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Abstract 
The Meta Infer static analyzer is a tool for detecting various types of errors in source code. 
However, its results contain more than 95 % of false alarms. This thesis proposes a solution 
that ranks Infer's reports using Graph Neural Networks (GNNs) based on the likelihood 
of being a real error, thus mitigating the issue with false alarms. The system consists of 
a training pipeline, which converts the D2A dataset - a set of labeled reports from Meta 
Infer - into Extended Code Property Graphs (ECPGs) and G N N models trained on these 
E C P G s . Experimental results indicate that the developed G N N models can match, and in 
some cases even surpass, existing models developed by strong industrial teams. Moreover, 
these existing solutions are closed source, making the solution developed in this thesis 
a promising open-source alternative. 

Abstrakt 
Statický analyzátor Meta Infer je nástrojem pro hledání různých typů chyb ve zdrojovém 
kódu. Jeho výsledky však obsahují více než 95 % falešných hlášení. Tato teze navrhuje 
řešení, které řadí hlášení od Meta Inferu pomocí grafových neuronových sítí (GNN) podle 
pravděpodobnosti, že se jedná o skutečnou chybu, a redukuje tak problém s falešnými 
hlášeními. Systém se skládá z trénovací části, která převádí datovou sadu D2A - sadu 
roztříděných hlášení z Meta Inferu - na rozšířené grafy vlastností kódu (ECPG) a z modelů 
G N N natrénovaných na E C P G grafech. Výsledky experimentů ukazují, že vytvořené modely 
G N N mohou konkurovat a v některých případech dokonce překonat existující řešení vyvíjené 
silnými průmyslovými týmy. Tato existující řešení mají navíc uzavřený zdrojový kód, a tak 
řešení vytvořené v této tezi poskytuje slibnou alternativu s otevřeným zdrojovým kódem. 
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Rozšířený abstrakt 
Statická analýza je často využívanou technikou pro hledání chyb v průběhu vývoje softwaru. 
Některé statické analyzátory lze použít i na nedokončený kód, což umožňuje odhalení chyb 
již ve velmi raných fázích vývoje, dokonce ještě před spuštěním testů. Tyto nástroje však 
často trpí vysokým počtem falešných hlášení. Pokud je množství těchto falešných hlášení 
příliš vysoké, stávají se tyto nástroje v praxi téměř nepoužitelnými, protože kontrola hlášení 
je příliš nákladná. Proto je věnováno mnoho úsilí automatizované detekci falešných hlášení. 

Tato diplomová práce se zaměřuje na statický analyzátor Meta Infer. Jedná se o vysoce 
škálující, mezi procedurální, open-source nástroj pro analýzu zdrojových souborů v jazy
cích C / C + + / C # / O b j - C a Java. Infer dokáže detekovat chyby jako dereference nulových 
ukazatelů, mrtvé úložiště, neinicializované hodnoty, přetečení proměnných a mnoho dalších 
typů chyb. Oproti jiným statickým analyzátorům se vyznačuje snadným používáním - jeho 
vstupem jsou kompilační příkazy, které kompilují analyzované zdrojové soubory. Přesto 
má tento nástroj své nevýhody, přičemž hlavní z nich je vysoký počet falešných hlášení. 
V experimentech provedených v autorově bakalářské práci bylo zjištěno, že až 90 % hlášení 
je falešných. Toto číslo se zvyšuje na více než 95 %, pokud nejsou zohledněny chyby typu 
mrtvého úložiště, které jsou samy o sobě poměrně běžné a neškodné. 

Hlavním přínosem této diplomové práce je návrh a implementace systému pro hodnocení 
hlášení nástroje Meta Infer. Vyvinutý systém dokáže řadit hlášení podle pravděpodobnosti, 
že se jedná o skutečnou chybu (tj. pravdivé hlášení), čímž řeší problém s velkým množstvím 
falešných hlášení a činí Infer prakticky použitelnějším, protože současné procento falešných 
hlášení je příliš vysoké. 

Systém pro řazení hlášení je založen na grafových neuronových sítích (GNN), které v posled
ních letech získaly na popularitě pro úkoly související se zdrojovým kódem, protože mnoho 
vlastností kódu lze přirozeně vyjádřit pomocí grafů - grafy toků řízení, abstraktní syntak
tické stromy, grafy závislostí dat a mnoho dalších. Pro trénování modelů G N N je nezbytná 
datová sada. Tato diplomová práce využívá datové sady D2A, která obsahuje roztříděná 
(skutečná vs. falešná) hlášení od Inferu ze šesti open-source projektů. D2A obsahuje 
vzorky ve formě textu, které je třeba převést do formy grafů. Z tohoto důvodu byl vytvořen 
tréninkový proces, který generuje Graph D2A - D2A převedené do formy grafů. Tréninkový 
proces doplňuje existující techniky vytváření grafů o informace o podmíněném překladu, 
který se v praxi často vyskytuje. 

Vzorky v Graph D2A nelze přímo použít pro trénování modelů G N N ; nejdříve na nich musí 
být proveden výběr a transformace příznaků. Po výběru a transformaci příznaků jsou grafy 
optimalizované a převedené do formátu navrženého v této diplomové práci - rozšířené grafy 
vlastností kódu (ECPG) , které obohacují stávající grafy vlastností kódu (CPG) o grafy 
volání, datové typy a řadu dalších informací. C P G jsou běžně používaným formátem grafů 
pro detekci zranitelností ve zdrojovém kódu pomocí G N N . 

Vytvořené modely byly trénovány na trénovací sadě tří projektů z D2A, jmenovitě httpd, 
libtiff a nginx. Vyhodnocení modelů probíhalo na testovací sadě stejných projektů. Experi
mentální výsledky ukazují, že vytvořené modely G N N mohou konkurovat a v některých pří
padech dokonce překonat nejlepší stávající řešení, která jsou vyvíjena silnými průmyslovými 
týmy. Tyto výsledky dokazují, že vytvořené modely jsou slibnou open-source alternativou 
k porovnávaným existujícím řešením, která všechna mají uzavřený kód. 



Modely byly také testovány pomocí křížové analýzy - model je testován na jiném projektu, 
než na kterém byl trénován. Modely se pro tuto výzvu ukázaly jako nedostatečné, což pouze 
vyzdvihuje obtížnost křížové analýzy v této oblasti výzkumu, jelikož žádné z porovnávaných 
existujících řešení taktéž pro křížovou analýzu nefunguje. 

Posledním přínosem této diplomové práce je inferenční proces, který umožňuje spustit Infer 
analýzu, generovat E C P G pro každé hlášení a nakonec řadit hlášení pomocí vytvořených 
modelů G N N pro libovolný software v jazyce C (a podmnožině C++). Princip inferenčního 
procesu staví na autorově bakalářské práci, která se zabývala automatizací Infer analýzy. 
Nicméně inferenční proces zůstává nevyužitý, kvůli zatím nefunkční křížové analýze. 

Předběžné výsledky této diplomové práce byly publikovány na konferenci Excel@FIT'24, 
kde obdržely ocenění od odborného panelu. 
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Chapter 1 

Introduction 

Static analysis is a widely used technique for finding errors during software development. 
Static analyzers can also be deployed on code that is not yet finished, making it possible to 
detect errors in the early stages of the development, even before tests can be run. However, 
static analyzers often suffer from a high number of false positives (i.e., false alarms). If 
the percentage of false positives is too high, these tools are almost unusable in practice. 
Therefore, a lot of effort is devoted to the automatic detection of false positives. 

This thesis focuses on the Meta Infer static analyzer. It is a highly scalable, interprocedural, 
open-source tool for analyzing C/C+- | - /C#/Obj -C, and Java source files. Infer can detect 
null pointer dereferences, dead stores, uninitialized values, deadlocks, data races, variable 
overflows, and many other types of errors. Compared to other static analyzers, it is charac
terized by its ease of use - its input consists of the compilation commands that compile the 
analyzed source files. Although Infer has been successfully used in practice by a number of 
companies (including Meta), it does have its disadvantages, and the main one is the high 
number of false positives. From experiments conducted in the author's bachelor's thesis, 
it was found that up to 90 % of the reports are false positives. This number increases to 
more than 95 % if errors of the dead store type, which are relatively common and harmless 
by themselves, are not considered. 

The main contribution of the thesis is the design and implementation of a report ranking 
system for the Meta Infer tool. The developed system can rank reports by the probability 
of being a true positive (i.e., a real error), thereby addressing the problem of a large number 
of false positives and making Infer a more practical tool because the current percentage of 
false positives is too high. 

The report ranking system is based on graph neural networks (GNNs), which have become 
increasingly popular for code-related tasks in recent years because many code properties can 
be naturally expressed using graphs. A dataset is necessary to train G N N models. This 
thesis utilizes the D2A dataset [94], which contains labeled (true positive vs false positive) 
Infer reports from 6 open-source projects. D2A includes samples in a textual form, which 
must be converted into a graph form. For this reason, a training pipeline was created 
that generates Graph D2A - D2A transformed into a graph form. The samples in Graph 
D2A cannot be directly used for training GNN models; feature engineering must first be 
applied to them. Feature engineering optimizes the graphs and transforms them into the 
format proposed in this thesis - Extended Code Property Graphs (ECPGs), which enrich 
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existing Code Property Graphs (CPGs) commonly used for vulnerability detection in source 
code using GNNs. In particular, we enrich them by Call Graphs, data types, and other 
information. 

The developed G N N models were trained using E C P G s from the training sets of 3 D2A 
projects, namely httpd, libtiff, and nginx. The models were evaluated on the test sets of the 
same projects. The experimental results show that using the models we obtain comparable, 
and in some cases even superior results than the existing state-of-the-art solutions, which 
are developed by strong industrial teams from I B M [94, 68]. These results demonstrate 
that the created models are a suitable open-source alternative to the compared existing 
solutions, all of which are - to the best of our knowledge - closed source. 

The models were also tested using cross-analysis - a model is tested on a different project 
than it was trained on. The models proved insufficient for this challenge, highlighting the 
difficulty of cross-analysis in this area of research, as none of the existing compared solutions 
function in cross-analysis either. 

The last contribution of this thesis is the inference pipeline, which can run Infer analysis, 
generate an E C P G for each report, and finally sort the reports using the created G N N 
models, for any C (and subset C++) software. This pipeline is based on the author's 
bachelor's thesis, which dealt with automating Meta Infer analysis. This pipeline, originally 
designed for cross-analysis, can also be used for inference on projects with sufficient history, 
on which the G N N models were trained. 

S t ruc ture of the thesis The rest of the thesis is structured as follows. Chapter 2 
explains the basic concepts of static analysis, Meta Infer, graph neural networks, graph 
representations used, and finally describes the tools used - L L V M Sheer, L L V M 2 C P G , 
and Joern. Chapter 3 describes the D2A dataset, its creation principle, comparison with 
other datasets, and the reasons for choosing D2A. Chapter 4 describes the design of the 
training pipeline, inference pipeline, and the proposed architecture of the G N N models. The 
implementation of the models and both pipelines is described in Chapter 5. The results of 
experiments and comparison with existing models are in Chapter 6. Finally, the conclusion 
is presented in Chapter 7. The thesis also includes Appendix A with the content of the 
attached media and of the additional resources available in the Zenodo trusted repository, 
Appendix B with installation instructions and user manual, and Appendix C with additional 
figures and tables. 

Acknowledgement This thesis is a collaboration with Red Hat. It is also supported by 
the H2020 E C S E L Valu3s, G A C R A I D E 23-06506S, and I G A FIT-S-23-8151 projects. 
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Chapter 2 

Preliminaries 

This chapter introduces the basic concepts, principles, and tools on which this thesis builds. 
Specifically, Section 2.1 briefly describes static analysis, its applications, advantages, and 
limitations. Section 2.2 describes the Meta Infer static analyzer, its use, types of detectable 
errors, and its advantages and disadvantages. Section 2.3 describes the general principle of 
graph neural networks, their advantages for source code analysis, and especially their input 
format. Section 2.4 introduces the different source code representations used as input to 
graph neural networks and focuses on the most commonly used type - code property graphs. 
Section 2.5 presents the LLVM-Slicer for slicing L L V M bitcode. Section 2.6 describes 
the L L V M 2 C P G tool for constructing code property graphs from L L V M bitcode. Finally, 
Section 2.7 presents the Joern platform used for various static analysis tasks. 

2.1 Static Analysis 

Static analysis [3, 23, 37] can be understood as a way of reasoning about the run-time 
properties of computer programs without the need to run them (at least not under their 
original semantics) or provide their inputs. Using static analysis, it is possible to investigate 
program properties such as time or memory complexity, look for errors such as null pointer 
dereferences, accesses beyond array boundaries, improper handling of resources, etc. It is 
also possible to check for synchronization errors such as deadlocks, data races, atomicity 
violations, etc. Finally, static analysis can be used to ensure compliance with language 
standards, e.g., M I S R A - C / M I S R A - C + + 1 or compliance with practices for writing readable 
code, e.g., Google Java Style 2. 

The opposite of static analysis is dynamic analysis, which requires running the program to 
be analyzed and thus a need to provide inputs. Since both approaches have their advantages 
and disadvantages, it is not advisable to use only one, but rather to use both simultaneously 
to complement each other. The advantages of static analysis are [3, 42]: 

• Static analysis implicitly considers all possible paths in the code (even the rarely 
executing ones), 

1MISRA's website: https://www.misra.org.uk/. 
2Google Java Style Guide: https://google.github.io/styleguide/javaguide.html. 
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• can report the exact location of the error and thus speed up the fix, 

• does not require executable, sometimes even compilable source code, so errors can be 
detected early in the development, 

• can be run fully automatically, after some initial setup. 

However, static analysis also has its disadvantages [37, 42]: 

• The initial setup can be tedious for some tools as it may require, e.g., creating models 
of certain functions, access to the compilation commands, or manually defining the 
required style guide. 

• Running heavier-weight static analysis can be time and memory consuming. 

• Static analyzers can report false positives (i.e., false errors) or false negatives (i.e., 
missed real errors). 

The Rice's theorem implies [62] that all non-trivial properties of program behavior are 
undecidable. From this, it follows that in order to derive such properties automatically, it 
is necessary to introduce some degree of approximations. This approximation is the cause 
of false positives and false negatives. However, if a suitable approximation is used, it is 
possible to use static analysis to prove some properties (as opposed to dynamic analysis) 
- typically the absence of errors. A n example of this behavior is the use of Frama-C to 
create an RTE-free 3 X.509 parser [22]. However, most tools try to create approximations 
that balance the number of false positives and false negatives to make the tools practical 
to use. 

2.2 Met a Infer 

Meta Infer [25] (formerly Facebook Infer) is an open-source'1 framework for writing in-
traprocedural and interprocedural static analyses [36, 58, 59]. Although it is a framework, 
Infer already includes a number of default and non-default (i.e., they must be explicitly en
abled) analyses. Individual analyses are plugged into Infer in the form of plugins. Different 
plugins use different principles to detect different types of errors, e.g. InferBO, which uses 
the symbolic interval technique [46] to detect incorrect array indexing, or the Bi-abduction 
plugin, which uses bi-abduction [27] - a form of inference for separation logic that mod
els computer memory - to detect errors associated with incorrect memory manipulation. 
Among other issues, Infer can detect null pointer dereferences, dead stores, uninitialized 
values, deadlocks, data races, variable overflows, and many other types of errors. Table 2.1 
lists all the plugins that Infer provides, along with information about the language support 
and whether the plugin is enabled by default. More detailed information about each plugin 
and the types of errors reported by Infer can be found in [26]. 

Infer plugins are not sound, which, in the context of finding errors, means that they may 
have false negatives. Instead, Infer aims for maximal practical use - scaling to millions 

3 Run Time Error (RTE). 
4 Meta Infer's repository: https://github.com/facebook/infer/. 
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Table 2.1: Language support information for all non-experimental Infer plugins, along with 
whether the plugins are enabled by default. 

Plugin C c + + Objective C Java c # Default 
Annotation Reachability / / / / / 
Bi-abduction / / / / / / 
InferBO / / / / / 
Cost / / / / / 
Eradicate / / 
Impurity / / / / / 
Inefficient keySet Iterator / / / 
Litho „Required Props" / / 
Liveness / / / / 
Loop Hoisting / / / / / 
Pulse / / / / 
Purity / / / / / 
Quandary / / / / / 
RacerD / / / / 
.NET Resource Leak / / 
SIOF / / 
Self in Block / / / 
Starvation / / / / / / 
Uninit / / / / 

of lines of code thanks to modular analysis. It is also very simple to use [24] compared 
to other analyzers. Infer takes as an input compilation commands that allow the Infer's 
internal clang compiler to transform source files into the SIL° internal representation [4, 89]. 
This transformation (capture) of the source code takes place in the capture phase. To 
facilitate the capture of compilation commands, Infer supports a variety of build systems 
such as ant, cmake, Gradle, Make, Maven, and others. However, experiments conducted 
in previous work by the author [3] show that this support is incomplete and often fails to 
capture compilation commands. Therefore, as part of the same work, a compiler wrapper 
was created that can reliably capture compilation commands and pass them to Infer. 

The capture phase is followed by an analysis phase in which the required plugins are run over 
the SIL. The output of Infer after the analysis phase is a list of found errors. Experiments 
on real-world programs in previous work [3] also show that Infer has a very high number 
of false positives. Specific numbers suggest approximately 4.5 false positives for every real 
error. However, this score is very optimistic since it includes dead store errors, which are 
harmless and can be detected by common compilers and are present in real-world programs 
in very large numbers, especially in the C language when using conditional compilation. 
Without dead stores, the number increases to approximately 9 false positives for every 
real error. In general, such a high number of false positives in static analyzers results in 
developers' distrust of these tools and consequent ignoring of analysis results [18, 44, 63]. 
Therefore, efforts are made to reduce false positives. 

5Smallfoot Intermediate Language (SIL). 
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2.3 Graph Neural Networks 

There are a number of approaches for detecting errors in programs using machine learn
ing [35]. The approaches can be divided into convolutional neural networks (CNNs) [19], 
recurrent neural networks (RNNs) [49, 50, 51, 52, 71, 96], and graph neural networks 
(GNNs) [9, 13, 30, 73, 75, 95], depending on the architecture of the model used. These 
approaches are often combined with each other [28, 47, 69, 70]. 

CNNs achieve very good results, e.g., in image classification. This is aided by convolutional 
layers that can appropriately capture spatial information from an image. However, this 
principle is not so effective for source code [60]. In order to use the source code as input to 
a C N N , it must first be transformed into a graph and then into a matrix (e.g. an adjacency 
matrix). Due to the fact that the nodes in a graph do not have a fixed order, the same graph 
can be expressed as an adjacency matrix (which has a fixed order of nodes) in multiple ways. 
This property is very undesirable because a single result is wanted for the same graph. It 
also makes it impossible to use the local spatial properties of convolutional layers. Another 
problem for C N N , is the arbitrary size of the graph since the adjacency matrix have a fixed 
size. 

Another frequently used approach is to represent code as a sequence, especially for recurrent 
neural networks. This approach is based on the idea that the source code can be treated 
as a natural language. While these approaches achieve very good results [8, 34, 68], the 
properties of source code can be better represented using graphs. Appropriately designed 
graphs can more explicitly model properties between parts of the code that would otherwise 
the model had to learn during training. The idea that a graph is a better representation of 
source code than aa adjacency matrix or a sequence is supported by the experiments in [75], 
especially on synthetic datasets (on datasets with real-world examples, all approaches seem 
to perform poorly). Arbitrary input sizes can also pose problems for RNNs, as they may 
have a limited input sequence length [68]. 

GNNs are designed to work on arbitrarily large graphs. For this reason, and the previously 
mentioned reasons, GNNs were chosen for this thesis. Therefore, a brief description of 
a general graph neural network based on message passing follows. The description uses 
a slightly modified notation from [48]. 

Consider an oriented graph structure Q = (V, £) where V is the set of nodes and £ is the 
set of oriented edges e = (v, v') G V X V. The source node of an edge e = (v, v') is v and 
the target node is v'. The embedding vector of a node v is denoted by h„ G HD where D is 
the dimension of the vector. Each node has a label which is denoted by lv G { 1 , £ y } > 
and each edge has a label which is denoted by le G {l,...,Lg}. Further, auxiliary sets of 
nodes are defined. The set IN(V) = {v'\(v', v) G £} contains the predecessors of a node v. 
The set O U T ( U ) = {v'\(v, v') G £} contains the descendants of a node v. Bi-directional 
propagation then proceeds by updating each node until convergence (or for a fixed number 
of steps) using the following formula: 

«'GIN(?>) «'eOuT(u) 

Here, the function / can be a linear function or a neural network. For each node v, the 
output of this network is defined as ov = g(hv ,lv) where g is an arbitrary differentiable 

8 



function and T is the final iteration. In case where graph-level classification/regression is 
needed, it is possible to artificially add a so-called „super node" to the original graph, which 
will be connected to all nodes. This will allow graph-level classification/regression to be 
treated in the same way as node-level classification/regression. 

The above description of how the information is propagated in GNNs shows that the graphs 
used as inputs, must form a single W C C 6 in the case of bi-directional GNNs. And for direc
tional GNNs the edges must also be properly oriented (more information in Section 4.1.4). 
If the graph does not meet these properties, it is not possible to pass information between 
W C C s within GNN updates (this needs not be a problem for some types of tasks, but it is 
crucial for the system designed in this thesis). If the function / is differentiable, then all 
components are differentiable, and after T iterations, it is possible to compute gradients of 
the parameters (typically located within the function / ) and train the G N N layers using 
gradient descent. 

2.4 Source Code as a Graph 

There are many types of graphs that are commonly used as source code representations, 
e.g., abstract syntax trees (AST), control flow graphs (CFG), program dependency graphs 
(PDG), and others. One type of such commonly use graphs is the code property graph 
(CPG), which is composed of all three previously mentioned graphs and used in its pure 
form, e.g., in [53, 75]. Modified versions of it are often used as well, e.g., simplified CPGs 
(SCPG) for function-level vulnerability detection7 in C/C+-1- [90], CPGs with added edges 
that reflect the original order of tokens (i.e., individual source code elements) [95], or code 
composite graphs (CCG) again for vulnerability detection in C/C+-1- [9]. Furthermore, 
PDGs alone are used, e.g., for finding malicious code in JavaScript [28], X F G s {subgraphs 
of PDGs) for detecting vulnerabilities in C/C+-1- code [13]. Or CFGs together with token 
sequences for detecting vulnerabilities in P H P [69]. 

According to [92], the reason for the creation of C P G s is the inability of each subgraph type 
to detect certain types of errors independently during traversal. For example, ASTs are not 
suitable for detecting divisions by zero. However, by combining ASTs and PDGs, this is 
possible, but one still cannot detect, e.g., integer overflows. This can only be detected by 
combining ASTs, CFGs and PDGs . This combination of graphs results in a representation 
that is able to capture both syntactic and semantic properties of the code and preserve 
most types of errors in it. Exceptions are, e.g., race conditions, which need more external 
information. A complete table of detectable errors and required graph types is given in [92]. 
The following graph definitions are based on the original definitions from the paper intro
ducing CPGs [92], with only minor changes in notation to resemble the G N N definition 
given earlier. It should be noted that the following definitions employ an abuse of notation, 
as it was used in the original paper. 

To define a C P G , it is first necessary to define a property graph [92], which is a com
monly used graph type in graph databases such as Neo4j. A property graph is an oriented 
multigraph Q = (V,£,A,/ i ) , where V denotes the set of nodes, £ denotes the set of edges 

6 A Weakly Connected Component (WCC) is a set of nodes where there is a path between any two 
nodes, without respecting the direction of the edges. 

7In some articles, the terms "error" and "vulnerability" are used interchangeably, but not every error is 
a vulnerability. 
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vo id foo() 
{ 

i n t x = source() ; 
i f (x < MAX) 
{ 

i n t y = 2 * x; 
s i n k ( y ) ; 

} 

} 

Listing 2.1: A code sample. The code was taken from [92]. 

e = (v,v'), where v,v' G V. A denotes the edge labeling function A : £ —>• E , with 
E = 1 , L g being the edge labels. Finally, // denotes the function /j, : (V U £ ) X K —>• S 
that assigns attributes to nodes and edges where K is the set of attribute names and S is 
the set of attribute values. 

A n A S T [92] is an ordered tree whose inner nodes represent operators and outer nodes 
{leaves) represent operands. The oriented edges then show the parenting relation. The 
A S T captures the syntactic nature of the code. Consider the code in Listing 2.1. The A S T 
constructed for this code is shown in Figure 2.1. 

To create a C P G definition, the subgraph types must be converted to the same format -
in particular, to the previously defined property graphs. A n A S T as a property graph is 
a structure GAST = (VAST, ^AST, AAST, MAST): where VAST is the set of A S T nodes and £AST 
is the set of A S T edges. The function AAST is defined as AAST(^) = ' A S T ' and is applied 
to each node v G VAST- The function /XAST : VAST X ^ A S T —> <SAST is applied to each 
node and attribute. The attribute names are KAST = {'code', ''order1} and the attribute 
values are SAST = ^code U Sorder> where Scode are types of nodes in an A S T , e.g., variable, 
constant, mathematical operators, etc., and Sorder assigns values that order a node among 
its siblings in the A S T to preserve the ordering from the original tree. 

A C F G [92] is an oriented graph describing the possible paths of program control and the 
conditions for their execution. The nodes of the graph represent statements and predicates, 
while the edges represent control passing. Each command node has an outgoing edge la
beled e, which denotes an unconditional passing of control. While a predicate node must 
have two outgoing edges true and false for different evaluations of a given predicate. Con
sider the code in Listing 2.1. The C F G constructed for this code is shown in Figure 2.2. 
The C F G as a property graph is the structure GCFG = (VCFGJ^CFGJ ACFGJ •) where VCFG is 
the set of nodes corresponding to the nodes from the A S T as follows: 

V C F G = {v e VAST I VAST(V, 'code') G { ' S T M T ' , ' P R E D ' } } 

The edge labeling function is defined as ACFG : ^CFG E C F G where the values in the set 
E C F G = {^true\ 'false', 'e'} correspond to the meaning of edges in the C F G . 

A P D G [92] is again an oriented graph whose nodes are statements and predicates. There 
are two types of edges in a P D G , namely data dependency edges, which model the influ
ence of a variable on the value of another variable, and control dependency edges, which 
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( FUNC ) 

Figure 2.1: The abstract syntax tree for the code in Listing 2.1. This figure was taken 
from [92]. 

model the influence of predicates on the values of variables. Consider the code in List
ing 2.1. A P D G constructed for this code is shown in Figure 2.2. The P D G as a property 
graph is a structure QpDG = (VCFGJ £PDGJ A p D G , /JLPBG) where the nodes are the same as in 
the C F G . The edge labeling function is defined as A p D G : £ p D G —> S p D G , where the edge 
labels S p D G = {'data'1,'control'} correspond to the meaning of edges in the P D G . The 
function assigning attribute values has the form of /xp D G : £ P D G X - K T P D G —>• 5p D G , where 
^ P D G = {'symbol', ''condition''} and 5 p D G = SVAR U {'true', 'false'}. The set SVAR repre
sents the set of names of all variables that occur as the output node of the data dependency 
edges. The function / /p D G then works by assigning the value of the attribute 'symbol' to 
the 'data' edges as the name of the variable represented by the source node of the edge, 
and 'control' edges are assigned the attribute value 'condition' depending on whether they 
are in the true or false branch. 

The C P G is then defined using the previous definitions of A S T , C F G , and P D G as: 

Q = (VAST, <?AST U ^ C F G U £PDG> \ lA 

where the definition of the function A is as follows: 

{AAsT(e) if e € £AST 

Ac F G (e) if e e £CFG 
ApDG(e) if e e £ p D G 

and the definition of the u function is: 

fi(x,p) 
UAST(X,P) if (x,p) e V A S T X - ^ A S T 

UPUG(X,P) if (x,p) e Č P D G X Í ^ P D G 
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( ENTRY ) 

6 

i n t x = source 0 

6 

i f (x < MAX) 

true 

i n t y = 2 * x 

e 

sink(y) 

e 

( EXIT y> 

false 

i f (x < MAX) - ^true ~t>
 i n t

 y = 2 * x 

C 
true D 

sink(y) 

Figure 2.2: The control flow graph (on the left) and the program dependence graph (on the 
right) for the code in Listing 2.1. These figures were taken from [92]. 

Figure 2.3: The code property graph for the code in Listing 2.1. This figure was taken 
from [92]. 

A C P G for the code in Listing 2.1 is shown in Figure 2.3 where the irrelevant FUNC, IF, 
and STMT nodes were omitted for demonstration purposes. And also an entry point and an 
exit point were added. 

2.5 L L V M - S l i c e r 

As described in more detail in Section 4.1.2, the LLVM-slicer is used for program slicing in 
this thesis. LLVM-slicer is an open-source8 tool which uses the D G library [10, 11]. The D G 
library implements various interprocedural static analyses - namely, pointer analysis, data 
dependence analysis, control dependence analysis, and value relationship analysis. These 
analyses are implemented in D G as independent of the input language. However, the front-
end currently supports L L V M bitcode only [54]. L L V M bitcode is a storage format for 

8LLVM-Slicer' repository: https://github.com/mchalupa/dg. 
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L L V M I R 9 [55], which is an assembly language used as a low-level representation of code 
during the various stages of L L V M compilation. 

The main use of the D G library is the aforementioned LLVM-slicer, which uses the D G anal
yses for program slicing - removing pieces of code that have no effect on user-defined areas in 
the code. Results of experiments with LLVM-Slicer on benchmarks from the Software Veri
fication Competition can be found in [11]. Although L L V M bitcode is language-independent 
and can be generated from, e.g., C, C++, or Rust, LLVM-slicer does not support certain 
constructs in L L V M bitcode that handle exceptions. This means that it is not able to han
dle a C++ program that uses exceptions. If the C++ code is exception-free, it should be 
able to slice it. The input to the LLVM-slicer is a single L L V M bitcode file and slicing 
criteria. The output is the sliced L L V M bitcode. 

Slicing criteria are specified, for example, using the option -sc. This option allows for 
a relatively extensive specification of slicing criteria [12]. However, in this thesis, the basic 
format -sc file#function#line#obj is used only. The fields f i le , function, line, or 
obj can be empty. The meanings of f i le , function, and line are straightforward - they 
refer to locations in the code. The obj field maps to a function call or a variable use at the 
location (the code must be compiled with debugging information, see Section 4.1.1). 

Furthermore, it is necessary to define an entry point function that must be present in the 
input bitcode. The default entry point is the main function. However, it can be overridden 
using the option -entry=function. The entry function acts as the starting point for the 
analysis - anything above this function in the call tree is removed. 

2.6 L L V M 2 C P G 

In this thesis, the open-source10 L L V M 2 C P G tool is used for generating C P G s from L L V M 
bitcode, as detailed in Section 4.1.2. The CPGs were originally created for high-level 
languages such as C, which creates some problems when creating CPGs from low-level 
L L V M IR [16]. One problem is mapping L L V M IR instructions to classical high-level 
operations in order to display the C P G in the same format as, e.g., for the C source code. 
Some operations can be mapped directly because they have the same semantics, others can 
be modeled using functions, and some cannot be mapped at all and need to be bypassed 
by another mechanism. The C P G output format can be further processed by Ocular 1 1 

(proprietary), P lume 1 2 (open-source) or Joern (open-source, see Section 2.7). 

2.7 Joern 

Joern is used in this thesis to enrich C P G s with additional information, as detailed in 
Section 4.1.2. Joern [87] is a powerful open-source13 platform providing various tools from 
the area of static analysis. Using Joern, it is possible to write custom static analyses 

9 L L V M Intermediate Representation (LLVM IR). 
1 0 LLVM2CPG's repository: https://github.com/ShiftLeftSecurity/llvm2cpg. 
1 1 Ocular's documentation: https: //docs.shiftleft.io/ocular/quickstart. 
12Plume's documentation: https://plume-oss.github.io/plume-docs/. 
13Joern's repository: https://github.com/joernio/joern. 
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or queries over source files. Joern supports various programming languages, such as C, 
C++, JavaScript, Kotlin, Python, or Java. It is also possible to construct different graph 
representations of the code (ASTs, CFGs, CDGs, DDGs, PDGs or CPGs) , which can be 
exported in different formats, e.g., D O T [32] or csv for the Neo4j graph database [65]. It 
is also possible to load already constructed C P G s in different formats, e.g., in the output 
format of the L L V M 2 C P G tool. Joern can be used as a command line tool, through an 
interactive environment, or as an integration library. 
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Chapter 3 

D 2 A Dataset 

This chapter introduces the D2A dataset, which is used in this work to train a system that 
reduces false positives of the Meta Infer static analyzer. Specifically, the chapter discusses 
the creation of D2A, the structure of individual samples, comparisons with other existing 
datasets, and presents statistics regarding the distribution of Meta Infer's error types. This 
chapter draws primarily from [94, 40]. 

D2A is a dataset developed by I B M , containing errors found by the Meta Infer static an
alyzer and information about their validity (true positive/false positive). D2A was first 
introduced in [94] and is freely available for download at [40]. The dataset is generated au
tomatically based on differential static analysis, and the source files for the D2A generation 
pipeline are open-source1. The dataset fits into the area of static analysis and is primarily 
intended for creating models aimed at eliminating false reports produced by static analyz
ers. Initial results from models such as Catboost, L igh tGBM, Random Forest, Extra-Trees, 
or the voting model can already be found in the article introducing D2A [94]. The team 
behind D2A also later published the work [68], where they improve the existing models 
and add the C - B E R T model, which is Bidirectional Encoder Representations from Trans
formers [17], but trained on C code and fine-tuned on the D2A dataset for the purpose of 
classifying reports. 

Several reasons led to the selection of the D2A dataset for this thesis: 

1. It is created from real-world open-source projects. 

2. Meta Infer was used for differential static analysis (thus, samples contain trace, lo
cation, error type, etc., which is necessary for extracting slicing information, more 
information in Section 4.1.2). 

3. Being an automatically generated dataset, it is sufficiently large. 

4. The author of this thesis has previously collaborated with the creators of the D2A 
dataset. 

X D2A pipeline's repository: https://github.com/IBM/D2A. 
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Figure 3.1: A schematic of the D2A generation pipeline. This figure was taken from [94]. 

Dataset Creation Principle 

The D2A dataset was automatically generated using differential static analysis on open-
source projects with extensive git histories. The schematic of the pipeline for generating 
D2A is shown in Figure 3.1. The fundamental concept of this pipeline is that the git 
history includes commits that fix real errors. Therefore, the entire pipeline starts with 
the identification of these potential fixing commits. These commits are identified using the 
Commit Message Analyzer, which, through similarity-based methods and key phrase search 
in commit messages, can select commits that are highly likely fixing errors. For each such 
commit, Meta Infer (see Section 2.2) is run on the version of the code before and after the 
commit. Errors that are found in the before version and are missing in the after version 
are considered true positives, indicating they have been fixed. For an error to be counted 
as a true positive, it must also satisfy the following conditions: 

1. The error must not appear in later versions. 

2. The commit must have modified some part of the bug trace2 related to the error. 

A l l other errors are considered false positives - this is, of course, an approximation because 
otherwise it would imply that the project in its latest version contains no errors, which 
is highly unlikely. The D2A dataset also includes another type of sample called after-
fix samples, which are labeled as false positives. Each after-fix sample is generated as 
a counterpart to a true positive sample on the after version, where the corresponding true 
positive have been fixed - the after-fix samples contain the fixed code. After-fix samples 
have the property of creating a balanced dataset along with the true positives and also form 
pairs that can help models learn to differentiate between true positives and false positives. 
This is because the pairs provide the models access to the same code with and without the 
error. However, these samples naturally do not have Meta Infer outputs and are not used 
in this thesis. 

As previously mentioned, each sample includes the output from Meta Infer, the code of the 
functions related to the error, and additional metadata such as the ID, label, commit hash, 
and compiler arguments for all files affected by the error (this is possible because Meta 
Infer needs to compile the code as discussed in Section 2.2). The complete list of sample 
attributes is too extensive to be included here, but it is documented in [39]. Attributes and 
their formats necessary for the further explanation will be described in later chapters. 

2 A bug trace is information attached to some outputs of Meta Infer. It includes sections of the code 
that influenced the particular error. 
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Comparison with Other Existing Datasets 

There are numerous datasets designed for training models that identify errors in C / C + + 
code as can be seen in the table comparing existing datasets with D2A in [94]. These 
datasets are typically categorized into synthetic and real-world types. Synthetic datasets 
offer the advantage of 100 % label accuracy and the ability to automatically generate sam
ples, making them sufficiently large. However, synthetic samples are typically simpler and 
differ from real code, which may lead to poor generalization when applied to real-world soft
ware. Real-world datasets can be further divided into manually and automatically created. 
Manually created datasets are highly accurate but are typically too small. Automatically 
created datasets, on the other hand, suffer from lower accuracy but are large enough. The 
D2A dataset employs a hybrid approach, automatically generating samples from real-world 
projects while striving to identify bug-fixing commits that were manually corrected. As 
a result, the dataset achieves an accuracy where the true positive class has accuracy of 
41 % and false positive class has accuracy of 81 %. These accuracies were determined 
through manual validation of 41 samples labeled as true positive and 16 samples labeled as 
false positive. 

Dataset Distribution 

The D2A dataset includes 6 open-source projects-openssl3, libav'1, nginx 5, libtiff6, httpd 7 , 
and FFmpeg 8 . While it is theoretically possible to expand it to include any software with 
a sufficient history of commits, generating it is computationally demanding as it requires 
running Meta Infer twice for each targeted commit on the entire project. The D2A dataset 
contains a total of 1,314,276 samples and is provided with a split into training, validation, 
and testing datasets to match the results of the models from [94, 68]. Each sample is labeled 
either true positive (1) or false positive (0) and categorized by error type as determined by 
Meta Infer outputs, such as NULL_DEREFERENCE, UNINITIALIZED_VALUE, etc. Tables C . l 
and C.2 show the counts of samples according to the label, project, and error type. The 
tables also highlight the types of errors supported by the system for reducing false positives 
in this thesis, with more details available in Section 4.1.1. 

3openssl's repository: https://github.com/openssl/openssl. 
4libav's repository: https://github.com/libav/libav. 
5nginx's repository: https://github.com/nginx/nginx. 
6libtiff's repository: https://gitlab.com/libtiff/libtiff. 
7httpd's repository: https://github.com/apache/httpd. 
8FFmpeg's repository: https://github.com/FFmpeg/FFmpeg. 
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Chapter 4 

Design of a System for Reducing 
False Positives in Meta Infer 

This chapter describes the design of training and inference pipelines for transforming the 
D2A dataset into its graphical form, referred to as Graph D2A. Specifically, Section 4.1 
describes the training pipeline, which transforms the D2A dataset into Graph D2A. Sec
tion 4.1.1 focuses on the bitcode generation phase, aiming to produce L L V M bitcode from 
the D2A dataset samples. Section 4.1.2 explains the creation of extended code property 
graphs from the generated L L V M bitcode. Section 4.1.3 provides a detailed description of 
the Graph D2A format. Section 4.1.4 discusses the feature engineering process, which con
verts graphs from Graph D2A into an optimized input format for graph neural networks. 
Section 4.1.5 outlines how to train graph neural networks using these optimized graphs. 

Section 4.2 addresses the design of the inference pipeline, a modification of the training 
pipeline designed to automatically extract graphs and apply the graph neural network 
models to any real-world C (and a subset of C++) software. Specifically, Section 4.2.1 
describes the capture phase, aimed at running Meta Infer analysis and extracting L L V M 
bitcode from the build of real-world software. Finally, Section 4.2.2 discusses the inference 
phase, which deploys the trained models on the created graphs and ranks a list of errors 
detected by Infer based on the likelihood of being true positives. 

We recall that he goal of this thesis is to create a system to reduce false positives from 
the static analyzer Meta Infer, described in Section 2.2. Due to reasons mentioned in 
Section 2.3, graph neural networks (GNNs) were chosen for this task. The goal of the trained 
models is to rank the errors found by Infer based on their likelihood of being true positives. 
The D2A dataset was selected for reasons detailed in Chapter 3. Although D2A includes the 
source code of functions mentioned in Infer's bug traces, this information is stored as text 
(more specifically as JSON) and not as graphs. To enable the training of GNNs on D2A, it 
first needs to be transformed into an appropriate graph format. According to Section 2.4, 
a suitable and frequently used representation are the code property graphs (CPGs) and 
its modified versions. The application of GNNs to source code requires a preliminary 
mechanism for graph construction. However, the existing graph construction methods have 
several limitations, which led to the development of our training and inference pipelines. 
The three main disadvantages of the current solutions are: 
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1. Insufficient graph representations, such as constructing only ASTs [73], X F G s [13], or 
CFGs [69] \ 

2. Not considering conditional compilation [9, 33, 75, 91, 95]. 

3. The inability to automatically construct graphs for any software [9, 33, 75, 91, 95]. 

Points 2) and 3) are closely linked. The previous works, namely, [9, 33, 75, 91, 95], all use 
the Joern tool (see Section 2.7) to construct CPGs (and its various modifications), that 
is why they are mentioned in both 2) and 3). Although Joern is a very useful tool, its 
disadvantage is that it analyses the source files directly and is not able to connect to the 
build process itself. This makes it unable to identify which source files to process and which 
not to. While Joern can recursively find and process source files in a given directory [88], it 
does indeed process everything it finds in those directories. This becomes a problem if the 
software includes different versions of the source code, e.g. for different operating systems 
(Windows or Linux), which are selected only during compilation. Joern will thus not be 
able to correctly construct a C P G without knowing which file to use in a given context. 
Therefore, Joern cannot be fully automatically deployed on arbitrary software. 

There is a similar problem with conditional compilation where Joern does not know which 
part of the code to use, or what values the macros have, since they can be (and very often 
are) defined during compilation. For this reason, Joern considers all macros as undefined by 
default, and therefore irretrievably loses code fragments that did not satisfy the conditions 
within #if def or #ifndef during preprocessing. These problems do not seem to manifest 
themselves in artificial datasets, and for concrete real-world software, these problems must 
be solved manually if using pure Joern. 

Points 2) and 3) are also closely related to Infer - since its inputs are compilation commands, 
and the source code is compiled using them before the analysis (see Section 2.2) - Infer 
analyzes the preprocessed code. This means that the Infer's analysis is platform-dependent 
- it can find different errors under various compilation conditions. Therefore, it makes sense 
to construct graphs from the code as seen by Infer. 

The use case of the proposed pipelines differs subtly from previous studies. In particular, 
we need to construct graphs based on the code in alignment with the Infer report that needs 
to be sorted. This requires the capability to slice the code according to the information 
extracted from the report. Program slicing is also employed in some earlier studies. How
ever, in this regard, the most comparable studies, specifically [94, 68], do not use program 
slicing. 

The proposed pipelines are intended to create extended C P G s (further discussed in Sec
tions 4.1.3 and 4.1.4) from software written in C and a subset of C+-h The limitation for 
C++ arises from the use of LLVM-Slicer, with specific reasons elaborated in Section 2.5. 

4.1 Training Pipeline 

The goal of the training pipeline is to transform the D2A dataset into its graph version 
- Graph D2A, upon which a G N N model will be trained. Figure 4.1 shows that the 

1This work, however, employs a hybrid approach using both GNN and RNN. 
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Figure 4.1: The figure shows a schematic of the training pipeline that transforms the 
D2A dataset into Graph D2A, and then trains models on it. Dashed boxes represent the 
intermediate products and data generated by the pipeline. A blue outline highlights the 
important outputs of the pipeline, and a green outline indicates the tool developed in this 
thesis (in addition to assembling and controlling the entire pipeline). The training pipeline 
includes phases such as bitcode generation, graph construction, and feature engineering, 
detailed in Sections 4.1.1, 4.1.2, and 4.1.4, respectively. Icons were taken from [103, 100, 
66, 97, 104]. 

training pipeline consists of three stages - bitcode generation, graph construction, and 
feature engineering, each detailed in Sections 4.1.1, 4.1.2, and 4.1.4, respectively. The 
input to the entire pipeline is the D2A dataset along with the project repositories from 
which D2A was generated. The outputs of the pipeline: 

1. For each project: a Graph D2A dataset - the D2A dataset transformed into raw 
extended code property graphs (ECPGs) in the C S V format (see Sectio 4.1.3), which 
can be used for training GNNs (not only for ranking static analysis reports). 

2. For each project: a Graph D2A dataset with feature engineering (see Sec
tion 4.1.4) prepared in the commonly used TFRecords format (again, see Section 4.1.4) 
for G N N training. 

3. Same for all projects: the T F G N N schema describing the format of the Graph D2A 
with feature engineering (see Section 4.1.4). 

4. Might be same for all projects (see Chapter 6.2): the G N N model for ranking Infer 
reports. 

Both the training and inference pipelines internally use a conversion to L L V M IR. Since 
many languages can be compiled into L L V M IR (see Section 2.5), the Graph D2A can, to 
some extent, be considered language-independent; consequently, the models trained on it 
can also be considered as such. However, it is still important to remember that the original 
language was C. There are several advantages to generating graphs from L L V M IR: 

• The output graphs have a simpler structure (as L L V M IR is a much simpler language 
compared to, for example, C or C++). 

. The existing tools like LLVM-Slicer and L L V M 2 C P G can be utilized. 
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Figure 4.2: The figure shows a schematic of the bitcode generation phase, which generates 
L L V M bitcode for each D2A sample whose error type is supported. Dashed boxes repre
sent the intermediate products and generated data. A green outline highlights the tools 
developed in this thesis. Icons were taken from [103, 100, 102]. 

• The output graphs are language-independent. 

However, there are also disadvantages: 

• The output graphs are larger in terms of the number of nodes and edges. 

• It is not possible to transform the dataset directly; instead, a recompilation of indi
vidual D2A samples is necessary. 

4.1.1 Bitcode Generation 

L L V M bitcode is a binary representation of L L V M IR and can be freely converted between 
the two [54]. For conversion from L L V M IR to L L V M bitcode, the tool llvm-as (llvm as
sembler) is used, and for the reverse conversion, llvm-dis (llvm disassembler) is employed. 
However, these tools are not strictly necessary because, as shown in Figure 4.2, the bitcode 
generator directly produces L L V M bitcode, and all other parts of the pipeline (that work 
with L L V M IR) operate directly on L L V M bitcode as well. 

The objective of the bitcode generator is to produce a set of L L V M bitcode files for each 
sample from the D2A dataset. The number of L L V M bitcode files for each sample is equal 
to the number of source files for that sample in D2A. The names of the source files for each 
sample can be extracted from the compiler_args attribute in D2A. Each sub-attribute in 
compiler_args follows the format [39]: 

' f i l e .c ' -compiler\_argl -compiler\_arg2 

Taking only the keys will produce a set of files (for a given sample) that need L L V M bitcode 
generation. 
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Before generating L L V M bitcode, it is essential first to filter the dataset and remove samples 
that will not be transformed. Tables C . l and C.2 show that some error types have very 
few true positives. A small number of positive samples can make it difficult for models to 
train as they may not have sufficient information to learn the underlying patterns of true 
positives for those error types. Consequently, all error types with fewer than 200 true 
positives across the entire dataset will be filtered out. DEAD_ST0RE errors are always true 
positives, as established in previous work by the author [3] and also confirmed by the D2A 
authors' experiments [94] who do not include DEAD_ST0RE errors in the manual verification 
of D2A. 

A n exception is made for the error types BUFFER_OVERRUN_L 1 and INTEGER_0VERFL0W_L1, 
which are included despite having only 28 and 22 true positives, respectively. The reason is 
that BUFFER_OVERRUN_L 1 is the same as, for example, IBUFFER_0VERRUN_L5 - the only dif
ference being that Infer is more certain of the truthfulness of LI than L5 (more information 
in [3]), similarly for INTEGER_0VERFL0W_L1. Thus, both errors share the same underlying 
pattern, and the model should be capable of learning it. In the end, only errors with fewer 
than 30 true positives are removed, and even out of those, not all are removed, hence the 
overall data loss is minimal. However, this filtering implies a limitation that the model can 
only be applied to supported bug types which are highlighted in Tables C . l and C.2. 

Generating L L V M bitcode can be accomplished during the compilation using the clang 
compiler (all projects in D2A are written in C language) of the specified source file by 
inserting the following options [86] (which were recommended by the old version of Joern 
documentation2, which unfortunately is no longer available) into the compilation command: 

1. -emit-llvm - ensures that L L V M bitcode is used for object files. 

2. -g - adds debug information which allows backward mapping of L L V M bitcode to the 
original source code, enabling the use of program slicing based on location informa
tion [12]. 

3. -grecord-command-line - inserts more debug information into the L L V M bitcode. 

4. -fno-inline-functions - disables the use of inline functions. 

5. -fno-builtin - prevents the compiler from inserting built-in functions. 

The compilation command must indeed be specifically for compiling (it must include -c), 
and not for linking, preprocessing, etc. Additionally, the -o option along with its value 
must be removed, so that the compilation command generates a .be ( L L V M bitcode) file 
instead of the original file. The compiler_args attribute contains only options - typically 
just -I (include directories) and -D (definitions of macros and their values). Since neither 
-c, -o, nor the specific compiler used are mentioned among the options, it is unnecessary 
to remove -o or check if it is indeed a compilation command. Instead of the originally used 
compiler (which cannot be identified from D2A alone), clang will be used. Given that 
Infer also internally uses clang (see Section 2.2), it ensures that both compilations - for 
analysis and for bitcode generation - are identical (different compilers might apply different 
optimizations and have different default behavior). The resulting compilation command for 
the file f i l e . c , generating file.be, would look like this: 

2Joern's old documentation (unavailable): https://docs.joern.io/llvm2cpg/getting-bitcode. 
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clang -emit-llvm -g -grecord-command-line -fno-inline-functions \ 

-fno-builtin {D2A_compiler_args]- -c file.c 

Thanks to this compilation process and the information from compiler_args, the defini
tion and application of macros are successfully achieved. This addresses the previously 
unconsidered problem of conditional compilation, which was mentioned at the beginning of 
this chapter. 

At this stage, the use of the inference pipeline, described in more detail in Section 4.2, 
might seem applicable. It is capable of generating L L V M bitcode for any C / C + + project. 
However, D2A consists of 6 projects, and within a single project, the samples are not made 
from the same version, but from thousands of different versions of the given project. The 
inference pipeline would thus need to be executed separately for each of these versions, 
which is computationally infeasible. The generated L L V M bitcode for each sample would 
be vast, and most of it would later be removed during program slicing. Instead, information 
from D2A and the git repositories of projects from D2A is used to compile only the necessary 
files on specific project versions. 

For simplicity, consider the transformation of a single project within D2A. For each sample, 
it is necessary to restore the project repository to the version (commit) in which the error 
appears, which can be obtained from the D2A attribute commit. Then, the names of the 
files that need to be transformed into L L V M bitcode are extracted from D2A. These files 
are then compiled to generate L L V M bitcode. However, for this process to be fully auto
mated, successful compilation of at least the required files across all required commits must 
be ensured. Proper configuration data, all dependencies, generated data (e.g., C headers), 
etc., are needed for successful compilation. A l l these elements change with software de
velopment, and automating L L V M bitcode generation requires manual adjustment to the 
specific project (more in Section 5.2). 

Once a set of L L V M bitcode files is generated for each sample, these files need to be merged 
into a single one. This requirement stems from the requirements of the LLVM-Slicer tool 
(see Section 2.5). The tool llvm-link [56] is used for this purpose, which, despite its name, 
is not involved in the typical linking process of compilers, llvm-link merely combines 
multiple L L V M bitcode files into a single one while preserving the L L V M bitcode format. 
The tool llvm-link was chosen based on recommendations in the documentation of the 
LLVM-Slicer tool [12]. The output of the bitcode generation phase is, for each sample in 
the dataset, a single L L V M bitcode file containing the transformed source code of all files 
relevant to that sample. Additionally, the D2A dataset is filtered to include only supported 
error types. 

4.1.2 Graph Construction 

The input to the graph construction phase, as shown in Figure 4.3, consists of the filtered 
D2A dataset and an L L V M bitcode file for each sample. The output for each sample is 
a C P G , extended with additional information (the format of the output data is described 
in Section 4.1.3). The output graphs are stored in the C S V format for the Neo4j database. 
Additionally, a script in the Cypher language is included with each sample to load the 
respective graph into the database [88]. Although Neo4j is commonly used for storing and 
querying graph data, it is not used in this thesis. 
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Figure 4.3: The figure shows a schematic of the graph construction phase, which creates 
a raw E C P G for each input D2A sample. Dashed lines represent the intermediate products 
and generated data. A green outline highlights the tools developed in this thesis. Icons 
were taken from [100, 99, 107, 101, 87]. 

Program Slicing 

First, for each sample, it is necessary to extract information required for program slicing 
performed by the LLVM-Slicer (see Section 2.5) from the D2A dataset. This information 
includes: 

• The entry point function - the function in which the program slicing should start 
(the top-most function in the bug trace). 

• The file - the name of the file where the error is located. 

• The function - the name of the function in which the error is located. 

• The line - the line number on which the error is located. 

• The variable (optional) - the variable related to the error (relevant only for certain 
types of errors). 

These details form the so-called slicing criteria. The challenge with extracting slicing criteria 
is that each type of error has a different format, and these details cannot be uniformly 
obtained from all samples. The name of the entry point function is an exception and can 
be retrieved for all samples from the procedure attribute (both from D2A and Infer analysis 
output). The entry function is the highest-level function in the call graph^ among all the 
functions mentioned in the Infer bug trace. Practically, this means that anything above 
this function is not important for the manifestation of the error. If the entry function itself 
is called with the correct parameters and in the right context, it must lead to the reported 
error (assuming it is a true positive). This is crucial information for program slicing, as it 
means that everything above the entry function can be discarded (which is exactly what 
LLVM-Slicer does), because it is not useful for the future classification of true positives/false 
positives. 

3 A Call Graph is an oriented graph in which nodes represent functions and edges represent calls between 
these functions. It can be considered a substructure of the control flow graph to some extent. 
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In total, 14 types of errors are supported, as shown in Tables C . l and C.2. However, 
some error types are similar enough that slicing criteria can be extracted in the same way, 
resulting in the following groups: 

1. NULLPTR_DEREFERENCE - this group contains only the identically named type. 

2. INTEGER_OVERFLOW - includes all INTEGER_OVERFLOW_X where X G {L1,L2,L5,U5}. 

3. INFERBO_ALLOC_MAY_BE_BIG - contains only the identically named type. 

4. UNINITIALIZED_VALUE - again contains only the identically named type. 

5. BUFFER_OVERRUN - includes all BUFFER_0VERRUN_X where 
X e {L1,L2,L3,L4,L5,U5}. 

6. NULL_DEREFERENCE - the last group contains only the identically named type. 

The NULLPTR_DEREFERENCE Group For errors of type NULLPTR_DEREFERENCE, three dif
ferent formats of the Infer output were found in the D2A, distinguishable by the qualifier 
attribute [39], which contains a brief description of the error and shares the same name as 
in the JSON output of Infer: 

1. 'call to 'put_bits()' eventually accesses memory that is the null 

pointer on line 543 indirectly during the call to 'init_put_bits()'.' 

- e.g., sample with id: f fmpeg_8e48b53d696b53cef 2814548e4d0693387e875ea_l. 

2. 'accessing memory that is the null pointer on line 3191 indirectly 

during the call to 'av_malloc()'.' 

- e.g., sample with id: f fmpeg_6a30264054cc320f e610c072c71d008f 7e3c3efb_l. 

3. 'accessing memory that is the null pointer on line 315.' 

- e.g., sample with id: f fmpeg_9c908a4c99e0498dd26bdlde84f f 085ac8e73e4a_l. 

For Cases 2) and 3), the f i l e , function, and line information in the bug_info attribute 
are correct [39]. However, for Case 1), the same information only contains the location of 
the function call where the dereference occurs - in this case, put_bits() . The correct error 
location needs to be obtained from the last step of the trace attribute (bug trace), as shown 
in Listing 4.1 which shows this last step for Case 1). For Cases 2) and 3), the locations 
in the bug_info and the last trace step coincide, thus uniformly extracting information 
from the last bug trace step is feasible for all three formats. Additionally, all three formats 
share the same last step with description - invalid access occurs here. The only 
difference is that in trace, function is named as func_name and line must be extracted 
from loc, as seen in Listing 4.1. 

For NULLPTR_DEREFERENCE errors, it is indeed sensible to consider extracting the variable 
name because null dereferences typically occur on a variable. However, they can theo
retically occur on a constant like (NULL) or a general expression, such as (p

-

p) • When 
the null dereference occurs on a variable, it would be best to extract the name of this 
variable along with the error location. A more precise slicing criterion would allow for 
more accurate program slicing, thereby removing more unnecessary information from fu
ture graphs. Unfortunately, the variable name does not appear in any of the described 
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1 "trace" : [ 
2 // ... other trace steps ... 

3 { 

4 "idx": 16, 

5 "level": 2, 

6 "description": "invalid access occurs here", 

7 

8 

"func_removed": null, 

"file_removed": null, 

9 " f i l e " : "libavcodec/put_bits.h", 

10 "loc": "179:9", 

11 "func_name": "put_bits", 

12 "func_key": "libavcodec/put_bits.h@139:1-189: 2", 

13 "is_func_definition": true, 

14 "url": "https://github.com/FFmpeg/FFmpeg/blob/5962f6b0da037da30 

fcc848331afa6a081a4eb09/libavcodec/put_bits.h/#L179" 

15 } 

16 ] 

Listing 4.1: The last step of the trace [39] for a NULLPTR_DEREFERENCE error taken from 
the sample with id: ffmpeg_8e48b53d696b53cef2814548e4d0693387e875ea_l on the 
FFmpeg project. The listing demonstrates the format of storing a bug trace in D2A. 

formats of NULLPTR_DEREFERENCE in the Infer output (and thus not in D2A either). The 
only clue available is the column, which can be extracted from the loc attribute (see List
ing 4.1). Knowing the line and column where the dereference occurs might seem to simplify 
the extraction of the variable name. However, it is necessary to distinguish when the deref
erence is on a variable, a constant, an expression, or a macro. Distinguishing a variable can 
be done straightforwardly using the C language naming rules for variables - a name can only 
follow the pattern [a-zA-Z_] [a-zA-Z0-9_] *, and anything else cannot be a variable and 
thus should not be extracted. However, macros can be named the same as variables (and 
typically are). Therefore, distinguishing between a variable and a macro is non-trivial and 
would require at least preprocessing by a compiler and subsequent adjustment of the error 
position, as macro expansion can change both the line and column. For now, the extraction 
of the variable name for NULLPTR_DEREFERENCE will be left for future improvements. 

The INTEGER_OVERFLOW Group For the INTEGER_OVERFLOW error types, two formats 
were identified, which can again be distinguished using the qualifier attribute: 

1. ([0, 8] - [0, 8]):unsigned32. 

- e.g., sample with id: f fmpeg_1542087b54ddf 682fb6177f 999c6f 9f79bd5613f _1. 

2. ([0, 1] - 1):unsigned32 by call to 'avfilter_unref_buffer'. 

- e.g., sample with id: f fmpeg_ca5973f Obf ac4560342605f 8a52ef c88b4f4dbd3_l. 

For Case 1), location information can be obtained directly from bug_info. For Case 2), 
a similar problem arises as with NULLPTR_DEREFERENCE Case 1) - bug_inf o contains only 
the location of the function call, in this case, avf ilter_unref _buff er, where the integer 
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overflow/underflow occurs. It is necessary to extract information from the trace attribute. 
To cause an overflow/underflow, two operands are needed (with the exception of operators 
like ++, which in terms of value change is equivalent to +1), and each operand can either 
be a variable or an expression. Although LLVM-Slicer is capable of slicing based on mul
tiple criteria (in this case, both operands), to ensure the resulting graph is complete, it is 
necessary to include the operation itself. Thus, slicing must be based on the entire line, as 
slicing by expression is not yet supported (to the best of the author's knowledge). 

The INFERBO_ALLOC_MAY_BE_BIG Group The INFERBO_ALLOC_MAY_BE_BIG group con
tains only a single error type of the same name, and only one format was identified: 

1. Length: [0, 2147483631] by call to 'av_dup_packet'. 

- e.g., sample with id: f fmpeg_c36d9fbl0c31c6835d01232f ddf f 6932a3ce347f _1. 

Similar to NULLPTR_DEREFERENCE Case 1), it is necessary to extract the location from the 
last step of the trace because the bug_inf o points to a function call in which the error 
occurs, in this case, av_dup_packet. The correct location points to a function call that 
allocates memory, such as malloc, realloc, etc. If the call appears as realloc(ptr, 
size), ideally, it is preferable to slice directly by size because its value is of interest. 
However, the call can often appear as realloc(ptr, str_len + 1), and in this case, the 
value of the entire expression is needed. Of course, it is possible to extract the name of 
the variable only in certain cases, but there are still the previously mentioned issues with 
macros and also with detecting the correct argument. From the output of Infer, it is not 
possible to determine which argument it concerns. Wi th functions like malloc or realloc, 
the argument is known from their definitions, but it is necessary to consider cases where, 
during Infer analysis, custom models are created, and theoretically, any function could be 
considered an allocation function. For these reasons, for this type of error, slicing is only 
done by the line. Moreover, allocation functions typically are not very large, so including 
their code in the graphs does not represent too much unnecessary data. 

The UNINITIALIZED_VALUE Group The UNINITIALIZED_VALUE group also contains only 
a single error type of the same name. Two formats have been identified, which can again 
be distinguished using the qualifier attribute: 

1. The value read from ret was never initialized. 

- e.g., sample with id: f fmpeg_ed80423e6bcf el8cca832b74dcc877427f 8cf 346_1. 

2. The value read from pix[_] was never initialized. 

- e.g., sample with id: f fmpeg_lf 62bae77d6ced3b79deaa8ce5ba3381f d4a541d_l. 

Neither format includes additional information in the trace, so the information is solely 
from bug_info. The location is correct for both formats. Case 1) concerns uninitialized 
variables, where it makes sense to slice also by the variable because the specific variable itself 
is of interest. Moreover, the variable's name can be easily obtained from the qualifier. 
Case 2) concerns uninitialized arrays (or items in an array), where the situation is more 
complex because it is not possible to obtain the access index into the array from the Infer 
output. It could be extracted from the code, but problems such as slicing by expressions 
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and macros arise. If slicing is done only by the line, then information about the index 
would be included in the output. However, experience from checking outputs from Infer 
(especially in [3]) suggests that if an array item is uninitialized, it is because the entire array 
was not initialized. For these reasons, even for Case 2), the variable name is extracted - in 
this case, it is always an array, and the slicing is done with respect to the array. 

The BUFFER_OVERRUN Group For the BUFFER_OVERRUN error types, two formats have 
been identified, which can again be distinguished using the qualifier attribute: 

1. Offset: [0, 15] Size: 4. 

- e.g., sample with id: f fmpeg_61d490455ade68a02df dcf dbl72ba3ded2f eOf9d_l. 

2. Offset: [1, 4] Size: 4 by call to 'filter_mb_mbaff_edgecv'. 

- e.g., sample with id: f fmpeg_0f 5e5ecc888af 015015f 2cel211a066350fbe377_l. 

For Case 1), the information in bug_info is correct. For Case 2), the location needs to be 
taken from the last step of the trace again. Neither format in the Infer output specifies the 
name of the array or the index name (if it involves a variable rather than an expression). 
For these types of errors, both the name of the array and the index are necessarily required. 
To obtain both names, a more complex extraction method from the source code would 
again be necessary. Hence, for this type of error, slicing is currently done by the line. 

The NULL_DEREFERENCE Group The NULL_DEREFERENCE group contains only a single 
error type of the identical name. NULL_DEREFERENCE and NULLPTR_DEREFERENCE are se-
mantically identical, with the difference lying in the Infer plugin that produced them - B i -
abduction (NULL_DEREFERENCE) and Pulse (NULLPTR_DEREFERENCE). Since they originate 
from different plugins (which may have issues with different language constructs leading to 
varying patterns of true and false positives) and also have different formats, it makes sense 
to list them separately. Two formats have been found, distinguishable by the qualifier 
attribute: 

1. pointer ' f i l t e r ' last assigned on line 3191 could be null and is 

dereferenced at line 3194, column 9. 

- e.g., sample with id: f fmpeg_15ae526d6763d8e21833f eb78680ee3571080017_l. 

2. pointer 'null' is dereferenced by call to 'ff_sdp_write_media()' at 

line 2538, column 5. 

- e.g., sample with id: f fmpeg_a94ada4250ff Id9e6101c910fe71dde6c3b5e485_l. 

Ideally, for this type of error, it would be desirable to slice by the variable name (if the 
incorrect dereference occurs on a variable). For Case 1), both the location information 
and the variable name can be obtained directly from bug_info, as the variable name is 
mentioned in the qualifier. For Case 2), bug_info contains only the location of the 
function call within which the incorrect dereference occurs. If the qualifier in Case 2) 
contains a variable name (instead of null), it is not the variable on which the dereference 
occurs but a variable whose value is passed to the called function. Unfortunately, in the 
trace, it is not possible to determine which step represents the incorrect dereference because 
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most steps lack a description. In some cases, the last step in trace represents the 
incorrect dereference, but in some others, it does not. Unfortunately, it is also not possible 
to distinguish between these types. For these reasons, for Case 2), slicing is done only by 
the line of the called function. This ensures that the error is included in the graph, even if it 
is deeper in the call graph. However, this introduces a significant ammount of unnecessary 
information. 

The adjusted_bug_loc Attribute A n important note is that any sample, regardless 
of the type of error, may contain the adjusted_bug_loc attribute in D2A. The attribute 
adjusts the location of the error if the bug_inf o - extracted directly from Infer's output 
- does not precisely pinpoint the error's location. The adjusted_bug_loc was derived 
using the same principles previously described for each group of error types. This raises 
the question of why not directly use adjusted_bug_loc. In the training pipeline, it is 
indeed possible to use these data, but in the inference pipeline, this information is no 
longer available because it only operates with Infer's output on real-world software, not 
with D2A. Therefore, a similar method of extracting precise error locations from the Infer 
report will eventually need to be designed and implemented for real-world applications. 
Utilizing it also in the training pipeline has additionally allowed verification of whether the 
author of this thesis and the authors of D2A agree on the method for extracting the exact 
location of errors - this has been verified across all samples of supported error types. 

The Application of Program Slicing The extracted slicing criteria, along with L L V M 
bitcode, form the input for LLVM-Slicer (see Section 2.5). The output is a sliced L L V M 
bitcode according to the input slicing criteria. The purpose of program slicing is to remove 
parts of the graphs that do not influence the occurrence of the error. Consequently, this 
effectively reduces the size of the resulting graph and eliminates unnecessary information, 
which should facilitate and speed up the learning process for G N N models. LLVM-Slicer 
was chosen based on a recommendation by Ing. Viktor Malik. Upon verification, it was 
found to meet all the requirements, particularly in terms of input and output formats. A n 
alternative, such as the tool llvm-slicing , is no longer maintained. 

Program slicing at this stage of the pipeline also allows for specifying slicing criteria in 
relation to the original code, which is more appropriate than specifying them later in the 
C P G and slicing using tools like Joern [88]. Theoretically, it should be possible to identify 
slicing criteria in the output C P G graph thanks to debug information (see Section 4.1.1) 
attached to individual nodes, which can map certain L L V M constructions back to the 
original code. However, this information may be lost during C P G construction, as discussed 
in Section 2.6. Consequently, it becomes challenging to accurately map C P G nodes back 
to the original code, risking the incorrect construction of the node set intended for slicing 
criteria. 

Generation of Extended Code Property Graphs from L L V M Bitcode 

Sliced L L V M bitcode serves as the input to the L L V M 2 C P G tool (see Section 2.6), which 
generates CPGs . These C P G s are then processed by the Joern tool (see Section 2.7), whose 
task is to: 

4llvm-slicing's repository: https: //github.com/zhangyz/llvm-slicing. 
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1. convert CPGs from binary to the C S V format, 

2. create Extended CPGs (ECPGs) by adding additional layers such as information 
about types, files, functions, and more (see Section 4.1.3). 

Joern is utilized solely as a C L I tool in this thesis. It takes a binary C P G and a script with 
a list of commands to execute, primarily load and save operations, as Joern automatically 
constructs additional layers upon loading. The resulting E C P G s are saved again in a binary 
format. The final step involves converting the binary format into the easily usable C S V 
format using a Joern sub-tool - joern-export [88], which creates a directory with C S V 
files containing: 

• C S V header file, 

• C S V data file (without header), 

• Cypher script for importing into the Neo4j database. 

The C S V header file is kept for each sample, even though it might seem unnecessary. 
The reason lies in Joern's non-deterministic behavior regarding the columns generated on 
different machines. For instance, the header for METHOD nodes (see Section 4.1.3) in httpd 
(true positives) and openssl (true positives) - openssl has two additional columns, which, 
however, contain no useful information. 

The Joern tools (and Joern Export) were chosen due to their frequent use in the field of 
GNNs [9, 33, 75, 91, 95]. L L V M 2 C P G is specifically recommended on the L L V M Project 
website for generating C P G s in combination with Joern [16]. 

4.1.3 Graph D 2 A 

The D2A dataset, where each sample is transformed into an E C P G generated using the 
Joern tool, will henceforth be referred to as Graph D2A. Graph D2A is one of the main 
contributions of this thesis and, in combination with the original D2A, enables other re
searchers to create their own graph representations (based on CPGs) for GNNs and apply 
their own feature engineering. As mentioned earlier, E C P G s contain additional informa
tion compared to CPGs described in Section 2.4. Additionally, the C S V format facilitates 
further preprocessing of the dataset before inputting into GNNs. In this thesis, individual 
samples of Graph D2A will be referred to as raw E C P G s , precisely because they are in 
the C S V format and because the node/edge attributes are not yet processed or modified -
they often lack, have an inappropriate format, and the format is not uniform (int, float, 

string, etc.). Processing raw E C P G s into a format suitable for training GNNs will be 
addressed in Section 4.1.4. 

The complete output format of raw E C P G s is described in the automatically generated 
documentation of the Joern tool [93] (version 1.1), from which the following information is 
also taken. Like CPGs, raw E C P G s are directed, node-labeled, edge-labeled, multigraphs. 
The set of nodes that share the same label will be referred to as a node set, for future 
compatibility. A l l nodes within a single node set have the same set of attributes (although 

5Command Line Interface (CLI). 
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Figure 4.4: The figure shows the hierarchy of node sets in green (generated for L L V M IR) 
and the base class node sets in blue. 

some values may be missing). Similarly, edges that share the same label will be referred 
to as an edge set. No edge sets (except REACHING_DEF) in raw E C P G s have attributes, 
but as mentioned in the following sections, it may make sense to move certain attributes 
from nodes to edges. Raw E C P G s consist of layers, where each layer can add additional 
node/edge sets or their attributes. Individual layers may be language-dependent, as Joern 
can generate E C P G graphs from any language for which a frontend is written. Currently, 
this includes languages such as L L V M IR, C / C + + / C # , Java, JavaScript, Python, Kotlin, 
PHP, Go, Ruby, Swift, and more [93, 88]. The Joern layers that are completely missing 
for L L V M IR are the Comment Layer, Finding Layer, TagsAndLocation Layer, 
Configuration Layer, Binding Layer, and Annotation Layer. These missing layers 
will not be further described. 

Since this thesis utilizes only L L V M IR (specifically L L V M bitcode) as Joern input, the 
following explanation includes only layers generated for L L V M IR. Although the Joern 
documentation is highly detailed, it does not describe all the attributes of the node sets. 
A complete list of these attributes is provided in Table C.4. The description of each attribute 
is discussed in detail in Section 4.1.4, where the removal of irrelevant attributes is addressed. 
Node sets are hierarchically organized - if node set X inherits from node set Y, it implies that 
X contains the same attributes as Y and adds some unique ones (typically). A visualization 
of the hierarchy of node sets (which are generated for L L V M bitcode) and base class node 
sets can be seen in Figure 4.4. 

The MetaData Layer contains only one node set - META_DATA. In each graph, there 
is precisely one such node with ID: 1, containing information about how the graph was 
generated - e.g., input language, version, etc. 

The FileSystem Layer includes information about the files from which the graph was 
generated. It specifically adds the node set FILE, where each node represents an input 
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source file. This layer also introduces an edge set SOURCE_FILE, which connects nodes from 
other node sets to FILE nodes based on their source file. 

The Namespace Layer introduces the NAMESPACE node set, which resembles FILE and 
describes the namespace as known from programming. This layer also introduces the 
NAMESPACE_BLOCK node set, which groups code under a common namespace, defined using 
specific statements like namespace in C++ or package in Java. 

The Method Layer includes declarations of methods, functions, and procedures (collec
tively referred to as 'functions' hereafter). This layer also includes their inputs and outputs 
but does not contain their code. Included in this layer are node sets: 

• METHOD - information about a specific function. 

• METHOD_PARAMETER_IN - represents the input parameters of a specific METHOD node. 

• METHOD_PARAMETER_OUT - represents the output parameters corresponding to the in
puts of a specific METHOD node. 

• METHOD_RETURN - represents the return parameter of a specific METHOD node. 

The Type Layer contains information about type declarations, type relationships, type 
instantiation, type hierarchies, parameterized types, and aliases. This layer introduces the 
following node sets: 

• MEMBER - member of a structured type. 

• TYPE - instance of a type. 

• TYPE_ARGUMENT - argument used during parameterized type instantiation (e.g., Java 
Generics, C++ templates). 

• TYPE_DECL - type declaration. 

• TYPE_PARAMETER - formal parameter of parameterizable types. 

Additionally, the layer provides the following edge sets: 

• ALIAS_0F - alias relationship between a type declaration and a type. 

• BINDS_T0 - links type arguments to type parameters during type instantiation. 

• INHERITS_FROM - inheritance relationship between type declarations and types. 

The Ast Layer is the core of E C P G s , providing ASTs for all input code. A S T nodes are 
linked into trees via the AST edge set, and sibling positions in the tree are specified using 
the ORDER attribute. The layer offers the following node sets: 

• AST_N0DE - template providing basic attributes of A S T nodes. 

• BLOCK - compound statement grouping multiple statements. 

• CALL - function call. 
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• CALL_REPR - template for the CALL node set. 

• CONTROL_STRUCTURE - control structure statements and jumps. 

• EXPRESSION - template for any code fragment that can be evaluated. 

• FIELD_IDENTIFIER - identifier of an element in an array. 

• IDENTIFIER - identifier of a variable. 

• JUMP_LABEL - jump label. 

• JUMP_TARGET - any code location marked as a jump target. 

• LITERAL - constant. 

• LOCAL - local variable. 

• METHOD_REF - function reference when passed as a parameter. 

• MODIFIER - language-specific modifiers like static,private, public, etc. 

• RETURN - return statement. 

• TYPE_REF - reference to a type/class. 

• UNKNOWN - other code fragments not classifiable into any of the above node sets. 

The CallGraph Layer describes the relationships between function calls. This layer 
provides only the following edge sets: 

• ARGUMENT - links CALL nodes to their arguments and RETURN nodes to the expressions 
they return. 

• CALL - links CALL nodes to METHOD nodes. 

• RECEIVER - links CALL nodes to the objects on which the method was invoked. 

The Cfg Layer provides CFGs for all functions. This layer provides the CFG_N0DE node 
set, which is also an AST_N0DE. Therefore, all CFG_N0DE are AST_N0DE, but not all AST_N0DE 
are CFG_N0DE. Additionally, the layer adds the CFG edge set, which links CFG_N0DE nodes 
in the direction of control flow (without distinguishing between true and false paths). 

The Dominators Layer provides dominator and post-dominator trees [2] for all functions. 
These trees are closely related to the C F G Layer, as they identify sets of inescapable nodes 
in CFGs . The layer provides the following edge sets: 

• DOMINATE - an edge indicating that the source node dominates the destination node. 

• P0ST_D0MINATE - an edge indicating that the source node post-dominates the desti
nation node. 
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The Pdg Layer provides PDGs for all functions. As defined in Section 2.4, a P D G should 
provide data dependency and control dependency edges. The Pdg Layer provides the CDG 
edge set, which provides control dependency edges (without distinguishing between true 
and false paths), and the REACHING_DEF edge set, which indicates that a variable (source 
node) reaches a specific point (target node) unchanged - an extension of data dependency 
edges. 

The Shortcuts Layer provides a more explicit representation of certain properties using 
the following edge sets: 

• CONTAINS - links nodes to the function (METHOD node) that contains them. 

• EVAL_TYPE - links a node to its data type (TYPE node). 

• PARAMETER_LINK - connects METHOD_PARAMETER_OUT nodes to their corresponding 
METHOD_PARAMETER_IN nodes. 

The Base Layer provides the DECLARATION node set, which is merely a template for all 
declarations. Additionally, it provides the REF edge set, which indicates that an IDENTIFIER 
(source node) belongs to a specific node (target node), e.g., an identifier belongs to a local 
variable (LOCAL node). 

A n important note is that neither CFG nor CDG edges contain any information, which differs 
from the definition in Section 2.4. This can cause issues, especially when correctly mod
eling program branching. However, the required information is present in the graph, and 
branching can be modeled, as discussed in Section 4.1.4. 

4.1.4 Feature Engineering 

Graph D2A provides raw E C P G s in the C S V format. However, these graphs cannot be 
directly used to train GNNs. They first need to be transformed into a format suitable 
for model training, which is ensured by the feature engineering phase in Figure 4.5. The 
graph format is determined by the library chosen for implementing GNNs. In this thesis, 
T F G N N (TensorFlow GNN) is used, which is an open-source6 extension of TensorFlow -
one of the most widely used machine learning libraries. A relatively simple and commonly 
used dataset format within T F (not only for graph data) is TFRecord, which is designed 
to store sequences of binary data [84] - graphs, in this case. The input to the feature 
engineering phase is thus Graph D2A, and the output is a dataset in the TFRecord format. 
This transformation also includes feature engineering, which consists of the following steps: 

1. Feature Selection - removing edge/node sets and their attributes that are not 
important for ranking false positives. 

2. Graph Optimization - reducing the graph size while preserving crucial information. 

3. Node/Attribute Transformation - some nodes/attributes need to be converted 
to another format or decomposed into multiple components. 

4. Feature Normalization - it is beneficial to normalize features for more stable train
ing. 
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Figure 4.5: The figure shows a schematic of the feature engineering phase - the final phase 
of the training pipeline. Dashed boxes represent the intermediate products and generated 
data. A blue outline highlights the important outputs of the pipeline, and a green outline 
indicates the tools developed in this thesis. Icons were taken from [105, 66, 97, 104]. 

In feature engineering, the aim is to refine raw E C P G s to a state where models can be as 
small as possible while learning and generalizing effectively. The ultimate goal in reducing 
false positives is to train models that work for cross-analysis - training on one project 
while performing inference on a different, unseen project. None of the models compared in 
this thesis, specifically those from [94, 68], function within cross-analysis. Thus, in feature 
engineering, adjustments will be made that should help achieve cross-analysis for GNNs. 
The aim is to remove information from raw E C P G s that could lead the G N N model to 
overfit to individual samples or entire projects. These adjustments include, for instance, 
removing specific variable names or suppressing the original programming style (already 
managed by converting to L L V M IR). These modifications are described in detail later in 
this section. 

Feature Selection 

Feature selection is one of the most crucial parts of the training pipeline because it allows 
for the greatest reduction in graph sizes. Simultaneously, incorrect feature selection pre
vents the G N N models from efficiently extracting distinguishing patterns. This significant 
importance was the primary motivation for Graph D2A (raw EPCGs) to also be one of 
the outputs of this thesis. If feature selection was poorly executed, the resulting dataset 
would be unusable, providing only incomplete data for the task. Thanks to Graph D2A, 
experimenting with different feature selections in the future is possible. 

It is important to choose node/edge sets and their attributes that best and most accu
rately describe the code from the perspective of potential errors. These optimized graphs 
should contain only the information needed to distinguish between true positives and false 
positives. Additionally, the aim is for models to generalize well to unseen projects; for 
instance, the model should not remember variable names and thus recognize specific pro-

6 TFGNN's repository: https://github.com/tensorflow/gnn. 
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jects/samples based on them. This section describes which node/edge sets and their at
tributes were chosen and why (also why some were not chosen). The following description 
includes only edge/node sets that were generated for L L V M IR (at least for a single sam
ple). Node sets that did not occur (even if some additional information from their layer did, 
see Section 4.1.3) are TYPE_ARGUMENT, TYPE_PARAMETER, CONTROL_STRUCTURE, JUMP_LABEL, 
JUMP_TARGET, MODIFIER, and TYPE_REF. Template node sets (see Figure 1,1) are also not 
generated. The edges RECEIVER, CONDITION, INHERITS_FROM, and BINDS_T0 are also not 
present in Graph D2A. Attributes not mentioned for a given node set, and that the node 
set does have (see Table C.4), contain only a single (or, for instance, two but useless) value 
across the entire dataset and thus do not provide any useful information. The following 
descriptions are based on the Joern documentation [93] and the examination of Graph D2A 
samples. 

The META_DATA Node Set The node set META_DATA will not be used at all because 
all its attributes contain only a single value for all samples. The only exception might 
be LANGUAGE, which holds information about the language from which the E C P G was 
generated. This is useful when the system has multiple input languages, which theoretically 
could be true for the proposed system (thanks to converting the input language to L L V M 
IR). However, since each input language would first be compiled to L L V M IR, LANGUAGE 
would always have the value ' LLVM'. 

The FILE Node Set The node set FILE also contains only attributes with the same values 
across samples. The reason it does not contain information about files is L L V M Link - the 
input file to Joern with L L V M bitcode is always just one, so the node set FILE contains 
only a single node. Thus, the node set will be completely removed. Simultaneously, the 
edge set SOURCE_FILE will also be removed because it depends on the FILE node set. 

The NAMESPACE Node Set The node set NAMESPACE will also be completely removed. 
L L V M IR does not have namespaces like other high-level languages. At best, the concept 
of namespaces can be discussed in relation to individual files. However, the same problem 
arises as with the FILE node set - all code is in a single file and thus in a single namespace. 
The attribute NAME contains only the values <global> and llvm-link_global. Analogously 
for the node set NAMESPACE_BLOCK. 

The METHOD Node Set The node set METHOD will be used, specifically its attributes: 

• IS_EXTERNAL - has values true and false, indicating whether the function's code is 
available (and therefore a E C P G ) or not (dynamic library call). 

• ORDER - the value is always 0, but it is retained for later node set merging (see below 
in this section). 

• FULL_NAME - the full name of the function (e.g., malloc). Ideally, this information 
should be removed to prevent the model from remembering functions from individual 
D2A projects, reducing the likelihood of successful cross-analysis. However, it is 
necessary to distinguish functions for which no code is available. Functions from 
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standard libraries are crucial to remember because, for instance, malloc or free are 
essential for detecting memory leak errors. Using FULL_NAME only for IS_EXTERNAL 
functions is logical because they often belong to standard libraries, avoiding project-
specific function names. However, project-specific functions can also be dynamically 
linked, and standard functions can be linked statically. For now, FULL_NAME will be 
used for all functions, and the usage limited to some functions only is left for future 
work. 

The following attributes contain some information but will not be used: 

. AST_PARENT_FULL_NAME - for METHOD nodes, this is the name of the NAMESPACE_BLOCK, 
which does not contain any useful information, as mentioned before. 

. FILENAME - analogously to AST_PARENT_FULL_NAME. 

• LINE_NUMBER - information about which line the definition is on (may be empty), this 
information is not crucial for error detection. 

• NAME - for METHOD nodes, it contains, like FULL_NAME, the function name. 

• SIGNATURE - contains the function signature, which is potentially useful information. 
However, since the data types of individual nodes will be included later (including 
the arguments and return values of all functions) as separate nodes, the signature will 
be implicitly present in the graph structure, and the SIGNATURE attribute would be 
redundant. 

The METHOD_PARAMETER_IN Node Set For the node set METHOD_PARAMETER_IN, only the 
ORDER attribute will be used (the order among siblings in the AST) , which indicates the 
index/order of the parameter within the function declaration. The other attributes will not 
be used, namely: 

• CODE - contains the parameter name, which is better removed to improve generaliza
tion between projects. 

• INDEX - always has the same value as ORDER and expresses the same information, so 
it is unnecessary redundancy. 

• NAME - contains the same value as CODE - will be removed. 

• TYPE_FULL_NAME - information about the data type, but since data types will be 
modeled as separate nodes, this information is redundant. 

• IS_VARIADIC - information on whether the parameter is variadic (denoted as ' . . . ' 
in C, e.g., in the printf function). This information will be discarded for future node 
set merging purposes, but it is still useful information. 

The METHOD_PARAMETER_OUT Node Set Node set METHOD_PARAMETER_OUT will be com
pletely removed because, for statically typed languages (like L L V M IR), it contains the 
same information as METHOD_PARAMETER_IN and would unnecessarily add redundant data. 
The edge set PARAMETER_LINK is also removed because it connects METHOD_PARAMETER_IN 
and METHOD_PARAMETER_OUT. 
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The METHOD_RETURN Node Set In the METHOD_RETURN node set, only the ORDER at
tribute will be used, mainly due to the later merging of node sets. The attributes CODE, 
DYNAMIC_TYPE_HINT_FULL_NAME (which can be empty), and TYPE_FULL_NAME typically con
tain the same information about the data type, which will be discarded for the aforemen
tioned reasons. 

The MEMBER Node Set For the MEMBER node set, only the ORDER attribute will be used, 
indicating the order within the defined structure. Other attributes will not be used: 

• CODE - contains the name of the component. The name of the component is not 
important for distinguishing true positives and false positives; only its type and order 
matter. 

• NAME - contains the same information as CODE. 

• TYPE_FULL_NAME - types will later be expressed via nodes. 

The TYPE Node Set The TYPE node set contains the attributes FULL_NAME, NAME, and 
TYPE_DECL_FULL_NAME, which contain the same information - the full name of the data 
type. Therefore, only FULL_NAME will be retained (although any of them could be used). 
Based on the name, the data type can be distinguished into multiple categories, such as 
integer, float, pointer, function signature, etc. More information can be found below in 
this section. Modeling data types using external nodes greatly simplifies other nodes that 
(where appropriate) carry their own type information in their attributes, which can then 
be removed. Overall, graphs will be smaller (in terms of data quantity in attributes) and 
simpler. 

The TYPE_DECL Node Set The TYPE_DECL node set does not add any new information for 
L L V M IR compared to the TYPE node set. The node set could be useful for languages with 
parameterizable types or classes like C++ or Java. Therefore, this node set is completely 
removed. However, it must be removed carefully because it connects important parts of 
the graphs - TYPE nodes of structured types with their MEMBER nodes. More information 
on this is provided later in this section. 

The BLOCK Node Set The BLOCK node set does not contain any useful information in 
its attributes. Its usefulness lies in how it connects other nodes in the A S T . For instance, 
each function has its own BLOCK node that contains all top-level statements. BLOCK nodes 
are useful, for example, for determining variable scope and also as latent nodes7 for passing 
information within G N N [76]. Again, for future node set merging, the ORDER attribute is 
retained, as well as the ARGUMENT_INDEX attribute. However, neither carries any useful 
information. 

7Latent node - a node in the graph that does not contain any information itself and serves purely as 
a connection between other nodes. 
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The CALL Node Set In the CALL node set, only the attributes ORDER and ARGUMENT,INDEX 
will be retained. If the parent of the CALL node is another CALL node, then ARGUMENT,INDEX 
indicates the position among the function call arguments. If the parent is a BLOCK node, 
ARGUMENT_INDEX indicates the position among the commands contained in that BLOCK node. 
However, this information is not particularly important and wil l be removed later, but 
detection of this case can only be done by examining the graph, as described later in this 
section. 

The FIELD_IDENTIFIER Node Set L L V M IR supports the array data type [55], so the 
FIELD_IDENTIFIER node set must be included. Again, the ORDER and ARGUMENT_INDEX 
attributes are retained due to the later merging of node sets, although they contain the 
same value across the dataset. Both values are always 2, because access to an array is 
modeled in E C P G s as a call to the getElementPtr operator, where the FIELD_IDENTIFIER 
is always the second argument. The CANONICAL_NAME attribute, which contains the name 
of the field, will not be included for reasons similar to those for the FULL_NAME attribute in 
the METHOD node set - the model should not remember samples/projects based on specific 
names. 

The IDENTIFIER Node Set In the IDENTIFIER node set, only ARGUMENT_INDEX and 
ORDER are retained, which now contain valid values. Other attributes are not included: 

• CODE - contains the name of the variable, which is not used for the same reasons as 
CANONICAL_NAME in FIELD_IDENTIFIER. 

• COLUMN_NUMBER - potentially useful information, especially for refining pooling in the 
G N N head (see Section 4.1.5), but this is left for future improvements. 

. LINE_NUMBER - same reason as COLUMN_NUMBER. 

• NAME - contains the same information as CODE. 

• TYPE_FULL_NAME - types are handled using the TYPE node set. 

This may raise the question of how to identify IDENTIFIER nodes that refer to the same 
variable in the graph when their names are discarded. The answer lies in the LOCAL nodes 
and REF edges that connect nodes representing the same variable. This information is thus 
represented by the graph structure and not by the node attributes. 

The LITERAL Node Set In the LITERAL node set, the ORDER and ARGUMENT,INDEX at
tributes are retained. Additionally, the CODE attribute, which contains the literal value, is 
also retained. This value can be an integer, floating point, string, array, structure, or any 
supported data type in L L V M IR [55]. Storing this value will require the creation of a spe
cial node set capable of accommodating these different formats (see later in this section). 
The COLUMN_NUMBER, LINE_NUMBER, and TYPE_FULL_NAME attributes are not used for the 
reasons mentioned earlier. 
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1 store i32 7,5, i32* @x, align 4, !dbg !40 // write x 
2 7.10 = load i32, i32* @x, align 4, !dbg !27 // load x 
3 store i32 7,6, 132* @y, align 4, !dbg !42 // write y 
4 %7 = load i32, i32* @y, align 4, !dbg !24 // load y 

Listing 4.2: A n example of a code in L L V M IR that demonstrates reading and writing to 
global variables. 

The LOCAL Node Set In the LOCAL node set, only the ORDER attribute is used. Other 
attributes, such as CODE, NAME, and TYPE_FULL_NAME, are not used for the previously men
tioned reasons. The usefulness of this node set lies mainly in connecting the IDENTIFIER 
nodes that represent the same variable. The problem is that LOCAL nodes only exist for 
local variables, not for global ones. L L V M IR can have global variables, but unfortunately, 
L L V M 2 C P G and Joern cannot properly encode them in the graph. Consider the read and 
write operations in Listing 4.2. It is clear which variable is being read/written to - the 
x and y variables. However, if E C P G is generated using L L V M 2 C P G and Joern, each access 
to a global variable is preceded by obtaining its address, and then the data is written/read 
to/from that address - the variable identifier is not used. Obtaining the address is mod
eled as a call (a CALL node) to the addressOf operator, which has a single operand that 
should contain the global variable identifier in this case. But as shown in Listing 4.3, the 
operand is of type LITERAL with value 0 and type i32. Therefore, global variables cannot 
be distinguished from each other. One possible way would be to use the debug info ! dbg 
!40 in the original L L V M IR (see Listing 1.2), which points to the exact location (line and 
column) in the original C code, and thus the name of the global variable could be extracted 
from there. However, this encounters the previously mentioned problem - variables versus 
macros. Extracting global variables is thus left for future improvements. 

The METH0D_REF Node Set In the METH0D_REF node set, only ARGUMENT_INDEX and 
ORDER will be retained. The C0LUMN_NUMBER and LINE_NUMBER attributes will not be re
tained for the reasons mentioned earlier. The CODE and METHOD_FULL_NAME attributes both 
contain the name of the method that the node represents. However, since METH0D_REF is 
connected to the METHOD node via REF edges, these attributes can be discarded. 

The RETURN Node Set In the RETURN node set, ORDER and ARGUMENT_INDEX are used, 
which contain useful values. The location information C0LUMN_NUMBER and LINE_NUMBER 
are discarded again. 

The UNKNOWN Node Set In the UNKNOWN node set, only ORDER and ARGUMENT_INDEX will 
be retained, both containing valid values. The CODE attribute may contain clues about what 
the UNKNOWN node holds - typically the name of a data type or a signature. The UNKNOWN 
node itself does not provide any useful information, but it is typically deeply embedded in 
the graph and connects surrounding nodes. Because there are significantly fewer UNKNOWN 
nodes compared to other nodes, it will be retained. 
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1 // node set CALL 

2 ID,LABEL,CODE,COLUMN_NUMBER,LINE_NUMBER,METHOD_FULL_NAME,TYPE_FULL_NAME 

3 35,CALL,&0,16,10,<operator>.addressOf,i32* 

4 46,CALL,&0,16,12,<operator>.addressOf,i32* 

5 88,CALL,&0,5,7,<operator>.addressOf,i32* 

6 96,CALL,&0,5,8,<operator>.addressOf,i32* 

7 
8 // edge set AST 

9 START_ID,END_ID,TYPE 

10 35,34,AST 

11 46,45,AST 

12 88,87,AST 

13 96,95,AST 

14 
15 // node set LITERAL 

16 ID,LABEL,CODE,COLUMN_NUMBER,LINE_NUMBER,TYPE_FULL_NAME 

17 34,LITERAL,0,16,10,i32 

18 45,LITERAL,0,16,12,i32 

19 87,LITERAL,0,5,7,132 

20 95,LITERAL,0,5,8,i32 

Listing 4.3: The simplified E C P G in the C S V format for the L L V M IR code from Listing 4.2, 
demonstrating reading and writing to global variables. 

Edge Sets The edge set ALIAS_0F is discarded because aliases are resolved and the 
original type names are used during compilation and generating L L V M bitcode. Information 
about aliases is present in the graph through debugging information (see Section 4.1.1) in the 
form of TYPE nodes. However, these nodes are later removed as part of graph optimizations 
(see below in this section). 

The edge sets AST, CFG, and CDG are, of course, retained because they form the core of the 
C P G . 

The edge set ARGUMENT is retained because it connects CALL nodes to their arguments. 

The CALL edge set connects CALL nodes to their corresponding METHOD nodes, thereby adding 
a call graph to the C P G . The A S T itself is created for each function, but the trees are not 
interconnected, preventing message propagation during G N N computation. The CFG edges, 
along with CALL edges, connect these individual ASTs at semantically appropriate places. 

The edge sets DOMINATE and P0ST_D0MINATE form dominator and post-dominator trees [2], 
which provide useful information but essentially express certain simple properties of the 
C F G more explicitly. Additionally, there are too many of these edges, so they will not be 
used. However, it would be beneficial to experiment with them in future work. 

The REACHING_DEF edge set will not be used because there are too many of these edges in 
each graph. However, this is another very useful edge set that is worth experimenting with 
in future work. 
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The CONTAINS edge set will not be used because it also represents a relatively large number 
of additional edges. Furthermore, the information about which method a node belongs to 
can easily be obtained from the A S T . 

The EVAL_TYPE edge set is, of course, used to connect nodes with their types. 

The REF edge set is also retained to link identifiers to the local variable they identify. It 
also connects METHOD_REF nodes and METHOD nodes. 

Mandatory Attributes A l l node sets also contain the ID and LABEL attributes, which 
are not mentioned in the documentation. There are more undocumented attributes, such 
as CLOSURE_BINDING_ID in the LOCAL node set. However, since none of them are used, 
they are not mentioned in the text. A complete list of attributes for node sets in Graph 
D2A can be found in Table C.4 . The ID attribute identifies a node within each Graph D2A 
sample, and the LABEL attribute contains the name of the node set. Both of these attributes 
are used, although the ID is more for implementation reasons, and the original ID is not 
present in the output TFRecords files, which instead use IDs from the T F G N N library (see 
Section 5.6). Each edge set (except REACHING_DEF, which contains an additional attribute) 
contains the following three attributes: 

• START_ID - the source node of the directed edge. 

• END_ID - the target node of the directed edge. 

• TYPE - the name of the edge set. 

Control Structures in Raw E C P G s The generated E C P G s do not contain the node 
sets CONTROL_STRUCTURE, JUMP_LABEL, or JUMP_TARGET, even though the original C source 
code uses them. The reason lies partly in the conversion to L L V M IR and partly in generat
ing the CPGs . During the compilation to L L V M IR, all control structures (if, for, while, 

etc.) are simplified to jumps. Consider a simple i f statement in C in Listing 4.4. The 
same code in L L V M IR is shown in Listing 4 .5 , where label 6: represents the true branch 
and label 7: the false branch of the original code. The tools L L V M 2 C P G and Joern did 
not generate JUMP_LABEL or JUMP_TARGET even though they are present. However, program 
branching information (which is crucial) can still be extracted from the C P G , specifically 
using CFG and CDG edges. 

Consider a partial E C P G (only CFG and CDG edges and without the ret statement) in 
Figure 4.6, representing the L L V M IR code from Listing 4 .5 . If a node branches CFG edges 
(node 30, representing the value assignment to °/

0
5), the program flow branches at that node. 

The possible CFG paths are branches in the original code. These branches are connected to 
the condition that determines the program flow branching via CDG edges (from node 30). 

From the graph, one can distinguish the true branch (assigning 1 to 7,1) from the false 
branch (assigning 2 to 7,1) because the true branch has lower ORDER value for the last node 
(node 34) before the paths merge (node 40) than the node from the false branch (node 
38). This is because the true branch is always first due to the compilation. If the L L V M 
IR is manually modified and the branches are rearranged, it will no longer be possible to 
distinguish the true and false branches from the graph. This fact further demonstrates 
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1 i f (z) 

2 return 1; 

3 else 

4 return 2; 

Listing 4.4: A simple i f statement in the C language. 

1 7.5 = icmp ne i32 7,4, 0, !dbg ! 16 

2 
q 

br i l 7.5, label 7,6, label 7.7, !dbg ! 18 

o 
4 6: 

5 store i32 1, i32* 7.1, align 4, !dbg ! 19 

6 br label 7,8, !dbg ! 19 

7 
8 7: 

9 store i32 2, i32* 7,1, align 4, !dbg !20 

10 br label 7,8, !dbg !20 

11 
12 8: 

13 7,9 = load i32, i32* 7,1, align 4, !dbg !21 

14 ret i32 7,9, !dbg !21 

Listing 4.5: The code from Listing 4.4, but converted to L L V M IR. 

that utilizing node sets and edge sets constructing the C P G is necessary. It also shows the 
importance of ORDER attributes in A S T nodes. 

The node sets and their attributes present in Graph D2A are listed in Table C.4. Attributes 
of individual node sets that were considered useful and selected during feature selection are 
also marked in the table. 

Graph Structure Optimization 

Before using individual graphs as inputs to GNNs, it is necessary to remove as many 
unnecessary and redundant nodes, edges, and attributes from the graphs as possible. The 
previous text dealt with the removal of information at the level of entire node sets, edge 
sets, and attributes. However, even within a single node set, there are nodes that do not 
add any useful information and can be removed, effectively reducing the graph and easing 
the learning process of the GNNs. Furthermore, adjustments are required to ensure certain 
properties arising from the use of GNNs and the T F G N N library. 

To propagate information correctly within the graph during G N N computation, the graph 
must consist of only one W C C (see Section 2.3). For GNNs where message passing follows 
the direction of the edges, it is also necessary to ensure the correct orientation of the edges. 
Using T F G N N requires creating a so-called T F G N N schema [77], which describes the graph 
structure: node sets, edge sets, their attributes, and attribute data types. In the T F G N N 
schema, all nodes in a node set must have the same attributes (similarly for edges) - this 
already applies to raw E C P G s . Furthermore, each edge set must have a fixed source node 
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Node Sets 
~1 IDENTIFIER 

var'%1 assignment 
to '%5' 

(condition) 

assignment . ,_, get address var'%1' 
of 2 to '%ľ V d l U B z

 o f % 1 

Figure 4.6: A partial (only CFG and CDG edges and without the ret statement) E C P G 
demonstrating branching in L L V M IR from Listing 4.5. 

set and target node set - unfortunately, this is not the case with raw E C P G s . For example, 

AST edges connect BLOCK, CALL, LOCAL, IDENTIFIER, and other types of nodes. 

The following transformations are described in this section: 

1. removal of unnecessary and redundant information, 

2. creating graphs with only one W C C , 

3. ensuring fixed source and target node sets for all edge sets. 

The removal of unnecessary and redundant information and ensuring a single W C C are 
closely related because removing some unnecessary nodes also removes unnecessary separate 
WCCs . This step consists of the following sub-steps, which must be performed in the given 
order: 

1. removal of invalid nodes within the A S T , 

2. removal of W C C s (only in the AST) consisting only of BLOCK nodes, 

3. removal of A S T leaf BLOCK nodes, 

4. filtering out unnecessary ARGUMENT edges, 

5. removal of A S T children of external functions, 

6. removal of unused functions, 

7. filtering out unnecessary EVAL_TYPE edges, 

8. removal of the TYPE_DECL node set, 

9. filtering out unused TYPE nodes. 
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Removal of Invalid Nodes The removal of invalid nodes occurs only within the A S T -
considering only AST edges and ignoring others. Invalid nodes are considered all those that 
were removed during feature selection and have an AST edge leading to or from them (e.g., 
a standalone META_DATA node is not part of the A S T ) . If these nodes were simply removed 
(along with their edges), the A S T they belong to would be split. Therefore, they need to 
be removed based on their position in the A S T as follows: 

1. Leaf - the invalid node, along with its edges, can be simply removed. 

2. Root - the invalid node is replaced with a valid BLOCK node to ensure that the A S T 
has exactly one valid root. 

3. Inner node - the A S T children of the invalid node are connected to the A S T parent 
of the invalid node. 

Since no node types inheriting from CFG_N0DE are removed during feature selection, it is 
not necessary to connect CFG edges in the case of inner nodes because there should not be 
any, according to the documentation. Similarly, CDG edges do not make sense for any invalid 
nodes. A n exception is the removed METHOD_PARAMETER_OUT node set, which inherits from 
CFG_N0DE (see Figure 4.4), but no CFG or PDG edges leading to or from these nodes were 
found in Graph D2A. Therefore, only AST edges need to be reconnected. 

After removing the invalid nodes, the graph is composed of one or more ASTs - one A S T 
for each function. 

Removal of BLOCK W C C s After removing the invalid nodes, it is necessary to remove 
W C C s entirely composed of BLOCK nodes. These are latent nodes, and W C C s entirely 
composed of latent nodes contain no useful information. Such W C C s can arise, for example, 
from ASTs entirely composed of invalid nodes, as the previous algorithm would convert the 
invalid root into a valid node and remove the other invalid nodes. This would result in 
an A S T with only a BLOCK node. The case where a W C C consists only of BLOCK nodes is 
relatively rare. 

Removal of Leaf BLOCK Nodes A l l leaf BLOCK nodes are also removed from all ASTs. 
The reason is that BLOCK nodes are used to cluster other nodes - if they have no A S T 
children, they are unnecessary. 

Filtering of ARGUMENT Edges Next, the ARGUMENT edge set is filtered to keep only edges 
that have a CALL node as their source. In other words, the ARGUMENT edges between RETURN 
nodes and the expressions they return (nodes inheriting from EXPRESSION) will be removed. 
This adjustment is made to move the ARGUMENT_INDEX into the ARGUMENT edges later. For 
ARGUMENT edges from RETURN nodes, it does not make sense to talk about the index of 
arguments (there is always only one for L L V M IR [55]), so these edges are removed. 

Removal of AST Children of External Functions A l l A S T children of METHOD nodes 
representing external functions (having the value True in the IS_EXTERNAL attribute) 
are then removed. The removed nodes for each function are one METHOD RETURN and 
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iV METHOD_PARAMETER_IN, where N is the number of function parameters. For external 
functions, this information is not useful because the information about input and output 
parameters is already present when calling the function (CALL node and its A S T chil
dren). METHOD_PARAMETER_IN serves only as a link between arguments from the call site 
and the use of parameters within the function body for non-external functions. Similarly, 
METHOD_RETURN serves as an abstraction of all RETURN nodes (typically only a single ret 
statement in each function, see Listing 4.5) in the function body - it is connected to them. 

Another reason for removing A S T children of external functions is that for many operators, 
EVAL_TYPE edges led from the METHOD_PARAMETER_IN and METHOD_RETURN nodes to a TYPE 
node, whose type was ANY - which does not provide any additional information. By remov
ing these A S T children, these EVAL_TYPE edges are also removed, leading to the removal of 
the TYPE node with the ANY value. Thus, the data type ANY will not need to be considered. 

Removal of Unused Functions If an unused function is found - in other words, if there 
is a METHOD node in the graph without incoming CALL edges - it is also removed. This can 
happen because each graph implicitly includes at least the function llvm.dbg.declare, 
which is part of the debug information [55]. There may also be some unused operators or 
other default global functions. 

Filtering of EVAL_TYPE Edges The next step is the removal of EVAL_TYPE edges leading 
from the METHOD, BLOCK, and METHOD_REF nodes. A l l these node sets contain information 
about the data type, which do not need to be retained. For BLOCK nodes, this represents the 
return type of the entire block - in some languages (typically functional), this information is 
useful, but in C / L L V M IR, this value is irrelevant as it merely indicates the data type of the 
last statement in the given block. For METHOD and METHOD_REF, it represents the signature, 
which (as previously mentioned) is expressed through the data types of the function's inputs 
and outputs. 

Removal of the TYPE_DECL Node Set In feature selection, it was mentioned that the 
TYPE_DECL node set needs to be removed in a specific way because it connects structures 
and their elements. If a TYPE node is a structure for which its MEMBER nodes are known 
(if only a pointer to it is used, the elements may not be known), then this TYPE node is 
connected by a REF edge to a TYPE_DECL node, from which AST edges lead to individual 
MEMBER nodes, as shown in Figure 4.7. Each TYPE_DECL is then removed such that if it 
has any A S T MEMBER children, these MEMBER (target node) nodes are connected to the TYPE 
node (source node) using new C0NSISTS_0F edges, and the TYPE_DECL is removed along 
with all edges leading to or from it. If the TYPE_DECL has no AST MEMBER children, it can 
simply be removed. 

Filtering of Unused TYPE Nodes Unused TYPE nodes are then removed. A n unused 
TYPE node has no incoming EVAL_TYPE edges. This removal process is iterative - it iterates 
until there are no TYPE nodes without incoming edges. This ensures that nested or recursive 
structures are also removed. One might ask what happens if a TYPE node has a self-loop 
(loop) - a recursive structure (or two or more mutually recursive structures). The answer 
lies in the representation of such structures - a recursive structure cannot contain itself, only 
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Figure 4.7: The figure shows the connection of TYPE_DECL nodes in E C P G when modeling 
structured data types. 

a pointer to itself (similarly for mutual recursion). Self-loops and loops are not possible for 
TYPE nodes because MyStruct and MyStruct* are two different types, represented by two 
TYPE nodes. For this reason, the information about the individual elements of MyStruct 
does not need to be present in the graph if only its pointer MyStruct* is used and its 
elements are not accessed - information about the elements would be redundant. 

As a result of these modifications, the graph is composed of a single W C C . When using 
bi-directional GNNs, information can be propagated between all nodes. For directional 
GNNs , it is still necessary to correctly orient the edge sets, as described below. 

The Edge Set Condition The condition set by the T F G N N schema that each edge 
set must have a fixed source node set and target node set is currently not met. Examples 
include the basic AST edges that start and end in different node sets. This condition can 
be met in two basic ways: 

1. Splitting all edge sets that do not meet the conditions into smaller edge sets to meet 
the condition. The problem with this solution is that the number of possible sub edge 
sets is up to \N\2 where N is the set of node sets that can appear on either side of any 
edge in the given edge set - because it is necessary to cover each combination of node 
sets. Of course, some combinations are not possible, such as a METHOD node not having 
direct A S T children of the type CALL, so practically, there are fewer combinations. 
Adding the fact that even CFG and PDG also connect a large number of node sets, like 
AST, this number increases significantly. This results in dealing with tens to hundreds 
of sub edge sets. The fact that it would be necessary to define them manually in the 
T F G N N schema, and the fact that the more edge sets there are, the more complex the 
G N N model, shows that this number of sub edge sets is unsustainable. The principle 
is demonstrated in Figure 4.8. 

2. Some existing node sets can be merged so that all edge sets meet the required condi
tion. This method simplifies the T F G N N schema (there will be fewer node sets) but 
requires that all node sets that will be merged into a super node set have the same 
attributes. For this reason, potentially useful attributes were discarded and some un-
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Figure 4.8: The figure demonstrates two basic ways to meet one of the conditions set by 
the T F G N N schema - that each edge set has exactly one source and target node set. 

necessary attributes were retained during the feature selection phase. The principle 
is also demonstrated in Figure 4.8. 

Merging of Node Sets The condition is thus ensured in this thesis by merging certain 
node sets. Although efforts were made in the feature selection phase to ensure that all node 
sets to be merged in the future have the same attributes, some attributes are too important 
to discard. The problem of different attribute sets when merging node sets can be solved 
in two extreme approaches: 

1. Sparse nodes - create a set of all attributes contained in the merged node sets. The 
output super node set will have all these attributes. If an attribute does not make 
sense for a particular node, it is simply replaced with an invalid value. This principle 
is simple but creates sparse nodes and effectively increases the graph's data size. The 
principle of merging node sets using sparse nodes is demonstrated in Figure 4.9. 

2. Latent nodes - the exact opposite approach is extracting each node's attributes into 
a special data node connected to the original node by a special edge set, according to 
the original node set. This again effectively unifies the node format. This principle is 
somewhat more complex because it requires the creation of new edge sets connecting 
latent nodes with their data nodes. The number of these new edge sets is \N\, where 
N is the set of merged original node sets. However, the output is a graph that is 
smaller in data size but larger in the number of nodes. Another advantage is that 
data nodes will (when using oriented GNNs) constantly send information about the 
original data, as their values will not be overwritten during G N N computation because 
they have no incoming edges. The principle of merging node sets using latent nodes 
is demonstrated in Figure 4.10. 

Both approaches have their advantages and disadvantages. In this work, the mixed nodes 
approach is used - a combination of the best properties of both approaches. For attributes 
that are common to all/most original node sets (e.g., ORDER for all nodes inheriting from 
AST_N0DE), the sparse node approach is used. On the other hand, for attributes that are 
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a:' - ' 
b: '4' 

c: '0' 

Figure 4.9: The figure demonstrates merging node sets using sparse nodes - the super node 
set contains attributes of all original node sets. The original graph is from Figure 4.8 and 
is supplemented with node set attributes. 

Figure 4.10: The figure demonstrates merging node sets using latent nodes - the attributes 
of the original node sets are extracted into special data node sets. The original graph is 
from Figure 4.8 and is supplemented with node set attributes. 

specific to certain node sets (e.g., CODE for LITERAL, containing the literal value), the latent 
node approach is used. Here, however, the latent node is not empty but contains previously 
defined sparse attributes. By combining these methods, the graphs are small in both node 
count and attribute count, while only requiring the definition of a few new edge and node 
sets to connect data nodes with specific attributes. Table C.3 shows all selected node sets 
and attributes in the feature selection phase and their combination into new node sets. 

The New AST_N0DE Node Set The new node set AST_N0DE consists of original node sets 
that are connected by AST edges. A l l these node sets inherit from the template node set 
AST_N0DE (hence the same name), see Figure 4.4. These original node sets thus represent 
the code as such - the A S T . Thanks to the new AST_N0DE set, it is possible to keep the 
AST, CFG, CDG, REF, and ARGUMENT edge sets intact - their target and source node sets will 
be the new AST_N0DE node set. The AST_N0DE node set contains sparse attributes: 

49 



• LABEL - indicates the original node set (e.g., BLOCK, LOCAL, METHOD, etc.); each node 
contains it, so there is no need to fill it with invalid values. 

• ORDER - is also present in all nodes. 

. ARGUMENT_INDEX - for the original node sets METHOD, LOCAL, METHOD,RETURN, and 
METHOD_PARAMETER_IN, this information needs to be filled with zeros, see Table C.3. 
However, ARGUMENT_INDEX will be completely removed later, as explained below. 

New Data Node Sets From Table C.4, it is evident that the original node sets METHOD 
and LITERAL contain special attributes that require the creation of data nodes. For the 
METHOD node set, the attributes FULL_NAME and IS_EXTERNAL need to be separated. The 
new data node set for the METHOD node set is named METH0D_INF0 and is connected us
ing the METHOD_INFO_LINK edge set, where the source is METH0D_INF0 and the target is 
the new AST_N0DE node set (original METHOD nodes). Similarly, for LITERAL, the CODE at
tribute needs to be separated into the LITERAL_VALUE node set and connected using the 
LITERAL_VALUE_LINK edge set, with the source being LITERAL_VALUE and the target being 
the new AST_N0DE (original LITERAL nodes). 

Retained Node Sets Node sets MEMBER and TYPE are retained. However, due to the 
creation of the new AST_N0DE from which EVAL_TYPE edges originate, and the retention of 
MEMBER - which also has EVAL_TYPE edges - it is necessary to split the EVAL_TYPE edge 
set. The name EVAL_TYPE is retained for edges originating from AST_N0DE and ending in 
TYPE. The new edge set EVAL_MEMBER_TYPE represents the remaining edges from MEMBER to 
TYPE. The reason why MEMBER and TYPE are kept in separate node sets is that they do not 
represent the code itself (description of computation) but provide additional information 
about types - thus, the node sets are logically separated. 

The New ARGUMENT_INDEX Edge Attribute The penultimate adjustment is the transfer 
of the ARGUMENT_ I NDEX attribute from the new node set AST_N0DE to the ARGUMENT edge 
set. However, this is not done for all nodes that have ARGUMENT_INDEX, but only for those 
that are the target node for some ARGUMENT edge. At this stage, only ARGUMENT edges 
originating from the original CALL node set remain. The T F G N N schema allows attributes 
for both nodes and edges, and therefore, this transformation saves a considerable amount 
of data and reduces the complexity of the AST_N0DE nodes. 

Orientation of Edges The final step is to correctly orient the edges in case oriented 
GNNs are used. The orientation of edge sets at this stage is shown in Table 4.1, where the 
edge sets that need to be reversed are highlighted in red. The reasons are: 

• ARGUMENT - information about arguments will flow towards the CALL node, from which 
it will then propagate to the respective function. 

• EVAL_TYPE - information about types will propagate to the nodes where it will be 
used - it makes no sense to propagate information from AST_N0DE to be concentrated 
in TYPE nodes. 
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Table 4.1: The table contains source and target node sets for each used edge set (after 
feature selection). Edge sets highlighted in red have an incorrect orientation and will be 
reversed. 

Edge Set Source Node Set Target Node Set 
M E T H O D I N F O _ L I N K M E T H O D INFO A S T N O D E 
E V A L M E M B E R T Y P E T Y P E M E M B E R 
C O N S I S T S _ O F M E M B E R T Y P E 
A S T A S T N O D E A S T N O D E 
L I T E R A L V A L U E L I N K L I T E R A L V A L U E A S T N O D E 
A R G U M E N T A S T N O D E A S T N O D E 
C A L L A S T N O D E A S T N O D E 
C F G A S T N O D E A S T N O D E 
C D G A S T N O D E A S T N O D E 
E V A L T Y P E T Y P E A S T N O D E 
R E F A S T N O D E A S T N O D E 

. EVAL_MEMBER_TYPE - analogous to EVAL_TYPE. 

• C0NSISTS_0F - information about individual MEMBER nodes will flow into the structure 
so that the structure node contains information about its members. 

• REF - here, information will propagate from LOCAL nodes to identifiers so that they 
know it is the same variable (different LOCAL nodes in the same function can be 
distinguished using the ORDER attribute). For METHOD_REF, information about the 
given method will flow into that node - the function is not called here, but it is 
desirable to attach information to it (reversed compared to CALL edges). 

The orientation of the other edge sets is preserved for the following reasons: 

. METHOD_INFO_LINK and LITERAL_VALUE_LINK - they originate from data nodes to 
latent nodes, allowing data information to spread further into the graph. 

• CFG - their direction reflects the program's control flow and the chronological order 
of node traversal, where the node order plays a crucial role in the manifestation of 
errors. 

• AST - reversing the edges would mean that it is no longer a tree, but this is not 
a problem. From a message-passing perspective, the tree has an interesting property: 
information is copied down the tree - parents send the same message to their children, 
and children have only a single parent. If the AST edges were reversed, information 
would flow to the original root node, and information from the children would need to 
be combined in some way (the term „pooling" is used, see Section 4.1.5), leading to an 
irreversible loss of information. However, it would be possible to read the final state 
from the root, where information from the entire graph would accumulate - but the 
graph would have to be shallow enough for information to travel from all leaf nodes 
to the root (because, as mentioned in Section 4.1.5, the number of message passes 
is a hyperparameter of the model). Pooling still occurs in GNNs because nodes in 
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E C P G s can have multiple incoming and outgoing edges. Thus, it might be interesting 
trying the reverse direction of the AST edges in the future. 

• CALL - similar reason as CFG - it is a natural control flow of the code. 

• CDG - edges originate from nodes representing conditions to nodes affected by the 
condition. Thus, it is again in the correct chronological order. 

Atribute Transformation 

Another property that graphs must satisfy according to the T F G N N schema is that an 
attribute (from now on, referred to as a feature) has a fixed type [77]. However, this is not 
yet the case; for example, the feature CODE in the LITERAL node can contain values of all 
data types in L L V M IR. Although all values can be considered strings in CSV, and T F G N N 
supports features of type DT_STRING [77], it would be more challenging for the model to 
extract useful information from such complex features. To facilitate training, some complex 
features are decomposed into multiple simpler ones [74]. 

Features of the AST_N0DE Node Set The node set AST_N0DE has a feature ORDER, which 
is a simple integer type. The feature LABEL is also a simple type, with categorical values 
representing the names of the original node sets. To prevent the model from having to take 
a string as input, the feature label values are mapped to a simple integer type as follows: 
UNKNOWN: 0, METHOD: 1, ... ,RETURN: 11. The model does not need the LABEL feature 
in string format; it just needs to distinguish between different types, and the simplest 
representation is an integer. 

Features of the MEMBER Node Set The node set MEMBER has only one feature, ORDER, 
which does not require any modification. 

Features of the METH0D_INF0 Node Set The node set METH0D_INF0 contains the flag 
feature IS_EXTERNAL, which contains values True and False since it is a flag. These 
boolean values are converted to integer values 1 and 0 for simplicity. The second fea
ture is FULL_NAME, which contains the name of the function. Since L L V M IR operators are 
modeled as functions in E C P G s , FULL_NAME can include the prefix <operator>. followed 
by the operator's name, such as notEquals, xor, etc. Since operators are used much more 
frequently than functions and are also limited in number, it makes sense to convert them 
into their own categorical feature, OPERATOR. This feature contains the numerical designa
tion of the operator if detected from the FULL_NAME feature. If it is not an operator, the 
entire function name should be remembered. Here, there are several options for modeling 
the remaining values: 

• Keep the name as a string - the model will need to contain, for example, some kind 
of R N N layer. 

• Use word2vec [61] or a similar model that can encode a word into a vector while 
preserving its meaning. 
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• Use trainable embedded tables [82]. 

• Hash the name. 

In this work, the simplest and fastest approach, hashing, is used. The function name is 
hashed into 24 bits (the reason for 24 bits is explained below). This approach discards all 
information about the original name but allows the model to remember the occurrence of 
specific functions - if a function frequently appears in the true positive class, it is likely 
associated with it and can serve as part of a learned pattern. Hashing was chosen because, 
compared to other methods, it is by far the fastest, and generating Graph D2A (and apply
ing feature engineering) is already computationally expensive, as described in Chapter 5. 
However, future work should include experiments with other string encoding methods. 

Features of the TYPE Node Set For the node set TYPE, it is again necessary to decom
pose the feature FULL_NAME into simpler features that can be better processed by the model. 
FULL_NAME contains the name of the represented data type. L L V M IR supports a number 
of data types [55] (here are the formats as they appear in the FULL_NAME feature): 

• Pointer - the suffix contains one or more * characters, e.g., i32*, FILE*, etc. 

• Array - the format is [ LEN x TYPE ],e.g., [114 x i8], [114 x [114 x i8 ] ] ,e tc . 

• Integer - the format is iN, where N is an integer > 1 indicating the size of the type in 
bits, e.g., i l (boolean), i32, il28, etc. 

• Floating point - one of half, float, double, or fpl28. 

• Structs - the format is { TYPE1, TYPE2, . . . >, e.g., { i32, i32 >, { i l , float, 

{ i32, i32 } >, etc. 

• Function signature - the format is TYPE (TYPE1, . . .), e.g., i l ( i l , i8*), etc. 

• Void - represents an empty value, denoted as void. 

• Named type - everything else, e.g., ngx_radix_tree_t, FILE, etc. 

In the previous section, it was described that TYPE nodes with signatures were removed, so 
they do not need to be considered. Similarly, TYPE nodes with the value ANY were removed 
- this is not an L L V M IR type but a value inserted by the Joern tool. The other data type 
names need to be appropriately represented using simpler data types. Thus, the feature 
FULL_NAME is decomposed into the following primitive features: 

• PTR - if the type is a pointer, this stores the pointer depth - the number of trailing 
* symbols. 

• LEN - if the type is an array, this stores its length (only the outer-most array is 
considered). 

• INT - if the type is an integer, this stores N, the number of bits. 

• FP - if the type is a floating point, this stores a categorical numerical designation of 
the given type. 
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• HASH - if the type is a struct or a named type, this stores the 24-bit hash of its name. 
In the case of an array, it stores the 24-bit hash of the element type name (if it is not 
a primitive type, see below). 

The individual features are set as follows and in exactly this order: 

1. A l l features are initialized to 0. 

2. PTR is set (it can also be 0), the trailing * are removed, and processing continues. 

3. LEN is set (it can also be 0), and if LEN > 0, the outer-most array is removed, leaving 
only the type of the elements, and processing continues. 

4. If the type is an integer, INT is set, and processing ends. 

5. If the type is a floating point or void, FP is set (0 in the case of void), and processing 
ends. 

6. The remaining type is an array, struct, or named type - HASH is set (from the remaining 
name), and processing ends. 

From this, it follows that for the void type, all values are equal to 0, which semantically 
makes sense because it indicates the absence of a value. 

Features of the LITERAL_VALUE Node Set For the node set LITERAL_VALUE, the feature 
CODE, which contains the literal value, needs to be decomposed. It can take on all types 
described above, so it must be decomposed while preserving the highest possible accuracy. 
The primitive features will be: 

1. INT - if the literal is an integer, this is its value. 

2. FP_MANTISSA and FP_EXP0NENT - if the literal is a floating point, this stores its man
tissa and exponent, respectively. 

3. INVALID_P0INTER - a flag, if the type is a pointer and contains the special value 
nullptr. 

4. ZER0_INITIALIZED - a flag, if the special value zero initialized is present. 

5. UNDEF - a flag, if the special value undef is present. 

6. HASH - the hashed value of arrays, structs, named types, and function pointer values 
(in this case, their code) into 24 bits. 

It is not necessary to store detailed information about the literal type here because the data 
node LITERAL_VALUE is directly connected to the latent node LITERAL (AST_N0DE), which 
is connected to its TYPE node. 
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Normalization of Features A l l features are further normalized. Normalization is a com
monly used technique in machine learning that can accelerate learning and improve model 
performance [43, 1], especially for datasets where features have different ranges. In this 
thesis, simple MinMax normalization to the interval < 0,1 > is used. The advantage of 
MinMax is that it preserves the order and is very simple. Its disadvantage lies in outliers in 
the original data, which can cause common values to be compressed into a relatively small 
interval, making it challenging for the model to distinguish them. Additionally, it would be 
worthwhile to experiment with other normalization techniques. 

Flag features IS_EXTERNAL, UNDEF, INVALID_POINTER, and ZERO_INITIALIZED, do not need 
to be normalized because they only contain the values 0 and 1. 

The categorical feature OPERATOR is divided by the number of possible values since the value 
0 is reserved for an empty feature. The number of possible values is determined from the 
training data. 

The categorical feature LABEL is divided by number of possible values - 1, where there 
are 12 possible labels (original node sets). Here, 0 is not reserved because LABEL cannot 
have invalid values. Similarly, the categorical feature FP is divided by 4 because the possible 
values are void, half, float, double, and fpl28, with 0 reserved for void [55]. 

Numeric features such as INT (node set TYPE), PTR, LEN, ORDER (node set AST_N0DE), 
ARGUMENT_INDEX (edge set ARGUMENT), and ORDER (node set MEMBER) are divided by the 
maximum values found among the training data (more info below). 

The feature HASH (for all node sets) is normalized using the value 2
24

 — 1, where 24 is the 
hash length in bits. The reason for 24 bits is that the f loat32 type has a mantissa of 
24 bits (23 bits and 1 implicit bit), according to the I E E E 754 standard [41]. It is thus 
possible to store a normalized number (though in the interval < 1,2), see below) of 24 bits 
in f loat32 without loss of information. The f loat32 type must be used due to the reasons 
mentioned in the T F G N N schema description (see below). 

For the feature INT (node set LITERAL_VALUE), normalization is similar to HASH, except that 
accuracy of high values is sacrificed for better accuracy of lower values. The reason is that 
lower constant values are more likely to appear in control structures, such as loop counts, 
flags, etc., than higher values (as evidenced by checking many Infer reports in [3]). Thus, 
the INT feature is essentially truncated to intl6, converted to unsigned, and normalized 
using 2

16

 - 1 (MAX_UINT_16). 

For the features FP_MANTISSA and FP_EXP0NENT, simply dividing by the highest value is 
not possible due to differing magnitudes, which could result in a significant loss of infor
mation. The normalization used is based on the I E E E 754 [41] format for f loat32 (which 
must be used, see below). The mantissa in this format is already normalized to the range 
(—2,-1 > for negative numbers and < 1, 2) for positive numbers. These intervals are only 
shifted to form a uniform interval (0, 2) and then divided by 2 (here is a potentional loss 
of information). FP_EXP0NENT can take values from 0 to 255 for float32 (or -127 to 128 
due to the implicit offset), so dividing by 255 is sufficient to normalize it in unsigned for
mat. However, since higher than f loat32 values can also appear in the graph and must 
be encoded in f loat32 and then normalized to < 0,1 >, information loss will undoubtedly 
occur, such that all larger floating point types are converted to f loat32. By splitting the 
original feature value in f loat32 into two features, FP_MANTISSA and FP_EXP0NENT, also 

55 



in f loat32, the encoding and normalization process will not result in a significant loss of 
information (only in the form of inaccurate operations). 

A l l normalization values that need to be obtained from the dataset must be derived from 
the training data. If they were obtained from the test or validation sets as well, information 
would be transferred to the training process. Thus, model evaluation would not be accurate 
- model generalization would be affected to some extent. The extraction principle and 
sample values of the normalization coefficients are in Section 5.5. 

T F G N N Schema 

As previously mentioned, when using the T F G N N library, it is necessary to define the 
T F G N N schema [77]. It is an accurate and detailed description of the structure of hetero
geneous multigraphs. The T F G N N schema designed in this thesis defines E C P G s (after 
feature engineering) just as Section 2.4 describes C P G graphs. However, the description 
here is stored in the form of Protocol Buffers [31] (often referred to as Protobuf), which are 
language-neutral, platform-neutral, extensible mechanisms for serializing structured data. 
The T F G N N schema specifically uses a protocol named tf gnn. GraphSchema

8

. The T F G N N 
schema contains information about individual graph pieces: 

• Context - a set of features that apply to the graph as a whole, such as the type of 
Infer error. 

• Node sets - disjoint sets of nodes where all nodes within a node set have the same 
set of features. 

• Edge sets - disjoint sets of edges where all edges within an edge set have the same 
set of features and also share the same source node set and target node set. 

Each feature definition (for context, node set, and edge set) contains the following infor
mation [77]: 

• Name - must be unique within the graph piece. 

• Description (optional). 

• Data type: 

- Integers DT_<INT | UINTX8116 132 164> or DT_B00L - all stored as int64. 
- Floating point DT_<FL0AT | DOUBLE | HALF | BFL0AT16> - all stored as float32. 
- DT_STRING - stored as bytes. 

• Shape - e.g., [64] for a vector of length 64, -1 for ragged dimension [81], or it can 
be omitted, and then it is a scalar (all features in this thesis are scalars). 

The schema allows specifying integer types as inputs for GNNs. However, since T F G N N 
model weights are in f loat32, all integer features are converted to f loat32 after the first 
operation. These conversions are often done beforehand for type unification and better par-
allelization on the G P U 9 . For this reason, all features (except label, see below) are defined 

8Sources of tf gnn. GraphSchema: https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/ 
proto/graph_schema.proto. 

9Graphics Processing Unit (GPU). 
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as f loat32. This final conversion of all types to f loat32 is why the feature transformations 
in the previous text revolved around f loat32, striving to preserve accuracy for f loat32. 

The last step in creating the graphs is to include the label and LINE features in the 
T F G N N schema context, label indicates whether a graph belongs to the true positive or 
false positive class and has the type DT_INT32. Including the graph label in the context is 
directly recommended by the T F G N N documentation [77]. The feature LINE contains the 
line number on which the error was reported by Infer, normalized by the highest such value 
in the training data. According to [68], this feature was the most important for Random 
Forest models and is thus included here as well. Again, adding other features to the context, 
which were used in [94, 68], could also be beneficial. 

This graph context and E C P G s together form the graphs described in the T F G N N schema. 
These complete graphs are stored in the TFRecords format, as advised by the T F G N N doc
umentation [77], which can be easily read as input to GNNs and are also more space-efficient 
than raw E C P G s (Graph D2A) - mainly due to feature engineering (see Section 5.6). The 
created T F G N N schema is included on the storage medium (see Appendix A) and is also 
available in the repository on G i t H u b 1 0 . 

4.1.5 Graph Neural Networks Mode l 

The principle of GNNs (or G N N layers) was described in Section 2.3. This section further 
describes, in more practical terms, the architecture used in this thesis (specific models with 
hyper parameters are provided in Chapter 6), created in T F G N N to rank graphs (errors 
found by Infer) by the likelihood of being a real error. The trained model is the final 
output of the training pipeline, as seen in Figure 4.1. The process of models training takes 
graphs (with labels inside) in the TFRecords format and a T F G N N schema as inputs. The 
process is then composed of the following steps: 

1. Load the graphs. 

2. Balance the class data. 

3. Create a preprocessing model. 

4. Create a model, consisting of the following main parts: 

(a) A layer for initializing hidden states (i.e., embedding vectors from Section 2.3). 

(b) G N N layers. 

(c) GNN head. 

5. Create a training loop. 

6. Save the model. 

Loading the graphs is very simple with the T F G N N support of the TFRecords format and 
is described in Section 5.7. The loaded data is heavily unbalanced, as shown in Tables C . l 
and C.2. Even the most balanced project, libtiff, has a true positive:false positive ratio 

1 0Created T F G N N s c h e m a : h t tps ://g i thub .com/TomasBeranek/but -masters - thes is/b lob/thes is -
submi s s i on/model/s chemas/ext ended_ cpg.pbt xt . 

57 

https://github.com/TomasBeranek/but-masters-thesis/blob/thesis-


of only about 1:20, while the least balanced project, ffmpeg, has a ratio of almost 1:140. 
Balancing the data is crucial because it prevents models from favoring the majority class [38] 
and thus helps the model learn truly useful patterns. Balancing can be done in several ways: 

• Up-sampling the minority class - replicate the minority elements (in this case, true 
positives) so that the ratio is approximately 1:1. The elements can be replicated in 
several ways: 

— Duplication - does not bring any new information. 

— S M O T E 1 1 - create new synthetic samples from existing ones; this is a form of 
data augmentation [6]. 

• Down-sampling the majority class - randomly remove samples from the majority class 
until the data is balanced, but useful data are lost. 

• Class weights - add weights to classes that influence learning. 

• K-fold cross-validation with a split of the majority class - a type of K-validation [7], 
where each split will contain the same set of all minority samples, but the majority 
data will be divided into as many equal parts as needed so that the ratio of each 
part is again approximately 1:1. For an original ratio of 1:20, this would be 20-fold 
cross-validation. One model is trained on each split - 20 models in this case. 

In this thesis, only up-sampling of the minority class is used. However, it would be beneficial 
to try other methods, especially S M O T E and K-fold cross-validation with subsequent voting 
by individual models. 

The T F G N N documentation recommends creating a preprocessing model [78], which should 
adjust the data into its final form - feature selection, feature splitting, normalization, etc. 
A l l these tasks have already been performed earlier (see Section 4.1.4), so the preprocessing 
model is used only to extract the label from the graph. 

The main step is to create the actual model. The models used in this thesis have a very 
similar architecture and are heavily inspired by the T F G N N documentation [83, 82, 80] 
and the examples in the T F G N N repository 1 2. A slightly generalized architecture of the 
models used in this thesis is shown in Figure 4.11. The first part is a layer (or more) that 
initializes the hidden state of all nodes. The type of these layers is not strictly defined and 
depends on the format of the input nodes. This layer can be any differentiable function. 
In this thesis, the data in the nodes are a set of scalars, so only classic Dense layers (i.e., 
densely-connected neural network layers) are used (one shared layer for each node set). If 
the features in the nodes were, for example, ragged, RNNs would probably be used. If the 
data were images, CNNs could be used, etc. Or this layer can be omitted, and the first 
G N N layer can be used to create hidden states. 

After the layers initializing the hidden state, the G N N layers follow. In this thesis, MtAlbis 
layers [80, 85] are used, which are recommended for initial experiments by the T F G N N 
documentation. MtAlbis layers proved to be so effective in the experiments that they were 
retained, see Chapter 6. These layers generalize V a n i l l a M P N N 1 3 described in [29]. MtAlbis 

" S y n t h e t i c M i n o r i t y O v e r s a m p l i n g T e c h n i q u e ( S M O T E ) . 
1 2 T F G N N ' s repository: ht tps ://gi thub.com/tensorf low/gnn. 
1 3Vanilla Message Passing Neural Network (VanillaMPNN). 
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Figure 4.11: A generalized architecture of the G N N models used in this thesis. The archi
tecture is based on the MtAlbis G N N layers and is a binary classification model - it ends 
with a Dense layer with a single output neuron. 

work on heterogeneous graphs - which are E C P G s . One cycle of updating all hidden 
node states, i.e., one round of the message-passing algorithm (see Section 2.3), is a single 
MtAlbis layer [80]. Thus, the number of updates/layers is the depth of the model and one of 
the most important hyper parameters. The deeper the model, the further information from 
a particular node can propagate, but the more complex the model - it has more parameters, 
takes longer to learn, overfits more, etc. 

The final part is the G N N head, which serves as the equivalent of the super node described 
in Section 2.3. Information from all (or only some) node sets is input into a pooling layer, 
whose output is a combined hidden state (as it would be for a super node). This hidden 
state, together with features from the graph context, is input into additional fully connected 
layers (or a single layer), whose output is the model's output - in this case, a single number. 
The model is supposed to distinguish between two classes, making it a binary classification. 
Thus, the last Dense layer must have a single neuron, as shown in Figure 4.11. The sigmoid 
function is applied to the output of this neuron (though it is not necessarily required), 
which converts the input number from the interval (—oo,+oo) to (0,1). Therefore, the 
model's output is a single number in this interval, which is higher the more confident the 
model is in class 1 (true positive). Models for binary classification are most often trained 
using Binary Cross Entropy [72], as is the case with all models in this thesis. 

Creating the training loop and saving models is again straightforward thanks to the use of 
T F G N N . Of course, it is also necessary to fine-tune hyperparameters such as learning rate, 
optimizer type, batch size, etc. More details can be found in Chapter 6. 

Models created using the training pipeline have interesting properties: 

• Thanks to the use of L L V M IR, they are language-independent. 

• Since the output of Infer is only used for program slicing (and obtaining the type of 
error), it can easily be adapted to another static analyzer. 

• It is also possible to use them without a static analyzer, if slicing criteria are 
created (possibly automatically) and the type of error is specified. This way, the 
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Figure 4.12: The figure shows a schematic of the inference pipeline, which ranks Infer 
reports on real C / C + + projects based on the probability of being true positives. The 
dashed boxes indicate the intermediate products and generated data. The green outline 
indicates tools created as part of this thesis. Icons were taken from [104, 66, 106]. 

models can completely replace static analysis and be used directly to find errors in 
the source code. 

4.2 Inference Pipeline 

The goal of the inference pipeline is to run Infer on a real C / C + + project, generate E C P G s 
for each Infer report, and then rank the reports based on their probability of being true 
positives using the created G N N models. As shown in Figure 4.12, the inference pipeline is 
fundamentally the same as the training pipeline. It differs only in the way L L V M bitcode 
is extracted and at the end, where models are not trained but are used solely for inference. 

4.2.1 Capture Phase 

The goal of the capture phase (see Figure 4.13) is to connect to a running build process 
and capture the information required for the graph construction phase (described in Sec
tion 4.1.2). This necessary information includes the source files compiled to L L V M bitcode 
and the same source files captured in Infer's capture phase (see Section 2.2), which will 
then be analyzed by Infer. To obtain this information, compilation commands must be 
extracted from the build process. This can be done by: 

1. parsing the build scripts, 

2. capturing the commands using a compiler wrapper. 

Parsing build scripts is very challenging because each build system uses a different syntax 
and different techniques. However, some build systems have built-in functionality for ex
tracting compilation commands, such as CMake [45]. Unfortunately, very few build systems 
have this feature. Another problem is that some software does not use any standard build 
systems. Instead, they use custom scripts (e.g., bash) for compilation, linking, etc. These 
scripts can have any structure and hierarchy of calling other scripts or tools, making it 
almost impossible to statically parse compilation commands from them. The use of such 
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Figure 4.13: The figure shows a schematic of the capture phase, which generates L L V M 
bitcode and runs Infer analysis on real C / C + + software. The dashed boxes indicate the 
intermediate products and generated data. The green outline indicates tools created as 
a part of this thesis. Icons were taken from [98, 25]. 

scripts is relatively common in S R P M packages, as found in author's previous work [3]. 
This thesis aims for later deployment specifically on S R P M packages and must take this 
feature into account. For the reasons mentioned above, parsing build scripts of unknown 
software is generally impractical. 

The second and practically applicable option is to create wrappers over C / C + + compilers 
and intercept the compilation commands during the build process. The design and imple
mentation were addressed in the author's previous work [3], so the principles of the wrappers 
will be described here very briefly. Every time a compiler is invoked by the build system, 
the installed wrapper is called. For each such call, the wrapper captures its arguments and 
performs the following steps: 

1. It filters out options that are incompatible with Infer's internal Clang compiler, which 
is used to compile source files into SIL (see Section 2.2). 

2. It invokes Infer's capture phase, passing the modified compilation command. Infer 
then stores the captured source files in SIL representation in its database. 

3. It calls the original, unmodified command with the original compiler so that the build 
can proceed without issues. 

The wrapper is designed so that even if Infer's capture phase fails, the original command 
is still executed. Failure of Infer's capture phase will not crash the entire analysis/pipeline, 
but it may increase the likelihood of generating false positives/false negatives. This error re
covery is possible due to Infer's properties: if it does not have the required implementations 
of the analyzed functions captured, it assumes they may return any value (limited by their 
return type, of course). This speculation introduces a certain degree of over-approximation 
and thus the potential for false positives. False negatives can occur because files not cap
tured by the Infer capture phase are not analyzed. A n important note is that these compiler 

1 4 S o u r c e R e d H a t P a c k a g e M a n a g e r ( S R P M ) package - provides the source code of software via 
the R P M package manager for operating systems like RHEL, Fedora, and CentOS. 
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wrappers can (and typically are) called in parallel. Therefore, it is necessary to be aware of 
possible critical sections, such as Infer's database. The description of how critical sections 
are protected in the wrapper can be found in [3]. 

For the inference pipeline, it is necessary to add additional functionality to the wrapper 
- generating L L V M bitcode from each captured compilation command. The principle, 
including an example of how to generate L L V M bitcode using the compilation command, 
was already presented in Section 4.1.1. Unlike the training pipeline, the inference pipeline 
must consider input compilation commands in all possible formats, so it is necessary to 
remove the -o option (and its value) and also ensure that it is truly a compilation command 
(it must contain the -c option). 

The final task that the wrapper needs to accomplish is finding all the generated L L V M 
bitcode files. Again, there are several ways to obtain this list of files. For instance, one 
could analyze compilation commands and extract the names of the compiled files or insert 
-o options. However, the simplest method is currently used here: upon the wrapper's first 
invocation, a list of all existing .be files in the filesystem is created. After the build is 
finished, this process is repeated. By comparing these two lists, it is possible to identify 
which .be files were added during the build and thus contain the L L V M bitcode. 

It may seem that running multiple builds concurrently could result in .be files unrelated 
to the current project being compiled. This issue indeed occurs with all the methods 
mentioned, as it is not possible to distinguish which build the .be files originated from. 
Similarly, Infer cannot distinguish between individual projects, so it is necessary to ensure 
that only one project's compilation is executed at any given time. However, running multi
ple projects concurrently will not cause errors but will merely lead to Infer reporting errors 
(and generating graphs) for all the projects being compiled. 

After the build and before the graph construction phase begins, two additional steps must be 
taken. First, a l l generated L L V M bitcode files need to be merged into a single file using the 
llvm-link tool. Then, the Infer analysis is performed on the captured files. After the analysis 
is complete, Infer generates a list of potential errors, from which slicing criteria are extracted 
for LLVM-Slicer during the graph construction phase. Unlike the training pipeline, where 
each error detected by Infer (or D2A sample in the training pipeline) generates its own 
L L V M bitcode file, here, a single file contains the entire source code. The L L V M bitcode 
files are differentiated only after slicing according to the criteria of individual reports. 

4.2.2 Inference Phase 

After the graph construction phase, feature engineering is applied to the raw E C P G s , just 
like in the training pipeline (see Section 4.1.4). The only difference is that normalization 
coefficients already generated from D2A are used. 

Next comes the inference itself, as shown in Figure 4.12. The inference using the G N N 
model evaluates the input graphs - representing individual errors found by Infer - based 
on their probability of being true positives. The original output from Infer is then sorted 
in descending order according to the G N N model's score. Unsupported error types (see 
Section 4.1.1) and errors for which a graph could not be generated (see Section 5) are 
placed at the end of the list in their original relative order. Even in this sorted output, 
however, a typical trade-off is encountered between the number of true positives and the 
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number of false positives. The more true positives that are sought, the worse the true 
positive vs. false positive ratio becomes (to ensure that all true positives are found, all 
reports must still be checked). However, the mere fact that it is possible to choose this 
threshold is a significant advantage of these sorted outputs compared to the unsorted ones. 
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Chapter 5 

Implementation 

This chapter describes the implementation of training and inference pipelines, as designed 
in Chapter 4. The training pipeline consists of a series of independent tools. Specifically, 
Section 5.1 describes the D2A filter that removes unsupported error types. Section 5.2 
discusses the implementation of a bitcode generator that creates L L V M bitcode for D2A 
samples. Section 5.3 describes the slicing criteria extractor. Section 5.4 details the genera
tion of Graph D2A from L L V M bitcode. Section 5.5 explains the extraction of normalization 
coefficients for feature normalization. Section 5.6 outlines the implementation of feature 
engineering, including graph and attribute transformations and normalization. Finally, 
Section 5.7 and Section 5.8 cover model training and evaluation, respectively. 

Unlike the training pipeline, the inference pipeline is fully automated. It comprises compiler 
wrappers, described in Section 5.9, and a script that automates graph creation, discussed 
in Section 5.10. 

A l l source files for both the training and inference pipelines are open-source and accessi
ble on Gi tHub 1 . Data manipulation primarily utilized Python, particularly libraries such 
as Pandas 2, NumPy 3 , NetworkX (nx), and TensorFlow'. Bash and make were used to 
automate the calling of scripts and other auxiliary tasks. 

The following sections provide details on the computation times for various components. 
A l l measurements were conducted on Ubuntu 20.04 with the following hardware: 

. C P U 6 - Intel(R) Core(TM) i5-10400F C P U @ 2.90GHz, 6x cores, 12x threads, 

. G P U 7 - N V I D I A GeForce R T X 3060 T i , 8GB, 

. R A M 8 - 16GB, 

. Memory - 500GB SSD 9 . 
XA11 source files are available at ht tps ://gi thub.com/TomasBeranek/but -masters - thes is . 
2 P a n d a s ' s website: https://pandas.pydata.org/ . 
3 N u m P y ' s website: https://numpy.org/. 
4 N e t w o r k X ' s website: ht tps ://networkx .org/ . 
5 T e n s o r F l o w ' s website: https://www.tensorflow.org/. 
6 C e n t r a l P r o c e s s i n g U n i t ( C P U ) . 
7 G r a p h i c s P r o c e s s i n g U n i t ( G P U ) . 
8 R a n d o m A c c e s s M e m o r y ( R A M ) . 
9 S o l i d - S t a t e D r i v e ( S S D ) . 
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5.1 D 2 A Filter 

The initial step in creating the Graph D2A involves filtering out unsupported data types, as 
discussed in Section 4.1.1. This filtering is implemented through a script named f i l t e r .py, 
written for Python 3.8. The script takes a directory containing the D2A dataset as its 
input (specified using the -d or —dir option), which can be downloaded from [40]. The 
files, named in the format {project]-_labeler_{011} .pickle .gz, correspond to individual 
projects and labels. Although „after-fix" samples are available (see Chapter 3), they are 
not used in this thesis and are ignored by filter.py. The second input parameter is the 
output directory (specified using the -o or —output-dir option), where the results are 
stored (if the directory does not exist, it will be created). 

Each input file in the input directory is first decompressed from the .gz archive using 
the gzip library. Then, using the pickle library, which is used for object serialization 
and deserialization, the samples are sequentially read. Samples belonging to the supported 
error types are saved in a file with the same name (including .pickle.gz) in the output 
directory. Unsupported samples are completely discarded. 

From each saved sample, certain information that is no longer needed in the training pipeline 
is also removed. This significantly reduces the size of the samples, saving disk space and 
speeding up operations such as loading and saving. The removed information includes 
(explanations of each attribute can be found in [39]) label_source, bug_loc_trace_index, 
sample_type, commit[changes], functions, and zipped_bug_report. 

The command to run filter.py might look like this: 

python3.8 filter.py -d d2a/ -o d2a-filtered/ 

The script removes 20,732 samples with unsupported error types, which is ~1.6 % of the 
total number of samples. The number of removed samples for each project is shown in 
Table 5.1. Filtering the entire dataset takes ~3 minutes, and the dataset size is reduced 
from -3 .6GB to -288MB (calculated only with the *_labeler_* files). 

5.2 Bitcode Generator 

From the filtered D2A dataset, it is necessary to generate a single L L V M bitcode for each 
sample, as described in Section 4.1.1. This is accomplished using the generate_bitcode. py 
script for Python 3.8. The script must be applied individually to each *_labeler_* gen
erated by filter.py (see Section 5.1), specified using the -f or — f i l e option. The 
script also requires the directory containing the or ig ina l project repository (using the - r 
or —repository option) and the project (using the —project option) from which the 
L L V M bitcode will be generated, such as httpd

10

). Finally, the output directory must 
be specified (using -o or —output-dir); if it does not exist, it will be created. Running 
generate_bitcode.py might look as follows: 

python3.8 generate_bitcode.py -r httpd/ —project httpd \ 

-f d2a-filtered/httpd_labeler_l.pickle.gz -o d2a-bitcode/httpd_l/ 

ht tpd ' s repository: https://github.com/apache/httpd. 
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The script first retrieves a chronological list of all commits from the repository using: 

git log — a l l —format=y
o
H 

Then, a set of commits for all samples from the input D2A file is obtained. From the 
complete list of commits, those that are not also in the set of commits from the D2A are 
removed - in other words, commits on which no D2A samples exist. This modified list 
is reversed so that the first commit is the oldest and the last is the newest. The script 
then iterates through individual commits (represented by their hashes) and performs the 
following: 

1. The repository is switched to the given commit using git reset —hard HASH. 

2. A l l files that are not part of the repository (especially products from previous runs) 
are deleted using git clean -dfx. 

3. A project-specific set of actions required for a successful build is performed (see below). 

4. For each D2A sample at this commit: 

(a) A list of files to be compiled for the given sample is obtained from D2A. 

(b) Samples consisting only of . h files or containing files such as . y or .1 are skipped, 
as they do not generate L L V M bitcode when compiled. 

(c) The cache is checked to see if the L L V M bitcode for a sample with the same 
set of files has already been generated at the current commit. If so, a symlink 1 1 

{output_dir}/{sample_id}.bc is created, pointing to the already generated 
L L V M bitcode. This speeds up the process because recompilation is not required 
and reduces memory usage since the same sample does not need to be stored 
multiple times. Symlinks only occupy a few bytes. 

(d) The repository is cleaned of residual files from previous compilations (at this 
commit) using project-specific criteria to avoid deleting essential configuration 
data generated when switching to this commit. 

(e) A set of already present .be files in the repository is obtained; these are not 
L L V M bitcode files. 

(f) For each record (compiled file) in the D2A attribute compiler_args: 

i . Adjust the D2A compiler arguments - replace <repo> with the repository 
path and remove arguments starting with <sys>, which include external 
libraries specific to httpd (these libraries are included with their own paths, 
see below). 

i i . Add missing project-specific include arguments (-1). 
i i i . Add arguments to generate L L V M bitcode (see Section 4.1.1). 
iv. Execute the generated compilation command. 

(g) Using the previously located existing .be files, obtain a list of newly added files 
- generated L L V M bitcode files. 

(h) Ensure that the same number of L L V M bitcode files have been generated as 
there are original . c files (. h files are included - they do not generate separate 
L L V M bitcode). 

11

Symlink - A special type of file that points to another file in the filesystem. 
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(i) Use llvm-link to combine all L L V M bitcode files of the current sample into 
a single L L V M bitcode file and save it to {output_dir]-/{sample_id]- .be. 

(j) Finally, note in the cache which files were used to generate this L L V M bitcode. 

After switching to the new version of the repository (new commit), a pre-compilation con
figuration is required. This typically involves generating platform-specific .h or .c files, 
generating configuration files, setting the correct paths to libraries, etc. This phase is 
different and quite extensive for each project, so only the procedure for httpd will be de
scribed here as an example. Configuration details of other projects can be found directly 
in generate_bitcode.py. 

The httpd project is the only one that requires downloading external libraries in ad
vance. Specifically, apr-1.7.4 and apr-util-1.6.3, which can be downloaded from the 
Apache website 1 2, and the pcre2-10.42 library, which is available in the pcre2 reposi
tory 1 3 . These libraries must be renamed to apr, apr-util, and pcre and moved to the 
httpd-dependencies/srclib directory, which must be at the same level as the httpd 
repository. Furthermore, all libraries need to be configured according to their instructions 
(pre-configured libraries are included in the attached media; see Appendix A) . 

The generate_bitcode .py script moves to the httpd repository and prepares for the httpd 
compilation as follows: 

1. Copies the external libraries apr and apr-util to the srelib/ directory in the repos
itory. 

2. In some versions of the repository that contain the pcre library, it is necessary to 
initiate configuration by first running ./buildconf (still in the root directory of the 
repository), which creates srclib/pcre/conf igure. Then, switch to srclib/pcre/ 
and run . /configure to generate the necessary header files for the pcre library, such 
as config.h. 

3. If the pcre library is not present, the script copies the already configured one from 
. ./httpd-dependencies/srclib/pcre/ into srelib/. 

4. The script then checks whether any of the tracked files have changed from the last 
version of the project: 

• include/ap_config_auto.h.in, 

• include/ap_config_layout.h.in, 

• modules/ssl/ssl_policies.h.in, 

• buildconf. 

These are templates for the generated .h files and the configuration file. If none of 
these files have changed, the previously generated .h files can be reused - copy them 
back from /tmp/d2a_pipeline/. This saves a lot of time since generating them and 
running . /buildconf is time-consuming across many commits. 

12Apache's website: https://apr.apache.org/download.cgi. 
13pcre2's repository: https: //github.com/PCRE2Project/pcre2/releases/tag/pcre2-10.42. 
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5. If any template has changed, ./buildconf and ./configure must be rerun. The 
configuration process takes about 20 seconds, but it has to be done for thousands of 
commits. 

6. The script checks another set of tracked files that are generated differently: 

• server/gen_test_char.c, 

• srclib/pcre/dftables.c. 

If they have not changed, again copy them from previous versions. 

7. If they have changed, they need to be generated as follows: 

(a) include/test_char .h - generated using gcc -Isrclib/apr/include 

-Isrclib/apr-util/include server/gen_test_char.c -o gen_test_char 

followed by ./gen_test_char > include/test_char .h. 

(b) include/chartables. c - generated using gcc srclib/pcre/dftables. c -o 
df tables followed by . /df tables include/chartables. c. In some newer ver
sions, it is necessary to check if include/chartables. c was created, and if not, 
it must be generated using ./df tables > include/chartables. c instead. 

For each version (commit) of the project, running the configuration multiple times should 
be avoided. To prevent losing the generated configuration files, a project-specific cleanup 
that preserves the contents of certain directories is used. For httpd, the command is: 

git clean -dfx —exclude=srclib/ —exclude=include/ 

When starting the compilation for individual files of each sample, arguments extracted from 
D2A are used. However, most are insufficient as they do not include necessary -I paths for 
various header files. This may be due to different methods of installing libraries when creat
ing D2A, so these paths need to be added. For httpd, -Iinclude, -Isrclib/apr/include, 
and -Isrclib/apr-util/include are appended. 

As previously indicated, some samples might be skipped, or their compilation may fail. 
Statistics for individual projects are presented in Table 5.1. For h t tpd_l , the size of the 
filtered D2A is —47KB, compared to the unfiltered D2A, which is —629KB. The generated 
L L V M bitcode for h t tpd_ l is —22MB. The script for httpd_l runs for —330 seconds, which 
equates to -1.6 seconds per sample. Parallelization would speed this up, but since the 
project repository is a critical section accessed almost continuously, it would be necessary, 
for instance, to duplicate it. Thus, parallelization of this process is left for potential fu
ture improvements. Similarly, enhancements to the automated project configuration are 
also left for future improvements, as they could improve the success rate of bitcode genera
tion. However, compilation issues must be resolved manually, which consumes an enormous 
amount of time. 

5.3 Slicing Criteria Extractor 

To enable slicing of the generated L L V M bitcode from Section 5.2, it is first necessary to 
extract slicing criteria from the filtered D2A from Section 5.1. For this purpose, the Python 
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3.8 script slicing_criteria_extraction.py is provided. It takes as input a single file 
from the filtered D2A (specified using the —d2a option). The script outputs the slicing 
criteria in the C S V format (without header) to stdout, with the following columns: 

1. status - 0 means success, 1 indicates an internal error. 

2. bug_id - the id of the sample. 

3. entry - name of the entry function (see Section 4.1.2). 

4. f i l e - the file where the error is located. 

5. fun - the function where the error is located. 

6. line - the line number where the error is located. 

7. variable - the variable associated with the error. 

A n example of running slicing_criteria_extraction.py might look like this: 

python3.8 slicing_criteria_extraction.py —d2a d2a-filtered/ \ 

httpd_labeler_l.pickle.gz > slicing-info/httpd_labeler_l.csv 

The slicing_criteria_extraction.py script is used for both the training and inference 
pipelines. This is because both D2A and Infer's output are in the JSON format, and 
since D2A originates from Infer's output, they are quite similar. When the script is used 
on the D2A sample, it is converted to the same format as Infer's output via the simple 
transf orm_d2a_sample function, which essentially involves renaming and splitting some 
D2A attributes. 

For each sample/report, a function extract_{error_type_group]- (extracting the slicing 
criteria) is invoked based on its type - the 6 groups listed in Section 4.1.2. Retrieving entry, 
f i l e , fun, and line is straightforward: the correct attributes are simply extracted from 
the JSON (see Section 4.1.2). If variable is extracted, it is obtained from the qualifier 
field. For bug_id, id from D2A is used in the case of D2A. For Infer, the samples are 
labeled incrementally starting from 0, and unsupported sample types are skipped in the 
numbering to preserve the original numbering in Infer's output. 

The script skips unsupported error types. If an unknown format of a supported error is 
encountered, the script returns status = 1 and tries to extract at least entry, f i l e , fun, 
and line from the basic information to allow slicing based on the line number. 

If the f i l e is a header file (.h), the f i l e field is left empty because of future slicing -
because slicing based on header files is not supported by LLVM-Slicer in the standard 
format. Instead, slicing should be done using only fun and line, excluding the f i l e field. 
If the f i l e contains a regular .c file, fun is omitted because f i l e and line are sufficient 
to determine the slicing criteria unambiguously. Extracting slicing criteria from the filtered 
D2A completes for all files in under a minute. 
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5.4 Graph Construction Script 

The bash script construction_phase_d2a is used for generating Graph D2A from L L V M 
bitcode (created in Section 5.2) and slicing criteria in the C S V format (created in Sec
tion 5.3). This script implements the remaining transformations described in Section 4.1.2. 
The script accepts the following position-dependent arguments: 

1. The output directory for storing raw E C P G s . 

2. The file containing slicing criteria. 

3. The directory containing L L V M bitcode. 

4. (optional) The sample number at which to end. 

5. (optional) The sample number from which to start. 

The construction_phase_d2a script can be executed with a command such as: 

./construction_phase_d2a graph-d2a/httpd_l httpd_labeler_l.csv \ 

d2a-bitcode/httpd_l 

The script construction_phase_d2a operates as follows: 

1. Records from the slicing information (from its copy) that already have a directory 
with raw E C P G are removed. This allows for the intermittent transformation of the 
dataset. 

2. The slicing information file is divided into smaller files of 100 lines each (the last file 
may be smaller) and stored in /tmp/construction_phase_d2a/split_f iles/. 

3. Each file in split_f i l e s / is then processed as follows: 

(a) The create_cpgbin function is called in parallel for each line in f i l e using the 
command: 

cat ${file} | parallel —colsep ',' create_cpgbin {1} {2} {3} \ 

{4} {5} {6} {7} 

This function generates a binary C P G for each line from L L V M 2 C P G (detailed 
description of this function is provided below). 

(b) If /tmp/construction_phase_d2a/cpg/${bug_id}.cpg.bin.zip was not gen
erated for some samples, these samples are removed from f i l e . 

(c) A script for Joern is generated, containing commands to load and re-save all 
.cpg.bin.zip files, thereby expanding them into E C P G s . A n example Joern 
script is provided in Listing 5.1. 

(d) Joern processes all (up to 100) E C P G s . 

(e) The cpgbin_to_csv function is called in parallel for each line in f i l e , but only 
the bug_id column is used: 

cat ${file} I parallel —colsep ',' cpgbin_to_csv {2} 
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1 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_27 .. • • 17. .1, .cpg. .bin. .zip" ) 

2 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_04 .. . . le. .1, .cpg. .bin. .zip" ) 

3 // more imports 

4 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_3e .. . . 2c. .1, .cpg. .bin. .zip" ) 

5 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_ld .. . . 02. .1, .cpg. .bin. .zip" ) 

6 save 

Listing 5.1: A n example of an automatically generated Joern script for httpd_l. The script 
only includes importCpg to load binary CPGs (up to 100) and concludes with the save 
command, which saves the graphs. 

This function converts binary E C P G s to C S V - raw E C P G s , stored in the out
put directory. Each raw E C P G has its own directory (named after its bug_id) 
containing C S V files. 

(f) Finally, all temporary files created during the current iteration are cleaned up to 
prevent accumulation of logs and intermediate files, which could unnecessarily 
consume memory. 

4. Statistics on the number of successful/unsuccessful samples are then calculated and 
printed. 

The aforementioned function create_cpgbin, which takes a line with slicing criteria as 
input, works as follows: 

1. First, it checks whether the input directory with L L V M bitcode contains the bitcode 
for the current sample. If it does, the function continues. 

2. The LLVM-Slicer is called using: 

timeout 3s llvm-slicer —sc="${file}#${fun>#${line}#${variable}" \ 

—entry=${entry} -o=${bc_sliced} ${bc_combined} 

The timeout command ensures that llvm-slicer completes its run. Experiments 
have shown that it can sometimes get stuck or run for several minutes, which is 
unacceptable given the large number of samples. By removing certain columns from 
the slicing criteria (see Section 5.3) and leveraging the behavior of variables in bash, 
it is possible to call llvm-slicer uniformly for both .c and .h files. 

3. If llvm-slicer is successful, a C P G in binary format is generated using llvm2cpg 
as follows: 

llvm2cpg ${bc_sliced} —output=${cpg_bin} 

where ${cpg_bin]-=/tmp/construction_phase_d2a/cpg/${bug_id>.cpg.bin.zip. 

The cpgbin_to_csv function, which takes only bug_id as input, simply calls joern-export 
as follows: 

joern-export —repr a l l —format neo4jcsv \ 

-o "${output_dir>/${bug_id>" ${joern_cpg_bin> 
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where ${joern_cpg_bin]- contains the path to the binary E C P G in the temporary direc
tory /tmp/construction_phase_d2a/workspace/${bug_id}.cpg.bin.zip/cpg.bin. At 
the end of the function, the success of joern-export is checked. 

As mentioned earlier, the creation of binary C P G s and the conversion of binary E C P G s to 
C S V are parallelized using the parallel tool. However, the bottleneck here is Joern, which, 
despite running multiple instances, does not provide any speedup. Moreover, starting up 
Joern takes multiple seconds, so ideally, it is best to start and stop it as little as possible, 
hence it works in batches of 100. Larger batch sizes have been tested to further reduce the 
startup load of Joern, but the following issues were found: 

• Batch > 5000 - Joern crashes. 

• Batch > 3000 - Joern may get stuck in an infinite loop. 

• Batch > 500 - Joern non-deterministically generates incomplete graphs (missing edge 
sets like CDF, CFG, etc.). 

• Batch = 100 - Joern works correctly. 

The following results were measured on httpd_l. The non-parallelized script generates 
approximately 500 graphs per hour. By parallelizing both of the phases mentioned above, 
the script reaches approximately 1100 graphs per hour. Moving Joern to batch mode allows 
the script to generate approximately 4000 graphs per hour. Other projects have been found 
to contain, on average, larger graphs than httpd, so the number of graphs per hour may 
be smaller for those projects. The output graphs for h t tpd_ l are —240MB. 

As hinted earlier, some samples may fail. The largest contributing factor is the timeout for 
LLVM-Slicer. It is possible to increase the timeout, but that would decrease the number of 
graphs per hour. The number of successfully generated samples can be seen in Table 5.1. 

5.5 Normalization Coefficients Extractor 

Before applying feature engineering (see Section 4.1.4), it is necessary to extract normal
ization coefficients from individual projects in Graph D2A (created in Section 5.4). This is 
the task of the f ind_normalization_coefficients.py script for Python 3.8. The script 
is executed for each project separately with 6 position-dependent arguments: 

1. directory with false positives in Graph D2A of the specific project, 

2. directory with true positives in Graph D2A of the specific project, 

3. project name (httpd, nginx, or libtiff), 

4. splits.csv file providing the data split into train, val, and test sets, downloadable 
from [40], 

5. slicing criteria for false positives of the specific project, 

6. slicing criteria for true positives of the specific project. 
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Running the f ind_normalization_coeff icients .py script for httpd could look like this: 

python3.8 find_normalization_coefficients.py graph-d2a/httpd_0/ \ 

graph-d2a/httpd_l/ httpd d2a/splits.csv httpd_labeler_0.csv \ 

httpd_labeler_l.csv 

The find_normalization_coeff icients .py script works as follows: 

1. It processes splits.csv and selects the set of id samples belonging to the input 
project and the training set. 

2. It then iterates over all false positive samples and then all true positive samples (the 
order does not matter) as follows: 

(a) If the sample id is not in the training set, it is skipped - obtaining information 
from the validation and test sets is avoided because it could affect the experi
ments. 

(b) For each C S V header file (*_header. csv) of the current sample: 

i . If the current header file does not belong to the original node sets of the 
merged node set AST_N0DE (see Section 4.1.4), the node set TYPE, or the 
node set MEMBER, proceed to the next header file. 

i i . The corresponding data file *_data.csv is read. 
hi. If the header is nodes_TYPE_header. csv (TYPE node set), LEN and PTR val

ues are extracted (see Section 4.1.4) and if their maximum values are greater 
than the currently found ones, they are updated. Then, proceed to the next 
header file. 

iv. For a header file from the merged AST_N0DE node set or MEMBER node set, 
the values MEMBER_ORDER (for node set MEMBER) and ORDER (for all others) 
are updated (see Section 4.1.4). 

v. If the header file is for the node set METHOD, newly found operators (if any) 
are added to the OPERATORS set. 

vi. If the header file has a column ARGUMENT_INDEX, it is stored together with 
the column ID. 

(c) From the file edges_ARGUMENT_data.csv, obtain the set of target nodes for 
ARGUMENT edges. From previously stored ARGUMENT_INDEX, discard those that 
are not target nodes for ARGUMENT edges (using IDs). From the remaining ones, 
update the maximum value of ARGUMENT_INDEX. 

3. Extract the maximum value of LINE (for graph context, see Section 4.1.5) from the 
files with slicing criteria. 

4. Finally, print all normalization coefficients. 

The find_normalization_coeff icients .py script outputs its results to stdout in the 
format shown in Listing 5.2. Normalization coefficients ARGUMENT_INDEX, LEN, LINE, ORDER, 
MEMBER_ORDER and PTR are the maxima of all found attributes. OPERATORS is the set of all 
found operators. And BUG_TYPES is the set of all supported error types (see Section 4.1.1). 
Extraction for the httpd project takes about ~260s. 
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1 {'ARGUMENT_INDEX': 14, 

2 'BUG_TYPES': ['NULL_DEREFERENCE', 

3 // more error types 

4 'UNINITIALIZED_VALUE'], 

5 'LEN': 65536, 

6 'LINE': 9162, 

7 'MEMBER_ORDER': 75, 

8 'OPERATORS': {'<operator>.addition', 

9 '<operator>.addressOf', 

10 // more operators 

11 '<operator>.subtraction', 

12 '<operator>.xor'}, 

13 'ORDER': 1471, 

14 'PTR': 4} 

Listing 5.2: A n example of the normalization coefficients for the httpd project, generated 
by the f ind_normalization_coef f icients .py script. 

5.6 Feature Engineering Script 

After extracting the normalization coefficients (described in Section 5.5), feature engineering 
(designed in Section 4.1.4) can be applied to Graph D2A (created in Section 5.4) to produce 
a dataset in the TFRecords format. A l l feature selection, graph transformations, and 
attribute transformations are implemented using the feature_engineering.py script for 
Python 3.8. The script is called separately for each project and label with 8 position-
dependent arguments: 

1. T F G N N schema file (designed in Section 4.1.4), 

2. output file name, 

3. project name (httpd, libtiff, nginx, ...), 

4. label (0 or 1), 

5. splits. csv file, 

6. filtered D2A file (*_labeler_*), 

7. file with slicing criteria, 

8. (optional) Which of the normalization coefficients to use (httpd, l i b t i f f , nginx, or 
nginx+libtif f+httpd). If the argument is missing, the project value is used. 

The script reads directories with individual samples from its stdin (one directory per line). 
Running feature_engineering.py for httpd_l might look like this: 

find graph-d2a/httpd_l -mindepth 1 -type d | python3.8 \ 

feature_engineering.py extended_cpg.pbtxt \ 

tfrecords/httpd_l.tfrecords httpd 1 d2a/splits.csv \ 

d2a-filtered/httpd_labeler_l.pickle.gz httpd_labeler_l.csv 
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The f eature_engineering.py script does the following for each input Graph D2A sample: 

1. Loads only those node/edge set files that are not to be removed, with the exception of 
the TYPE_DECL node set, which is removed later (see Section 4.1.4). If any used edges 
were connected to a node that was not loaded, it becomes an invalid node that needs 
to be removed appropriately. During loading, a merged AST_N0DE is also created, and 
the original node set name is stored in the LABEL attribute of each AST_N0DE node. 

2. Discards unused node set attributes. 

3. From the loaded nodes and the AST node set, a MultiDiGraph representation is created 
using the nx library optimized for graph processing. 

4. Using the simple algorithm described in Section 4.1.4, all invalid nodes are removed 
from the graph (for now, it is just a set of ASTs). 

5. Using nx. weakly_connected_components (G), all W C C s are obtained, and those con
sisting only of BLOCK nodes are removed. 

6. A l l leaf BLOCK nodes are also removed. At this stage, all currently present nodes are 
considered valid (although some will still be removed later). 

7. Other edge sets are added to the graph, with the ARGUMENT edges only added if they 
originate from a CALL, meaning: 

G.nodes[edge['start']]['type'] == 'CALL' 

8. Newly added edges may again create invalid nodes, which can now be easily removed 
along with their edges, as removing them will not disconnect the ASTs. 

9. The graph optimizations described in Section 4.1.4 are then performed: 

(a) removing A S T children of external methods, 

(b) removing unnecessary EVAL_TYPE edges, 

(c) removing all TYPE_DECL nodes, 

(d) removing unused TYPE nodes. 

10. At this stage, it is verified that the graph forms a single W C C because no further edge 
or node removals will be performed that could split the graph into multiple WCCs . 

11. A l l METHOD and LITERAL nodes are split into data and latent nodes (see Section 4.1.4), 
which adds the node sets METH0D_INF0, LITERAL_VALUE, and also the edge sets 
METH0D_INF0_LINK and LITERAL_VALUE_LINK. 

12. At this stage, all node/edge sets are converted to separate DataFrame tables using 
the Pandas library, which is optimized for tabular operations. From this point on
ward, attributes of individual edge/node sets are processed in groups, not the graph 
structure itself. 

13. A l l attributes are split as needed and normalized using the extracted normalization 
coefficients (see Section 4.1.4). 
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1 for edge_set_name, val in edgeset_info.items(): 

2 source_nodeset=val['SOURCE'] 

3 target_nodeset=val['TARGET'] 

4 
5 get_source_node_loc =lambda id: graph_in_dfs[source_nodeset].index. 

get_loc(id) 

6 get_target_node_loc =lambda id: graph_in_dfs[target_nodeset].index. 

get_loc(id) 

7 
8 graph_in_dfs [edge_set_name]['source']=graph_in_dfs[edge_set_name] \ 

9 ['source'].apply(get_source_node_loc) 

10 graph_in_dfs[edge_set_name]['target']=graph_in_dfs[edge_set_name] \ 

11 ['target'].apply(get_target_node_loc) 

Listing 5.3: A n example of Python code that converts Joern node IDs into T F G N N IDs. 

14. Now, it is necessary to convert SOURCE and TARGET, which contain the node IDs in 
all edges. Currently, nodes have IDs in ascending order starting from 1. However, 
T F G N N identifies nodes differently. They are numbered in ascending order starting 
from 0, but within node sets - meaning there can be two or more nodes with the same 
ID if each is in a different node set. Since edge sets must define source and target 
node sets (see Section 4.1.4), there will be no collisions. 

15. Finally, the orientation of some edge sets is reversed (see Section 4.1.4). 

16. A T F G N N GraphTensor is created using the from_pieces and from_f ields meth
ods [79], 

17. Serializes the GraphTensor objects into tfrecords files according to whether the 
sample belongs to the train, val, or test set. 

The outputs of the f eature_engineering.py script are files with the *. train, *.val, and 
*.test extensions in the TFRecords format. Some samples may be faulty - for instance, 
no AST edge set was generated for them (by Joern), which must always be present in a valid 
sample. The number of successfully generated samples is shown in Table 5.1. The script 
runs on httpd_l for approximately —80 seconds. The script was parallelized at the level 
of individual samples, but parallelization did not bring any significant speed improvement 
(likely because the libraries used are already internally parallelized), and some calls to the 
TensorFlow library (e.g., writing to TFRecords) did not work and would need to be locked 
into critical sections. Therefore, the parallelization was removed. The output TFRecords 
files for h t tpd_ l are - 1 5 M B . 

5.7 Model Training Script 

After creating TFRecords files, training of G N N models can be done using the script 
mixed_nodes_model .py for Python 3.8. This script takes 4 position-dependent arguments: 

1. T F G N N schema, 
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Table 5.1: The table shows the number of samples after each phase of the training pipeline. 
For values marked with *, the loss is not final as they were not transformed into TFRecords. 
However, the table indicates that this final transformation is almost lossless. 

Project D2A Filtered D2A Bitcode Graph D2A TFRecords Loss 
httpd_0 12475 11974 11818 9705 9705 22 % 
h t tpd_ l 217 210 210 193 193 11 % 
nginx_0 17945 17209 17172 16741 16741 7% 
ng inx_ l 421 418 417 407 407 3 % 
libav _0 236415 234062 226213 186614 186595 21 % 
l i b a v _ l 4614 4575 4398 3331 3331 28 % 
libtiff 0 12096 11385 11377 9276 9276 23 % 
libtiff 1 553 534 534 459 459 17% 
openssl_0 343148 332584 301934 278292 - 20 %* 
openssl_l 8022 7913 7581 6918 - 14 %* 
ffmpeg_0 654891 649255 633997 500791 - 24 %* 
ffmpeg_l 4826 4772 4621 3938 - 18 %* 

2. directory with TFRecords, 

3. output directory for saving models, 

4. (optional) the value combined to train a single model across multiple projects (see 
Section 6.2); if omitted, a separate model is trained for each project. 

The script mixed_nodes_model .py trains models on training data (and validates on vali
dation data) of the projects httpd, libtiff, and nginx. It expects files named according to 
the pattern: 

{TFRecords_dir}/{httpd|libtiff|nginx}_{011}.tfrecords.{train|val} 

The script then operates as follows: 

1. Data are loaded using tf .data.TFRecordDataset - positive and negative samples 
separately (validation data are loaded all at once, as shuffling is not necessary). 

2. Up-sampling is applied to the minority class. 

3. Positive and negative samples are interleaved. 

4. A l l samples are shuffled to mix the samples from the individual projects. 

5. Datasets are batched. 

6. A preprocessing model is applied, which extracts the labels (see Section 4.1.5). 

7. The function train_model is then called, performing: 

(a) First, a model is constructed using the build_model function, which utilizes the 
Keras A P I 1 4 and operates as follows: 

1 4Keras API's documentation: https://www.tensorflow.org/guide/keras. 
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i . A n Input layer is created, taking graphs defined by the T F G N N schema as 
input. 

i i . A Dense layer initializing hidden states for each node set (and optionally 
edge sets) is added, using MapFeatures. 

i i i . G N N layers mt_albis .MtAlbisGraphUpdate are added. 
iv. A Pool layer is added. 
v. Dense layers in the G N N head are added, combining context features and 

the output of the Pool layer. 
vi . Finally, a Dense layer with a single output and sigmoid activation function 

is added. 

(b) The loss function, metrics, and optimizer are set, and the model is compiled 
using model. compile. 

(c) A n EarlyStopping callback monitoring Area Under the Receiver Operating 
Characteristic Curve (AUROCC) (see Section 6.1) on validation data is set. 

(d) Finally, the training loop is initiated using model.fit. 

8. Thanks to the EarlyStopping callback, the output of the training is the model with 
the highest validation A U R O C C found. This model (or models) is then saved to the 
output directory. Directories with models are automatically saved with the prefix 
{ID]-_, where ID is a unique number - the largest found in the directory, increased 
by one. The directory name might look like 8_AUC_0.818, where the A U C value 
specifically refers to the validation A U R O C C (or their average in case of multiple 
models). The values of hyperparameters set in the dictionary hyperparameters are 
stored in the output folder in the file hyperparameters. json. 

The entire model architecture is defined in the build_model function. Older versions of this 
script for earlier models can be found in the repository under commits named Model {ID} 
- AUC O.XYZ. These historical versions, though executable, do not represent the final form 
of the training script and should only be used for insight into the architecture definition. 

5.8 Mode l Evaluation Script 

Trained models can be evaluated using the evaluate_model .py script for Python 3.8. The 
models are evaluated based on two metrics - A U R O C C and Top N % Precision (see Sec
tion 6.3). Examples of these for the libtiff project and top-performing models are shown 
in Figure C.2 and Figure C.6, respectively. The script accepts 5 position-dependent argu
ments: 

1. T F G N N schema, 

2. directory with TFRecords files, 

3. directory with saved models, 

4. model ID, 

5. dataset type - test, val, or train. 
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The script initially loads the data in the TFRecords format from the same location and 
with the same naming convention as used by mixed_nodes_model .py (see Section 5.7), with 
additional *.test files. No data shuffling or modifications are required for the evaluation. 
A preprocessing model is applied to extract labels from the graphs. Then, the model 
(or models) is loaded using tf.keras.models.load_model, and inference is performed on 
the data using model .predict. The results are provided to the plot_top_N_precision 
function, which plots the precision dependency on the number of top-selected samples. 
Additionally, the plot_ROC_curve function is called to create R O C curves. Both graphs 
are displayed and also saved in the current directory under the names ROC_curves. svg and 
Top_N_precisions.svg. 

The script can be run in a special mode that creates graphs for predefined scenarios (all 
graphs in Chapter 6 were created using these scenarios), by passing the following special 
model ID values (4th argument): 

1. combined - testing top performing models from Section 6.3 on combined data from 
the httpd, libtiff, and nginx projects. 

2. httpd - testing top performing models on httpd. 

3. l i b t i f f - testing top performing models on libtiff. 

4. nginx - testing top performing models on nginx. 

5. libav - testing top performing models on libav - this involves cross-analysis. Files 
libav_{011}. tf records. {train | test | val} are required. 

6. chatgpt - comparing the top performing model with ChatGPT4 (see Section 6.4). 
The file libtiff-chatgpt .tfrecords .test, containing selected samples, is needed. 

5.9 Compiler Wrapper 

The compiler wrapper originates from the author's previous work [3], where its implemen
tation is also described. Here, only a brief overview will be provided, focusing mainly on 
its inputs and outputs for integration with other parts of the inference pipeline. 

The compiler wrapper is a bash script that replaces C / C + + compilers, and the original 
compiler binaries are renamed to {compiler}-original (e.g., gcc becomes gcc-original). 
The repository includes a Makefile

15

 for installing wrappers for many commonly used 
C / C + + compilers. 

The wrapper works by intercepting all commands that would go to the original compilers, 
and: 

1. passes them to Infer for analysis, 

2. generates L L V M bitcode, 

3. and finally forwards them to the original compilers. 
15Makefile for installing wrappers: https://github.com/TomasBeranek/but-masters-thesis/blob/ 

thesis-submission/inference-pipeline/Makefile. 
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The wrapper stores information in the /tmp/inf er-out directory, which is generated di
rectly by Infer. It contains the results of Infer's analysis and also a list of .be files found be
fore the first generation of L L V M bitcode. These existing .be files are not generated by the 
wrapper (or are outdated). Their list is stored in the /tmp/inf er-out/old_bc_f iles .txt 

file. This step needs to be optimized in future versions because it can be slow on large 
filesystems. 

5.10 Inference Pipeline 

Unlike the training pipeline, which is implemented as a series of standalone tools, the 
inference pipeline is fully automated. The inference pipeline uses the existing scripts 
construction_phase_d2a (see Section 5.4), feature_engineering.py (see Section 5.6), 
and compiler wrappers (see Section 5.9). The inference pipeline is a bash script named 
inf erence_pipeline, which combines the previously mentioned scripts and provides ad
ditional functionality, particularly data conversion into formats expected by the already 
created scripts. The inf erence_pipeline script should be called in the following context: 

1. First, the compiler wrappers need to be installed. 

2. Then, the analyzed project needs to be compiled (anywhere in the filesystem). 

3. After the compilation is complete, inf erence_pipeline is called with a single pa
rameter that specifies the output directory, for example: 

./inference_pipeline ./ 

4. Finally, it is advisable to uninstall the compiler wrappers. 

The inf erence_pipeline script itself works as follows: 

1. First, Infer analysis is run on the /tmp/inf er-out directory created by the compiler 
wrapper (see Section 5.9). 

2. A l l .be files are found in the filesystem, and those that have been added compared 
to the /tmp/infer-out/old_bc_files.txt list created by the compiler wrapper at 
the start of the compilation are identified. 

3. Using llvm-link, all new L L V M bitcode files are merged into a single file named 
/tmp/infer-out/combined.bc. 

4. Next, the slicing_criteria_extraction.py script (see Section 5.3) is executed to 
extract slicing criteria from the Infer output - the /tmp/inf er-out/report. json file. 

5. The /tmp/infer-out/bitcode directory with the L L V M bitcode must then be pre
pared as expected by the construction_phase_d2a script. Since there is only a single 
combined.be file for the entire project, an artificial directory is created and populated 
with symlinks that all point to the combined.be. The symlinks are named according 
to the IDs of individual Infer reports (see Section 5.3). 

6. Now, construction_phase_d2a can be executed as follows: 
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../dataset/construction_phase_d2a /tmp/infer-out/raw-ecpg \ 

/tmp/infer-out/slicing_iiifo.csv /tmp/infer-out/bitcode 

7. The generated raw E C P G s are then processed by feature_engineering.py in infer
ence mode - the input consists of exactly 4 position-dependent arguments: specifically, 
the T F G N N Schema, the name of the output . tf records file, Infer analysis results 
in report. json, and slicing criteria in C S V . The script is called as follows: 

find /tmp/infer-out/raw-ecpg -mindepth 1 -type d | python3.8 \ 

../model/schemas/feature_engineering.py \ 

../model/schemas/mixed_nodes/extended_cpg.pbtxt \ 

/tmp/infer-out/graphs.tfrecords /tmp/infer-out/report.json \ 

/tmp/infer-out/slicing_info.csv 

8. The final step is to call the model_inf erence .py script (described below) as follows: 

python3.8 model_inference.py \ 

../model/schemas/mixed_nodes/extended_cpg.pbtxt /tmp/infer-out/ \ 

graphs.tfrecords \ 

../model/saved_models/8_AUC_0.818/combined_AUC_0.818 \ 

/tmp/infer-out/report.j son /tmp/infer-out/ranked_report.j son 

The output of this script is the /tmp/inf er-out/ranked_report. json file, which 
contains the sorted reports from report. j son according to the score from the G N N 
model. 

The model_inf erence .py script applies the G N N model to the graphs, saved in the 
graphs .tf records file, and ranks individual reports from report, json according to the 
obtained scores. The script is a modified version of the evaluate_model.py script (see 
Section 5.8). Its input consists of 5 positional arguments: 

1. T F G N N schema, 

2. graphs in .tfrecords format, 

3. directory containing the G N N model, 

4. Infer output in report, json, 

5. result file name. 

Since the current models have not yet achieved significant results in the area of cross-
analysis, the inference pipeline remains unused for now. Therefore, it has not been tested 
on real projects. However, the only project-specific part is the compiler wrapper, which 
was thoroughly tested on a range of real software in the author's bachelor's thesis [3], and 
before its incorporation into the csmock tool [21, 20], the functionality of the wrapper was 
tested on 55 randomly selected S R P M packages in the C language. The runtime of the 
inference pipeline depends primarily on the time taken for Infer analysis and the individual 
parts of the pipeline, which were described in previous chapters. 
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Chapter 6 

Experimental Evaluation 

bud This chapter describes the experimental evaluation of the developed G N N models for 
ranking reports from Meta Infer based on the probability of being a true positive. Specifi
cally, Section 6.1 provides a detailed description of the architecture and hyperparameters of 
the base model, from which other models are derived. Section 6.2 discusses and evaluates 
the modifications of the base model on validation data. Section 6.3 compares the best de
veloped models with existing models on test data. Section 6.4 compares the best developed 
G N N model with the large language model Cha tGPT. Section 6.5 evaluates the developed 
models on cross-analysis. Finally, Section 6.6 summarizes and discusses the achieved results, 
and also describes possible future improvements. 

6.1 Base Model 

The general architecture and its main components used in the following models were already 
described in Section 4.1.5. Therefore, only supplementary information will be provided 
here, describing the specific architecture and hyperparameters of the base model - the 
model from which all other models mentioned in Section 6.2 are derived. The descriptions 
of basic machine learning concepts throughout this chapter, such as loss function, dropout, 
binary cross entropy, etc., are taken from [14], where they are discussed in detail and are 
only briefly mentioned here, as they are used in their conventional forms. 

The architecture of the base model is shown in Figure 6.1. The layer initializing hidden 
states is of type Dense (16) (i.e., a densely-connected neural network layer with 16 outputs) 
with an activation function relu, for each node set. This is followed by 8 G N N layers of the 
type MtAlbis. Initial parameters were chosen primarily based on [80] and examples in the 
T F G N N repository1. Parameters such as units and message_dim were selected considering 
the batch size and G P U memory size. Some initial parameters were chosen randomly and 
for parameters not mentioned here, default values were retained. A l l (except for the last) 
MtAlbis layers share the same parameters, which are: 

• units=16 - size of the hidden states. 

• message_dim=16 - size of the messages on the edges. 
1

TFGNN's repository: https://github.com/tensorflow/gnn. 
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Figure 6.1: The figure shows the architecture of the base model (Model 1), which forms 
the basis for all other models developed in this thesis. 

• receiver_tag=tfgnn.TARGET - specifies the direction of message passing, here it is 
along the direction of the edges (tfgnn.SOURCE would be in the opposite direction). 

• node_set_names=None - updates nodes of all node set types. For the last layer, the 
value is set to AST_N0DE in order to modify only nodes from the AST_N0DE node set 
from which the following pooling layer reads. Hidden states of other node sets are 
discarded by the pooling layer, making it unnecessary to update their values in the 
last round of message passing. 

• state_dropout_rate=0.1 - the dropout rate applied to the pooled and combined 
messages from all edges. 

• simple_conv_reduce_type='mean| sum' - the type of message aggregation. 

• next_state_type=residual - can be set to dense or residual, where residual 
adds a residual connection from the old to the new node state. 

Following the MtAlbis layers is a Pool layer of type max, which reads hidden states only 
from nodes of the AST_N0DE node set. Here, for example, it could read from the root of the 
A S T tree, where information would accumulate when changing the orientation of the AST 
edges (as mentioned in Section 4.1.4), but this would require the tree depth to be equal to 
or less than the number of G N N layers so that information from leaf nodes could reach the 
root. Since the depth varies and E C P G s are not just trees, it utilizes all AST_N0DE nodes 
whose information is eventually aggregated using the Pool layer. 

The context features, along with the output of the Pool layer, are inputs to the Dense (1) 
layer with the sigmoid activation function, which transforms the values into the range (0,1). 
The base model uses the Adam optimizer with a learning rate of 0.000002. The loss function 
used is BinaryCrossentropy. The model is trained in batches of size 11 (limited due to 
G P U memory) over 300 epochs, where the number of steps per epoch is the dataset size 
divided by batch size. The model employs EarlyStopping with patience set at 20 (thus, 
the models are not trained for 300 epochs but only for tens of epochs, see Section 6.2). 
The base model is trained separately on each project from D2A - this represents a form of 
3-fold validation. 
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Although the architecture is trained for binary classification, the goal of the models is 
ranking, not classification. Therefore, it does not make sense to monitor separate metrics 
such as precision, recall, or accuracy in this case, since these are designed specifically for 
classification. These metrics are also not suitable for unbalanced data. The metric that 
appropriately reflects ranking and can be used for unbalanced data is the Area Under 
the Receiver Operating Characteristic Curve ( A U R O C C ) . The R O C C [64] plots the True 
Positive Rate (i.e., recall) on the Y-axis and the False Positive Rate on the X-axis for each 
classification threshold (previously mentioned metrics use only a single threshold), thereby 
clearly describing the ranking ability of the model. The True Positive Rate is defined as 
(here true positives and false positives relate to the model, not to the results of Infer): 

m „ „ True Positives (TP) 
True Positive Rate (TPR) -

True Positives (TP) + False Negatives (FN) 

The False Positive Rate is then defined as: 

False Positives (FP) 
False Positive Rate (FPR) 

False Positives (FP) + True Negatives (TN) 

A U R O C C for a random model is 0.5 (indicated by a dashed line in all subsequent figures, 
see Figure 6.2) and for a perfect model is 1 (a model that can perfectly separate the 
classes). For the reasons mentioned above, A U R O C C on validation data is monitored for 
early stopping in all trained models - the models are thus trained to achieve the highest 
possible A U R O C C . 

6.2 Hyperparameters Tuning 

After the base model is created, it is necessary to tune its hyperparameters to adapt it to 
the specific task - in this case, the ranking of reports from Infer. If, even after tuning the 
hyperparameters, the architecture does not yield satisfactory results, a different architec
ture is typically tried. As will be evident from the results below, the architecture of the 
base model achieved very good results during the hyperparameter tuning process. There
fore, there was an effort to optimally tune this architecture. Due to limited computing 
resources, it was not possible to use automated hyperparameter tuning, which typically 
involves training many models with different settings. Thus, a manual approach had to be 
used, which requires fewer computing resources compared to automatic tuning but relies 
on experience and knowledge in the field. 

A total of 14 models were trained, the results on validation data and their number of 
parameters are in Table 6.1. The models are trained and tested, due to limited computing 
resources, only on the smallest projects - httpd, libtiff, and nginx. The A U R O C C of 
each model is either the average validation A U R O C C across the individual projects or the 
validation A U R O C C on a set of validation data composed of all the tested projects, as 
detailed below. 

The following description includes a list of changes for each model compared to the previous 
model: 

1. Model 1 - base model, described in Section 6.1. 
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2. Model 2 - increased network complexity - hidden state size increased to 18, an addi
tional MtAlbis layer added, a Dense (4) added for context features, and a Dense (8) 
layer added before the final Dense (1) layer. The increase in complexity required 
reducing the batch size to 6. Also, the state dropout was increased to 0.15. 

3. Model 3 - reduced network complexity - decreased the size of hidden states to 12 but 
increased the batch size to 10. 

4. Model 4 - reducing complexity led to much worse results, so complexity was further 
increased - hidden state size increased to 20 at the cost of removing one MtAlbis 
layer and reducing the batch size to 6. A Dropout (0.15) layer was also added right 
after the Pool layer. The learning rate was decreased to 0.000001. 

5. Model 5 - added one MtAlbis layer (total of 9) at the cost of reducing the size of 
hidden states to 18. 

6. Model 6 - instead of training 3 models for each project, Model 6 (and all subsequent 
models) is trained on all 3 projects at once (combining their training and validation 
sets). The learning rate was substantially increased to 0.0001, and the Dropout layer 
was removed from the G N N head. 

7. Model 7 - increased state dropout to 0.2, tried only mean for simple_conv_reduce, 

and switched to dense for next_state_type. 

8. Model 8 - since Model 7 experienced a significant drop in A U R O C C , Model 6 was 
restored. Only the state dropout was kept at 0.2 and an L2 regularization was added 
with a value of 0.00001 since the training A U R O C C for Model 6 was nearly 0.95 -
the model manages to learn on training data, now it needs to better generalize. 

9. Model 9 - set edge dropout (in MtAlbis layers) to 0.2. 

10. Model 10 - the edge dropout led to a significant deterioration, so it was set back to 0. 
However, the state dropout was increased to 0.25, and the learning rate was decreased 
to 0.00005. 

11. Model 11 - again tried the so-far best Model 8 but in a bi-directional mode - the di
rection of message passing in the MtAlbis layers is alternated using the receiver_tag 
parameter (see Section 6.1). 

12. Model 12 - again tried Model 8 and utilized edge features - ARGUMENT_INDEX (until 
now all edge features were ignored). 

13. Model 13 - again tried Model 8 but with attention - trainable message aggregation 
in MtAlbis layers. Used type gat_v2 with 3 attention heads (4 are default, but the 
size of the hidden state - 18 - must be divisible by the number of attention heads). 

14. Model 14 - slightly increased the state dropout to 0.22. 

The models have only been briefly described. Their source files can be found in the GitHub 
repository in commits labeled as, for example, Model 8 - AUC 0.818

2

 (the best-performing 
2Source code of Model 8: https://github.com/TomasBeranek/but-masters-thesis/blob/ 

idcaa8e5f896d50c9b55a616cea84d56a058d45f/model/src/mixed_nodes_model.py. 
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Table 6.1: The table shows the results of hyperparameter tuning and the size of each model. 
Validation data from httpd, libtiff, and nginx projects were used for the evaluation. 

Model Parameters A U R O C C 
Model 1 96,515 0.630 
Model 2 137,499 0.668 
Model 3 61,941 0.557 
Model 4 150,093 0.607 
Model 5 137,499 0.598 
Model 6 137,499 0.787 
Model 7 106,071 0.632 
Model 8 137,499 0.818 
Model 9 137,499 0.775 
Model 10 137,499 0.793 
Model 11 140,523 0.786 
Model 12 140,451 0.788 
Model 13 109,563 0.816 
Model 14 109,563 0.746 

model). However, these historical versions of the training script (described in Section 5.7) 
were in the development stage and should only serve as a reference for the definition of the 
model architectures. 

From Table 6.1, it is evident that the best performing models are Model 8, Model 13, and 
Model 10, respectively. A l l these models are very small - with less than 140 thousand 
parameters (which is about —500KB on disk) - yet they achieve very good results. These 
models were trained (hardware specifications used are in Chapter 5) for 69 epochs (~460s 
per epoch), 7 epochs (~l,350s per epoch), and 73 epochs (~450s per epoch), respectively. 

6.3 Models Comparison 

As previously mentioned, this thesis compares with the models developed in [94, 68] which 
also focus on reducing false positives reported by Infer. For this comparison, the three 
best-performing models on the validation data, specifically Model 8, Model 10, and Model 
13, were selected based on Table 6.1. Additionally, a 3-soft-vote model was created, 
which ranks based on a soft score - the sum of the scores from the three top-performing 
models. Moreover, a 6-sof t-vote model comprising the six top-performing models (Model 
6, 8, 10, 11, 12, and 13) was also created. It is important to note that the models are not 
compared on identical test sets as the Graph D2A contains fewer samples than the original 
D2A dataset due to: 

1. Support for only certain error types (see Section 4.1.1). The number of unsupported 
samples is —1.6 % of the total D2A samples, thus minimally influencing the results. 

2. The inability to generate E C P G from some D2A samples. These cases are significantly 
more frequent and could more substantially impact the results. Their quantity varies 
depending on the project, ranging from 3 % to 23 % for tested projects (see Table 5.1). 
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Table 6.2: A comparison of the existing models vote, c-bert, and vote-new with the 
models developed in this thesis. The comparison criterion is A U R O C C on test data. 

Model httpd libtiff nginx 
vote 0.77 0.89 0.77 
c-bert 0.82 0.94 0.89 
vote-new 0.90 0.98 0.93 
Model 8 0.80 0.95 0.94 
Model 10 0.79 0.91 0.91 
Model 13 0.74 0.87 0.83 
3-soft-vote 0.80 0.96 0.95 
6-soft-vote 0.83 0.96 0.94 

Table 6.2 presents a comparison of the Model 8, Model 10, Model 13, 3-soft-vote, and 
6-soft-vote developed in this thesis with the existing vote, c-bert, and vote-new models 
from [94, 68]. The models are compared based on A U R O C C on the test data, which is the 
only common metric across all models. The comparison is only shown for the projects 
httpd, libtiff, and nginx due to limited computational resources. The vote, c-bert, and 
vote-new models are trained on training and validation data, whereas the models developed 
in this thesis are trained only on training data with validation data used for early stopping. 

From Table 6.2, it is evident that the developed G N N models can match or even surpass 
the state-of-the-art models, especially for nginx. However, the results for httpd are lower, 
likely due to a lack of data. As indicated in Table 6.1, models using a combined training 
set (Model 6 and above) achieve significantly better results. It is possible that compared to 
existing models, these GNNs require more training data. The httpd project has the fewest 
samples in the original D2A dataset, and an additional —22 % of samples were removed 
when generating Graph D2A from httpd, which greatly complicates learning. 

However, models can also be compared from other perspectives, such as their size, which 
relates to the inference speed. A l l existing solutions are closed source, making it impossible 
to determine their sizes. Similarly, it is not possible to verify their results, experiment with 
the models, or use them. Hence, the models developed in this thesis are a promising open 
source alternative. 

Specific R O C curves for the developed models on the combined test sets can be seen in 
Figure 6.2. R O C curves for individual projects are provided in the appendices in Figure C . l 
(httpd), Figure C.2 (libtiff), and Figure C.3 (nginx). 

The intended use case for these models is to rank Infer reports by likelihood of being a real 
error. Developers would then typically check only the most promising reports - for example, 
the top 5 % (the same value was chosen in [68]). Consider now the best-performing model 
(on average), 6-soft-vote, which is deployed on the test data of the libtiff project. The 
percentage of real errors (equivalent to precision * 100) in the libtiff project test data 
in Graph D2A is —4.7 % (see Table 5.1). This number remains unchanged (on average) if 
a random 5 % of samples are checked - equivalent to ranking by a random model. However, 
if the top 5 % of samples according to the 6-soft-vote model are selected, the amount 
of true positives increases to —57.1 %. In terms of the number of samples - in unsorted 
reports, there will be on average 2.3 real errors for every 49 checked reports. In the sorted 
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Receiver Operating Characteristic (test-combined) 

False Pos i t ive Rate 

Figure 6.2: The figure shows the R O C curves for the top-performing models developed in 
this thesis, evaluated on a combined test set from the httpd, libtiff, and nginx projects. 

reports, 28 real errors will be found for the same number of checked reports, which is more 
than 13 times as many. 

Graphs showing precision values for different percentages of top samples and for top-
performing models are presented in Figure C.4 (combined data from all projects), Fig
ure C.5 (httpd), Figure C.6 (libtiff), and Figure C.7 (nginx). This metric becomes more 
sensitive as fewer top samples are considered. 

6.4 Comparison with C h a t G P T 

In recent years, Large Language Models (LLMs) such as Cha tGPT have become increasingly 
recognized by both professionals and the general public. Cha tGPT can respond to textual 
inputs (and in version 4, even, e.g., image inputs) with textual outputs (again in version 
4, even, e.g., image outputs). The introduction of Cha tGPT [67] demonstrates the model's 
capabilities to search for and correct errors in code. The ability of Cha tGPT (especially 
version 4) to handle programming tasks compared to other L L M s is discussed in [15], where 
ChatGPT4 is shown to be particularly effective. These results raise the question of how 
ChatGPT might perform in reducing false reports. 

For the experiment, the 6-soft-model, which on average achieved the best results in Sec
tion 6.3, was used. Ten true positives and ten false positives were randomly selected from 
the test set of the libtiff project. These samples, in their original JSON format (without 
class information), were submitted to a modified version of ChatGPT4 that could interpret 
code and search the internet, with the following instructions: 
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Figure 6.3: The figure shows R O C curves comparing 6-soft-vote and ChatGPT4, on 
a randomly selected (with balanced classes) 20 samples from the test data of the libtiff 
project. 

Behave like a binary classification model. You will receive a sample 

from the D2A dataset, containing reports from Meta Infer static 

analyzer. Your goal is to output a number in the range <0,1>. The 
higher the number, the more certain you are that the report from Infer 

is true. Individual samples contain the report i t s e l f , the location of 

the error, codes of functions related to the error, and other useful 

information. 

From Figure 6.3, which displays the R O C curves for the scores from 6-soft-vote and from 
ChatGPT version 4, it is apparent that ChatGPT4 exhibits random behavior in terms 
of ranking these selected samples. In contrast, 6-soft-vote achieves a perfect score -
distinguishing between the classes perfectly. When comparing the models in terms of their 
size, 6-soft-vote again prevails with only 800 thousand parameters (comprising 6 sub
models), while ChatGPT4 has approximately 1.76 trillion parameters [57]. However, it is 
important to note that Cha tGPT is a general-purpose model and not a classifier specifically 
designed for ranking reports from static analysis. 

6.5 Cross-analysis 

The ultimate goal of all models in the field of static analysis report filtering/ranking, based 
on the likelihood of being true positive, is to function on cross-analysis. Existing models 
vote, c-bert, and vote-new from [94, 68] are designed only for self-analysis - the model is 
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Receiver Operating Characteristic (test-libav) 

False Posit ive Rate 

Figure 6.4: The figure shows R O C curves for the top performing models developed in this 
thesis in cross-analysis mode. The models were trained on the httpd, libtiff, and nginx 
projects and tested on the test data of the libav project. 

trained and tested on the same project. However, the self-analysis is also useful in practice, 
especially for large projects with extensive git histories that can be used to train models. 

A primary objective of feature engineering in Section 4.1.4 was to eliminate information 
that could lead the models to overfit to a specific project. To test cross-analysis capabilities, 
the top performing models were tested on the test data of the libav project. The results 
in Figure 6.4 indicate that the models, on average, exhibit random behavior. The devel
oped models, like all existing ones, thus fail to function on cross-analysis, which represents 
a significant challenge in this research field. 

6.6 Summary and Future Work 

From the experiments in this chapter, it is evident that GNNs, and specifically the models 
developed in this thesis, are suitable for ranking reports from the Meta Infer static analyzer. 
The created models were able to match best existing solutions in this area that we are aware 
of, which were developed by strong industrial team from I B M . In the case of the nginx 
project, the existing models were even surpassed. However, results on the httpd project 
were weaker, which may be due to a lack of data for the httpd project, which is not only the 
smallest project in terms of the number of samples in the D2A dataset but also experienced 
high sample losses during the generation of Graph D2A. Nonetheless, we believe that these 
results demonstrate that the developed models are a promising open-source alternative to 
existing solutions, which are unfortunately all closed source. 

90 



The best-performing model, 6-soft-vote , was also compared with the L L M model Chat-
G P T version 4. The model developed in this thesis proved superior with a perfect score, in 
contrast to ChatGPT4, which was unable to differentiate between false and real reports. 

The models were also tested on a cross-analysis. None of the models were able to correctly 
distinguish false reports from real ones. Cross-analysis thus emerges as an unexpectedly 
challenging problem in this research area as no existing model that we are aware of functions 
effectively on cross-analysis either. 

Future work should focus on testing self-analysis on all projects in the D2A dataset, which, 
however, requires training on a large number of samples and thus needs significant compu
tational resources. Considering the results of experiments on the httpd project, it would 
be necessary to focus on improving the training pipeline to avoid such high sample losses. 
Specifically, it would be beneficial to increase the timeout for the L L V M Sheer tool and to 
focus on improving the success rate of L L V M bitcode extraction. Particularly, it should 
focus on the minority class - true positives (not just for httpd), which are naturally very 
scarce. 

Various ways of future improvements have already been mentioned in previous chapters. 
Considering the results of the models on cross-analysis, it would be necessary to focus 
especially on adjusting feature engineering - more information that allows models to overfit 
on individual projects should be discarded. Additionally, refining the extraction of slicing 
criteria could help future graphs to contain less noise (i.e., redundant information). 

There is also a plan to deploy the developed models as part of the csmock tool [21, 20], 
which allows the automatic running of various analyzers on S R P M packages. A plugin 
for the csmock tool that adds support for static analysis by Meta Infer was created in the 
author's bachelor's thesis [3]. It would simply involve supplementing this plugin with the 
developed models, which would rank the results of Infer. 
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Chapter 7 

Conclusion 

This thesis aimed to develop a machine learning-based system for ranking reports from 
the Meta Infer static analyzer based on their likelihood of being real error. Graph Neural 
Networks (GNNs) were selected due to their suitability for modeling various source code 
properties. The D2A dataset from I B M , which contains labeled Infer reports, was used for 
training. This dataset required conversion from a textual to a graphical format. To achieve 
this, a training pipeline was developed to produce Graph D2A - a graphical representa
tion of D2A. This pipeline improves existing graph generation techniques by considering 
conditional compilation. The raw format of graphs in Graph D2A necessitated the design 
of a feature engineering process that optimizes and transforms these graphs into Extended 
Code Property Graphs (ECPGs) , which enrich commonly used Code Property Graphs by 
including Call Graphs, data types, and other information. 

Experimental results with G N N models trained on projects httpd ( A U R O C C 0.83), libtiff 
( A U R O C C 0.96), and nginx ( A U R O C C 0.94) show that the developed models are competi
tive with existing state-of-the-art solutions created by strong industrial teams. The models 
even reached state-of-the-art results on the nginx project although they performed less well 
on the httpd project, likely due to a low number of samples. Nonetheless, these experiments 
show that the developed models are a promising open-source alternative since all existing 
solutions are closed-source. The models were also tested using cross-analysis, which unfor
tunately did not yield useful results. Cross-analysis remains a significant challenge as none 
of the existing models compared in this thesis function effectively in this mode either. 

In this thesis, an inference pipeline was also developed for the automatic Infer analysis, 
construction of E C P G s , and model inference on real-world C (and subset of C++) software. 
Even if cross-analysis does not work, the inference pipeline could be utilized in the future 
for inference on the projects on which the models were trained. 

Future work should focus on evaluating and fine-tuning the developed models on larger 
projects from the D2A dataset. Based on the experiment results from the httpd project, the 
training pipeline should be improved to minimize the loss of samples during transformation. 
Specifically, increasing the timeout for the L L V M Sheer tool and focusing on generating 
L L V M bitcode, especially for the minority class - real errors. There are also plans to deploy 
the developed models in the csmock tool, which automates analyses on S R P M packages. 

Preliminary results of this thesis were presented at the Excel@FIT'24 conference, where it 
received an award from the expert panel. 
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Appendix A 

Contents of the Attached Memory 
Media 

This appendix describes the contents of the attached memory media. The memory media 
contains: 

• d2a/ - the original D2A dataset, which can also be downloaded from [40]. 

• d2a-bitcode/ - zipped L L V M bitcode for the httpd project - only for testing the 
generation of Graph D2A, so that L L V M bitcode does not have to be re-generated (it 
is computationally expensive). 

• d2a-f iltered/ - filtered D2A dataset. 

• graph-d2a/ - zipped Graph D2A (raw ECPGs) for all projects from which TFRecords 
were generated, namely httpd, libtiff, nginx, and libav (the latter is divided into sev
eral parts as detailed below). So far, it has not been possible to find a place for online 
storage of the entire D2A Graph, which occupies hundreds of GBs when compressed. 
Once the D2A Graph is uploaded, a link will be provided in the README.md of the 
repository. 

• httpd-dependencies/ - already configured libraries necessary for generating L L V M 
bitcode for httpd. 

• repository/ - all the source files, which are also available on Gi tHub 1 

— dataset/ - source files for the D2A to Graph D2A transformation. 

* construction_phase_d2a - for generating Graph D2A, see Section 5.4. 
* filter.py - for filtering D2A, see Section 5.1. 
* generate_bitcode.py - for generating L L V M bitcode, see Section 5.2 
* Makefile - for automating the execution of these scripts. 

— dev-utils/ - a set of scripts that do not belong to the main implementation 
but were used, for example, for data exploration and other useful tasks. 

* concat_tf records .py - for concatenating TFRecords files. 
1 GitHub repository: https: //github.com/TomasBeranek/but-masters-thesis. 
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* extract_sample .py - for extracting and displaying samples from D2A. 
* find_unique_values.py - for finding unique attribute values in Graph 

D2A. 
* graphs_comparison. sh - for comparing different versions of Graph D2A. 
* records_counter.py - for counting samples in TFRecords files. 
* remove_duplicates.py - for removing duplicate samples in D2A at the 

L L V M bitcode level. 
* remove_invalid_symlinks .py - for removing incorrect symlinks in L L V M 

bitcode (this issue has been fixed). 
* stats.py - for generating statistics about D2A - Tables C . l and C.2. 

— experiments/ - a set of experiments that support and demonstrate various 
claims made in this thesis. If an experiment is executable, it can be run using 
the make command in its directory. Details of the experiment are provided for 
each experiment separately (typically in Makefile). 

* arg-passing/ - demonstration of argument passing in raw E C P G . 
* comparison-with-chatgpt/ - data for comparison with ChatGPT, from 

Section 6.4. 
* compilation-from-D2A/ - demonstration that code cannot be compiled 

directly from D2A. 
* entry-function/ - demonstration that Infer always reports the entry func

tion in the procedure attribute. 
* global-vars/ - demonstration of storing access to global variables in raw 

E C P G . 
* include-headers-to-bitcode/ - demonstration that slicing criteria can 

also be specified for .h files because they are included in L L V M bitcode. 
* joern-batch-processing/ - demonstration that Joern batch processing is 

equivalent to single sample processing. 
* line-slicing/ - demonstration that L L V M sheer retains everything on the 

line specified as the slicing criterion. 
* removing-duplicates/ - test to demonstrate the functionality of removing 

duplicate samples. 
* speed-test/ - comparison of repository search types by speed when gener

ating L L V M bitcode. 
* struct-alias/ - demonstration of storing structures and aliases in raw 

E C P G . 

— inference-pipeline/ - source code of the inference pipeline. 

* example/ - an artificial example to demonstrate the functionality of the 
inference pipeline. 

* inf erence_pipeline - inference pipeline, see Section 5.10. 
* Makefile - for installing/uninstalling compiler wrappers and running the 

experiment. 
* model_inference.py - for inference using G N N models, see Section 5.10. 
* slicing_criteria_extraction.py - for extraction of slicing criteria, from 

Section 5.3. 
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* wrapper - template for compiler wrapper, see Section 5.9. 

— model/ - source files for feature engineering, training, and testing models. 

* schemas/ - source files for feature engineering. 
• extended_cpg.pbtxt - T F G N N schema for E C P G . 
• feature_engineering.py - feature engineering, see Section 5.6. 
• f ind_normalization_coeff icients .py - for extraction of normaliza

tion coefficients, see Section 5.5. 
• Makefile - targets for automating the execution of these scripts. 

* src/ - source files for models. 
• evaluate_model .py - for model evaluation, see Section 5.8. 
• mixed_nodes_model .py - for model training, see Section 5.7. 

* Makefile - targets for training models, evaluating models, and scenarios. 

— sep-presentation-en/ - D T ^ X source code of the SEP presentation. 

— sep-text-en/ - I^TgK source code of the SEP text. 

— text-en/ - DTgX source code of this thesis. 

— text-template/ - DT£]X source code of the used template. 

— xberan46-2024.pdf - P D F version of this thesis. 

— .gitignore 

— README.md 

• results/ - output graphs for all scenarios from Section 5.8. 

• saved_models/ - all trained models - Model 1 to Model 14. 

• text-en/ - WT^K. source code of this thesis. 

• tf records/ - dataset in TFRecords format for all projects that were used for training 
or testing, namely httpd, libtiff, nginx, and libav. The dataset in this format was also 
published on Zenodo [5]. 

• xberan46-2024.pdf - P D F version of this thesis. 
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Appendix B 

Installation and User Manual 

This appendix contains the installation and user manual, which were tested on a clean, 
normal (i.e., not minimal) installation of Ubuntu 20.04.2.0 LTS. For training or evaluat
ing G N N models, it is advisable to have a G P U compatible with the TensorFlow library, 
otherwise the computation will be significantly slower. 

Ins ta l la t ion 

A l l source code for training and inference pipelines is in script form, so there is no need for 
any installation, except for installing a compiler wrapper using a make target (see below). 
However, it is necessary to install required dependencies. 

L L V M Sheer can be installed as follows1: 

sudo apt install git cmake make llvm zliblg-dev clang g++ python3.8 

git clone https://github.com/mchalupa/dg 

cd dg 

mkdir build && cd build 

cmake .. 

make -j4 

sudo In -s ${PWD}/tools/llvm-slicer /usr/bin/llvm-slicer 

Joern can be installed using: 

sudo apt install curl default-jdk default-jre 

git clone https://github.com/joernio/joern 

cd joern 

sudo ./joern-install.sh 

For L L V M 2 C P G , it is necessary to download the binary release for Ubuntu 20.042 and then 
install it using: 

unzip llvm2cpg-0.8.O-LLVM-11.0-ubuntu-20.04.zip 

1Official installation guide for L L V M Slicer: https://github.com/mchalupa/dg/blob/master/doc/ 
compiling.md. 

2 LLVM2CPG's binary release for Ubuntu 20.04: https://github.com/ShiftLeftSecurity/llvm2cpg/ 
releases/download/0.8.0/llvm2cpg-0.8.0-LLVM-11.0-ubuntu-20.04.zip. 
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mv llvm2cpg-0.8.0-LLVM-ll.0-ubuntu-20.04/ llvm2cpg 

sudo In -s ${PWD}/llvm2cpg/llvm2cpg /usr/bin/llvm2cpg 

To generate L L V M bitcode, the following dependencies need to be installed for various 
projects: 

• httpd 

sudo apt install libpcre3 libpcre3-dev autoconf libtool-bin 

. libtiff 
sudo apt install libgl-dev freeglut3-dev 

• ffmpeg (the same applies to libav as they share some libraries) 

sudo apt install nasm yasm libsdl2-dev 

• openssl 

sudo apt install perlbrew 

perlbew init # follow the instructions to finish the installation 

perlbrew install perl-5.28.0 

It is also necessary to install Infer using the binary release3: 

tar xf infer-linux64-vl.1.O.tar.xz 

sudo In -s ${PWD}/infer-linux64-vl.1.0/bin/infer /usr/bin/infer 

Additionally, the following Python3.8 packages must be installed: 

sudo apt install python3-pip 

python3.8 -m pip install tqdm "pandas==l.3.4" "networkx==3.1" \ 

"matplotlib==3.4.3" "scikit-learn==l.2.0" "tensorflow-gnn==0.6.1" 

The command line tool parallel also have to be installed: 

sudo apt install parallel 

For experiments, the following dependencies are necessary: 

sudo apt install graphviz tree 

User M a n u a l 

The training pipeline is divided into individual phases and is generated in parts due to its 
high computational demands. To simplify generation, a set of Makefiles has been created. 
However, using these Makefiles requires storing the individual outputs in directories exactly 
as defined below (or it is possible to modify the paths in the Makefiles, or call the tools 

3Infer's binary release: https: //github.com/f acebook/inf er/releases/download/vl.l.O/inf er-
linux64-vl.l.0.tar.xz. 
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without using Makefiles). The manual assumes that the starting working directory contains 
directories and files from the attached memory media. 

The first step is to prepare D2A: 

mv d2a repository/dataset/ 

D2A is then filtered: 

cd repository/dataset/ && make filter-d2a 

Next, the slicing criteria are extracted: 

make slicing-info 

Then, prepare a directory for the repositories of individual projects from D2A, add pre-
configured libraries for httpd (it is also possible to download from official sites and configure 
it as described in Section 5.2), and download the original project repositories: 

mkdir projects && mv ../../httpd-dependencies projects/ 

make download-repos 

From this point forward, commands will only be listed for the httpd project; other projects 
are generated similarly unless otherwise noted. L L V M bitcode is generated using: 

make bitcode-httpd-1 

make bitcode-httpd-0 

Before generating L L V M bitcode for openssl, it is necessary to switch the Perl version as 
follows: 

perlbrew switch perl-5.28.0 

After generating the L L V M bitcode, it is possible to start generating the D2A Graph: 

mkdir -p graph-d2a/httpd_l && make graph-httpd-1 

mkdir -p graph-d2a/httpd_0 && make graph-httpd-0 

The D2A Graphs for projects from which TFRecords were generated, namely httpd, libtiff, 
nginx, and libav, are zipped on the attached memory media in the graph-d2a/ directory 
to avoid re-generation. Because the D2A Graph is not only computationally expensive 
to create but also memory-expensive to store, libav 0 is split into 3 .zip files, which 
must be transformed into TFRecords separately, and the results combined using the script 
repository/dev-utils/concat_tfrecords .py (an example of its usage is provided in
side) . 

Normalization coefficients could be extracted here, but they have already been generated 
and are inserted directly in feature_engineering.py. However, for demonstration, it can 
be done using: 

cd ../model/schemas && make extract-norm-coeffs-httpd 

Extraction of normalization coefficients is also possible for libtiff and nginx. For other 
projects, make targets were not created as they were not used for training. 

To generate TFRecords, enter (current working directory is repository/model/schemas): 
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mkdir ../tfrecords 

make transform-httpd-1 

make transform-httpd-0 

Once TFRecords for the httpd, libtiff, and nginx projects are created, training can com
mence. As their generation is also time-consuming, they are included on the memory media 
in the tf records directory, or are available on Zenodo [5]. To start training the currently 
configured model (the architecture of Model 8 - the best standalone model) with combined 
data, along with adding tf record from the media and also adding models from the media 
(saved_models/), use: 

cd . . 

mv ../../tfrecords . 

mv ../../saved_models . 

make train-combined-model 

For example, Model 8 can be evaluated on the test data using: 

make evaluate-model-test ID=8 

Alternatively, it is possible to run, for example, a combined scenario: 

make scenario-combined 

For a demonstration of the inference pipeline, a simple project was created in which In
fer finds 3 errors - l x DEAD_STORE (which is not supported as it is always true positive) 
and 2x NULL_DEREFERENCE. When executing the experiment, compiler wrappers are first 
installed, the project is compiled, the inference pipeline is run, and finally, the wrap
pers are uninstalled. The experiment can be initiated (assuming the working directory 
is repository/model/): 

cd ../inference-pipeline 

make 

The output is ranked_report. json, where errors are scored (attribute model_score) and 
ranked using Model 8. 
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Appendix C 

Additional Data 

This appendix contains supplementary tables and figures that provide additional data rel
evant to the discussions and experiments presented in earlier chapters of the thesis. 

Receiver Operating Characteristic (test-httpd) 

False Pos i t ive Rate 

Figure C . l : The figure shows R O C curves for the top-performing models developed in this 
thesis. The models were evaluated on test data from the httpd project. 
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Receiver Operating Characteristic (test-libtiff) 

False Posit ive Rate 

Figure C.2: The figure shows R O C curves for the top-performing models developed in this 
thesis. The models were evaluated on test data from the libtiff project. 

Receiver Operating Characteristic (test-nginx) 

False Posit ive Rate 

Figure C.3: The figure shows R O C curves for the top-performing models developed in this 
thesis. The models were evaluated on test data from the nginx project. 
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Table C . l : The table contains the distribution of all D2A samples (except the after fix type) 
by error type and label (true positive/false positive). This table shows the distribution for 
the openssl, libav, and nginx projects. Table C.2 shows the distribution for the remaining 
projects. The green highlighted rows represent the types of errors supported by the system 
designed in this thesis. 

Error Type openssl libav nginx 

INTEGER_OVERFLOW_L5 4046/166221 2892/156942 162/4333 
BUFFER_OVERRUN_L5 1656/81700 684/27403 39/2070 
BUFFER_OVERRUN_L4 758/24928 165/9560 83/5016 
INTEGER_OVERFLOW_U5 191/11015 178/9944 30/1254 
NULLPTR_DEREFERENCE 125/10055 78/8580 2/132 
BUFFER_OVERRUN_U5 297/14353 82/3944 67/2992 
INTEGER_OVERFLOW_L2 178/8008 55/2819 20/625 
NULL_DEREFERENCE 98/4336 24/4810 3/37 
INFERBO_ALLOC_MAY_BE_BIG 49/734 237/3098 0/0 
BUFFER_OVERRUN_L3 382/9391 16/805 6/366 
UNINITIALIZED_VALUE 28/695 55/3526 3/116 
BUFFER_OVERRUN_L2 80/594 97/1664 1/243 
PULSE_MEMORY_LEAK 18/4046 0/0 1/586 
DEAD_STORE 50/1355 15/1011 0/12 
MEMORY_LEAK 18/3021 4/214 0/66 
DANGLING_POINTER_DEREFERENCE 13/1353 2/636 0/3 
BUFFER_OVERRUN_L 1 14/319 9/767 0/3 
DIVIDE_BY_ZERO 0/33 1/318 0/0 
INTEGER_OVERFLOW_LI 11/235 3/200 2/22 
USE_AFTER_FREE 2/391 15/47 1/9 
INTEGER_OVERFLOW_R2 0/0 1/91 0/0 
BUFFER_OVERRUN_S2 7/217 0/21 1/28 
RESOURCE_LEAK 1/118 1/11 0/28 
PREMATURE_NIL_TERMINATION_ARGUMENT 0/0 0/0 0/0 
INFERBO_ALLOC_IS_ZERO 0/0 0/4 0/1 
INFERBO_ALLOC_IS_BIG 0/3 0/0 0/1 
DEALLOCATE_STACK_VARIABLE 0/14 0/0 0/0 
INFERBO_ALLOC_MAY_BE_NEGATIVE 0/1 0/0 0/2 
BIABD_USE_AFTER_FREE 0/11 0/0 0/0 
BUFFER_OVERRUN_R2 0/0 0/0 0/0 
POINTER_TO_INTEGRAL_IMPLICIT_CAST 0/1 0/0 0/0 
All Types 8022/343148 4614/236405 421/17945 
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Table C.2: The table contains the distribution of all D2A samples (except the after fix type) 
by error type and label (true positive/false positive). This table shows the distribution for 
the libtiff, httpd, and ffmpeg projects. Table C . l shows the distribution for the remaining 
projects. The green highlighted rows represent the types of errors supported by the system 
designed in this thesis. 

Error Type libtiff httpd ffmpeg 
INTEGER_OVERFL OW_L5 306/5917 64/2632 2912/394952 
BUFFER_OVERRUN_L5 101/2468 45/1534 590/110655 
BUFFER_OVERRUN_L4 9/682 28/835 190/25546 
INTEGER_OVERFL OW_U5 67/562 21/1338 241/32493 
NULLPTR_DEREFERENCE 2/70 14/2521 201/24812 
BUFFER_OVERRUN_U5 27/524 25/2477 142/19479 
INTEGER_OVERFLOW_L2 7/488 8/99 101/10391 
NULL_DEREFERENCE 2/210 0/388 74/10228 
INFERBO_ALLOC_MAY_BE_BIG 4/5 0/0 70/9113 
BUFFER_OVERRUN_L3 9/334 0/48 47/1615 
UNINITIALIZED_VALUE 0/111 3/59 151/5549 
BUFFER_OVERRUN_L2 0/0 0/27 44/2572 
PULSE_MEMORY_LEAK 6/141 0/11 0/0 
DEAD_STORE 0/117 7/115 24/1582 
MEMORY_LEAK 2/121 0/87 3/604 
DANGLING_POINTER_DEREFERENCE 0/121 0/142 7/1742 
BUFFER_OVERRUN_L 1 0/5 1/13 4/1255 
DIVIDE_BY_ZERO 4/166 0/0 11/776 
INTEGER_OVERFL OW_L 1 0/9 1/3 5/595 
USE_AFTER_FREE 0/0 0/18 1/251 
INTEGER_OVERFL OW_R2 0/0 0/0 3/561 
BUFFER_OVERRUN_S2 7/32 0/0 3/73 
RESOURCE_LEAK 0/0 0/12 1/26 
PREMATURE_NIL_TERMINATION_ARGUMENT 0/0 0/116 0/0 
INFERBO_ALLOC_IS_ZERO 0/7 0/0 1/3 
INFERBO_ALLOC_IS_BIG 0/0 0/0 0/10 
DEALLOCATE_STACK_VAPJABLE 0/0 0/0 0/0 
INFERBO_ALLOC_MAY_BE_NEGATIVE 0/6 0/0 0/2 
BIABD_USE_AFTER_FREE 0/0 0/0 0/0 
BUFFER_OVERRUN_R2 0/0 0/0 0/6 
POINTER_TO_INTEGRAL_IMPLICIT_CAST 0/0 0/0 0/0 
All Types 553/12096 217/12475 4826/654891 
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Table C.3: The table shows all selected node sets and their attributes during the feature 
selection phase. It also indicates which node sets will be merged. The symbol V denotes 
an attribute that is used, the symbol 'X ' denotes an unused attribute, '-' indicates that the 
attribute does not exist, and '0' indicates that the attribute does not exist but will be filled 
with zeros for the purpose of merging node sets. 

Node Set LABEL 
ARGUMENT 

INDEX 
CODE ORDER 

FULL 
N A M E 

IS 
EXTERNAL 

New Node Set 

METHOD / 0 X / / / 
AST_NODE 

METHOD_INFO 
METHOD 

PARAMETER 
IN 

/ 0 X / - - AST_NODE 

METHOD 
RETURN 

/ 0 X / - - AST_NODE 

MEMBER / - / - - MEMBER 
T Y P E / - - - - TYPE 

BLOCK / / X / - - AST_NODE 
CALL / / X / - - AST_NODE 

FIELD 
IDENTIFIER 

/ / X / - - AST_NODE 

IDENTIFIER / / X / - - AST_NODE 

LITERAL / / / / - -
AST_NODE 

LITERAL_INFO 
LOCAL / 0 X / - - AST_NODE 

METHOD 
REF 

/ / X / - - AST_NODE 

RETURN / / X / - - AST_NODE 
UNKNOWN / / X / - - AST_NODE 
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Top N% Precision (test-combined) 

0.5 
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Figure C.4: The figure shows the precision of top-performing models for various percentages 
of top-ranked samples. The models were evaluated on combined test data from the httpd, 
libtiff, and nginx projects. The dashed horizontal line indicates the precision of a random 
model. 

Top N% Precision (test-httpd) 

0 20 40 60 80 100 

Top N% Samp le s 

Figure C.5: The figure shows the precision of top-performing models for various percentages 
of top-ranked samples. The models were evaluated on test data from the httpd project. 
The dashed horizontal line indicates the precision of a random model. 
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Top N% Precision (test-libtiff) 

0 20 40 60 80 100 

Top N% S a m p l e s 

Figure C.6: The figure shows the precision of top-performing models for various percentages 
of top-ranked samples. The models were evaluated on test data from the libtiff project. 
The dashed horizontal line indicates the precision of a random model. 

Top N% Precision (test-nginx) 

Mode l 8 

Mode l 10 

Mode l 13 

0 20 40 60 80 100 

Top N% S a m p l e s 

Figure C.7: The figure shows the precision of top-performing models for various percentages 
of top-ranked samples. The models were evaluated on test data from the nginx project. 
The dashed horizontal line indicates the precision of a random model. 
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Table C.4: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 1. The remaining parts are in 
Tables C 5 , C.6, C.7, C.8, and C 9 . 

Node Set ID LABEL 
LINE 

NUMBER 
CODE 

COLUMN 
NUMBER 

ORDER NAME 

META DATA X X - - - - -

FILE X X X X X X X 
NAMESPACE X X X X X X X 
NAMESPACE 

BLOCK 
X X X X X X X 

METHOD X / X X X / X 
METHOD 

PARAMETER 
IN 

X / X X X / X 

METHOD 
PARAMETER 

OUT 
X X X X X X X 

METHOD 
RETURN 

X / X X X / -

MEMBER X / X X X / X 
T Y P E X / - - - - X 

T Y P E DECL X X X X X X X 
BLOCK X / X X X / -

CALL X / X X X / X 
FIELD 

IDENTIFIER 
X / X X X / -

IDENTIFIER X / X X X / X 
LITERAL X / X / X / -

LOCAL X / X X X / X 
METHOD 

REF 
X / X X X / -

RETURN X / X X X / -

UNKNOWN X / X X X / -
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Table C.5: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 2. The remaining parts are in 
Tables C 4 , C.6, C.7, C.8, and C 9 . 

Node Set 
ARGUMENT 

INDEX 
ARGUMENT 

N A M E 

T Y P E 
FULL 
NAME 

DYNAMIC T Y P E 
HINT FULL NAME 

FILENAME 
FULL 

NAME 

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE 
BLOCK - - - - X X 

METHOD - - - - X / 

METHOD 
PARAMETER 

IN 
- - X X - -

METHOD 
PARAMETER 

OUT 
- - X - - -

METHOD 
RETURN - - X X - -

MEMBER - - X X - -

T Y P E - - - - - / 

T Y P E DECL - - - - X X 
BLOCK / X X X - -

CALL / X X X - -

FIELD 
IDENTIFIER 

/ X - - - -

IDENTIFIER / X X X - -

LITERAL / X X X - -

LOCAL - - X X - -

METHOD 
REF 

/ X X X - -

RETURN / X - - - -

UNKNOWN / X X X - -
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Table C.6: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 3. The remaining parts are in 
Tables C 4 , C.5, C.7, C.8, and C 9 . 

Node Set SIGNATURE 
METHOD 

FULL 
NAME 

PARSER 
TYPE 
NAME 

EVALUATION 
STRATEGY 

HASH 
AST PARENT 
FULL NAME 

META DATA - - - - X -

FILE - - - - X -

NAMESPACE - - - - - -

NAMESPACE 
BLOCK - - - - - -

METHOD X - - - X X 
METHOD 

PARAMETER 
IN 

- - - X - -

METHOD 
PARAMETER 

OUT 
- - - X - -

METHOD 
RETURN 

- - - X - -

MEMBER - - - - - -

T Y P E - - - - - -

T Y P E DECL - - - - - X 
BLOCK - - - - - -

CALL X X - - - -

FIELD 
IDENTIFIER - - - - - -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - - - -

METHOD 
REF 

- X - - - -

RETURN - - - - - -

UNKNOWN - - X - - -
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Table C.7: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 4. The remaining parts are in 
Tables C 4 , C.5, C.6, C.8, and C 9 . 

Node Set 
AST 

PARENT 
TYPE 

IS 
EXTERNAL 

INDEX 
IS 

VARIADIC 

COLUMN 
NUMBER 

END 

LINE 
NUMBER 

END 

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE 
BLOCK - - - - - -

METHOD X - - X X 
METHOD 

PARAMETER 
IN 

- - X X - -

METHOD 
PARAMETER 

OUT 
- - X X - -

METHOD 
RETURN - - - - - -

MEMBER - - - - - -

T Y P E - - - - - -

TYPE DECL X - - - -

BLOCK - - - - - -

CALL - - - - - -

FIELD 
IDENTIFIER - - - - - -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - - - -

METHOD 
REF 

- - - - - -

RETURN - - - - - -

UNKNOWN - - - - - -
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Table C.8: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 5. The remaining parts are in 
Tables C 4 , C.5, C.6, C.7, and C 9 . 

Node Set 

T Y P E 
DECL 
FULL 
NAME 

ALIAS 
T Y P E 
FULL 
NAME 

CONTAINED 
REF 

CLOSURE 
BINDING 

ID 

CANONICAL 
NAME 

DISPATCH 
TYPE 

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE 
BLOCK 

- - - - - -

METHOD - - - - - -

METHOD 
PARAMETER 

IN 
- - - - - -

METHOD 
PARAMETER 

OUT 
- - - - - -

METHOD 
RETURN - - - - - -

MEMBER - - - - - -

T Y P E X - - - - -

TYPE DECL - - - - -

BLOCK - - - - - -

CALL - - - - - X 
FIELD 

IDENTIFIER - - - - X -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - X - -

METHOD 
REF 

- - - - - -

RETURN - - - - - -

UNKNOWN - - X - - -
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Table C.9: The table shows all attributes for every node set present in Graph D2A. This 
table is divided into multiple parts by columns; this is Part 1. The remaining parts are in 
Tables C 4 , C 5 , C 6 , C 7 , and C 8 . 

Node Set LANGUAGE OVERLAYS ROOT VERSION 
INHERITS FROM 

T Y P E FULL NAME 
META DATA X X X -

FILE - - - - -

NAMESPACE - - - - -

NAMESPACE 
BLOCK - - - - -

METHOD - - - - -

METHOD 
PARAMETER 

IN 
- - - - -

METHOD 
PARAMETER 

OUT 
- - - - -

METHOD 
RETURN 

- - - - -

MEMBER - - - - -

T Y P E - - - - -

TYPE DECL - - - - X 
BLOCK - - - - -

CALL - - - - -

FIELD 
IDENTIFIER 

- - - - -

IDENTIFIER - - - - -

LITERAL - - - - -

LOCAL - - - - -

METHOD 
REF 

- - - - -

RETURN - - - - -

UNKNOWN - - - - -
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