

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF ELECTRICAL AND ELECTRONIC TECHNOLOGY

OPTIMALIZACE STRUKTURY KOMPOZITNÍCH MATERIÁLŮ NA BÁZI UHLÍKU

OPTIMALISATION OF COPOSITE MATERIALS FOR CIVIL ENGINEERING

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc.Tomáš Kazda

VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. Vítězslav Novák , Ph.D.

BRNO 2011

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav elektrotechnologie

Diplomová práce

magisterský studijní obor

Elektrotechnická výroba a management

Student:Bc. Tomáš KazdaRočník:2

ID: 78272 *Akademický rok:* 2010/2011

NÁZEV TÉMATU:

Optimalizace struktury kompozitních materiálů na bázi uhlíku

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s vlastnostmi kompozitních materiálů, především pak materiálů, které obsahují uhlík. Předpřipravené kompozitní desky různého složení využívající výztuhy z uhlíkových vláken a různých typů uhlíku studujte pomocí metod cyklické voltametrie a impedanční spektroskopie. Získané výsledky vyhodnoťte především z hlediska vodivosti a koroze vzorků.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího práce.

Termín zadání: 7.2.2011

Termín odevzdání: 26.5.2011

Vedoucí práce: doc. Ing. Vítězslav Novák, Ph.D

prof. Ing. Jiří Kazelle, CSc Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstrakt:

Tato práce se zaměřuje na optimalizaci kompozitních materiálů na bázi uhlíku. V teoretické částí projektu je seznámení s kompozitními materiály a materiály používanými k jejich výrobě. Dále se zabývá jejich vlastnostmi a možnými oblastmi použití. V závěru teoretické části práce je shrnutí možného použití těchto kompozitních materiálů. Praktická část práce porovnává vlastnosti jednotlivých tipů vytvořených kompozitú z hlediska vodivosti a rychlosti jejich koroze.

Abstrakt:

This work is focused on optimalisation of coposite materials for civil engineering. In the theoretical part of the project is introduction of the composite materials and materials which are used for their production. There are also concerned their properties and possible application areas. In conclusion of theoretical part this project is a summary of the possible use of composite materials. The practical part compares the characteristics of the different types of composites made in terms of conductivity and the rate of corrosion.

Klíčová slova:

Uhlík, Kompozitní materiály, Elektrochemické impedanční spektroskopie, Cyklická voltametrie

Keywords:

Carbon, Composite Materials, Electrochemical impedance spectroscopy, Cyclic voltammetry, .

Bibliografická citace mé práce:

KAZDA, T. *Optimalizace struktury kompozitních materiálů na bázi uhlíku*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2011. 60 s. Vedoucí diplomové práce doc. Ing. Vítězslav Novák, Ph.D..

Prohlášení

Prohlašuji, že svoji diplomovou práci na téma Optimalizace struktury kompozitních materiálů na bázi uhlíku jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením tohoto projektu jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne 26. května 2011

.....

podpis autora

Poděkování

Děkuji vedoucím diplomové práce Ing. Peteru Barathovi, Ph.D. a doc. Ing. Vítězslavu Novákovi , Ph.D. za metodické a cílené vedení při plnění úkolů realizovaných v průběhu zpracovávání diplomové práce. Dále chci poděkovat svému spolužákovi Bc. Jiřímu Tichému za pomoc při práci v laboratoři.

Osnova

1.	ÚVOD	- 6 -
2.	TEORETICKÁ ČÁST	- 7 -
	2.1. Kompozitní materiály	- 7 -
	2.1.1. Charakteristika kompozitních materiálů	7
	2.1.2. Částicové kompozity	- 9 -
	2.1.3. Vláknové kompozity	- 10 -
	2.1.4. Cement	- 11 -
	2.1.5. Uhlík	- 11 -
	2.2. Vlastnosti a použití kompozitních materiálů	- 15 -
	2.2.1. Vlastnosti důležité pro konstrukční prvky	- 15 -
	2.2.2. Kompozitní materiály se speciálními vlastnostmi	- 15 -
3.	PRAKTICKÁ ČÁST	- 18 -
	3.1. Použité materiály	- 18 -
	3.2. Programovatelné softwarové rozhraní Nova	- 19 -
	3.3. Použité metody měření kompozitních desek	- 21 -
	3.3.1. Impedanční spektroskopie - EIS	- 21 -
	3.3.2. Voltametrie s lineárním skenem - LSV	- 26 -
	3.4. Měřená data	27
4.	ZÁVĚR	- 53 -
5.	POUŽITÁ LITERATURA	- 54 -
6.	SEZNAM OBRÁZKŮ A TABULEK	- 56 -
7.	SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ	- 59 -

1 Úvod

Práce se zabývá kompozitními materiály na bázi uhlíku a jejich možným využitím. Práci jsem rozdělil na teoretickou a praktickou část. Obsahem praktické části je vytváření kompozitních materiálů, jejich měření pomocí metod impedanční spektroskopie a voltametrie s lineárním skenem, vyhodnocení výsledků měření a porovnání vytvořených kompozitních materiálů s cílem nalézt co nejlepší kombinaci vodivosti a rychlosti koroze. V teoretické části se zabývám popisem kompozitních materiálů, materiály používanými k jejich vytvoření a vlastnostmi kompozitních materiálů. V závěru teoretické části práce jsou zmíněny možnosti využití kompozitních materiálů podle jejich vlastností.

2 Teoretická část

2.1 Kompozitní materiály

Kompozitní materiály v dnešní době zaznamenávají vzestup jejich výroby a použití v různých technických odvětvích, například v konstrukčních prvcích, leteckém a automobilovém průmyslu.

2.1.1 Charakteristika kompozitních materiálů

Kompozitní materiály jsou takové materiály, které jsou složené ze dvou nebo více fází. Tyto fáze se liší ve svých mechanických, chemických a fyzikálních vlastnostech. Další charakteristikou kompozitních materiálů je výroba mechanickým smísením jednotlivých fází, tím se odlišují kompozitní materiály kupříkladu od slitin. Jednou z charakteristických vlastností kompozitních materiálů jsou také jednoznačné hranice jednotlivých fází, z čehož vyplývá specifický vnitřní povrch, určený celkovou kontaktní plochou jednotlivých fází v určitém objemu kompozitu. Důležitou vlastností kompozitních materiálů je takzvaný synergizmus, což znamená, že vlastnosti hotového kompozitu jsou lepší, než které by se získaly sečtením vlastností jednotlivých fází. Tato vlastnost kompozitních materiálů je velmi důležitá, neboť díky ní získáváme materiály se zcela novými vlastnostmi.[9]

Obr.1: Příklad závislosti vlastnosti X (např. pevnosti, pružnosti, tepelné vodivosti atd.) materiálu vytvořeného ze dvou fází A a B na zastoupení fáze A [9]

Jestliže se jedná o závislost s lineárním průběhem, jako v případě průběhu I. Na **Obr.1:**, celková vlastnost nového materiálu je určena součtem vlastností jeho fází, tento materiál tedy není kompozitem. Průběhy II. a III. ukazují příklady možných průběhů závislosti vlastnosti X kompozitního materiálu na zastoupení fáze A. Nelinearita těchto průběhů je znakem

synergizmu kompozitních materiálů. Klasickým příkladem kompozitního působení je bimetalový článek, který díky synergetickému účinku získává zcela nové vlastnosti při ohybových změnách i teplotním namáhání. [9]

Dělení kompozitních materiálů

Podle geometrického tvaru výztuže:

- Částicové
- Vláknové s krátkým vláknem

– s dlouhým vláknem

Podle povahy matrice:

- S kovovou matricí (metal matrix composites)
- S polymerní matricí (polymer matrix composites)
- S keramickou matricí (ceramic matrix composites)
- S uhlíkovou matricí (carbon matrix composites)

Podle použití:

- Vysokopevnostní
- Žáropevné

Speciální kompozitní materiály:

- Elektromagnetické
- Vodivé

Parametry, na kterých závisí vlastnosti kompozitů

Vlastnosti fází: Mechanické vlastnosti a jejich poměr (pevnost, modul, mezní přetvoření) a anizotropie vlastností dílčích fází.

Objemové zastoupení fází: Jejich geometrický tvar a uspořádání v systému.

Interakce jednotlivých fází vlastnosti kontaktu: Schopnost přenesení zatížení z matrice do vyztužujících částic a naopak.

Interakce s okolním prostředím

Historie materiálů i fází od jejich vzniku: časové faktory, rychlost změny vnějšího namáhání, technologie výroby.

Obr.2: Rozdělení kompozitních materiálů podle geometrického tvaru výztuže [9]

2.1.2 Částicové kompozity

Charakteristickou vlastností částicových kompozitních materiálů je, že žádný z rozměrů útvaru nepřesahuje výrazně ostatní rozměry. Částice mohou mít pravidelný tvar (kulový, destičkový, tyčinkový) nebo mohou být tvarů nepravidelných. Velikost takovýchto částic se pohybuje od malých, v hodnotách desítek až stovek nanometrů, po velké částice s rozměry v milimetrech. Důležitou vlastností těchto kompozitních materiálů je izotropie vlastností. Podle uspořádání existuje dvojí charakter částicových kompozitů: plnivo je segregováno nebo agregováno. Dle této skutečnosti se odvíjí i objemové zastoupení a tvar pojivových částí systému. Plnivo je skupinou diskrétních částic o němž se dá uvažovat dále ve dvou krajních podobách: plynné a kompaktní. V prvním případě se jedná o materiály pěnového typu (obvykle s jednou tuhou fází), ve druhém případě o materiály skládající se ze dvou nebo více fází, bez pórů nebo s póry.Typickým zástupcem částicových kompozitních materiálů je beton a slinuté karbidy. [12]

Obr.3: Struktura částicového kompozitního materiálu [12]

2.1.3 Vláknové kompozity

Charakteristikou vláknových kompozitních materiálů je, že rozměr částic v jednom směru výrazně převyšuje rozměry částic v ostatních směrech. Vláknové kompozitní materiály se dělí podle délky vláken na kompozity s krátkým vláknem a kompozity s dlouhým vláknem. U kompozitních materiálů s krátkým vláknem je délka vláken podstatně menší, než je velikost celého výrobku, kompozitní materiály s dlouhým vláknem mají délku vláken srovnatelnou s velikostí celého výrobku.Vláknové kompozitní materiály se vyznačují anizotropií vlastností, pakliže nejsou vlákna speciálně uspořádána. Vlákna jsou využívána k vyztužování matrice kompozitu, těchto vláken je používáno velké množství a přibývají stále nové. Standardně jsou využívána přírodní vlákna (bavlna, celulóza, azbest), dále vlákna kovová, silikonová, skleněná, minerální vlákna, uhlíková vlákna a vlákna polymerní. Do polymerní matrice se nejvíce využívají vlákna skleněná a minerální. Existují také speciální skleněná vlákna s využitím jako výztuže anorganických hmot (beton keramika).[12]

Obr.4: Možnosti uspořádání vláken v kompozitech: a) spojitá jednosměrně orientovaná vlákna b) nespojitá náhodně orientovaná vlákna c) spojitá ortogonálně orientovaná vlákna d) spojitá několikavrstevně uspořádaná vlákna [12]

Uhlíková vlákna

Existuje mnoho způsobů výroby uhlíkových vláken. V průmyslu jsou využívány metody teplotní oxidace, karbonizace organických vláken a pyrolýza dehtových a asfaltových smol zvlákňovaných z taveniny. Uhlíková vlákna jsou obvykle vytvářena při teplotách 800 až 1 600°C, při teplotách nad 2 200°C jsou vyráběna vlákna grafitová. Dalším měřítkem je obsah uhlíku, do 92 hmot.% jsou označována za uhlíková, při větším obsahu uhlíku jsou označena jako grafitová.[2]

Postup výroby uhlíkových vláken je rozčleněn do tří kroků, které mohou být určitým způsobem upraveny dle druhu původního vlákna :

- nízkoteplotní oxidace (a stabilizace) na vzduchu při teplotě 200 až 400 °C,
- karbonizace v inertní atmosféře při teplotě asi 1 000 °C (až 1 500 °C)
- grafitizace v inertní atmosféře při teplotě přes 2 200 °C (až 3 300 °C).

Uhlíková vlákna se od grafitových liší nejen obsahem uhlíku, ale mají také nižší hustotu, větší povrch, vyšší elektrický odpor, nižší tepelnou vodivost, větší tendenci absorbovat vlhkost a jsou více smáčeny pryskyřicí. Během výroby je vlákno namáháno na tah, přitom dojde k orientaci grafitových krystalků vytvářených za vyšších teplot, díky čemuž se dosahuje lepších vlastností. Jestliže není uspořádána mikrostruktura a není dosaženo standardní výrobní teploty, mohou mít vlákna malou teplotní vodivost. Proto je tepelná vodivost využívána ke kontrole vyráběných vláken.[2]

2.1.4 Cement

Cement je práškové pojivo, které když se smísí s vodou, vzniká kaše, jež následně tuhne a tvrdne díky hydratačním procesům a reakcím. Pevnost a stálost zůstává zachována po zatuhnutí i ve vodě. Základními složkami cementu jsou sloučeniny CaO s SiO₂, Al₂O₃ a Fe₂O₃, případně jiné podobné typy sloučenin. Cementy se dělí podle složek na křemičitanové,hlinitanové a jiné. Nejvýznamnějším zástupcem křemičitanových cementů je cement portlandský, který pochází z Anglie, kde byl poprvé vyroben začátkem 19. století.[14]

Strukturálně jsou zatvrdlé i čerstvé cementové tmely a malty velice složité. Je nepřeberné množství kombinací cementových složek, typů a velikostí plniva, množství vody v cementovém tmelu, objemových poměrů cementového tmelu a plniva. Tyto proměnné způsobují náhodné změny vlastností cementové malty díky různým kvalitám základních materiálů i postupů výroby. Struktura a vlastnosti cementového kmene nejsou zcela objasněny, protože se jedná o směs submikroskopických a koloidních dimenzí a také díky tomu, že nemusí být nikdy dosaženo termodynamické rovnováhy mezi cementovým kamenem, plnivem a vnějším prostředím. Přidáním plniv k cementovému tmelu se vytvoří betony a malty. Tuhý cementový tmel je tvořen rozptýlenými nehydratovanými částicemi cementu v gelové matrici, malta obsahuje rozptýlené částice písku v matrici z cementového tmelu a beton je tvořen v maltové matrici rozptýlenými hrubými štěrkovými částicemi. Beton je tedy mnohofázový materiál skládající se přinejmenším ze sedmi částí, tedy z hrubého plniva, jemného plniva, nehydratovaných cementových částic, cementového gelu, gelových pór, kapilárních pór a vzdušných pór. [2]

2.1.5 Uhlík

Uhlík je chemickým prvkem tvořícím základ všech organických sloučenin, a tedy všech organizmů žijících na Zemi. Využití uhlíku a jeho sloučenin je široké od použití jako energetického zdroje po plastické a nátěrové hmoty. Nejčastějším způsobem vazby k sousedním atomům je u uhlíku kovalentní vazba, jeho atomy mohou tvořit jednoduchou, dvojnou i trojnou vazbu. Uhlík se vyskytuje v několika odlišných, jak přírodních, tak umělých modifikacích. Tyto modifikace se liší rozdílnými typy krystalových mřížek a druhy vazeb, kterými jsou vázány sousední atomy. Díky těmto odlišnostem jsou tedy i vlastnosti jednotlivých modifikací zcela odlišné.

Modifikace uhlíku:

- Diamant
- Grafit
- Amorfní uhlík
- Fullereny
- Nanotrubice
- Grafen

Diamant

Diamant je nejtvrdším známým nerostem na Zemi. Jedná se o čistý přírodní uhlík, který vykrystalizoval ve velkých hloubkách, jeho krystaly mají obvykle tvar osmistěnu nebo osmačtyřicetistěnu. Diamant se přes svoji značnou tvrdost vyznačuje také velkou křehkostí, takže při nárazu dojde k jeho rozštípnutí. Dalšími vlastnostmi diamantu jsou odolnost vůči kyselinám a nejvyšší tepelná vodivost ze všech známých látek. Naleziště diamantů se nacházejí v Jižní Africe, Rusku, Jižní Americe a Austrálii. Diamanty se používají k výrobě šperků a k technickým účelům jako vrtné nástroje, brusné a leštící materiály, řezné dráty atd.[10]

Obr.5: Krystaly diamantu [10]

Grafit

Jedná se o šesterečný nebo klencový minerál, narozdíl od diamantu se vyznačuje nízkou tvrdostí 1 podle Mohseho stupnice. Jednotlivé atomy uhlíku se váží za pomocí kovalentních vazeb vždy se třemi nejbližšími atomy, takto vznikají vrstvičky vázané Van der Waalsovými vazbami. Důležitými vlastnostmi grafitu jsou odolnost vůči kyselinám a elektrická vodivost, elektrický proud je přenášen po vrstvách, nikoliv napříč vrstvami struktury grafitu, díky čemuž po narušení jednotlivých vrstev dochází k ovlivnění vodivosti. Grafit vzniká přeměnou uhelných slojí a ložisek ropy, dá se vyrobit také uměle ze sazí nebo z odpadů po zpracování ropy. [10]

Obr.6: Struktura grafitu [10]

Amorfní uhlík

Amorfní uhlík je pevná látka s nepravidelnou strukturou, jeho typickým zástupcem jsou uhlíkové saze. Tyto saze vznikají jako vedlejší výsledek při procesu štěpení ropných zbytků v atmosféře vodní páry a kyslíku při teplotě okolo 1 300°C. Základní částí sazí je elementární uhlík s neuspořádanou strukturou. Základní kulovité částice se při výrobě shlukují do řetězců, takto vytvořené uskupení je nejmenší jednotkou sazí určující jejich výchozí strukturu. Podle velikosti základních částic se odvíjí velikost měrného povrchu, čím jsou základní částice větší, tím menší je měrný povrch, od toho se odvíjí i velikost vodivosti, která s rostoucím povrchem stoupá. [10]

Fullereny

Jsou poměrně novou modifikací uhlíku, jejichž objev byl oceněn Nobelovou cenou v roce 1996. Jedná se o sférické molekuly skládající se z pěti nebo šesti kruhů atomů uhlíku. Prostorově jsou fullereny uskupeny do kulovitého tvaru a vyznačují se vysokou odolností vůči vnějším fyzikálním vlivům. Nejstabilnější dosud vytvořený fulleren je molekula s obsahem šedesáti atomů uhlíku. Pro výrobu fullerenů se používají čtyři výrobní způsoby za pomocí pyrolýzy: pomocí elektrického oblouku v atmosféře inertního plynu, v plamenech různých organických látek, pomocí slunečního záření koncentrovaného za pomocí zrcadel do centra, ve kterém se nachází grafit a poslední možností výroby je pyrolýza organických sloučenin s využitím laseru. [10]

Obr.7: Struktura fullerenu C60 [3]

Nanotrubice

Jedná se o uměle vytvořené trubičky o velikosti řádově nanometrů skládající se z atomů uhlíku. Délka těchto nanotrubiček se pohybuje v mikrometrech, což je o tři řády více než je jejich šířka. Takto uměle vytvořené nanotrubice vykazují obrovskou pevnost a dobrou tepelnou vodivost. Další vlastností nanotrubiček je rostoucí vodivost s rostoucím průměrem trubiček, dále je možné zvýšit jejich vodivost pomocí vyplnění kovem. [10]

Obr.8: Struktura nanotrubice [3]

Grafen

Tento materiál je tvořen pouze jedinou vrstvou atomů uhlíku, které jsou uspořádány do pravidelné hexagonální struktury. Jelikož je grafen tvořen jedinou vrstvou atomů, jedná se o nejtenčí známý materiál na světě, ale zároveň je i nejpevnějším známým materiálem. Díky jeho specifické struktuře má několik zajímavých vlastností. Jedná se o výborný elektrický a tepelný vodič, jehož elektrony mají nejvyšší pohyblivosti ze všech známých materiálů. Dalším specifikem tohoto materiálu je to, že je transparentní pro světlo, této vlastnosti se dá využít při výrobě fotovoltaických článků a displejů. Do budoucna se počítá s jeho využitím ve výrobě optoelektronických součástek, tranzistorů a signálových cest. [3]

Obr.9: Struktura grafenu [3]

2.2 Vlastnosti a použití kompozitních materiálů

Některé vlastnosti kompozitních materiálů byly rozebrány již na začátku této práce, tato část se zaměřuje na vlastnosti důležité pro konstrukce a speciální vlastnosti kompozitních materiálů.

2.2.1 Vlastnosti důležité pro konstrukční prvky

Asi nejvíce užitečnou vlastností kompozitních materiálů je jejich nízká hmotnost oproti ocelovým materiálům, dále také to, že se nijak výrazně nedeformují a jsou stabilní a spolehlivé. Další vlastností kompozitních materiálů je jejich dobrá ohnivzdornost a dobrá odolnost oproti působení běžně používaných chemikálií, s výjimkou kompozitních materiálů s epoxidovou matricí, která je citlivá na ředidla. Kromě těchto vlastností mají kompozitní materiály také výborné izolační vlastnosti a také úplnou odolnost vůči korozi v agresivním prostředí. [2]

2.2.2 Kompozitní materiály se speciálními vlastnostmi

Díky specifickým druhům příměsí použitých při sestavování kompozitních materiálů lze dosáhnout u kompozitních materiálů nových speciálních vlastností jako je elektrická vodivost nebo elektromagnetické vlastnosti.

Kompozitní materiály s uhlíkovými vlákny a cementovou matricí

Tento typ materiálu v posledních letech narůstá na významnosti díky snížení nákladů na výrobu uhlíkových vláken a zvětšující se poptávce po materiálech s výbornými strukturními a funkčními vlastnostmi. Díky nižší ceně a jednoduchému přidání jako příměs betonu se používají krátká uhlíková vlákna, nikoli vlákna dlouhá. Délka takovýchto krátkých vláken se pohybuje do 5mm. Nevýhodou použití krátkých vláken je slabší vazba mezi vláknem a matricí, pro zlepšení povrchové vazby mezi matricí a vláknem prochází vlákna povrchovou úpravou za pomocí tepla, ozonu nebo pomocí silanů. Tento způsob úprav zlepšuje vazbu mezi vlákny a cementovou matricí, díky zvýšení smáčivosti vodou. Dalším účinkem vláken na vlastnosti betonu se projevuje s jejich zvyšujícím se podílem v celkovém objemu kompozitního materiálu. Se zvyšujícím se objemovým procentem klesá tlaková pevnost a pevnost v ohybu. Dalším důsledkem zvyšování obsahu vláken je rostoucí cena, obvykle se používá jednoprocentní objemový podíl vláken v kompozitním materiálu. Aby byla vlákna využita efektivně, je důležité jejich dostatečné rozptýlení ve směsi. V porovnání s ostatními druhy vláken, která se dají využít, tedy skelnými, ocelovými a polymerními, vynikají výbornou pevností v tahu betonu. Další výhodou je, že narozdíl od skelných a polymerních vláken jsou uhlíková vlákna elektricky vodivá a teplotně odolná. Ocelová vlákna jsou také vodivá, ale narozdíl od uhlíkových mají podstatně větší průměr a hmotnost. Takto vzniklé kompozitní materiály s uhlíkovými vlákny poskytují různé funkční schopnosti, jež se dají uplatnit v praktických aplikacích. [4]

Funkce kompozitních materiálů s uhlíkovými vlákny a cementovou matricí:

- Snímání tlaku Tato schopnost je významná pro konstrukci takzvaných inteligentních struktur. Takto vytvořený kompozit funguje jako piezoelektrické tlakové čidlo, jehož odpor po stlačení roste a po povolení tlaku se vrátí na původní hodnotu. [5]
- *Tepelné izolační schopnosti* Tato schopnost je využitelná pro zamezení tepelným ztrátám zařízení a úspory energie v budovách.
- Schopnost snímání teploty Této vlastnosti se dosahuje díky využití Seebeckovu jevu, při kterém dochází k přeměně teplotního rozdílu přímo na elektrický proud. Díky schopnosti snímat teploty se do stavby nemusí vkládat tepelné senzory čímž se zvyšuje trvanlivost stavby, snižují náklady a odpadá možnost poruchy vložených snímačů. Citlivost na změnu teploty určuje množství uhlíkových vláken, bohužel pro dosažení dostatečně velké citlivosti by byl zapotřebí velký objem vláken, což by se neblaze podepsalo na pevnosti kompozitu, proto se za účelem zvýšení citlivosti uhlíková vlákna obohacují například borem. [7] [6]
- Schopnost vést elektrický proud Kompozitní materiály s elektrickou vodivostí jsou využívány k zajištění elektrického uzemnění, ochraně proti bleskům, odporovému vytápění, ochraně proti elektromagnetickému rušení a jako katodická ochrana ocelových výztuží v betonu. Tyto materiály nahrazují

kombinované materiály, díky čemuž se snižuje cena, zvyšuje odolnost a životnost, funkční objem a zjednodušuje dizajn. [8]

Obr.10: Závislost změny odporu na deformaci u kompozitních materiálů pro snímání tlaku [5]

3 Praktická část

3.1 Použité materiály

Pro měření v praktické části byly využity kompozitní desky různého složení využívající jako výztuže různé typy uhlíku a uhlíkových vláken. Přesné složení a postup výroby těchto desek v této práci nebude uveřejněn, jelikož je patentově chráněn. Dále bude uveden pouze hrubý nástin použitých materiálů. Měřené desky budou v práci nadále označovány pouze popisnými čísly.

Seznam měřených desek: 1. NK4

2.	NK54d1
3.	NK57E
4.	NK57Ep
5.	NK58
6.	NK59
7.	NK64E
8.	NK66E
9.	NK67E
10.	NK72E
11.	NK90
12.	NK91
13.	NK92

Nástin použitých materiálů

Byly vytvořeny betonové směsi, do nichž byly promíchávány různé druhy uhlíkových materiálů jako jsou saze, expandovaný grafit a uhlíková tkanina. Některé z těchto použitých uhlíkových materiálů byly ještě před vmícháním pokoveny. Takto vzniklá směs byla nalita do formy a po zatuhnutí vznikla kompozitní deska, ještě před jejím zatuhnutím byly do této směsi vloženy dva elektrodové praporce. Rozměry těchto desek byly 30x30x1 cm.

3.2 Programovatelné softwarové rozhraní Nova

Programovatelné rozhraní Nova umožňuje uživateli pomocí různých příkazových bloků sestavit vlastní měřící program o libovolné délce jakoby z jednotlivých stavebních dílů. Takto je díky tomuto rozhraní možno vytvořit komplexní měřící programované procedury odpovídající představám uživatele. To je velkou výhodou oproti standardním měřícím programům, ve kterých jsou možnosti uživatele omezeny nastavením jednotlivých, předem definovaných měřících procedur a v případě potřeby využití jiné měřící procedury musí čekat, až výrobce daného softwaru potřebnou měřící metodu vytvoří. Program Nova obsahuje dále i určitou sadu již vytvořených měřících procedur, jejichž parametry lze libovolně editovat, k těmto procedurám lze uložit vlastní měřící metody sestavené z již zmíněných příkazových bloků. Celkové prostředí programu Nova je rozděleno do 3 částí: obrazovka Nastavení, obrazovka a obrazovka Analytická. Obrazovka nastavení poskytuje rámec pro Měřící vytváření a editaci měřících procedur. Měřící obrazovka slouží k zobrazování dat v reálném čase během samotného měření, a také k zobrazení aktuální části postupu měření. Analytická obrazovka je využita k úpravě a samotnému vyhodnocování naměřených dat, ať už pomocí 2D a 3D grafu, tak pomocí různých typů výpočtů. Tato obrazovka také slouží ke správě knihovny provedených měření. [11]

Obr.11: Hlavní obrazovka programu Nova [11]

3.3 Použité metody měření kompozitních desek

Pro měření vlastností vyrobených kompozitních desek byly určeny dvě metody, a to metoda Impedanční spektroskopie a Voltametrie s lineárním skenem. Pomocí těchto dvou metod bude určována vodivost jednotlivých desek a rychlost koroze materiálů, ze kterých byly vytvořeny. Hlavním cílem je získat kompozitní materiál s co nejvyšší vodivostí a co nejmenší rychlostí koroze nebo materiál s vhodným kompromisem těchto dvou vlastností, aby byla zajištěna dostatečná životnost a nedošlo k jeho rozpadu v krátké době. Samotné měření bylo prováděno ve dvouelektrodovém zapojení s pomocí přístroje AUTOLAB PGSTAT100. Dvouelektrodové zapojení je využíváno v okamžiku, kdy není bezpodmínečně nutné přesné nastavení potenciálu. V tomto uspořádání je využívána pracovní elektroda a protielektroda. Tato konfigurace se hodí pro stanovení vlastností elektrolytů, například konduktivity nebo k určení parametrů pevnolátkových vzorků.

3.3.1 Impedanční spektroskopie - EIS

Tato metoda spočívá v nastavení malého sinusového střídavého napětí o předepsané frekvenci s offsetem o určité hodnotě polarizačního napětí. Pomocí poměru změny střídavého napětí a střídavého proudu se spočítá hodnota impedance systému, která je složena z hodnot amplitudy a velikosti fázového posunu, ten je závislý na nastavené frekvenci. Díky tomu se získá závislost změny impedance systému na frekvenci. Jednotlivé chemické prvky, ze kterých se skládá měřený systém, se od sebe odlišují časovou konstantou polarizace, to zapříčiňuje, že se změnami frekvence mění i jednotlivé složky impedance. Tyto složky jsou Z', což je reálná impedance, dále imaginární impedance Z'' a celková impedance |Z|. Poměr impedancí Z''/Z' se označuje ztrátový činitel tg δ . [1]

Impedance je popsána vzorcem:

$$Z = Z' - j Z'' \tag{1}$$

Případně pomocí polárních souřadnic:

$$Z = |Z|\exp(j\varphi) = |Z|\cos\varphi + j|Z|\sin\varphi$$
(2)

Díky těmto parametrům jsme schopni popsat elektrochemický děj s pomocí náhradních elektrických obvodů. Tyto obvody se skládají z několika základních prvků, pasivních nebo aktivních, které se mohou řadit sériově, paralelně nebo sérioparalelně. Jedná se o prvky typu odpor, kondenzátor a několik dalších, které jsou podrobněji popsány níže. V takto sestavených obvodech souvisí kondenzátor s polarizačními procesy a rezistor s vodivostí vzorku.

Seznam základních prvků:

Rezistor R:

Jedná se o prvek, který se projeví v grafu impedancí pouze posuvem po reálné ose. Tento posuv odpovídá hodnotě odporu. Rezistor může představovat například vodivost použitého elektrolytu. [1]

Celková impedance modelu představovaného pouze odporem je tedy Z = R.

Obr.12: Označení rezistoru v obvodu a jeho průběh impedance

Kapacitor C:

Kapacita je narozdíl od rezistivity frekvenčně závislá a dochází u ní k změně fáze o -90°. Jedná se o prvek, který se projeví v grafu impedancí v záporných hodnotách imaginární osy jako polopřímka, přičemž se vzrůstající frekvencí dochází k poklesu hodnoty směrem k nule při nekonečné frekvenci. Kapacitor odpovídá dvouvrstvám na rozhraní elektroda-elektrolyt a jeho kapacita je nepřímo úměrná tloušťce této dvojvrstvy. [1]

Celková impedance modelu představovaného pouze kapacitorem je tedy:

(3)

Obr.13: Označení kapacitoru v obvodu a jeho průběh impedance

Induktor L:

Indukčnost obdobně jako kapacita je frekvenčně závislá a dochází u ní také k změně fáze, ale narozdíl od kapacity o +90°. Tento prvek se podobně jako kapacitor projeví v grafu impedancí jako polopřímka, ale v kladných hodnotách imaginární osy. Induktivní chování může být zapříčiněno rozdílným rozložením proudu a chybou potenciostatického režimu, což poukazuje na chybu v EIS měření. [13]

Celková impedance modelu představovaného pouze induktorem je tedy:

(4)

Obr.14: Označení induktoru v obvodu a jeho průběh impedance

Konstantní fázový element CPE:

Jedná se o prvek, který je obdobný jako kapacitor, ale narozdíl od něj dochází ke změně fáze o jiný úhel než 90°. V grafu impedancí se opět znázorňuje jako polopřímka která s reálnou osou svírá úhel α . Obdobně jako u kapacitoru se vzrůstající frekvencí dochází k poklesu hodnoty směrem k nule při nekonečné frekvenci. CPE se tedy chová jako neideální kapacita, podává informace o struktuře povrchu. [1]

Celková impedance modelu představovaného pouze CPE je tedy:

$$\frac{1}{Z} = Y = Q^0 \cdot (j \cdot \boldsymbol{\varpi})^n \tag{5}$$

kde Q^0 je číselně rovna admitanci při $\omega = 1$ rad/s označuje se jednotkou [S·sⁿ], n je sklon polopřímky od 0 do 1. Pro n = 1 jedná se o kapacitor a pro n = 0 jde o odpor

Obr.15: Označení CPE v obvodu a jeho průběh impedance

Warburg W:

Warburgová impedance je speciální případ CPE, vzniká v případě kdy úhel α v grafu impedancí je roven 45°. Tento prvek slouží k modelování difúze iontů. Je složen z frekvenčně závislé kapacity C_W a odporu R_W v sériové kombinaci. [13]

Celková impedance modelu W odpovídá CPE když je hodnota n = 0.5:

 $\frac{1}{Z} = Y = Q^0 \cdot (j \cdot \sigma)^n \tag{6}$

Obr.16: Označení Warbugr impedance v obvodu a její průběh impedance

<u>Člen 0:</u>

Při vysoké frekvenci ($f > 2/B^2$) se průběh prvku O neliší od Warburgové impedance. Tento frekvenční rozsah je v následujícím grafu znázorněn červeně. Při nízké frekvenci vypadá člen O jako R a C paralelně zapojený, přičemž $Z = B/Q^0$, tato část je v grafu znázorněna modře.

Celková impedance modelu O je:

$$Z = \left\{ \frac{1}{Q^0 \sqrt{j\varpi}} \right\} \tanh\left[B\sqrt{j\varpi}\right]$$
(7)

Přičemž Q^{θ} má tu samou definici jako pro Warbungovu impedanci. Konstanta *B* difúzní časová konstanta [s] se vztahuje k tloušť ce difúzní vrstvy δ a difúznímu koeficientu D [m²·s⁻¹] Parametr *B* charakterizuje čas, za který reaktant difunduje z jedné strany vrstvy na druhou.

Obr.17: Označení členu O v obvodu a jeho průběh impedance

<u>Člen T:</u>

Prvek T je charakteristický druhem povrchu, jenž obsahuje přesně určenou dávku elektroaktivní substance. Společnou vlastností je pevné (neměnící se) množství přítomného elektroaktivního materiálu, které když je spotřebováno, není možné jej dobít. Element T je charakterizován dvěma parametry, parametrem admittance Q^0 a parametrem difúzní časové konstanty *B*.

Při vysoké frekvenci ($f > 2/B^2$) se průběh prvku T neliší od Warburgové impedance. Tento frekvenční rozsah je v následujícím grafu znázorněn červeně. Při nízké frekvenci vypadá člen T jako R a C v sérii, přičemž $Z = (B/Q^0)/3$, tato část je v grafu znázorněna modře.

Celková impedance modelu T je:

$$Z = \left\{ \frac{1}{Q^0 \sqrt{j\varpi}} \right\} \operatorname{coth} \left[B \sqrt{j\varpi} \right]$$
(8)

Přičemž Q^0 má tu samou definici jako pro Warbungovu impedanci. Konstanta *B* difúzní časová konstanta [s] se vztahuje k tloušť ce difúzní vrstvy δ a difúznímu koeficientu D [m²·s⁻¹] Parametr *B* charakterizuje čas, za který reaktant difunduje z jedné strany vrstvy na druhou.

$$B = \frac{\delta}{\sqrt{D}} \tag{9}$$

Obr.18: Označení členu T v obvodu a jeho průběh impedance

Nastavení měření:

Při měření EIS byl nastaven režim měření Single sine, což znamená, že dochází k buzení vzorku jedním harmonickým signálem. Dalšími nastavovanými parametry je amplituda budícího signálu, která byla nastavena na $U_{ef} = 10 \text{ mV}$, frekvenční rozsah nastavený v rozmezí 0,1 Hz až 10 kHz a logaritmické rozdělení frekvencí s padesáti kroky měření.

3.3.2 Voltametrie s lineárním skenem - LSV

Voltametrie s lineárním skenem vychází z Cyklické voltametrie, která je jednou z mnoha metod odvozených od polarografie. Při této metodě je na elektrody vložen potenciál, který je lineárně zvyšován od počátečního po zlomový, tomuto zvyšování se říká dopředný sken. V tomto případě narozdíl od cyklické voltametrie (CV) se hodnota již nesnižuje zpět na počáteční hodnotu a měření tímto končí. Rychlost změny potenciálu se nazývá scan rate, který vymezuje časové rozmezí experimentu. Výsledkem měření je voltamogram, tedy závislost proudu soustavou na vloženém napětí. O přesné nastavení potenciálu mezi pracovní a referenční elektrodou se stará potenciostat.

Nastavení pro měření:

Základní parametry, které se nastavují, jsou tedy rozmezí napětí a velikost scan rate. Tyto dva parametry byly pro všechna měření nastaveny stejně, a to tak, že počáteční napětí je -0,5V a konečné 0,5 V, hodnota scan rate byla nastavena 0,101V/s a krok potenciálu 0,46 mV.

Obr.19: Tvar potenciálového cyklu

3.4 Měřená data

Obr.20: Porovnání všech kompozitních desek metodou LSV

Při porovnání všech měřených vzorků je patrné, že jako nejlépe vodivé se jeví vzorky s číslem 3, 4, 7, 8 a 10. Tyto vzorky budou dále měřeny i metodou EIS a ze skupiny vzorků s nižší vodivostí k nim byl připojen i vzorek číslo 8.

Kompozitní deska číslo 3. NK57E

Obr.22: Impedanční spektroskopie vzorku NK57E

¥	· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·	
Císlo kroku	f[Hz]	$Z^{\circ}[\Omega]$	$-Z^{\prime\prime}[\Omega]$	$Z[\Omega]$	-φ [°]
1	10000.0000	4.9528	0.1677	4.9556	1.9396
2	7906.0000	4.9743	0.1582	4.9768	1.8212
3	6250.6000	4.9946	0.1491	4.9969	1.7095
4	4941.7000	5.0296	0.1291	5.0312	1.4702
5	3906.9000	5.0483	0.1246	5.0498	1.4138
6	3088.8000	5.0667	0.1202	5.0681	1.3587
7	2442.1000	5.0840	0.1164	5.0854	1.3113
8	1930.7000	5.1014	0.1124	5.1027	1.2626
9	1526.4000	5.1182	0.1082	5.1193	1.2114
10	1206.8000	5.1343	0.1042	5.1354	1.1631
11	954.1000	5.1501	0.0995	5.1510	1.1068
12	754.3100	5.1647	0.0949	5.1655	1.0522
13	596.3600	5.1788	0.0901	5.1795	0.9972
14	471.4900	5.1925	0.0852	5.1932	0.9401
15	372.7600	5.2051	0.0801	5.2057	0.8818
16	294.7100	5.2168	0.0751	5.2173	0.8252
17	233.0000	5.2275	0.0703	5.2279	0.7706
18	184.2100	5.2370	0.0649	5.2374	0.7100
19	145.6300	5.2461	0.0603	5.2464	0.6583
20	115,1400	5 2543	0.0553	5 2546	0.6031
21	91 0300	5 2617	0.0506	5 2619	0.5508
22	71 9690	5 2686	0.0463	5 2688	0.5031
22	56 8990	5 2744	0.0421	5 2746	0.5551
25	44 9840	5 2797	0.0384	5 2798	0.4162
27	35 5650	5 2843	0.0340	5 2845	0.3687
25	28 1180	5 2890	0.0310	5 2891	0.3007
20	20.1100	5 2020	0.0310	5 2020	0.3301
21	17 5750	5 2969	0.0273	5 2970	0.2550
20	17.5750	5 2004	0.0242	5 2005	0.2012
27	10.0250	5 2024	0.0213	5 2024	0.2327
30	10.9050 8 6851	5 3044	0.0171	5 3044	0.2094
31	6 8665	5 2063	0.01/1	5 2063	0.1001
32	5 4287	5 2081	0.0145	5.3003	0.1370
24	<u> </u>	5.2009	0.0155	5.3001	0.1437
34	4.2717	5.3070	0.0113	5.3077	0.1210
<u> </u>	3.3732	5.2102	0.0101	5.3102	0.1074
30	2.0027	5.2122	0.0093	5.3121	0.1024
<u> </u>	2.1210	5.3132	0.0081	5.3132	0.08/0
38	1.0/08	5.3143	0.0000	5.3143	0.0770
39	1.325/	5.3142	0.00/1	5.3142	0.0//0
40	1.0481	5.3134	0.0057	5.3154	0.0614
41	0.8286	5.3152	0.0056	5.3152	0.0607
42	0.6551	5.3150	0.0037	5.3150	0.0400
43	0.5180	5.3176	0.0045	5.3176	0.0487
44	0.4095	5.3176	0.0031	5.3176	0.0337
45	0.3238	5.3192	0.0026	5.3192	0.0278
46	0.2560	5.3192	0.0030	5.3192	0.0319
47	0.2024	5.3224	0.0019	5.3224	0.0204
48	0.1600	5.3238	0.0030	5.3238	0.0324
49	0.1265	5.3220	0.0001	5.3220	0.0013
50	0.1000	5.3231	-0.0007	5.3231	-0.0079

Tab. 1 :Naměřené hodnoty EIS vzorku NK57E

$Z^{\circ}[\Omega]$	-Z'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	- <i>φ</i> [°]	f[Hz]	χ^2
4.9578	0.1581	0.1007	-5.7692	4.9603	1.8260	10000.0000	4.1368E-05
4.9809	0.1524	0.1328	-3.6304	4.9832	1.7528	7906.0000	Obvod
5.0032	0.1468	0.1723	-1.5305	5.0054	1.6805	6250.6000	[R(Q[RO])]
5.0248	0.1411	-0.0952	9.3255	5.0268	1.6087	4941.7000	
5.0455	0.1354	-0.0552	8.6815	5.0473	1.5374	3906.9000	1
5.0654	0.1297	-0.0259	7.8956	5.0670	1.4663	3088.8000	1
5.0844	0.1239	0.0062	6.4448	5.0859	1.3957	2442.1000	1
5.1025	0.1181	0.0202	5.0065	5.1038	1.3255	1930.7000	1
5.1196	0.1122	0.0290	3.7112	5.1209	1.2560	1526.4000	
5.1359	0.1064	0.0306	2.1179	5.1370	1.1873	1206.8000	1
5.1512	0.1007	0.0226	1.2054	5.1522	1.1199	954.1000	
5.1657	0.0950	0.0194	0.1727	5.1666	1.0538	754.3100	1
5.1792	0.0895	0.0089	-0.7684	5.1800	0.9895	596.3600	1
5.1919	0.0840	-0.0111	-1.3895	5.1926	0.9271	471.4900	1
5.2037	0.0787	-0.0276	-1.7178	5.2043	0.8669	372.7600	
5.2147	0.0736	-0.0400	-1.9868	5.2152	0.8091	294.7100	
5.2249	0.0687	-0.0493	-2.2193	5.2253	0.7538	233.0000	
5.2343	0.0640	-0.0505	-1.3099	5.2347	0.7010	184.2100	
5.2431	0.0596	-0.0578	-1.1993	5.2434	0.6508	145.6300	1
5.2510	0.0554	-0.0626	0.0866	5.2513	0.6040	115.1400	
5.2584	0.0515	-0.0623	1.8897	5.2587	0.5615	91.0300	1
5.2654	0.0481	-0.0617	4.0094	5.2656	0.5236	/1.9690	1
5.2721	0.0449	-0.0439	6.7029	5.2723	0.4884	56.8990	1
5.2787	0.0417	-0.0186	8.8289	5.2789	0.4530	44.9840	1
5.2850	0.0382	0.0121	12.4818	5 2009	0.2727	20 1100	1
5.2907	0.0344	0.0312	10.8988	5 2056	0.3727	20.1180	1
5 2004	0.0304	0.0309	0.2102	5 2005	0.3280	17 5750	1
5 2025	0.0204	0.04/3	7.2103 5.1706	5 2025	0.2032	12 8050	1
5.3023	0.0227	0.0381	_0 1282	5 30/0	0.2448	10.0930	
5 3040	0.0194	0.0403	-0.1202	5 3049	0.2090	8 6851	
5 3081	0.0103	0.0452	-2 6046	5 3081	0.1704	6 8665	
5 3093	0.0142	0 0224	_9 5207	5 3093	0 1318	5 4287	
5.3103	0.0122	0.0027	-5 8412	5.3103	0 1147	4 2919	
5.3112	0,0093	0.0176	-7.8074	5.3112	0.1009	3.3932	
5.3120	0.0083	-0.0029	-12.3078	5.3120	0.0898	2.6827	
5.3127	0.0075	-0.0092	-7.0380	5.3127	0.0809	2.1210	1
5.3134	0.0068	-0.0158	3.3452	5.3134	0.0738	1.6768	1
5.3141	0.0063	-0.0007	-11.4435	5.3141	0.0682	1.3257	1
5.3148	0.0059	-0.0121	3.7455	5.3148	0.0637	1.0481	1
5.3155	0.0056	0.0039	-0.7938	5.3155	0.0602	0.8286	1
5.3161	0.0053	0.0212	43.4645	5.3161	0.0574	0.6551	
5.3168	0.0051	-0.0160	13.3400	5.3168	0.0552	0.5180	
5.3174	0.0050	-0.0037	58.7204	5.3174	0.0535	0.4095	
5.3181	0.0048	-0.0214	87.5438	5.3181	0.0522	0.3238	
5.3187	0.0047	-0.0095	60.4963	5.3187	0.0511	0.2560	
5.3194	0.0047	-0.0573	147.1210	5.3194	0.0503	0.2024	
5.3200	0.0046	-0.0703	53.6195	5.3200	0.0497	0.1600	
5.3207	0.0046	-0.0245	3739.8000	5.3207	0.0493	0.1265	
5.3213	0.0045	-0.0324	-722.6470	5.3213	0.0490	0.1000	١

 Tab. 2 : Hodnoty simulace EIS vzorku NK57E

Obr.23: Zapojení náhradního obvodu NK57E

Označení	NK57E
ba [V/dec]	0.569
bc [V/dec]	0.570
Ecorr, Calc [V]	1.549E-04
Ecorr, Obs [V]	-6.679E-05
jcorr [A/cm ²]	3.397E-04
icorr [A]	1.699E-02
Rychlost koroze [mm/rok]	7.881
Polarizační odpor $R_{\rho}[\Omega]$	7.282
E počáteční [V]	-0.300
E konečný [V]	0.299

Tab. 3 :Hodnoty získané z Tafelova grafu vzorku NK57E

ba a bc – anodický a katodický Tafeluv koeficient ve V / dekádu.

Ecorr, Calc: – korozní potenciál vypočtený z průsečíku u Tafelova grafu ve V Ecorr, Obs: – pozorovaný experimentální korozní potenciál ve V.

jcorr a icorr – výměna proudové hustoty [A/cm2] a vyměněný proud [A] vypočtený z Tafelova grafu Korozní rychlost – odhadovaná rychlost koroze materiálu,vypočtená z průsečíku Tafelova grafu v mm / rok.

Polarizační odpor – odhadovaná hodnota polarizačního odporu vypočtená z průsečíku u Tafelova grafu podle:

$$Rp = \frac{1}{2.303 \left(\frac{1}{b_a} + \frac{1}{b_c}\right) i_{corr}}$$
(10)

E počáteční a E konečný – meze potenciálů odpovídající měření

Kompozitní deska číslo 4. NK57Ep

Obr.25: Impedanční spektroskopie vzorku NK57Ep

ă(1 1 1	6577.3	71 [0]	TWO I	7101	503
Císlo kroku	f [Hz]	$Z'[\Omega]$	-Ζ΄΄[Ω]	$Z[\Omega]$	-φ [°]
1	10000.0000	5.6644	0.09033	5.6652	0.9136
2	7906.0000	5.6765	0.08550	5.6772	0.8629
3	6250.6000	5.6894	0.08096	5.6900	0.8153
4	4941.7000	5.7003	0.07694	5.7008	0.7733
5	3906.9000	5.7110	0.07302	5.7114	0.7326
6	3088.8000	5.7268	0.06904	5.7272	0.6907
7	2442.1000	5.7362	0.06551	5.7366	0.6543
8	1930.7000	5.7450	0.06295	5.7454	0.6278
9	1526.4000	5.7539	0.06040	5.7543	0.6015
10	1206.8000	5.7625	0.05760	5.7628	0.5727
11	954.1000	5.7710	0.05523	5.7712	0.5484
12	754.3100	5.7787	0.05248	5.7790	0.5204
13	596.3600	5.7862	0.05011	5.7865	0.4962
14	471.4900	5.7940	0.04768	5.7942	0.4715
15	372.7600	5.8010	0.04499	5.8012	0.4444
16	294.7100	5.8075	0.04272	5.8076	0.4214
17	233.0000	5.8133	0.04035	5.8135	0.3976
18	184.2100	5.8187	0.03751	5.8189	0.3694
19	145.6300	5.8242	0.03539	5.8243	0.3481
20	115.1400	5.8290	0.03240	5.8291	0.3184
21	91.0300	5.8333	0.03011	5.8334	0.2958
22	71.9690	5.8375	0.02797	5.8375	0.2745
23	56.8990	5.8410	0.02570	5.8410	0.2521
24	44,9840	5.8445	0.02343	5.8446	0.2297
25	35.5650	5.8471	0.02146	5.8471	0.2103
26	28,1180	5.8499	0.01941	5.8499	0.1901
27	22.2300	5.8534	0.01729	5.8535	0.1692
28	17 5750	5 8560	0.01566	5 8560	0 1533
29	13.8950	5.8581	0.01433	5.8581	0.1402
30	10.9850	5.8594	0.01284	5.8594	0.1256
31	8.6851	5.8606	0.01167	5.8606	0.1141
32	6.8665	5.8627	0.00995	5.8627	0.0972
33	5 4287	5 8635	0.00906	5 8635	0.0885
34	4 2919	5 8645	0.00779	5 8645	0.0761
35	3 3932	5 8659	0.00708	5 8659	0.0691
36	2 6827	5 8662	0.00621	5 8662	0.0606
37	2 1210	5 8670	0.00638	5 8670	0.0623
38	1 6768	5.8677	0.00429	5.8677	0.0419
39	1 3257	5.8677	0.00488	5.8677	0.0477
40	1 0481	5 8683	0.00333	5 8684	0.0325
41	0.8286	5.8691	0.00414	5.8691	0.0404
42	0.6551	5 8690	0.00203	5 8690	0.0198
43	0 5180	5 8697	0.00203	5 8697	0.0219
44	0 4095	5 8756	0.00266	5 8756	0.0219
45	0 3238	5 8776	0.00384	5 8776	0.0374
46	0.5250	5 8751	0.00204	5 8751	0.0203
47	0 2024	5 8765	0.00159	5 8765	0.0205
48	0.2024	5 8759	0.00159	5 8759	0.0057
49	0.1265	5 8760	0.00163	5 8760	0.0159
50	0 1000	5.8758	0.00074	5.8758	0.0073

Tab. 4: Naměřené hodnoty EIS vzorku NK57Ep

Ζ' [Ω]	-Z'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	-φ [°]	f[Hz]	χ^2
5.6642	0.0877	-0.0033	-2.9020	5.6649	0.8872	10000.0000	4.8999E-06
5.6775	0.0846	0.0173	-1.0046	5.6782	0.8541	7906.0000	Obvod
5.6902	0.0814	0.0146	0.5572	5.6908	0.8197	6250.6000	[R(Q[RO])]
5.7024	0.0781	0.0365	1.4870	5.7029	0.7845	4941.7000	
5.7139	0.0747	0.0512	2.2841	5.7144	0.7489	3906.9000	
5.7248	0.0713	-0.0343	3.2396	5.7253	0.7133	3088.8000	
5.7352	0.0679	-0.0181	3.6203	5.7356	0.6781	2442.1000	
5.7449	0.0645	-0.0015	2.5096	5.7453	0.6436	1930.7000	
5.7541	0.0613	0.0034	1.4286	5.7545	0.6100	1526.4000	
5.7628	0.0581	0.0048	0.9145	5.7631	0.5779	1206.8000	
5.7709	0.0552	-0.0008	-0.1329	5.7712	0.5476	954.1000	
5.7786	0.0524	-0.0022	-0.1839	5.7789	0.5194	754.3100	
5.7859	0.0498	-0.0055	-0.5739	5.7861	0.4934	596.3600	
5.7929	0.0475	-0.0190	-0.4821	5.7931	0.4693	471.4900	
5.7997	0.0452	-0.0220	0.4688	5.7999	0.4466	372.7600	
5.8063	0.0430	-0.0197	0.5928	5.8065	0.4240	294.7100	
5.8127	0.0407	-0.0106	0.7560	5.8129	0.4007	233.0000	
5.8188	0.0382	0.0011	1.7579	5.8189	0.3758	184.2100	
5.8244	0.0355	0.0044	0.4305	5.8245	0.3496	145.6300	
5.8296	0.0328	0.0099	1.3488	5.8296	0.3227	115.1400	
5.8341	0.0302	0.0147	0.1344	5.8342	0.2961	91.0300	
5.8382	0.0276	0.0129	-1.4089	5.8383	0.2706	71.9690	
5.8418	0.0252	0.0148	-2.0655	5.8419	0.2468	56.8990	
5.8451	0.0229	0.0095	-2.1163	5.8451	0.2248	44.9840	
5.8480	0.0209	0.0153	-2.6157	5.8480	0.2048	35.5650	
5.8506	0.0190	0.0126	-1.8869	5.8507	0.1865	28.1180	
5.8530	0.0174	-0.0074	0.4326	5.8530	0.1700	22.2300	
5.8552	0.0158	-0.0137	1.0967	5.8552	0.1550	17.5750	
5.8571	0.0144	-0.0163	0.8138	5.8571	0.1413	13.8950	
5.8589	0.0132	-0.0075	2.7200	5.8589	0.1290	10.9850	
5.8606	0.0120	-0.0001	3.1979	5.8606	0.1178	8.6851	
5.8621	0.0110	-0.0102	10.5741	5.8621	0.1075	6.8665	
5.8634	0.0101	-0.0013	10.9498	5.8634	0.0982	5.4287	
5.8647	0.0092	0.0037	17.9933	5.8647	0.0898	4.2919	
5.8658	0.0084	-0.0014	18.6434	5.8658	0.0820	3.3932	
5.8669	0.0077	0.0111	23.7173	5.8669	0.0750	2.6827	
5.8679	0.0070	0.0149	9.9951	5.8679	0.0686	2.1210	
5.8687	0.0064	0.0177	49.7110	5.8687	0.0627	1.6/68	
5.8695	0.0059	0.0310	20.3389	5.8695	0.0573	1.3257	
5.8703	0.0054	0.0329	61.4031	5.8703	0.0524	1.0481	
5.8/10	0.0049	0.0320	18.6805	5.8/10	0.0479	0.8286	
5.8710	0.0045	0.0440	121.0510	5.8710	0.0438	0.6551	
5.8/21	0.0041	0.0415	83.2643	5.8721	0.0401	0.5180	
5.0721	0.0038	-0.0494	41.3020	5.0721	0.030/	0.4095	
5.8/31	0.0034	-0.0760	-10.4/48	5.0726	0.0333	0.3238	
5.0740	0.0031	-0.0208	30./94/	5.0740	0.030/	0.2300	
5.0740	0.0029	-0.0428	01.4290 249.4000	5 07/2	0.0281	0.2024	
5 8716	0.0020		J40.4090 17 8677	5 8716	0.0237	0.1000	
5 8740	0.0024	-0.0227	195 7700	5 8740	0.0233	0.1203	
5.0777	0.0022	0.0172	175.1100	5.0777	0.0215	0.1000	

Tab. 5: Hodnoty simulace EIS vzorku NK57Ep

Obr.26: Zapojení náhradního obvodu NK57Ep

Označení	NK57Ep
ba [V/dec]	0.570
bc [V/dec]	0.569
Ecorr, Calc [V]	2.804E-04
Ecorr, Obs [V]	-2.863E-05
jcorr [A/cm ²]	3.078E-04
icorr [A]	1.539E-02
Rychlost koroze [mm/rok]	7.476
Polarizační odpor $R_{\rho}[\Omega]$	8.038
E počáteční [V]	-0.300
E konečný [V]	0.299

 Tab. 6 :
 Hodnoty získané z Tafelova grafu vzorku NK57Ep

Kompozitní deska číslo 7. NK64E

Obr.28: Impedanční spektroskopie vzorku NK64E

Číslo kroku	f[Hz]	Ζ' [Ω]	-Z¨[Ω]	$Z[\Omega]$	-φ [°]
1	10000.0000	18.0734	0.38547	18.0775	1.2218
2	7906.0000	18.1076	0.35106	18.1111	1.1107
3	6250.6000	18.1552	0.32371	18.1581	1.0215
4	4941.7000	18.1925	0.30177	18.1950	0.9503
5	3906.9000	18.2178	0.28606	18.2201	0.8996
6	3088.8000	18.2565	0.27424	18.2586	0.8606
7	2442.1000	18.2916	0.26549	18.2936	0.8316
8	1930.7000	18.3256	0.25754	18.3274	0.8052
9	1526.4000	18.3641	0.25173	18.3658	0.7853
10	1206.8000	18.3988	0.24566	18.4005	0.7650
11	954.1000	18.4428	0.23951	18.4443	0.7440
12	754.3100	18.4761	0.23272	18.4775	0.7216
13	596.3600	18.5140	0.22442	18.5154	0.6945
14	471.4900	18.5508	0.21450	18.5521	0.6625
15	372.7600	18.5837	0.20310	18.5848	0.6262
16	294.7100	18.6166	0.19094	18.6175	0.5876
17	233.0000	18.6487	0.17871	18.6495	0.5491
18	184.2100	18.6715	0.16394	18.6722	0.5031
19	145.6300	18.6963	0.15029	18.6969	0.4606
20	115.1400	18.7166	0.13702	18.7171	0.4195
21	91.0300	18.7297	0.12483	18.7301	0.3819
22	71.9690	18.7342	0.11359	18.7345	0.3474
23	56.8990	18.7456	0.10254	18.7458	0.3134
24	44.9840	18.7617	0.09284	18.7620	0.2835
25	35.5650	18.7726	0.08297	18.7728	0.2532
26	28.1180	18.7919	0.07447	18.7921	0.2270
27	22.2300	18.8019	0.06897	18.8020	0.2102
28	17.5750	18.8133	0.06211	18.8134	0.1891
29	13.8950	18.8214	0.05648	18.8215	0.1720
30	10.9850	18.8171	0.05200	18.8172	0.1583
31	8.6851	18.8189	0.04660	18.8189	0.1419
32	6.8665	18.8258	0.04401	18.8259	0.1339
33	5.4287	18.8364	0.03926	18.8364	0.1194
34	4.2919	18.8416	0.03778	18.8416	0.1149
35	3.3932	18.8450	0.03397	18.8450	0.1033
36	2.6827	18.8306	0.03114	18.830/	0.0947
37	2.1210	18.84/9	0.03061	18.8479	0.0930
38	1.6/68	18.844/	0.02322	18.8448	0.0706
39	1.3257	18.8429	0.02/01	18.8429	0.0821
40	1.0481	18.8636	0.02622	18.8636	0.0796
41	0.8286	18.8580	0.01853	18.8580	0.0563
42	0.6551	18.8651	0.02273	18.8651	0.0690
43	0.5180	10.0041	0.02133	10.0041	0.0048
44	0.4095	10.0000	0.01210	10.0000	0.0333
43	0.3238	10.0044	0.01051	10.0044	0.0400
40	0.2300	10.0019	0.01554	10.0019	0.0302
4/	0.2024	10.0/20	0.01554	10.0/20	0.04/2
40	0.1000	18.8699	0.01099	18.8699	0.0310
50	0.1203	18 8657	0.00307	18 8657	0.0543

 Tab. 7:
 Naměřené hodnoty EIS vzorku NK64E

$Z^{\circ}[\Omega]$	-Z'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	-φ [°]	f[Hz]	χ^2
18.0527	0.3722	-0.1144	-3.4403	18.0566	1.1811	10000.0000	1.2874E-05
18.1008	0.3486	-0.0376	-0.7042	18.1042	1.1033	7906.0000	Obvod
18.1460	0.3274	-0.0504	1.1230	18.1490	1.0335	6250.6000	[R(Q[RO])]
18.1886	0.3083	-0.0213	2.1695	18.1912	0.9711	4941.7000	
18.2287	0.2913	0.0595	1.8462	18.2310	0.9156	3906.9000	
18.2665	0.2764	0.0546	0.7763	18.2686	0.8668	3088.8000	
18.3023	0.2635	0.0585	-0.7543	18.3042	0.8248	2442.1000	
18.3365	0.2528	0.0594	-1.8242	18.3382	0.7900	1930.7000	
18.3696	0.2445	0.0300	-2.8599	18.3712	0.7627	1526.4000	
18.4025	0.2384	0.0198	-2.9445	18.4040	0.7423	1206.8000	
18.4360	0.2340	-0.0369	-2.2804	18.4375	0.7273	954.1000	
18.4709	0.2304	-0.0281	-0.9982	18.4723	0.7146	754.3100	
18.5074	0.2260	-0.0355	0.7191	18.5088	0.6997	596.3600	
18.5451	0.2194	-0.0312	2.2697	18.5464	0.6777	471.4900	
18.5823	0.2093	-0.0074	3.0327	18.5835	0.6452	372.7600	
18.6172	0.1957	0.0034	2.4676	18.6182	0.6021	294.7100	
18.6482	0.1795	-0.0022	0.4414	18.6491	0.5515	233.0000	
18.6748	0.1623	0.0176	-1.0068	18.6755	0.4979	184.2100	
18.6970	0.1454	0.0034	-3.2572	18.6975	0.4455	145.6300	
18.7155	0.1297	-0.0060	-5.3376	18.7159	0.3971	115.1400	
18.7311	0.1157	0.0075	-7.3476	18.7314	0.3538	91.0300	
18.7445	0.1033	0.0548	-9.0329	18.7447	0.3158	71.9690	
18.7562	0.0926	0.0567	-9.6829	18.7564	0.2829	56.8990	
18.7666	0.0833	0.0260	-10.2254	18.7668	0.2545	44.9840	
18.7760	0.0753	0.0181	-9.2267	18.7762	0.2298	35.5650	
18.7846	0.0683	-0.0387	-8.2341	18.7848	0.2084	28.1180	
18.7926	0.0622	-0.0495	-9.7599	18.7927	0.1898	22.2300	
18.7999	0.0569	-0.0/11	-8.4038	18.8000	0.1734	17.5750	
18.806/	0.0522	-0.0781	-7.0022	18.806/	0.1589	13.8950	
18.8130	0.0480	-0.0218	-/./8/0	18.8131	0.1460	10.9850	
10.0109	0.0442	0.0002	-3.1028	18.8189	0.1340	8.0831	
10.0244	0.0408	-0.0076	-7.2538	10.0244	0.1243	5 4297	
18 82/2	0.0378	-0.0303	-3.7023	18 83/4	0.1150	<i>J</i> .4287	
18 8388	0.0330	-0.0385	-1.3231	18 8388	0.1003	3 3032	
18 8430	0.0323	0.0657	-4.5500	18 8430	0.0988	2 6827	
18 8469	0.0302	-0.0050	-8.1969	18 8470	0.0918	2.0827	
18 8506	0.0261	0.0000	12 6610	18 8506	0.0795	1 6768	
18 8541	0.0202	0.0591	-9 7354	18 8541	0.0741	1 3257	
18 8573	0.0227	-0.0333	-13 3058	18 8573	0.0691	1.0481	
18 8603	0.0212	0.0333	14 4326	18 8603	0.0644	0.8286	
18.8631	0.0198	-0.0106	-12,9095	18.8631	0.0601	0.6551	
18.8657	0.0185	0.0088	-13.3522	18.8657	0.0561	0.5180	
18.8682	0.0173	0.0249	47.8709	18.8682	0.0524	0.4095	
18.8705	0.0161	0.0326	22.4151	18.8705	0.0490	0.3238	
18.8727	0.0151	-0.0488	-18.5185	18.8727	0.0458	0.2560	
18.8747	0.0141	0.0112	-9.3041	18.8747	0.0428	0.2024	1
18.8766	0.0132	0.0040	-22.4432	18.8766	0.0400	0.1600	1
18.8784	0.0123	0.0509	235.6610	18.8784	0.0374	0.1265	1
18.8800	0.0115	0.0759	-35.5080	18.8800	0.0350	0.1000	

Tab. 8: Hodnoty simulace EIS vzorku NK64E

Obr.29: Zapojení náhradního obvodu NK64E

Označení	NK64E
ba [V/dec]	0.332
bc [V/dec]	0.340
Ecorr, Calc [V]	-1.341E-03
Ecorr, Obs [V]	-4.880E-05
jcorr [A/cm ²]	5.541E-05
icorr [A]	2.771E-03
Rychlost koroze [mm/rok]	1.285
Polarizační odpor $R_{\rho}[\Omega]$	26.316
E počáteční [V]	-0.201
E konečný [V]	0.202

 Tab. 9 :
 Hodnoty získané z Tafelova grafu vzorku NK64E

Kompozitní deska číslo 8. NK66E

Obr.31: Impedanční spektroskopie vzorku NK66E

Číslo kroku	f[Hz]	Z' [Q]	-Z''[O]	Z[0]	- <i>m</i> [°]
1	10000 0000	29 3745	2 07407	29 4476	$\frac{\varphi}{4}$ 0388
2	7906.0000	29.5745	1 9/333	29.4470	3 7514
3	6250 6000	29.8857	1 82989	29.7021	3 5038
4	4941 7000	30 1185	1.02989	30 1685	3 2966
5	3906 9000	30.3612	1.75464	30.1065	3 1 3 2 1
6	3088 8000	30.5012	1.50363	30.4000	2 0820
7	2442 1000	30.3829	1.59505	30.0244	2.9629
8	1930 7000	31.0138	1.33909	31.0500	2.002)
9	1526 4000	31 2462	1.46681	31 2806	2.7002
10	1206 8000	31.2402	1.40081	31.2000	2.0077
10	954 1000	31.4002	1.43433	31.4929	2.0104
11	754 3100	31.0074	1.40203	31.0304	2.3302
12	506 2600	22 1951	1.37794	22 2122	2.4720
13	471 4000	32.1031	1.34646	32.2133	2.3992
14	272 7600	22.3073	1.30803	22.4139	2.3127
15	294 7100	32.0330	1.20991	32.0383	2.2283
10	294.7100	22.0602	1.22723	22.0930	2.1360
17	184 2100	22 2482	1.1/1/0	22 2669	2.0299
10	164.2100	22 4724	1.10914	33.2008	1.9100
20	145.0300	22 6 22 4	0.08205	22 6279	1.6230
20	01 0200	22 7662	0.98303	22 7797	1.0747
21	91.0300	22.0202	0.91/39	22.0504	1.3303
22	71.9090	24.0420	0.84983	24.0521	1.4344
23	30.8990	24.0430	0.78781	34.0521	1.3237
24	44.9840	34.1908	0.72144	34.2044	1.2080
25	35.5650	34.2490	0.65/12	34.2553	1.0992
20	28.1180	34.39/1	0.59030	34.4023	0.9933
27	22.2300	24.5502	0.33831	24.5620	0.8932
28	17.3730	24.5595	0.49089	24.3029	0.8237
29	15.8950	24.0800	0.44108	24.0834	0.7287
21	10.9850	34./320	0.38/34	34./34/	0.0389
22	6.0631	24.8132	0.33138	24.8109	0.5785
32	0.8003	24.8020	0.30977	24.8034	0.3091
24	3.4287	24.8/33	0.27644	24.0/44	0.4342
25	4.2919	24.8843	0.23404	24.0035	0.3834
33	2.5952	24.8939	0.21202	24.8903	0.3491
27	2.0827	24.8381	0.16041	24.8380	0.3004
29	2.1210	24.0023	0.10823	24.002/	0.2704
20	1.0708	24.0702	0.13940	24.0629	0.2291
39	1.5257	34.9020	0.11833	34.9028	0.1942
40	1.0481	24.0977	0.09701	24.0979	0.1380
41	0.6280	25 0002	0.08399	25 0002	0.13/3
42	0.0331	25.0002	0.07733	25.0003	0.1209
43	0.3180	25.0704	0.03440	25.0704	0.0809
44	0.4095	35.0720	0.04190	35.0720	0.0084
43	0.3238	25 1204	0.03034	25 1204	0.0920
40	0.2300	25 1904	0.02374	25 1904	0.038/
4/	0.2024	25 2679	0.03129	25 2679	0.0833
40	0.1000	25 2001	0.03128	25 2001	0.0308
4 7 50	0.1203	35 3057	-0.00270	35.3001	-0.0061
50	0.1000	55.5057	-0.00579	55.5057	-0.0001

Tab. 10: Naměřené hodnoty EIS vzorku NK66E

$Z^{\circ}[\Omega]$	-Z'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	- <i>φ</i> [°]	f[Hz]	χ^2
29.3450	2.0346	-0.1002	-1.9023	29.4155	3.9662	10000.0000	3.644E-04
29.6607	1.9243	0.0751	-0.9822	29.7230	3.7119	7906.0000	Obvod
29.9355	1.8197	0.1666	-0.5585	29.9908	3.4785	6250.6000	[OR(QR)(Q[RT])]
30.1811	1.7309	0.2078	-0.2303	30.2307	3.2822	4941.7000	
30.4087	1.6611	0.1564	-0.0127	30.4540	3.1268	3906.9000	
30.6272	1.6096	0.1450	1.0010	30.6695	3.0084	3088.8000	
30.8431	1.5729	0.1783	2.1596	30.8832	2.9195	2442.1000	
31.0603	1.5470	0.1499	3.2384	31.0988	2.8514	1930.7000	
31.2807	1.5276	0.1104	4.1443	31.3180	2.7958	1526.4000	
31.5049	1.5107	0.1419	5.3206	31.5411	2.7452	1206.8000	
31.7321	1.4929	0.2045	6.4315	31.7672	2.6935	954.1000	
31.9610	1.4715	0.1592	6.7902	31.9948	2.6361	754.3100	
32.1896	1.4447	0.0139	7.1340	32.2220	2.5697	596.3600	
32.4156	1.4112	0.0868	7.8855	32.4463	2.4927	471.4900	
32.6369	1.3705	0.0101	7.9172	32.6657	2.4045	372.7600	
32.8513	1.3226	-0.0657	7.7724	32.8780	2.3055	294.7100	
33.0570	1.2682	-0.0097	8.2328	33.0813	2.1971	233.0000	
33.2522	1.2082	0.0119	8.9329	33.2742	2.0809	184.2100	
33.4360	1.1437	-0.1118	7.2378	33.4556	1.9592	145.6300	
33.6074	1.0761	-0.0476	9.4692	33.6247	1.8340	115.1400	
33.7661	1.0067	-0.0003	9.7319	33.7811	1.7077	91.0300	
33.9121	0.9366	-0.0817	10.2080	33.9250	1.5820	/1.9690	
34.0454	0.8670	0.0070	10.0575	34.0564	1.4588	56.8990	
34.1666	0.7989	-0.0884	10.7445	34.1760	1.3396	44.9840	
34.2763	0.7331	0.0796	11.5675	34.2841	1.2253	35.5650	
34.3/51	0.6702	-0.0640	12.3779	34.3816	1.1169	28.1180	
24.4039	0.0105	-0.0031	13.3/64	34.4093	1.0149	22.2300	
34.3434	0.5022	-0.0460	11.0004	34.34/8	0.919/	1/.3/30	
34.0143	0.3023	-0.1907	13.8800	34.0181	0.0314	10.0950	
34 7211	0.4339	-0.2149	1/.120/	34 7260	0.7499	10.983U 8 6051	
34 7817	0.4094	-0.2320	10.49/9	34 7866	0.0752	6 8665	
34 8201	0.3003	-0.2219	10.902/	34 8310	0.0070	5 4287	
34 8601	0.3313	-0.04/1	26 7522	34 8704	0 4887	4 2010	
34 9045	0.2574	0 0245	25 4790	34 9055	0 4379	3 3937	
34.9358	0.2392	0 2231	28 3038	34.9367	0.3922	2 6827	
34.9638	0.2143	0.2334	27,3975	34.9644	0.3512	2.1210	
34.9886	0.1921	0.3166	37.7395	34.9891	0.3146	1.6768	
35.0107	0.1722	0.1374	45.3042	35.0111	0.2818	1.3257	
35.0304	0.1545	-0.0281	59.2997	35.0307	0.2528	1.0481	
35.0480	0.1388	0.1722	65.3153	35.0482	0.2270	0.8286	1
35.0637	0.1250	0.1814	61.1908	35.0639	0.2042	0.6551	
35.0778	0.1128	0.0042	107.3090	35.0780	0.1842	0.5180	
35.0905	0.1021	0.0529	143.6760	35.0907	0.1667	0.4095	
35.1020	0.0928	0.0018	64.7781	35.1022	0.1515	0.3238	
35.1125	0.0849	-0.0508	257.3870	35.1126	0.1385	0.2560	
35.1222	0.0780	-0.1911	52.1224	35.1222	0.1273	0.2024	
35.1311	0.0722	-0.3876	130.6700	35.1311	0.1177	0.1600	
35.1393	0.0671	-0.7030	58.5392	35.1394	0.1095	0.1265	
35.1468	0.0629	-0.4503	-1759.8800	35.1468	0.1025	0.1000	

Tab. 11 : Hodnoty simulace EIS vzorku NK66E

Obr.32: Zapojení náhradního obvodu NK66E

Označení	NK66E
ba [V/dec]	0.563
bc [V/dec]	0.569
Ecorr, Calc [V]	7.779E-04
Ecorr, Obs [V]	1.279E-03
jcorr [A/cm ²]	5.168E-05
icorr [A]	2.584E-03
Rychlost koroze [mm/rok]	1.199
Polarizační odpor $R_{\rho}[\Omega]$	47.523
E počáteční [V]	-0.298
E konečný [V]	0.299

Tab. 12: Hodnoty získané z Tafelova grafu vzorku NK66E

Kompozitní deska číslo 9. NK67E

Obr.34: Impedanční spektroskopie vzorku NK67E

Číslo kroku	$f[H_{7}]$	7' [0]	7''[0]	7[0]	o [0]
	<u><i>J</i>[ΠΖ]</u>	Z [32]	-Z [<u>1</u>]	Z [12]	-ψ[] 7.0722
1	7006.0000	50.7001	/.03521	59,1102	1.0722
2	/906.0000	59.7(24	0.88/88	50.1552	6.80/4
3	6250.6000	58.7634	6./9/90	59.1552	6.3988
4	4941./000	59.63/4	6.68825	60.0113	6.3989
5	3906.9000	60.5541	6.62669	60.9157	6.2453
6	3088.8000	61.5131	6.61613	61.8679	6.1389
1	2442.1000	62.4855	6.63232	62.8365	6.0588
8	1930.7000	63.3759	6.63877	63.7227	5.9801
9	1526.4000	64.2058	6.63327	64.5476	5.8985
10	1206.8000	65.1410	6.65742	65.4803	5.8354
11	954.1000	66.1661	6.70102	66.5045	5.7830
12	754.3100	67.2173	6.72659	67.5530	5.7147
13	596.3600	68.3092	6.72873	68.6398	5.6257
14	471.4900	69.4714	6.71396	69.7951	5.5201
15	372.7600	70.6283	6.64736	70.9404	5.3767
16	294.7100	71.8305	6.54476	72.1281	5.2061
17	233.0000	72.9062	6.35409	73.1826	4.9810
18	184.2100	74.0271	6.13793	74.2811	4.7398
19	145.6300	74.9646	5.83294	75.1912	4.4492
20	115.1400	75.7291	5.45748	75.9255	4.1219
21	91.0300	76.6240	5.09841	76.7934	3.8067
22	71.9690	77.3408	4.69452	77.4831	3.4735
23	56.8990	77.9516	4.28289	78.0692	3.1448
24	44.9840	78.4870	3.87270	78.5825	2.8248
25	35.5650	78.8839	3.46200	78.9599	2.5129
26	28.1180	79.4325	3.09834	79.4929	2.2337
27	22.2300	79.7637	2.73722	79.8106	1.9654
28	17.5750	80.1223	2.41102	80.1586	1.7236
29	13.8950	80.4323	2.11886	80.4602	1.5090
30	10.9850	80.5550	1.83883	80.5760	1.3077
31	8.6851	80.6041	1.59298	80.6198	1.1322
32	6.8665	80.8583	1.38433	80.8701	0.9808
33	5.4287	81.0811	1.19231	81.0899	0.8425
34	4.2919	81.4388	1.03072	81.4454	0.7251
35	3.3932	81.8723	0.91155	81.8774	0.6379
36	2.6827	82.1588	0.78978	82.1626	0.5508
37	2.1210	82.2764	0.67872	82.2792	0.4726
38	1.6768	82.3996	0.58266	82.4016	0.4051
39	1.3257	82.2166	0.50326	82.2181	0.3507
40	1.0481	82.1567	0.41702	82.1578	0.2908
41	0.8286	81.8731	0.36416	81.8739	0.2548
42	0.6551	81.5763	0.29181	81.5768	0.2050
43	0.5180	81.6334	0.24924	81.6338	0.1749
44	0.4095	81.4689	0.23830	81.4692	0.1676
45	0 3238	81.7231	0.15330	81.7232	0.1075
46	0 2560	82,1049	0.16044	82,1050	0.1120
47	0 2024	82,2462	0.07818	82,2462	0.0545
48	0 1600	81,7333	0.14271	81,7334	0.1000
49	0 1265	81.2142	0.11328	81.2143	0.0799
50	0.1000	80,7563	0.12261	80,7564	0.0870

Tab. 13: Naměřené hodnoty EIS vzorku NK67E

$Z'[\Omega]$	-Ζ'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	- <i>φ</i> [°]	f[Hz]	χ^2
56.3537	6.6809	-0.6215	-5.0370	56.7483	6.7610	10000.0000	1.4887E-03
57.4177	6.7273	-0.4902	-2.3315	57.8104	6.6825	7906.0000	Obvod
58.4811	6.7446	-0.4804	-0.7847	58.8687	6.5788	6250.6000	[R(Q[RO])]
59.5377	6.7357	-0.1671	0.7099	59.9176	6.4546	4941.7000	/.
60.5820	6.7048	0.0460	1.1781	60.9519	6.3154	3906.9000	
61.6090	6.6562	0.1559	0.6050	61.9675	6.1663	3088.8000	
62.6138	6.5953	0.2052	-0.5579	62.9601	6.0130	2442.1000	
63.5919	6.5299	0.3408	-1.6398	63.9263	5.8628	1930.7000	
64.5405	6.4715	0.5213	-2.4387	64.8642	5.7259	1526.4000	
65.4627	6.4352	0.4939	-3.3382	65.7782	5.6143	1206.8000	
66.3710	6.4361	0.3097	-3.9538	66.6823	5.5387	954.1000	
67.2882	6.4835	0.1055	-3.6133	67.5999	5.5037	754.3100	
68.2457	6.5735	-0.0929	-2.3068	68.5615	5.5018	596.3600	
69.2747	6.6815	-0.2832	-0.4840	69.5962	5.5091	471.4900	
70.3927	6.7610	-0.3335	1.7098	70.7167	5.4863	372.7600	
71.5870	6.7547	-0.3391	3.2080	71.9049	5.3903	294.7100	
72.8107	6.6169	-0.1310	4.1359	73.1107	5.1927	233.0000	
73.9976	6.3348	-0.0399	3.2071	74.2682	4.8931	184.2100	
75.0883	5.9319	0.1650	1.6972	75.3222	4.5170	145.6300	
76.0479	5.4533	0.4209	-0.0772	76.2431	4.1016	115.1400	
76.8695	4.9447	0.3204	-3.0158	77.0284	3.6805	91.0300	
77.5638	4.4418	0.2884	-5.3839	77.6909	3.2775	71.9690	
78.1493	3.9668	0.2536	-7.3805	78.2499	2.9058	56.8990	
78.6456	3.5309	0.2020	-8.8265	78.7248	2.5706	44.9840	
79.0695	3.1379	0.2353	-9.3623	79.1318	2.2726	35.5650	
79.4351	2.7872	0.0033	-10.0426	79.4840	2.0096	28.1180	
/9.7532	2.4/61	-0.0131	-9.5404	/9./916	1.7783	22.2300	
80.0320	2.2009	-0.112/	-8./139	80.0622	1.3/33	1/.5/50	
80.2778	1.95/9	-0.1921	-7.5979	80.301/	1.39/1	15.8950	
80.495/	1./431	-0.0/36	-5.2043	80.3146	1.2403	0 2051	
00.0093	1.3334	0.1000	-2.4838	80.7043	1.1029	6.0631	
81.0170	1.3033	0.0031	0.0638	81.0264	0.9010	5 1287	
81 1554	1.2308	-0.0790	7 1020	81 1630	0.0740	<u> </u>	
81 2705	0 0 8 7 7	-0.3480	2 2 5 8 P	81 2855	0.7800	3 2022	
81 3909	0.9877	_0.9346	11 8802	81 3957	0.6220	2 6827	
81 4909	0.0000	_0.9548	16 5332	81 4947	0.5220	2.0027	
81 5807	0 7083	-0 9938	21 5684	81 5838	0 4975	1 6768	
81 6614	0.6347	-0 6753	26 1097	81 6639	0 4453	1 3257	
81.7339	0.5689	-0.5146	36.4164	81.7359	0.3988	1.0481	
81.7991	0.5101	-0.0903	40.0811	81.8007	0.3573	0.8286	
81.8577	0.4576	0.3449	56.8084	81.8590	0.3203	0.6551	
81.9104	0.4106	0.3393	64.7269	81.9114	0.2872	0.5180	
81.9578	0.3685	0.6001	54.6250	81.9586	0.2576	0.4095	
82.0004	0.3308	0.3393	115.7630	82.0010	0.2311	0.3238	
82.0387	0.2970	-0.0806	85.1013	82.0392	0.2074	0.2560	
82.0731	0.2667	-0.2104	241.1290	82.0735	0.1862	0.2024	
82.1041	0.2395	0.4536	67.8347	82.1044	0.1671	0.1600	
82.1319	0.2151	1.1300	89.9162	82.1322	0.1501	0.1265	
82.1569	0.1933	1.7344	57.6215	82.1571	0.1348	0.1000	

Tab. 14 : Hodnoty simulace EIS vzorku NK67E

Obr.35: Zapojení náhradního obvodu NK67E

Označení	NK67E
ba [V/dec]	0.568
bc [V/dec]	0.568
Ecorr, Calc [V]	2.540E-04
Ecorr, Obs [V]	-7.820E-05
jcorr [A/cm ²]	2.168E-05
icorr [A]	1.084E-03
Rychlost koroze [mm/rok]	0.503
Polarizační odpor $R_{\rho}[\Omega]$	113.780
E počáteční [V]	-0.300
E konečný [V]	0.299

Tab. 15: Hodnoty získané z Tafelova grafu vzorku NK67E

Kompozitní deska číslo 10. NK72E

Číslo kroku	f[Hz]	$Z^{\circ}[\Omega]$	-Z''[Ω]	$Z[\Omega]$	-φ [°]
1	10000.0000	11.6516	0.61281	11.6677	3.0106
2	7906.0000	11.6988	0.49978	11.7095	2.4462
3	6250.6000	11.7273	0.40669	11.7343	1.9862
4	4941.7000	11.7488	0.33026	11.7534	1.6102
5	3906.9000	11.7570	0.26592	11.7600	1.2957
6	3088.8000	11.7663	0.21578	11.7683	1.0506
7	2442.1000	11.7759	0.17628	11.7772	0.8576
8	1930.7000	11.7815	0.14366	11.7823	0.6986
9	1526.4000	11.7892	0.11792	11.7898	0.5730
10	1206.8000	11.7946	0.09690	11.7950	0.4707
11	954.1000	11.7993	0.07934	11.7995	0.3853
12	754.3100	11.8036	0.06578	11.8038	0.3193
13	596.3600	11.8013	0.05455	11.8014	0.2648
14	471.4900	11.8043	0.04528	11.8044	0.2198
15	372.7600	11.8091	0.03757	11.8092	0.1823
16	294.7100	11.8079	0.03176	11.8079	0.1541
17	233.0000	11.8099	0.02728	11.8100	0.1323
18	184.2100	11.8133	0.02276	11.8134	0.1104
19	145.6300	11.8079	0.02039	11.8079	0.0989
20	115.1400	11.8069	0.01694	11.8069	0.0822
21	91.0300	11.8106	0.01472	11.8106	0.0714
22	71.9690	11.8098	0.01282	11.8098	0.0622
23	56.8990	11.8102	0.01167	11.8102	0.0566
24	44.9840	11.8097	0.01017	11.8097	0.0493
25	35.5650	11.8103	0.00882	11.8103	0.0428
26	28.1180	11.8106	0.00753	11.8106	0.0365
27	22.2300	11.8181	0.00669	11.8181	0.0324
28	17.5750	11.8152	0.00552	11.8152	0.0268
29	13.8950	11.8146	0.00520	11.8146	0.0252
30	10.9850	11.8147	0.00481	11.8147	0.0233
31	8.6851	11.8194	0.00457	11.8194	0.0221
32	6.8665	11.8309	0.00355	11.8309	0.01/2
33	5.4287	11.8302	0.00284	11.8302	0.0138
34	4.2919	11.8290	0.00234	11.8290	0.0113
<u> </u>	3.3932	11.8193	0.00389	11.8193	0.0189
30	2.6827	11.8218	0.00219	11.8218	0.0106
37	2.1210	11.8232	0.00219	11.8232	0.0100
30	1.0/08	11.0208	0.00075	11.0208	0.0030
39	1.323/	11.0230	0.00094	11.0230	0.0043
40	0.8286	11.0230	0.00217	11.0230	0.0103
41	0.0200	11.0204	_0.00102	11.0204	_0.0030
42	0.0551	11.8251	-0.00043	11.0251	-0.0022
44	0 4095	11 8244	0.00004	11.8238	0.0002
45	0 3238	11 8270	0.00102	11 8270	0.0049
46	0.2560	11.8245	0.00074	11.8245	0.0036
47	0 2024	11.8385	-0.00211	11.8385	-0.0102
48	0.1600	11.8359	-0.00132	11.8359	-0.0064
49	0.1265	11.8359	0.00108	11.8359	0.0052
50	0.1000	11.8377	0.00056	11.8377	0.0027

Tab. 16: Naměřené hodnoty EIS vzorku NK72E

$Z^{\circ}[\Omega]$	-Z'' [Ω]	Chyba Z' [%]	Chyba <i>Z</i> ''[%]	$Z[\Omega]$	- <i>φ</i> [°]	f[Hz]	χ^2
11.6764	0.6086	0.2129	-0.6902	11.6923	2.9836	11.6764	1.4851E-05
11.7015	0.4970	0.0233	-0.5535	11.7121	2.4322	11.7015	Obvod
11.7219	0.4060	-0.0457	-0.1751	11.7289	1.9836	11.7219	[R(Q[R(Q[RT])])]
11.7385	0.3317	-0.0878	0.4345	11.7432	1.6186	11.7385	
11.7520	0.2711	-0.0426	1.9411	11.7551	1.3214	11.7520	
11.7630	0.2216	-0.0281	2.7174	11.7651	1.0795	11.7630	
11.7721	0.1813	-0.0323	2.8612	11.7735	0.8824	11.7721	
11.7795	0.1484	-0.0163	3.3203	11.7805	0.7219	11.7795	
11.7857	0.1216	-0.0302	3.1315	11.7863	0.5912	11.7857	
11.7908	0.0997	-0.0324	2.9242	11.7912	0.4846	11.7908	
11.7950	0.0819	-0.0363	3.2224	11.7953	0.3978	11.7950	
11.7985	0.0674	-0.0428	2.3872	11.7987	0.3271	11.7985	
11.8015	0.0555	0.0015	1.7347	11.8016	0.2694	11.8015	
11.8040	0.0458	-0.0025	1.1927	11.8041	0.2224	11.8040	
11.8061	0.0379	-0.0257	0.9941	11.8061	0.1841	11.8061	
11.8079	0.0315	0.0002	-0.7670	11.8079	0.1529	11.8079	
11.8095	0.0263	-0.0040	-3.6726	11.8095	0.1275	11.8095	
11.8108	0.0220	-0.0213	-3.2876	11.8108	0.1068	11.8108	
11.8120	0.0185	0.0353	-9.1221	11.8120	0.0899	11.8120	
11.8131	0.0157	0.0522	-7.3517	11.8131	0.0761	11.8131	
11.8140	0.0134	0.0290	-9.0997	11.8140	0.0649	11.8140	
11.8149	0.0115	0.0434	-10.3226	11.8149	0.0558	11.8149	
11.8157	0.0100	0.0462	-14.5921	11.8157	0.0483	11.8157	
11.8164	0.0087	0.0567	-14.2554	11.8164	0.0423	11.8164	
11.81/1	0.00/7	0.0576	-12.6812	11.81/1 11.0170	0.03/3	11.81/1	
11.01/8	0.0009	0.0010	-8.0499	11.01/8	0.0333	11.01/8	
11.0104	0.0002	0.0022	-7.5251	11.0104	0.0301	11.0104	
11.0190	0.0037	0.0524	2.4038 0 1529	11.0190	0.02/4	11.0190	
11.0190	0.0032	0.041/	0.1328	11.0190	0.0233	11.0190	
11.8201	0.0049	0.0401	-0 1724	11 8207	0.0233	11.0201	
11 8212	0.0040	-0.0817	21 7098	11 8212	0.0221	11 8217	
11.8212	0 0041	-0 0714	45 3389	11 8217	0.0210	11 8217	
11.8222	0.0040	-0 0573	70 1224	11.8222	0.0193	11.8222	
11.8228	0.0039	0.0275	-0.9955	11.8228	0.0187	11.8228	
11.8233	0.0038	0.0126	71.2016	11.8233	0.0182	11.8233	1
11.8238	0.0037	0.0051	68.0695	11.8238	0.0178	11.8238	1
11.8243	0.0036	0.0294	380.6300	11.8243	0.0175	11.8243	
11.8248	0.0036	-0.0021	280.4910	11.8248	0.0173	11.8248	
11.8253	0.0035	0.0126	62.5732	11.8253	0.0171	11.8253	
11.8258	0.0035	-0.0047	242.0280	11.8258	0.0170	11.8258	
11.8263	0.0035	0.0104	-865.9800	11.8263	0.0168	11.8263	
11.8268	0.0035	0.0090	-7985.6200	11.8268	0.0168	11.8268	
11.8273	0.0035	0.0250	33.4693	11.8273	0.0167	11.8273	
11.8278	0.0034	0.0072	238.9730	11.8278	0.0167	11.8278	
11.8283	0.0034	0.0324	366.9530	11.8283	0.0167	11.8283	
11.8288	0.0034	-0.0812	-263.1550	11.8288	0.0166	11.8288	
11.8294	0.0034	-0.0556	-359.8220	11.8294	0.0167	11.8294	
11.8299	0.0034	-0.0510	218.9130	11.8299	0.0167	11.8299	
11.8304	0.0034	-0.0620	513.6110	11.8304	0.0167	11.8304	1

Tab. 17 : Hodnoty simulace EIS vzorku NK72E

Obr.38: Zapojení náhradního obvodu NK72E

Označení	NK72E
ba [V/dec]	0.569
bc [V/dec]	0.571
Ecorr, Calc [V]	6.978E-04
Ecorr, Obs [V]	-1.364E-05
jcorr [A/cm ²]	1.526E-04
icorr [A]	7.628E-03
Rychlost koroze [mm/rok]	3.539
Polarizační odpor $R_{\rho}[\Omega]$	16.233
E počáteční [V]	-0.300
E konečný [V]	0.301

Tab. 18: Hodnoty získané z Tafelova grafu vzorku NK72E

Označení	NK4	NK54d1	NK57E	NK57Ep	NK58	NK59	NK64E
ba [V/dec]	0.564	0.571	0.569	0.570	0.532	0.515	0.332
bc [V/dec]	0.575	0.573	0.570	0.569	0.563	0.540	0.340
Ecorr, Calc [V]	-2.724E-03	-1.304E-04	1.549E-04	2.804E-04	-1.770E-03	6.072E-03	-1.341E-03
Ecorr, Obs [V]	-1.268E-03	-2.670E-04	-6.679E-05	-2.863E-05	-2.779E-04	-8.416E-04	-4.880E-05
jcorr [A/cm ²]	7.709E-06	2.638E-06	3.397E-04	3.078E-04	1.376E-05	2.568E-05	5.541E-05
icorr [A]	3.855E-04	1.319E-04	1.699E-02	1.539E-02	6.879E-04	1.284E-03	2.771E-03
Rychlost koroze [mm/rok]	0.179	0.061	7.881	7.476	0.319	0.596	1.285
Polarizační odpor $R_p[\Omega]$	320.660	941.620	7.282	8.038	172.670	89.172	26.316
E počáteční [V]	-0.300	-0.300	-0.300	-0.300	-0.300	-0.300	-0.201
E konečný [V]	0.301	0.301	0.299	0.299	0.299	0.301	0.202
Označení	NK66E	NK67E	NK72E	NK90	NK91	NK92	-
Označení ba [V/dec]	NK66E 0.563	NK67E 0.568	NK72E 0.569	NK90 0.568	NK91 0.564	NK92 0.564	-
Označení ba [V/dec] bc [V/dec]	NK66E 0.563 0.569	NK67E 0.568 0.568	NK72E 0.569 0.571	NK90 0.568 0.569	NK91 0.564 0.562	NK92 0.564 0.565	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V]	NK66E 0.563 0.569 7.779E-04	NK67E 0.568 0.568 2.540E-04	NK72E 0.569 0.571 6.978E-04	NK90 0.568 0.569 6.035E-04	NK91 0.564 0.562 8.830E-04	NK92 0.564 0.565 3.986E-05	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V] Ecorr, Obs [V]	NK66E 0.563 0.569 7.779E-04 1.279E-03	NK67E 0.568 0.568 2.540E-04 -7.820E-05	NK72E 0.569 0.571 6.978E-04 -1.364E-05	NK90 0.568 0.569 6.035E-04 -5.991E-04	NK91 0.564 0.562 8.830E-04 -3.106E-04	NK92 0.564 0.565 3.986E-05 -3.038E-04	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V] Ecorr, Obs [V] jcorr [A/cm ²]	NK66E 0.563 0.569 7.779E-04 1.279E-03 5.168E-05	NK67E 0.568 0.568 2.540E-04 -7.820E-05 2.168E-05	NK72E 0.569 0.571 6.978E-04 -1.364E-05 1.526E-04	NK90 0.568 0.569 6.035E-04 -5.991E-04 1.065E-05	NK91 0.564 0.562 8.830E-04 -3.106E-04 6.080E-05	NK92 0.564 0.565 3.986E-05 -3.038E-04 2.244E-05	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V] Ecorr, Obs [V] jcorr [A/cm ²] icorr [A]	NK66E 0.563 0.569 7.779E-04 1.279E-03 5.168E-05 2.584E-03	NK67E 0.568 2.540E-04 -7.820E-05 2.168E-05 1.084E-03	NK72E 0.569 0.571 6.978E-04 -1.364E-05 1.526E-04 7.628E-03	NK90 0.568 0.569 6.035E-04 -5.991E-04 1.065E-05 5.327E-04	NK91 0.564 0.562 8.830E-04 -3.106E-04 6.080E-05 3.040E-03	NK92 0.564 0.565 3.986E-05 -3.038E-04 2.244E-05 1.122E-03	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V] Ecorr, Obs [V] jcorr [A/cm ²] icorr [A] Rychlost koroze [mm/rok]	NK66E 0.563 0.569 7.779E-04 1.279E-03 5.168E-05 2.584E-03 1.199	NK67E 0.568 2.540E-04 -7.820E-05 2.168E-05 1.084E-03 0.503	NK72E 0.569 0.571 6.978E-04 -1.364E-05 1.526E-04 7.628E-03 3.539	NK90 0.568 0.569 6.035E-04 -5.991E-04 1.065E-05 5.327E-04 0.247	NK91 0.564 0.562 8.830E-04 -3.106E-04 6.080E-05 3.040E-03 1.411	NK92 0.564 0.565 3.986E-05 -3.038E-04 2.244E-05 1.122E-03 0.521	
Označení ba [V/dec] bc [V/dec] Ecorr, Calc [V] Ecorr, Obs [V] jcorr [A/cm ²] icorr [A] Rychlost koroze [mm/rok]	NK66E 0.563 0.569 7.779E-04 1.279E-03 5.168E-05 2.584E-03 1.199 47.523	NK67E 0.568 2.540E-04 -7.820E-05 2.168E-05 1.084E-03 0.503 113.780	NK72E 0.569 0.571 6.978E-04 -1.364E-05 1.526E-04 7.628E-03 3.539 16.233	NK90 0.568 0.569 6.035E-04 -5.991E-04 1.065E-05 5.327E-04 0.247 231.780	NK91 0.564 0.562 8.830E-04 -3.106E-04 6.080E-05 3.040E-03 1.411 40.185	NK92 0.564 0.565 3.986E-05 -3.038E-04 2.244E-05 1.122E-03 0.521 109.330	
Označeníba [V/dec]bc [V/dec]bc [V/dec]Ecorr, Calc [V]Ecorr, Obs [V]jcorr [A/cm²]icorr [A]Rychlost koroze [mm/rok]Polarizační odpor $R_{\rho}[\Omega]$ E počáteční [V]	NK66E 0.563 0.569 7.779E-04 1.279E-03 5.168E-05 2.584E-03 1.199 47.523 -0.298	NK67E 0.568 2.540E-04 -7.820E-05 2.168E-05 1.084E-03 0.503 113.780 -0.300	NK72E 0.569 0.571 6.978E-04 -1.364E-05 1.526E-04 7.628E-03 3.539 16.233 -0.300	NK90 0.568 0.569 6.035E-04 -5.991E-04 1.065E-05 5.327E-04 0.247 231.780 -0.300	NK91 0.564 0.562 8.830E-04 -3.106E-04 6.080E-05 3.040E-03 1.411 40.185 -0.300	NK92 0.564 0.565 3.986E-05 -3.038E-04 2.244E-05 1.122E-03 0.521 109.330 -0.300	

Tab. 19: Celkové porovnání hodnot získaných z Tafelova grafu u všech třinácti kompozitních desek

4 Závěr

Teoreticky byly popsány základní specifika kompozitních materiálů a jejich rozdělení. Dále byly uvedeny jednotlivé vlastnosti a druhy typů materiálů, které budou používány pro tvorbu kompozitních materiálů v praktické části projektu. Na konci teoretické části byly rozebrány vlastnosti kompozitních materiálů pro konstrukční prvky a kompozitních materiálů se specifickými vlastnostmi, které budou vytvářeny v praktické části projektu.

V praktické části bylo vytvořeno a následně měřeno a porovnáváno třináct druhů kompozitních desek. Tyto vzorky byly měřeny pomocí metody voltametrie s lineárním skenem a dále vyhodnoceny pomocí Tafelova grafu. Z těchto třinácti vzorků bylo vybráno šest vzorků, jež byly dále podrobeny měření metodou impedanční spektroskopie. V rámci této metody byly vytvořeny náhradní obvody pro simulaci měřených průběhů. U vzorku s nejvyšší vodivostí NK57E je obvod tvořen rezistorem v sérii s paralelní kombinací CPE a rezistoru se členem O v sérii. Z grafu a z měřených hodnot je patrné, že hodnota imaginární složky impedance Z" je malá a převažuje tedy odporový charakter, reálná složka impedance s vzrůstající frekvencí nepatrně klesá, to je způsobeno nejspíše členem CPE. Tento člen udává informace o struktuře z toho usuzuji že u této desky došlo k dobrému promíchání částic a nedochází k vzniku kapacitních vlastností rozhraní v mikroskopickém měřítku. Po provedení těchto měření kompozitních desek vykazovaly nejvyšší vodivost vzorky číslo 3. NK57E a číslo 4. NK57Ep, tyto vzorky měly takřka totožnou rychlost koroze a vzorek NK57E byl nepatrně vodivější, ale jak bylo zjištěno z Tafelova grafu, rychlost koroze byla u těchto dvou vzorků ze všech měřených kompozitních materiálů nejrychlejší. Vzorek, který se kompozitním deskám NK57E a NK57Ep nejvíce blíží svojí vodivostí, viz.Obr.20: porovnání vzorků pomocí voltametrie s lineárním skenem, je NK72E, který vykazuje sice oproti vzorku NK57Ep o polovinu menší vodivost, ale rychlost koroze této kompozitní desky byla více jak o polovinu nižší, viz. Tab. 19:. Tento vzorek je tedy podstatně vodivější než zbývajících deset měřených kompozitních desek, a přitom si drží nižší rychlost koroze než dva nejvodivější vzorky, takže u něj nedochází k tak rychlé degradaci jako u těchto dvou vzorků. Tyto vytvořené materiály byly dále využity pro praktickou aplikaci určenou k odporovému vyhřívání konstrukcí, jež je patentově chráněna. Dále v rámci prací na jiných pracovištích byly testovány schopnosti stínění a vliv tlaku na vlastnosti těchto materiálů.

5 Použitá literatura

- [1] BARATH, Peter. *Palivové články H2-O2 s anexovou a bipolární membranou*. Brno, 2007. 130 s. Dizertační práce. VUT Brno.
- [2] BAREŠ, R. *Kompozitní materiály*. Vyd. 1. Praha : SNTL Nakladatelství technické literatury, n. p., 1988. 328 s
- [3] CASTRO NETO, Antonio H., et al. *The electronic properties of graphene. Reviews of Modern Physics.* 29.2.2008, 109, s. 1-55.
- [4] CHUNG, D.D.L. *Carbon fiber cement-matrix composites* [s.l.], 1999. 12 s. Oborová práce.
- [5] CHUNG, D.D.L., SIHAJ, Wen. *Carbon fiber-reinforced cement as a strain-sensing coating*. Cement and Concrete Research 31 (2001) 665-667, s. 3.
- [6] CHUNG, D.D.L., SIHAJ, Wen. *Thermoelectric behavior of carbon-cement composites*. [s.l.] : [s.n.], 2002. s. 1-2.
- [7] CHUNG, D.D.L., SIHAJ, Wen. *Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers*. [s.l.] : [s.n.], 2000. s. 1-2.
- [8] CHUNG, D.D.L. Electrically conductive cement-based materials [s.l.] : [s.n.], 2004. s.1.
- [9] KRATOCHVÍL, B; ŠVORČÍK, V; VOJTĚCH, D. Úvod do studia materiálů. Vyd. 1.
 Praha : Vysoká škola chemicko-technologická v Praze,2005.170s. ISBN 80-7080-568-4.
- [10] KUCHARČÍK, J. Měřicí pracoviště rezistivity pro kompozitní materiály. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009.46 s. Vedoucí bakalářské práce Ing. Jiří Vognar.
- [11] NOVA 1.5 User manual. Utrecht: Nizozemsko, 2009.
- [12] PACAL, B. Kompozitní materiály. (přednáška) Brno : Vysoké učení technické v Brně, 30.1.2007.

- [13] VACULÍK, S. Zjišťování charakteristik olověného akumulátoru impedančním měřením.
 Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2010. 48 s. Vedoucí bakelářské práce Ing. Pavel Abraham.
- [14] VINTER, V. Latexy modifikované cementové materiály. Brno: Vysoké učení technické v Brně,Fakulta chemická, 2008. 70s. Vedoucí diplomové práce Ing. František Šoukal, Ph.D.

6 Seznam obrázků a tabulek

Obr.1: Příklad závislosti vlastnosti X (např. pevnosti, pružnosti, tepelné vodivosti atd.) materiálu vytvořeného ze dvou fází A a B na zastoupení fáze A7	
Obr.2: Rozdělení kompozitních materiálů podle geometrického tvaru výztuže9	
Obr.3:Struktura částicového kompozitního materiálu9	
Obr.4:M OŽNOSTI USPOŘÁDÁNÍ VLÁKEN V KOMPOZITECH: A) SPOJITÁ JEDNOSMĚRNĚ ORIENTOVANÁ VLÁKNA B) NESPOJITÁ NÁHODNĚ ORIENTOVANÁ VLÁKNA C) SPOJITÁ ORTOGONÁLNĚ ORIENTOVANÁ VLÁKNA D) SPOJITÁ NĚKOLIKAVRSTEVNĚ USPOŘÁDANÁ1()
Obr.5: Krystaly diamantu12	2
Obr.6:Struktura grafitu13	3
Obr.7: Struktura fulleren14	1
Obr.8: Struktura nanotrubice14	1
Obr.9: Struktura grafenu1	5
Obr.10:Z ávislost změny odporu na deformaci u kompozitních materiálů pro snímáni tlaku1^	Í 7
Obr.11: Hlavní obrazovka programu Nova20)
Obr.12: Označení rezistoru v obvodu a jeho průběh impedance <u>2</u> 2	2
Obr.13: Označení kapacitoru v obvodu a jeho průběh impedance22	2
Obr.14:Označení induktoru v obvodu a jeho průběh impedance2	3
Obr.15: Označení CPE v obvodu a jeho průběh impedance24	1
Obr.16: Označení Warbugr impedance v obvodu a její průběh impedance <u>2</u> 4	1
Obr.17: Označení členu O v obvodu a jeho průběh impedance2:	5
Obr.18:Označení členu T v obvodu a jeho průběh impedance26	5
Obr.19: Tvar potenciálového cyklu26	5
Obr.20: Porovnání všech kompozitních desek metodou LSV27	7
Obr.21: TAFELUV GRAF VZORKU NK57E2	3

Obr.22: Impedanční spektroskopie vzorku NK57E	
Obr.23: Zapojení náhradního obvodu NK57E	
Obr.24: Tafeluv graf vzorku NK57Ep	
Obr.25: Impedanční spektroskopie vzorku NK57Ep	
Obr.26:Zapojení náhradního obvodu NK57Ep	
Obr.27: Tafeluv graf vzorku NK64E	
Obr.28: Impedanční spektroskopie vzorku NK64E	
Obr.29:Zapojení náhradního obvodu NK64E	
Obr.30: TAFELUV GRAF VZORKU NK66E	40
Obr.31: Impedanční spektroskopie vzorku NK66E	40
Obr.32:Zapojení náhradního obvodu NK66E	
Obr.33: Tafeluv graf vzorku NK67E	44
Obr.34: Impedanční spektroskopie vzorku NK67E	44
Obr.35:Zapojení náhradního obvodu NK67E	47
Obr.36: Tafeluv graf vzorku NK72E	48
Obr.37:Impedanční spektroskopie vzorku NK72E	48
Obr.38:ZAPOJENÍ NÁHRADNÍHO OBVODU NK72E	

Tab. 1 :Naměřené hodnoty EIS vzorku NK57E	29
Tab. 2 :Hodnoty simulace EIS vzorku NK57E	
Tab. 3 :Hodnoty získané z Tafelova grafu vzorku NK57E	
Tab. 4 :NAMĚŘENÉ HODNOTY EIS VZORKU NK57EP	33
Tab. 5 :Hodnoty simulace EIS vzorku NK57Ep	34
Tab. 6 :Hodnoty získané z Tafelova grafu vzorku NK57Ep	35
Tab. 7 :Naměřené hodnoty EIS vzorku NK64E	37

Tab. 8 :Hodnoty simulace EIS vzorku NK64E	
Tab. 9 :Hodnoty získané z Tafelova grafu vzorku NK64E	39
Tab. 10 :Naměřené hodnoty EIS vzorku NK66E	41
Tab. 11 :Hodnoty simulace EIS vzorku NK66E	42
Tab. 12 :Hodnoty získané z Tafelova grafu vzorku NK66E	43
Tab. 13 :Naměřené hodnoty EIS vzorku NK67E	45
Tab. 14 :Hodnoty simulace EIS vzorku NK67E	46
Tab. 15 :Hodnoty získané z Tafelova grafu vzorku NK67E	47
Tab. 16 :Naměřené hodnoty EIS vzorku NK72E	49
Tab. 17 :Hodnoty simulace EIS vzorku NK72E	50
Tab. 18 :Hodnoty získané z Tafelova grafu vzorku NK72E	51
Tab. 19 :C elkové porovnání hodnot získaných z Tafelova grafu u všech třinácti kompozitních desek <u></u>	52

7 Seznam použitých zkratek a symbolů

- CaO Oxid vápenatý
- SiO2 Oxid křemičitý
- Al₂O₃ Oxid hlinitý (korund)
- Fe₂O₃ Oxid železitý
- CV Cyklická voltametrie
- LSV Voltametrie s lineárním skenem
- EIS Impedanční spektroskopie
- Z-Impedance
- Z'-Reálná část impedance
- Z" Imaginární část impedance
- |Z| Absolutní hodnota impedance
- tg δ –Ztrátový činitel
- φ Fáze
- I Elektrický proud
- U Elektrické napětí
- Uef Efektivní hodnota střídavého napětí
- R Odpor
- C Kapacitor
- L-Induktor
- W Wartburg impedance
- B Difúzní časová konstanta
- D Difúzní koeficient
- Q^0 Admitanci při $\omega = 1$ rad/s
- δ Tloušťka difúzní vrstvy
- f-Frekvence
- ω Úhlový kmitočet
- CPE Konstantní fázový element
- O Konečná délka diffuze

- T Konečná stálá diffuze
- χ^2 Přesnost simulovaného průběhu při měření EIS
- ba Anodický Tafeluv koeficient ve voltech/dekádu
- bc Katodický Tafeluv koeficient ve voltech/dekádu.
- Ecorr, Calc Korozní potenciál vypočtený z průsečíku u Tafelova grafu ve V
- Ecorr, Obs Pozorovaný experimentální korozní potenciál ve V.
- jcorr Výměna proudové hustoty [A/cm²] vypočtená z Tafelova grafu
- icorr Vyměněný proud [A] vypočtený z Tafelova grafu