
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

MOBILE APPLICATION FOR EXPORTING ANDROID
DEVICE METRICS INTO A PROMETHEUS DATABASE
MOBILNÍ APLIKACE PRO EXPORT METRIK ANDROID ZAŘÍZENÍ DO DATABÁZE PROMETHEUS

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARTIN PTÁČEK
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

T BRNO E E g H H
UNIVERSITY F T !
• F TECHNOLOGY

Bachelor's Thesis Assignment
144035

Institut: Depar tment of Informat ion Sys tems (UIFS)

Student : P t á č e k M a r t i n

P rogramme: Informat ion Techno logy

Specia l izat ion: Informat ion Techno logy

Tit le: M o b i l e A p p l i c a t i o n f o r E x p o r t i n g A n d r o i d D e v i c e M e t r i c s i n t o a P r o m e t h e u s
D a t a b a s e

Category : Mobi le appl icat ions

Academic year: 2022/23

Ass ignment :

1. Fami l iar ize yoursel f w i th the Prometheus da tabase and its fo rmat for retr ieving metr ic data when
moni tor ing and loading var ious sources into the Prometheus da tabase .

2. Explore the abil i ty to moni tor the status of Andro id mobi le dev ices, both the status of hardware
sensors and the status of running appl icat ions and user act ivi ty.

3. Des ign a mobi le appl icat ion for the Andro id sys tem that wil l a l low to expor t dev ice status
moni tor ing metr ics to a Prometheus da tabase instance, both cont inuously and in a batch. A lso
address possible issues of the expor t process in the case of temporary unavai labi l i ty of a network
connect ion (e.g. , by temporary stor ing the metr ics and subsequen t expor t w h e n onl ine) . Focus
also on the energy eff ic iency of the appl icat ion.

4. Af ter consul ta t ion wi th the superv isor , implement the appl icat ion. A lso des ign and per form a set of
tests to verify the usabil i ty and energy eff ic iency of the running appl icat ion.

5. Evaluate the solut ion, suggest possib le ex tens ions, and publ ish the project as open-source .

Li terature:
• Exporters and integrat ions. Prometheus - Monitoring system and time series database [onl ine],

[cit. 2022-05-06] . Ava i lab le at h t tps: / /prometheus. io /docs/ inst rument ing/expor ters /
• Turnbul l , James : Monitoring with Prometheus. Turnbul l Press, 2018 . ISBN 9780988820289
• Brazi l , Br ian: Prometheus: Up & Running: Infrastructure and Application Performance Monitoring.

O'Reil ly Media , 2018 . ISBN 9781492034094
• Späth , Peter: Learn Java for Android development :migrating Java SE programming skills to

mobile development. Fourth edi t ion. ISBN 978-1-4842-5942-9

Requ i rements for the semest ra l de fence :
I tems 1, 2, and 3.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor :

Head of Depar tment :

Beginn ing of work :

Submiss ion deadl ine:

Approva l date:

R y c h l ý Marek , RNDr . , Ph .D .

Kolář Dušan , doc. Dr. Ing.

1.11.2022

31.7 .2023

18.10.2022

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://prometheus.io/docs/instrumenting/exporters/
https://www.fit.vut.cz/study/theses/

Abstract
This thesis deals with expanding the ecosystem of the time-series database Prometheus
to enable monitoring for Android devices. The aim of this thesis is to implement a Prome­
theus exporter for Android devices. The final implementation of this exporter does not
only support exposing metrics directly to Prometheus but also supports storing metrics
on-device when offline and exporting them later in a batch. The application also includes
a mode which can export metrics to Prometheus over a N A T or similar network barrier.
Over 35 different metrics of the Android device are exported to the Prometheus database.
The reader is presented with the results of tests regarding the energy efficiency of the
implementation. The work is released as open-source software on the Github platform.

Abstrakt
Tato práce se zabývá rozšířením ekosystému databáze časových řad Prométheus, aby bylo
možné monitorovat také mobilní telefony s operačním systémem Android. Cílem této práce
je implementovat Prométheus exportér pro Android. Výsledná implementace tohoto ex­
portéru podporuje nejen zpřístupnění metrik pro databázi Prométheus, ale také ukládání
metrik do paměti zařízení v případě nedostupnosti připojení a jejich následný dávkový ex­
port. Aplikace také obsahuje režim pro export metrik do databáze Prométheus přes N A T
nebo podobnou síťovou bariéru. Aplikace exportuje přes 35 různých metrik z Android za­
řízení do databáze Prométheus. Čtenáři jsou předloženy výsledky testů týkající se energet­
ické náročnosti implementace. Práce je publikována jako software s otevřeným zdrojovým
kódem na platformě Github.

Keywords
Prometheus database, Time series database, Android application, Prometheus Exporter,
Metrics, Grafana, N A T traversal, Kotlin, Jetpack Compose, Device Monitoring, PromQL
query language

Klíčová slova
Databáze Prometheus, Databáze časových řad, Android aplikace, Prometheus exportér,
Metriky, Grafana, překonání N A T , Kotlin, Jetpack Compose, Monitorování zařízení, PromQL
dotazovací jazyk

Reference
PTÁČEK, Martin. Mobile Application for Exporting Android Device Metrics into a Prometheus
Database. Brno, 2023. Bachelor's thesis. Brno University of Technology, Faculty of Infor­
mation Technology. Supervisor RNDr . Marek Rychlý, Ph.D.

Rozšířený abstrakt
Prométheus je populární databáze časových řad pro monitorování cloudových aplikací
s otevřeným zdrojovým kódem. Funguje tak, že si periodicky stahuje metriky z mon­
itorovaných aplikací, na každé monitorované aplikaci tedy běží H T T P server se zpřís­
tupněnými metrikami. Podstatnou výhodou této databáze je, že má kolem sebe velký
ekosystém instrumentačních knihoven pro různé platformy a programovací jazyky. Něk­
teré aplikace ovšem není možné instrumentovat přímo, a tak je pro monitorování potřeba
program, který běží vedle monitorované aplikace a zpřístupňuje dostupné metriky aplikace
ve správném formátu databázi Prométheus. Tomuto programu se říká Prométheus exportér.

Cílem této práce je implementace Prométheus exportéru pro Android zařízení ve formě
nativní Android aplikace. Tento exportér umí nejen zpřístupňovat metriky pro databázi
Prométheus, ale také obsahuje implementaci proxy klienta pro překonávání N A T a podob­
ných síťových bariér. V případě nedostupnosti síťového připojení na Android zařízení umí
implementovaný exportér také ukládat metriky lokálně a následně, jakmile je zařízení zase
online, exportovat tyto metriky do databáze Prométheus.

Aplikace je implementována v programovacím jazyce Kotl in ve frameworku Jetpack
Compose. Jetpack Compose je doporučený nástroj pro vytváření moderních uživatel­
ských rozhraní pro nativní Android aplikace. Aplikaci lze z uživatelského hlediska kon­
figurovat bud v uživatelském rozhraní nebo přes konfigurační soubor ve formátu Y A M L . Po
spuštění monitorování běží aplikace s nastavenou konfigurací na pozadí a znovu se spustí
i po restartu zařízení. Lze konfigurovat 3 módy aplikace a to Prométheus exportér, proxy
klient pro překonávání N A T a podobných síťových bariér a dávkový exportér pro uchovávání
metrik offline a následný export do databáze Prométheus. Všechny tyto módy mohou také
běžet paralelně.

První polovina práce se zaměřuje na detailnější popis databáze Prométheus a na rozbor
současných možností pro monitorování Android zařízení. Ve druhé polovině práce je pak
popsán design výsledného řešení, konkrétní architektura a použité technologie. Pro im­
plementaci překonání N A T byla použita PushProx proxy, projekt s otevřeným zdrojovým
kódem. PushProx proxy funguje na bázi klienta a serveru a PushProx klient je integrován
přímo do finálního řešení.

Pro funkci exportování metrik v dávkách byl využit Prométheus Remote Write pro­
tokol. Tento protokol je typicky používán pro federaci více instancí databáze Prométheus,
dá se však využít i pro dávkový export metrik přímo z aplikace. Odesílání metrik do
databáze Prométheus přímo monitorovanou aplikací, ikdyž funkční, jde proti designové
filosofii databáze Prométheus.

Implementovaný exportér zpřístupňuje především metriky z hardware senzorů, se získá­
ním informací o aktivitě uživatele jsou problémy z hlediska systémových oprávnění. Dos­
tupné metriky zahrnují data například z akcelerometru, gyroskopu nebo senzoru ambientní
teploty. Dohromady je dostupných přes 35 různých metrik.

Byly také provedeny optimalizace z hlediska energetické náročnosti aplikace, a to ze­
jména optimalizace síťového provozu. Čtenáři jsou prezentovány výsledky testů energetické
náročnosti aplikace z hlediska síťového provozu.

Práce je zveřejněna jako software s otevřeným kódem na platformě Github. Pro jednodu­
chou vizualizaci metrik na webu byla také vytvořena a publikována tabule ve webovém
vizualizačním nástroji Grafana. Součástí repositáře je také ukázková konfigurace serveru pro
PushProx proxy, Prométheus databázi a instanci vizualizačního nástroje Grafana. Hlavním
přínosem této práce je rozšíření ekosystému databáze Prométheus o možnost monitorování
další platformy.

Mobi le Appl ica t ion for Expor t ing A n d r o i d Device
Metr ics into a Prometheus Database

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the au­
thor under the supervision of Mr. Marek Rychlý. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Martin Ptáček
July 31, 2023

Acknowledgements
I would like to express my thanks to my supervisor RNDr . Marek Rychlý Ph.D. for his
support, patience and many valuable advice which helped me a lot during implementation
of this project. I would also like to thank my family for emotional support.

Contents

1 Introduction 3

2 Prometheus database 4
2.1 Metrics format 5
2.2 Prometheus exporters 7
2.3 PromQL query language 7
2.4 Grafana 8

3 Monitoring Android devices 10
3.1 Existing solutions 10
3.2 Available metrics 11

4 Design 12
4.1 Existing tools for building Android applications 12

4.1.1 The Kotlin programming language 12
4.1.2 Jetpack Compose 13

4.2 N A T traversal solutions 14
4.3 Application design 16
4.4 Application usage 16

5 Implementation 19
5.1 Application architecture 19
5.2 Kotlin coroutines 20
5.3 Traversing N A T using the PushProx proxy 20
5.4 Prometheus remote write protocol 21
5.5 Metrics batch export using the remote write protocol 23
5.6 Energy consumption considerations 24
5.7 Server example configuration 25

6 Testing 27
6.1 The Battery Historian tool 27
6.2 PushProx client energy consumption 28

6.3 Prometheus exporter energy consumption 28

7 Conclusion 29

Bibliography 30

1

List of Figures

2.1 Prometheus web-based user interface with query and visualization capabili­
ties 8

2.2 Example of a Grafana dashboard with metrics and logs 9

4.1 The Pushgateway architecture. Metrics are pushed to Pushgateway from
batch jobs. Pushgateway caches these metrics and is scraped periodically by
Prometheus 15

4.2 The PushProx architecture. Taken from [12]. PushProx traverses N A T by
initiating a T C P connection by making an H T T P /pol l request (1) 15

4.3 Prometheus Android Exporter user interface. The homepage is divided into
three tabs, each tab contains configuration settings for one of the application
modes. The batch exporter configuration is shown on this screenshot. . . . 17

5.1 Depiction of order in which H T T P requests are made to perform one metrics
scrape via PushProx proxy. This setup traverses N A T and other network
barriers 21

5.2 Typical usage of the Prometheus remote write protocol to transmit metrics
from one Prometheus instance to another or to a long-term storage backend. 22

5.3 Better design of exporting metrics from the batch exporter. Before another
regular successful scrape happens, the batch exporter needs to make sure all
the metrics have been exported, as they need to be stored in the Prometheus
database in chronological order. This solution is not implemented 25

6.1 Results of the PushProx client energy efficiency tests 28
6.2 Results of the Prometheus exporter energy efficiency test 28

2

Chapter 1

Introduction

Prometheus is a time series database mainly used for monitoring servers, production appli­
cations and other cloud infrastructure. It also allows visualization and alerting on gathered
metrics. Prometheus exporters are applications, that gather metrics from monitored sys­
tems and expose them to Prometheus in the right format. There is a vast ecosystem of
exporters for commonly used software systems available. The aim of this thesis is to imple­
ment a Prometheus exporter for the Android operating system.

The main focus of this work is to implement an exporter that will not only export
available metrics to Prometheus, but also store them on-device during periods of network
unavailability and export them in batch once the network connection is available. The
solution also focuses on possible energy optimizations of the exporter.

This project is evaluated based on its usability and energy efficiency. I have conducted
manual tests regarding the energy efficiency of the final solution.

Prometheus Android Exporter is released as an open-source project on Github. 1 To
further increase the usability of the final solution and lower the barrier of entry for its
users, the implemented solution can also traverse N A T and similar network barriers out-of-
the-box. A n example server configuration for such a use case is also provided.

This thesis aims to provide readers with an overview of the Prometheus metric format
and its typical operation. Then confronts them with research on current Android monitoring
solutions and describes a set of metrics available on Android devices. The rest of this thesis
contains the technical design of the application along with explanations of more interesting
parts of the implementation.

x

https: //github.com/birdthedeveloper/prometheus-android-exporter

3

Chapter 2

Prometheus database

Whenever a new system is deployed to a production environment, it is useful to monitor its
functions, so that defects in system behavior can be determined and possibly fixed before
the system users notice them. Although most monitoring is about system events, for each
aspect of a system, the monitoring techniques are slightly different. This is a consequence
of events having a context, for example, function call might have a call stack or an H T T P
request might have a cookie set, etc. It would be ideal to store the full context of each
system event, but this is not practical from the economical point of view as the monitoring
system would have to store large amounts of data. Therefore we can roughly categorize
monitoring into the four following categories [2]:

• Profiling is monitoring most of the applications events with most of the context for
limited periods of time. This makes profiling a good tool for debugging software. A n
example of a profiling tool is tcpdump.

• Tracing does not take a look at all events, but rather at a proportion of them.
Tracing will note individual functions in the stack trace and how long these functions
took to execute. Tracing can be therefore useful for debugging latency in a system.

• Logging takes a look at a limited set of events and records some of the context of
each event. Logging is typically not sampled.

• Metrics track aggregations over time of different types of events, for example, track­
ing the number of H T T P requests with status code 200 over time.

Originally developed at SoundCloud in 2012, Prometheus is an open-source metrics-
based monitoring system written in Go.[2] It is a single statically linked binary that imple­
ments a database for received metrics, a query processor, and a subsystem that retrieves
metrics from monitored applications. A typical setup consists of one Prometheus instance
and multiple scrape targets. Scrape target is in Prometheus terminology an application that
needs to be monitored. Applications are monitored by exposing metrics to Prometheus via
an embedded H T T P server using a specific metric text format, that is further described in
section 2.1. This practice of pulling metrics by the monitoring system rather than applica­
tions pushing metrics themselves can be referred to as the pull model.

Using the pull model allows Prometheus to keep information about what targets to
scrape and how often in a single configuration file. While this is certainly an advantage,
this also creates a need to update such scrape target configuration automatically when
new applications are deployed. Such a process is in Prometheus terminology called service

4

discovery. Prometheus service discovery integration includes common open-source cloud
application orchestrators, such as Kubernetes and HashiCorp Nomad, as well as common
public cloud vendors, for example, AWS - Amazon Web Services and G C P - Google Cloud
Platform. [6] There are also downsides to the pull model, as Prometheus must be able to
initiate a T C P connection toward scrape targets, that means that N A T and other network
barriers £11*6 cl problem.

Prometheus has a vast ecosystem of application instrumentation libraries in different
programming languages and metric exporters, that stands behind its wide usage in cloud
monitoring today. A Prometheus exporter is a program that runs alongside the monitored
application and exports application-specific metrics in the right format to Prometheus.
A n exporter is typically used when direct code instrumentation of the application is not
possible, this is usually the case when using off-the-shelf software, for example, PostgreSQL
database. Prometheus offers exporters for many popular open-source software projects such
as databases and messaging systems. [7]

When an incident happens in a production system, it is practical if the monitoring
system itself can send out a notification to humans about this incident. In Prometheus,
this is called alerting. It is possible to create alerting rules, that are Prometheus queries
that are evaluated continuously. Then thresholds can be set for the results of such alerting
rules, and if conditions are met, an alert is generated. In a typical setup, alerts generated
from a Prometheus instance do not immediately notify humans, but rather these alerts are
processed by another program called Alertmanager, that takes care of grouping the alerts
together and consecutive notifications to humans.

Nowadays, there is an ecosystem of projects around Prometheus to help with scaling
and long-term storage of metrics. Examples of such projects are Grafana Mimir, that can
scale up to 1 billion active metrics series and beyond 1, and Thanos, that is a Prometheus
long-term storage backend. There are also commercial offerings of managed Prometheus
instances in the cloud, such as Grafana Cloud.

2.1 Metrics format

Both Prometheus exporters and application instrumentation libraries expose Prometheus
metrics on a given H T T P port in a text format. Each metric in Prometheus is composed
of a name, value, that can be either an integer or a floating point number, and a set of
labels. Labels are essentially key-value pairs that provide further information about the
given metric. For example, when monitoring the total number of H T T P requests to a given
server, the exposed metrics by the H T T P server would look like this:

TYPE http_requests_total counter

HELP http_requests_total Number of http requests received.

http_requests_total{path="/",method="GET"} 21
http_requests_total{path="/hello",method="POST"> 3

The metrics example above depicts metric http_requests_total, that is of a type counter,
with two labels, path and method.

Every single combination of label values and metric names is counted in Prometheus
as a new metric. Therefore, it is not recommended to have a value with high cardinality
such as user IP address or user ID used as a metric label as this can increase the number of

1https://grafana.com/oss/mimir/

5

https://grafana.com/oss/mimir/

active metrics significantly. The number of active metrics increases the memory footprint
of the running Prometheus instance, that is projected into the operation cost of running a
Prometheus.

For the use case of running and monitoring multiple instances of H T T P servers from the
previous example, Prometheus adds target labels to already present sets of labels to distin­
guish between them. Target labels are configurable in the Prometheus Y A M L configuration
file.

The following example shows metrics from the previous example along with one target
label cluster.

TYPE http_requests_total counter

HELP http_requests_total Number of http requests received.

http_requests_total{path="/",method="GET",cluster="foo"} 21
http_requests_total{path="/hello",method="POST",cluster="bar"> 3

Such usage of target labels by Prometheus suggests there is a set of reserved labels
for use in target labels, that one should not use when instrumenting custom applications.
These include env, cluster, region, instance, and a few more. Labels starting with an
underscore are also reserved. A special case is the name of the metric, that is internally
represented in Prometheus label name

There are four metric data types in Prometheus[2]. The first two are simple metrics,
they occupy exactly one line in the text format. The second two types of metrics are
composed of the first two simple ones.

• Counter tracks the number of events. Therefore the counter is an integer. Coun­
ters can only go up. Counter metric names typically end with „total", for example,
http_requests_total.

• Gauge is a snapshot of some current state. For example, a gauge can be used to
represent the actual number of items in a queue or current memory usage or current
temperature. Gauges are floating point values and can go up and down. Gauge
metric names typically end with the name of the used measuring unit, for example,
swap_memory_bytes.

• Summary is useful for measuring average latency in software systems. For example,
if a latency of a function foo() should be measured by using summary, two metrics
would be exported, foo_latency_seconds_count and foo_latency_seconds_sum.

The first metric is a counter describing the number of foo() function calls and the
second metric is a sum of all the latency from the function calls. From these two data
points, the average latency of function foo() can be calculated.

• Histogram is a useful metric type when further insight into system latency is needed.
Histograms are made up of multiple counters, each of that counts how many events
have fallen into a given bucket. They allow calculating quantiles, that can be helpful
to determine whether for example, software latency is within its contracted S L A - Ser­
vice Level Agreement, that is often expressed as 95 t h percentile latency. Histograms
are cumulative, that allows dropping histogram buckets if performance becomes a
problem due to a high number of metrics, allowing quantiles to still be calculated.
Histogram metric names end with measurement unit and „bucket" and have label le,
that determines what events does bucket count. A n example of such a metric can

l.i

be system_latency_seconds_bucket{le="0.3"}. This bucket would count all the
events that took less or equal to 300ms.

Previously stated naming conventions for metrics are recommended although they are
not mandatory. [8]

2.2 Prometheus exporters

Prometheus exporter is a program that runs alongside an application that should be moni­
tored by Prometheus, but does not expose its metrics in Prometheus format. Usually, there
is a need to run an exporter alongside an application when it is not possible to instrument
the application directly. A n example of such a exporter can be the Node Exporter, that
exposes various metrics about the underlying operating system. This is also the case with
the Android operating system. Writing a Prometheus exporter that will expose Android
metrics is the goal of this thesis.

When writing Prometheus exporters, it is a good practice to follow the rules described
in official documentation^ 1]. Many of these rules will directly apply to the Prometheus
Android Exporter application design:

• The exporter should not require custom configuration by the user apart from telling
it where the monitored application runs. If a user-provided custom configuration is
inevitable for some reason, it is advised to include an example of such configuration
with the exporter. Configuration should be in the Y A M L format.

• Metric names should be concise and prefixed with exporters name. They should also
be provided in base units.

• Label names that are likely to conflict with target labels, such as zone, instance,
and so on should be avoided.

• Metrics should make sense when summed or averaged, therefore do not include a
metric that sums up all the other metrics with the same name.

2.3 P r o m Q L query language

PromQL is the Prometheus query language. It offers the ability to do all sorts of aggrega­
tions, analysis, and arithmetic in order to better understand the performance of the mon­
itored software systems. [2] Prometheus itself comes with a web-based user interface where
users can write queries and visualize them in graphs. This UI also features autocomplete
for queries and labels as well as autocomplete for present label values.

Describing the whole PromQL syntax is not a goal of this thesis, however, a simple
illustration of its usage is in the figure 2.1. To get a deeper insight into PromQL, I would
recommend reading the official documentation [9] and possibly trying it out yourself with a
local Prometheus Node Exporter instance and a local Prometheus instance.

Suppose there is a metric node_network_transmit_bytes_total, that is a counter and
two nodes are being monitored, thus there is a target label „node". One can obtain the
metric current values for both nodes simply by typing its name:

node_network_transmit_bytes_total

7

Prometheus Alerts Graph Status-

Use local time Enable query history Q Enable autocomplete Q Enable highlighting Q Enable linter

Q, profnetheus_http_requests_total{code^
l,

2eti"} j E= | ®

Load lime: 83ms Ri

Table Graph

Res. (s)

d lime: B3ms Resolution: 483Bs Result series: 19

Show Exemplars

r

• prornetheus_http_requests_total{bacl(fill-"false", code-'20Q", handl&r-"/-/ready" instance-"localhrjst:909D", job-'prarnetheus"}

Figure 2.1: Prometheus web-based user interface with query and visualization capabilities.

This query will return two time series. Further one can filter out only one node by its label:

node_network_transmit_bytes_total{node="10.0.0.1"}

To calculate the amount of network traffic transmitted per second, one could use the fol­
lowing query:

rate(node_network_transmit_bytes_total{node=''10.0.0.1"}[5m])

The [5m] in the query means to provide the rate function with 5 minutes of data, so the
returned value will be the average of the last 5 minutes. To get the total rate of transmitted
bytes per second for both nodes, one could use the sum function:

sum without(node) (rate(node_network_transmit_bytes_total[5m]))

Apart from querying Prometheus from its web-based UI, there is also an H T T P A P I
that can be used for querying from other tools, for example, Grafana.

2.4 Grafana

When checking the health or performance of the software systems monitored by Prometheus,
it might be convenient to have multiple graphs grouped together in a dashboard. Originally,
Prometheus used to have its own dashboarding tool called Promdash. Prometheus devel­
opers later decided to use Grafana rather than keep developing their own dashboarding
platform. [2]

8

Grafana is an open-source versatile web-based dashboarding tool being developed by
Grafana Labs and its open-source contributor community. Although Grafana is open-source
software, Grafana Labs offers Grafana as SaaS - Software as a Service and also offers many
enterprise plugins for Grafana.

Grafana supports many data sources, such as common relational databases, metric
databases, logs, and traces, and has many other integrations. Grafana allows its user to
query useful data from the connected data sources and display that data using one of many
available visualizations. These visualizations are put together into panels and these are
further grouped into dashboards as can be seen in figure 2.2.

& Q Search or jump to...

Home > Dashboards > Sample dashboard ^ E) © ® © Last 7 days - Q. O 5s •

v HTTP requests

Requests to mobi le

t o o u r s y s t e m o v e r t i m e

backend over last 24 hours Requests to mona-web-p roduc t i on per last 24 hours

07/16 07/18
="/vai7log/pods/default_nginx-ingress-ingress

image ingester product ion logs

j> 2023-07-17T06:53
j > 2023-07-17T06:53
j > 2023-07-17T06:53
j > 2023-07-17T06:53
j > 2023-07-17T06:53

L431330195Z s tde r r F { " l e v e l "
I.43131273Z s tde r r F { " l e v e l " :
[.437440081Z s tde r r F { " l e v e l "
I.437511786Z s tde r r F { " l e v e l "

18-43837023Z stdei " l e v e l " : " l n f o " ,

" :1689576798.429846,
:1689576798.42988, "c;
" :1689576798.4370196
" :1689576798.437086, " c a l l e
:1689576798.4382114,"calle

H e r
iage_ lnges te r /db_ in te r face . go: '

" l inage_ingester/handle_ci
" zap ivB . I .0 /zap .go :90","n

"Executing Db

33","msg":"Marshal p
i a - l n g e s t e r / c r e a t e " , "

Figure 2.2: Example of a Grafana dashboard with metrics and logs.

To lower the entry barrier, Grafana has visual query builders for many of the data
sources it supports. For advanced users who are capable of writing queries as code, Grafana
helps by providing auto-complete and support tools such as a label browser, where a user
can find all the labels of the data he or she is about to query.

One of the goals of this thesis is to create a Grafana dashboard one can use out-of-the-
box with the Prometheus Android Exporter.

9

Chapter 3

Monitoring Android devices

The motives for monitoring Android devices vary greatly by the use case. When it comes
to existing solutions for monitoring Android devices, they can be roughly categorized into
the following four categories:

• Unified endpoint management solutions provide its users with visibility into what
software is present on-device and how devices are used. It typically allows its users to
enforce best security practices and further manage the devices in their inventory. As
stated, with these solutions communication flows in and out of the monitored devices.

• Solutions focused on parental control, as parents might want to monitor or limit the
activities of their children online.

• Tools for local collection of metrics such as C P U and memory usage via the mobile
application UI.

• Tools that export local telemetry to a remote monitoring system, the thesis falls into
this category.

3.1 Exist ing solutions

Bellow are described particular existing solutions for Android monitoring.

• Home assistant is an open-source home automation and monitoring tool. Apart
from controlling smart devices at home, it is also capable of displaying data retrieved
from installed sensors using the ZigBee or M Q T T protocol. The whole system is
interesting to this research as it also allows the possibility to monitor the hardware
sensors of the Home Assistant companion application, that is available for Android.
This sensor data is then sent to the Home assistant server.1

• Prometheus Android exporter is a mobile application that exposes a subset of
device metrics in a Prometheus-compatible format. The application is freely available
at the Google Play internet store.2 It is the most similar monitoring solution to the
outcome of this thesis.

x

https: //companion.home-assistant.io/
2

https: //play.google.com/ store/apps/details?id=inf o.knacki.prometheusandroidexporter

10

http://companion.home-assistant.io/

The application offers a configurable H T T P port via its user interface. Exposed met­
rics include battery level and status, information about memory, information about
available storage as well as brief information about C P U , and network statistics. This
solution also does not seem to have any batch exporting or N A T traversal solutions
implemented.

• Miradore is an enterprise M D M - mobile device management platform. It provides
tools to manage the security of Android phones and other devices. Miradore provides
its users with very basic information about each device in its inventory, such as a
version of the operating system, security information and installed applications.3

• C P U monitor is a mobile application that locally monitors C P U usage, frequency,
and temperature. Users can download it freely from Google Play. 1

• AirDroid Parental Control is an example of a parental control application, one of
the most important features of this application is tracking the location of the device
and monitoring children's activities in installed applications.5

3.2 Available metrics

Various metrics are available on Android devices. Most Android-powered devices have
built-in sensors that measure motion, orientation, and various environmental conditions.6

These sensor metrics can be accessed via the SensorManager A P I . Data from sensors such
as light meters, proximity sensors, accelerometers, magnetic field detectors or gyroscopes is
available.

In accordance with the Android platform's commitment for better user privacy, retriev­
ing a user's location is a little bit more difficult as permission from the user needs to be ob­
tained at runtime. User's location can then be retrieved from the FusedLocationProvider
API , that is battery-efficient.

Information about C P U usage can be obtained from the HardwarePropertiesManager
A P I . The retrieved array of CpuUsagelnf o structures contains C P U active time and C P U
time total for each C P U core. From this information, usage percentage for each C P U core
can be calculated. Unfortunately, third party applications cannot tap into this A P I because
of android permissions.

Regarding the user activity, information about that applications are currently running
can be retrieved using the ActivityManager. Its function getRunningAppProcesses ()
provides an array of active processes with process names attached. Unfortunately, for non-
system third-party applications, only their own package name is visible, rendering this
method useless.

Information about the state of the network can be accessed via the Connect ivityManager
A P I . This includes information about the state of the W i F i and cellular network.

Static information about the device such as the release name of the current version of
the Android operating system can be accessed in the Android.os.Build package. Device
name or manufacturer can be obtained in the same way.

3

https: //www.miradore.com/platforms/android-management/#analytics
4

https: //play.google.com/ store/apps/details?id=com.glgj ing.stark
5

https: //www.airdroid.com/parental-control/
6

https://developer, android.com/guide/topics/sensors/sensors_overview

11

http://www.miradore.com/platforms/android-management/%23analytics
http://www.airdroid.com/parental-control/
https://developer
http://android.com/guide/topics/sensors/

Chapter 4

Design

The goal of this thesis is to design and implement a mobile application for Android that will
serve as a Prometheus Exporter. This application will also be capable of temporarily storing
metrics on the device when the device is offline, and exporting them later to the Prometheus
database when online again. The application will be able to traverse N A T - Network
Address Translation and similar network obstacles when exposing data to Prometheus.

This research will be primarily about technologies to traverse N A T while still following
the pull model and how to export metrics to Prometheus in batch. Final solution will be
evaluated by its usability and energy efficiency

4.1 Exist ing tools for building Android applications

As the assignment does not specify any support for other mobile operating systems, the
project will be implemented as a native Android application. The application will be
implemented in Jetpack Compose, as it is a recommended modern toolkit to build native
user interfaces in Android. 1 Historically, Android applications have used Java, but Jetpack
Compose supports only Kotlin, therefore the application will be written in Kotlin. Kotlin
is a modern open-source programming language developed by JetBrains and its community
of contributors. Android development has been Kotlin-first since Google I /O in 2019.[3]

4.1.1 The Kot l in programming language

Kotlin is a cross-platform, general-purpose statically typed programming language. It is
mainly used for developing Android applications and server-side applications. Kotl in is fully
interoperable with Java and runs on J V M - Java Virtual Machine, as well as a few other run­
times. This subsection illustrates the basics of Kotl in syntax with emphasis on differences
from Java and structures used throughout the Prometheus Android Exporter codebase.
More information about its syntax rules can be found in the official documentation. [3]

Variables in Kotlin are declared with val or var keyword. The difference between the
two is that a variable created with val is immutable, and hence can be assigned only once.
Variables created with var are mutable and can be assigned multiple times. When there is
a need to initialize a variable after its declaration, the lateinit modifier, that marks the
variable as initialized later in the code, comes in handy.

x

https: //developer.android.com/modern-android-development

12

Functions in Kotlin are declared using the fun keyword. The return type is specified
after the list of parameters. Functions in Kotl in do support generics.

fun double(x: Int): Int {

val coefficient : Int = 2

return coefficient * x

}

Kotlin has strong syntax support for anonymous functions. Anonymous functions are
functions that are not declared, but rather immediately passed on as an expression. Param­
eter declarations in the full syntactic form go inside the curly brackets and have optional
type annotations. Jetpack Compose leverages this syntax a lot, that is described in the next
subsection. Kotlin also provides a keyword i t to reference the parameter of an anonymous
function if such a function has only one parameter.

Kotlin aims to avoid null dereference exceptions by implementing null safety. Wi th null
safety, the type system distinguishes variables that can have a null value and variables that
cannot. Declared variables can be marked as mailable by appending a question mark after
the name of their type. If a variable is not explicitly declared mailable, it cannot be null.

When making network requests or other blocking calls from the UI application code, it
is undesirable to freeze the UI for the user. Kotlin's approach to asynchronous code is using
coroutines. Coroutines are essentially very lightweight threads. In other words, coroutine
is a function that can suspend its execution and resume it later on, while not allocating
any heavy system resources such as threads do. Kotlin coroutines are not preemptive.

In Kotlin, the way to enter asynchronous code from synchronous code is by using a
runBlocking { } block, that blocks the thread until whatever is run in that block com­
pletes. To launch a coroutine inside runBlocking { }, one can use the launch { } block
or the async { } block. The difference between the two is that launch { } behaves as
fire-and-forget, it just runs the new coroutine and immediately moves to the next line. The
async { } on the other hand returns the result of a new coroutine as Deferred, and one
must use keyword await on it. When inside a coroutine, it is possible to start multiple
coroutines at the same time using a coroutineScope { } block.

A l l asynchronous functions in Kotl in are marked with the suspend keyword. Calling
suspending functions from other suspending functions is simple, there is no special syntax,
so the function call looks like a synchronous one.

Kotlin handles runtime errors by throwing exceptions like in Java. Exception classes
in Kotl in inherit the Throwable class. Kotlin, unlike from Java, does not have checked
exceptions.

Kotlin has replaced static class members in Java by having a companion objectO.
Declaring any class member inside a companion object in Kotlin will have the same results as
marking it static in Java. Kotl in has a data class modifier, that automatically generates
copyWith(. . .) method, that is very useful when dealing with immutable objects.

4.1.2 Jetpack Compose

Jetpack Compose is a modern toolkit for building native Android user interfaces. Jetpack
Compose simplifies and accelerates UI development on Android with less code, powerful
tools, and intuitive Kotlin A P I . 2

2

https: //developer, android.com/jetpack/compose

13

http://android.com/jetpack/compose

Jetpack Compose is built around composable functions. To create a composable func­
tion, just mark a function with a ©Composable annotation. These functions are used to
define the application UI programmatically by describing how it should look and providing
data dependencies, rather than focusing on the process of creating the UI. Composable
functions themselves should be side-effect free, as when and in what order composition
happens is unpredictable. To provide an example, here is a composable function from the
codebase, that renders a column with rendered text and a progress indicator.

©Composable

private fun LoadingPage(

modifier: Modifier

) {
Column(

horizontalAlignment = Alignment.CenterHorizontally,

modifier = modifier,

) {
Spacer(modifier = Modifier.height(50.dp))

Text(text = "Checking for configuration file ")

Spacer(modifier = Modifier.height(20.dp))

CircularProgressIndicator(modifier = Modifier.size(size = 36.dp))

}

}

The example can be confusing at first since the Column function has as the last argument
a lambda function, Kotl in allows this lambda function to be specified outside of the paren­
thesis. This lambda function is also the way to add children composables to a composable
function.

A state is any property of the application that changes while the application is running.
The simplest way to create a state variable in a composable function is to create it with
the function mutableStateOf (). The state variable data type should be immutable.

val mutableState = remember { mutableStateOf("Default value") }

This approach is usable when making a single composable function stateful, such as a simple
text field, but is not suitable for application-level state management. Furthermore, it makes
the stateful composable function harder to test and to reuse. To solve this, state can be
moved up the tree of composable functions to parent composable and state variables can
be provided to the child composable function as parameters. This process of moving the
state to parent composables is called state hoisting.

To separate business logic from UI code, the ViewModel class can be used. A custom
view model is created by extending the ViewModel class. View model is used with LiveData,
that holds the state. State can be then observed by calling the observeAsState () function
on the Live Data object. Furthermore, a view model can contain all the functions that
mutate the state. This helps with separation of concerns in the codebase.

4.2 N A T traversal solutions

With N A T - network address translation enabled routers, there is a problem with initiating
a connection towards them from the outside world. [4]

14

When monitoring infrastructure such as a kubernetes cluster or a few servers, the moni­
tored system and Prometheus instance are typically on the same network. This may not be
necessarily the case with Android devices, as they are mobile and can get behind a network
barrier such as N A T . Therefore this project should provide a solution to traverse N A T and
other network barriers out-of-the-box.

Prometheus Pushgateway is a metrics cache for service-level batch jobs. [2] As batch jobs
are usually not running continuously, Prometheus cannot scrape them. Therefore, instead
of batch jobs exposing metrics to Prometheus, they actively push them to Pushgateway
instead. Typical architecture is described in figure 4.1.

Push metrics Pull metrics regularly
Batch job Pushgateway Prometheus instance Batch job Pushgateway Prometheus instance

Figure 4.1: The Pushgateway architecture. Metrics are pushed to Pushgateway from batch
jobs. Pushgateway caches these metrics and is scraped periodically by Prometheus.

The Pushgateway is not a way to convert Prometheus from pull to push. For example, if
there are several pushes to the Pushgateway between Prometheus scrapes, the Pushgateway
will only return the last scrape.[2] Therefore, even though the Pushgateway-based solution
would effectively traverse N A T , as all connections would originate from the mobile device,
it is not suitable for this task. Trying to convert Prometheus to push-model is undesirable.

Another possible solution would be to use remote-access V P N - Virtual Private Network.
This approach would also enhance the security of the application, even though this is not
the main aim of this thesis. In this case, the Android device would connect to the V P N
to be on the same network as Prometheus instance, allowing it to scrape the device. A
lightweight solution such as WireGuard could be used. WireGuard even offers a Android
Java S D K . 8

Some network barrier

Client
fqdn=fqdn-x

H© - POST fqdn to /poll
-scrape: GET ..
-POST metrics to /push

GET fqdn-x:9100 / metrics
metrics

fqdn-x:9100 , >

GET fqdn-x:910

f

* m
D/metrics

r"~| metrics

, >

GET fqdn-x:910

f
C

Prometheus <

C
Prometheus

Figure 4.2: The PushProx architecture. Taken from [12]. PushProx traverses N A T by
initiating a T C P connection by making an H T T P /pol l request (1).

Prometheus PushProx is a client and proxy written in Go that allows traversing of N A T
and other similar network topologies by Prometheus, while still following the pull model. [12]

3

https: //www.wireguard. com/

15

http://www.wireguard

PushProx works by having the PushProx client initiate a T C P connection towards PushProx
proxy, assuming that the PushProx client is run on the same network as the monitored
application and the PushProx proxy is run besides Prometheus.

First, PushProx client initiates a T C P connection by sending the /pol l request (1).
PushProx proxy waits until Prometheus scrapes it (2). Then, the PushProx proxy responds
to initial /pol l request with the original scrape request from Prometheus as the request
body. PushProx client then scrapes the monitored application (4) and pushes metrics to
the PushProx proxy by sending an H T T P /push request (6). Subsequently, metrics are
returned to Prometheus as a response (7) to the initial scrape request (2). The whole
process is depicted in figure 4.2.

4.3 Applicat ion design

The mobile application is designed to work in these three modes:

• As a Prometheus exporter, by exposing metrics in text format on the configured
H T T P port, the default H T T P port is provided.

• As a Prometheus PushProx proxy client, that can traverse N A T and other network
barriers while still following the pull model. This mode requires a PushProx proxy
server to be run besides Prometheus. The PushProx server U R L and the fully qualified
domain name must be configured on the mobile application for this mode to work.

• As a batch exporter, that is capable of scraping the device when offline and of sub­
sequent export to the Prometheus instance in batches via Prometheus remote write
protocol. Metrics are stored offline only in memory, they are not persisted to disk.
There is a limit to how old the exported metrics can be. This limit is internally set
by Prometheus to roughly one hour and is not configurable. In my opinion, this limit
is connected to the way Prometheus internally stores metrics in its database.

These modes can be turned on simultaneously, with the one exception being that to turn
on batch exporter, one of the other modes must be turned on as well. The batch exporter
only scrapes the device when there were no successful remote scrapes in a configured time
interval, and in order to determine this, PushProx client mode or exporter mode must be
turned on.

4.4 Applicat ion usage

Application usage is very straightforward, with only minimal manual configuration required,
as mentioned in the instructions on how to write Prometheus exporters. [11] The application
is configurable either via its UI or via the local Y A M L configuration file. Once configured,
the user can start the monitoring by tapping the start button. The monitoring worker then
runs in the background, and even survives a reboot of the device.

I have decided to implement configuration UI to lower the barrier of entry to use the
Prometheus Android Exporter and also to simplify proof-of-concept tests for potential users.
How the user interface looks is displayed in figure 4.3. It is expected that users with more
than a handful of devices to monitor will configure the Prometheus Android Exporter via
the Y A M L configuration file. Even when using the Y A M L configuration file, monitoring
has to be started manually by opening the application and tapping the start button.

16

8:53 $ i

Prometheus Android Exporter

P r o m S e r v e r P u s h P r o x
B a t c h

e x p o r t e r

Remote write configuration:

Remote write endpoint

Scrape in te rva l in s e c o n d s

3 0

Target label instance

Target label job

Figure 4.3: Prometheus Android Exporter user interface. The homepage is divided into
three tabs, each tab contains configuration settings for one of the application modes. The
batch exporter configuration is shown on this Screenshot.

17

The user interface behaves differently if the local configuration file is present. If it is
present, user can see only the loaded configuration. If it is not present, the user will be
presented with a tab view with three tabs, one tab for each application mode.

Switch on each tab determines whether this mode should be turned on when the user
turns on monitoring. Monitoring runs in the background using an Android WorkManager
worker. The Android WorkManager is a standard part of Android Jetpack, that is a set of
standard libraries around Jetpack Compose and is further described in section 5.1.

The Y A M L configuration file should be put at the following path and the name of the
file should be config.yaml.

/data/user/0/com.birdthedeveloper.prometheus.Android.exporter/files/

Here is an example of such configuration file:

f i l e : config.yaml

Configuration of prometheus exporter

prometheus_server:

enabled: true

port: 10101 # http port

Configuration of the batch exporter, that uses the remote write protocol

remote_write:

enabled: true

remote_write_endpoint: "http://143.42.59.63:9090/api/vl/write"

instance: "test"

job: "Android phones"

In this particular configuration example, Prometheus metrics will be accessible on H T T P
port 10101, also the application will check regularly whether there were successful scrapes.
If a device network connection is lost or the Prometheus instance goes offline, the application
will start scraping metrics itself and once online, the application will try to export metrics
using the remote write protocol to the configured remote_write_endpoint with additional
labels job and instance. A full list of options is provided in the code repository in the
config_file_structure.yaml file.

18

http://143.42.59.63:9090/api/vl/write

Chapter 5

Implementation

Prometheus Android Exporter is written in the Kotlin programming language using Jetpack
Compose. The application consists of three modes as described in chapter 4.3: Prometheus
exporter, PushProx client, and batch exporter. This chapter describes parts of the im­
plementation of these three modes that are most interesting or were more challenging to
implement than the others.

5.1 Applicat ion architecture

State management in the application is done by a single top-level ViewModel implemented
in the file PromViewModel .kt. This ViewModel stores and updates the configuration for
the monitoring worker. This means knowing what modes should be turned on when the
user taps the start button and so on.

A l l three modes are implemented by a single Android WorkManager worker. This worker
runs in the background and can even survive a reboot of the device. Configuration passed
on to this worker must be serialized, as Android WorkManager stores it in its database.
Hence, this worker can be started at any time independently of the rest of the application.
This worker is implemented in the file PromWorker. kt

Android WorkManager is the recommended solution for persistent work. Work is per­
sistent when it remains scheduled through app restarts and system reboots. WorkManager
is the primary recommended A P I for background processing on Android. 1

Prometheus Android Exporter uses the Ktor H T T P server, used in Prometheus Ex­
porter mode and Ktor client, used in the two other modes.

Thanks to Kotlin's interoperability with Java, the application is able to use the Prome­
theus Java client library to register metrics and convert them to Prometheus text format.
The library provides usable A P I for adding all four types of Prometheus metrics

Hardware metrics are collected by leveraging the SensorManager A P I . There is no
direct access to the sensors, but one can subscribe to events when the sensor value changes.
Beware that on an Android emulator, an event is not generated when a listener is registered
to the sensor, the sensor value has to be changed first. Other metrics are collected via their
respective A P I as described in section 3.2.

While the set of metrics that Prometheus Android Exporter exposes is fairly large, the
application design makes it easy to add other metrics. Custom metrics can be appended in
the file AndroidCustomCollector.kt to function collect().

x

https://developer, android, com/topic/libraries/architecture/workmanager

19

https://developer

The application leverages third party Java and Kotl in libraries for Prometheus instru­
mentation, Snappy compression algorithm, and Y A M L serialization.

On some versions of the Android operating system and with specific mobile phone
vendors, it can be necessary to except the Prometheus Android Exporter from any battery
optimizations. For example, L G with Android 9 requires this for the right functionality of
the Prometheus Android Exporter.

5.2 Ko t l i n coroutines

To run multiple application modes simultaneously, the monitoring worker launches multiple
Kotlin coroutines - coroutine for each active application mode - in parallel. Kotl in corou­
tines are not confined to one thread by default, in fact, they can be scheduled to multiple
threads throughout their lifecycle. This creates potential race conditions at the boundaries
in code where particular application modes meet.

The only information that is shared between application modes is counting successful
metric scrapes. A successful metric scrape is basically an event, that is generated by either
the Prometheus exporter or the PushProx client, and is sent to the batch exporter. Based
on this information, the batch exporter determines whether it should start or stop scraping
metrics locally.

I have decided to solve this problem not by adding a mutex, but by confining the
coroutines to one thread only by creating a fixed count thread pool for all the coroutines.
When thread count is set to 1, this effectively limits parallelism, as Kotlin coroutines are
not preemptive. A code example is below:

val backgroundDispatcher = newFixedThreadPoolContext(1, "test_pool")

val threadContext = backgroundDispatcher.limitedParallelism(l)

// launch multiple coroutines in parallel on one thread

withContext(threadContext){

launch { print("Coroutine 1") }

launch { print("Coroutine 2") }

}

The other argument for choosing thread confinement instead of mutexes was the fact
that batch exporter, that is implemented by a class RemoteWriteSender, also launches two
coroutines in parallel. One coroutine is used for controlling the conditions of whether the
batch exporter should be locally scraping metrics, and if conditions are met, this coroutine
also scrapes the metrics. The other coroutine takes care of sending metrics to the remote
write endpoint, with an exponential backoff. There are shared resources between the two.

5.3 Traversing N A T using the PushProx proxy

I have chosen to implement N A T traversal using the Prometheus PushProx proxy, as it is
the most straightforward solution, and it does work while still following the pull model. The
PushProx client used in this project is a rewritten simplified version of the original written
in the Go programming language, and is implemented in the file PushProxClient .kt.

PushProx client implemented in the application works by making a /pol l H T T P request
to the PushProx proxy server first. Then PushProx server waits for Prometheus to perform

20

a metrics scrape using it as a proxy. Metrics scrape is forwarded to the PushProx client,
that then sends scraped metrics to the PushProx proxy server using the /push H T T P
request. Then PushProx proxy server returns scraped metrics received from the client to
Prometheus instance. The whole process is depicted in figure 5.1.

Prometheus
Android
exporter

POST fqdn to /poll (1)

scrape: GET... (3)

POST metrics to /push (4)
PushProx

proxy server

Prometheus server

GET fqdn-x:9100/metrics (2)

scraped metrics (5)
Prometheus

instance

Figure 5.1: Depiction of order in which H T T P requests are made to perform one metrics
scrape via PushProx proxy. This setup traverses N A T and other network barriers.

In the original implementation, there are 3 metrics for measuring the PushProx client
itself. I have decided to keep these metrics. These metrics consist of three error counters
that count poll errors, push errors and scrape errors.

This solution could be further optimized for energy efficiency by rewriting the PushProx
proxy with WebSockets. The WebSocket protocol enables two-way communication between
a client and a remote host. WebSocket protocol is a standalone protocol implemented on
top of the T C P protocol, although it is negotiated via H T T P . [5] There is a one potentially
unnecessary H T T P request with PushProx as essentially, assuming the connection was
already established, only request from the Prometheus instance and consecutive response
from the client with metrics is all that is needed. For this solution to be implemented, the
PushProx proxy would need to be rewritten using WebSockets.

5.4 Prometheus remote write protocol

Prometheus remote write capability is used when there is a need to aggregate metrics data
from multiple Prometheus instances. For example, there might be two datacenters, each
with its own Prometheus instance, and there may be a need to aggregate the data from
both datacenters into one Prometheus instance, on which the queries will be performed. To
achieve this, there is a need for a protocol that will efficiently propagate scraped metrics
from both datacenters to that one Prometheus instance. The remote write protocol is
designed to make it possible to reliably propagate samples in real-time from a sender to a
receiver, without loss. [10]

Prometheus is not the only metrics system that understands remote write protocol. In
fact, most of the Prometheus long-term storage backends do support receiving metrics in
the remote write protocol format. Typical usage of the remote write protocol is displayed
in figure 5.2.

The official remote write protocol specification explicitly states that the remote write
protocol is not intended for use by applications to push metrics to Prometheus remote-
write-compatible receivers. This means the solution at hand is more of a hack and while
it works, it is not officially supported. For example, I would not be surprised if there were
any performance issues while a large number of Prometheus Android Exporters would be

21

Monitored
application 1

Monitored
application 2

Remote write
metrics scrape

metrics scrape

Prometheus
instance

Long-term storage
backend, for example

Grafana Mimir

Queries

Grafana

Figure 5.2: Typical usage of the Prometheus remote write protocol to transmit metrics
from one Prometheus instance to another or to a long-term storage backend.

pushing metrics to a single Prometheus instance. Furthermore, the maximum age of batch-
exported metrics is set to roughly one hour and this limit is not configurable. The pull
model is deeply ingrained into the design of Prometheus and with batch exporting, I am
essentially trying to convert it to push.

Prometheus remote write protocol communicates over H T T P protocol and the interface
is described using protocol buffers. Remote write protocol messages are for better efficiency
compressed using Google's Snappy algorithm. Protocol buffers are open-source language-
neutral, platform-neutral extensible mechanisms for serializing structured data. There is
official support for common programming languages such as C++, Go, Dart, Python, and
many more. There is also a third party support for many other languages, this is the case
with Kotlin.

Wi th Google's protocol buffers, one can define how the data being transmitted between
two services should be structured. Then with help from protocol buffers C L I - Command
Line Interface tool, protoc, one can generate code in the target programming language.
This generated code can be used to serialize and deserialize structured data.

Apart from serializing into JSON - JavaScript Object Notation, protocol buffers can
also serialize to the wire format, which is a binary representation. This representation is
obviously much more space-efficient and therefore is used by remote write protocol.

The data structure is defined in files with the *.proto extension. Protocol buffers
use simple language to describe message structures. To describe the language a bit further,
messages are structures enclosed in curly brackets and may contain simple data types such as
string, int32, and int64, lists, that start with the keyword repeated, or other messages.
Furthermore, message fields can be marked as optional with the optional keyword.

The numbers on the other side of the equation uniquely identify the given message field.
As serialized protocol buffers data can be used for storage, it has language tools to preserve
backward compatibility. For example, if a field with number 2 was used in the previous
version of the protocol buffers structure, but is currently removed, one can reserve it using
the reserved keyword. This ensures that no one in the future will create a message field
with the same identifying number but different semantics.

Here is a concrete example of protocol buffers that describe the Prometheus remote
write protocol. [10]

22

message WriteRequest {

repeated TimeSeries timeseries = 1;

// Cortex uses this field to determine the source of the write request.

//We reserve i t to avoid any compatibility issues,

reserved 2;

// Prometheus uses this f i e l d to send metadata, but this is

// omitted from vl of the spec as i t is experimental,

reserved 3;

}

message TimeSeries {

repeated Label labels = 1;

repeated Sample samples = 2;

}

message Label {

string name = 1;

string value = 2;

}

message Sample {

double value = 1;

int64 timestamp = 2;

}

Remote write protocol messages consist of a list of time series, that each consists of a list
of labels and a list of samples. A label is a pair of a name and string value and a sample
is a pair of a value and a unix timestamp. The metric name is sent as the reserved label
name .

5.5 Metrics batch export using the remote write protocol

M y initial idea was to start scraping metrics on the device and save them to the memory
when the device goes offline, e.g. when there are no successful scrapes for a given time
interval. I have decided not to implement permanent storage for metrics, as the maximum
age of a metric that Prometheus accepts via remote write protocol is about one hour. Wi th
a maximum age limit this low, permanent storage would not have much of an effect on the
durability of the whole system.

The problem is that after the device has been offline for a while, there are lots of metric
samples in the device memory, and when the device goes online again, that is detected
by the application as a successful scrape, the metrics cannot be exported. The reason is
that given the low-level implementation of the Prometheus database, time series can be
only appended to - they are sorted by timestamps. So if a successful scrape happens, it
essentially blocks all the locally stored metrics. H T T P request to remote write endpoint
will return H T T P status code 400 - Bad Request in such case.

The solution I came up with is to differentiate between metrics regularly scraped by
Prometheus and metrics exported in batch by adding a label. I have added a label backfill,

23

that is either „true" or „false" depending on whether the given metric was exported in
batch or not. There is a serious downside to this solution that I have realized after I have
implemented it. Adding another label with two values essentially doubles the number of
active time series within the Prometheus database. If the user is using any commercial
Prometheus hosting where he is billed by the number of active metrics, such as Grafana
Cloud, the bill essentially doubles.

Now that the user is left with two metrics, each with a different backfill label value,
instead of one. To merge these metrics, one can average them in PromQL like this:

avg(<name of the metric>) without(backfill)

Prometheus keeps the value of the last metric received via remote write for another
roughly five minutes. I did not find the reason why it does this. To filter this out, one can
use a bit more complex PromQL construct:

sum(<name of the metric>{backfill="false"}

or

on() <name of the metric>{backfill="true"]-) without (backfill)

Unfortunately, the second solution increases the complexity of creating Grafana dash­
boards and generally writing PromQL queries significantly.

There is also a problem with target labels, metrics that Prometheus has received using
the remote write protocol do not have any target labels as the Prometheus instance does
not have any other information about the received metrics than what is already present in
protocol buffer messages. I have partially solved this problem by adding instance and job
labels into the configuration of the batch exporter.

The batch exporter determines whether to start scraping metrics locally by tracking
the last time such a scrape has happened. If the last successful scrape has been more than
1.7 * scrape_interval seconds ago, the batch exporter starts scraping metrics locally.
To turn off local metric scraping, multiple successful scrapes must happen in time. This
creates a hysteresis in the system as a protection against unstable network connections.
Essentially, it is easier for the batch exporter to turn scraping on than it is to turn scraping
off. The memory store caching the times of recent successful scrapes for the implementation
of the hysteresis is implemented as a ring buffer.

After realizing all the problems this design had caused, if I had the opportunity to solve
this problem again, I would have solved it differently.

The batch exporter consumes events from PushProx client and Prometheus exporter to
determine whether there was a successful scrape. The better solution is to intercept this
scrape and before an H T T P request would be sent, the batch exporter needs to export all
stored metrics, if it has any. This solution only removes the need for the backfill label,
target labels are still a problem with this solution. It is illustrated in figure 5.3.

5.6 Energy consumption considerations

One of the goals of this thesis is to optimize this application in regard to its energy efficiency.
One way of optimizing the application is to look at its network usage.

In H T T P / 1 . 0 protocol, each connection is established by the client prior to the request
and closed by the server after sending the response. The newer protocol H T T P / 1 . 1 have
changed this, having persistent connections by default. This enables sending multiple H T T P

24

Pull metrics (1)

Prometheus
Android
Exporter

Return scraped metrics in HTTP response (2)

Batch exporter
scrapes metrics

locally (3)

Network
barrier

Failed scrape (3)

Network
barrier

Failed scrape (3)

Network
barrier

Pull metrics (4)

Export metrics in batch via remote write first (5)

Return scraped metrics in HTTP response (6)

Prometheus
instance

Figure 5.3: Better design of exporting metrics from the batch exporter. Before another
regular successful scrape happens, the batch exporter needs to make sure all the metrics
have been exported, as they need to be stored in the Prometheus database in chronological
order. This solution is not implemented.

requests and responses over one T C P connection, thus greatly reducing the overhead of
initializing T C P connections.

The Ktor CIO coroutine based H T T P client engine, that I have used initially, does not
support persistent connections. This is not documented limitation of the CIO engine. The
persistent connections do work with the Ktor Android client engine.

Searching for a cell signal is one of the most power-draining operations on a mobile
device. A best practice for user-initiated requests is to first check for a connection using
the ConnectivityManager. If there's no network, the app can save battery by not forcing
the mobile radio to search.2 Checks for a connection before making any H T T P requests
are implemented in the PushProx client mode and the batch exporter mode.

5.7 Server example configuration

One of the measures of success for open-source projects is how easy it is for future contrib­
utors to run the code at hand. In order to lower the barrier of entry for possible future
contributors, example server configuration for Prometheus, Grafana, and PushProx proxy
server are provided as a part of the code repository. The general aim is to provide an
Ansible playbook that can be run against a G N U / L i n u x server to install and configure
everything needed at once. In order to describe the playbook, a few technologies must be
explained first.

Docker is a container virtualization technology. So, it's like a very lightweight virtual
machine. It addresses the problem of packaging software, as the binary and all dependent

2

https://developer. android, com/training/connect ivity/network-ac ces s-opt imization

25

https://developer

libraries can be packaged with docker into one container.fi] Example configuration consists
of four containers, PushProx proxy server, Prometheus, Grafana, and Nginx reverse proxy,
behind that all the other services run.

Docker compose is the tool used to run multiple containers at the same time. Wi th
docker compose, one can in a declarative manner define what containers should run on a
system in a Y A M L configuration file.

Ansible is an open-source simple IT automation system. It handles configuration man­
agement, application deployment, and other automation tasks.3 Ansible is used by creating
so-called Ansible playbooks. Each playbook is a series of steps that are executed on a given
server when such a playbook is run. Ansible playbooks are idempotent, meaning that a
playbook can be run on the same server multiple times without ruining any already present
configuration. Ansible uses Y A M L to describe the playbooks.

Both previously described tools are designed with the IaaC - Infrastructure as a Code
design principle in mind. That means configuration is rather declarative than imperative.
This has many benefits, for example, one can see exactly what state is the server is in just
by looking at the code that was used to configure that server.

Ansible playbook that is present in the code repository in folder . /server first installs
docker on the new machine, then it creates a new user and copies configuration files over to
the server. Then it creates and starts a systemd service to start the four docker containers
on the machine boot using docker compose.

More detailed information on how to run the playbook can be found in README.md.

3

https: //docs.ansible.com/

26

http://container.fi

Chapter 6

Testing

In this chapter, the performed energy efficiency tests are described as well as the Battery
Historian tool, that was used to analyze test data.

Manual tests were conducted to prove the energy efficiency of the device and the benefits
of the energy optimizations of this application. To ensure the functionality of the project,
a continuous integration pipeline was set up on the C i r c l e d platform. Unit tests in the
code are thus run in the pipeline in the cloud on every git commit.

Energy efficiency tests were conducted on a slightly modified application, exporting only
one metric, to focus on carried-out energy optimizations. As energy optimizations are only
related to networking and hardware sensors take a lot of energy, I was worried they would
invalidate the tests.

Tests were conducted on an L G G6 real Android device with an Android 9 version of the
operating system. During the tests, the Prometheus scrape interval was set to 15 seconds.
For the tests, the application was run in a release mode and was using a W i F i network
connection. A l l energy efficiency tests were run for 1 hour.

The energy efficiency tests did not only provide insight into battery usage but also
proved the usability of the application, as from the one-hour windows when the tests were
run, metrics were being continuously exported with no downtime.

Unfortunately, later manual functionality tests have shown that exporting sensor data
is limited in the current configuration by the Android operating system to 10 minutes.

6.1 The Battery Historian tool

Battery Historian is a web-based UI program distributed in a docker container for analyzing
reports from the battery. 1 It is used to analyze bug reports created via the A D B - Android
Debug Bridge C L I tool.

Battery Historian also shows useful information about activities of the device that drain
the battery, such as W i F i activity, audio activity, mobile signal strength, and many more.
The information shown can be viewed for either particular processes or the system as a
whole.

The data shown in the following test reports were gathered from this tool.
x

https://developer, android, com/topic/performance/power/setup-battery-historian

27

https://developer

6.2 PushProx client energy consumption

Tests were conducted for a variant of the application with H T T P keep-alive configured and
without H T T P keep-alive configured to determine, what impact does it have on overall
energy efficiency. The results of the tests are summed up in table 6.1.

H T T P keep-alive Test duration C P U user C P U system Estimated power use
enabled 1 hour 150 seconds 178 seconds 0.85 %
disabled 1 hour 286 seconds 224 seconds 1.00 %

Figure 6.1: Results of the PushProx client energy efficiency tests.

As it can be seen from the results, with H T T P keep-alive turned on, the estimated
power use has dropped by 15 %.

6.3 Prometheus exporter energy consumption

Prometheus exporter ran with H T T P keep-alive enabled. The power usage results are more
or less the same as the PushProx client with H T T P keep-alive enabled. Test results are
summed up in table 6.2.

Test duration C P U user C P U system Estimated power use
1 hour 229 seconds 188 seconds 0.86 %

Figure 6.2: Results of the Prometheus exporter energy efficiency test

28

Chapter 7

Conclusion

The aim of the work was to design and implement a Prometheus Exporter for Android
devices, that would export available metrics both continuously and in a batch. The assumed
functionality included storing metrics on-device in case of temporary unavailability of the
network connection and exporting them to the Prometheus database later.

The mobile application for Android devices was successfully implemented according to
the architecture proposed in this thesis. Implemented application is configurable using
either its user interface or configuration file and can work in the following three modes.
As a Prometheus exporter, that exposes metrics on a specific H T T P port, as a client
for the PushProx proxy, this mode allows the application to traverse N A T and similar
network topologies, and as a batch exporter. Exporting metrics in batch in case of network
unavailability is unfortunately severely limited by the maximum age of ingested metrics set
by Prometheus.

Work was evaluated using manual energy efficiency tests. Thanks to the energy opti­
mization described in this thesis, in the PushProx client mode the estimated power use was
lowered by 15 %. However, it has turned out that in the current configuration, the An­
droid operating system limits retrieving data from sensors in the background to roughly 10
minutes. The implemented application exports over 35 metrics regarding hardware sensors,
computing resources usage, system information, and user activity. Continuous integration
is also set up to ensure the functionality of code in every git commit.

Work was published as an open-source project under the Apache 2.0 license on Github. 1

Sample Grafana dashboard for the metrics exported by this project is available as a file
in the JSON format in the code repository and was published on Grafana dashboards as
well. 2 The default H T T P port of the Prometheus exporter mode of the application was
registered within the Prometheus foundation.

As possible extensions, I would suggest implementing root access for the application,
to make it possible to gather more metrics from the device. I would also suggest using a
custom websocket proxy instead of used open-source PushProx proxy, as it would remove
one H T T P request on each scrape from the current implementation, making the application
more energy-efficient. Expanding the on-device configuration of target labels for the batch
exporter would be also a meaningful improvement in the usability of the batch exporter
when monitoring a larger number of devices.

x

https: //github.com/birdthedeveloper/prometheus-android-exporter
2

https: //graf ana.com/graf ana/dashboards/ 19255-prometheus-android-exporter/

29

http://ana.com/graf

Bibliography

[1] A N D E R S O N , C. Docker [Software engineering]. IEEE Software. 2015, vol. 32, no. 3.
DOI: 10.1109/MS.2015.62.

[2] B R A Z I L , B . Prometheus: up & running : infrastructure and application performance
monitoring. First editionth ed. Sebastopol, C A : O'Reilly Media, 2018. ISBN
978-1-492-03414-8.

[3] K O T L I N F O U N D A T I O N A U T H O R S . Kotlin for android: Google Play [online]. 2021.
2023-05-11. Available at: https://kotlinlang.org/docs/android-overview.html.

[4] K U R O S E , J . F . and R O S S , K . W . Computer networking: a top-down approach. Eighth
editionth ed. Harlow: Pearson Education Limited, [2022]. ISBN 978-1-292-40546-9.

[5] M E L N I K O V , A . and F E T T E , I. The WebSocket Protocol [RFC 6455]. R F C Editor,
december 2011. DOI: 10.17487/RFC6455. Available at:
https: //www.rfc-editor.org/ inf o/rf c 6 4 5 5 .

[6] P R O M E T H E U S A U T H O R S . Configuration: Prometheus [online]. 2014. 2023-07-04.
Available at:
https: //prometheus.io/docs/prometheus/latest/conf igurat ion/configuration/.

[7] P R O M E T H E U S A U T H O R S . Exporters and integrations: Prometheus [online]. 2014.
2023-05-31. Available at: https://prometheus.io/docs/instrumenting/exporters/.

[8] P R O M E T H E U S A U T H O R S . Metric and label naming: Prometheus [online]. 2014.
2022-05-30. Available at: https://prometheus.io/docs/practices/naming/.

[9] P R O M E T H E U S A U T H O R S . Prometheus - Monitoring system & time series database
[online]. 2014. 2023-07-14. Available at: https://prometheus.io/.

[10] P R O M E T H E U S A U T H O R S . Prometheus Remote-Write Specification: Prometheus
[online]. 2014. 2023-06-05. Available at:
https: //prometheus.io/docs/concepts/remote_write_spec/.

[11] P R O M E T H E U S A U T H O R S . Writing exporters: Prometheus [online]. 2014. 2023-05-31.
Available at: https: //prometheus.io/docs/instrumenting/writing_exporters/.

[12] P U S H P R O X A U T H O R S . Prometheus-community/PushProx: Proxy to allow
Prometheus to scrape through NAT etc. [online]. 2017. 2023-06-19. Available at:
https: //github.com/prometheus-community/PushProx.

30

https://kotlinlang.org/docs/android-overview.html
http://www.rfc-editor.org/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/practices/naming/
https://prometheus.io/

