_call packages.remove ([['abiword', '2.8.2', '2', " , 'all-deb']],)

packages.remove

D: Called remove_packages [['abiword', '2.8.2', '2', " , 'all-deb']]

Reading package l i s t s . . . Done

Building dependency tree

Reading state information... Done

Building data structures... Done

Reading package l i s t s . . . Done

Building dependency tree

Reading state information... Done

Building data structures... Done

<Package: name:'abiword' id:118>

(Reading database ... 122006 fil e s and directories currently installed.)

Removing abiword ...

D: Sending back response (0, 'remove_packages OK', {})

D: do_call packages.checkNeedUpdate ('rhnsd=l',)

packages.checkNeedUpdate

D: Called packages.checkNeedUpdate

Updating package profile

51

Reading package l i s t s . . . Done

Building dependency tree

Reading state information... Done

Building data structures... Done

D: local action status: (0, 'package l i s t refreshed', {})

debianhost:/home/lukas# aptitude search abiword

c abiword

We can see that the package was succesfully removed by apt. It is documented by
the mark from aptitude search, which changed from i (the package is installed) to c (the
package was deleted, but the its configuration files remain on the system). The following
action was updating the software profile on Spacewalk with actual package list. On figure
B.10 we see, that the package is no more in the list.

7.5 Uploading DEB package to Spacewalk

For the uploading package the rhnpush tool has to be used, so the rhnpush package is
required. We will run rhnpush command on the client and control the result. We will
upload two packages in the software channel debian. This channel is for i386 architecture,
so we will try upload one package of architecture all and one i386 package. There are two
parameters given for rhnpush it is - -server, what is url address of Spacewalk server and -c,
which tells the name of software channel, where packages should be pushed. The rhnpush
asks for the username and password of the administrator for this software channel, this step
can be skipped if there were another package upload by rhnpush in short time ago and the
created session is still active.

debianhost:/home/lukas# rhnpush -vvvv —server=192.168.122.81 -c debian

acidrip_0.14-0.3_all.deb python2.6_2.6.4-6_i386.deb

Connecting to http://192.168.122.81/APP

Red Hat Network username: lukas

Red Hat Network password:

url is http://192.168.122.81/PACKAGE-PUSH

Result codes: 200 OK

Computing md5sum and package Info .This may take sometime ...

Package acidrip_0.14-0.3_all.deb Not Found on RHN Server — Uploading

Uploading package acidrip_0.14-0.3_all.deb

Using POST request

Package python2.6_2.6.4-6_i386.deb Not Found on RHN Server — Uploading

Uploading package python2.6_2.6.4-6_i386.deb

Using POST request

If we try to push the packages again, we can see, that the username and password are
not asked again and the uploading is skipped.

debianhost:/home/lukas# rhnpush -vvvv —server=192.168.122.81 -c debian

acidrip_0.14-0.3_all.deb python2.6_2.6.4-6_i386.deb

Connecting to http://192.168.122.81/APP

url is http://192.168.122.81/PACKAGE-PUSH

Result codes: 200 OK

52

http://192.168.122.81/APP
http://192.168.122.81/PACKAGE-PUSH
http://192.168.122.81/APP
http://192.168.122.81/PACKAGE-PUSH

Computing md5sum and package Info .This may take sometime ...

Package acidrip_0.14-0.3_all.deb already exists on the RHN Server—

Skipping Upload....

Package python2.6_2.6.4-6_i386.deb already exists on the RHN Server—

Skipping Upload....

In the Spacewalk there were added two packages in the debian channel (B.ll) and the
details of package are available too (B.12).

53

Chapter 8

Conclusion

The thesis succesfully reached the given aim to add support for Debian operating system to
Spacewalk, which by now supports only systems based on R P M . The client tools for main
functionality were ported and packed for Debian system. These systems can register to the
Spacewalk, hardware, software and network information about them is sent to server. The
configuration files and scripts can be distributed to them and scripts can be also executed.

The Spacewalk can manage D E B packages in the software channels same way as it does
with R P M packages. In the next work there can be added a feature to synchronize the
channel with extern repository with D E B packages. The Spacewalk generates repository
with the D E B packages, but there is a problem with the access to repository, because A P T
is not able to log in to Spacewalk. The future work should include a creation of client tool
or plugin for A P T , which will be able to authorize and get packages.

The chapter with tests shows the details how the tools work and the results of their
actions are presented by the screenshots from the Spacewalk's web interface or by console
output from clients.

The thesis brings usable tools and patches for Spacewalk to provide native support
for D E B packages, except the problem with accessing the repository there are no other
limitations and users can use these tools same way as they use them on R P M platforms.
This work can be very helpfull for users, who use Spacewalk to handle considerable number
of R P M systems and also have some Debian systems, which have to be administer manually
or by not so complex tools.

54

Bibliography

[1] Edward Bailey. Maximum RPM. 2000. ISBN: 1-888172-78-9.
http://rpm.Org/max-rpm/.fOnline; visited 22.2.2010].

[2] Canonical L td . Landscape, http://www.canonical.com/projects/landscape.
[Online; visited 23.2.2010].

[3] Joey Hess. Comparing linux/unix binary package formats.
http://kitenet.net/~joey/pkg-comp/pkg-comp.xml. [Online; visited 12.4.2010].

[4] Aaron Isotton. Debian repository howto.
http://www.debian.org/doc/manuals/repository-howto/repository-howto.

[Online; visited 16.4.2010].

[5] Ian Jackson and Christian Schwarz. Control files and their fields.
http://www.debian.org/doc/debian-policy/ch-controlfields.html. [Online;
visited 12.4.2010].

[6] Julian Andres Klode. Python apt library.
http://apt.alioth.debian.org/python-apt-doc/library/index.html. [Online;
visited 27.4.2010].

[7] W W W pages. Howtosetupadebianrepository.
http: //wiki. debian. org/HowToSetupADebianRepository. [Online; visited
16.4.2010].

[8] W W W pages. Packaging:guidelines.
https: //f edoraproject. org/wiki/Packaging/Guidelines. [Online; visited
23.4.2010].

[9] W W W pages. The spacewalk source code.
http: //git.f edoraproject.org/git/?p=spacewalk.git. [Online; visited
22.2.2010].

[10] W W W pages. Spacewalk wiki. https://fedorahosted.org/spacewalk/wiki.

[Online; visited 22.2.2010].

[11] W W W pages. Spacewalk wiki architecture.
https: //f edorahosted.org/spacewalk/wiki/Architecture. [Online; visited
22.2.2010].

[12] W W W pages. Writing yum plugins.
http://yum.baseurl.org/wiki/WritingYumPlugins. [Online; visited 19.4.2010].

55

http://rpm.Org/max-rpm/.fOnline
http://www.canonical.com/projects/landscape
http://kitenet.net/~joey/pkg-comp/pkg-comp.xml
http://www.debian.org/doc/manuals/repository-howto/repository-howto
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://apt.alioth.debian.org/python-apt-doc/library/index.html
https://fedorahosted.org/spacewalk/wiki
http://yum.baseurl.org/wiki/WritingYumPlugins

[13] Red Hat, Inc. Red hat network satellite 5.3.0 - installation guide.
http://www.redhat.com/docs/en-US/Red_Hat_Network_Satellite/5.3/

Installation_Guide/html/index.html. [Online; visited 15.4.2010].

[14] Red Hat, Inc. Red hat network satellite 5.3.0 - reference guide.
http://www.redhat.com/docs/en-US/Red_Hat_Network_Satellite/5.3/

Reference_Guide/html/index.html. [Online; visited 15.4.2010].

[15] Red Hat, Inc. Spacewalk. http://redhat.com/spacewalk/. [Online; visited
22.2.2010].

[16] Red Hat, Inc. Spacewalk - frequently asked questions.
http://www.redhat.com/spacewalk/faq.html. [Online; visited 15.4.2010].

[17] Josip Rodin, Osamu Aoki, Craig Small, Raphael Hertzog, Jaldhar Vyas, and W i l l
Lowe. Debian new maintainers' guide, http://www.debian.org/doc/maint-guide/.
[Online; visited 22.2.2010].

[18] Wikipedia. Advanced packaging tool.
http: //en. wikipedia. org/wiki/Advanced_Packaging_Tool. [Online; visited
19.4.2010].

[19] Wikipedia. ar (unix). http://en.wikipedia.org/wiki/Ar_CUnix). [Online; visited
12.4.2010].

[20] Wikipedia. deb (file format). http://en.wikipedia.org/wiki/Deb_Cfile_format).

[Online; visited 22.2.2010].

[21] Wikipedia. ebuild. http://en.wikipedia.org/wiki/Ebuild. [Online; visited
19.4.2010].

[22] Wikipedia. Package management system.
http: //en. wikipedia. org/wiki/Package_management_system. [Online; visited
22.2.2010].

[23] Wikipedia. Yellowdog updater, modified.
http: //en. wikipedia.org/wiki/Yellowdog_Updater, _Modif ied. [Online; visited
19.4.2010].

[24] Michal Cihař. Seriál: Balíčky pro debian.
http: //www. abclinuxu. cz/serialy/balicky-pro-debian. [Online; visited
22.2.2010].

56

http://www.redhat.com/docs/en-US/Red_Hat_Network_Satellite/5.3/
http://www.redhat.com/docs/en-US/Red_Hat_Network_Satellite/5.3/
http://redhat.com/spacewalk/
http://www.redhat.com/spacewalk/faq.html
http://www.debian.org/doc/maint-guide/
http://en.wikipedia.org/wiki/Ar_CUnix
http://en.wikipedia.org/wiki/Deb_Cfile_format
http://en.wikipedia.org/wiki/Ebuild

Appendix A

Content of CD

• packages

- D E B

- R P M

• packages_source

- D E B

- R P M

• patches_for_Spacewalk

• thesis_source_latex

57

Appendix B

Screenshots

(JTJ System Overview

Systems (View System Groups)

0 1 2 J 4 S 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Filter by System Name: | ~| [Go | Display [ii »1 items per page 1 - 1 of 1 (0 selected)

• Updales Errata Packages Canfigs Base Channel Entitlement

• • 0 0 0 © J Debian l debian

Management,
Monitoring,

Provisioning,
Virtu alization

Figure B . l : The system overview

r>8

D System is up to date

System Info

Hostname: debianhost

IP Address: 192.168,122.209

Kernel: 2.6.26-2-68G-bigmem

Spacewalk System ID: 1000010021

Lock Status: ffi-a System is unlocked
^_*J (Lock system)

Subscribed Channels (Alter Channel Subscriptions)

System Events

Checked In: 4/29/10 4:43:50 A M EDT

Registered: 4/29/10 4:43:20 A M E D T

Last Booted: 4/22/10 2:11:34 A M E D T
[Schedule System Reboot)

OSA Status: unknown

System Properties (Edit These Properties)

Entitlements: [Monitoring] [Provisioning] [Management]
[Visualization]

Notifications: Daily Summary
Errata Email

Auto Errata
Update:

No

System Name: Debianl

Description: Initial Registration Parameters:
O S : Debian GNU/Linux
Release: 5.0
C P U Arch i386-debian-linux

Location: (none)

Figure B.2: The system details

Package Name Architecture Insulled

• abiword-common-2.8.2-2 all-deb 4/29/10 4:55:00 A M EDT

• adduser-3.110-X all-deb 4/29/10 4:55:00 A M EDT

• alacarte-0.11.5-1 all-deb 4/29/10 4:55:00 A M EDT

• alsa-base-1.0.17.dfsg-4 all-deb 4/29/10 4:55:00 A M EDT

• alsa-utils-1.0.16-2 i386-deb 4/29/10 4:55:00 A M EDT

• app-install-data-2008.11.27-X all-deb 4/29/10 4:55:00 A M EDT

• apt-0.7.24-X i386-deb 4/29/10 4:55:00 A M EDT

• apt-utils-0.7.24-X i386-deb 4/29/10 4:55:00 A M EDT

• aptitude-O.6.1.3-3 i386-deb 4/29/10 4:55:00 A M EDT

• aij-3.10.22-6 i386-deb 4/29/10 4:55:00 A M EDT

• aspeJI-O.60.6-1 i386-deb 4/29/10 4:55:00 A M EDT

• aspell-en-G.0-0 all-deb 4/29/10 4:55:00 A M EDT

• at-3.1.10.2-X i386-deb 4/29/10 4:55:00 A M EDT

• at-spi-1.22.1-1 i 386-deb 4/29/10 4:55:00 A M EDT

• autoconf-2.61-8 all-deb 4/29/10 4:55:00 A M EDT

• automakel .7-1.7.9-9 all-deb 4/29/10 4:55:00 A M EDT

• autotool s-dev-2008012 3.1-X all-deb 4/29/10 4:55:00 A M EDT

• avabi-daemon-0.6.23-3lennyl i386-deb 4/29/10 4:55:00 A M EDT

• avahi-utils-0.6.23-3lennyl i336-deb 4/29/10 4:55:00 A M EDT

• base-files-5lenny5-X i386-deb 4/29/10 4:55:00 A M EDT

• base-passwd-3.5.20-X i 386-deb 4/29/10 4:55:00 A M EDT

• bash-3.2-4 1386-deb 4/29/10 4:55:00 A M EDT

Figure B.3: The list of installed packages

59

File Type: ® T e x t f i l e
O Directory

0 S y m b o l i c unk.
Tip: Enter the target of the syr nk as the fie contents

File name/Path *: /root/testconf

Ownership: u s e r n a m e *:

G r o u p n a m e fl

Tip: If the user and/or group indicated here does not exist on systems to which this fie is deployed, the deploy will fad.

File Permissions Mode *: \64A

Tip: '644' for text ties and '755* for directories and executables will allow global access or execution (but not modrFical on).

SEL inux context

Ti p: E nter 5 E Linux context lite: user_u: rcle_r:type_t:sO-s 15:c0.c 1024 {Note: you dont have to enter al part?)

Macro Delimiters *: Starr Del imiter : {| E n d Del imiter : |}

Tip: A f J Esting of the available macros is listed in the RHN Reference Guide.

File Contents:

1 # t e s t c o n f i g u r a t i o n f i l e A

2 t m e = i e 0 0
3 d e b u g = o f f|

Figure B.4: The configuration file creation

Filename Configuration Channel Modified

0 /'root/test.conf ^ sandbox for Debianl 14 minutes ago

Figure B.5: Sandbox

1 Filename employable Revision Provider

[J /root/iesr.conf Revision 1 jr£] local override for DebianL

Update L is t S e l e c t A l l 1 - l o f 1 (1 selected)

Figure B.6: Deploying of file

D e p l o y F i les

Deployable Revision Provider 1

• /root/test.conf Revision 1 (Q) local override for Debianl

You may schedule co-nfiguration anions for the time below.

• Schedule configuration actions as soon as possible.

O Schedule configuration actions far no sooner than:

F ^ k | April T | 29 T | 2 0 1 0 1 ' | |~5~|T|:| 581*| AM|*| EDT

S c h e d u l e D e p l o y

Figure B.7: The scheduling of deployment

60

Detail! Software Configuration F rovis Dning Groups V irtuaiization Events

Overview P roperties Remote Com mand Reactivation Hardware Notes Custom I nfo

Run Remote C o m m a n d

You can schedule a remote script to execute on this system below. The script will run as the user you specify.

You must enable Remote Command execution on the target system, by adding a file to the local rhn configuration directory: a l l o w e d - a c t i o n s / s c r i p t / r u n .

Run as user*: root

Run as group*: [root

Timeout (seconds): | B O

Script1:

Schedule no sooner than:

#!/bin/sh A

addgroup s p a c e w a l k - t e s t

1 4 •

' • Al.'il | T | 2 9 T | 2 0 1 0 T | | 6 T | : | 2 5 T | A M T | E P T

[S c h e d u l e R e m o t e C o m m a n d]

Figure B.8: Creating and scheduling of remote command

Details Software Configuration P rovis roning G roups V irtualization Events

Enata Packages Software Channels

List f Remove Upgrade Install Verify Prcffcs

Removable Packages

The following packages are installed on this system. Packages may be scheduled for removal by selecting them and clicking "Remove Packages" below,

D 1 2 3 4 5 6 7 3 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Filter by Package Name: |] [Go] Display 125 "T| items per page 1 - 25 of 1,244 (1 selected) |< < > >|

• Package Name Architecture Installed

abiword-common-2.3.2-2 all-deb 4/29/10 4:55:00 AM E O T

• addu5er-3.110-X all-deb 4/29/10 4:55:00 AM E O T

• alacarte-0 . i l .5-1 all-deb 4/29/10 4:55:00 AM E O T

• alsa-base-1.0.17.dfsg-4 all-deb 4/29/10 4:55:00 AM E O T

• alsa-util 5-1.0.16-2 1386-deb 4/29/10 4:55:00 AM E O T

Figure B.9: Selecting the package for removing

Filter by Package Name: Display 25 • items per page 1 - 2 5 of 1,243 (0 selected) < < > >|

• Package Name Installed

• adduser-3.110-X all-deb 4/29/10 4:55:00 AM E O T

• alacarle-0.11.5-1 all-deb 4/29/10 4:55:00 AM E O T

• alsa-base-1.0.17.dfc^4 all-deb 4/29/10 4:55:00 AM E O T

• alsa-urils-1.0.16-2 i336-deb 4/29/10 4:55:00 AM E O T

Figure B.10: The package was succesfully removed and it is not in the list

61

http://alacarte-0.il

debian

Details Managers Packages Subscribed Systems

This channel contains the following packages:

0 1 2 3 4 5 6 7 S 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Filter by Package Name: [_ G o J Display 125 • | items per page 1 - 2 of 2

Package

acidrip-0.14-0.3.alkJeb ripping and encoding DVD tool using mplayer and mencoder Unknown

fjython2.6-2.6.-1-5.1386-deb An interactive high-level object-oriented language (version 2.6) Unknown

1 - 2 of 2

Figure B . l l : The list of packages in the software channels

^ acidrip-0.14-0.3.all-deb.deb

Details New Versions Installed Systems Target Systems

Overview Dependencies

Details

Description: ripping and encod ing D V D tool using mplayer and m e n c o d e r
A c i d R i p is a G t k : : P e r l appl icat ion for ripping and encod ing D V D ' s . It

neatly wraps M P I a y e r and M E n c o d e r , wh ich 1 think is pretty handy , seeing as

MPIayer is by far the best bit of v i d e o playing kit around for L inux. A s

well a s creating a s imple Graph ica l Interface for those scared of getting

down and dirty with M E n c o d e r s c o m m a n d line interface, It a lso a u t o m a t e s the

process in a n u m b e r of ways :

Package Architecture: al l -deb

Available Architectures: al l -deb

Available From: debian

Vendor : Christ ian Mari l lat < m a r i l l a t ^ d e b i a n . o r g >

Signing Key: (Unknown)

ME);!, u rn : d c d 0 8 3 1 6 7 3 5 b0c0b03 d 5 75 a 0 5 1 I d 5 309

File System Path: redhat/ l/dcd/ac id r ip/0 .14 -0 .3/a l l -deb/dcd08316735bOcOb03d575a0511d5309/ac id r ip -0 .1« .3 .a l l -deb .deb

Package Size: 52.0 K B

Download: a c i d r i p - 0 . 1 4 - 0 . 3 . a l l - d e b . d e b 5 2 . 6 K B

Figure B.12: The package details

62

