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Abstract 
Dactyloscopic traces are one of the critical aspects of biometric identification. They repre­
sent an element by which people can be authenticated and authorised. Nonetheless, it is 
necessary to evaluate if a given fingerprint is valid by the number of features it provides 
and decide if it is usable or useless. This analysis of features tells us how valuable the 
fingerprint is. We established a process that grades fingerprints based on contextual and 
statistical values using various enhancements and grading algorithms. These algorithms 
can determine if the fingerprint is good quality and whether it can be used for future pro­
cessing or should be discarded. We divided fingerprints into groups based on the quality of 
their minutiae points, number of ridges, contrast, sinusoidal similarity and ridge thickness. 
We successfully evaluated fingerprints and grouped them similarly to the grouping in the 
NIST SD27 dataset. The algorithm's results allowed us to draw conclusions about graded 
fingerprints' quality and rate their usability. 

Abstrakt 
Daktyloskopické stopy jsou jedním z klíčových aspektů biometrické identifikace. Reprezen­
tují způsob, jakým lidé mohou ověřit svou identitu a být autorizováni. Nicméně je důležité 
ohodnotit, jestli daný otisk je validní a jestli dokáže poskytnout dostatek informací na to, 
aby bylo možné určit, jestli je použitelný anebo ne. Tato analýza rysů otisku dokáže speci­
fikovat, jak moc přínosné pro nás je se daným otiskem zabývat. Navrhli jsme proces, který 
hodnotí otisky prstů na základě kontextuálních a statistických výsledků. Ne vždy je otisk 
ve stavu, kde všechny jeho prvky jsou viditelné a je nutné odstranit rušivé elementy před 
samotným ohodnocením, které by mohli negativně ovlivnit výsledky algoritmů pro hodno­
cení kvality. Tyto algoritmy rozpoznávají, jakou kvalitu má otisk prstu a jestli bude použit 
na další proces anebo zahozen. Rozdělili jsme otisky do skupin pomocí jejich kvality, která 
se hodnotila na základě počtu markantních bodů, počtu papilárních linií, kontrastu, si­
nusové podobnosti a tloušťky papilárních linií. Úspěšně jsme ohodnotili otisky a rozdělili je 
podobně jako v NIST SD27 databázi. Z výsledků těchto algoritmů jsme schopni ohodnotit 
otisky na základě jejich kvality, a tak vyvodit jejich použitelnost. 

Keywords 
image processing, fingerprints, quality analysis, dactyloscopic traces, sinusoidal similarity, 
ridge thickness, contrast, minutiae points, fingerprint enhancement, fingerprint segmenta­
tion, contrast difference, SD27, number of papillary ridges, LatFigGra 

Klíčová slova 
zpracování obrazu, otisky prstů, analýza kvality, daktyloskopické stopy, sinusová podobnost, 
tloušťka papilárních linií, kontrast, markantní body, vylepšení otisků prstů, segmentace 
otisků prstů, SD27, počet papilární linií, LatFigGra 

Reference 
S L O U P , Ondřej. Algorithmic Evaluation of the Quality of Dactyloscopic Traces. Brno, 
2022. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. 
Supervisor prof. Ing., Dipl.-Ing. Martin Drahanský, Ph.D. 



Rozšířený abstrakt 
Daktyloskopické stopy jsou jedním z klíčových aspektů biometrické identifikace. Reprezen­
tují způsob, jakým lidé mohou ověřit svou identitu a být autorizováni. Nicméně je důležité 
ohodnotit, jestli daný otisk je validní a jestli dokáže poskytnout dostatek informací na 
to, aby bylo možné určit, jestli je použitelný nebo ne. Tato analýza rysů otisku dokáže 
specifikovat, jak moc přínosné pro nás je se daným otiskem zabývat. Na základě tohoto 
rozhodnutí můžeme ušetřit výpočetní výkon nutný pro další analýzu, paměť, kde by otisk 
byl jinak uložen a další prostředky. Díky těmto algoritmům je možné určit, zda je nutné 
skenování otisku opakovat a tím signalizovat požadavek na lepší otisk prstu. 

Popsali jsme jednotlivé druhy otisků a jejich vlastnosti a snažíme se přijít na hlavní 
rysy, které jsou důležité při práci s nimi a jakým způsobem je možné je využít. Jelikož není 
známo na co otisk bude použit, nemůžeme přesně definovat perfektní jednu definici, která 
bude fungovat pro všechny otisky a pro všechny případy použití. Existuje řada procesů, 
které používají různé vlastnosti otisků pro identifikaci. Navíc otisky nemusí být použité 
pouze pro identifikaci, ale i pro jiné záměry, které mohou být založeny na úplně jiných 
rysech, než bychom u identifikace předpokládali. 

Navrhli jsme proces, který hodnotí otisky prstů na základě získaných kontextuálních 
a statistických informací, vypočítaných z jednotlivých skenů, či fotek otisků, či dakty­
loskopických karet, bez ohledu na jeho typ. 

Abychom dosáhli lepších hodnot aplikovali jsme několik filtrů a algoritmických pos­
tupů, které ještě před analýzou jednotlivé rysy otisku zvýrazní a vyextrahují pouze pro 
nás důležité prvky. Ne vždy je otisk ve stavu, kde všechny jeho prvky jsou viditelné a je 
nutné odstranit rušivé elementy před samotným ohodnocením, které by mohly negativně 
ovlivnit výsledky algoritmů pro hodnocení kvality. I přestože algoritmus dokáže pracovat 
se všemi typy otisků, v této práci je kladen důraz na extrahování informací z latentních 
otisků, jenž jsou známé svou podprůměrnou kvalitou a je složité je nalézt na fotce, natož je 
ohodnotit. Tato práce čerpá z řady předchozích výzkumů, které se zabývají segmentací a 
vylepšováním otisků a které pomáhají lokalizovat otisk na skenu a odstranit veškeré neduhy, 
které by mohly ovlivnit naše algoritmy pro analýzu kvality. 

Po odstranění všech nepříznivých elementů jsou použity všechny algoritmy pro ohodno­
cení kvality otisků, které dle svých definic rozpoznají a vypočítají výslednou kvalitu. Naším 
řešením je navrhnout více algoritmů, které hodnotí specifické vlastnosti z daných otisků po­
dle svých vlastních definic. Tyto definice byly vytvořeny na základě předchozích výzkumů, 
či pozorováním výsledků z vypočtených datasetů. V navrhnutém řešení jednotlivé pod-
algoritmy určují kvalitu na základě počtu markantních bodů, počtu papilárních linií, kon­
trastu, sinusové podobnosti a tloušťky papilárních linií. Všechny algoritmy jsou bud nově 
navržené nebo jsou již vylepšenou verzí publikovaných algoritmů. Některé pod-algoritmy 
obsahují definice, které blíže specifikují a vysvětlují, jaké vlastnosti otisk splňuje, aby jeho 
ohodnocení bylo více názorné. Tato práce navrhuje dva nové kontrastní algoritmy. První 
ohodnocuje podíl mezi průměrem světelností a tmavostí bodů otisku a druhý počítá chybu 
z kvadratického průměru otisku oproti jeho binární masce. 

Úspěšně jsme otisky ohodnotili a rozdělili je podobně jako v NIST SD27 databázi. 
Bohužel, algoritmy pro výpočet sinusové podobnosti a tloušťky papilárních linií dosáhli 
výsledků, které neodpovídaly rozdělením do skupin podle tohoto datasetu. Nicméně, podle 
definice algoritmů a samotných výsledků jsou otisky správně ohodnocené. Pravděpodobně je 
to kvůli tomu, že pracují s jinými vlastnostmi otisku, které nebyly v rámci tohoto datasetu 
zkoumané a nehrají roli v NIST klasifikaci. Z výsledků těchto algoritmů jsme schopni 
ohodnotit otisky na základě jejich kvality, a tak vyvodit jejich použitelnost. 
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Chapter 1 

Biometrics Recognition 

Biometrics recognition is a process of using a person's physiological and behavioural features 
for identification processes. Nowadays, it is standard for mobile and other devices to use 
this technology to identify their users and prove their identity. This technology is one of 
a few ways to identify a person reliably as it has several unique features. Identification 
processes help the general public be safer and help secure their information with biometric 
characteristics. These characteristics can validate only native users as they are the only 
ones who can provide them. [16, 27, 29] 

Biometric features add another security layer that protects the identification process. 
It cannot be cheated without significant effort as the biometric elements of a user cannot 
be easily transferred, destroyed, or forgotten [17]. This property is a great way to combat 
identity thefts and other malicious activities. That is why biometric elements are used in 
smartphones, passports, national identification cards and other documents to strengthen 
their security features [17, 27]. 

There are many advantages and drawbacks of this technology. We can acquire a lot 
of information about a person, such as their fingerprint, facial features, way of walking, 
and others, and reliably identify them based on that data. Nonetheless, the technology 
also has many variables that can make the validation and identification process rather 
difficult. Biometrics recognition heavily depends on the technologies and standards used 
while sampling the user. The technologies could make an error when an older dataset is not 
updated or criteria are not met while scanning the user. This can create an issue where users 
will not be able to identify themselves, or a possible imposter can be falsely recognised. [16] 
There are more requirements on datasets as standards and technology advance rapidly. If 
the datasets are not updated or corrupted by misuse or data forgery, it can create more 
obstacles while validating a specific person. [17] 

There is one significant drawback which is also the greatest advantage. Most people 
have biometric characteristics by which they can be identified; not everyone can since some 
people have health issues that partially or fully prevent them from being identified [16]. 
Therefore, we cannot use this technology as the only means of identification, and we need 
to assert how much of their data can be used as it is an excellent way for identification. 
Once the person's biometric features are damaged, for example, with an illness, we cannot 
create a replacement as it would directly cancel out almost all benefits of this identification. 
The identification is not possible if a person cannot submit their biometric data in good 
quality. 
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On the other hand, technology leads to one of the easiest and most reliable ways of 
identification that we currently have, and it provides us with a way to be recognised by our 
features if we can use them. [16] 

We need a way to algorithmically evaluate given datasets and decide if they need to 
be updated in the database, grade if they are sufficient for our use case or if we can use 
them to some extent or overall say if they are valid. The datasets do not have to have 
all the necessary properties which we are nowadays required to identify a person beyond a 
reasonable doubt, but they still can be used to some extent. 

Fingerprint identification is commonly used on personal devices, and each device has 
software that evaluates if the scan of the fingerprint is valid. It informs the user if they need 
to retry scanning or if the scanning is sufficient. This algorithm evaluates the fingerprint 
quality to ensure that it works sufficiently as part of the scanning process. 
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Chapter 2 

Fingerprint 

Fingerprints (dactyloscopic traces) are among the few biometric elements used in biometrics 
for authorisation and authentication. It is an imprint left by a person by which they can 
be identified. Still, to be able to, the fingerprint needs to be already in a database with the 
user's identity linked to it, and the new fingerprint needs to be of good quality to match 
with the one in the database beyond a reasonable doubt. [16, 29] 

Papillary ridges are the main component of the fingerprint. They are located on the 
surface of fingers, toes, the palm, or the foot's sole. They are the surface ridges of the 
epidermis (outer layer of the skin) [16, 18], which gives fingerprints their characteristic 
look. From those ridges, it is possible to get all the information needed for identification 
and to decide if they are of adequate quality. 

Each fingerprint has unique features which are crucial to the identification process as 
they all follow these rules, which were adopted from [17]: 

• There are not any two people in the world who would have an identical structure of 
ridges - completely same fingerprint features, which would make them undifferentiable 

• Ridges are immutable and perennial during a person's life, they can be damaged, but 
they will not change 

• If the epidermis is not damaged, ridges can regenerate by skin growth, and they will 
not be different from the previous ridges. However, if the epidermis was damaged, 
the skin would not restore them, and other patterns of ridges would not grow 

• The scans are not always precise, but the identification procedure can have set toler­
ance limits and allow systematic classification for fingerprints. 

Fingerprints can be divided into categories based on their appearance, the way how 
they are preserved, and their visibility. Those categories are patent, plastic (impression), 
and latent [17, 22]. 

Patent fingerprints are visible fingerprints left on the surface of some object. Vari­
ous liquids or oils can create those fingerprints, such as blood, dirt, ink and other similar 
substances. The patent fingerprint left on an object is photographed for subsequent iden­
tification and storage. [16] 

Plastic fingerprints are also visible and usually left in pliable substances or forms, such 
as clay, wax or wet paint. It preserves the fingerprint as a three-dimensional imprint, and 
then it is photographed under direct light that enhances the contrast of the ridges and 
valleys. [37] 
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Latent fingerprints (i.e. hidden fingerprints) are fingerprints that cannot be seen with a 
naked eye. They are created with sweat/oil and other particles present on a finger. Those 
fingerprints can be treated with some techniques which can improve their visibility, and 
afterwards, they can be photographed and catalogued. [22, 29] 

Exemplar fingerprints are fingerprints that were purposefully scanned and catalogued. 
This fingerprint category describes the deliberate collection of a fingerprint more than a 
particular type. A n exemplar fingerprint can also be a patent fingerprint if taken voluntarily. 
This category is mentioned just for completion. They are usually of higher quality and are 
used for comparison to recognise their owner. Commonly, those fingerprints are taken when 
institutions need fingerprints linked to passports or national identification cards if there is 
no direct scan of the finger. [16] 

Fingerprint as a means of recognition has few characteristic properties that we can 
analyse. The features of a fingerprint can be divided into three levels as was proposed 
in [29]: 

• Level 1: Global fingerprints characteristics - we look at the fingerprint as a whole 
and evaluate it based on its apparent features such as patterns and ridge flow. We 
can also look at the fingerprint image from a statistical standpoint and grade it by 
those metrics. 

• Level 2: Individual ridge features - defined by smaller fingerprint regions. Those 
regions can be small loops or ripples on the fingerprint image. The minutiae points, 
which are vital elements in fingerprint recognition, are detected on this level. They 
will be discussed in the following Section 2.3. 

• Level 3: Finer ridge details, pores and ridge contours. The majority of those features 
are lost if the quality of the fingerprint is inadequate. It is rare to find pores on latent 
fingerprint images in a usable state yet to identify a person by them. 

Each fingerprint has a unique combination of properties by which we can differentiate 
them. Those properties are examined on each level and evaluated. It heavily depends on 
the state of the fingerprint to gather its features. [29] 

2.1 Ridges and Valleys 

Papillary ridges and valleys are crucial elements for fingerprints in biometric recognition. 
They are protrusions on the finger created in the dermis layer (skin layer under the epider­
mis) and propagated through the bottom part of the epidermis as actual ridges [16, 18, 29]. 
Those individual propagated protrusions on the finger create ripples on the skin. These 
ripples form ridges, which are the taller portion of the papillary lines, and between ridges, 
valleys are created. The shape that is recognisable immediately is their curving and circles, 
which form clusters. By those clusters and other properties and features, we group them 
and divide them into their categories. [29] 

The most prominent property is the pattern and its type. We can use the pattern to 
try to differentiate fingerprints with an eye and come to a reasonable conclusion if the 
fingerprints do not have too similar styles, but there are different approaches to comparing 
fingerprints which significantly outperform this type of matching. Additionally, it is nowhere 
near computer matching, which has reproducible results and is considerably faster. [29] 

The structure of fingerprints or those curvings can be divided into a few categories -
delta, core and loop or whorl (see Figure 2.1) [18, 29]. These features are not how the 
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Figure 2.1: Description of regions found on fingerprints. Cores are displayed with blue 
boxes and deltas with red boxed. There is also an example of whorl on the right and loop 
on the left. Fingerprints were generated with the SFinGe tool 1 . 

fingerprint is structured overall but rather a description of its distinctive regions. These 
regions are used to overlay the fingerprint while running the matching process and help us 
identify their unique sections or discard fingerprints before an expensive matching algorithm 
is executed upon it. [29] 

The core is as defined by [25, Henry E . R. Sir, 1900] "the north most point of the 
innermost ridge line" [29, Chapter 3, page 98], which corresponds to the centre of the 
northmost loop type in the fingerprint. The delta is a region on a fingerprint where two 
ridges run side-by-side and then diverge to form a triangle. It is used with core to overlay 
fingerprints, an easily identifiable area. The loop or whorl describes the region which creates 
the pattern corresponding to its name. It can be distinctive enough that the fingerprint 
will be characterised only with this pattern and classified by the fingerprint style with the 
same name. [29] 

Using these categories, we classify each fingerprint by the pattern of their clusters - arch, 
loop or whorl. Each class has sub-types to describe distinct fingerprints more accurately. [18, 
29] 

Fingerprint images consist of the valleys displayed with brighter colours and ridges 
shown with dark colours. 

2.2 Categories of Fingerprint 

Furthermore, by the defined structure of the fingerprint, we can categorise them into groups 
(see Figure 2.2). Those groups differ by the number of deltas and how the ridges are 
shaped. [17] 

The Arch pattern's significant feature is that it does not contain a delta region because it 
does not contain any whorl or loop; therefore, there cannot be a delta by definition [17, 29]. 

x

http: / /biolab. csr .unibo. i t / s f inge.html 
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• § 1 
Left loop Right loop Whorl Arch Tented Arch 

Figure 2.2: Overview of fingerprints' main classes. Image acquired from [29]. 

The core of the Arch type fingerprint is more challenging to identify; there is no loop, 
and therefore the core is selected as the point of maximum ridge line curvature, which is 
not always precise. The Arch pattern can be divided into two subcategories - Plain and 
Tented Arch. These two categories differ in the curvature of the ridge, which shapes as a 
"tent". [18, 29] 

The Loop patterns are easier to identify. Unlike Arch or Whorl, they have precisely 
one delta and one core [17, 29]. This information is significant as it helps us determine 
fingerprint classes more effectively. The sub-type of this pattern depends on which hand 
the fingerprint is located. Ridge count has also been used during the classification of the 
Loop pattern. The ridges are counted from the core to delta with a drawn intersected with a 
line segment [17]. There are two subtypes - left and right loop. These subtypes correspond 
to the hand from which the fingerprint was taken, estimated by the loop opening and its 
direction. [29] 

Every fingerprint with more than one delta is classified as a Whorl pattern [17, 29]. 
The Whorl pattern is the most difficult to divide into a specific sub-group because the 
identification involves a two-step process where the sub-group is identified first, then and 
subsequently the used tracking of the fingerprint's ridge flow. This process uniquely groups 
the fingerprint into its category. Three types of tracing are used and differ in the number of 
ridges intersecting with the line segment from the first delta to the second one. Additionally, 
the subtypes of the Whorl pattern are Plain Whorl and Twin Loop. They differ by the 
completion of a loop between fingerprints deltas and by the number of deltas found on the 
fingerprint, as each can create an additional loop. [29] 

It is essential to distinguish the core and delta as those are key features of the fingerprint 
pattern and can tell a lot of information used for classification. Fingerprint categories pro­
vide us with a way to differentiate fingerprints with a naked eye and draw conclusions [29]. 
Some of the classes are very rare, and they can help us with identification processes. To 
simplify the process of dividing each fingerprint into each category, we can say that if a 
fingerprint has no delta, it is classified as an Arch pattern. If it has precisely one delta and 
one core, it is classified as a Loop pattern. If it contains more than one delta, it is a Whorl 
pattern. These classifications are then used for pattern matching in fingerprint matching 
algorithms to be more effective. [29] 
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2.3 Identification Means 

There are several approaches to how fingerprints can be used as a means of identification. 
Usually, minutiae points are used as it is the most proven process to identify people's 
identity, but different techniques can also be used [17, 18, 29]. This is especially true 
when a fingerprint is of deficient quality, and the minutiae point matching cannot be used. 
Fingerprints' shape, local orientation and ridge frequency and other approaches are valid 
for matching two fingerprints, but the correlation does not have to be adequate to match 
those fingerprints successfully [29]. 

Minutiae Points 

Minutiae points are irregular shapes of ridges that are formed on fingerprints. Those regions 
are helpful for recognition as their position and distinctive shape create a special and unique 
element by which the fingerprint is identified (see Figure 2.3) [18, 29]. For example, minutiae 
points can be a ridge that ends abruptly, a bifurcated ridge or two ridges in a crossover, and 
many other patterns. The minutiae points are an essential fingerprint element in pattern 
matching, as there can be over one hundred minutiae points on one fingerprint. Additionally, 
only about twelve unique points are enough to distinguish between two fingerprints [29]. 
This number is referred to as twelve minutiae guidelines that most institutions recognise as 
a successful match. Minutiae points are the most used component in fingerprint matching 
because they are one of the few very stable features and can be easily documented and 
saved for future needs. [29] 

The minutiae points are stored in the database as a triplet min = (x, y, a), where x and 
y represent its coordination, and a specifies the orientation of this point in interval from 
(0, 2TT) [29]. Other approaches are also used to store minutiae points, but this is the most 
common [10]. 

Multiple models of minutiae points can be taken into consideration while processing 
them. The models differ in how many minutiae types can be recognised and how they are 
processed and stored [29]. Using a wide variety of minutiae point types is not recommended 
due to unreliable computer matching and possible errors. The most common standard is the 
American National Standard (ANSI/NIST-ITL 1-2007) which is based on only four types of 
minutiae points - ridge endings, bifurcations, compound, undetermined [16, 18, 29]. Other 
standards are trying to build on this model by adding some conventions and improving 
compatibility with different formats. [29] 
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Figure 2.4: Showcase of visible pores on the fingerprint. The image was generated with the 
SFinGe tool 2 . 

Pores 

Pores are the most delicate details which can be found on the fingerprint. They are minia­
ture points inside the ridges, which form small circles displayed in white colour (see Figure 
2.4). About 9 to 18 pores per one centimetre could be on a fingerprint, and 20 to 40 pores 
are sufficient to identify a person [29]. This is great because even if we have just a partial 
fingerprint, we can identify a person based on just this data. Nevertheless, pores cannot 
effectively be used on latent fingerprints as they are usually incomplete or corrupted. On 
top of that, the reconstruction of fingerprint images will most likely smoothen them out. 
Therefore to get an advantage with this feature of fingerprints, we need a high-quality 
scanned fingerprint as those fine details can be easily lost. NIST already mentioned the 
first standard in which pores appeared in C D E F F S (2008), which describes all the required 
scanning practices. [29] 

Ridges Frequency 

Ridges frequency tells us how many ridges or the density of the ridges are in a fingerprint. 
This value significantly differs for every fingerprint and also for their regions [29]. Ridges 
frequency needs to be considered while analysing and scanning them, as they should not 
be processed with the same spacing. Fingerprint enhancement methods usually use prede­
termined values for 500 P P I images, about 7.71 pixels [34]. Still, in practice, the distance 
between ridges on a fingerprint image varies in smaller regions throughout the entire pic­
ture. Therefore the ridge frequency should be processed and computed as it can change 
significantly [35]. Previously, it was thought it was unnecessary, but nowadays, we have 
ways and reasons for calculating this property [34]. There are different techniques used 
to determine and analyse this property, and the most common is to use the means of the 
Fourier Transform, but other more straightforward methods exist. [29] 

The ridge frequency also significantly differs for part of the fingerprints [34]. The densest 
ridges will be around the core as the lines usually cluster there [16]. Additionally, the delta 
region will also have more ridges than usual parts of the fingerprints. This naturally occurs 
as the loops of each ridge are around those points. 

2
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2.4 Fingerprint Acquisition 

The fingerprint image acquisition is a complex process with multiple steps, which all need to 
be done perfectly to preserve the best quality of the fingerprint image. There are multiple 
ways how to obtain the fingerprint and digitalise it. The traditional way still commonly 
used is to use ink and dactyloscopy cards [16, 29]. The inked finger is rolled on the card, 
which is subsequently scanned. Nowadays, various scanners have replaced this method, 
delivering better quality prints while simplifying the process [16]. The main parameter for 
a fingerprint scanner is the resolution and the size of the scanned fingerprint area. The 
scanner needs to capture the best image to preserve all features given by the print. If the 
fingerprint capture is performed well, we can analyse all levels of details and use even pores 
to identify and match a person to a print. [16, 18] 

Technologies for Fingerprint Acquirement 

Generally, there are two ways for fingerprint acquisition. Either the finger is scanned with a 
scanner, which is the standard way to get the fingerprint image or with dactyloscopy cards, 
which still nowadays prevail, where the user applies ink on their finger and rolls it onto a 
card. However, if the fingerprint is plastic, patent or latent, they are usually photographed 
without using any of the mentioned sensors. [16, 22] 

The scanners are categorised by their type of scanning and the technologies used. A l l 
of them have different features and disadvantages. A few exciting technologies described 
in [16, 18, 29] were adopted and outlined here: 

• optical - a simple optical mechanism that reflects light on fingerprint and into the 
C C D / C M O S camera. The dirt which can accumulate on the sensor can significantly 
reduce the fingerprint quality. Also, some researchers pointed out that the skin colour 
of the fingerprint can influence the quality fingerprint image as the reflection of the 
light is changed. 

• capacitive - a sensor composed of tiny conductive metal plates which send an impulse 
when the ridge is detected. The resulting image will combine places where the ridge 
touched the plate and when the valley did not. This sensor has numerous disadvan­
tages; the biggest one is its size. The reduced area of the scanner does not have to 
catch the core of the fingerprint or other significant areas, which would make the 
fingerprint hard to evaluate. Another drawback of this technology is the coating by 
which the sensor is protected. Finding the right balance between the thickness is 
needed since the ridges would not be too visible if the coating was too thick, and if it 
was too thin, the sensor could get damaged. 

• ultrasonic - using an ultrasonic transducer with a receiver that rotates and scans the 
fingerprint. It penetrates the skin's surface with all foreign elements included, such 
as dirt or sweat. It is one of the most accurate sensors; however, they are the most 
expensive. 

• pressure - pressure sensors have three layers: charged, barrier and ground. If a ridge 
presses hard enough on the most surface charged layer, it will create an electromag­
netic impulse with the furthermost layer. The problem with this sensor is that it 
usually does not differentiate well between valleys and ridges. 
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• microelectromechanical systems (MEMS) - a new technology that uses either piezo-
resistive gauges or microheaters that measure the fingerprint ridges based on the heat 
resistance. This sensor does not handle well stray capacitance of the human finger. 

Any scanner has specific issues while scanning the finger, significantly reducing the print 
quality and causing multiple problems. Mentioned sensors above, with their disadvantages, 
create new issues with fingerprint acquisition. There is a need to eliminate those disad­
vantages and make the most of every scanned fingerprint. Various problems arise with 
imperfect fingerprints, such as the difficulty to process the image and therefore increased 
failure to acquire (FTA) / failure to enrol (FTE) rates, rejection of a correct user - false 
rejection rate (FRR) / false non-match rate ( F N M R ) , acceptance of an imposer - false ac­
cept rate (FAR) / false match rate (FMR) , can make verification and identification difficult 
or nearly impossible. [16, 18] 

Dactyloscopy Cards 

The dactyloscopy cards are still, to this day, commonly used [29]. The principle is relatively 
simple; a person will soak their finger into ink and press it onto a dactyloscopy card, 
subsequently photographed or scanned. The dactyloscopy card is divided into two parts. 
The first half accounts for the all fingerprints that are "rolled" on the card, and the second 
part marks the right and left hands with the detailed print of thumbs. This method is used 
for manual fingerprint recognition or comparison to a fingerprint from the crime scene. [16] 

2.5 Damaging Fingerprint Factors 

Not only the fingerprint scanning can negatively influence the fingerprint image. There are 
numerous ways how a finger can be initially damaged. The mentioned features would not 
be for those reasons visible. Those damages can be due to skin diseases that compromise 
the fingerprint or an environment where the fingerprint was taken or left. [16, 18] 

External factors such as dirt or other non-fingerprint elements can potentially compro­
mise the image and destroy the feature by which the identification was possible [16, 18]. 
This is commonly found on latent fingerprints, where the fingerprint itself is not visible at 
all, and the user left them unknowingly on some item. Plastic or patent fingerprints ben­
efit from not using the person's sweat to mark themselves on an object but using various 
materials or liquids. However, those fingerprints have other potential problems that may 
affect the identification result. Usually, exemplar fingerprints which are deliberately taken 
from individuals are the best quality since the conditions where the fingerprint was taken 
are controlled and improved if needed. Also, retaking the fingerprint is possible, which is 
not possible, for example, with latent fingerprints. 

Skin Diseases 

Skin diseases present a problem with fingerprint acquisition. If the user has damaged 
fingers, and scanning or submitting of fingerprints is impossible, we cannot identify them 
by this biometric recognition. Even though the number of people who have this condition 
severe enough is not high, it is still a problem that should be addressed. [19] 

The sicknesses can change the structure of ridges, skin colour or both. The skin colour 
does not yield significant issues as the fingerprint can still be scanned with sensors which 
do not rely on optical scanning, or a dactyloscopy card can be used. However, if the ridge 
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Figure 2.5: Showcase of various fingerprint damages. Images were generated with the 
SFinGe tool 3 . 

structure changes and the minutiae points or pores are no longer readable, the user cannot 
be identified with their fingerprints, however scanned. [16, 18] 

There are other means of biometric recognition which could solve this problem, such as 
multimodal biometric system [16], but not every time it is possible to implement it. 

Physical Damage 

Similarly to skin diseases, a person can damage their fingers and devalue their fingerprints 
(see Figure 2.5a). This can happen either intentionally or accidentally, but the problem 
remains. If the damage did not influence the skin's epidermis, the same fingerprint would 
regrow again [16], but for that time, the fingerprint is damaged. However, if the injury 
is more serious, it is like a skin illness where the user cannot be identified by the print 
anymore. 

Humidity 

The humidity of the fingerprint is the problem that influences almost all recognition systems. 
The moisture refers to the wetness or dryness of sweat which changes the output of the 
scanned fingerprint [16]. This can impact skin resistance, where the sensor will have different 
readings as the resistance changes based on the amount of sweat found on the fingerprint. 
Less affected are pressure sensors and others, which do not rely on optical readings [16]. 

The dry fingerprint will usually not be as visible when processing latent fingerprints 
as there was not as much sweat to leave a significant mark (see Figure 2.5c). The wet 
fingerprint has a higher spread of sweat, which makes the fingerprint more visible (see 
Figure 2.5b); however, some features, especially ridges, can be blended. We strive to find 
fingerprints somewhere in between - not as wet and not as dry. The patent and plastic 
fingerprints are not influenced significantly as the fingerprint does not rely on the user's 
sweat. However, the patent fingerprint has a similar issue with the substances used for 
fingerprint creation. This paragraph was adapted from. [16, 18] 

3
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Chapter 3 

Quality of Fingerprint Images 

As was said in [16, page 53, section 3.1] "The exact definition of the quality of a fingerprint 
is difficult and nearly impossible.", but usually, we are taking into account the fingerprint's 
matching potential [29] to another fingerprint in our database. We can measure certain 
features of fingerprints and compare them to some average which will apply to most of the 
fingerprints. One of the most obvious ways to grade fingerprints is to count the number of 
minutiae points commonly used for identification and grade the fingerprint on that value. 
However, a person does not have to be identified by only the minutiae points; they can be 
evaluated by other already mentioned features such as pores or the shape of the fingerprint. 
Nonetheless, those features have problems on their own, and not all types of fingerprints 
can use those features as they do not have to be retrievable from the print. Therefore 
when analysing a fingerprint, there cannot be a single definition by which the fingerprint 
could be graded, but rather several ways to measure each feature of a fingerprint [16]. 
Those algorithms can either analyse the fingerprint for us or mark the fingerprint image to 
indicate that it holds some value or can be discarded as there is no helpful information. [29] 

Fingerprints are commonly graded on a global and local level. The local level is usually 
preferred because it is more descriptive and allows us to grade parts of the fingerprint 
rather than the whole image if the image is in such a condition. The most significant global 
features are the size of the fingerprint mask in contrast to its background, ridge patterns, 
etc. The local level features are taken from pixels of the actual fingerprint, such as contrast, 
variance, ridge thickness, and others. It is not that simple to extract those features, and 
there are various algorithms to get these values. [16, 29] 

Grading of fingerprint images can use statistical values from the image, such as contrast, 
variance, histograms etc. [16]. This can give us an idea of whether the image is usable and 
how much value it can bring to us, and if we use it for fingerprint matching. Other methods 
are trying to utilise the fingerprint's contextual features, such as its minutiae points, ridge 
orientation, frequency, etc. [29]. The most deductive elements of the fingerprint are used 
to estimate their quality. 

Results from those methods can either be displayed with a quality map, an image 
that shows the higher quality of fingerprint with brighter colour blocks or with a number 
compared with a defined one and the deviation is graded. 
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3.1 Quality of Minutiae Points 

The minutiae points are the main point of interest while processing fingerprints nowadays. 
They are the critical component of fingerprint matching, and that is why they are significant 
when estimating the quality of fingerprints. The number of minutiae points is a crucial 
value of fingerprint quality since most matching algorithms work with them [16, 18, 29]. 
No matter how many ridges or how blurry the images are, if we can find enough minutiae 
points that are correctly determined, we can use the fingerprint image to identify a person. 
Generally, a match of twelve minutiae points is considered a match beyond a reasonable 
doubt. Nonetheless, fingerprints with poor quality, especially latent fingerprints, have the 
potential to generate more false minutiae, which significantly plummets the probability of 
a correct match, and we should have some overhead while grading by the minutiae points. 
Even missing minutiae point is better since we can correctly estimate valid information 
than assume the correctness of an invalid one. [29] 

By all that, if we are not sure about a found minutiae point, we should not include it as 
a result, and we need a way to check our results and combat this or match minutiae points 
with a probable value of how sure we are about them. We also should enhance the image 
before the minutiae points algorithms are run. A l l algorithms do not have to be influenced 
as they present their enhancement, but generally, it is good to analyse the best image we 
can. 

3.2 Image Contrast and Histograms 

Image contrast is one way to describe the local pixel differences between ridges and valleys of 
the fingerprint. Since the contrast is used as one of the most simple steps while enhancing 
the fingerprint image, its value can tell us how efficient this step will be if the image 
contains noise and how much more we can improve the fingerprint with the histogram 
equalisation [16, 27]. On fingerprint images, we usually strive to look for the ratio between 
the intensity of the valley where we expect lower intensities and the ridge where we hope 
for the most distinct pixels. Then they are divided together to get the difference. While 
processing fingerprints, two algorithms are generally used - Michelson contrast and Weber 
contrast [16]. 

Michelson contrast is given by the equation: 

where the Rmax is the maximal intensity of the line region of the image and the Rmin is the 
region with the minimal intensity. The mean is calculated from those intensities multiplied 
by 100 to get Michelson's contrast in percentage. Weber's contrast is just normalised 
difference between the most significant pixel intensities of ridges and valleys. [16] 

Histograms represent the number of pixels and their colour in the images. In a nutshell, 
the contrast makes these numbers more distinct. Furthermore, this can be analysed and 
used for grading since it can give us statistical information about fingerprints. One of 
them is the histogram's mean value, which should be in the ideal case in the middle of the 
histogram with a significant peak on the right side symbolising the white colours (255) and 
another on the left side representing the black colour (0) [16]. Normalisation can also help 
find the correct mean value and improve the statistical values. 

M = * 100 
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3.3 Number of Ridges 

The number of ridges correlates with the number of minutiae points, and also it can sig­
nificantly contribute to the reliability of fingerprint analysis [16, 29]. The ridge count is 
determined with two selected points on the fingerprint image. A n imaginary line is drawn 
between these points and counted intersected ridges. Usually, these two points are core and 
delta, but it is not required [16, 29]. Let us run lines horizontally and vertically through 
the fingerprint image, technically from edge to edge. We can estimate the number of lines 
in each row and column, and from that number, we deduce the stationary point of the fin­
gerprint where most of the ridges are. Theoretically, it should be the core of the fingerprint 
since we should find the maximum number of ridges near the actual core [16]. Still, this 
simple algorithm is not reliable in this estimation. 

Wi th the higher amount of ridges, we can estimate that the sensor used to capture a 
particular fingerprint image allowed us to get more details about the fingerprint. We can 
put the actual scanned area or segmented fingerprint area in contrast to the ridge count. 
If the ridges have good density, we can grade the fingerprint quality as a better print. [16] 

There are problems with ridge estimation in noisy or blurry parts of the image because 
the damage can hide or merge a ridge right at the point where the imaginary line should 
intersect them; the ridges at that place are not detected. Nonetheless, those damages 
should be only present in latent fingerprints and should not be counted as we cannot get 
any helpful information from those areas. [16, 18] 

3.4 Shape of Papillary Line Crosscut 

The shape of ridges on fingerprint images is interesting to analyse. Suppose we draw a 
line perpendicular to the ridges from the fingerprint's centre or the fingerprint's core to 
the end of the image and take all the values of grayscale pixels from the drawn line. We 
should get a curve that would display the ridges and valleys, where valleys are shown as 
255 (the maximum value - white) and the ridges as zeros (with the lowest value - black). 
We inverted the curve to get the ridges to act as the highest value and vice versa and then 
displayed the curve to get various information about the fingerprint itself and to analyse its 
properties. The steepness and the thickness of this line are helpful since they can give us 
information about how well the ridge is displayed on the image [15, 16]. The curve can also 
be compared to a sine function, and it can provide us with some interesting conclusions 
about the line quality, which we can apply to the whole image. [14, 15, 16] 

Thickness 

It is estimated that the average thickness of the ridge is around 0.33 mm [16]. We can use 
this number to calculate the expected thickness of our measured ridges and compare if they 
are thinner or thicker. To make this possible, we need to draw a line on the fingerprint 
ridge at a specific height and count the length of the line by counting individual pixels on it. 
Secondly, we need to divide it by the image's P P I (Pixels Per Inch), which solely depends 
on the sensor which scanned the fingerprint. Then divide it by the given average thickness 
to get the deviation from standard fingerprint thickness. We can describe the complete 
process with the following formula: 

(3.2) 
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Figure 3.1: Displayed steepness of the ridge and all angles. Image acquired from [15]. 

where Pien is the number of pixels counted in a ridge, Sppj is the given P P I by the sensor, 
and the 2.54 is for the conversion of inches to millimetres. [14, 15, 16] 

If the deviation is higher than zero, we can say that the ridge is thicker than it should 
be and if otherwise, then thinner. Logically the more the fingerprint approaches zero, the 
more ideal the ridge is. [16] 

Steepness 

Another element that can be calculated from the crosscut is the steepness of the ridge. Ide­
ally, the steepness should create a right-angled triangle between the ridge's local maximum 
and a local minimum. We can compute two angles which can bring us some gradable value. 
One is between the x-axis and the local maximum (a), and the second is symmetrical to 
the first one (/?) on the other side of the ridge (see Figure 3.1). The steepness gives us 
information about how clean the ridge is and if there are smudges on the fingerprint image. 
Those ailments are displayed with a sharper angle, or the ridge can merge with others and 
will not be detected as a local maximum. Both found angles are then calculated and com­
pared to the ideal case, which is 60 degrees. By the calculated deviation, we can measure 
the aspect of steepens and differentiate if it the higher or lower than it should be. If the 
divination is higher, the steepness is more significant than it should be and vice versa; if it 
is lower, the ridge is too horizontal. [14, 15, 16] 

Sinusoidal Similarity 
The acquired grayscale levels from fingerprint images should be similar to the sinusoidal 
curve in repeating intervals in the range (^r, )• This similarity has been mentioned in the 
upcoming ISO standard (ISO/IEC SC37 N1954 W D 29794-4) but has not been thoroughly 
tested [16]. The sinusoidal amplitude consists of a high peak that symbolises the ridge, 
and the edges of the mentioned interval should correspond to a valley (see Figure 3.2). We 
examine the difference between the "perfect" sinusoidal ridge and our measured one, and 
we compute the area under each curve and count the deviation. This can be done with the 
following formula: 

/ J
3

tf(x)dx \ 
Sind = -g 1 * 100 (3.3) 

y J4r sin(x) dx j 
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Figure 3.2: Showcase sinusoidal similarity between sinusoidal wave (red) and ridges (blue). 
Image acquired from [15]. 

where f(x) is the calculated ridge and the sin(x) is the ideal ridge made with the sinusoidal 
wave. [14, 15, 16] 

As the local maximum of the ridge should be positioned to the local maximum of the 
sinusoidal, we can estimate the deviation. The deviation should be close to zero, meaning 
that the ridge is perfect. Still, if the deviation is higher than zero, the ridge is more 
elevated than the "perfect" sinusoidal and vice versa; if the sinusoidal is less than zero, the 
ridge is lower than the "perfect" sinusoidal. This operation assumes that the signal from 
the grayscale image was normalised into a signal in the interval from ((0,2)) and to the 
sinusoidal signal was added one. [16] 
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Chapter 4 

Fingerprint Enhancement 

To correctly evaluate some fingerprint features and grade them accordingly, we need to 
enhance the fingerprint image and extract the necessary characteristics with noise or dis­
ruptive elements removed. For example, looking for minutiae points on latent fingerprints 
is a complex process; the algorithm used for the search could find non-existent minutiae 
points and extract them, which would cause misleading information. Error avoidance is 
one of the reasons why we need to try to eliminate the ailments before the grading. Wi th 
those elements removed, we can even make our grading more reliable as random factors do 
not influence it. 

The algorithms for improving the fingerprint images vary in their approaches, but we 
can simplify the general idea into the following steps as mentioned in [16, 27, 29]. First, it 
is needed to convert the fingerprint image to a grayscale image to simplify the picture and 
subsequent computations. We do not need colours when working with fingerprints since 
the only essential details are the ridges displayed with black and the valleys between with 
white colour. The grayscale will symbolise the transitions between them. Secondly, we need 
to remove the noise and external elements obscuring the fingerprint. Those elements can 
be anything significant on the background that makes ridges less readable or something on 
the fingerprint itself, like a skin illness that damaged the ridges or made them completely 
missing. We cannot rebuild those missing pieces, but we can mark them as unusable to not 
waste computation power and to avoid false positives [18]. The segmentation comes next as 
we need to separate the fingerprint from the background and estimate the ridge orientation 
field. The segmentation helps us to separate the ridges and binarise the image afterwards. 
We can apply other filters to make this process more effective or neural networks that can 
significantly help, but the core idea stays the same. [10, 16, 29] 

4.1 Contrast 

The contrast improves the visibility of details in the image, which could be lost otherwise. In 
fingerprint recognition, the essential factor is a contrast that enhances the difference between 
ridges and valleys [27]. The improvement is made by expanding the dynamic range and 
enhancing the variety of colours in transitions between ridges and valleys [16, 27]. There 
are two general approaches while computing the contrast. One is processing the image as a 
whole, while the second divides the image into separate blocks and processes them on their 
own. Finally, mean and variance are computed from each block or the overall image and 
then averaged. By the calculated value, the entire picture or blocks are enhanced. [29] 
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Contrast also has some drawbacks that need to be mentioned; one of them is the ability 
to enhance noise and make it more impactful on the fingerprint image [24, 27]. Nonetheless, 
it is still a powerful tool since we should be able to correctly identify the ridges themselves 
and extract them even with the noise amplified since the noise should not structurally 
destroy the ridges [27]. 

CLAHE 

C L A H E (Contrast Limited Adaptive Histogram Equalisation) is a variant of Adaptive His­
togram Equalisation, improving the image's contrast. It calculates the number of used 
colours on the image and proportionally divides them by the image colour spectrum inter­
val [1, 27]. This method significantly improves the quality of the picture as a whole colour 
spectrum is used, and therefore more minor details are visible. C L A H E variant has proven 
excellent for image enhancement as it does not amplify the noise that standard adaptive 
histogram equalisation algorithms do [24]. 

4.2 Cartoon+Texture Image Decomposition 

Decomposing the image to cartoon and texture is one of the techniques for removing noise 
and other unfavourable elements from the fingerprint picture. The algorithm will divide 
the image into a texture that contains only the oscillating part and noise component of 
the image and a cartoon part where only contrasted shapes appear. Overall, the picture is 
smoothed. We will use only the texture part of the decomposition and discard the cartoon 
part as most external elements obscuring the fingerprint are visible on the cartooned image. 
The outlines on the texture are perfect for keeping only the ridges and discarding everything 
else from the image (see Figure 4.1). [4, 5] 

The concept of this algorithm is a high total variation of the image. It will try to 
define the total local variation for each section of the image and then minimise it. The 
algorithm calculates convolution with a low pass filter in a few iterations. Fourier based 
filter can be used as well, but in original paper proposes a low pass filter to simplify the 
coding. Secondly, the Euclidian norm is computed from the gradient of the original image 
and the one processed with low passed filtering. Thirdly, the Gaussian filter for smoothing 
is applied to the picture to blur geometrical elements. Lastly, the scale parameter is used 
to keep the pixel intensities lower. The official proposal of this algorithm proposes a scale 
parameter (A) for fingerprints to be 2.5. Finally, we get the resulting image by subtracting 
the original image from the calculated one, the cartoon one. [4, 5] 

4.3 Short-Time Fourier Transform 

This algorithm uses Fourier transform to transform given functions the their frequency do­
main. The difference from the standard Fourier transform is that the function is multiplied 
by a window function in short periods. The algorithm was initially made for one-dimensional 
functions and then extended for use in two dimensions. However, it was not intended to 
be used on fingerprint images. Chikkerur, Cartwright and Govindaraju [12] extended the 
Short-Time Fourier Transform (STFT) for two-dimensional purposes with the intention to 
be used on fingerprint images and modified it to look for contextual and noncontextual 
information. The S T F T analysis can estimate the ridge orientation, ridge frequency, and 
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(a) Source fingerprint image with a highlighted (b) Generated Texture image with 
mask Cartoon+Texture decomposition 

Figure 4.1: Showcase of Cartoon+Texture decomposition on a fingerprint image. Note the 
removed " C O P Y " text. 

(a) Source fingerprint image (b) Generated fingerprint (c) Generated fingerprint image 
with a highlighted mask image with STFT from Texture with STFT 

Figure 4.2: Showcase of Short-Time Fourier Transform on a fingerprint image 

even a mask of the fingerprint. The contextual information immensely helps with the final 
image enhancement (see Figure 4.2). [12] 

The algorithm can be divided into two parts. The fingerprint image is divided into 
overlapping blocks in the first part, and then each block is analysed in the frequency domain. 
The algorithm probabilistically estimates each computed block's ridge orientation and ridge 
frequency. Those estimations can be displayed as a frequency map used to determine the 
mask of the fingerprint. In the second part of the algorithm, the contextual information 
is used from the first part to filter the fingerprint image in each block in the frequency 
domain. By tiling the result of each block, the final image is obtained. [12, 26] 

21 



4.4 Filters 

Filters are commonly used for the enhancement of fingerprint images. They make the fin­
gerprint more visible, denoise the image or sharper the fingerprint ridges. While processing 
a fingerprint image, a combination of various filters is usually used [21]. One of the most 
valuable filters in fingerprint recognition is the Gabor filter which proved to be very useful 
while enhancing the ridges of the fingerprint thanks to its frequency detection and orienta­
tion variability [16, 29]. Another useful filter is Gaussian which is not helpful by itself, but 
with the support of a sharpening filter, it presents a simple way of denoising the image [21]. 

Gaussian Filter 

Gaussian filter, or another name for Gaussian blur, is a linear filter used to smooth the 
image and remove unwanted noise while not having a high impact on edges [1]. This filter 
is another way of enhancing a fingerprint image, and it is usually combined with another 
filter for image sharpening. This algorithm is commonly used while denoising fingerprints 
since it gives surprisingly good results. [21] 

Gabor Filter 

Gabor filter is a linear filter that detects frequencies in a specified direction and enhances 
them. It is commonly used for classification or segmentation purposes. Gabor filters are 
used in fingerprint recognition because of their unique edge detection when processing fin­
gerprints, especially ridges. Usually, multiple Gabor filters are used in various orientations 
and frequencies to determine where are the ridges [16, 29]. The ridges are then extracted 
and combined. The most popular setting for Gabor filters is to use eight different orienta­
tions. [29] 

If a user wants to apply the Gabor filter to an image, he must specify the orientation, 
frequency, and standard deviations. The frequency and orientation should not be an issue 
as the ridge frequency, and ridge orientation usually determines them, but a user needs to 
select the standard deviation values. If a small number is selected, the filter could introduce 
non-existent ridges, and if the number is too large, the filter could omit some of them. [29] 

Several improvements to Gabor filters were made, one of which is the use of Logarithmic 
Gabor filters, which improve the maximum bandwidth length and broadens the Gabor 
spectrum (see Figure 4.3). Also, the already mentioned Short-time Fourier transform is an 
improvement from the Gabor contextual filtering [29]. [38] 

Sobel Filter 

Sobel filter is used for edge detection and enhancement. It can be applied horizontally 
or vertically to enhance ridges in that particular direction. We can add both orientations 
together to sharpen the geometrical edges if needed. If the image is too noisy or has other 
non-fingerprint elements, some smoothing filters, such as a Median filter or Gaussian filter, 
can be applied to reduce the noise in the picture. [21] 

Usually, the Sobel filter with a kernel of size 3x3 is used, which can be approximated 
as first-derivative-of-Gaussian kernels [31]. 
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(a) Source fingerprint image with a highlighted 
mask 

(b) Generated fingerprint image with Logarith­
mic Gabor Filter from Texture image decompo­
sition 

Figure 4.3: Showcase of Logarithmic Gabor Filter 

4.5 Estimation of Ridge Orientation 

This operation tries to estimate the orientation of the ridges. This helps enhance the image 
as the algorithm can suppose how the ridges are structured and can contextually search for 
ridges under found angle. It would be impossible to estimate the ridge orientation for each 
pixel. Usually, the images are segmented into blocks. Each block is graded on its own and 
gets assigned a calculated direction in the interval from (0, 360). [29] 

There are multiple approaches for estimating the ridge orientation, adapted from [29]: 

• Gradient-based - is the simplest and the most popular method. The algorithm calcu­
lates gradients for each pixel in the vertical and horizontal directions. Then randomly 
adds ± 1 based on the equality of those gradients. Lastly, it estimates the local ori­
entation of each block with the sums of those gradients and the arctangent from the 
summed result. [39] 

• Reference orientation or slit-based approaches - is one of the oldest methods. The 
algorithm defines a fixed count of reference orientations and then selects the best 
direction based on the grayscale values for that current block in the image. The local 
orientation of the block is the ridge orientation. However, the gradient technique has 
proven to be more straightforward and reliable in most cases. 

• The frequency domain - is an application of multiple directional filters in the frequency 
domain with local smoothing. The already mentioned Short-time F T is one of the 
options of how we can estimate it with this method. 

4.6 Ridge Structure Dictionary 

This approach of enhancement uses generated high-quality ridges stored in a dictionary. 
The algorithm utilising this technique will recognise and patch ridges with poor quality 
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on a given fingerprint and replace them with high-definition ridges. The ridge structure 
dictionary estimates ridge quality map, orientation and frequency fields. It uses the Car-
toon+Texture decomposition, which is the first step of this algorithm. The texture is then 
divided into overlapping blocks, and for each block, its sparse representation and recon­
structed block are calculated using the coarse level dictionary with orthogonal matching. 
We can estimate the coarse quality, frequency fields, and coarse orientation by calculating 
the structural similarity between the block and its reconstructed version. 

The results obtained from blocks using the coarse level dictionary are then used with the 
fine-level dictionary to calculate a more precise result. The fine dictionary is used to get the 
ridge quality map, orientation and frequency field which are then used for segmentation. [8] 

This algorithm has excellent results for enhancing the fingerprint quality and localising 
the fingerprint on the image. 
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Chapter 5 

Proposed Algorithm 

The quality of fingerprints is challenging to estimate only by one algorithm that grades only 
one fingerprint feature. The means of what makes a fingerprint good differs in our intentions 
and what we want to achieve with the particular fingerprint [16]. Generally, fingerprints 
are used for identification purposes, where they are matched against other fingerprints in a 
database to identify a match between two records [29]. 

Identification by fingerprint is commonly made with the minutiae points extracted from 
the fingerprint. However, to do so, the fingerprint needs to be of good quality to give 
us the best result that can identify a person beyond a reasonable doubt. The number of 
minutiae points is one example of how we can grade the fingerprints. As minutiae points 
are usually used in fingerprint matching, their number should be the critical element while 
grading them. Nevertheless, fingerprints have other means that we can use for identification. 
Based on these features, people can be identified as well, and therefore we should consider 
them. [29] 

The algorithm for fingerprint grading does not have to be based on the identification 
values of the fingerprint. Even though the matching potential of the fingerprints is a 
significant factor, we could grade the fingerprint images on statistical data. This statistical 
grading could help determine how much or if we can use the fingerprint image. While 
enhancing the fingerprint, we cannot be sure that the algorithm will improve the fingerprint 
correctly or if will it make an error. It could even improve it in a specific way that would 
potentially suppress some details intended to be extracted. The grading algorithm should 
consider some statistical values about the image itself, which could help us differentiate 
results in complex analysis. [16, 29] 

The proposed solution for grading a fingerprint needs to be split into multiple smaller 
algorithms, which each grade some properties of the fingerprint of the image. The source 
fingerprint images need to be processed first by transforming them into grayscale and ap­
propriately cutted to be compatible with the following computations. Then the fingerprint 
needs to be enhanced as much as possible, which allows us to grade the fingerprint with all 
the data that the image can give us and compare it accordingly to some predefined values. 

5.1 Pipeline 

The designed solution to this problem is segmented into three parts. The Preprocessing, 
where all the initial parsing of the image happens before the fingerprint is taken further. 
The Enhancement, where the algorithm enhances the fingerprint and calculates additional 
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images, which are then used in the final part - the Grading. The last part of the algorithm is 
the Grading, which executes the sub-algorithms that classify the fingerprint. The structure 
of the proposed solution can be changed if the input and output data remain in each section 
of the algorithm the same. 

A l l the information describing the quality of the fingerprints is then reported and saved 
in an external JSON file. Some results, such as minutiae points and the number of ridges, 
can be evaluated by predefined constants in the library. Those constants are based on 
previous research, and they are trying to determine the correct rating of calculated values. 

5.2 Preprocessing 

The initial process transforms the image into an object we can analyse (see Figure 5.1). 
The image's shape needs to be cut to be dividable into blocks. The partition into blocks 
is crucial for our following computation since many algorithms depend on block analysis. 
The Contrast Limited Adaptive Histogram Equalisation ( C L A H E ) highlights the ridges, 
making the segmentation process easier and available as soon as possible. Since this is the 
algorithm's initial state, those processes are relatively simple preparation for the Enhance­
ment. 

Initial Image Grayscale Image CLAHE Image Initial Image Grayscale Image CLAHE Image 

Figure 5.1: The pipeline of the Preprocessing part of the algorithm 

5.3 Enhancement 

This process tries to get most of the information we can get from the fingerprint image. 
The process can be modified or fundamentally changed as long as the output data that 
it should generate are preserved and passed to the last part - the Grading part of the 
algorithm, where the computations will allow us to grade the image based on rendered 
pictures. The Enhancement part of the process needs to output a binarised fingerprint 
image, the mask of the fingerprint (segmented area of fingerprint) and enhanced version 
of the fingerprint (image processed by autoencoder). Fundamentally, the process tries to 
remove all the artefacts and noise from the image, find the exact position of the fingerprint 
in the picture, mark it with a binarised mask and give us the best version of an enhanced 
fingerprint it can. This enhanced picture with a marked area can significantly help us grade 
the fingerprint as all necessary values are extracted. 

After the image is processed with Preprocessing, the algorithm will use the Fast Car-
toon+Texture decomposition [4, 5], which has proven to be working in fingerprint related 
algorithms and is relatively fast to compute and analyse. It would remove most artefacts 
such as letters, lines, or if present, the border from the dactyloscopy cards, which we can 
commonly find on rolled fingerprints where the person's fingerprint interfered with the edge 
of the card. It is applied to the grayscale image to generate the Texture, and the Cartoon 
part is discarded. We chose the Fast Cartoon+Texture image decomposition since it was 
used in many similar enhancing algorithms such as [28], and even in the original paper [10] 
it is used for fingerprint ridge enhancement and noise removal with excellent results. 

After the texture image is generated, the Short-time Fourier transform [12] is applied, 
which analyses the ridges on the fingerprint, enhances and highlights them. As was men-
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(a) Source fingerprint image with a highlighted (b) Generated fingerprint image by the autoen-
mask coder 

Figure 5.2: Showcase of enhanced fingerprint B176 from NIST dataset by the autoencoder 

tioned in the previous Section 4.3, the Short-time Fourier transform also analyses the ridge 
orientation and ridge frequencies and, based on this contextual information, can help us 
with the enhancement [12]. The S T F T algorithm works well when applied to the gener­
ated Texture image since the Texture image has all the noise and elements removed, which 
the S T F T would otherwise sharpen. Finally, the Texture image processed with S T F T is 
refined by ridge structure dictionary and autoencoder developed by [10]. The autoencoder 
is a graph neural network that consist of generated ridge patch dictionary which removes 
almost all of the noise and external elements which were not removed by now while en­
hancing the fingerprint's ridges. Thanks to those algorithms, we can estimate the mask of 
the fingerprint with a ridge quality map and get the best version of the fingerprint, which 
is crucial for our following computation and grading (see Figure 5.2). If we could not cal­
culate the position of the fingerprint on the image, then it would be almost impossible to 
assert its quality as we would not know the place of the fingerprint. The [10] paper uses the 
dictionary-based approach for ridge flow and ridge spacing estimation, which was initially 
proposed in [8] and then modified to use different ridge orientations and spacings. 

The parallel process creates a binarised image with a Logarithmic Gabor filter [38] 
applied to the Texture image generated from the Fast Cartoon+Texture algorithm [4, 5]. 
This particular image is used to count the ridges and estimate the stationary point on the 
fingerprint, which will be described in more detail in the following chapter. The Logarithmic 
Gabor filter has proven slightly more precise while processing the ridges than the standard 
Gabor filter as it yields cleaner results (see Figure 5.3). 

Finally, the autoencoded image, mask and the binarised image are passed to the Grading 
part of the algorithm, where all images are masked to make the Grading part work just 
with the enhanced section of the fingerprint image (see Figure 5.4). 

One issue with this algorithm is that it cannot differentiate if two fingerprints are merged 
and overlap. If two fingerprints are present, it will choose the one with the most informa­
tion, meaning the more significant fingerprint shown. This could be solved by adding an 
algorithm which could split those fingerprints or analyse them gradually. 
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Figure 5.3: Comparison of Gabor and Logarithmic Gabor filter on fingerprint image (NIST 
dataset fingerprint B176) with applied Gaussian filter 

Grayscale Image 

Fast Cartoon+ Texture Image 

Figure 5.4: The pipeline of the Enhancement part of the algorithm 

5.4 Grading 

The last part of the algorithm is to grade the enhanced fingerprint images. On each finger­
print image, all sub-algorithms are run to calculate its performance. That sub-algorithms 
grade the number of minutiae points, number of papillary lines, contrast values, the sinu­
soidal similarity of papillary line crosscut and thickness of the ridges (see Figure 5.5). 
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Output 

Figure 5.5: The pipeline of the Grading part of the algorithm 

Number of Minutiae Points 

The process of finding the minutiae points and grading their number is essential. It cannot 
be omitted since most fingerprint recognition depends on minutiae points and their sim­
ilarity to other fingerprints in an already established database. The minutiae points are 
found and counted with a neural network developed by [10] that is run on multiple gener­
ated pictures. These images are created with methods already explained in sections before, 
such as Gabor, Gaussian and Logarithmic Gabor filter, S T F T , Texture, Autoencoder, and 
their combinations. The graph neural network is run on those pictures, and it looks for 
common minutiae points across all generated fingerprint images. Those minutiae points 
found multiple times in the same places with some deviation acceptable by the selected 
threshold are counted and processed. Only minutiae points inside the already segmented 
mask can be counted as valid. The algorithm proposed by [10] is more complicated when 
detecting minutiae points as it takes multiple generated minutiae points templates from 
which similarities are calculated as a weighted sum and then applied. The proposed al­
gorithm is simplified as only the common minutiae found across all images are found and 
taken into account. The process could potentially prove not to be as performant as it was 
in the original paper, but it significantly simplifies the process while still being one of the 
best algorithms tested. 

The number of minutiae points is then compared to established definitions. Many courts 
and institutions accept a match of 12 and more minutiae points as a match beyond a rea­
sonable doubt and as the suspect is successfully identified. This limit is known as the 
12-guidelines [29], the probability of identification based on twelve correctly asserted minu­
tiae points. Lowering this number makes the likelihood of a match plummet significantly 
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while increasing this number will not increase the possibility substantially. However, since 
there is a possibility of an error match in fingerprint scanning and enhancement, we raised 
the threshold of this match to 20, which is almost double the previous value, to ensure 
the correct result. As the number of minutiae is still visible in the JSON file, it can be 
understood as a score rating, which will guarantee that once the fingerprint exceeds the 20 
minutiae point limit, it will surely match beyond a reasonable doubt [29]. 

Number of Ridges 

The second algorithm counts the number of papillary lines in the horizontal and vertical 
directions. This process can tell us how dense and how big the actual fingerprint is. After 
calculation, we can determine the stationary point where the ridges are the densest based 
on those values. Theoretically, the point should be positioned right at the core of the 
fingerprint. However, due to the high variability of latent and other non-perfect fingerprints, 
this method is not accurate for core estimation. The delta of the fingerprint can confuse 
the algorithm as well as it is another dense ridge point on the fingerprint image. 

The algorithm is simple yet effective. We draw imaginary lines throughout the image, 
counting each transition in the drawn line from 255 (white) to 0 (black) and then from 0 
to 255. This improved approach was based on the recommended one in [29]. They They 
suggested counting transitions from 0 (white) to 255 (black) as 1. However, the algorithm 
sometimes makes an Off-by-one error. If the ridge overlaps with the fingerprint mask, it 
will not be counted, as the non-fingerprint background, part of the image masked out, is 
black as well, and we cannot differentiate the ridge from the background. The distance 
is then used to normalise the result to prevent small masks with a few ridges from being 
more performant than more extensive areas. Finally, the result is averaged throughout all 
imaginary lines in horizontal and vertical directions. 

The number of ridges also has predefined values in the library, which were carefully 
selected based on the observation of good and bad fingerprints. The number serves as a 
rough estimate of the expected density of the fingerprint. 

This algorithm can also tell us some information about the scanner itself. If the higher 
density of the ridges is found on the smaller area, the scanner's resolution must be higher, 
but since the algorithm needs P P I as an input, we do not need to measure it. [16] 

Contrast Algorithms 

Various algorithms were used to grade the contrast and colour difference between ridges 
and valleys and gather statistical information about the picture. The Michelson contrast 
formula calculates local differences and divides the intensities to define the contrast. It is 
one of the common ways to grade the image's contrast. 

The contrast algorithms could try to identify the error of the neural network. It was 
observed that the autoencoder with the Short-Time Fourier domain and ridge structure 
dictionary sometimes makes an error and enhances texture which may look like a fingerprint, 
but it is not. The resulted difference in contrast between ridges and valleys is processed. 
The result could indicate some interesting values by which the algorithm could decide if 
the fingerprint is valid or invalid and discard it from future analysis. 

Contrast Difference algorithm is proposed in this thesis. The algorithm extracts 
only the pixels of the ridges and the pixels of valleys, which can be obtained by combining 
the mask of the fingerprint and its binary image. The extracted pixel colours are averaged 
and normalised to (0,1). In an ideal scenario, the mean for valleys would be 1 (white colour) 
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and for ridges 0 (black colour). The valleys are transformed to translate the differences in 
colours by subtracting 1 from the mean values and then counting the absolute value. If we 
then calculate the ratio from those mean values, we would obtain the ratio between ridges 
and valleys. The ideal fingerprint would have a ratio of the value of 1.0, and the ridges and 
valleys would have the highest possible value (which is 1.0 for both). 

Suppose the ratio has a lower value than zero. In that case, it means that the fingerprint 
is darker and the mean of the valley is not as strong as the mean of the ridges; contrary to 
that, if the ratio is higher, it means that the mean of the valleys is more substantial and 
the image is overall whiter. This algorithm could try to divide fingerprints into dry and 
wet since if the algorithm recognises that the fingerprint is darker, it has a higher potential 
to be wet and vice versa. 

A good approach for improvement would be to set interval values for the mean of 
ridges and mean of valleys. Since the algorithm would grade fingerprint with score 1.0 
when the ridges and valley would be of a low value, the actual colour difference would not 
be substantial even though it would be a perfect ratio. The formula for calculating the 
fingerprint image contrast is as follows: 

where the Er and Ev are extracted values from ridges and valleys from the image, respec­
tively. The algorithm also needs to be prepared when either the mean of the valleys or 
ridges equals 0.0. This would not usually happen in a real-world scenario. Still, for com­
pletion, if the algorithm encounters Ev value of exactly 0.0, the result would be the highest 
possible value of the number in the calculated interval. If Er would be 0.0 then the result 
value would be 0.0. 

The following Chart 5.6 explains the ratios. The blue line symbolises the ideal mean 
value of the fingerprint. The closer the fingerprint gets to the blue line, the better its 
ratio and the better fingerprint quality. However, to be classified as a good fingerprint, it 
also needs to maximise its ridge and valley mean values. Therefore, the best fingerprints 
will be in the "ideal" section of the chart. The fingerprint with the lowest possible value 
will be either in the "substandard" part of the diagram or somewhere else, making them 
inadequate. 

We propose another contrast algorithm which calculates the R M S E (Root Mean Square 
error) between the binary fingerprint image and the received fingerprint. The fingerprint 
should ideally be close to the binary image, and therefore the R M S error should be lower 
when the fingerprint approaches the ideal values. We add those errors together to get 
the final result. The final result represents the overall error from the binary image to the 
natural fingerprint. Similarly, as in the previous algorithm, we normalise the R M S between 
(0,1) by dividing the mean value of each error by the highest possible value in the grayscale 
image (255). After adding the error values together, the result is divided by 2 (for each 
error) and multiplied by 100 to get the final error value in the (0,100) interval. The lower 
the error rate is, the better the fingerprint image is. The formula for computing the values 
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Figure 5.6: Showcase of graph which segment the results of contrast Colour difference 
algorithm. The perfect value should be around the blue line. Lower mean values signal 
substandard fingerprints, and the ideal fingerprints maximise both values. 
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where the Er and Ev are extracted values from ridges and valleys from the fingerprint 
image, respectively, and Br in Bv are extracted values from ridges and valleys from the 
binary image, respectively. 

Sinusoidal Similarity 

The fourth algorithm is examing the ridge crosscut similarity with a sinusoidal wave. This 
similarity can tell us how much the fingerprint's ridges deviated from the ideal ridges, 
which should be precisely sinusoidal wave in interval )• Those values can estimate 
the overall quality of the fingerprint since tilt or thickness change would be visible. Usually, 
on low-quality fingerprints, ridges are damaged by smudges present on the image. These 
smudges can dramatically change the tilt of an otherwise perfect ridge detected by this 
algorithm. The algorithm is executed twice as it is computed with the fingerprint's mask 
centre and once with the estimated stationary point to get the most of the ridges in the 
perpendicular line. 

Estimating a perpendicular line to the ridges is needed as we need to extract the ridges 
under the best possible angle. This estimation of latent fingerprints or other images with 
unknown quality is difficult, but getting as possible to the result is crucial. The algorithm 
for crosscut estimation uses the Soble filter applied to the binary images in the vertical 
direction to highlight ridges and estimate the best direction. Since the only Sobel filter 
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applied to the image will not perform well on the binary image before the Sobel filter, 
Gaussian blur is applied. The potential perpendicular line is drawn in all directions, and 
the one with the highest intensity is then selected. Blacks (0) and white (255) pixels are 
discarded from the drawn line. 

The resulting perpendicular line is a signal with ripples created by the grayscale image. 
The algorithm then splits the signal by calculating local extrema, minima and maxima. 
The signal is, before this calculation, run through a low pass filter by [11] to minimise any 
disturbances. By calculating the number of local maximal extremes, we count the number 
of ridges while the local minimum extremes split the signal. This ensures that we extracted 
just ridges from the crosscut. The next step is to position the sinusoidal interval directly 
with the ridge. It can be achieved by calculating the square difference between the signal 
extracted from the grayscale image and the sinusoidal function. The biggest result has the 
best alignment. 

After the positioning, the integral from both the sinusoidal wave and the segmented 
line is calculated. Integration is calculated with Simpson's rule approximation. Then the 
deviation between those two values is calculated as was described in 3.4. This number can 
then be averaged, or it can be graded per ridges. 

Thickness 

This algorithm is very similar to sinusoidal similarity as it uses the perpendicular line as 
well. The perpendicular line is estimated with the Sobel filter and the division of ridges 
with local extremes. It is also executed twice for the stationary point and the fingerprint's 
mask centre. It calculates the thickness of each ridge and then compares the calculated 
thickness to an estimated average. 

Since each ridge can have some smudge or non-fingerprint element that would raise its 
grayscale values, we must determine at what height we will measure the ridge. Since we 
sliced the ridges, we can always have the same height in percentage as it was proposed 
in [16], and that is 18%. The thickness is then calculated from the received pixel length 
with the formula mentioned in 3.4, and the result gives us the deviation of each ridge. This 
number can then be averaged, or the fingerprint can be graded per ridges. 
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5.5 Results 

The proposed algorithm with its sub-algorithms was executed on the NIST SD27 fingerprint 
database [23]. A l l 292 fingerprints were graded by NIST (National Institute of Standards 
and Technology) and divided into three categories - Good, Bad and Ugly. "Good" is the 
best classification the fingerprint can get, and "Ugly" is the worst. It is unknown by what 
statistic or grading algorithm the database was graded since NIST did not specify it in 
their documentation [23]. Nevertheless, their results can still be compared to the results 
of the proposed algorithm as a baseline to evaluate if the proposed algorithm with its sub-
algorithms is valid. Figures of fingerprints that reflect the results of each sub-algorithm 
are named by the fingerprint's name determined by the NIST database and with the score 
calculated by the algorithm. Each fingerprint name starts with the letter ' G ' (Good), ' B ' 
(Bad) or ' U ' (Ugly), which denotes their class. 

Results are presented as a box-and-whisker diagram divided into three groups by classi­
fication given by NIST. Examined value is always displayed on the y-axis. Each fingerprint 
class is denoted with a particular colour corresponding to its category to make the diagram 
easier on the eyes. The chart consists of three main features: the line intersects the box, 
which represents the median of the given group, the edges of boxes which denote the interval 
between the first and third quartile, and the whiskers represent the maximum a minimum 
value in a group. Sometimes outliners are presented, but before the data was plotted, most 
were removed by the standard deviation of 2. Therefore about 5% of values were discarded 
in each group, and only values in intervals from 2.3% to 97,7% were kept. The standard 
deviation helps us see the results more clearly. Sometimes, the algorithms will merge two 
fingerprints because they overlap, which, especially in the "Ugly" class, makes fingerprints 
perform better while counting minutiae points or the number of ridges. 

Support Algorithms 

The sub-algorithms which will be described consist of two smaller algorithms that should be 
explained before we progress. The first algorithm is for finding the stationary point based 
on the highest number of ridges in each direction. The second tries to find the perpendicular 
line to analyse the crosscut. Both of those algorithms have their success variability, but 
overall, they have proven to be successful. 

The algorithm for estimation of the stationary point was initially intended to find the 
core of the fingerprint, which sometimes it does correctly. However, this estimation was 
not used due to it not being precise for various reasons. Instead, it is used as a stationary 
point (Figure 5.7b) on the fingerprint image itself as it most of the time finds more ridges 
when used as a starting point and when looking for a crosscut. 

The second algorithm is for locating the perpendicular line (Figure 5.7c). The results 
are not precise since estimating perpendicular lines on non-perfect curved ridges is tough. 
Even though the algorithm does not yield accurate results, it is usually still acceptable as 
the error is usually no greater than a few degrees, which does not influence the following 
algorithms. 
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Figure 5.7: Showcase of Support Algorithms on a fingerprint G100 from the NIST dataset 

Minutiae Points 

Good 

Figure 5.8: Comparison of NIST classification to the calculated Number of Minutiae Points 

Minutiae Points 

The algorithm for minutiae points identified that if the fingerprint was classified as a Good 
fingerprint, the number of minutiae points would be higher than if the fingerprint was 
"Ugly" or "Bad", which is expected behaviour (Figure 5.8). It is assumed that the dataset 
was graded based on found minutiae points, which is why we see this result. However, it 
proves that if the algorithm can find more minutiae points on the fingerprint, the better 
overall the image is classified. It should be pointed out that by 12-guidelines, users would 
be identified by most of the fingerprints in the dataset, but some minutiae points will be 
falsely identified. That is why the threshold was bumped from 12 minutiae points to 20 to 
evaluate fingerprints more accurately. 
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Number of Ridges 

Good 

Figure 5.9: Comparison of NIST classification to the calculated Number of Ridges 

Number of Ridges 
Counting a number of ridges in the horizontal and vertical direction and then calculating 
the average proved to be a working solution for estimating the quality of the fingerprints 
(Figure 5.9). It scores similar to a number of minutiae points. That could be due to the 
overall area of the fingerprint. If the fingerprint has a high number of ridges, it is probably 
larger and therefore, there is more potential to find a higher amount of minutiae points. 

As ridge frequency is used for identification purposes as a quick distinction between two 
fingerprints, it could, with slight modification, be potentially used to determine fingerprint 
rating and its classification. 

Contrast 

There are several contrast methods used in the proposed algorithm. The first algorithm 
commonly used on fingerprint images to get some statistical information is Michelson's 
contrast which did not prove to be working to divide the fingerprints into NIST fingerprint 
classification. The median values are almost the same (Figure 5.10) for each group. This 
result was expected as Michelson's algorithm was not created to grade fingerprints but as 
a calculation to denote the luminance of the picture, which it performs. 

The following algorithms were built around the contrast information and tried to extend 
it. There are two developed sub-algorithms in the solution. The Colour Difference algorithm 
and the Root Mean Square Error Ratio work with the binary images, which helps them 
distinguish differences between ridges and valleys. The Color Difference does not classify 
the fingerprints into their categories, as we can see on the graphs (Figure 5.11), but it 
divides them into groups based on the darkness and lightness of the fingerprint's image. 

On the chart, computed mean values for ridges and valleys are plotted, and the blue 
line shows the ideal ratio the fingerprint should get. The more the dot approaches this 
line while maintaining high values of each mean value, the better the fingerprint is. The 
calculated ratio cannot be taken into account on its own as it could lead to mistakes in rare 
circumstances, as explained in Section 5.4. 

36 



Michelson's Contrast 

Good Bad Ugly 

Figure 5.10: Comparison of NIST classification to the calculated Michelson's Contrast 
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Figure 5.11: Comparison of NIST cfassification to the cafcufated Cofour Difference 

(a) Fingerprint Bi20 with score ( b ) F i n g e r p r i n t G 0 8 9 w i t h s c o r e (c) Fingerprint U279 with score 
0.39, 0.30/0.77 0.99, 0.60/0.61 2.70, 0.8/0.3 

Figure 5.12: Showcase of the best and worst fingerprints from the NIST SD27 dataset, 
which were graded by the Cofour Difference afgorithm 
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Root Mean Square Error Ratio 

Good 

Figure 5.13: Comparison of NIST classification to the calculated Root Mean Square Error 
Ratio 

We picked three images, one which scored the best (Figure 5.12b) and two which scored 
the worst from each side of the spectrum (Figure 5.12a, 5.12c). The images demonstrate 
that the algorithm can distinguish between fingerprints with different brightness and select 
where the ratio is optimal. 

The last algorithm in this category is the Root Mean Square Error contrast algorithm 
which measures the error between the binary mask and the fingerprint. According to the 
NIST classification, this algorithm scored as the best contrast algorithm, dividing finger­
prints by quality. The "Good" fingerprints have lower error rates than fingerprints with 
other classifications, which indicates that the fingerprint is closer to the ideal fingerprint 
- binarised fingerprint. This result can be seen in the diagram (Figure 5.13), where even 
though the maximum values of the "Good" class are pretty high, the median is significantly 
lower compared to the other classes. 

We picked the worst 5.14a and the best 5.14b algorithm-rated fingerprints for compar­
ison. It can be seen from the comparison in Figure 5.14 that the fingerprint "B118" has 
ridges that cannot be seen properly. Therefore, the algorithm evaluated a higher error score 
than the fingerprint "G051", with a much lower error score and clearer ridges. Note that 
the fingerprint "B118" is not the one intended to be matched on the picture. 

Initially, the algorithm was designed to identify false fingerprints detected by the neural 
network. Since the contrast from the binary image would be completely different from the 
grayscale image, it would be susceptible to high error rates. However, due to the high 
variability of this error, we could not define a perfect value that would catch all or at least 
the majority of false fingerprint positives, but some are still detected as they are identified 
as the worst in the database (Figure 5.15a, 5.15b, 5.15c). 
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(b) Fingerprint G051 with score 40.093955 

Figure 5.14: Showcase of the best and worst fingerprints from the NIST SD27 dataset, 
which were graded by the Root Mean Square Error algorithm omitting the false positives 

(a) Fingerprint U298 

Figure 5.15: The three false-positive fingerprints from the NIST SD27 dataset detected by 
the Root Mean Square Error algorithm 
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(a) Fingerprint B i l l with score (b) Fingerprint G093 with score 
55.565425 -0.040597 (c) Fingerprint G090 with score 

-39.601382 

Figure 5.16: Showcase of the best and worst fingerprints from the NIST SD27 dataset, 
which were graded by the averaged Sinusoidal Similarity 

Sinusoidal Similarity 

The algorithm for calculating the sinusoidal similarly was run four times in total. Once 
for the grayscaled image, once for the enhanced fingerprint from the autoencoder and 
then two more times with different starting points using an established stationary point 
and calculated centre of the fingerprint. The results for the sinusoidal similarity were 
inconclusive since the mean value differs significantly in each group, and there is no pattern 
for any run. However, we suspect that the database's grading cannot be used as a baseline 
here since a completely different process graded it. The algorithm outputs different ratings 
and categorises fingerprints in its class system. 

The more the fingerprint is close to 0, the higher the quality of the graded fingerprint 
by this algorithm is. The first two diagrams (Figure 5.18a, 5.18b) are displaying the values 
computed on the autoencoder image, while the other two (Figure 5.18c, 5.18d) on grayscale 
image. We ran the algorithm on grayscale images since this enhancement could potentially 
influence the results. Even though the autoencoder and grayscale results differ, it is prob­
ably due to impurities of the grayscale image and non-fingerprint patterns that are visible 
again. The result did not change significantly enough to assume that the autoencoder 
improved the sinusoidal shape of the fingerprint. 

This algorithm was run on the latent fingerprint database. Even with a "Good" classi­
fication, the fingerprints will not be comparable to the sinusoidal line, and some deviation 
will always exist as the fingerprints are not perfect. 

To demonstrate the working sub-algorithm, we choose three images, two fingerprints 
that have the highest 5.16a and lowest 5.16c values and one closest to the ideal fingerprint 
5.16b. The fingerprints that did not perform well are clearly in worse shape than those 
that performed great, but we do not think this analysis can be compared just by fingerprint 
images. The corresponding crosscut of selected images extracted from fingerprints with a 
sinusoidal wave as a comparison in Figure 5.17 is included to describe the results more 
clearly. From this Figure 5.17a it can be seen that the result has thicker ridges and vice 
versa. The result in Figure 5.17c has slimmer ridges. Note that the fingerprint with the 
lowest score was classified by NIST as a "Good" fingerprint. 
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(d) Calculated score on grayscale fingerprint 
images with the stationary point 

Figure 5.18: Comparison of NIST classification to the calculated Sinusoidal Similarity in 
all four variants 

Thickness 

The algorithm for calculating the thickness of the image is similar to the algorithm which 
explores the sinusoidal similarity. It is also run four times with different starting points and 
on different photos (Figures 5.20a, 5.20b, 5.20a, 5.20b). The results are inconclusive for 
similar reasons as they were with sinusoidal similarity. However, a few key points can be 
read from the diagrams. The autoencoder image with the fingerprint's centre as a starting 
point has slightly better results than the variants, but it is not a very significant difference. 
The median from the "Good" category is closer to 0, which symbolises the ideal fingerprint 
with perfect calculated thickness according to the formula. However, again we think that 
the NIST classification is not an ideal comparison to this type of algorithm and that the 
algorithm should grade the fingerprints with its class system. 

Three fingerprints are outlined to demonstrate the thickest 5.19a and thinnest 5.19b 
fingerprint and then ideal fingerprint with the "right" thickness 5.19c. From these results, 
the difference in thickness can be seen, but for completion, we included the charts of crosscut 
line with calculated ideal thickness and actual thickness in Figure 5.21. The ideal thickness 
is calculated for each ridge in 18% height as was mentioned in Section 5.4 [16]. Note again 
that the fingerprint with the lowest score was classified by NIST as a "Good" fingerprint. 

42 



(a) Fingerprint B105 with 
score 53.939394 

Figure 5.19: Showcase of the best and worst fingerprints from the NIST SD27 dataset, 
which were graded by the averaged Ridge Thickness 

Ridge Thickness A E C . C. 

Q 20 

Ridge Thickness A E C , S.P. 

Cloud 

(a) Calculated score on fingerprint images 
generated by autoencoder with the centre of 

the fingerprint 

Ridge Thickness Grayscale, C. 

c: » o d 

(c) Calculated score on grayscale fingerprint 
images with the centre of the fingerprint 
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(b) Calculated score on fingerprint images 
generated by autoencoder with the stationary 

point 

Ridge Thickness Grayscale, S.P. 
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-
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(d) Calculated score on grayscale fingerprint 
images with the stationary point 

Figure 5.20: Comparison of NIST classification to the calculated Ridge Thickness in all 
four variants 
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(a) Fingerprint's B105 perpendicular line 

Ridge Thickness - Fingerprint G021 
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(b) Fingerprint's G021 perpendicular line 

Ridge Thickness - Fingerprint G032 

(c) Fingerprint's G032 perpendicular line 

Figure 5.21: Extracted perpendicular lines from the fingerprints with highlighted thickness 
in Figure 5.19 to compare the algorithm result 
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Chapter 6 

Implementation 

Implementation of this algorithm was written in Python, as many Python libraries have 
proven to be useful while implementing it. Also, when working with files and especially 
images, Python proves to be a straightforward language to approach similar data structures 
and problems and solve many difficulties that could happen in other languages. Writing 
the implementation in different languages, such as the C language, would be more time 
efficient. Still, the algorithms would not be easily understandable in code. There could be 
a lot of potential issues that could drastically slow the development of an algorithm that 
tries to prove the concept of the proposed algorithm. 

The version of the Python language is 3.7 and was heavily determined by the Latent 
Automated Fingerprint Identification System from Michigan State University [10]. This 
algorithm was ported from Python version 2.7, and due to difficulties with TensorFlow, it 
was not moved to the newer version. Nevertheless, the structure was updated and the code 
needed to be rewritten by a significant part, so it could be possible to run on the newest 
Python version if the TensorFlow chart models were updated. 

Used Libraries 

When building the program that would incorporate the proposed algorithm, external l i ­
braries were used to support and accelerate the progress. Standard libraries were used, 
namely Numpy, Scipy, Skimage, OpenCV [3], Mathplotlib and TensorFlow. The Pandas 
package was used for the test script as it heavily simplifies the work with the JSON file and 
shows how the data could be used in other algorithms. Those libraries helped develop a ro­
bust environment and allowed experimenting with various versions of proposed algorithms 
with ease. 

The proposed solution for fingerprint enhancement is based on the research done by 
Michigan State University designed by Ani l K . Jain, K a i Cao, Dinh-Luan Nguyen, and 
Cori Tymoszek [10], who developed a latent automatic fingerprint identification system 
with minutiae point detection and an incredibly unique autoencoder. Their research had 
great results, and we decided to use the library for minutiae point extraction and fingerprint 
enhancement since many algorithms do not perform well on latent fingerprints. Their 
algorithm was developed as an end to end latent enhancer, analyser and matcher. Most 
of their code needed to be refactored and reconstructed, but the core functions were kept 
and applied to get the same results [9]. We created a fork of the project where the whole 
project is structured as an executable Python package1. Then this fork was restructured 

x

https: //github.com/Lupphes/MSU-LatentAFIS 
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and simplified again to be more straightforward as it was used as a Python sub-package to 
develop the LatFigGra package. The original repository was not forked, but rather another 
fork from Manuel Aguado Martinez [30] was used. Martinez tried tried to port a significant 
part of the project and experimented with the Logarithmic Gabor filter [38], also used in 
the proposed algorithm. Nevertheless, the library he developed was still not usable in the 
proposed algorithm, and it had to be significantly changed as he used it for palm prints [2]. 

Structure 

The program is written as a general Python package and can be used in any other algorithm 
as a dependency if imported. It has two main classes, The Fingerprint class, the object 
of the fingerprint image, which has saved all necessary variables and functions about the 
fingerprint and the Image object, the interface between the OpenCV library and the Fin­
gerprint class. This approach significantly simplifies the usage of OpenCV library functions 
such as filters, kernels or simple bitwise operations on images. A fingerprint instance is 
supposed to be an image with all the necessary values parsed and stored. Most of the data 
in the Fingerprint instance is kept as Image instances, which are essentially NumPy arrays 
since all the filters and other functions are mainly inputs and outputs image - NumPy array. 
The Fingerprint object also contains all the necessary functions for launching the grading 
and enhancing algorithms. The Pipeline mentioned in the previous chapter describes the 
exact process of running the code. 

The Fingerprint class contains four methods which the user can run from the Fingerprint 
instance. The function for fingerprint enhancement saves all the necessary data to the 
fingerprint image, the function for grading the fingerprints, and two functions that generate 
a report and final file with all received information. 

The package also contains a string library and definition in separate files, which can be 
easily edited to extend the algorithm, and an exception-handling system was implemented 
as well. 

6.1 Program Demo 

To demonstrate the LatFigGra package, which incorporates the algorithm, we developed a 
demo that uses all the described processes to analyse given fingerprints. This demo takes 
a path to a provided folder where it expects to find fingerprint images and the P P I of the 
fingerprints specified, and it analyses them. It creates a new folder with an output file 
where all the information about given fingerprints is written. A l l the examples of filtered 
images are put into subdirectories for each fingerprint. 

A l l fingerprint instances are saved as Python pickle files for later use, and therefore we do 
not need to regenerate the Fingerprint objects just for grading. Generally, only fingerprint 
instances can be created, and the grading process can be executed later if needed as the 
instance contains all necessary elements. 

6.2 M S U Latent A F I S 

Michigan State University Latent Automatic Fingerprint Identification System („MSU La­
tent AFIS") is an algorithm for an end to end matching of rolled and latent fingerprints and 
a matching system for these pairs. They built a unique matching algorithm to find similar­
ities between those pairs and identify a match in the database. This algorithm drew from 
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various previous researches [10, 33, 6, 32, 7] and built upon them. We took the essential part 
of this algorithm: the latent fingerprint enhancement and minutiae extraction. They also 
provided a simplified script for rolled fingerprints as well as for latent fingerprints. Still , we 
did not use this algorithm for grading the fingerprints as it should be uniform for all types 
of fingerprints, and there should not be a need to make the user select what kind of finger­
print they provided. The only difference between those algorithms is that the algorithm for 
exemplar fingerprints is simplified to save computation time. When the algorithm prepares 
the fingerprint for the autoencoder, it uses several filters and functions to prepare it for the 
process. One of those processes is the Cartoon+Texture image decomposition, used in this 
paper [10] and many others [28]. The Caroon+Texture decomposition is not the original 
method proposed with a low pass filter [4]. But instead, filtering in the frequency domain is 
used. Combining the process with the S T F T and ridge structure dictionary removes almost 
all external elements from the image. Also, the algorithm requires TensorFlow models to 
function correctly, and they need to be in a specified folder by the user. Those models are 
graphs of the neural network used to identify minutiae points and the autoencoded image. 

The whole code from previous research was restructured and made into a Python pack­
age and accessible everywhere in the code. Still, we kept the algorithm's vital parts the 
same, representing their excellent results. 

Other Methods Tried 

Before this research was found, the proposed algorithm used fingerprint enhancement that 
we implemented. There were numerous issues with this version that needed to be fixed. 
Only a few published researchers successfully developed latent fingerprints enhancer and 
described them in detail so we could build on their research and fix our problems. While 
searching for a solution to segmentation and enhancement of fingerprints, we found the 
Cartoon+Texture decomposition algorithm in numerous other researchers that used this 
algorithm as well. It was a great help, and with an algorithm developed by [28] and [13] 
we developed an enhancer with our implementation of the Cartoon+Textrure algorithm. 
Still, it was not as fast and good as the solution provided by [10], and that is why we used 
theirs. Nevertheless, the algorithm has proved to be an excellent solution for denoising and 
removing foreign elements. 

We also tried to implement the segmentation algorithm based on the algorithm written 
here [13]. Still, it did not prove effective on unclear latent fingerprints after implementation, 
and other solutions were needed. The result of the segmentation created can be seen in 
Appendix C. 

6.3 La tF igGra Package 

The main package2 (LatFigGra - an abbreviation of Latent Fingerprint Grader) uses the 
demo program and incorporates the proposed solution. The package creates an instance 
of the Fingerprint object and then executes the Grading process. The Grading process 
calculates and rates the fingerprints, stores images that demonstrate the results and writes 
all information in the JSON log file. 

The Grading process is executed on the fingerprint instance. It supposes that all needed 
images are given and generated, and therefore it can start and launch all sub-algorithms in 
a sequence. 

2

The package will be publish here: https://github.com/Lupphes/LatentFingerprintGrader 
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Minutiae Point Grading 
Since the M S U Latent AFIS package found and extracted all the minutiae points from the 
fingerprint and gave the final estimate with coordinates, our part of this algorithm was 
relatively straightforward. Based on that, we compared the number of received minutiae 
points with the number in the definition. Then it was decided if the number was enough 
to identify a person beyond a reasonable doubt. 

Those final minutiae points could be listed inside the JSON log, but it would make the 
log unnecessary long since the algorithm could find about one hundred minutiae points on 
a perfect fingerprint [29]. Therefore, we decided to leave the final list in the folder with 
generated fingerprint images and include just the sum of those points. It is enough to 
deduce the quality of fingerprints from these numbers. 

The library also contains definitions of intervals which define the fingerprint classifica­
tions. The classification also contains a verbal evaluation of the result. The definitions can 
be described as threshold values based on the research provided in [29]. It should predict 
the possible outcome of the trial of matching those fingerprints. 

Contrast Grading 

The contrast grading of the algorithm is the only statistical quality grading included. It 
grades the fingerprints based on the Michelson contrast, where it is looked for the intensities 
between ridges and valleys and the difference. The mentioned Formula 3.1 is used with the 
help of functions from the OpenCV library and answer on StackOverflow [20]. 

Overall measuring statistical values from the image is a simple approach to making 
conclusions about the fingerprint. 

The Logarithmic Gabor filter and NumPy.ma module for masked arrays significantly 
help with masking and extraction for the ridge extraction. Everything else is done with 
simple bitwise operations. Extracted values are then processed with the formulas for R M S E 
5.4 and Color difference 5.1, and the results are saved. 

Sinusoidal Similarity Grading 

The algorithm uses a perpendicular line, the centre of the fingerprint's mask and the sta­
tionary point determined by the ridge count. It will extract the line from the C L A H E 
grayscale and autoencoded image, splits it to differentiate ridges, apply a lowpass filter and 
calculate the max and minimal extremes. A similar process also applies to the algorithm 
in the next Section 6.3. The lowpass filter is used to split the ridges and calculate the sinu­
soidal similarity. The line is used in its initial state, just segmented as the line processed 
with a lowpass filter would. The lowpass filter uses the implementation done by [11], which 
has proven to be working well. 

Initially, the line was not split by ridges, and we tried to align the sinusoidal wave with 
the entire ridge signal. This process did not yield good results, as can be seen in Appendix 
B . l , where the signal matched the line partially, but it did not prove to be working. The 
processes of segmenting the ridges, analysing each and then averaging those results by 
the Formula 3.3 have better results, and that is why they were used. We used the square 
difference for the alignment, which will return the sum, and the one with the highest results 
is used. 
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Ridge Thickness Grading 
Similarly to the sinusoidal script, the algorithm uses a perpendicular line, the centre of the 
fingerprint's mask and the stationary point determined. The process is the same, and the 
line is parsed with the same process. 

The algorithm estimates the thickness by calculating the number of pixeis and then 
using the formufa to compute the resuft according to the Formuia 3.2. Again, simiiarfy to 
the sinusoidai process, initiaify, the afgorithm was caicufated for the whofe extracted fine 
with non-variabie height in 18%, but as shown in Appendix B.2. The segmentation with 
variabie height caicufated for each ridge has proven to be working better than the initial 
proposed solution. 

6.4 Test Script 

We designed another script for generating the graphs, which uses the output of the JSON fife 
generated by the proposed afgorithm. The Test script processed the data with the Pandas 
package and converted them into a Pandas dataframe. The script suites as an exampie 
of how the data are parsed and can be used in another afgorithm. Graphs generated in 
Section 5.5 are deveioped with the heip of this afgorithm. It first converts the JSON fife to 
Pandas dataframe, essentiaify a tabfe, and then sorts and evafuates the data. Graphs are 
generated with the mathpiotfib package. 
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Chapter 7 

Conclusion 

We present an algorithmic solution for evaluating the quality of dactyloscopy traces based on 
statistical and contextual values of an image. The proposed algorithm has sub-algorithms 
which evaluate different fingerprint features based on various factors and grades and classify 
them according. Those sub-algorithms have been used for fingerprint grading before and 
are modified, or they consist of new ideas that we tried and implemented. 

The solution also consists of all necessary steps needed before the rating of the fingerprint 
can start, which is the enhancement of the fingerprint image and extraction of features 
required by all defined sub-algorithms. 

The sub-algorithms successfully grade the fingerprints based on their definitions, and 
most of them have similar results to a presented SD27 NIST dataset, which divides finger­
prints into three categories. The sub-algorithms where the results from NIST classification 
and their classification relate are those that grade fingerprints by minutiae points, number 
of ridges and R M S E contrast. The sub-algorithms that did not perform similarly to the 
NIST database were either grading different elements of the fingerprint image or features 
that the NIST database supposedly did not consider. Still, they have proven to be working, 
and they divide fingerprints by their measures into categories denoted by the computed 
result. 

The new algorithms for grading contrast presented in the proposed solution successfully 
divided fingerprints, and we could conclude the quality of fingerprints from the presented 
results. The algorithm could divide fingerprints by their overall brightness, potentially 
identifying a false match made by a neural network. However, further research is needed 
to establish a set interval of what contrast result is sufficient to decide the fingerprint's 
condition. This can be precisely achieved by analysing the results of this algorithm with 
the more extensive dataset to evaluate the class of the given dactyloscopy trace. 

This solution also presents an algorithmic solution for earlier presented algorithms that 
grade fingerprints based on papillary crosscuts and calculate the sinusoidal similarity and 
thickness of ridges. Those algorithms were originally proposed theoretically, and they were 
not implemented in an algorithmic solution. The proposed solution consists of this im­
plementation with features that improved and automatised the process. Both algorithms 
could be improved by not using the centre of the fingerprint or calculated stationary point, 
but a calculated core of the fingerprint, which would increase the number of ridges that are 
analysed. 
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Appendix A 

Summary of the Fingerprint 
Analysis 

As an overview we outlined few pictures generated by the algorithm to demonstrate results. 

> 
OPY 

(a) Source fingerprint image 
with a highlighted mask 

* a 0 * v 
a et a a a 

(b) Extracted Minutiae Points 

(d) Removed ridges from the (e) Removed valleys from the 
grayscaled image grayscaled image 

(g) Texture from image 
decomposition 

(h) Logarithmic Gabor Filter 
applied on Texture image 

(c) Generated image with the 
autoencoder 

ÄV 

(f) Gaussian Filter 

(i) STFT applied on the 
Texture image 

Figure A . l : Fingerprint G100 from the NIST SD27 dataset. Showcase of most filters and 
variants. 
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Appendix B 

Results of Rejected Grading 
Algorithms 

When we were experimenting with various algorithms, not each was successful. We outlined 
two algorithms that did not yield correct results and their reasons. These algorithms were 
counted on the same fingerprints, which were used in result sections on Figure 5.17 and 
5.21, and they are named accordingly. 
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B . l Sinusoidal Similarity 

Initially, the algorithm was designed to align sinusoidal waves and extracted lines as a 
whole, but this approach had several issues. It can be seen from the graph that a few ridges 
are entirely misaligned to the sinusoidal wave, which enlarges the error. The dashed line 
divides lines into ridges by local extremes, and the green dots count the number of ridges 
by local maxima. 

Sinusoidal Similarity - Fingerprint B i l l , both signals aligned as whole 

60 
Pixels (X) 

(a) Fingerprint's B i l l perpendicular line 

Sinusoidal Similarity - Fingerprint G093, both signals aligned as whole 

60 
Pixels (X) 

(b) Fingerprint's G093 perpendicular line 

Sinusoidal Similarity - Fingerprint G090, both signals aligned as whole 

60 
Pixels (X) 

(c) Fingerprint's G090 perpendicular line 

Figure B.0: The sinusoidal similarity with the extracted line aligned as a whole signal and 
not by individual ridges. The alignment does not have correct results as the signals are not 
aligned perfectly. 
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B.2 Ridge Thickness 

This algorithm was designed to count the pixel length of ridges. The variable height can be 
assumed on a perfect fingerprint but not on actual fingerprints, especially latent fingerprints. 
Initially, the height was 18% (45.9), which did not yield correct results. 

Ridge Thickness - Fingerprint B105, set height 

Pixels (X) 

(d) Fingerprint's B105 perpendicular line 

Ridge Thickness - Fingerprint G021, set height 
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(e) Fingerprint's G021 perpendicular line 

Ridge Thickness - Fingerprint G032, set height 

Pixels (X) 

(f) Fingerprint's G032 perpendicular line 

Figure B.0: The ridge thickness with the extracted lines without variable height. The 
estimation method does not count almost any ridges for any selected perpendicular lines. 
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Appendix C 

Results of Rejected Preprocessing 
Algorithms 

Before the M S U Latent AFIS proposed solution from [10] was used, we tried to use a 
proposed solution in [13]. Still , it did not yield satisfactory results with the orientation 
feature. Therefore we moved further to look forward to another solution. It is possible 
that the wrong implementation or misunderstanding of some algorithms caused those bad 
results. However, the M S U Latent AFIS works better in our use case. 

(a) Source fingerprint with applied Sobel filter (b) Generated mask from the algorithm 

Figure C . l : The best-obtained result was by algorithms before the M S U Latent AFIS was 
used. This mask would be helpful if we worked with perfect fingerprints since it did not 
detect anything if we introduced latent fingerprints. Used algorithm was based on research 
[13]. The shown fingerprint was taken from [36]. 

59 



Appendix D 

Contents of the S D H C Card 

— LatentFingerprintGrader-2.0.3 

I CHANGEL0G.txt 

— demo.py 

— latfiggra 

— contrast_types.py 

— definitions.py 

— exception.py 

— fingerprint.py 

— image.py 

— init .py 

— main .py 

— msu_latentafis 

— report.py 

I — string_database.py 

— LICENSE 

MANIFEST.in 

— models 

— notes.txt 

— out 

— README.md 

— requirements.txt 

— SD27-lat 

— setup.py 

I — test.py 

— LatentFingerprintGrader-2.0.3.zip 

— models.zip 

— out.zip 

— README.md 

— SD27-lat.zip 

— thesis.pdf 

— Thesis-text.zip 
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I would like to outline a few key files and folders, which would be described thoroughly: 

• LatentFingerprintGrader-2.0.3 - extracted folder, which contains full program pre­
pared for execution 

— demo.py - the demonstration file which enhances and grades the fingerprints 

— test.py - the test file, which generates charts from the JSON file 

— models - directory, where TensorFlow models are stored 

— out - folder, which contains generated result 

— requirements.txt - file, which contains requirements that need to be installed 
before the demo.py or test.py is ran 

— SD27-lat - folder, which contains the source fingerprints that are processed 

• LatentFingerprintGrader-2.0.3.zip - zip file, which contains the source code of the 
proposed solution 

• models.zip - folder, which contains models needed by TensorFlow 

• R E A D M E . m d - file, which describes the process of installing and launching the pro­
gram 

• thesis.pdf - pdf file, which is the actual text of theses 

• Thesis-text.zip - zip file, which contains the thesis source files 

• out.zip - zip file, which contains the calculated results from the demo.py 

I also calculated MD5 hashes for each zip file. A l l MD5 hashes are available at 
https: //bachelor.lupp.es: 

• LatentFingerprintGrader-2.0.3.zip - d9cdl7d959cdealfa5bfa0b4acel4a8b 

. SD27-lat.zip - a433adafd9cceb38253c410352cl5586 

. models.zip - 487077a27e4699c0e42821a95fb7282f 

. R E A D M E . md - badf35a7aal9ee6ff030c8ff80d58b2c 

. out.zip - 84be23d3af6a3b77d290c50096b5b53d 
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