
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EVALUATING RELIABILITY OF STATIC ANALYSIS
RESULTS USING MACHINE LEARNING
URČENÍ SPOLEHLIVOSTI VÝSLEDKŮ STATICKÉ ANALÝZY POMOCÍ STROJOVÉHO UČENÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. TOMÁŠ BERÁNEK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Master's Thesis Assignment
Institut: Department of Intelligent Systems (DITS) 157228
Student: Beránek Tomáš, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Určení spolehlivosti výsledků statické analýzy pomocí strojového učení
Category: Artificial Intelligence
Academie year: 2023/24

Assignment:

1. Get acquainted with Infer, a tool for static analysis and bug finding in software.
2. Investigate options of applying machine learning algorithms in the context of code analysis.
3. Obtain a data-set containing issues reported by Infer accompanied with the information whether they

represent a true positive or not.
4. Design and implement a system that converts the dataset obtained in Step 3 into a format that can

be processed by graph neural networks.
5. Propose and implement an approach based on graph neural networks (using the dataset obtained in

Step 4) whose goal will be to assess the likelihood that an issue reported by Infer represents a true
positive.

6. Evaluate your solution on at least 2 different open-source projects.
7. Summarize and discuss the achieved results and their possible further improvements.

Literature:
• Facebook Infer: https://fbinfer.com/
• Cao, Sicong, et al. "Bgnn4vd: constructing bidirectional graph neural-network for vulnerability

detection." Information and Software Technology 136 (2021): 106576.
• Y. Zheng et al., "D2A: A Dataset Built for Al-Based Vulnerability Detection Methods Using

Differential Analysis," 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2021, pp. 111-120.

Requirements for the semestral defence:

The first three points of the assignment and at least the beginning of work on Point 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Consultants:

Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Vojnar Tomáš, prof. Ing., Ph.D.
Grác Marek, Mgr., Ph.D.
Malik Viktor, Ing.
Hanáček Petr, doc. Dr. Ing.
1.11.2023
17.5.2024
6.11.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://fbinfer.com/
https://www.fit.vut.cz/study/theses/

Abstract
The Meta Infer static analyzer is a tool for detecting various types of errors in source code.
However, its results contain more than 95 % of false alarms. This thesis proposes a solution
that ranks Infer's reports using Graph Neural Networks (GNNs) based on the likelihood
of being a real error, thus mitigating the issue with false alarms. The system consists of
a training pipeline, which converts the D2A dataset - a set of labeled reports from Meta
Infer - into Extended Code Property Graphs (ECPGs) and G N N models trained on these
E C P G s . Experimental results indicate that the developed G N N models can match, and in
some cases even surpass, existing models developed by strong industrial teams. Moreover,
these existing solutions are closed source, making the solution developed in this thesis
a promising open-source alternative.

Abstrakt
Statický analyzátor Meta Infer je nástrojem pro hledání různých typů chyb ve zdrojovém
kódu. Jeho výsledky však obsahují více než 95 % falešných hlášení. Tato teze navrhuje
řešení, které řadí hlášení od Meta Inferu pomocí grafových neuronových sítí (GNN) podle
pravděpodobnosti, že se jedná o skutečnou chybu, a redukuje tak problém s falešnými
hlášeními. Systém se skládá z trénovací části, která převádí datovou sadu D2A - sadu
roztříděných hlášení z Meta Inferu - na rozšířené grafy vlastností kódu (ECPG) a z modelů
G N N natrénovaných na E C P G grafech. Výsledky experimentů ukazují, že vytvořené modely
G N N mohou konkurovat a v některých případech dokonce překonat existující řešení vyvíjené
silnými průmyslovými týmy. Tato existující řešení mají navíc uzavřený zdrojový kód, a tak
řešení vytvořené v této tezi poskytuje slibnou alternativu s otevřeným zdrojovým kódem.

Keywords
Static analysis, Meta Infer, deep learning, graph neural networks, false alarm detection,
vulnerability detection, code property graphs, L L V M internal representation, Joern, L L V M
Sheer, program slicing, graph representation construction, source code analysis, D2A dataset,
graph D2A dataset, extended code property graphs.

Klíčová slova
Statická analýza, Meta Infer, hluboké učení, grafové neuronové sítě, detekce falešných
hlášení, detekce zranitelností, grafy vlastností kódu, interní reprezentace L L V M , Joern,
L L V M Slicer, prořezávání programů, konstrukce grafové reprezentace, analýza zdrojového
kódu, dataset D2A, grafový D2A, rozšířené grafy vlastností kódu.

Reference
BERÁNEK, Tomáš. Evaluating Reliability of Static Analysis Results Using Machine Learn
ing. Brno, 2024. Master's thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor prof. Ing. Tomáš Vojnar, Ph.D.

Rozšířený abstrakt
Statická analýza je často využívanou technikou pro hledání chyb v průběhu vývoje softwaru.
Některé statické analyzátory lze použít i na nedokončený kód, což umožňuje odhalení chyb
již ve velmi raných fázích vývoje, dokonce ještě před spuštěním testů. Tyto nástroje však
často trpí vysokým počtem falešných hlášení. Pokud je množství těchto falešných hlášení
příliš vysoké, stávají se tyto nástroje v praxi téměř nepoužitelnými, protože kontrola hlášení
je příliš nákladná. Proto je věnováno mnoho úsilí automatizované detekci falešných hlášení.

Tato diplomová práce se zaměřuje na statický analyzátor Meta Infer. Jedná se o vysoce
škálující, mezi procedurální, open-source nástroj pro analýzu zdrojových souborů v jazy
cích C / C + + / C # / O b j - C a Java. Infer dokáže detekovat chyby jako dereference nulových
ukazatelů, mrtvé úložiště, neinicializované hodnoty, přetečení proměnných a mnoho dalších
typů chyb. Oproti jiným statickým analyzátorům se vyznačuje snadným používáním - jeho
vstupem jsou kompilační příkazy, které kompilují analyzované zdrojové soubory. Přesto
má tento nástroj své nevýhody, přičemž hlavní z nich je vysoký počet falešných hlášení.
V experimentech provedených v autorově bakalářské práci bylo zjištěno, že až 90 % hlášení
je falešných. Toto číslo se zvyšuje na více než 95 %, pokud nejsou zohledněny chyby typu
mrtvého úložiště, které jsou samy o sobě poměrně běžné a neškodné.

Hlavním přínosem této diplomové práce je návrh a implementace systému pro hodnocení
hlášení nástroje Meta Infer. Vyvinutý systém dokáže řadit hlášení podle pravděpodobnosti,
že se jedná o skutečnou chybu (tj. pravdivé hlášení), čímž řeší problém s velkým množstvím
falešných hlášení a činí Infer prakticky použitelnějším, protože současné procento falešných
hlášení je příliš vysoké.

Systém pro řazení hlášení je založen na grafových neuronových sítích (GNN), které v posled
ních letech získaly na popularitě pro úkoly související se zdrojovým kódem, protože mnoho
vlastností kódu lze přirozeně vyjádřit pomocí grafů - grafy toků řízení, abstraktní syntak
tické stromy, grafy závislostí dat a mnoho dalších. Pro trénování modelů G N N je nezbytná
datová sada. Tato diplomová práce využívá datové sady D2A, která obsahuje roztříděná
(skutečná vs. falešná) hlášení od Inferu ze šesti open-source projektů. D2A obsahuje
vzorky ve formě textu, které je třeba převést do formy grafů. Z tohoto důvodu byl vytvořen
tréninkový proces, který generuje Graph D2A - D2A převedené do formy grafů. Tréninkový
proces doplňuje existující techniky vytváření grafů o informace o podmíněném překladu,
který se v praxi často vyskytuje.

Vzorky v Graph D2A nelze přímo použít pro trénování modelů G N N ; nejdříve na nich musí
být proveden výběr a transformace příznaků. Po výběru a transformaci příznaků jsou grafy
optimalizované a převedené do formátu navrženého v této diplomové práci - rozšířené grafy
vlastností kódu (ECPG) , které obohacují stávající grafy vlastností kódu (CPG) o grafy
volání, datové typy a řadu dalších informací. C P G jsou běžně používaným formátem grafů
pro detekci zranitelností ve zdrojovém kódu pomocí G N N .

Vytvořené modely byly trénovány na trénovací sadě tří projektů z D2A, jmenovitě httpd,
libtiff a nginx. Vyhodnocení modelů probíhalo na testovací sadě stejných projektů. Experi
mentální výsledky ukazují, že vytvořené modely G N N mohou konkurovat a v některých pří
padech dokonce překonat nejlepší stávající řešení, která jsou vyvíjena silnými průmyslovými
týmy. Tyto výsledky dokazují, že vytvořené modely jsou slibnou open-source alternativou
k porovnávaným existujícím řešením, která všechna mají uzavřený kód.

Modely byly také testovány pomocí křížové analýzy - model je testován na jiném projektu,
než na kterém byl trénován. Modely se pro tuto výzvu ukázaly jako nedostatečné, což pouze
vyzdvihuje obtížnost křížové analýzy v této oblasti výzkumu, jelikož žádné z porovnávaných
existujících řešení taktéž pro křížovou analýzu nefunguje.

Posledním přínosem této diplomové práce je inferenční proces, který umožňuje spustit Infer
analýzu, generovat E C P G pro každé hlášení a nakonec řadit hlášení pomocí vytvořených
modelů G N N pro libovolný software v jazyce C (a podmnožině C++). Princip inferenčního
procesu staví na autorově bakalářské práci, která se zabývala automatizací Infer analýzy.
Nicméně inferenční proces zůstává nevyužitý, kvůli zatím nefunkční křížové analýze.

Předběžné výsledky této diplomové práce byly publikovány na konferenci Excel@FIT'24,
kde obdržely ocenění od odborného panelu.

Evaluating Rel iabi l i ty of Static Analysis Results
Using Machine Learning

Declaration
I hereby declare that this Master's thesis was prepared as an original work by the author
under the supervision of prof. Ing. Tomas Vojnar, Ph.D. The supplementary information
was provided by Mgr. Marek Grac, Ph.D. and Ing. Viktor Malik. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

Tomáš Beránek
17. května 2024

Acknowledgements
I would particularly like to thank my supervisor Tomáš Vojnar for numerous helpful pieces
of advice, not only for this thesis but also for my studies. I also wish to express my thanks
to Marek Grác for valuable advice in the area of artificial intelligence and Viktor Malik
especially for arranging the possibility of working on this topic and also for helpful advice
on program slicing. Further, I thank my colleagues Tomáš Dacík, Dominik Harmim, Daniel
Marek, and Lucie Svobodová for helpful discussions about Infer.

Finally, I acknowledge the financial support received from Red Hat and projects H2020
E C S E L Valu3s, G A C R A I D E 23-06506S, and I G A FIT-S-23-8151.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Static Analysis 5
2.2 Meta Infer 6
2.3 Graph Neural Networks 8
2.4 Source Code as a Graph 9
2.5 LLVM-Slicer 12
2.6 L L V M 2 C P G 13
2.7 Joern 13

3 D2A Dataset 15

4 Design of a System for Reducing False Positives in Meta Infer 18
4.1 Training Pipeline 19

4.1.1 Bitcode Generation 21
4.1.2 Graph Construction 23
4.1.3 Graph D2A 30
4.1.4 Feature Engineering 34
4.1.5 Graph Neural Networks Model 57

4.2 Inference Pipeline 60
4.2.1 Capture Phase 60
4.2.2 Inference Phase 62

5 Implementation 64
5.1 D2A Filter 65
5.2 Bitcode Generator 65
5.3 Slicing Criteria Extractor 68
5.4 Graph Construction Script 70
5.5 Normalization Coefficients Extractor 72
5.6 Feature Engineering Script 74
5.7 Model Training Script 76
5.8 Model Evaluation Script 78
5.9 Compiler Wrapper 79
5.10 Inference Pipeline 80

6 Experimental Evaluation 82
6.1 Base Model 82

1

6.2 Hyperparameters Tuning 84
6.3 Models Comparison 86
6.4 Comparison with Cha tGPT 88
6.5 Cross-analysis 89

6.6 Summary and Future Work 90

7 Conclusion 92

Bibliography 93

A Contents of the Attached Memory Media 102

B Installation and User Manual 105

C Additional Data 109

2

Chapter 1

Introduction

Static analysis is a widely used technique for finding errors during software development.
Static analyzers can also be deployed on code that is not yet finished, making it possible to
detect errors in the early stages of the development, even before tests can be run. However,
static analyzers often suffer from a high number of false positives (i.e., false alarms). If
the percentage of false positives is too high, these tools are almost unusable in practice.
Therefore, a lot of effort is devoted to the automatic detection of false positives.

This thesis focuses on the Meta Infer static analyzer. It is a highly scalable, interprocedural,
open-source tool for analyzing C/C+- | - /C#/Obj -C, and Java source files. Infer can detect
null pointer dereferences, dead stores, uninitialized values, deadlocks, data races, variable
overflows, and many other types of errors. Compared to other static analyzers, it is charac
terized by its ease of use - its input consists of the compilation commands that compile the
analyzed source files. Although Infer has been successfully used in practice by a number of
companies (including Meta), it does have its disadvantages, and the main one is the high
number of false positives. From experiments conducted in the author's bachelor's thesis,
it was found that up to 90 % of the reports are false positives. This number increases to
more than 95 % if errors of the dead store type, which are relatively common and harmless
by themselves, are not considered.

The main contribution of the thesis is the design and implementation of a report ranking
system for the Meta Infer tool. The developed system can rank reports by the probability
of being a true positive (i.e., a real error), thereby addressing the problem of a large number
of false positives and making Infer a more practical tool because the current percentage of
false positives is too high.

The report ranking system is based on graph neural networks (GNNs), which have become
increasingly popular for code-related tasks in recent years because many code properties can
be naturally expressed using graphs. A dataset is necessary to train G N N models. This
thesis utilizes the D2A dataset [94], which contains labeled (true positive vs false positive)
Infer reports from 6 open-source projects. D2A includes samples in a textual form, which
must be converted into a graph form. For this reason, a training pipeline was created
that generates Graph D2A - D2A transformed into a graph form. The samples in Graph
D2A cannot be directly used for training GNN models; feature engineering must first be
applied to them. Feature engineering optimizes the graphs and transforms them into the
format proposed in this thesis - Extended Code Property Graphs (ECPGs), which enrich

3

existing Code Property Graphs (CPGs) commonly used for vulnerability detection in source
code using GNNs. In particular, we enrich them by Call Graphs, data types, and other
information.

The developed G N N models were trained using E C P G s from the training sets of 3 D2A
projects, namely httpd, libtiff, and nginx. The models were evaluated on the test sets of the
same projects. The experimental results show that using the models we obtain comparable,
and in some cases even superior results than the existing state-of-the-art solutions, which
are developed by strong industrial teams from I B M [94, 68]. These results demonstrate
that the created models are a suitable open-source alternative to the compared existing
solutions, all of which are - to the best of our knowledge - closed source.

The models were also tested using cross-analysis - a model is tested on a different project
than it was trained on. The models proved insufficient for this challenge, highlighting the
difficulty of cross-analysis in this area of research, as none of the existing compared solutions
function in cross-analysis either.

The last contribution of this thesis is the inference pipeline, which can run Infer analysis,
generate an E C P G for each report, and finally sort the reports using the created G N N
models, for any C (and subset C++) software. This pipeline is based on the author's
bachelor's thesis, which dealt with automating Meta Infer analysis. This pipeline, originally
designed for cross-analysis, can also be used for inference on projects with sufficient history,
on which the G N N models were trained.

S t ruc ture of the thesis The rest of the thesis is structured as follows. Chapter 2
explains the basic concepts of static analysis, Meta Infer, graph neural networks, graph
representations used, and finally describes the tools used - L L V M Sheer, L L V M 2 C P G ,
and Joern. Chapter 3 describes the D2A dataset, its creation principle, comparison with
other datasets, and the reasons for choosing D2A. Chapter 4 describes the design of the
training pipeline, inference pipeline, and the proposed architecture of the G N N models. The
implementation of the models and both pipelines is described in Chapter 5. The results of
experiments and comparison with existing models are in Chapter 6. Finally, the conclusion
is presented in Chapter 7. The thesis also includes Appendix A with the content of the
attached media and of the additional resources available in the Zenodo trusted repository,
Appendix B with installation instructions and user manual, and Appendix C with additional
figures and tables.

Acknowledgement This thesis is a collaboration with Red Hat. It is also supported by
the H2020 E C S E L Valu3s, G A C R A I D E 23-06506S, and I G A FIT-S-23-8151 projects.

4

Chapter 2

Preliminaries

This chapter introduces the basic concepts, principles, and tools on which this thesis builds.
Specifically, Section 2.1 briefly describes static analysis, its applications, advantages, and
limitations. Section 2.2 describes the Meta Infer static analyzer, its use, types of detectable
errors, and its advantages and disadvantages. Section 2.3 describes the general principle of
graph neural networks, their advantages for source code analysis, and especially their input
format. Section 2.4 introduces the different source code representations used as input to
graph neural networks and focuses on the most commonly used type - code property graphs.
Section 2.5 presents the LLVM-Slicer for slicing L L V M bitcode. Section 2.6 describes
the L L V M 2 C P G tool for constructing code property graphs from L L V M bitcode. Finally,
Section 2.7 presents the Joern platform used for various static analysis tasks.

2.1 Static Analysis

Static analysis [3, 23, 37] can be understood as a way of reasoning about the run-time
properties of computer programs without the need to run them (at least not under their
original semantics) or provide their inputs. Using static analysis, it is possible to investigate
program properties such as time or memory complexity, look for errors such as null pointer
dereferences, accesses beyond array boundaries, improper handling of resources, etc. It is
also possible to check for synchronization errors such as deadlocks, data races, atomicity
violations, etc. Finally, static analysis can be used to ensure compliance with language
standards, e.g., M I S R A - C / M I S R A - C + + 1 or compliance with practices for writing readable
code, e.g., Google Java Style 2.

The opposite of static analysis is dynamic analysis, which requires running the program to
be analyzed and thus a need to provide inputs. Since both approaches have their advantages
and disadvantages, it is not advisable to use only one, but rather to use both simultaneously
to complement each other. The advantages of static analysis are [3, 42]:

• Static analysis implicitly considers all possible paths in the code (even the rarely
executing ones),

1MISRA's website: https://www.misra.org.uk/.
2Google Java Style Guide: https://google.github.io/styleguide/javaguide.html.

5

https://www.misra.org.uk/
https://google.github.io/styleguide/javaguide.html

• can report the exact location of the error and thus speed up the fix,

• does not require executable, sometimes even compilable source code, so errors can be
detected early in the development,

• can be run fully automatically, after some initial setup.

However, static analysis also has its disadvantages [37, 42]:

• The initial setup can be tedious for some tools as it may require, e.g., creating models
of certain functions, access to the compilation commands, or manually defining the
required style guide.

• Running heavier-weight static analysis can be time and memory consuming.

• Static analyzers can report false positives (i.e., false errors) or false negatives (i.e.,
missed real errors).

The Rice's theorem implies [62] that all non-trivial properties of program behavior are
undecidable. From this, it follows that in order to derive such properties automatically, it
is necessary to introduce some degree of approximations. This approximation is the cause
of false positives and false negatives. However, if a suitable approximation is used, it is
possible to use static analysis to prove some properties (as opposed to dynamic analysis)
- typically the absence of errors. A n example of this behavior is the use of Frama-C to
create an RTE-free 3 X.509 parser [22]. However, most tools try to create approximations
that balance the number of false positives and false negatives to make the tools practical
to use.

2.2 Met a Infer

Meta Infer [25] (formerly Facebook Infer) is an open-source'1 framework for writing in-
traprocedural and interprocedural static analyses [36, 58, 59]. Although it is a framework,
Infer already includes a number of default and non-default (i.e., they must be explicitly en
abled) analyses. Individual analyses are plugged into Infer in the form of plugins. Different
plugins use different principles to detect different types of errors, e.g. InferBO, which uses
the symbolic interval technique [46] to detect incorrect array indexing, or the Bi-abduction
plugin, which uses bi-abduction [27] - a form of inference for separation logic that mod
els computer memory - to detect errors associated with incorrect memory manipulation.
Among other issues, Infer can detect null pointer dereferences, dead stores, uninitialized
values, deadlocks, data races, variable overflows, and many other types of errors. Table 2.1
lists all the plugins that Infer provides, along with information about the language support
and whether the plugin is enabled by default. More detailed information about each plugin
and the types of errors reported by Infer can be found in [26].

Infer plugins are not sound, which, in the context of finding errors, means that they may
have false negatives. Instead, Infer aims for maximal practical use - scaling to millions

3 Run Time Error (RTE).
4 Meta Infer's repository: https://github.com/facebook/infer/.

6

https://github.com/facebook/infer/

Table 2.1: Language support information for all non-experimental Infer plugins, along with
whether the plugins are enabled by default.

Plugin C c + + Objective C Java c # Default
Annotation Reachability / / / / /
Bi-abduction / / / / / /
InferBO / / / / /
Cost / / / / /
Eradicate / /
Impurity / / / / /
Inefficient keySet Iterator / / /
Litho „Required Props" / /
Liveness / / / /
Loop Hoisting / / / / /
Pulse / / / /
Purity / / / / /
Quandary / / / / /
RacerD / / / /
.NET Resource Leak / /
SIOF / /
Self in Block / / /
Starvation / / / / / /
Uninit / / / /

of lines of code thanks to modular analysis. It is also very simple to use [24] compared
to other analyzers. Infer takes as an input compilation commands that allow the Infer's
internal clang compiler to transform source files into the SIL° internal representation [4, 89].
This transformation (capture) of the source code takes place in the capture phase. To
facilitate the capture of compilation commands, Infer supports a variety of build systems
such as ant, cmake, Gradle, Make, Maven, and others. However, experiments conducted
in previous work by the author [3] show that this support is incomplete and often fails to
capture compilation commands. Therefore, as part of the same work, a compiler wrapper
was created that can reliably capture compilation commands and pass them to Infer.

The capture phase is followed by an analysis phase in which the required plugins are run over
the SIL. The output of Infer after the analysis phase is a list of found errors. Experiments
on real-world programs in previous work [3] also show that Infer has a very high number
of false positives. Specific numbers suggest approximately 4.5 false positives for every real
error. However, this score is very optimistic since it includes dead store errors, which are
harmless and can be detected by common compilers and are present in real-world programs
in very large numbers, especially in the C language when using conditional compilation.
Without dead stores, the number increases to approximately 9 false positives for every
real error. In general, such a high number of false positives in static analyzers results in
developers' distrust of these tools and consequent ignoring of analysis results [18, 44, 63].
Therefore, efforts are made to reduce false positives.

5Smallfoot Intermediate Language (SIL).

7

2.3 Graph Neural Networks

There are a number of approaches for detecting errors in programs using machine learn
ing [35]. The approaches can be divided into convolutional neural networks (CNNs) [19],
recurrent neural networks (RNNs) [49, 50, 51, 52, 71, 96], and graph neural networks
(GNNs) [9, 13, 30, 73, 75, 95], depending on the architecture of the model used. These
approaches are often combined with each other [28, 47, 69, 70].

CNNs achieve very good results, e.g., in image classification. This is aided by convolutional
layers that can appropriately capture spatial information from an image. However, this
principle is not so effective for source code [60]. In order to use the source code as input to
a C N N , it must first be transformed into a graph and then into a matrix (e.g. an adjacency
matrix). Due to the fact that the nodes in a graph do not have a fixed order, the same graph
can be expressed as an adjacency matrix (which has a fixed order of nodes) in multiple ways.
This property is very undesirable because a single result is wanted for the same graph. It
also makes it impossible to use the local spatial properties of convolutional layers. Another
problem for C N N , is the arbitrary size of the graph since the adjacency matrix have a fixed
size.

Another frequently used approach is to represent code as a sequence, especially for recurrent
neural networks. This approach is based on the idea that the source code can be treated
as a natural language. While these approaches achieve very good results [8, 34, 68], the
properties of source code can be better represented using graphs. Appropriately designed
graphs can more explicitly model properties between parts of the code that would otherwise
the model had to learn during training. The idea that a graph is a better representation of
source code than aa adjacency matrix or a sequence is supported by the experiments in [75],
especially on synthetic datasets (on datasets with real-world examples, all approaches seem
to perform poorly). Arbitrary input sizes can also pose problems for RNNs, as they may
have a limited input sequence length [68].

GNNs are designed to work on arbitrarily large graphs. For this reason, and the previously
mentioned reasons, GNNs were chosen for this thesis. Therefore, a brief description of
a general graph neural network based on message passing follows. The description uses
a slightly modified notation from [48].

Consider an oriented graph structure Q = (V, £) where V is the set of nodes and £ is the
set of oriented edges e = (v, v') G V X V. The source node of an edge e = (v, v') is v and
the target node is v'. The embedding vector of a node v is denoted by h„ G HD where D is
the dimension of the vector. Each node has a label which is denoted by lv G { 1 , £ y } >
and each edge has a label which is denoted by le G {l,...,Lg}. Further, auxiliary sets of
nodes are defined. The set IN(V) = {v'\(v', v) G £} contains the predecessors of a node v.
The set O U T (U) = {v'\(v, v') G £} contains the descendants of a node v. Bi-directional
propagation then proceeds by updating each node until convergence (or for a fixed number
of steps) using the following formula:

«'GIN(?>) «'eOuT(u)

Here, the function / can be a linear function or a neural network. For each node v, the
output of this network is defined as ov = g(hv ,lv) where g is an arbitrary differentiable

8

function and T is the final iteration. In case where graph-level classification/regression is
needed, it is possible to artificially add a so-called „super node" to the original graph, which
will be connected to all nodes. This will allow graph-level classification/regression to be
treated in the same way as node-level classification/regression.

The above description of how the information is propagated in GNNs shows that the graphs
used as inputs, must form a single W C C 6 in the case of bi-directional GNNs. And for direc
tional GNNs the edges must also be properly oriented (more information in Section 4.1.4).
If the graph does not meet these properties, it is not possible to pass information between
W C C s within GNN updates (this needs not be a problem for some types of tasks, but it is
crucial for the system designed in this thesis). If the function / is differentiable, then all
components are differentiable, and after T iterations, it is possible to compute gradients of
the parameters (typically located within the function /) and train the G N N layers using
gradient descent.

2.4 Source Code as a Graph

There are many types of graphs that are commonly used as source code representations,
e.g., abstract syntax trees (AST), control flow graphs (CFG), program dependency graphs
(PDG), and others. One type of such commonly use graphs is the code property graph
(CPG), which is composed of all three previously mentioned graphs and used in its pure
form, e.g., in [53, 75]. Modified versions of it are often used as well, e.g., simplified CPGs
(SCPG) for function-level vulnerability detection7 in C/C+-1- [90], CPGs with added edges
that reflect the original order of tokens (i.e., individual source code elements) [95], or code
composite graphs (CCG) again for vulnerability detection in C/C+-1- [9]. Furthermore,
PDGs alone are used, e.g., for finding malicious code in JavaScript [28], X F G s {subgraphs
of PDGs) for detecting vulnerabilities in C/C+-1- code [13]. Or CFGs together with token
sequences for detecting vulnerabilities in P H P [69].

According to [92], the reason for the creation of C P G s is the inability of each subgraph type
to detect certain types of errors independently during traversal. For example, ASTs are not
suitable for detecting divisions by zero. However, by combining ASTs and PDGs, this is
possible, but one still cannot detect, e.g., integer overflows. This can only be detected by
combining ASTs, CFGs and PDGs . This combination of graphs results in a representation
that is able to capture both syntactic and semantic properties of the code and preserve
most types of errors in it. Exceptions are, e.g., race conditions, which need more external
information. A complete table of detectable errors and required graph types is given in [92].
The following graph definitions are based on the original definitions from the paper intro
ducing CPGs [92], with only minor changes in notation to resemble the G N N definition
given earlier. It should be noted that the following definitions employ an abuse of notation,
as it was used in the original paper.

To define a C P G , it is first necessary to define a property graph [92], which is a com
monly used graph type in graph databases such as Neo4j. A property graph is an oriented
multigraph Q = (V,£,A,/ i) , where V denotes the set of nodes, £ denotes the set of edges

6 A Weakly Connected Component (WCC) is a set of nodes where there is a path between any two
nodes, without respecting the direction of the edges.

7In some articles, the terms "error" and "vulnerability" are used interchangeably, but not every error is
a vulnerability.

9

vo id foo()
{

i n t x = source() ;
i f (x < MAX)
{

i n t y = 2 * x;
s i n k (y) ;

}

}

Listing 2.1: A code sample. The code was taken from [92].

e = (v,v'), where v,v' G V. A denotes the edge labeling function A : £ —>• E , with
E = 1 , L g being the edge labels. Finally, // denotes the function /j, : (V U £) X K —>• S
that assigns attributes to nodes and edges where K is the set of attribute names and S is
the set of attribute values.

A n A S T [92] is an ordered tree whose inner nodes represent operators and outer nodes
{leaves) represent operands. The oriented edges then show the parenting relation. The
A S T captures the syntactic nature of the code. Consider the code in Listing 2.1. The A S T
constructed for this code is shown in Figure 2.1.

To create a C P G definition, the subgraph types must be converted to the same format -
in particular, to the previously defined property graphs. A n A S T as a property graph is
a structure GAST = (VAST, ^AST, AAST, MAST): where VAST is the set of A S T nodes and £AST
is the set of A S T edges. The function AAST is defined as AAST(^) = ' A S T ' and is applied
to each node v G VAST- The function /XAST : VAST X ^ A S T —> <SAST is applied to each
node and attribute. The attribute names are KAST = {'code', ''order1} and the attribute
values are SAST = ^code U Sorder> where Scode are types of nodes in an A S T , e.g., variable,
constant, mathematical operators, etc., and Sorder assigns values that order a node among
its siblings in the A S T to preserve the ordering from the original tree.

A C F G [92] is an oriented graph describing the possible paths of program control and the
conditions for their execution. The nodes of the graph represent statements and predicates,
while the edges represent control passing. Each command node has an outgoing edge la
beled e, which denotes an unconditional passing of control. While a predicate node must
have two outgoing edges true and false for different evaluations of a given predicate. Con
sider the code in Listing 2.1. The C F G constructed for this code is shown in Figure 2.2.
The C F G as a property graph is the structure GCFG = (VCFGJ^CFGJ ACFGJ •) where VCFG is
the set of nodes corresponding to the nodes from the A S T as follows:

V C F G = {v e VAST I VAST(V, 'code') G { ' S T M T ' , ' P R E D ' } }

The edge labeling function is defined as ACFG : ^CFG E C F G where the values in the set
E C F G = {^true\ 'false', 'e'} correspond to the meaning of edges in the C F G .

A P D G [92] is again an oriented graph whose nodes are statements and predicates. There
are two types of edges in a P D G , namely data dependency edges, which model the influ
ence of a variable on the value of another variable, and control dependency edges, which

10

(FUNC)

Figure 2.1: The abstract syntax tree for the code in Listing 2.1. This figure was taken
from [92].

model the influence of predicates on the values of variables. Consider the code in List
ing 2.1. A P D G constructed for this code is shown in Figure 2.2. The P D G as a property
graph is a structure QpDG = (VCFGJ £PDGJ A p D G , /JLPBG) where the nodes are the same as in
the C F G . The edge labeling function is defined as A p D G : £ p D G —> S p D G , where the edge
labels S p D G = {'data'1,'control'} correspond to the meaning of edges in the P D G . The
function assigning attribute values has the form of /xp D G : £ P D G X - K T P D G —>• 5p D G , where
^ P D G = {'symbol', ''condition''} and 5 p D G = SVAR U {'true', 'false'}. The set SVAR repre
sents the set of names of all variables that occur as the output node of the data dependency
edges. The function / /p D G then works by assigning the value of the attribute 'symbol' to
the 'data' edges as the name of the variable represented by the source node of the edge,
and 'control' edges are assigned the attribute value 'condition' depending on whether they
are in the true or false branch.

The C P G is then defined using the previous definitions of A S T , C F G , and P D G as:

Q = (VAST, <?AST U ^ C F G U £PDG> \ lA

where the definition of the function A is as follows:

{AAsT(e) if e € £AST

Ac F G (e) if e e £CFG
ApDG(e) if e e £ p D G

and the definition of the u function is:

fi(x,p)
UAST(X,P) if (x,p) e V A S T X - ^ A S T

UPUG(X,P) if (x,p) e Č P D G X Í ^ P D G

11

(ENTRY)

6

i n t x = source 0

6

i f (x < MAX)

true

i n t y = 2 * x

e

sink(y)

e

(EXIT y>

false

i f (x < MAX) - ^true ~t>
 i n t

 y = 2 * x

C
true D

sink(y)

Figure 2.2: The control flow graph (on the left) and the program dependence graph (on the
right) for the code in Listing 2.1. These figures were taken from [92].

Figure 2.3: The code property graph for the code in Listing 2.1. This figure was taken
from [92].

A C P G for the code in Listing 2.1 is shown in Figure 2.3 where the irrelevant FUNC, IF,
and STMT nodes were omitted for demonstration purposes. And also an entry point and an
exit point were added.

2.5 L L V M - S l i c e r

As described in more detail in Section 4.1.2, the LLVM-slicer is used for program slicing in
this thesis. LLVM-slicer is an open-source8 tool which uses the D G library [10, 11]. The D G
library implements various interprocedural static analyses - namely, pointer analysis, data
dependence analysis, control dependence analysis, and value relationship analysis. These
analyses are implemented in D G as independent of the input language. However, the front-
end currently supports L L V M bitcode only [54]. L L V M bitcode is a storage format for

8LLVM-Slicer' repository: https://github.com/mchalupa/dg.

12

https://github.com/mchalupa/dg

L L V M I R 9 [55], which is an assembly language used as a low-level representation of code
during the various stages of L L V M compilation.

The main use of the D G library is the aforementioned LLVM-slicer, which uses the D G anal
yses for program slicing - removing pieces of code that have no effect on user-defined areas in
the code. Results of experiments with LLVM-Slicer on benchmarks from the Software Veri
fication Competition can be found in [11]. Although L L V M bitcode is language-independent
and can be generated from, e.g., C, C++, or Rust, LLVM-slicer does not support certain
constructs in L L V M bitcode that handle exceptions. This means that it is not able to han
dle a C++ program that uses exceptions. If the C++ code is exception-free, it should be
able to slice it. The input to the LLVM-slicer is a single L L V M bitcode file and slicing
criteria. The output is the sliced L L V M bitcode.

Slicing criteria are specified, for example, using the option -sc. This option allows for
a relatively extensive specification of slicing criteria [12]. However, in this thesis, the basic
format -sc file#function#line#obj is used only. The fields f i le , function, line, or
obj can be empty. The meanings of f i le , function, and line are straightforward - they
refer to locations in the code. The obj field maps to a function call or a variable use at the
location (the code must be compiled with debugging information, see Section 4.1.1).

Furthermore, it is necessary to define an entry point function that must be present in the
input bitcode. The default entry point is the main function. However, it can be overridden
using the option -entry=function. The entry function acts as the starting point for the
analysis - anything above this function in the call tree is removed.

2.6 L L V M 2 C P G

In this thesis, the open-source10 L L V M 2 C P G tool is used for generating C P G s from L L V M
bitcode, as detailed in Section 4.1.2. The CPGs were originally created for high-level
languages such as C, which creates some problems when creating CPGs from low-level
L L V M IR [16]. One problem is mapping L L V M IR instructions to classical high-level
operations in order to display the C P G in the same format as, e.g., for the C source code.
Some operations can be mapped directly because they have the same semantics, others can
be modeled using functions, and some cannot be mapped at all and need to be bypassed
by another mechanism. The C P G output format can be further processed by Ocular 1 1

(proprietary), P lume 1 2 (open-source) or Joern (open-source, see Section 2.7).

2.7 Joern

Joern is used in this thesis to enrich C P G s with additional information, as detailed in
Section 4.1.2. Joern [87] is a powerful open-source13 platform providing various tools from
the area of static analysis. Using Joern, it is possible to write custom static analyses

9 L L V M Intermediate Representation (LLVM IR).
1 0 LLVM2CPG's repository: https://github.com/ShiftLeftSecurity/llvm2cpg.
1 1 Ocular's documentation: https: //docs.shiftleft.io/ocular/quickstart.
12Plume's documentation: https://plume-oss.github.io/plume-docs/.
13Joern's repository: https://github.com/joernio/joern.

13

https://github.com/ShiftLeftSecurity/llvm2cpg
https://plume-oss.github.io/plume-docs/
https://github.com/joernio/joern

or queries over source files. Joern supports various programming languages, such as C,
C++, JavaScript, Kotlin, Python, or Java. It is also possible to construct different graph
representations of the code (ASTs, CFGs, CDGs, DDGs, PDGs or CPGs) , which can be
exported in different formats, e.g., D O T [32] or csv for the Neo4j graph database [65]. It
is also possible to load already constructed C P G s in different formats, e.g., in the output
format of the L L V M 2 C P G tool. Joern can be used as a command line tool, through an
interactive environment, or as an integration library.

14

Chapter 3

D 2 A Dataset

This chapter introduces the D2A dataset, which is used in this work to train a system that
reduces false positives of the Meta Infer static analyzer. Specifically, the chapter discusses
the creation of D2A, the structure of individual samples, comparisons with other existing
datasets, and presents statistics regarding the distribution of Meta Infer's error types. This
chapter draws primarily from [94, 40].

D2A is a dataset developed by I B M , containing errors found by the Meta Infer static an
alyzer and information about their validity (true positive/false positive). D2A was first
introduced in [94] and is freely available for download at [40]. The dataset is generated au
tomatically based on differential static analysis, and the source files for the D2A generation
pipeline are open-source1. The dataset fits into the area of static analysis and is primarily
intended for creating models aimed at eliminating false reports produced by static analyz
ers. Initial results from models such as Catboost, L igh tGBM, Random Forest, Extra-Trees,
or the voting model can already be found in the article introducing D2A [94]. The team
behind D2A also later published the work [68], where they improve the existing models
and add the C - B E R T model, which is Bidirectional Encoder Representations from Trans
formers [17], but trained on C code and fine-tuned on the D2A dataset for the purpose of
classifying reports.

Several reasons led to the selection of the D2A dataset for this thesis:

1. It is created from real-world open-source projects.

2. Meta Infer was used for differential static analysis (thus, samples contain trace, lo
cation, error type, etc., which is necessary for extracting slicing information, more
information in Section 4.1.2).

3. Being an automatically generated dataset, it is sufficiently large.

4. The author of this thesis has previously collaborated with the creators of the D2A
dataset.

X D2A pipeline's repository: https://github.com/IBM/D2A.

15

https://github.com/IBM/D2A

Auto-Labeler
Differential Analysis

Filtering Heuristic based
on commit history

commit history

, labeled issue^
type, loc, trace

labeled issue
type, loc, trace

FP Reduction
Model Training

Function
Extraction

git repa

labeled
| code snippet",

type, trace

Figure 3.1: A schematic of the D2A generation pipeline. This figure was taken from [94].

Dataset Creation Principle

The D2A dataset was automatically generated using differential static analysis on open-
source projects with extensive git histories. The schematic of the pipeline for generating
D2A is shown in Figure 3.1. The fundamental concept of this pipeline is that the git
history includes commits that fix real errors. Therefore, the entire pipeline starts with
the identification of these potential fixing commits. These commits are identified using the
Commit Message Analyzer, which, through similarity-based methods and key phrase search
in commit messages, can select commits that are highly likely fixing errors. For each such
commit, Meta Infer (see Section 2.2) is run on the version of the code before and after the
commit. Errors that are found in the before version and are missing in the after version
are considered true positives, indicating they have been fixed. For an error to be counted
as a true positive, it must also satisfy the following conditions:

1. The error must not appear in later versions.

2. The commit must have modified some part of the bug trace2 related to the error.

A l l other errors are considered false positives - this is, of course, an approximation because
otherwise it would imply that the project in its latest version contains no errors, which
is highly unlikely. The D2A dataset also includes another type of sample called after-
fix samples, which are labeled as false positives. Each after-fix sample is generated as
a counterpart to a true positive sample on the after version, where the corresponding true
positive have been fixed - the after-fix samples contain the fixed code. After-fix samples
have the property of creating a balanced dataset along with the true positives and also form
pairs that can help models learn to differentiate between true positives and false positives.
This is because the pairs provide the models access to the same code with and without the
error. However, these samples naturally do not have Meta Infer outputs and are not used
in this thesis.

As previously mentioned, each sample includes the output from Meta Infer, the code of the
functions related to the error, and additional metadata such as the ID, label, commit hash,
and compiler arguments for all files affected by the error (this is possible because Meta
Infer needs to compile the code as discussed in Section 2.2). The complete list of sample
attributes is too extensive to be included here, but it is documented in [39]. Attributes and
their formats necessary for the further explanation will be described in later chapters.

2 A bug trace is information attached to some outputs of Meta Infer. It includes sections of the code
that influenced the particular error.

16

Comparison with Other Existing Datasets

There are numerous datasets designed for training models that identify errors in C / C + +
code as can be seen in the table comparing existing datasets with D2A in [94]. These
datasets are typically categorized into synthetic and real-world types. Synthetic datasets
offer the advantage of 100 % label accuracy and the ability to automatically generate sam
ples, making them sufficiently large. However, synthetic samples are typically simpler and
differ from real code, which may lead to poor generalization when applied to real-world soft
ware. Real-world datasets can be further divided into manually and automatically created.
Manually created datasets are highly accurate but are typically too small. Automatically
created datasets, on the other hand, suffer from lower accuracy but are large enough. The
D2A dataset employs a hybrid approach, automatically generating samples from real-world
projects while striving to identify bug-fixing commits that were manually corrected. As
a result, the dataset achieves an accuracy where the true positive class has accuracy of
41 % and false positive class has accuracy of 81 %. These accuracies were determined
through manual validation of 41 samples labeled as true positive and 16 samples labeled as
false positive.

Dataset Distribution

The D2A dataset includes 6 open-source projects-openssl3, libav'1, nginx 5, libtiff6, httpd 7 ,
and FFmpeg 8 . While it is theoretically possible to expand it to include any software with
a sufficient history of commits, generating it is computationally demanding as it requires
running Meta Infer twice for each targeted commit on the entire project. The D2A dataset
contains a total of 1,314,276 samples and is provided with a split into training, validation,
and testing datasets to match the results of the models from [94, 68]. Each sample is labeled
either true positive (1) or false positive (0) and categorized by error type as determined by
Meta Infer outputs, such as NULL_DEREFERENCE, UNINITIALIZED_VALUE, etc. Tables C . l
and C.2 show the counts of samples according to the label, project, and error type. The
tables also highlight the types of errors supported by the system for reducing false positives
in this thesis, with more details available in Section 4.1.1.

3openssl's repository: https://github.com/openssl/openssl.
4libav's repository: https://github.com/libav/libav.
5nginx's repository: https://github.com/nginx/nginx.
6libtiff's repository: https://gitlab.com/libtiff/libtiff.
7httpd's repository: https://github.com/apache/httpd.
8FFmpeg's repository: https://github.com/FFmpeg/FFmpeg.

17

https://github.com/openssl/openssl
https://github.com/libav/libav
https://github.com/nginx/nginx
https://gitlab.com/libtiff/libtiff
https://github.com/apache/httpd
https://github.com/FFmpeg/FFmpeg

Chapter 4

Design of a System for Reducing
False Positives in Meta Infer

This chapter describes the design of training and inference pipelines for transforming the
D2A dataset into its graphical form, referred to as Graph D2A. Specifically, Section 4.1
describes the training pipeline, which transforms the D2A dataset into Graph D2A. Sec
tion 4.1.1 focuses on the bitcode generation phase, aiming to produce L L V M bitcode from
the D2A dataset samples. Section 4.1.2 explains the creation of extended code property
graphs from the generated L L V M bitcode. Section 4.1.3 provides a detailed description of
the Graph D2A format. Section 4.1.4 discusses the feature engineering process, which con
verts graphs from Graph D2A into an optimized input format for graph neural networks.
Section 4.1.5 outlines how to train graph neural networks using these optimized graphs.

Section 4.2 addresses the design of the inference pipeline, a modification of the training
pipeline designed to automatically extract graphs and apply the graph neural network
models to any real-world C (and a subset of C++) software. Specifically, Section 4.2.1
describes the capture phase, aimed at running Meta Infer analysis and extracting L L V M
bitcode from the build of real-world software. Finally, Section 4.2.2 discusses the inference
phase, which deploys the trained models on the created graphs and ranks a list of errors
detected by Infer based on the likelihood of being true positives.

We recall that he goal of this thesis is to create a system to reduce false positives from
the static analyzer Meta Infer, described in Section 2.2. Due to reasons mentioned in
Section 2.3, graph neural networks (GNNs) were chosen for this task. The goal of the trained
models is to rank the errors found by Infer based on their likelihood of being true positives.
The D2A dataset was selected for reasons detailed in Chapter 3. Although D2A includes the
source code of functions mentioned in Infer's bug traces, this information is stored as text
(more specifically as JSON) and not as graphs. To enable the training of GNNs on D2A, it
first needs to be transformed into an appropriate graph format. According to Section 2.4,
a suitable and frequently used representation are the code property graphs (CPGs) and
its modified versions. The application of GNNs to source code requires a preliminary
mechanism for graph construction. However, the existing graph construction methods have
several limitations, which led to the development of our training and inference pipelines.
The three main disadvantages of the current solutions are:

18

1. Insufficient graph representations, such as constructing only ASTs [73], X F G s [13], or
CFGs [69] \

2. Not considering conditional compilation [9, 33, 75, 91, 95].

3. The inability to automatically construct graphs for any software [9, 33, 75, 91, 95].

Points 2) and 3) are closely linked. The previous works, namely, [9, 33, 75, 91, 95], all use
the Joern tool (see Section 2.7) to construct CPGs (and its various modifications), that
is why they are mentioned in both 2) and 3). Although Joern is a very useful tool, its
disadvantage is that it analyses the source files directly and is not able to connect to the
build process itself. This makes it unable to identify which source files to process and which
not to. While Joern can recursively find and process source files in a given directory [88], it
does indeed process everything it finds in those directories. This becomes a problem if the
software includes different versions of the source code, e.g. for different operating systems
(Windows or Linux), which are selected only during compilation. Joern will thus not be
able to correctly construct a C P G without knowing which file to use in a given context.
Therefore, Joern cannot be fully automatically deployed on arbitrary software.

There is a similar problem with conditional compilation where Joern does not know which
part of the code to use, or what values the macros have, since they can be (and very often
are) defined during compilation. For this reason, Joern considers all macros as undefined by
default, and therefore irretrievably loses code fragments that did not satisfy the conditions
within #if def or #ifndef during preprocessing. These problems do not seem to manifest
themselves in artificial datasets, and for concrete real-world software, these problems must
be solved manually if using pure Joern.

Points 2) and 3) are also closely related to Infer - since its inputs are compilation commands,
and the source code is compiled using them before the analysis (see Section 2.2) - Infer
analyzes the preprocessed code. This means that the Infer's analysis is platform-dependent
- it can find different errors under various compilation conditions. Therefore, it makes sense
to construct graphs from the code as seen by Infer.

The use case of the proposed pipelines differs subtly from previous studies. In particular,
we need to construct graphs based on the code in alignment with the Infer report that needs
to be sorted. This requires the capability to slice the code according to the information
extracted from the report. Program slicing is also employed in some earlier studies. How
ever, in this regard, the most comparable studies, specifically [94, 68], do not use program
slicing.

The proposed pipelines are intended to create extended C P G s (further discussed in Sec
tions 4.1.3 and 4.1.4) from software written in C and a subset of C+-h The limitation for
C++ arises from the use of LLVM-Slicer, with specific reasons elaborated in Section 2.5.

4.1 Training Pipeline

The goal of the training pipeline is to transform the D2A dataset into its graph version
- Graph D2A, upon which a G N N model will be trained. Figure 4.1 shows that the

1This work, however, employs a hybrid approach using both GNN and RNN.

19

GIT
Repository

Feature
Engineering

Phase

GNN
Model

Figure 4.1: The figure shows a schematic of the training pipeline that transforms the
D2A dataset into Graph D2A, and then trains models on it. Dashed boxes represent the
intermediate products and data generated by the pipeline. A blue outline highlights the
important outputs of the pipeline, and a green outline indicates the tool developed in this
thesis (in addition to assembling and controlling the entire pipeline). The training pipeline
includes phases such as bitcode generation, graph construction, and feature engineering,
detailed in Sections 4.1.1, 4.1.2, and 4.1.4, respectively. Icons were taken from [103, 100,
66, 97, 104].

training pipeline consists of three stages - bitcode generation, graph construction, and
feature engineering, each detailed in Sections 4.1.1, 4.1.2, and 4.1.4, respectively. The
input to the entire pipeline is the D2A dataset along with the project repositories from
which D2A was generated. The outputs of the pipeline:

1. For each project: a Graph D2A dataset - the D2A dataset transformed into raw
extended code property graphs (ECPGs) in the C S V format (see Sectio 4.1.3), which
can be used for training GNNs (not only for ranking static analysis reports).

2. For each project: a Graph D2A dataset with feature engineering (see Sec
tion 4.1.4) prepared in the commonly used TFRecords format (again, see Section 4.1.4)
for G N N training.

3. Same for all projects: the T F G N N schema describing the format of the Graph D2A
with feature engineering (see Section 4.1.4).

4. Might be same for all projects (see Chapter 6.2): the G N N model for ranking Infer
reports.

Both the training and inference pipelines internally use a conversion to L L V M IR. Since
many languages can be compiled into L L V M IR (see Section 2.5), the Graph D2A can, to
some extent, be considered language-independent; consequently, the models trained on it
can also be considered as such. However, it is still important to remember that the original
language was C. There are several advantages to generating graphs from L L V M IR:

• The output graphs have a simpler structure (as L L V M IR is a much simpler language
compared to, for example, C or C++).

. The existing tools like LLVM-Slicer and L L V M 2 C P G can be utilized.

20

GIT
Repository

Dataset

Bitcode
Generator

= 1 ^

LLVM Link

5
v L L V M y

Combined
LLVM

Bitcode

D2A Filter D2A Filtered

Bitcode
Generation

Phase /

Figure 4.2: The figure shows a schematic of the bitcode generation phase, which generates
L L V M bitcode for each D2A sample whose error type is supported. Dashed boxes repre
sent the intermediate products and generated data. A green outline highlights the tools
developed in this thesis. Icons were taken from [103, 100, 102].

• The output graphs are language-independent.

However, there are also disadvantages:

• The output graphs are larger in terms of the number of nodes and edges.

• It is not possible to transform the dataset directly; instead, a recompilation of indi
vidual D2A samples is necessary.

4.1.1 Bitcode Generation

L L V M bitcode is a binary representation of L L V M IR and can be freely converted between
the two [54]. For conversion from L L V M IR to L L V M bitcode, the tool llvm-as (llvm as
sembler) is used, and for the reverse conversion, llvm-dis (llvm disassembler) is employed.
However, these tools are not strictly necessary because, as shown in Figure 4.2, the bitcode
generator directly produces L L V M bitcode, and all other parts of the pipeline (that work
with L L V M IR) operate directly on L L V M bitcode as well.

The objective of the bitcode generator is to produce a set of L L V M bitcode files for each
sample from the D2A dataset. The number of L L V M bitcode files for each sample is equal
to the number of source files for that sample in D2A. The names of the source files for each
sample can be extracted from the compiler_args attribute in D2A. Each sub-attribute in
compiler_args follows the format [39]:

' f i l e .c ' -compiler_argl -compiler_arg2

Taking only the keys will produce a set of files (for a given sample) that need L L V M bitcode
generation.

21

Before generating L L V M bitcode, it is essential first to filter the dataset and remove samples
that will not be transformed. Tables C . l and C.2 show that some error types have very
few true positives. A small number of positive samples can make it difficult for models to
train as they may not have sufficient information to learn the underlying patterns of true
positives for those error types. Consequently, all error types with fewer than 200 true
positives across the entire dataset will be filtered out. DEAD_ST0RE errors are always true
positives, as established in previous work by the author [3] and also confirmed by the D2A
authors' experiments [94] who do not include DEAD_ST0RE errors in the manual verification
of D2A.

A n exception is made for the error types BUFFER_OVERRUN_L 1 and INTEGER_0VERFL0W_L1,
which are included despite having only 28 and 22 true positives, respectively. The reason is
that BUFFER_OVERRUN_L 1 is the same as, for example, IBUFFER_0VERRUN_L5 - the only dif
ference being that Infer is more certain of the truthfulness of LI than L5 (more information
in [3]), similarly for INTEGER_0VERFL0W_L1. Thus, both errors share the same underlying
pattern, and the model should be capable of learning it. In the end, only errors with fewer
than 30 true positives are removed, and even out of those, not all are removed, hence the
overall data loss is minimal. However, this filtering implies a limitation that the model can
only be applied to supported bug types which are highlighted in Tables C . l and C.2.

Generating L L V M bitcode can be accomplished during the compilation using the clang
compiler (all projects in D2A are written in C language) of the specified source file by
inserting the following options [86] (which were recommended by the old version of Joern
documentation2, which unfortunately is no longer available) into the compilation command:

1. -emit-llvm - ensures that L L V M bitcode is used for object files.

2. -g - adds debug information which allows backward mapping of L L V M bitcode to the
original source code, enabling the use of program slicing based on location informa
tion [12].

3. -grecord-command-line - inserts more debug information into the L L V M bitcode.

4. -fno-inline-functions - disables the use of inline functions.

5. -fno-builtin - prevents the compiler from inserting built-in functions.

The compilation command must indeed be specifically for compiling (it must include -c),
and not for linking, preprocessing, etc. Additionally, the -o option along with its value
must be removed, so that the compilation command generates a .be (L L V M bitcode) file
instead of the original file. The compiler_args attribute contains only options - typically
just -I (include directories) and -D (definitions of macros and their values). Since neither
-c, -o, nor the specific compiler used are mentioned among the options, it is unnecessary
to remove -o or check if it is indeed a compilation command. Instead of the originally used
compiler (which cannot be identified from D2A alone), clang will be used. Given that
Infer also internally uses clang (see Section 2.2), it ensures that both compilations - for
analysis and for bitcode generation - are identical (different compilers might apply different
optimizations and have different default behavior). The resulting compilation command for
the file f i l e . c , generating file.be, would look like this:

2Joern's old documentation (unavailable): https://docs.joern.io/llvm2cpg/getting-bitcode.

22

http://file.be
https://docs.joern.io/llvm2cpg/getting-bitcode

clang -emit-llvm -g -grecord-command-line -fno-inline-functions \

-fno-builtin {D2A_compiler_args]- -c file.c

Thanks to this compilation process and the information from compiler_args, the defini
tion and application of macros are successfully achieved. This addresses the previously
unconsidered problem of conditional compilation, which was mentioned at the beginning of
this chapter.

At this stage, the use of the inference pipeline, described in more detail in Section 4.2,
might seem applicable. It is capable of generating L L V M bitcode for any C / C + + project.
However, D2A consists of 6 projects, and within a single project, the samples are not made
from the same version, but from thousands of different versions of the given project. The
inference pipeline would thus need to be executed separately for each of these versions,
which is computationally infeasible. The generated L L V M bitcode for each sample would
be vast, and most of it would later be removed during program slicing. Instead, information
from D2A and the git repositories of projects from D2A is used to compile only the necessary
files on specific project versions.

For simplicity, consider the transformation of a single project within D2A. For each sample,
it is necessary to restore the project repository to the version (commit) in which the error
appears, which can be obtained from the D2A attribute commit. Then, the names of the
files that need to be transformed into L L V M bitcode are extracted from D2A. These files
are then compiled to generate L L V M bitcode. However, for this process to be fully auto
mated, successful compilation of at least the required files across all required commits must
be ensured. Proper configuration data, all dependencies, generated data (e.g., C headers),
etc., are needed for successful compilation. A l l these elements change with software de
velopment, and automating L L V M bitcode generation requires manual adjustment to the
specific project (more in Section 5.2).

Once a set of L L V M bitcode files is generated for each sample, these files need to be merged
into a single one. This requirement stems from the requirements of the LLVM-Slicer tool
(see Section 2.5). The tool llvm-link [56] is used for this purpose, which, despite its name,
is not involved in the typical linking process of compilers, llvm-link merely combines
multiple L L V M bitcode files into a single one while preserving the L L V M bitcode format.
The tool llvm-link was chosen based on recommendations in the documentation of the
LLVM-Slicer tool [12]. The output of the bitcode generation phase is, for each sample in
the dataset, a single L L V M bitcode file containing the transformed source code of all files
relevant to that sample. Additionally, the D2A dataset is filtered to include only supported
error types.

4.1.2 Graph Construction

The input to the graph construction phase, as shown in Figure 4.3, consists of the filtered
D2A dataset and an L L V M bitcode file for each sample. The output for each sample is
a C P G , extended with additional information (the format of the output data is described
in Section 4.1.3). The output graphs are stored in the C S V format for the Neo4j database.
Additionally, a script in the Cypher language is included with each sample to load the
respective graph into the database [88]. Although Neo4j is commonly used for storing and
querying graph data, it is not used in this thesis.

23

Figure 4.3: The figure shows a schematic of the graph construction phase, which creates
a raw E C P G for each input D2A sample. Dashed lines represent the intermediate products
and generated data. A green outline highlights the tools developed in this thesis. Icons
were taken from [100, 99, 107, 101, 87].

Program Slicing

First, for each sample, it is necessary to extract information required for program slicing
performed by the LLVM-Slicer (see Section 2.5) from the D2A dataset. This information
includes:

• The entry point function - the function in which the program slicing should start
(the top-most function in the bug trace).

• The file - the name of the file where the error is located.

• The function - the name of the function in which the error is located.

• The line - the line number on which the error is located.

• The variable (optional) - the variable related to the error (relevant only for certain
types of errors).

These details form the so-called slicing criteria. The challenge with extracting slicing criteria
is that each type of error has a different format, and these details cannot be uniformly
obtained from all samples. The name of the entry point function is an exception and can
be retrieved for all samples from the procedure attribute (both from D2A and Infer analysis
output). The entry function is the highest-level function in the call graph^ among all the
functions mentioned in the Infer bug trace. Practically, this means that anything above
this function is not important for the manifestation of the error. If the entry function itself
is called with the correct parameters and in the right context, it must lead to the reported
error (assuming it is a true positive). This is crucial information for program slicing, as it
means that everything above the entry function can be discarded (which is exactly what
LLVM-Slicer does), because it is not useful for the future classification of true positives/false
positives.

3 A Call Graph is an oriented graph in which nodes represent functions and edges represent calls between
these functions. It can be considered a substructure of the control flow graph to some extent.

24

In total, 14 types of errors are supported, as shown in Tables C . l and C.2. However,
some error types are similar enough that slicing criteria can be extracted in the same way,
resulting in the following groups:

1. NULLPTR_DEREFERENCE - this group contains only the identically named type.

2. INTEGER_OVERFLOW - includes all INTEGER_OVERFLOW_X where X G {L1,L2,L5,U5}.

3. INFERBO_ALLOC_MAY_BE_BIG - contains only the identically named type.

4. UNINITIALIZED_VALUE - again contains only the identically named type.

5. BUFFER_OVERRUN - includes all BUFFER_0VERRUN_X where
X e {L1,L2,L3,L4,L5,U5}.

6. NULL_DEREFERENCE - the last group contains only the identically named type.

The NULLPTR_DEREFERENCE Group For errors of type NULLPTR_DEREFERENCE, three dif
ferent formats of the Infer output were found in the D2A, distinguishable by the qualifier
attribute [39], which contains a brief description of the error and shares the same name as
in the JSON output of Infer:

1. 'call to 'put_bits()' eventually accesses memory that is the null

pointer on line 543 indirectly during the call to 'init_put_bits()'.'

- e.g., sample with id: f fmpeg_8e48b53d696b53cef 2814548e4d0693387e875ea_l.

2. 'accessing memory that is the null pointer on line 3191 indirectly

during the call to 'av_malloc()'.'

- e.g., sample with id: f fmpeg_6a30264054cc320f e610c072c71d008f 7e3c3efb_l.

3. 'accessing memory that is the null pointer on line 315.'

- e.g., sample with id: f fmpeg_9c908a4c99e0498dd26bdlde84f f 085ac8e73e4a_l.

For Cases 2) and 3), the f i l e , function, and line information in the bug_info attribute
are correct [39]. However, for Case 1), the same information only contains the location of
the function call where the dereference occurs - in this case, put_bits() . The correct error
location needs to be obtained from the last step of the trace attribute (bug trace), as shown
in Listing 4.1 which shows this last step for Case 1). For Cases 2) and 3), the locations
in the bug_info and the last trace step coincide, thus uniformly extracting information
from the last bug trace step is feasible for all three formats. Additionally, all three formats
share the same last step with description - invalid access occurs here. The only
difference is that in trace, function is named as func_name and line must be extracted
from loc, as seen in Listing 4.1.

For NULLPTR_DEREFERENCE errors, it is indeed sensible to consider extracting the variable
name because null dereferences typically occur on a variable. However, they can theo
retically occur on a constant like (NULL) or a general expression, such as (p

-

p) • When
the null dereference occurs on a variable, it would be best to extract the name of this
variable along with the error location. A more precise slicing criterion would allow for
more accurate program slicing, thereby removing more unnecessary information from fu
ture graphs. Unfortunately, the variable name does not appear in any of the described

25

1 "trace" : [
2 // ... other trace steps ...

3 {

4 "idx": 16,

5 "level": 2,

6 "description": "invalid access occurs here",

7

8

"func_removed": null,

"file_removed": null,

9 " f i l e " : "libavcodec/put_bits.h",

10 "loc": "179:9",

11 "func_name": "put_bits",

12 "func_key": "libavcodec/put_bits.h@139:1-189: 2",

13 "is_func_definition": true,

14 "url": "https://github.com/FFmpeg/FFmpeg/blob/5962f6b0da037da30

fcc848331afa6a081a4eb09/libavcodec/put_bits.h/#L179"

15 }

16]

Listing 4.1: The last step of the trace [39] for a NULLPTR_DEREFERENCE error taken from
the sample with id: ffmpeg_8e48b53d696b53cef2814548e4d0693387e875ea_l on the
FFmpeg project. The listing demonstrates the format of storing a bug trace in D2A.

formats of NULLPTR_DEREFERENCE in the Infer output (and thus not in D2A either). The
only clue available is the column, which can be extracted from the loc attribute (see List
ing 4.1). Knowing the line and column where the dereference occurs might seem to simplify
the extraction of the variable name. However, it is necessary to distinguish when the deref
erence is on a variable, a constant, an expression, or a macro. Distinguishing a variable can
be done straightforwardly using the C language naming rules for variables - a name can only
follow the pattern [a-zA-Z_] [a-zA-Z0-9_] *, and anything else cannot be a variable and
thus should not be extracted. However, macros can be named the same as variables (and
typically are). Therefore, distinguishing between a variable and a macro is non-trivial and
would require at least preprocessing by a compiler and subsequent adjustment of the error
position, as macro expansion can change both the line and column. For now, the extraction
of the variable name for NULLPTR_DEREFERENCE will be left for future improvements.

The INTEGER_OVERFLOW Group For the INTEGER_OVERFLOW error types, two formats
were identified, which can again be distinguished using the qualifier attribute:

1. ([0, 8] - [0, 8]):unsigned32.

- e.g., sample with id: f fmpeg_1542087b54ddf 682fb6177f 999c6f 9f79bd5613f _1.

2. ([0, 1] - 1):unsigned32 by call to 'avfilter_unref_buffer'.

- e.g., sample with id: f fmpeg_ca5973f Obf ac4560342605f 8a52ef c88b4f4dbd3_l.

For Case 1), location information can be obtained directly from bug_info. For Case 2),
a similar problem arises as with NULLPTR_DEREFERENCE Case 1) - bug_inf o contains only
the location of the function call, in this case, avf ilter_unref _buff er, where the integer

26

https://github.com/FFmpeg/FFmpeg/blob/5962f6b0da037da30

overflow/underflow occurs. It is necessary to extract information from the trace attribute.
To cause an overflow/underflow, two operands are needed (with the exception of operators
like ++, which in terms of value change is equivalent to +1), and each operand can either
be a variable or an expression. Although LLVM-Slicer is capable of slicing based on mul
tiple criteria (in this case, both operands), to ensure the resulting graph is complete, it is
necessary to include the operation itself. Thus, slicing must be based on the entire line, as
slicing by expression is not yet supported (to the best of the author's knowledge).

The INFERBO_ALLOC_MAY_BE_BIG Group The INFERBO_ALLOC_MAY_BE_BIG group con
tains only a single error type of the same name, and only one format was identified:

1. Length: [0, 2147483631] by call to 'av_dup_packet'.

- e.g., sample with id: f fmpeg_c36d9fbl0c31c6835d01232f ddf f 6932a3ce347f _1.

Similar to NULLPTR_DEREFERENCE Case 1), it is necessary to extract the location from the
last step of the trace because the bug_inf o points to a function call in which the error
occurs, in this case, av_dup_packet. The correct location points to a function call that
allocates memory, such as malloc, realloc, etc. If the call appears as realloc(ptr,
size), ideally, it is preferable to slice directly by size because its value is of interest.
However, the call can often appear as realloc(ptr, str_len + 1), and in this case, the
value of the entire expression is needed. Of course, it is possible to extract the name of
the variable only in certain cases, but there are still the previously mentioned issues with
macros and also with detecting the correct argument. From the output of Infer, it is not
possible to determine which argument it concerns. Wi th functions like malloc or realloc,
the argument is known from their definitions, but it is necessary to consider cases where,
during Infer analysis, custom models are created, and theoretically, any function could be
considered an allocation function. For these reasons, for this type of error, slicing is only
done by the line. Moreover, allocation functions typically are not very large, so including
their code in the graphs does not represent too much unnecessary data.

The UNINITIALIZED_VALUE Group The UNINITIALIZED_VALUE group also contains only
a single error type of the same name. Two formats have been identified, which can again
be distinguished using the qualifier attribute:

1. The value read from ret was never initialized.

- e.g., sample with id: f fmpeg_ed80423e6bcf el8cca832b74dcc877427f 8cf 346_1.

2. The value read from pix[_] was never initialized.

- e.g., sample with id: f fmpeg_lf 62bae77d6ced3b79deaa8ce5ba3381f d4a541d_l.

Neither format includes additional information in the trace, so the information is solely
from bug_info. The location is correct for both formats. Case 1) concerns uninitialized
variables, where it makes sense to slice also by the variable because the specific variable itself
is of interest. Moreover, the variable's name can be easily obtained from the qualifier.
Case 2) concerns uninitialized arrays (or items in an array), where the situation is more
complex because it is not possible to obtain the access index into the array from the Infer
output. It could be extracted from the code, but problems such as slicing by expressions

27

and macros arise. If slicing is done only by the line, then information about the index
would be included in the output. However, experience from checking outputs from Infer
(especially in [3]) suggests that if an array item is uninitialized, it is because the entire array
was not initialized. For these reasons, even for Case 2), the variable name is extracted - in
this case, it is always an array, and the slicing is done with respect to the array.

The BUFFER_OVERRUN Group For the BUFFER_OVERRUN error types, two formats have
been identified, which can again be distinguished using the qualifier attribute:

1. Offset: [0, 15] Size: 4.

- e.g., sample with id: f fmpeg_61d490455ade68a02df dcf dbl72ba3ded2f eOf9d_l.

2. Offset: [1, 4] Size: 4 by call to 'filter_mb_mbaff_edgecv'.

- e.g., sample with id: f fmpeg_0f 5e5ecc888af 015015f 2cel211a066350fbe377_l.

For Case 1), the information in bug_info is correct. For Case 2), the location needs to be
taken from the last step of the trace again. Neither format in the Infer output specifies the
name of the array or the index name (if it involves a variable rather than an expression).
For these types of errors, both the name of the array and the index are necessarily required.
To obtain both names, a more complex extraction method from the source code would
again be necessary. Hence, for this type of error, slicing is currently done by the line.

The NULL_DEREFERENCE Group The NULL_DEREFERENCE group contains only a single
error type of the identical name. NULL_DEREFERENCE and NULLPTR_DEREFERENCE are se-
mantically identical, with the difference lying in the Infer plugin that produced them - B i -
abduction (NULL_DEREFERENCE) and Pulse (NULLPTR_DEREFERENCE). Since they originate
from different plugins (which may have issues with different language constructs leading to
varying patterns of true and false positives) and also have different formats, it makes sense
to list them separately. Two formats have been found, distinguishable by the qualifier
attribute:

1. pointer ' f i l t e r ' last assigned on line 3191 could be null and is

dereferenced at line 3194, column 9.

- e.g., sample with id: f fmpeg_15ae526d6763d8e21833f eb78680ee3571080017_l.

2. pointer 'null' is dereferenced by call to 'ff_sdp_write_media()' at

line 2538, column 5.

- e.g., sample with id: f fmpeg_a94ada4250ff Id9e6101c910fe71dde6c3b5e485_l.

Ideally, for this type of error, it would be desirable to slice by the variable name (if the
incorrect dereference occurs on a variable). For Case 1), both the location information
and the variable name can be obtained directly from bug_info, as the variable name is
mentioned in the qualifier. For Case 2), bug_info contains only the location of the
function call within which the incorrect dereference occurs. If the qualifier in Case 2)
contains a variable name (instead of null), it is not the variable on which the dereference
occurs but a variable whose value is passed to the called function. Unfortunately, in the
trace, it is not possible to determine which step represents the incorrect dereference because

28

most steps lack a description. In some cases, the last step in trace represents the
incorrect dereference, but in some others, it does not. Unfortunately, it is also not possible
to distinguish between these types. For these reasons, for Case 2), slicing is done only by
the line of the called function. This ensures that the error is included in the graph, even if it
is deeper in the call graph. However, this introduces a significant ammount of unnecessary
information.

The adjusted_bug_loc Attribute A n important note is that any sample, regardless
of the type of error, may contain the adjusted_bug_loc attribute in D2A. The attribute
adjusts the location of the error if the bug_inf o - extracted directly from Infer's output
- does not precisely pinpoint the error's location. The adjusted_bug_loc was derived
using the same principles previously described for each group of error types. This raises
the question of why not directly use adjusted_bug_loc. In the training pipeline, it is
indeed possible to use these data, but in the inference pipeline, this information is no
longer available because it only operates with Infer's output on real-world software, not
with D2A. Therefore, a similar method of extracting precise error locations from the Infer
report will eventually need to be designed and implemented for real-world applications.
Utilizing it also in the training pipeline has additionally allowed verification of whether the
author of this thesis and the authors of D2A agree on the method for extracting the exact
location of errors - this has been verified across all samples of supported error types.

The Application of Program Slicing The extracted slicing criteria, along with L L V M
bitcode, form the input for LLVM-Slicer (see Section 2.5). The output is a sliced L L V M
bitcode according to the input slicing criteria. The purpose of program slicing is to remove
parts of the graphs that do not influence the occurrence of the error. Consequently, this
effectively reduces the size of the resulting graph and eliminates unnecessary information,
which should facilitate and speed up the learning process for G N N models. LLVM-Slicer
was chosen based on a recommendation by Ing. Viktor Malik. Upon verification, it was
found to meet all the requirements, particularly in terms of input and output formats. A n
alternative, such as the tool llvm-slicing , is no longer maintained.

Program slicing at this stage of the pipeline also allows for specifying slicing criteria in
relation to the original code, which is more appropriate than specifying them later in the
C P G and slicing using tools like Joern [88]. Theoretically, it should be possible to identify
slicing criteria in the output C P G graph thanks to debug information (see Section 4.1.1)
attached to individual nodes, which can map certain L L V M constructions back to the
original code. However, this information may be lost during C P G construction, as discussed
in Section 2.6. Consequently, it becomes challenging to accurately map C P G nodes back
to the original code, risking the incorrect construction of the node set intended for slicing
criteria.

Generation of Extended Code Property Graphs from L L V M Bitcode

Sliced L L V M bitcode serves as the input to the L L V M 2 C P G tool (see Section 2.6), which
generates CPGs . These C P G s are then processed by the Joern tool (see Section 2.7), whose
task is to:

4llvm-slicing's repository: https: //github.com/zhangyz/llvm-slicing.

29

1. convert CPGs from binary to the C S V format,

2. create Extended CPGs (ECPGs) by adding additional layers such as information
about types, files, functions, and more (see Section 4.1.3).

Joern is utilized solely as a C L I tool in this thesis. It takes a binary C P G and a script with
a list of commands to execute, primarily load and save operations, as Joern automatically
constructs additional layers upon loading. The resulting E C P G s are saved again in a binary
format. The final step involves converting the binary format into the easily usable C S V
format using a Joern sub-tool - joern-export [88], which creates a directory with C S V
files containing:

• C S V header file,

• C S V data file (without header),

• Cypher script for importing into the Neo4j database.

The C S V header file is kept for each sample, even though it might seem unnecessary.
The reason lies in Joern's non-deterministic behavior regarding the columns generated on
different machines. For instance, the header for METHOD nodes (see Section 4.1.3) in httpd
(true positives) and openssl (true positives) - openssl has two additional columns, which,
however, contain no useful information.

The Joern tools (and Joern Export) were chosen due to their frequent use in the field of
GNNs [9, 33, 75, 91, 95]. L L V M 2 C P G is specifically recommended on the L L V M Project
website for generating C P G s in combination with Joern [16].

4.1.3 Graph D 2 A

The D2A dataset, where each sample is transformed into an E C P G generated using the
Joern tool, will henceforth be referred to as Graph D2A. Graph D2A is one of the main
contributions of this thesis and, in combination with the original D2A, enables other re
searchers to create their own graph representations (based on CPGs) for GNNs and apply
their own feature engineering. As mentioned earlier, E C P G s contain additional informa
tion compared to CPGs described in Section 2.4. Additionally, the C S V format facilitates
further preprocessing of the dataset before inputting into GNNs. In this thesis, individual
samples of Graph D2A will be referred to as raw E C P G s , precisely because they are in
the C S V format and because the node/edge attributes are not yet processed or modified -
they often lack, have an inappropriate format, and the format is not uniform (int, float,

string, etc.). Processing raw E C P G s into a format suitable for training GNNs will be
addressed in Section 4.1.4.

The complete output format of raw E C P G s is described in the automatically generated
documentation of the Joern tool [93] (version 1.1), from which the following information is
also taken. Like CPGs, raw E C P G s are directed, node-labeled, edge-labeled, multigraphs.
The set of nodes that share the same label will be referred to as a node set, for future
compatibility. A l l nodes within a single node set have the same set of attributes (although

5Command Line Interface (CLI).

30

MEMBER

LOCAL

AST NODE

TYPE DECL NAMESPACE

NAMESPACE
BLOCK FILE

DECLARATION

METHOD

METHOD
PARAMETER OUT

METHOD
PARAMETER IN

> EXPRESSION

CALL

CFG NODE > CALLREPR

METHOD
RETURN

METHOD REF RETURN

UNKNOWN BLOCK

IDENTIFIER FIELD
IDENTIFIER

LITERAL

Figure 4.4: The figure shows the hierarchy of node sets in green (generated for L L V M IR)
and the base class node sets in blue.

some values may be missing). Similarly, edges that share the same label will be referred
to as an edge set. No edge sets (except REACHING_DEF) in raw E C P G s have attributes,
but as mentioned in the following sections, it may make sense to move certain attributes
from nodes to edges. Raw E C P G s consist of layers, where each layer can add additional
node/edge sets or their attributes. Individual layers may be language-dependent, as Joern
can generate E C P G graphs from any language for which a frontend is written. Currently,
this includes languages such as L L V M IR, C / C + + / C # , Java, JavaScript, Python, Kotlin,
PHP, Go, Ruby, Swift, and more [93, 88]. The Joern layers that are completely missing
for L L V M IR are the Comment Layer, Finding Layer, TagsAndLocation Layer,
Configuration Layer, Binding Layer, and Annotation Layer. These missing layers
will not be further described.

Since this thesis utilizes only L L V M IR (specifically L L V M bitcode) as Joern input, the
following explanation includes only layers generated for L L V M IR. Although the Joern
documentation is highly detailed, it does not describe all the attributes of the node sets.
A complete list of these attributes is provided in Table C.4. The description of each attribute
is discussed in detail in Section 4.1.4, where the removal of irrelevant attributes is addressed.
Node sets are hierarchically organized - if node set X inherits from node set Y, it implies that
X contains the same attributes as Y and adds some unique ones (typically). A visualization
of the hierarchy of node sets (which are generated for L L V M bitcode) and base class node
sets can be seen in Figure 4.4.

The MetaData Layer contains only one node set - META_DATA. In each graph, there
is precisely one such node with ID: 1, containing information about how the graph was
generated - e.g., input language, version, etc.

The FileSystem Layer includes information about the files from which the graph was
generated. It specifically adds the node set FILE, where each node represents an input

31

source file. This layer also introduces an edge set SOURCE_FILE, which connects nodes from
other node sets to FILE nodes based on their source file.

The Namespace Layer introduces the NAMESPACE node set, which resembles FILE and
describes the namespace as known from programming. This layer also introduces the
NAMESPACE_BLOCK node set, which groups code under a common namespace, defined using
specific statements like namespace in C++ or package in Java.

The Method Layer includes declarations of methods, functions, and procedures (collec
tively referred to as 'functions' hereafter). This layer also includes their inputs and outputs
but does not contain their code. Included in this layer are node sets:

• METHOD - information about a specific function.

• METHOD_PARAMETER_IN - represents the input parameters of a specific METHOD node.

• METHOD_PARAMETER_OUT - represents the output parameters corresponding to the in
puts of a specific METHOD node.

• METHOD_RETURN - represents the return parameter of a specific METHOD node.

The Type Layer contains information about type declarations, type relationships, type
instantiation, type hierarchies, parameterized types, and aliases. This layer introduces the
following node sets:

• MEMBER - member of a structured type.

• TYPE - instance of a type.

• TYPE_ARGUMENT - argument used during parameterized type instantiation (e.g., Java
Generics, C++ templates).

• TYPE_DECL - type declaration.

• TYPE_PARAMETER - formal parameter of parameterizable types.

Additionally, the layer provides the following edge sets:

• ALIAS_0F - alias relationship between a type declaration and a type.

• BINDS_T0 - links type arguments to type parameters during type instantiation.

• INHERITS_FROM - inheritance relationship between type declarations and types.

The Ast Layer is the core of E C P G s , providing ASTs for all input code. A S T nodes are
linked into trees via the AST edge set, and sibling positions in the tree are specified using
the ORDER attribute. The layer offers the following node sets:

• AST_N0DE - template providing basic attributes of A S T nodes.

• BLOCK - compound statement grouping multiple statements.

• CALL - function call.

32

• CALL_REPR - template for the CALL node set.

• CONTROL_STRUCTURE - control structure statements and jumps.

• EXPRESSION - template for any code fragment that can be evaluated.

• FIELD_IDENTIFIER - identifier of an element in an array.

• IDENTIFIER - identifier of a variable.

• JUMP_LABEL - jump label.

• JUMP_TARGET - any code location marked as a jump target.

• LITERAL - constant.

• LOCAL - local variable.

• METHOD_REF - function reference when passed as a parameter.

• MODIFIER - language-specific modifiers like static,private, public, etc.

• RETURN - return statement.

• TYPE_REF - reference to a type/class.

• UNKNOWN - other code fragments not classifiable into any of the above node sets.

The CallGraph Layer describes the relationships between function calls. This layer
provides only the following edge sets:

• ARGUMENT - links CALL nodes to their arguments and RETURN nodes to the expressions
they return.

• CALL - links CALL nodes to METHOD nodes.

• RECEIVER - links CALL nodes to the objects on which the method was invoked.

The Cfg Layer provides CFGs for all functions. This layer provides the CFG_N0DE node
set, which is also an AST_N0DE. Therefore, all CFG_N0DE are AST_N0DE, but not all AST_N0DE
are CFG_N0DE. Additionally, the layer adds the CFG edge set, which links CFG_N0DE nodes
in the direction of control flow (without distinguishing between true and false paths).

The Dominators Layer provides dominator and post-dominator trees [2] for all functions.
These trees are closely related to the C F G Layer, as they identify sets of inescapable nodes
in CFGs . The layer provides the following edge sets:

• DOMINATE - an edge indicating that the source node dominates the destination node.

• P0ST_D0MINATE - an edge indicating that the source node post-dominates the desti
nation node.

33

The Pdg Layer provides PDGs for all functions. As defined in Section 2.4, a P D G should
provide data dependency and control dependency edges. The Pdg Layer provides the CDG
edge set, which provides control dependency edges (without distinguishing between true
and false paths), and the REACHING_DEF edge set, which indicates that a variable (source
node) reaches a specific point (target node) unchanged - an extension of data dependency
edges.

The Shortcuts Layer provides a more explicit representation of certain properties using
the following edge sets:

• CONTAINS - links nodes to the function (METHOD node) that contains them.

• EVAL_TYPE - links a node to its data type (TYPE node).

• PARAMETER_LINK - connects METHOD_PARAMETER_OUT nodes to their corresponding
METHOD_PARAMETER_IN nodes.

The Base Layer provides the DECLARATION node set, which is merely a template for all
declarations. Additionally, it provides the REF edge set, which indicates that an IDENTIFIER
(source node) belongs to a specific node (target node), e.g., an identifier belongs to a local
variable (LOCAL node).

A n important note is that neither CFG nor CDG edges contain any information, which differs
from the definition in Section 2.4. This can cause issues, especially when correctly mod
eling program branching. However, the required information is present in the graph, and
branching can be modeled, as discussed in Section 4.1.4.

4.1.4 Feature Engineering

Graph D2A provides raw E C P G s in the C S V format. However, these graphs cannot be
directly used to train GNNs. They first need to be transformed into a format suitable
for model training, which is ensured by the feature engineering phase in Figure 4.5. The
graph format is determined by the library chosen for implementing GNNs. In this thesis,
T F G N N (TensorFlow GNN) is used, which is an open-source6 extension of TensorFlow -
one of the most widely used machine learning libraries. A relatively simple and commonly
used dataset format within T F (not only for graph data) is TFRecord, which is designed
to store sequences of binary data [84] - graphs, in this case. The input to the feature
engineering phase is thus Graph D2A, and the output is a dataset in the TFRecord format.
This transformation also includes feature engineering, which consists of the following steps:

1. Feature Selection - removing edge/node sets and their attributes that are not
important for ranking false positives.

2. Graph Optimization - reducing the graph size while preserving crucial information.

3. Node/Attribute Transformation - some nodes/attributes need to be converted
to another format or decomposed into multiple components.

4. Feature Normalization - it is beneficial to normalize features for more stable train
ing.

34

Graph D2A

Slicing
Criteria

P i
Icsv'

L o

Feature
Engineering

/

j TFRecords
1 Dataset

Feature vi* Engineering
Phase N

Normalization
Coefficients
Extraction

'Normalization
Coefficients

Pi
IJSON 1

L o

GNN Modelj

Figure 4.5: The figure shows a schematic of the feature engineering phase - the final phase
of the training pipeline. Dashed boxes represent the intermediate products and generated
data. A blue outline highlights the important outputs of the pipeline, and a green outline
indicates the tools developed in this thesis. Icons were taken from [105, 66, 97, 104].

In feature engineering, the aim is to refine raw E C P G s to a state where models can be as
small as possible while learning and generalizing effectively. The ultimate goal in reducing
false positives is to train models that work for cross-analysis - training on one project
while performing inference on a different, unseen project. None of the models compared in
this thesis, specifically those from [94, 68], function within cross-analysis. Thus, in feature
engineering, adjustments will be made that should help achieve cross-analysis for GNNs.
The aim is to remove information from raw E C P G s that could lead the G N N model to
overfit to individual samples or entire projects. These adjustments include, for instance,
removing specific variable names or suppressing the original programming style (already
managed by converting to L L V M IR). These modifications are described in detail later in
this section.

Feature Selection

Feature selection is one of the most crucial parts of the training pipeline because it allows
for the greatest reduction in graph sizes. Simultaneously, incorrect feature selection pre
vents the G N N models from efficiently extracting distinguishing patterns. This significant
importance was the primary motivation for Graph D2A (raw EPCGs) to also be one of
the outputs of this thesis. If feature selection was poorly executed, the resulting dataset
would be unusable, providing only incomplete data for the task. Thanks to Graph D2A,
experimenting with different feature selections in the future is possible.

It is important to choose node/edge sets and their attributes that best and most accu
rately describe the code from the perspective of potential errors. These optimized graphs
should contain only the information needed to distinguish between true positives and false
positives. Additionally, the aim is for models to generalize well to unseen projects; for
instance, the model should not remember variable names and thus recognize specific pro-

6 TFGNN's repository: https://github.com/tensorflow/gnn.

35

https://github.com/tensorflow/gnn

jects/samples based on them. This section describes which node/edge sets and their at
tributes were chosen and why (also why some were not chosen). The following description
includes only edge/node sets that were generated for L L V M IR (at least for a single sam
ple). Node sets that did not occur (even if some additional information from their layer did,
see Section 4.1.3) are TYPE_ARGUMENT, TYPE_PARAMETER, CONTROL_STRUCTURE, JUMP_LABEL,
JUMP_TARGET, MODIFIER, and TYPE_REF. Template node sets (see Figure 1,1) are also not
generated. The edges RECEIVER, CONDITION, INHERITS_FROM, and BINDS_T0 are also not
present in Graph D2A. Attributes not mentioned for a given node set, and that the node
set does have (see Table C.4), contain only a single (or, for instance, two but useless) value
across the entire dataset and thus do not provide any useful information. The following
descriptions are based on the Joern documentation [93] and the examination of Graph D2A
samples.

The META_DATA Node Set The node set META_DATA will not be used at all because
all its attributes contain only a single value for all samples. The only exception might
be LANGUAGE, which holds information about the language from which the E C P G was
generated. This is useful when the system has multiple input languages, which theoretically
could be true for the proposed system (thanks to converting the input language to L L V M
IR). However, since each input language would first be compiled to L L V M IR, LANGUAGE
would always have the value ' LLVM'.

The FILE Node Set The node set FILE also contains only attributes with the same values
across samples. The reason it does not contain information about files is L L V M Link - the
input file to Joern with L L V M bitcode is always just one, so the node set FILE contains
only a single node. Thus, the node set will be completely removed. Simultaneously, the
edge set SOURCE_FILE will also be removed because it depends on the FILE node set.

The NAMESPACE Node Set The node set NAMESPACE will also be completely removed.
L L V M IR does not have namespaces like other high-level languages. At best, the concept
of namespaces can be discussed in relation to individual files. However, the same problem
arises as with the FILE node set - all code is in a single file and thus in a single namespace.
The attribute NAME contains only the values <global> and llvm-link_global. Analogously
for the node set NAMESPACE_BLOCK.

The METHOD Node Set The node set METHOD will be used, specifically its attributes:

• IS_EXTERNAL - has values true and false, indicating whether the function's code is
available (and therefore a E C P G) or not (dynamic library call).

• ORDER - the value is always 0, but it is retained for later node set merging (see below
in this section).

• FULL_NAME - the full name of the function (e.g., malloc). Ideally, this information
should be removed to prevent the model from remembering functions from individual
D2A projects, reducing the likelihood of successful cross-analysis. However, it is
necessary to distinguish functions for which no code is available. Functions from

36

standard libraries are crucial to remember because, for instance, malloc or free are
essential for detecting memory leak errors. Using FULL_NAME only for IS_EXTERNAL
functions is logical because they often belong to standard libraries, avoiding project-
specific function names. However, project-specific functions can also be dynamically
linked, and standard functions can be linked statically. For now, FULL_NAME will be
used for all functions, and the usage limited to some functions only is left for future
work.

The following attributes contain some information but will not be used:

. AST_PARENT_FULL_NAME - for METHOD nodes, this is the name of the NAMESPACE_BLOCK,
which does not contain any useful information, as mentioned before.

. FILENAME - analogously to AST_PARENT_FULL_NAME.

• LINE_NUMBER - information about which line the definition is on (may be empty), this
information is not crucial for error detection.

• NAME - for METHOD nodes, it contains, like FULL_NAME, the function name.

• SIGNATURE - contains the function signature, which is potentially useful information.
However, since the data types of individual nodes will be included later (including
the arguments and return values of all functions) as separate nodes, the signature will
be implicitly present in the graph structure, and the SIGNATURE attribute would be
redundant.

The METHOD_PARAMETER_IN Node Set For the node set METHOD_PARAMETER_IN, only the
ORDER attribute will be used (the order among siblings in the AST) , which indicates the
index/order of the parameter within the function declaration. The other attributes will not
be used, namely:

• CODE - contains the parameter name, which is better removed to improve generaliza
tion between projects.

• INDEX - always has the same value as ORDER and expresses the same information, so
it is unnecessary redundancy.

• NAME - contains the same value as CODE - will be removed.

• TYPE_FULL_NAME - information about the data type, but since data types will be
modeled as separate nodes, this information is redundant.

• IS_VARIADIC - information on whether the parameter is variadic (denoted as ' . . . '
in C, e.g., in the printf function). This information will be discarded for future node
set merging purposes, but it is still useful information.

The METHOD_PARAMETER_OUT Node Set Node set METHOD_PARAMETER_OUT will be com
pletely removed because, for statically typed languages (like L L V M IR), it contains the
same information as METHOD_PARAMETER_IN and would unnecessarily add redundant data.
The edge set PARAMETER_LINK is also removed because it connects METHOD_PARAMETER_IN
and METHOD_PARAMETER_OUT.

37

The METHOD_RETURN Node Set In the METHOD_RETURN node set, only the ORDER at
tribute will be used, mainly due to the later merging of node sets. The attributes CODE,
DYNAMIC_TYPE_HINT_FULL_NAME (which can be empty), and TYPE_FULL_NAME typically con
tain the same information about the data type, which will be discarded for the aforemen
tioned reasons.

The MEMBER Node Set For the MEMBER node set, only the ORDER attribute will be used,
indicating the order within the defined structure. Other attributes will not be used:

• CODE - contains the name of the component. The name of the component is not
important for distinguishing true positives and false positives; only its type and order
matter.

• NAME - contains the same information as CODE.

• TYPE_FULL_NAME - types will later be expressed via nodes.

The TYPE Node Set The TYPE node set contains the attributes FULL_NAME, NAME, and
TYPE_DECL_FULL_NAME, which contain the same information - the full name of the data
type. Therefore, only FULL_NAME will be retained (although any of them could be used).
Based on the name, the data type can be distinguished into multiple categories, such as
integer, float, pointer, function signature, etc. More information can be found below in
this section. Modeling data types using external nodes greatly simplifies other nodes that
(where appropriate) carry their own type information in their attributes, which can then
be removed. Overall, graphs will be smaller (in terms of data quantity in attributes) and
simpler.

The TYPE_DECL Node Set The TYPE_DECL node set does not add any new information for
L L V M IR compared to the TYPE node set. The node set could be useful for languages with
parameterizable types or classes like C++ or Java. Therefore, this node set is completely
removed. However, it must be removed carefully because it connects important parts of
the graphs - TYPE nodes of structured types with their MEMBER nodes. More information
on this is provided later in this section.

The BLOCK Node Set The BLOCK node set does not contain any useful information in
its attributes. Its usefulness lies in how it connects other nodes in the A S T . For instance,
each function has its own BLOCK node that contains all top-level statements. BLOCK nodes
are useful, for example, for determining variable scope and also as latent nodes7 for passing
information within G N N [76]. Again, for future node set merging, the ORDER attribute is
retained, as well as the ARGUMENT_INDEX attribute. However, neither carries any useful
information.

7Latent node - a node in the graph that does not contain any information itself and serves purely as
a connection between other nodes.

38

The CALL Node Set In the CALL node set, only the attributes ORDER and ARGUMENT,INDEX
will be retained. If the parent of the CALL node is another CALL node, then ARGUMENT,INDEX
indicates the position among the function call arguments. If the parent is a BLOCK node,
ARGUMENT_INDEX indicates the position among the commands contained in that BLOCK node.
However, this information is not particularly important and wil l be removed later, but
detection of this case can only be done by examining the graph, as described later in this
section.

The FIELD_IDENTIFIER Node Set L L V M IR supports the array data type [55], so the
FIELD_IDENTIFIER node set must be included. Again, the ORDER and ARGUMENT_INDEX
attributes are retained due to the later merging of node sets, although they contain the
same value across the dataset. Both values are always 2, because access to an array is
modeled in E C P G s as a call to the getElementPtr operator, where the FIELD_IDENTIFIER
is always the second argument. The CANONICAL_NAME attribute, which contains the name
of the field, will not be included for reasons similar to those for the FULL_NAME attribute in
the METHOD node set - the model should not remember samples/projects based on specific
names.

The IDENTIFIER Node Set In the IDENTIFIER node set, only ARGUMENT_INDEX and
ORDER are retained, which now contain valid values. Other attributes are not included:

• CODE - contains the name of the variable, which is not used for the same reasons as
CANONICAL_NAME in FIELD_IDENTIFIER.

• COLUMN_NUMBER - potentially useful information, especially for refining pooling in the
G N N head (see Section 4.1.5), but this is left for future improvements.

. LINE_NUMBER - same reason as COLUMN_NUMBER.

• NAME - contains the same information as CODE.

• TYPE_FULL_NAME - types are handled using the TYPE node set.

This may raise the question of how to identify IDENTIFIER nodes that refer to the same
variable in the graph when their names are discarded. The answer lies in the LOCAL nodes
and REF edges that connect nodes representing the same variable. This information is thus
represented by the graph structure and not by the node attributes.

The LITERAL Node Set In the LITERAL node set, the ORDER and ARGUMENT,INDEX at
tributes are retained. Additionally, the CODE attribute, which contains the literal value, is
also retained. This value can be an integer, floating point, string, array, structure, or any
supported data type in L L V M IR [55]. Storing this value will require the creation of a spe
cial node set capable of accommodating these different formats (see later in this section).
The COLUMN_NUMBER, LINE_NUMBER, and TYPE_FULL_NAME attributes are not used for the
reasons mentioned earlier.

39

1 store i32 7,5, i32* @x, align 4, !dbg !40 // write x
2 7.10 = load i32, i32* @x, align 4, !dbg !27 // load x
3 store i32 7,6, 132* @y, align 4, !dbg !42 // write y
4 %7 = load i32, i32* @y, align 4, !dbg !24 // load y

Listing 4.2: A n example of a code in L L V M IR that demonstrates reading and writing to
global variables.

The LOCAL Node Set In the LOCAL node set, only the ORDER attribute is used. Other
attributes, such as CODE, NAME, and TYPE_FULL_NAME, are not used for the previously men
tioned reasons. The usefulness of this node set lies mainly in connecting the IDENTIFIER
nodes that represent the same variable. The problem is that LOCAL nodes only exist for
local variables, not for global ones. L L V M IR can have global variables, but unfortunately,
L L V M 2 C P G and Joern cannot properly encode them in the graph. Consider the read and
write operations in Listing 4.2. It is clear which variable is being read/written to - the
x and y variables. However, if E C P G is generated using L L V M 2 C P G and Joern, each access
to a global variable is preceded by obtaining its address, and then the data is written/read
to/from that address - the variable identifier is not used. Obtaining the address is mod
eled as a call (a CALL node) to the addressOf operator, which has a single operand that
should contain the global variable identifier in this case. But as shown in Listing 4.3, the
operand is of type LITERAL with value 0 and type i32. Therefore, global variables cannot
be distinguished from each other. One possible way would be to use the debug info ! dbg
!40 in the original L L V M IR (see Listing 1.2), which points to the exact location (line and
column) in the original C code, and thus the name of the global variable could be extracted
from there. However, this encounters the previously mentioned problem - variables versus
macros. Extracting global variables is thus left for future improvements.

The METH0D_REF Node Set In the METH0D_REF node set, only ARGUMENT_INDEX and
ORDER will be retained. The C0LUMN_NUMBER and LINE_NUMBER attributes will not be re
tained for the reasons mentioned earlier. The CODE and METHOD_FULL_NAME attributes both
contain the name of the method that the node represents. However, since METH0D_REF is
connected to the METHOD node via REF edges, these attributes can be discarded.

The RETURN Node Set In the RETURN node set, ORDER and ARGUMENT_INDEX are used,
which contain useful values. The location information C0LUMN_NUMBER and LINE_NUMBER
are discarded again.

The UNKNOWN Node Set In the UNKNOWN node set, only ORDER and ARGUMENT_INDEX will
be retained, both containing valid values. The CODE attribute may contain clues about what
the UNKNOWN node holds - typically the name of a data type or a signature. The UNKNOWN
node itself does not provide any useful information, but it is typically deeply embedded in
the graph and connects surrounding nodes. Because there are significantly fewer UNKNOWN
nodes compared to other nodes, it will be retained.

40

1 // node set CALL

2 ID,LABEL,CODE,COLUMN_NUMBER,LINE_NUMBER,METHOD_FULL_NAME,TYPE_FULL_NAME

3 35,CALL,&0,16,10,<operator>.addressOf,i32*

4 46,CALL,&0,16,12,<operator>.addressOf,i32*

5 88,CALL,&0,5,7,<operator>.addressOf,i32*

6 96,CALL,&0,5,8,<operator>.addressOf,i32*

7
8 // edge set AST

9 START_ID,END_ID,TYPE

10 35,34,AST

11 46,45,AST

12 88,87,AST

13 96,95,AST

14
15 // node set LITERAL

16 ID,LABEL,CODE,COLUMN_NUMBER,LINE_NUMBER,TYPE_FULL_NAME

17 34,LITERAL,0,16,10,i32

18 45,LITERAL,0,16,12,i32

19 87,LITERAL,0,5,7,132

20 95,LITERAL,0,5,8,i32

Listing 4.3: The simplified E C P G in the C S V format for the L L V M IR code from Listing 4.2,
demonstrating reading and writing to global variables.

Edge Sets The edge set ALIAS_0F is discarded because aliases are resolved and the
original type names are used during compilation and generating L L V M bitcode. Information
about aliases is present in the graph through debugging information (see Section 4.1.1) in the
form of TYPE nodes. However, these nodes are later removed as part of graph optimizations
(see below in this section).

The edge sets AST, CFG, and CDG are, of course, retained because they form the core of the
C P G .

The edge set ARGUMENT is retained because it connects CALL nodes to their arguments.

The CALL edge set connects CALL nodes to their corresponding METHOD nodes, thereby adding
a call graph to the C P G . The A S T itself is created for each function, but the trees are not
interconnected, preventing message propagation during G N N computation. The CFG edges,
along with CALL edges, connect these individual ASTs at semantically appropriate places.

The edge sets DOMINATE and P0ST_D0MINATE form dominator and post-dominator trees [2],
which provide useful information but essentially express certain simple properties of the
C F G more explicitly. Additionally, there are too many of these edges, so they will not be
used. However, it would be beneficial to experiment with them in future work.

The REACHING_DEF edge set will not be used because there are too many of these edges in
each graph. However, this is another very useful edge set that is worth experimenting with
in future work.

41

The CONTAINS edge set will not be used because it also represents a relatively large number
of additional edges. Furthermore, the information about which method a node belongs to
can easily be obtained from the A S T .

The EVAL_TYPE edge set is, of course, used to connect nodes with their types.

The REF edge set is also retained to link identifiers to the local variable they identify. It
also connects METHOD_REF nodes and METHOD nodes.

Mandatory Attributes A l l node sets also contain the ID and LABEL attributes, which
are not mentioned in the documentation. There are more undocumented attributes, such
as CLOSURE_BINDING_ID in the LOCAL node set. However, since none of them are used,
they are not mentioned in the text. A complete list of attributes for node sets in Graph
D2A can be found in Table C.4 . The ID attribute identifies a node within each Graph D2A
sample, and the LABEL attribute contains the name of the node set. Both of these attributes
are used, although the ID is more for implementation reasons, and the original ID is not
present in the output TFRecords files, which instead use IDs from the T F G N N library (see
Section 5.6). Each edge set (except REACHING_DEF, which contains an additional attribute)
contains the following three attributes:

• START_ID - the source node of the directed edge.

• END_ID - the target node of the directed edge.

• TYPE - the name of the edge set.

Control Structures in Raw E C P G s The generated E C P G s do not contain the node
sets CONTROL_STRUCTURE, JUMP_LABEL, or JUMP_TARGET, even though the original C source
code uses them. The reason lies partly in the conversion to L L V M IR and partly in generat
ing the CPGs . During the compilation to L L V M IR, all control structures (if, for, while,

etc.) are simplified to jumps. Consider a simple i f statement in C in Listing 4.4. The
same code in L L V M IR is shown in Listing 4 .5 , where label 6: represents the true branch
and label 7: the false branch of the original code. The tools L L V M 2 C P G and Joern did
not generate JUMP_LABEL or JUMP_TARGET even though they are present. However, program
branching information (which is crucial) can still be extracted from the C P G , specifically
using CFG and CDG edges.

Consider a partial E C P G (only CFG and CDG edges and without the ret statement) in
Figure 4.6, representing the L L V M IR code from Listing 4 .5 . If a node branches CFG edges
(node 30, representing the value assignment to °/

0
5), the program flow branches at that node.

The possible CFG paths are branches in the original code. These branches are connected to
the condition that determines the program flow branching via CDG edges (from node 30).

From the graph, one can distinguish the true branch (assigning 1 to 7,1) from the false
branch (assigning 2 to 7,1) because the true branch has lower ORDER value for the last node
(node 34) before the paths merge (node 40) than the node from the false branch (node
38). This is because the true branch is always first due to the compilation. If the L L V M
IR is manually modified and the branches are rearranged, it will no longer be possible to
distinguish the true and false branches from the graph. This fact further demonstrates

42

1 i f (z)

2 return 1;

3 else

4 return 2;

Listing 4.4: A simple i f statement in the C language.

1 7.5 = icmp ne i32 7,4, 0, !dbg ! 16

2
q

br i l 7.5, label 7,6, label 7.7, !dbg ! 18

o
4 6:

5 store i32 1, i32* 7.1, align 4, !dbg ! 19

6 br label 7,8, !dbg ! 19

7
8 7:

9 store i32 2, i32* 7,1, align 4, !dbg !20

10 br label 7,8, !dbg !20

11
12 8:

13 7,9 = load i32, i32* 7,1, align 4, !dbg !21

14 ret i32 7,9, !dbg !21

Listing 4.5: The code from Listing 4.4, but converted to L L V M IR.

that utilizing node sets and edge sets constructing the C P G is necessary. It also shows the
importance of ORDER attributes in A S T nodes.

The node sets and their attributes present in Graph D2A are listed in Table C.4. Attributes
of individual node sets that were considered useful and selected during feature selection are
also marked in the table.

Graph Structure Optimization

Before using individual graphs as inputs to GNNs, it is necessary to remove as many
unnecessary and redundant nodes, edges, and attributes from the graphs as possible. The
previous text dealt with the removal of information at the level of entire node sets, edge
sets, and attributes. However, even within a single node set, there are nodes that do not
add any useful information and can be removed, effectively reducing the graph and easing
the learning process of the GNNs. Furthermore, adjustments are required to ensure certain
properties arising from the use of GNNs and the T F G N N library.

To propagate information correctly within the graph during G N N computation, the graph
must consist of only one W C C (see Section 2.3). For GNNs where message passing follows
the direction of the edges, it is also necessary to ensure the correct orientation of the edges.
Using T F G N N requires creating a so-called T F G N N schema [77], which describes the graph
structure: node sets, edge sets, their attributes, and attribute data types. In the T F G N N
schema, all nodes in a node set must have the same attributes (similarly for edges) - this
already applies to raw E C P G s . Furthermore, each edge set must have a fixed source node

43

Node Sets
~1 IDENTIFIER

var'%1 assignment
to '%5'

(condition)

assignment . ,_, get address var'%1'
of 2 to '%ľ V d l U B z

 o f % 1

Figure 4.6: A partial (only CFG and CDG edges and without the ret statement) E C P G
demonstrating branching in L L V M IR from Listing 4.5.

set and target node set - unfortunately, this is not the case with raw E C P G s . For example,

AST edges connect BLOCK, CALL, LOCAL, IDENTIFIER, and other types of nodes.

The following transformations are described in this section:

1. removal of unnecessary and redundant information,

2. creating graphs with only one W C C ,

3. ensuring fixed source and target node sets for all edge sets.

The removal of unnecessary and redundant information and ensuring a single W C C are
closely related because removing some unnecessary nodes also removes unnecessary separate
WCCs . This step consists of the following sub-steps, which must be performed in the given
order:

1. removal of invalid nodes within the A S T ,

2. removal of W C C s (only in the AST) consisting only of BLOCK nodes,

3. removal of A S T leaf BLOCK nodes,

4. filtering out unnecessary ARGUMENT edges,

5. removal of A S T children of external functions,

6. removal of unused functions,

7. filtering out unnecessary EVAL_TYPE edges,

8. removal of the TYPE_DECL node set,

9. filtering out unused TYPE nodes.

44

Removal of Invalid Nodes The removal of invalid nodes occurs only within the A S T -
considering only AST edges and ignoring others. Invalid nodes are considered all those that
were removed during feature selection and have an AST edge leading to or from them (e.g.,
a standalone META_DATA node is not part of the A S T) . If these nodes were simply removed
(along with their edges), the A S T they belong to would be split. Therefore, they need to
be removed based on their position in the A S T as follows:

1. Leaf - the invalid node, along with its edges, can be simply removed.

2. Root - the invalid node is replaced with a valid BLOCK node to ensure that the A S T
has exactly one valid root.

3. Inner node - the A S T children of the invalid node are connected to the A S T parent
of the invalid node.

Since no node types inheriting from CFG_N0DE are removed during feature selection, it is
not necessary to connect CFG edges in the case of inner nodes because there should not be
any, according to the documentation. Similarly, CDG edges do not make sense for any invalid
nodes. A n exception is the removed METHOD_PARAMETER_OUT node set, which inherits from
CFG_N0DE (see Figure 4.4), but no CFG or PDG edges leading to or from these nodes were
found in Graph D2A. Therefore, only AST edges need to be reconnected.

After removing the invalid nodes, the graph is composed of one or more ASTs - one A S T
for each function.

Removal of BLOCK W C C s After removing the invalid nodes, it is necessary to remove
W C C s entirely composed of BLOCK nodes. These are latent nodes, and W C C s entirely
composed of latent nodes contain no useful information. Such W C C s can arise, for example,
from ASTs entirely composed of invalid nodes, as the previous algorithm would convert the
invalid root into a valid node and remove the other invalid nodes. This would result in
an A S T with only a BLOCK node. The case where a W C C consists only of BLOCK nodes is
relatively rare.

Removal of Leaf BLOCK Nodes A l l leaf BLOCK nodes are also removed from all ASTs.
The reason is that BLOCK nodes are used to cluster other nodes - if they have no A S T
children, they are unnecessary.

Filtering of ARGUMENT Edges Next, the ARGUMENT edge set is filtered to keep only edges
that have a CALL node as their source. In other words, the ARGUMENT edges between RETURN
nodes and the expressions they return (nodes inheriting from EXPRESSION) will be removed.
This adjustment is made to move the ARGUMENT_INDEX into the ARGUMENT edges later. For
ARGUMENT edges from RETURN nodes, it does not make sense to talk about the index of
arguments (there is always only one for L L V M IR [55]), so these edges are removed.

Removal of AST Children of External Functions A l l A S T children of METHOD nodes
representing external functions (having the value True in the IS_EXTERNAL attribute)
are then removed. The removed nodes for each function are one METHOD RETURN and

45

iV METHOD_PARAMETER_IN, where N is the number of function parameters. For external
functions, this information is not useful because the information about input and output
parameters is already present when calling the function (CALL node and its A S T chil
dren). METHOD_PARAMETER_IN serves only as a link between arguments from the call site
and the use of parameters within the function body for non-external functions. Similarly,
METHOD_RETURN serves as an abstraction of all RETURN nodes (typically only a single ret
statement in each function, see Listing 4.5) in the function body - it is connected to them.

Another reason for removing A S T children of external functions is that for many operators,
EVAL_TYPE edges led from the METHOD_PARAMETER_IN and METHOD_RETURN nodes to a TYPE
node, whose type was ANY - which does not provide any additional information. By remov
ing these A S T children, these EVAL_TYPE edges are also removed, leading to the removal of
the TYPE node with the ANY value. Thus, the data type ANY will not need to be considered.

Removal of Unused Functions If an unused function is found - in other words, if there
is a METHOD node in the graph without incoming CALL edges - it is also removed. This can
happen because each graph implicitly includes at least the function llvm.dbg.declare,
which is part of the debug information [55]. There may also be some unused operators or
other default global functions.

Filtering of EVAL_TYPE Edges The next step is the removal of EVAL_TYPE edges leading
from the METHOD, BLOCK, and METHOD_REF nodes. A l l these node sets contain information
about the data type, which do not need to be retained. For BLOCK nodes, this represents the
return type of the entire block - in some languages (typically functional), this information is
useful, but in C / L L V M IR, this value is irrelevant as it merely indicates the data type of the
last statement in the given block. For METHOD and METHOD_REF, it represents the signature,
which (as previously mentioned) is expressed through the data types of the function's inputs
and outputs.

Removal of the TYPE_DECL Node Set In feature selection, it was mentioned that the
TYPE_DECL node set needs to be removed in a specific way because it connects structures
and their elements. If a TYPE node is a structure for which its MEMBER nodes are known
(if only a pointer to it is used, the elements may not be known), then this TYPE node is
connected by a REF edge to a TYPE_DECL node, from which AST edges lead to individual
MEMBER nodes, as shown in Figure 4.7. Each TYPE_DECL is then removed such that if it
has any A S T MEMBER children, these MEMBER (target node) nodes are connected to the TYPE
node (source node) using new C0NSISTS_0F edges, and the TYPE_DECL is removed along
with all edges leading to or from it. If the TYPE_DECL has no AST MEMBER children, it can
simply be removed.

Filtering of Unused TYPE Nodes Unused TYPE nodes are then removed. A n unused
TYPE node has no incoming EVAL_TYPE edges. This removal process is iterative - it iterates
until there are no TYPE nodes without incoming edges. This ensures that nested or recursive
structures are also removed. One might ask what happens if a TYPE node has a self-loop
(loop) - a recursive structure (or two or more mutually recursive structures). The answer
lies in the representation of such structures - a recursive structure cannot contain itself, only

46

Figure 4.7: The figure shows the connection of TYPE_DECL nodes in E C P G when modeling
structured data types.

a pointer to itself (similarly for mutual recursion). Self-loops and loops are not possible for
TYPE nodes because MyStruct and MyStruct* are two different types, represented by two
TYPE nodes. For this reason, the information about the individual elements of MyStruct
does not need to be present in the graph if only its pointer MyStruct* is used and its
elements are not accessed - information about the elements would be redundant.

As a result of these modifications, the graph is composed of a single W C C . When using
bi-directional GNNs, information can be propagated between all nodes. For directional
GNNs , it is still necessary to correctly orient the edge sets, as described below.

The Edge Set Condition The condition set by the T F G N N schema that each edge
set must have a fixed source node set and target node set is currently not met. Examples
include the basic AST edges that start and end in different node sets. This condition can
be met in two basic ways:

1. Splitting all edge sets that do not meet the conditions into smaller edge sets to meet
the condition. The problem with this solution is that the number of possible sub edge
sets is up to \N\2 where N is the set of node sets that can appear on either side of any
edge in the given edge set - because it is necessary to cover each combination of node
sets. Of course, some combinations are not possible, such as a METHOD node not having
direct A S T children of the type CALL, so practically, there are fewer combinations.
Adding the fact that even CFG and PDG also connect a large number of node sets, like
AST, this number increases significantly. This results in dealing with tens to hundreds
of sub edge sets. The fact that it would be necessary to define them manually in the
T F G N N schema, and the fact that the more edge sets there are, the more complex the
G N N model, shows that this number of sub edge sets is unsustainable. The principle
is demonstrated in Figure 4.8.

2. Some existing node sets can be merged so that all edge sets meet the required condi
tion. This method simplifies the T F G N N schema (there will be fewer node sets) but
requires that all node sets that will be merged into a super node set have the same
attributes. For this reason, potentially useful attributes were discarded and some un-

47

Figure 4.8: The figure demonstrates two basic ways to meet one of the conditions set by
the T F G N N schema - that each edge set has exactly one source and target node set.

necessary attributes were retained during the feature selection phase. The principle
is also demonstrated in Figure 4.8.

Merging of Node Sets The condition is thus ensured in this thesis by merging certain
node sets. Although efforts were made in the feature selection phase to ensure that all node
sets to be merged in the future have the same attributes, some attributes are too important
to discard. The problem of different attribute sets when merging node sets can be solved
in two extreme approaches:

1. Sparse nodes - create a set of all attributes contained in the merged node sets. The
output super node set will have all these attributes. If an attribute does not make
sense for a particular node, it is simply replaced with an invalid value. This principle
is simple but creates sparse nodes and effectively increases the graph's data size. The
principle of merging node sets using sparse nodes is demonstrated in Figure 4.9.

2. Latent nodes - the exact opposite approach is extracting each node's attributes into
a special data node connected to the original node by a special edge set, according to
the original node set. This again effectively unifies the node format. This principle is
somewhat more complex because it requires the creation of new edge sets connecting
latent nodes with their data nodes. The number of these new edge sets is \N\, where
N is the set of merged original node sets. However, the output is a graph that is
smaller in data size but larger in the number of nodes. Another advantage is that
data nodes will (when using oriented GNNs) constantly send information about the
original data, as their values will not be overwritten during G N N computation because
they have no incoming edges. The principle of merging node sets using latent nodes
is demonstrated in Figure 4.10.

Both approaches have their advantages and disadvantages. In this work, the mixed nodes
approach is used - a combination of the best properties of both approaches. For attributes
that are common to all/most original node sets (e.g., ORDER for all nodes inheriting from
AST_N0DE), the sparse node approach is used. On the other hand, for attributes that are

18

a:' - '
b: '4'

c: '0'

Figure 4.9: The figure demonstrates merging node sets using sparse nodes - the super node
set contains attributes of all original node sets. The original graph is from Figure 4.8 and
is supplemented with node set attributes.

Figure 4.10: The figure demonstrates merging node sets using latent nodes - the attributes
of the original node sets are extracted into special data node sets. The original graph is
from Figure 4.8 and is supplemented with node set attributes.

specific to certain node sets (e.g., CODE for LITERAL, containing the literal value), the latent
node approach is used. Here, however, the latent node is not empty but contains previously
defined sparse attributes. By combining these methods, the graphs are small in both node
count and attribute count, while only requiring the definition of a few new edge and node
sets to connect data nodes with specific attributes. Table C.3 shows all selected node sets
and attributes in the feature selection phase and their combination into new node sets.

The New AST_N0DE Node Set The new node set AST_N0DE consists of original node sets
that are connected by AST edges. A l l these node sets inherit from the template node set
AST_N0DE (hence the same name), see Figure 4.4. These original node sets thus represent
the code as such - the A S T . Thanks to the new AST_N0DE set, it is possible to keep the
AST, CFG, CDG, REF, and ARGUMENT edge sets intact - their target and source node sets will
be the new AST_N0DE node set. The AST_N0DE node set contains sparse attributes:

49

• LABEL - indicates the original node set (e.g., BLOCK, LOCAL, METHOD, etc.); each node
contains it, so there is no need to fill it with invalid values.

• ORDER - is also present in all nodes.

. ARGUMENT_INDEX - for the original node sets METHOD, LOCAL, METHOD,RETURN, and
METHOD_PARAMETER_IN, this information needs to be filled with zeros, see Table C.3.
However, ARGUMENT_INDEX will be completely removed later, as explained below.

New Data Node Sets From Table C.4, it is evident that the original node sets METHOD
and LITERAL contain special attributes that require the creation of data nodes. For the
METHOD node set, the attributes FULL_NAME and IS_EXTERNAL need to be separated. The
new data node set for the METHOD node set is named METH0D_INF0 and is connected us
ing the METHOD_INFO_LINK edge set, where the source is METH0D_INF0 and the target is
the new AST_N0DE node set (original METHOD nodes). Similarly, for LITERAL, the CODE at
tribute needs to be separated into the LITERAL_VALUE node set and connected using the
LITERAL_VALUE_LINK edge set, with the source being LITERAL_VALUE and the target being
the new AST_N0DE (original LITERAL nodes).

Retained Node Sets Node sets MEMBER and TYPE are retained. However, due to the
creation of the new AST_N0DE from which EVAL_TYPE edges originate, and the retention of
MEMBER - which also has EVAL_TYPE edges - it is necessary to split the EVAL_TYPE edge
set. The name EVAL_TYPE is retained for edges originating from AST_N0DE and ending in
TYPE. The new edge set EVAL_MEMBER_TYPE represents the remaining edges from MEMBER to
TYPE. The reason why MEMBER and TYPE are kept in separate node sets is that they do not
represent the code itself (description of computation) but provide additional information
about types - thus, the node sets are logically separated.

The New ARGUMENT_INDEX Edge Attribute The penultimate adjustment is the transfer
of the ARGUMENT_ I NDEX attribute from the new node set AST_N0DE to the ARGUMENT edge
set. However, this is not done for all nodes that have ARGUMENT_INDEX, but only for those
that are the target node for some ARGUMENT edge. At this stage, only ARGUMENT edges
originating from the original CALL node set remain. The T F G N N schema allows attributes
for both nodes and edges, and therefore, this transformation saves a considerable amount
of data and reduces the complexity of the AST_N0DE nodes.

Orientation of Edges The final step is to correctly orient the edges in case oriented
GNNs are used. The orientation of edge sets at this stage is shown in Table 4.1, where the
edge sets that need to be reversed are highlighted in red. The reasons are:

• ARGUMENT - information about arguments will flow towards the CALL node, from which
it will then propagate to the respective function.

• EVAL_TYPE - information about types will propagate to the nodes where it will be
used - it makes no sense to propagate information from AST_N0DE to be concentrated
in TYPE nodes.

50

Table 4.1: The table contains source and target node sets for each used edge set (after
feature selection). Edge sets highlighted in red have an incorrect orientation and will be
reversed.

Edge Set Source Node Set Target Node Set
M E T H O D I N F O _ L I N K M E T H O D INFO A S T N O D E
E V A L M E M B E R T Y P E T Y P E M E M B E R
C O N S I S T S _ O F M E M B E R T Y P E
A S T A S T N O D E A S T N O D E
L I T E R A L V A L U E L I N K L I T E R A L V A L U E A S T N O D E
A R G U M E N T A S T N O D E A S T N O D E
C A L L A S T N O D E A S T N O D E
C F G A S T N O D E A S T N O D E
C D G A S T N O D E A S T N O D E
E V A L T Y P E T Y P E A S T N O D E
R E F A S T N O D E A S T N O D E

. EVAL_MEMBER_TYPE - analogous to EVAL_TYPE.

• C0NSISTS_0F - information about individual MEMBER nodes will flow into the structure
so that the structure node contains information about its members.

• REF - here, information will propagate from LOCAL nodes to identifiers so that they
know it is the same variable (different LOCAL nodes in the same function can be
distinguished using the ORDER attribute). For METHOD_REF, information about the
given method will flow into that node - the function is not called here, but it is
desirable to attach information to it (reversed compared to CALL edges).

The orientation of the other edge sets is preserved for the following reasons:

. METHOD_INFO_LINK and LITERAL_VALUE_LINK - they originate from data nodes to
latent nodes, allowing data information to spread further into the graph.

• CFG - their direction reflects the program's control flow and the chronological order
of node traversal, where the node order plays a crucial role in the manifestation of
errors.

• AST - reversing the edges would mean that it is no longer a tree, but this is not
a problem. From a message-passing perspective, the tree has an interesting property:
information is copied down the tree - parents send the same message to their children,
and children have only a single parent. If the AST edges were reversed, information
would flow to the original root node, and information from the children would need to
be combined in some way (the term „pooling" is used, see Section 4.1.5), leading to an
irreversible loss of information. However, it would be possible to read the final state
from the root, where information from the entire graph would accumulate - but the
graph would have to be shallow enough for information to travel from all leaf nodes
to the root (because, as mentioned in Section 4.1.5, the number of message passes
is a hyperparameter of the model). Pooling still occurs in GNNs because nodes in

51

E C P G s can have multiple incoming and outgoing edges. Thus, it might be interesting
trying the reverse direction of the AST edges in the future.

• CALL - similar reason as CFG - it is a natural control flow of the code.

• CDG - edges originate from nodes representing conditions to nodes affected by the
condition. Thus, it is again in the correct chronological order.

Atribute Transformation

Another property that graphs must satisfy according to the T F G N N schema is that an
attribute (from now on, referred to as a feature) has a fixed type [77]. However, this is not
yet the case; for example, the feature CODE in the LITERAL node can contain values of all
data types in L L V M IR. Although all values can be considered strings in CSV, and T F G N N
supports features of type DT_STRING [77], it would be more challenging for the model to
extract useful information from such complex features. To facilitate training, some complex
features are decomposed into multiple simpler ones [74].

Features of the AST_N0DE Node Set The node set AST_N0DE has a feature ORDER, which
is a simple integer type. The feature LABEL is also a simple type, with categorical values
representing the names of the original node sets. To prevent the model from having to take
a string as input, the feature label values are mapped to a simple integer type as follows:
UNKNOWN: 0, METHOD: 1, ... ,RETURN: 11. The model does not need the LABEL feature
in string format; it just needs to distinguish between different types, and the simplest
representation is an integer.

Features of the MEMBER Node Set The node set MEMBER has only one feature, ORDER,
which does not require any modification.

Features of the METH0D_INF0 Node Set The node set METH0D_INF0 contains the flag
feature IS_EXTERNAL, which contains values True and False since it is a flag. These
boolean values are converted to integer values 1 and 0 for simplicity. The second fea
ture is FULL_NAME, which contains the name of the function. Since L L V M IR operators are
modeled as functions in E C P G s , FULL_NAME can include the prefix <operator>. followed
by the operator's name, such as notEquals, xor, etc. Since operators are used much more
frequently than functions and are also limited in number, it makes sense to convert them
into their own categorical feature, OPERATOR. This feature contains the numerical designa
tion of the operator if detected from the FULL_NAME feature. If it is not an operator, the
entire function name should be remembered. Here, there are several options for modeling
the remaining values:

• Keep the name as a string - the model will need to contain, for example, some kind
of R N N layer.

• Use word2vec [61] or a similar model that can encode a word into a vector while
preserving its meaning.

52

• Use trainable embedded tables [82].

• Hash the name.

In this work, the simplest and fastest approach, hashing, is used. The function name is
hashed into 24 bits (the reason for 24 bits is explained below). This approach discards all
information about the original name but allows the model to remember the occurrence of
specific functions - if a function frequently appears in the true positive class, it is likely
associated with it and can serve as part of a learned pattern. Hashing was chosen because,
compared to other methods, it is by far the fastest, and generating Graph D2A (and apply
ing feature engineering) is already computationally expensive, as described in Chapter 5.
However, future work should include experiments with other string encoding methods.

Features of the TYPE Node Set For the node set TYPE, it is again necessary to decom
pose the feature FULL_NAME into simpler features that can be better processed by the model.
FULL_NAME contains the name of the represented data type. L L V M IR supports a number
of data types [55] (here are the formats as they appear in the FULL_NAME feature):

• Pointer - the suffix contains one or more * characters, e.g., i32*, FILE*, etc.

• Array - the format is [LEN x TYPE],e.g., [114 x i8], [114 x [114 x i8]] ,e tc .

• Integer - the format is iN, where N is an integer > 1 indicating the size of the type in
bits, e.g., i l (boolean), i32, il28, etc.

• Floating point - one of half, float, double, or fpl28.

• Structs - the format is { TYPE1, TYPE2, . . . >, e.g., { i32, i32 >, { i l , float,

{ i32, i32 } >, etc.

• Function signature - the format is TYPE (TYPE1, . . .), e.g., i l (i l , i8*), etc.

• Void - represents an empty value, denoted as void.

• Named type - everything else, e.g., ngx_radix_tree_t, FILE, etc.

In the previous section, it was described that TYPE nodes with signatures were removed, so
they do not need to be considered. Similarly, TYPE nodes with the value ANY were removed
- this is not an L L V M IR type but a value inserted by the Joern tool. The other data type
names need to be appropriately represented using simpler data types. Thus, the feature
FULL_NAME is decomposed into the following primitive features:

• PTR - if the type is a pointer, this stores the pointer depth - the number of trailing
* symbols.

• LEN - if the type is an array, this stores its length (only the outer-most array is
considered).

• INT - if the type is an integer, this stores N, the number of bits.

• FP - if the type is a floating point, this stores a categorical numerical designation of
the given type.

53

• HASH - if the type is a struct or a named type, this stores the 24-bit hash of its name.
In the case of an array, it stores the 24-bit hash of the element type name (if it is not
a primitive type, see below).

The individual features are set as follows and in exactly this order:

1. A l l features are initialized to 0.

2. PTR is set (it can also be 0), the trailing * are removed, and processing continues.

3. LEN is set (it can also be 0), and if LEN > 0, the outer-most array is removed, leaving
only the type of the elements, and processing continues.

4. If the type is an integer, INT is set, and processing ends.

5. If the type is a floating point or void, FP is set (0 in the case of void), and processing
ends.

6. The remaining type is an array, struct, or named type - HASH is set (from the remaining
name), and processing ends.

From this, it follows that for the void type, all values are equal to 0, which semantically
makes sense because it indicates the absence of a value.

Features of the LITERAL_VALUE Node Set For the node set LITERAL_VALUE, the feature
CODE, which contains the literal value, needs to be decomposed. It can take on all types
described above, so it must be decomposed while preserving the highest possible accuracy.
The primitive features will be:

1. INT - if the literal is an integer, this is its value.

2. FP_MANTISSA and FP_EXP0NENT - if the literal is a floating point, this stores its man
tissa and exponent, respectively.

3. INVALID_P0INTER - a flag, if the type is a pointer and contains the special value
nullptr.

4. ZER0_INITIALIZED - a flag, if the special value zero initialized is present.

5. UNDEF - a flag, if the special value undef is present.

6. HASH - the hashed value of arrays, structs, named types, and function pointer values
(in this case, their code) into 24 bits.

It is not necessary to store detailed information about the literal type here because the data
node LITERAL_VALUE is directly connected to the latent node LITERAL (AST_N0DE), which
is connected to its TYPE node.

54

Normalization of Features A l l features are further normalized. Normalization is a com
monly used technique in machine learning that can accelerate learning and improve model
performance [43, 1], especially for datasets where features have different ranges. In this
thesis, simple MinMax normalization to the interval < 0,1 > is used. The advantage of
MinMax is that it preserves the order and is very simple. Its disadvantage lies in outliers in
the original data, which can cause common values to be compressed into a relatively small
interval, making it challenging for the model to distinguish them. Additionally, it would be
worthwhile to experiment with other normalization techniques.

Flag features IS_EXTERNAL, UNDEF, INVALID_POINTER, and ZERO_INITIALIZED, do not need
to be normalized because they only contain the values 0 and 1.

The categorical feature OPERATOR is divided by the number of possible values since the value
0 is reserved for an empty feature. The number of possible values is determined from the
training data.

The categorical feature LABEL is divided by number of possible values - 1, where there
are 12 possible labels (original node sets). Here, 0 is not reserved because LABEL cannot
have invalid values. Similarly, the categorical feature FP is divided by 4 because the possible
values are void, half, float, double, and fpl28, with 0 reserved for void [55].

Numeric features such as INT (node set TYPE), PTR, LEN, ORDER (node set AST_N0DE),
ARGUMENT_INDEX (edge set ARGUMENT), and ORDER (node set MEMBER) are divided by the
maximum values found among the training data (more info below).

The feature HASH (for all node sets) is normalized using the value 2
24

 — 1, where 24 is the
hash length in bits. The reason for 24 bits is that the f loat32 type has a mantissa of
24 bits (23 bits and 1 implicit bit), according to the I E E E 754 standard [41]. It is thus
possible to store a normalized number (though in the interval < 1,2), see below) of 24 bits
in f loat32 without loss of information. The f loat32 type must be used due to the reasons
mentioned in the T F G N N schema description (see below).

For the feature INT (node set LITERAL_VALUE), normalization is similar to HASH, except that
accuracy of high values is sacrificed for better accuracy of lower values. The reason is that
lower constant values are more likely to appear in control structures, such as loop counts,
flags, etc., than higher values (as evidenced by checking many Infer reports in [3]). Thus,
the INT feature is essentially truncated to intl6, converted to unsigned, and normalized
using 2

16

 - 1 (MAX_UINT_16).

For the features FP_MANTISSA and FP_EXP0NENT, simply dividing by the highest value is
not possible due to differing magnitudes, which could result in a significant loss of infor
mation. The normalization used is based on the I E E E 754 [41] format for f loat32 (which
must be used, see below). The mantissa in this format is already normalized to the range
(—2,-1 > for negative numbers and < 1, 2) for positive numbers. These intervals are only
shifted to form a uniform interval (0, 2) and then divided by 2 (here is a potentional loss
of information). FP_EXP0NENT can take values from 0 to 255 for float32 (or -127 to 128
due to the implicit offset), so dividing by 255 is sufficient to normalize it in unsigned for
mat. However, since higher than f loat32 values can also appear in the graph and must
be encoded in f loat32 and then normalized to < 0,1 >, information loss will undoubtedly
occur, such that all larger floating point types are converted to f loat32. By splitting the
original feature value in f loat32 into two features, FP_MANTISSA and FP_EXP0NENT, also

55

in f loat32, the encoding and normalization process will not result in a significant loss of
information (only in the form of inaccurate operations).

A l l normalization values that need to be obtained from the dataset must be derived from
the training data. If they were obtained from the test or validation sets as well, information
would be transferred to the training process. Thus, model evaluation would not be accurate
- model generalization would be affected to some extent. The extraction principle and
sample values of the normalization coefficients are in Section 5.5.

T F G N N Schema

As previously mentioned, when using the T F G N N library, it is necessary to define the
T F G N N schema [77]. It is an accurate and detailed description of the structure of hetero
geneous multigraphs. The T F G N N schema designed in this thesis defines E C P G s (after
feature engineering) just as Section 2.4 describes C P G graphs. However, the description
here is stored in the form of Protocol Buffers [31] (often referred to as Protobuf), which are
language-neutral, platform-neutral, extensible mechanisms for serializing structured data.
The T F G N N schema specifically uses a protocol named tf gnn. GraphSchema

8

. The T F G N N
schema contains information about individual graph pieces:

• Context - a set of features that apply to the graph as a whole, such as the type of
Infer error.

• Node sets - disjoint sets of nodes where all nodes within a node set have the same
set of features.

• Edge sets - disjoint sets of edges where all edges within an edge set have the same
set of features and also share the same source node set and target node set.

Each feature definition (for context, node set, and edge set) contains the following infor
mation [77]:

• Name - must be unique within the graph piece.

• Description (optional).

• Data type:

- Integers DT_<INT | UINTX8116 132 164> or DT_B00L - all stored as int64.
- Floating point DT_<FL0AT | DOUBLE | HALF | BFL0AT16> - all stored as float32.
- DT_STRING - stored as bytes.

• Shape - e.g., [64] for a vector of length 64, -1 for ragged dimension [81], or it can
be omitted, and then it is a scalar (all features in this thesis are scalars).

The schema allows specifying integer types as inputs for GNNs. However, since T F G N N
model weights are in f loat32, all integer features are converted to f loat32 after the first
operation. These conversions are often done beforehand for type unification and better par-
allelization on the G P U 9 . For this reason, all features (except label, see below) are defined

8Sources of tf gnn. GraphSchema: https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/
proto/graph_schema.proto.

9Graphics Processing Unit (GPU).

56

https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/

as f loat32. This final conversion of all types to f loat32 is why the feature transformations
in the previous text revolved around f loat32, striving to preserve accuracy for f loat32.

The last step in creating the graphs is to include the label and LINE features in the
T F G N N schema context, label indicates whether a graph belongs to the true positive or
false positive class and has the type DT_INT32. Including the graph label in the context is
directly recommended by the T F G N N documentation [77]. The feature LINE contains the
line number on which the error was reported by Infer, normalized by the highest such value
in the training data. According to [68], this feature was the most important for Random
Forest models and is thus included here as well. Again, adding other features to the context,
which were used in [94, 68], could also be beneficial.

This graph context and E C P G s together form the graphs described in the T F G N N schema.
These complete graphs are stored in the TFRecords format, as advised by the T F G N N doc
umentation [77], which can be easily read as input to GNNs and are also more space-efficient
than raw E C P G s (Graph D2A) - mainly due to feature engineering (see Section 5.6). The
created T F G N N schema is included on the storage medium (see Appendix A) and is also
available in the repository on G i t H u b 1 0 .

4.1.5 Graph Neural Networks Mode l

The principle of GNNs (or G N N layers) was described in Section 2.3. This section further
describes, in more practical terms, the architecture used in this thesis (specific models with
hyper parameters are provided in Chapter 6), created in T F G N N to rank graphs (errors
found by Infer) by the likelihood of being a real error. The trained model is the final
output of the training pipeline, as seen in Figure 4.1. The process of models training takes
graphs (with labels inside) in the TFRecords format and a T F G N N schema as inputs. The
process is then composed of the following steps:

1. Load the graphs.

2. Balance the class data.

3. Create a preprocessing model.

4. Create a model, consisting of the following main parts:

(a) A layer for initializing hidden states (i.e., embedding vectors from Section 2.3).

(b) G N N layers.

(c) GNN head.

5. Create a training loop.

6. Save the model.

Loading the graphs is very simple with the T F G N N support of the TFRecords format and
is described in Section 5.7. The loaded data is heavily unbalanced, as shown in Tables C . l
and C.2. Even the most balanced project, libtiff, has a true positive:false positive ratio

1 0Created T F G N N s c h e m a : h t tps ://g i thub .com/TomasBeranek/but -masters - thes is/b lob/thes is -
submi s s i on/model/s chemas/ext ended_ cpg.pbt xt .

57

https://github.com/TomasBeranek/but-masters-thesis/blob/thesis-

of only about 1:20, while the least balanced project, ffmpeg, has a ratio of almost 1:140.
Balancing the data is crucial because it prevents models from favoring the majority class [38]
and thus helps the model learn truly useful patterns. Balancing can be done in several ways:

• Up-sampling the minority class - replicate the minority elements (in this case, true
positives) so that the ratio is approximately 1:1. The elements can be replicated in
several ways:

— Duplication - does not bring any new information.

— S M O T E 1 1 - create new synthetic samples from existing ones; this is a form of
data augmentation [6].

• Down-sampling the majority class - randomly remove samples from the majority class
until the data is balanced, but useful data are lost.

• Class weights - add weights to classes that influence learning.

• K-fold cross-validation with a split of the majority class - a type of K-validation [7],
where each split will contain the same set of all minority samples, but the majority
data will be divided into as many equal parts as needed so that the ratio of each
part is again approximately 1:1. For an original ratio of 1:20, this would be 20-fold
cross-validation. One model is trained on each split - 20 models in this case.

In this thesis, only up-sampling of the minority class is used. However, it would be beneficial
to try other methods, especially S M O T E and K-fold cross-validation with subsequent voting
by individual models.

The T F G N N documentation recommends creating a preprocessing model [78], which should
adjust the data into its final form - feature selection, feature splitting, normalization, etc.
A l l these tasks have already been performed earlier (see Section 4.1.4), so the preprocessing
model is used only to extract the label from the graph.

The main step is to create the actual model. The models used in this thesis have a very
similar architecture and are heavily inspired by the T F G N N documentation [83, 82, 80]
and the examples in the T F G N N repository 1 2. A slightly generalized architecture of the
models used in this thesis is shown in Figure 4.11. The first part is a layer (or more) that
initializes the hidden state of all nodes. The type of these layers is not strictly defined and
depends on the format of the input nodes. This layer can be any differentiable function.
In this thesis, the data in the nodes are a set of scalars, so only classic Dense layers (i.e.,
densely-connected neural network layers) are used (one shared layer for each node set). If
the features in the nodes were, for example, ragged, RNNs would probably be used. If the
data were images, CNNs could be used, etc. Or this layer can be omitted, and the first
G N N layer can be used to create hidden states.

After the layers initializing the hidden state, the G N N layers follow. In this thesis, MtAlbis
layers [80, 85] are used, which are recommended for initial experiments by the T F G N N
documentation. MtAlbis layers proved to be so effective in the experiments that they were
retained, see Chapter 6. These layers generalize V a n i l l a M P N N 1 3 described in [29]. MtAlbis

" S y n t h e t i c M i n o r i t y O v e r s a m p l i n g T e c h n i q u e (S M O T E) .
1 2 T F G N N ' s repository: ht tps ://gi thub.com/tensorf low/gnn.
1 3Vanilla Message Passing Neural Network (VanillaMPNN).

58

https://github.com/tensorflow/gnn

Nx GNN Layer
ECPG

Hidden
State

Initialization
Layer

(Dense)

Graph
Context

GNN Head

Head
Dense
Layer

(1) Layers

Dense
Layer

(1)

I y v)

(0,1)

Figure 4.11: A generalized architecture of the G N N models used in this thesis. The archi
tecture is based on the MtAlbis G N N layers and is a binary classification model - it ends
with a Dense layer with a single output neuron.

work on heterogeneous graphs - which are E C P G s . One cycle of updating all hidden
node states, i.e., one round of the message-passing algorithm (see Section 2.3), is a single
MtAlbis layer [80]. Thus, the number of updates/layers is the depth of the model and one of
the most important hyper parameters. The deeper the model, the further information from
a particular node can propagate, but the more complex the model - it has more parameters,
takes longer to learn, overfits more, etc.

The final part is the G N N head, which serves as the equivalent of the super node described
in Section 2.3. Information from all (or only some) node sets is input into a pooling layer,
whose output is a combined hidden state (as it would be for a super node). This hidden
state, together with features from the graph context, is input into additional fully connected
layers (or a single layer), whose output is the model's output - in this case, a single number.
The model is supposed to distinguish between two classes, making it a binary classification.
Thus, the last Dense layer must have a single neuron, as shown in Figure 4.11. The sigmoid
function is applied to the output of this neuron (though it is not necessarily required),
which converts the input number from the interval (—oo,+oo) to (0,1). Therefore, the
model's output is a single number in this interval, which is higher the more confident the
model is in class 1 (true positive). Models for binary classification are most often trained
using Binary Cross Entropy [72], as is the case with all models in this thesis.

Creating the training loop and saving models is again straightforward thanks to the use of
T F G N N . Of course, it is also necessary to fine-tune hyperparameters such as learning rate,
optimizer type, batch size, etc. More details can be found in Chapter 6.

Models created using the training pipeline have interesting properties:

• Thanks to the use of L L V M IR, they are language-independent.

• Since the output of Infer is only used for program slicing (and obtaining the type of
error), it can easily be adapted to another static analyzer.

• It is also possible to use them without a static analyzer, if slicing criteria are
created (possibly automatically) and the type of error is specified. This way, the

59

Build
Proccess

Combined
L L V M

Bitcode

Graph
Construction

Graph
Construction

List of :
P h a s e

Errors i -

P 1
l J S O N I ;

L # i

i T F R e c o r d s
: Dataset

Feature
Engineering

P h a s e
I : T F G N N

S c h e m a 1̂

Sorted List
of Errors

Figure 4.12: The figure shows a schematic of the inference pipeline, which ranks Infer
reports on real C / C + + projects based on the probability of being true positives. The
dashed boxes indicate the intermediate products and generated data. The green outline
indicates tools created as part of this thesis. Icons were taken from [104, 66, 106].

models can completely replace static analysis and be used directly to find errors in
the source code.

4.2 Inference Pipeline

The goal of the inference pipeline is to run Infer on a real C / C + + project, generate E C P G s
for each Infer report, and then rank the reports based on their probability of being true
positives using the created G N N models. As shown in Figure 4.12, the inference pipeline is
fundamentally the same as the training pipeline. It differs only in the way L L V M bitcode
is extracted and at the end, where models are not trained but are used solely for inference.

4.2.1 Capture Phase

The goal of the capture phase (see Figure 4.13) is to connect to a running build process
and capture the information required for the graph construction phase (described in Sec
tion 4.1.2). This necessary information includes the source files compiled to L L V M bitcode
and the same source files captured in Infer's capture phase (see Section 2.2), which will
then be analyzed by Infer. To obtain this information, compilation commands must be
extracted from the build process. This can be done by:

1. parsing the build scripts,

2. capturing the commands using a compiler wrapper.

Parsing build scripts is very challenging because each build system uses a different syntax
and different techniques. However, some build systems have built-in functionality for ex
tracting compilation commands, such as CMake [45]. Unfortunately, very few build systems
have this feature. Another problem is that some software does not use any standard build
systems. Instead, they use custom scripts (e.g., bash) for compilation, linking, etc. These
scripts can have any structure and hierarchy of calling other scripts or tools, making it
almost impossible to statically parse compilation commands from them. The use of such

60

Files

El

IT

Build
P r o c c e s s

Compi ler
Wrapper

f L L V M r >
L L V M Link

C o m b i n e d ';

• Bitcode ; L L V M

1, ft| hl
Bitcode !

Gl i

f Infer's
Ana lyse

P h a s e

Figure 4.13: The figure shows a schematic of the capture phase, which generates L L V M
bitcode and runs Infer analysis on real C / C + + software. The dashed boxes indicate the
intermediate products and generated data. The green outline indicates tools created as
a part of this thesis. Icons were taken from [98, 25].

scripts is relatively common in S R P M packages, as found in author's previous work [3].
This thesis aims for later deployment specifically on S R P M packages and must take this
feature into account. For the reasons mentioned above, parsing build scripts of unknown
software is generally impractical.

The second and practically applicable option is to create wrappers over C / C + + compilers
and intercept the compilation commands during the build process. The design and imple
mentation were addressed in the author's previous work [3], so the principles of the wrappers
will be described here very briefly. Every time a compiler is invoked by the build system,
the installed wrapper is called. For each such call, the wrapper captures its arguments and
performs the following steps:

1. It filters out options that are incompatible with Infer's internal Clang compiler, which
is used to compile source files into SIL (see Section 2.2).

2. It invokes Infer's capture phase, passing the modified compilation command. Infer
then stores the captured source files in SIL representation in its database.

3. It calls the original, unmodified command with the original compiler so that the build
can proceed without issues.

The wrapper is designed so that even if Infer's capture phase fails, the original command
is still executed. Failure of Infer's capture phase will not crash the entire analysis/pipeline,
but it may increase the likelihood of generating false positives/false negatives. This error re
covery is possible due to Infer's properties: if it does not have the required implementations
of the analyzed functions captured, it assumes they may return any value (limited by their
return type, of course). This speculation introduces a certain degree of over-approximation
and thus the potential for false positives. False negatives can occur because files not cap
tured by the Infer capture phase are not analyzed. A n important note is that these compiler

1 4 S o u r c e R e d H a t P a c k a g e M a n a g e r (S R P M) package - provides the source code of software via
the R P M package manager for operating systems like RHEL, Fedora, and CentOS.

61

wrappers can (and typically are) called in parallel. Therefore, it is necessary to be aware of
possible critical sections, such as Infer's database. The description of how critical sections
are protected in the wrapper can be found in [3].

For the inference pipeline, it is necessary to add additional functionality to the wrapper
- generating L L V M bitcode from each captured compilation command. The principle,
including an example of how to generate L L V M bitcode using the compilation command,
was already presented in Section 4.1.1. Unlike the training pipeline, the inference pipeline
must consider input compilation commands in all possible formats, so it is necessary to
remove the -o option (and its value) and also ensure that it is truly a compilation command
(it must contain the -c option).

The final task that the wrapper needs to accomplish is finding all the generated L L V M
bitcode files. Again, there are several ways to obtain this list of files. For instance, one
could analyze compilation commands and extract the names of the compiled files or insert
-o options. However, the simplest method is currently used here: upon the wrapper's first
invocation, a list of all existing .be files in the filesystem is created. After the build is
finished, this process is repeated. By comparing these two lists, it is possible to identify
which .be files were added during the build and thus contain the L L V M bitcode.

It may seem that running multiple builds concurrently could result in .be files unrelated
to the current project being compiled. This issue indeed occurs with all the methods
mentioned, as it is not possible to distinguish which build the .be files originated from.
Similarly, Infer cannot distinguish between individual projects, so it is necessary to ensure
that only one project's compilation is executed at any given time. However, running multi
ple projects concurrently will not cause errors but will merely lead to Infer reporting errors
(and generating graphs) for all the projects being compiled.

After the build and before the graph construction phase begins, two additional steps must be
taken. First, a l l generated L L V M bitcode files need to be merged into a single file using the
llvm-link tool. Then, the Infer analysis is performed on the captured files. After the analysis
is complete, Infer generates a list of potential errors, from which slicing criteria are extracted
for LLVM-Slicer during the graph construction phase. Unlike the training pipeline, where
each error detected by Infer (or D2A sample in the training pipeline) generates its own
L L V M bitcode file, here, a single file contains the entire source code. The L L V M bitcode
files are differentiated only after slicing according to the criteria of individual reports.

4.2.2 Inference Phase

After the graph construction phase, feature engineering is applied to the raw E C P G s , just
like in the training pipeline (see Section 4.1.4). The only difference is that normalization
coefficients already generated from D2A are used.

Next comes the inference itself, as shown in Figure 4.12. The inference using the G N N
model evaluates the input graphs - representing individual errors found by Infer - based
on their probability of being true positives. The original output from Infer is then sorted
in descending order according to the G N N model's score. Unsupported error types (see
Section 4.1.1) and errors for which a graph could not be generated (see Section 5) are
placed at the end of the list in their original relative order. Even in this sorted output,
however, a typical trade-off is encountered between the number of true positives and the

62

number of false positives. The more true positives that are sought, the worse the true
positive vs. false positive ratio becomes (to ensure that all true positives are found, all
reports must still be checked). However, the mere fact that it is possible to choose this
threshold is a significant advantage of these sorted outputs compared to the unsorted ones.

63

Chapter 5

Implementation

This chapter describes the implementation of training and inference pipelines, as designed
in Chapter 4. The training pipeline consists of a series of independent tools. Specifically,
Section 5.1 describes the D2A filter that removes unsupported error types. Section 5.2
discusses the implementation of a bitcode generator that creates L L V M bitcode for D2A
samples. Section 5.3 describes the slicing criteria extractor. Section 5.4 details the genera
tion of Graph D2A from L L V M bitcode. Section 5.5 explains the extraction of normalization
coefficients for feature normalization. Section 5.6 outlines the implementation of feature
engineering, including graph and attribute transformations and normalization. Finally,
Section 5.7 and Section 5.8 cover model training and evaluation, respectively.

Unlike the training pipeline, the inference pipeline is fully automated. It comprises compiler
wrappers, described in Section 5.9, and a script that automates graph creation, discussed
in Section 5.10.

A l l source files for both the training and inference pipelines are open-source and accessi
ble on Gi tHub 1 . Data manipulation primarily utilized Python, particularly libraries such
as Pandas 2, NumPy 3 , NetworkX (nx), and TensorFlow'. Bash and make were used to
automate the calling of scripts and other auxiliary tasks.

The following sections provide details on the computation times for various components.
A l l measurements were conducted on Ubuntu 20.04 with the following hardware:

. C P U 6 - Intel(R) Core(TM) i5-10400F C P U @ 2.90GHz, 6x cores, 12x threads,

. G P U 7 - N V I D I A GeForce R T X 3060 T i , 8GB,

. R A M 8 - 16GB,

. Memory - 500GB SSD 9 .
XA11 source files are available at ht tps ://gi thub.com/TomasBeranek/but -masters - thes is .
2 P a n d a s ' s website: https://pandas.pydata.org/ .
3 N u m P y ' s website: https://numpy.org/.
4 N e t w o r k X ' s website: ht tps ://networkx .org/ .
5 T e n s o r F l o w ' s website: https://www.tensorflow.org/.
6 C e n t r a l P r o c e s s i n g U n i t (C P U) .
7 G r a p h i c s P r o c e s s i n g U n i t (G P U) .
8 R a n d o m A c c e s s M e m o r y (R A M) .
9 S o l i d - S t a t e D r i v e (S S D) .

64

https://github.com/TomasBeranek/but-masters-thesis
https://pandas.pydata.org/
https://numpy.org/
https://networkx.org/
https://www.tensorflow.org/

5.1 D 2 A Filter

The initial step in creating the Graph D2A involves filtering out unsupported data types, as
discussed in Section 4.1.1. This filtering is implemented through a script named f i l t e r .py,
written for Python 3.8. The script takes a directory containing the D2A dataset as its
input (specified using the -d or —dir option), which can be downloaded from [40]. The
files, named in the format {project]-_labeler_{011} .pickle .gz, correspond to individual
projects and labels. Although „after-fix" samples are available (see Chapter 3), they are
not used in this thesis and are ignored by filter.py. The second input parameter is the
output directory (specified using the -o or —output-dir option), where the results are
stored (if the directory does not exist, it will be created).

Each input file in the input directory is first decompressed from the .gz archive using
the gzip library. Then, using the pickle library, which is used for object serialization
and deserialization, the samples are sequentially read. Samples belonging to the supported
error types are saved in a file with the same name (including .pickle.gz) in the output
directory. Unsupported samples are completely discarded.

From each saved sample, certain information that is no longer needed in the training pipeline
is also removed. This significantly reduces the size of the samples, saving disk space and
speeding up operations such as loading and saving. The removed information includes
(explanations of each attribute can be found in [39]) label_source, bug_loc_trace_index,
sample_type, commit[changes], functions, and zipped_bug_report.

The command to run filter.py might look like this:

python3.8 filter.py -d d2a/ -o d2a-filtered/

The script removes 20,732 samples with unsupported error types, which is ~1.6 % of the
total number of samples. The number of removed samples for each project is shown in
Table 5.1. Filtering the entire dataset takes ~3 minutes, and the dataset size is reduced
from -3 .6GB to -288MB (calculated only with the *_labeler_* files).

5.2 Bitcode Generator

From the filtered D2A dataset, it is necessary to generate a single L L V M bitcode for each
sample, as described in Section 4.1.1. This is accomplished using the generate_bitcode. py
script for Python 3.8. The script must be applied individually to each *_labeler_* gen
erated by filter.py (see Section 5.1), specified using the -f or — f i l e option. The
script also requires the directory containing the or ig ina l project repository (using the - r
or —repository option) and the project (using the —project option) from which the
L L V M bitcode will be generated, such as httpd

10

). Finally, the output directory must
be specified (using -o or —output-dir); if it does not exist, it will be created. Running
generate_bitcode.py might look as follows:

python3.8 generate_bitcode.py -r httpd/ —project httpd \

-f d2a-filtered/httpd_labeler_l.pickle.gz -o d2a-bitcode/httpd_l/

ht tpd ' s repository: https://github.com/apache/httpd.

65

https://github.com/apache/httpd

The script first retrieves a chronological list of all commits from the repository using:

git log — a l l —format=y
o
H

Then, a set of commits for all samples from the input D2A file is obtained. From the
complete list of commits, those that are not also in the set of commits from the D2A are
removed - in other words, commits on which no D2A samples exist. This modified list
is reversed so that the first commit is the oldest and the last is the newest. The script
then iterates through individual commits (represented by their hashes) and performs the
following:

1. The repository is switched to the given commit using git reset —hard HASH.

2. A l l files that are not part of the repository (especially products from previous runs)
are deleted using git clean -dfx.

3. A project-specific set of actions required for a successful build is performed (see below).

4. For each D2A sample at this commit:

(a) A list of files to be compiled for the given sample is obtained from D2A.

(b) Samples consisting only of . h files or containing files such as . y or .1 are skipped,
as they do not generate L L V M bitcode when compiled.

(c) The cache is checked to see if the L L V M bitcode for a sample with the same
set of files has already been generated at the current commit. If so, a symlink 1 1

{output_dir}/{sample_id}.bc is created, pointing to the already generated
L L V M bitcode. This speeds up the process because recompilation is not required
and reduces memory usage since the same sample does not need to be stored
multiple times. Symlinks only occupy a few bytes.

(d) The repository is cleaned of residual files from previous compilations (at this
commit) using project-specific criteria to avoid deleting essential configuration
data generated when switching to this commit.

(e) A set of already present .be files in the repository is obtained; these are not
L L V M bitcode files.

(f) For each record (compiled file) in the D2A attribute compiler_args:

i . Adjust the D2A compiler arguments - replace <repo> with the repository
path and remove arguments starting with <sys>, which include external
libraries specific to httpd (these libraries are included with their own paths,
see below).

i i . Add missing project-specific include arguments (-1).
i i i . Add arguments to generate L L V M bitcode (see Section 4.1.1).
iv. Execute the generated compilation command.

(g) Using the previously located existing .be files, obtain a list of newly added files
- generated L L V M bitcode files.

(h) Ensure that the same number of L L V M bitcode files have been generated as
there are original . c files (. h files are included - they do not generate separate
L L V M bitcode).

11

Symlink - A special type of file that points to another file in the filesystem.

66

(i) Use llvm-link to combine all L L V M bitcode files of the current sample into
a single L L V M bitcode file and save it to {output_dir]-/{sample_id]- .be.

(j) Finally, note in the cache which files were used to generate this L L V M bitcode.

After switching to the new version of the repository (new commit), a pre-compilation con
figuration is required. This typically involves generating platform-specific .h or .c files,
generating configuration files, setting the correct paths to libraries, etc. This phase is
different and quite extensive for each project, so only the procedure for httpd will be de
scribed here as an example. Configuration details of other projects can be found directly
in generate_bitcode.py.

The httpd project is the only one that requires downloading external libraries in ad
vance. Specifically, apr-1.7.4 and apr-util-1.6.3, which can be downloaded from the
Apache website 1 2, and the pcre2-10.42 library, which is available in the pcre2 reposi
tory 1 3 . These libraries must be renamed to apr, apr-util, and pcre and moved to the
httpd-dependencies/srclib directory, which must be at the same level as the httpd
repository. Furthermore, all libraries need to be configured according to their instructions
(pre-configured libraries are included in the attached media; see Appendix A) .

The generate_bitcode .py script moves to the httpd repository and prepares for the httpd
compilation as follows:

1. Copies the external libraries apr and apr-util to the srelib/ directory in the repos
itory.

2. In some versions of the repository that contain the pcre library, it is necessary to
initiate configuration by first running ./buildconf (still in the root directory of the
repository), which creates srclib/pcre/conf igure. Then, switch to srclib/pcre/
and run . /configure to generate the necessary header files for the pcre library, such
as config.h.

3. If the pcre library is not present, the script copies the already configured one from
. ./httpd-dependencies/srclib/pcre/ into srelib/.

4. The script then checks whether any of the tracked files have changed from the last
version of the project:

• include/ap_config_auto.h.in,

• include/ap_config_layout.h.in,

• modules/ssl/ssl_policies.h.in,

• buildconf.

These are templates for the generated .h files and the configuration file. If none of
these files have changed, the previously generated .h files can be reused - copy them
back from /tmp/d2a_pipeline/. This saves a lot of time since generating them and
running . /buildconf is time-consuming across many commits.

12Apache's website: https://apr.apache.org/download.cgi.
13pcre2's repository: https: //github.com/PCRE2Project/pcre2/releases/tag/pcre2-10.42.

67

https://apr.apache.org/download.cgi

5. If any template has changed, ./buildconf and ./configure must be rerun. The
configuration process takes about 20 seconds, but it has to be done for thousands of
commits.

6. The script checks another set of tracked files that are generated differently:

• server/gen_test_char.c,

• srclib/pcre/dftables.c.

If they have not changed, again copy them from previous versions.

7. If they have changed, they need to be generated as follows:

(a) include/test_char .h - generated using gcc -Isrclib/apr/include

-Isrclib/apr-util/include server/gen_test_char.c -o gen_test_char

followed by ./gen_test_char > include/test_char .h.

(b) include/chartables. c - generated using gcc srclib/pcre/dftables. c -o
df tables followed by . /df tables include/chartables. c. In some newer ver
sions, it is necessary to check if include/chartables. c was created, and if not,
it must be generated using ./df tables > include/chartables. c instead.

For each version (commit) of the project, running the configuration multiple times should
be avoided. To prevent losing the generated configuration files, a project-specific cleanup
that preserves the contents of certain directories is used. For httpd, the command is:

git clean -dfx —exclude=srclib/ —exclude=include/

When starting the compilation for individual files of each sample, arguments extracted from
D2A are used. However, most are insufficient as they do not include necessary -I paths for
various header files. This may be due to different methods of installing libraries when creat
ing D2A, so these paths need to be added. For httpd, -Iinclude, -Isrclib/apr/include,
and -Isrclib/apr-util/include are appended.

As previously indicated, some samples might be skipped, or their compilation may fail.
Statistics for individual projects are presented in Table 5.1. For h t tpd_l , the size of the
filtered D2A is —47KB, compared to the unfiltered D2A, which is —629KB. The generated
L L V M bitcode for h t tpd_ l is —22MB. The script for httpd_l runs for —330 seconds, which
equates to -1.6 seconds per sample. Parallelization would speed this up, but since the
project repository is a critical section accessed almost continuously, it would be necessary,
for instance, to duplicate it. Thus, parallelization of this process is left for potential fu
ture improvements. Similarly, enhancements to the automated project configuration are
also left for future improvements, as they could improve the success rate of bitcode genera
tion. However, compilation issues must be resolved manually, which consumes an enormous
amount of time.

5.3 Slicing Criteria Extractor

To enable slicing of the generated L L V M bitcode from Section 5.2, it is first necessary to
extract slicing criteria from the filtered D2A from Section 5.1. For this purpose, the Python

68

3.8 script slicing_criteria_extraction.py is provided. It takes as input a single file
from the filtered D2A (specified using the —d2a option). The script outputs the slicing
criteria in the C S V format (without header) to stdout, with the following columns:

1. status - 0 means success, 1 indicates an internal error.

2. bug_id - the id of the sample.

3. entry - name of the entry function (see Section 4.1.2).

4. f i l e - the file where the error is located.

5. fun - the function where the error is located.

6. line - the line number where the error is located.

7. variable - the variable associated with the error.

A n example of running slicing_criteria_extraction.py might look like this:

python3.8 slicing_criteria_extraction.py —d2a d2a-filtered/ \

httpd_labeler_l.pickle.gz > slicing-info/httpd_labeler_l.csv

The slicing_criteria_extraction.py script is used for both the training and inference
pipelines. This is because both D2A and Infer's output are in the JSON format, and
since D2A originates from Infer's output, they are quite similar. When the script is used
on the D2A sample, it is converted to the same format as Infer's output via the simple
transf orm_d2a_sample function, which essentially involves renaming and splitting some
D2A attributes.

For each sample/report, a function extract_{error_type_group]- (extracting the slicing
criteria) is invoked based on its type - the 6 groups listed in Section 4.1.2. Retrieving entry,
f i l e , fun, and line is straightforward: the correct attributes are simply extracted from
the JSON (see Section 4.1.2). If variable is extracted, it is obtained from the qualifier
field. For bug_id, id from D2A is used in the case of D2A. For Infer, the samples are
labeled incrementally starting from 0, and unsupported sample types are skipped in the
numbering to preserve the original numbering in Infer's output.

The script skips unsupported error types. If an unknown format of a supported error is
encountered, the script returns status = 1 and tries to extract at least entry, f i l e , fun,
and line from the basic information to allow slicing based on the line number.

If the f i l e is a header file (.h), the f i l e field is left empty because of future slicing -
because slicing based on header files is not supported by LLVM-Slicer in the standard
format. Instead, slicing should be done using only fun and line, excluding the f i l e field.
If the f i l e contains a regular .c file, fun is omitted because f i l e and line are sufficient
to determine the slicing criteria unambiguously. Extracting slicing criteria from the filtered
D2A completes for all files in under a minute.

69

5.4 Graph Construction Script

The bash script construction_phase_d2a is used for generating Graph D2A from L L V M
bitcode (created in Section 5.2) and slicing criteria in the C S V format (created in Sec
tion 5.3). This script implements the remaining transformations described in Section 4.1.2.
The script accepts the following position-dependent arguments:

1. The output directory for storing raw E C P G s .

2. The file containing slicing criteria.

3. The directory containing L L V M bitcode.

4. (optional) The sample number at which to end.

5. (optional) The sample number from which to start.

The construction_phase_d2a script can be executed with a command such as:

./construction_phase_d2a graph-d2a/httpd_l httpd_labeler_l.csv \

d2a-bitcode/httpd_l

The script construction_phase_d2a operates as follows:

1. Records from the slicing information (from its copy) that already have a directory
with raw E C P G are removed. This allows for the intermittent transformation of the
dataset.

2. The slicing information file is divided into smaller files of 100 lines each (the last file
may be smaller) and stored in /tmp/construction_phase_d2a/split_f iles/.

3. Each file in split_f i l e s / is then processed as follows:

(a) The create_cpgbin function is called in parallel for each line in f i l e using the
command:

cat ${file} | parallel —colsep ',' create_cpgbin {1} {2} {3} \

{4} {5} {6} {7}

This function generates a binary C P G for each line from L L V M 2 C P G (detailed
description of this function is provided below).

(b) If /tmp/construction_phase_d2a/cpg/${bug_id}.cpg.bin.zip was not gen
erated for some samples, these samples are removed from f i l e .

(c) A script for Joern is generated, containing commands to load and re-save all
.cpg.bin.zip files, thereby expanding them into E C P G s . A n example Joern
script is provided in Listing 5.1.

(d) Joern processes all (up to 100) E C P G s .

(e) The cpgbin_to_csv function is called in parallel for each line in f i l e , but only
the bug_id column is used:

cat ${file} I parallel —colsep ',' cpgbin_to_csv {2}

70

1 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_27 .. • • 17. .1, .cpg. .bin. .zip")

2 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_04 le. .1, .cpg. .bin. .zip")

3 // more imports

4 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_3e 2c. .1, .cpg. .bin. .zip")

5 importCpg("/tmp/construction. _phase_ _d2a/cpg/httpd_ld 02. .1, .cpg. .bin. .zip")

6 save

Listing 5.1: A n example of an automatically generated Joern script for httpd_l. The script
only includes importCpg to load binary CPGs (up to 100) and concludes with the save
command, which saves the graphs.

This function converts binary E C P G s to C S V - raw E C P G s , stored in the out
put directory. Each raw E C P G has its own directory (named after its bug_id)
containing C S V files.

(f) Finally, all temporary files created during the current iteration are cleaned up to
prevent accumulation of logs and intermediate files, which could unnecessarily
consume memory.

4. Statistics on the number of successful/unsuccessful samples are then calculated and
printed.

The aforementioned function create_cpgbin, which takes a line with slicing criteria as
input, works as follows:

1. First, it checks whether the input directory with L L V M bitcode contains the bitcode
for the current sample. If it does, the function continues.

2. The LLVM-Slicer is called using:

timeout 3s llvm-slicer —sc="${file}#${fun>#${line}#${variable}" \

—entry=${entry} -o=${bc_sliced} ${bc_combined}

The timeout command ensures that llvm-slicer completes its run. Experiments
have shown that it can sometimes get stuck or run for several minutes, which is
unacceptable given the large number of samples. By removing certain columns from
the slicing criteria (see Section 5.3) and leveraging the behavior of variables in bash,
it is possible to call llvm-slicer uniformly for both .c and .h files.

3. If llvm-slicer is successful, a C P G in binary format is generated using llvm2cpg
as follows:

llvm2cpg ${bc_sliced} —output=${cpg_bin}

where ${cpg_bin]-=/tmp/construction_phase_d2a/cpg/${bug_id>.cpg.bin.zip.

The cpgbin_to_csv function, which takes only bug_id as input, simply calls joern-export
as follows:

joern-export —repr a l l —format neo4jcsv \

-o "${output_dir>/${bug_id>" ${joern_cpg_bin>

71

where ${joern_cpg_bin]- contains the path to the binary E C P G in the temporary direc
tory /tmp/construction_phase_d2a/workspace/${bug_id}.cpg.bin.zip/cpg.bin. At
the end of the function, the success of joern-export is checked.

As mentioned earlier, the creation of binary C P G s and the conversion of binary E C P G s to
C S V are parallelized using the parallel tool. However, the bottleneck here is Joern, which,
despite running multiple instances, does not provide any speedup. Moreover, starting up
Joern takes multiple seconds, so ideally, it is best to start and stop it as little as possible,
hence it works in batches of 100. Larger batch sizes have been tested to further reduce the
startup load of Joern, but the following issues were found:

• Batch > 5000 - Joern crashes.

• Batch > 3000 - Joern may get stuck in an infinite loop.

• Batch > 500 - Joern non-deterministically generates incomplete graphs (missing edge
sets like CDF, CFG, etc.).

• Batch = 100 - Joern works correctly.

The following results were measured on httpd_l. The non-parallelized script generates
approximately 500 graphs per hour. By parallelizing both of the phases mentioned above,
the script reaches approximately 1100 graphs per hour. Moving Joern to batch mode allows
the script to generate approximately 4000 graphs per hour. Other projects have been found
to contain, on average, larger graphs than httpd, so the number of graphs per hour may
be smaller for those projects. The output graphs for h t tpd_ l are —240MB.

As hinted earlier, some samples may fail. The largest contributing factor is the timeout for
LLVM-Slicer. It is possible to increase the timeout, but that would decrease the number of
graphs per hour. The number of successfully generated samples can be seen in Table 5.1.

5.5 Normalization Coefficients Extractor

Before applying feature engineering (see Section 4.1.4), it is necessary to extract normal
ization coefficients from individual projects in Graph D2A (created in Section 5.4). This is
the task of the f ind_normalization_coefficients.py script for Python 3.8. The script
is executed for each project separately with 6 position-dependent arguments:

1. directory with false positives in Graph D2A of the specific project,

2. directory with true positives in Graph D2A of the specific project,

3. project name (httpd, nginx, or libtiff),

4. splits.csv file providing the data split into train, val, and test sets, downloadable
from [40],

5. slicing criteria for false positives of the specific project,

6. slicing criteria for true positives of the specific project.

72

http://cpg.bin.zip/

Running the f ind_normalization_coeff icients .py script for httpd could look like this:

python3.8 find_normalization_coefficients.py graph-d2a/httpd_0/ \

graph-d2a/httpd_l/ httpd d2a/splits.csv httpd_labeler_0.csv \

httpd_labeler_l.csv

The find_normalization_coeff icients .py script works as follows:

1. It processes splits.csv and selects the set of id samples belonging to the input
project and the training set.

2. It then iterates over all false positive samples and then all true positive samples (the
order does not matter) as follows:

(a) If the sample id is not in the training set, it is skipped - obtaining information
from the validation and test sets is avoided because it could affect the experi
ments.

(b) For each C S V header file (*_header. csv) of the current sample:

i . If the current header file does not belong to the original node sets of the
merged node set AST_N0DE (see Section 4.1.4), the node set TYPE, or the
node set MEMBER, proceed to the next header file.

i i . The corresponding data file *_data.csv is read.
hi. If the header is nodes_TYPE_header. csv (TYPE node set), LEN and PTR val

ues are extracted (see Section 4.1.4) and if their maximum values are greater
than the currently found ones, they are updated. Then, proceed to the next
header file.

iv. For a header file from the merged AST_N0DE node set or MEMBER node set,
the values MEMBER_ORDER (for node set MEMBER) and ORDER (for all others)
are updated (see Section 4.1.4).

v. If the header file is for the node set METHOD, newly found operators (if any)
are added to the OPERATORS set.

vi. If the header file has a column ARGUMENT_INDEX, it is stored together with
the column ID.

(c) From the file edges_ARGUMENT_data.csv, obtain the set of target nodes for
ARGUMENT edges. From previously stored ARGUMENT_INDEX, discard those that
are not target nodes for ARGUMENT edges (using IDs). From the remaining ones,
update the maximum value of ARGUMENT_INDEX.

3. Extract the maximum value of LINE (for graph context, see Section 4.1.5) from the
files with slicing criteria.

4. Finally, print all normalization coefficients.

The find_normalization_coeff icients .py script outputs its results to stdout in the
format shown in Listing 5.2. Normalization coefficients ARGUMENT_INDEX, LEN, LINE, ORDER,
MEMBER_ORDER and PTR are the maxima of all found attributes. OPERATORS is the set of all
found operators. And BUG_TYPES is the set of all supported error types (see Section 4.1.1).
Extraction for the httpd project takes about ~260s.

73

1 {'ARGUMENT_INDEX': 14,

2 'BUG_TYPES': ['NULL_DEREFERENCE',

3 // more error types

4 'UNINITIALIZED_VALUE'],

5 'LEN': 65536,

6 'LINE': 9162,

7 'MEMBER_ORDER': 75,

8 'OPERATORS': {'<operator>.addition',

9 '<operator>.addressOf',

10 // more operators

11 '<operator>.subtraction',

12 '<operator>.xor'},

13 'ORDER': 1471,

14 'PTR': 4}

Listing 5.2: A n example of the normalization coefficients for the httpd project, generated
by the f ind_normalization_coef f icients .py script.

5.6 Feature Engineering Script

After extracting the normalization coefficients (described in Section 5.5), feature engineering
(designed in Section 4.1.4) can be applied to Graph D2A (created in Section 5.4) to produce
a dataset in the TFRecords format. A l l feature selection, graph transformations, and
attribute transformations are implemented using the feature_engineering.py script for
Python 3.8. The script is called separately for each project and label with 8 position-
dependent arguments:

1. T F G N N schema file (designed in Section 4.1.4),

2. output file name,

3. project name (httpd, libtiff, nginx, ...),

4. label (0 or 1),

5. splits. csv file,

6. filtered D2A file (*_labeler_*),

7. file with slicing criteria,

8. (optional) Which of the normalization coefficients to use (httpd, l i b t i f f , nginx, or
nginx+libtif f+httpd). If the argument is missing, the project value is used.

The script reads directories with individual samples from its stdin (one directory per line).
Running feature_engineering.py for httpd_l might look like this:

find graph-d2a/httpd_l -mindepth 1 -type d | python3.8 \

feature_engineering.py extended_cpg.pbtxt \

tfrecords/httpd_l.tfrecords httpd 1 d2a/splits.csv \

d2a-filtered/httpd_labeler_l.pickle.gz httpd_labeler_l.csv

74

The f eature_engineering.py script does the following for each input Graph D2A sample:

1. Loads only those node/edge set files that are not to be removed, with the exception of
the TYPE_DECL node set, which is removed later (see Section 4.1.4). If any used edges
were connected to a node that was not loaded, it becomes an invalid node that needs
to be removed appropriately. During loading, a merged AST_N0DE is also created, and
the original node set name is stored in the LABEL attribute of each AST_N0DE node.

2. Discards unused node set attributes.

3. From the loaded nodes and the AST node set, a MultiDiGraph representation is created
using the nx library optimized for graph processing.

4. Using the simple algorithm described in Section 4.1.4, all invalid nodes are removed
from the graph (for now, it is just a set of ASTs).

5. Using nx. weakly_connected_components (G), all W C C s are obtained, and those con
sisting only of BLOCK nodes are removed.

6. A l l leaf BLOCK nodes are also removed. At this stage, all currently present nodes are
considered valid (although some will still be removed later).

7. Other edge sets are added to the graph, with the ARGUMENT edges only added if they
originate from a CALL, meaning:

G.nodes[edge['start']]['type'] == 'CALL'

8. Newly added edges may again create invalid nodes, which can now be easily removed
along with their edges, as removing them will not disconnect the ASTs.

9. The graph optimizations described in Section 4.1.4 are then performed:

(a) removing A S T children of external methods,

(b) removing unnecessary EVAL_TYPE edges,

(c) removing all TYPE_DECL nodes,

(d) removing unused TYPE nodes.

10. At this stage, it is verified that the graph forms a single W C C because no further edge
or node removals will be performed that could split the graph into multiple WCCs .

11. A l l METHOD and LITERAL nodes are split into data and latent nodes (see Section 4.1.4),
which adds the node sets METH0D_INF0, LITERAL_VALUE, and also the edge sets
METH0D_INF0_LINK and LITERAL_VALUE_LINK.

12. At this stage, all node/edge sets are converted to separate DataFrame tables using
the Pandas library, which is optimized for tabular operations. From this point on
ward, attributes of individual edge/node sets are processed in groups, not the graph
structure itself.

13. A l l attributes are split as needed and normalized using the extracted normalization
coefficients (see Section 4.1.4).

75

1 for edge_set_name, val in edgeset_info.items():

2 source_nodeset=val['SOURCE']

3 target_nodeset=val['TARGET']

4
5 get_source_node_loc =lambda id: graph_in_dfs[source_nodeset].index.

get_loc(id)

6 get_target_node_loc =lambda id: graph_in_dfs[target_nodeset].index.

get_loc(id)

7
8 graph_in_dfs [edge_set_name]['source']=graph_in_dfs[edge_set_name] \

9 ['source'].apply(get_source_node_loc)

10 graph_in_dfs[edge_set_name]['target']=graph_in_dfs[edge_set_name] \

11 ['target'].apply(get_target_node_loc)

Listing 5.3: A n example of Python code that converts Joern node IDs into T F G N N IDs.

14. Now, it is necessary to convert SOURCE and TARGET, which contain the node IDs in
all edges. Currently, nodes have IDs in ascending order starting from 1. However,
T F G N N identifies nodes differently. They are numbered in ascending order starting
from 0, but within node sets - meaning there can be two or more nodes with the same
ID if each is in a different node set. Since edge sets must define source and target
node sets (see Section 4.1.4), there will be no collisions.

15. Finally, the orientation of some edge sets is reversed (see Section 4.1.4).

16. A T F G N N GraphTensor is created using the from_pieces and from_f ields meth
ods [79],

17. Serializes the GraphTensor objects into tfrecords files according to whether the
sample belongs to the train, val, or test set.

The outputs of the f eature_engineering.py script are files with the *. train, *.val, and
*.test extensions in the TFRecords format. Some samples may be faulty - for instance,
no AST edge set was generated for them (by Joern), which must always be present in a valid
sample. The number of successfully generated samples is shown in Table 5.1. The script
runs on httpd_l for approximately —80 seconds. The script was parallelized at the level
of individual samples, but parallelization did not bring any significant speed improvement
(likely because the libraries used are already internally parallelized), and some calls to the
TensorFlow library (e.g., writing to TFRecords) did not work and would need to be locked
into critical sections. Therefore, the parallelization was removed. The output TFRecords
files for h t tpd_ l are - 1 5 M B .

5.7 Model Training Script

After creating TFRecords files, training of G N N models can be done using the script
mixed_nodes_model .py for Python 3.8. This script takes 4 position-dependent arguments:

1. T F G N N schema,

76

Table 5.1: The table shows the number of samples after each phase of the training pipeline.
For values marked with *, the loss is not final as they were not transformed into TFRecords.
However, the table indicates that this final transformation is almost lossless.

Project D2A Filtered D2A Bitcode Graph D2A TFRecords Loss
httpd_0 12475 11974 11818 9705 9705 22 %
h t tpd_ l 217 210 210 193 193 11 %
nginx_0 17945 17209 17172 16741 16741 7%
ng inx_ l 421 418 417 407 407 3 %
libav _0 236415 234062 226213 186614 186595 21 %
l i b a v _ l 4614 4575 4398 3331 3331 28 %
libtiff 0 12096 11385 11377 9276 9276 23 %
libtiff 1 553 534 534 459 459 17%
openssl_0 343148 332584 301934 278292 - 20 %*
openssl_l 8022 7913 7581 6918 - 14 %*
ffmpeg_0 654891 649255 633997 500791 - 24 %*
ffmpeg_l 4826 4772 4621 3938 - 18 %*

2. directory with TFRecords,

3. output directory for saving models,

4. (optional) the value combined to train a single model across multiple projects (see
Section 6.2); if omitted, a separate model is trained for each project.

The script mixed_nodes_model .py trains models on training data (and validates on vali
dation data) of the projects httpd, libtiff, and nginx. It expects files named according to
the pattern:

{TFRecords_dir}/{httpd|libtiff|nginx}_{011}.tfrecords.{train|val}

The script then operates as follows:

1. Data are loaded using tf .data.TFRecordDataset - positive and negative samples
separately (validation data are loaded all at once, as shuffling is not necessary).

2. Up-sampling is applied to the minority class.

3. Positive and negative samples are interleaved.

4. A l l samples are shuffled to mix the samples from the individual projects.

5. Datasets are batched.

6. A preprocessing model is applied, which extracts the labels (see Section 4.1.5).

7. The function train_model is then called, performing:

(a) First, a model is constructed using the build_model function, which utilizes the
Keras A P I 1 4 and operates as follows:

1 4Keras API's documentation: https://www.tensorflow.org/guide/keras.

77

https://www.tensorflow.org/guide/keras

i . A n Input layer is created, taking graphs defined by the T F G N N schema as
input.

i i . A Dense layer initializing hidden states for each node set (and optionally
edge sets) is added, using MapFeatures.

i i i . G N N layers mt_albis .MtAlbisGraphUpdate are added.
iv. A Pool layer is added.
v. Dense layers in the G N N head are added, combining context features and

the output of the Pool layer.
vi . Finally, a Dense layer with a single output and sigmoid activation function

is added.

(b) The loss function, metrics, and optimizer are set, and the model is compiled
using model. compile.

(c) A n EarlyStopping callback monitoring Area Under the Receiver Operating
Characteristic Curve (AUROCC) (see Section 6.1) on validation data is set.

(d) Finally, the training loop is initiated using model.fit.

8. Thanks to the EarlyStopping callback, the output of the training is the model with
the highest validation A U R O C C found. This model (or models) is then saved to the
output directory. Directories with models are automatically saved with the prefix
{ID]-_, where ID is a unique number - the largest found in the directory, increased
by one. The directory name might look like 8_AUC_0.818, where the A U C value
specifically refers to the validation A U R O C C (or their average in case of multiple
models). The values of hyperparameters set in the dictionary hyperparameters are
stored in the output folder in the file hyperparameters. json.

The entire model architecture is defined in the build_model function. Older versions of this
script for earlier models can be found in the repository under commits named Model {ID}
- AUC O.XYZ. These historical versions, though executable, do not represent the final form
of the training script and should only be used for insight into the architecture definition.

5.8 Mode l Evaluation Script

Trained models can be evaluated using the evaluate_model .py script for Python 3.8. The
models are evaluated based on two metrics - A U R O C C and Top N % Precision (see Sec
tion 6.3). Examples of these for the libtiff project and top-performing models are shown
in Figure C.2 and Figure C.6, respectively. The script accepts 5 position-dependent argu
ments:

1. T F G N N schema,

2. directory with TFRecords files,

3. directory with saved models,

4. model ID,

5. dataset type - test, val, or train.

78

The script initially loads the data in the TFRecords format from the same location and
with the same naming convention as used by mixed_nodes_model .py (see Section 5.7), with
additional *.test files. No data shuffling or modifications are required for the evaluation.
A preprocessing model is applied to extract labels from the graphs. Then, the model
(or models) is loaded using tf.keras.models.load_model, and inference is performed on
the data using model .predict. The results are provided to the plot_top_N_precision
function, which plots the precision dependency on the number of top-selected samples.
Additionally, the plot_ROC_curve function is called to create R O C curves. Both graphs
are displayed and also saved in the current directory under the names ROC_curves. svg and
Top_N_precisions.svg.

The script can be run in a special mode that creates graphs for predefined scenarios (all
graphs in Chapter 6 were created using these scenarios), by passing the following special
model ID values (4th argument):

1. combined - testing top performing models from Section 6.3 on combined data from
the httpd, libtiff, and nginx projects.

2. httpd - testing top performing models on httpd.

3. l i b t i f f - testing top performing models on libtiff.

4. nginx - testing top performing models on nginx.

5. libav - testing top performing models on libav - this involves cross-analysis. Files
libav_{011}. tf records. {train | test | val} are required.

6. chatgpt - comparing the top performing model with ChatGPT4 (see Section 6.4).
The file libtiff-chatgpt .tfrecords .test, containing selected samples, is needed.

5.9 Compiler Wrapper

The compiler wrapper originates from the author's previous work [3], where its implemen
tation is also described. Here, only a brief overview will be provided, focusing mainly on
its inputs and outputs for integration with other parts of the inference pipeline.

The compiler wrapper is a bash script that replaces C / C + + compilers, and the original
compiler binaries are renamed to {compiler}-original (e.g., gcc becomes gcc-original).
The repository includes a Makefile

15

 for installing wrappers for many commonly used
C / C + + compilers.

The wrapper works by intercepting all commands that would go to the original compilers,
and:

1. passes them to Infer for analysis,

2. generates L L V M bitcode,

3. and finally forwards them to the original compilers.
15Makefile for installing wrappers: https://github.com/TomasBeranek/but-masters-thesis/blob/

thesis-submission/inference-pipeline/Makefile.

79

https://github.com/TomasBeranek/but-masters-thesis/blob/

The wrapper stores information in the /tmp/inf er-out directory, which is generated di
rectly by Infer. It contains the results of Infer's analysis and also a list of .be files found be
fore the first generation of L L V M bitcode. These existing .be files are not generated by the
wrapper (or are outdated). Their list is stored in the /tmp/inf er-out/old_bc_f iles .txt

file. This step needs to be optimized in future versions because it can be slow on large
filesystems.

5.10 Inference Pipeline

Unlike the training pipeline, which is implemented as a series of standalone tools, the
inference pipeline is fully automated. The inference pipeline uses the existing scripts
construction_phase_d2a (see Section 5.4), feature_engineering.py (see Section 5.6),
and compiler wrappers (see Section 5.9). The inference pipeline is a bash script named
inf erence_pipeline, which combines the previously mentioned scripts and provides ad
ditional functionality, particularly data conversion into formats expected by the already
created scripts. The inf erence_pipeline script should be called in the following context:

1. First, the compiler wrappers need to be installed.

2. Then, the analyzed project needs to be compiled (anywhere in the filesystem).

3. After the compilation is complete, inf erence_pipeline is called with a single pa
rameter that specifies the output directory, for example:

./inference_pipeline ./

4. Finally, it is advisable to uninstall the compiler wrappers.

The inf erence_pipeline script itself works as follows:

1. First, Infer analysis is run on the /tmp/inf er-out directory created by the compiler
wrapper (see Section 5.9).

2. A l l .be files are found in the filesystem, and those that have been added compared
to the /tmp/infer-out/old_bc_files.txt list created by the compiler wrapper at
the start of the compilation are identified.

3. Using llvm-link, all new L L V M bitcode files are merged into a single file named
/tmp/infer-out/combined.bc.

4. Next, the slicing_criteria_extraction.py script (see Section 5.3) is executed to
extract slicing criteria from the Infer output - the /tmp/inf er-out/report. json file.

5. The /tmp/infer-out/bitcode directory with the L L V M bitcode must then be pre
pared as expected by the construction_phase_d2a script. Since there is only a single
combined.be file for the entire project, an artificial directory is created and populated
with symlinks that all point to the combined.be. The symlinks are named according
to the IDs of individual Infer reports (see Section 5.3).

6. Now, construction_phase_d2a can be executed as follows:

80

http://combined.be
http://combined.be

../dataset/construction_phase_d2a /tmp/infer-out/raw-ecpg \

/tmp/infer-out/slicing_iiifo.csv /tmp/infer-out/bitcode

7. The generated raw E C P G s are then processed by feature_engineering.py in infer
ence mode - the input consists of exactly 4 position-dependent arguments: specifically,
the T F G N N Schema, the name of the output . tf records file, Infer analysis results
in report. json, and slicing criteria in C S V . The script is called as follows:

find /tmp/infer-out/raw-ecpg -mindepth 1 -type d | python3.8 \

../model/schemas/feature_engineering.py \

../model/schemas/mixed_nodes/extended_cpg.pbtxt \

/tmp/infer-out/graphs.tfrecords /tmp/infer-out/report.json \

/tmp/infer-out/slicing_info.csv

8. The final step is to call the model_inf erence .py script (described below) as follows:

python3.8 model_inference.py \

../model/schemas/mixed_nodes/extended_cpg.pbtxt /tmp/infer-out/ \

graphs.tfrecords \

../model/saved_models/8_AUC_0.818/combined_AUC_0.818 \

/tmp/infer-out/report.j son /tmp/infer-out/ranked_report.j son

The output of this script is the /tmp/inf er-out/ranked_report. json file, which
contains the sorted reports from report. j son according to the score from the G N N
model.

The model_inf erence .py script applies the G N N model to the graphs, saved in the
graphs .tf records file, and ranks individual reports from report, json according to the
obtained scores. The script is a modified version of the evaluate_model.py script (see
Section 5.8). Its input consists of 5 positional arguments:

1. T F G N N schema,

2. graphs in .tfrecords format,

3. directory containing the G N N model,

4. Infer output in report, json,

5. result file name.

Since the current models have not yet achieved significant results in the area of cross-
analysis, the inference pipeline remains unused for now. Therefore, it has not been tested
on real projects. However, the only project-specific part is the compiler wrapper, which
was thoroughly tested on a range of real software in the author's bachelor's thesis [3], and
before its incorporation into the csmock tool [21, 20], the functionality of the wrapper was
tested on 55 randomly selected S R P M packages in the C language. The runtime of the
inference pipeline depends primarily on the time taken for Infer analysis and the individual
parts of the pipeline, which were described in previous chapters.

81

Chapter 6

Experimental Evaluation

bud This chapter describes the experimental evaluation of the developed G N N models for
ranking reports from Meta Infer based on the probability of being a true positive. Specifi
cally, Section 6.1 provides a detailed description of the architecture and hyperparameters of
the base model, from which other models are derived. Section 6.2 discusses and evaluates
the modifications of the base model on validation data. Section 6.3 compares the best de
veloped models with existing models on test data. Section 6.4 compares the best developed
G N N model with the large language model Cha tGPT. Section 6.5 evaluates the developed
models on cross-analysis. Finally, Section 6.6 summarizes and discusses the achieved results,
and also describes possible future improvements.

6.1 Base Model

The general architecture and its main components used in the following models were already
described in Section 4.1.5. Therefore, only supplementary information will be provided
here, describing the specific architecture and hyperparameters of the base model - the
model from which all other models mentioned in Section 6.2 are derived. The descriptions
of basic machine learning concepts throughout this chapter, such as loss function, dropout,
binary cross entropy, etc., are taken from [14], where they are discussed in detail and are
only briefly mentioned here, as they are used in their conventional forms.

The architecture of the base model is shown in Figure 6.1. The layer initializing hidden
states is of type Dense (16) (i.e., a densely-connected neural network layer with 16 outputs)
with an activation function relu, for each node set. This is followed by 8 G N N layers of the
type MtAlbis. Initial parameters were chosen primarily based on [80] and examples in the
T F G N N repository1. Parameters such as units and message_dim were selected considering
the batch size and G P U memory size. Some initial parameters were chosen randomly and
for parameters not mentioned here, default values were retained. A l l (except for the last)
MtAlbis layers share the same parameters, which are:

• units=16 - size of the hidden states.

• message_dim=16 - size of the messages on the edges.
1

TFGNN's repository: https://github.com/tensorflow/gnn.

82

https://github.com/tensorflow/gnn

ECPG

Graph
Context

8x

c \

Dense
Layers

(16)

MtAlbis

r \
Pooling
Layer

>

Dense
Layer

(1)

(0,1)

c \

Dense
Layers

(16) Layer (max)
(ASTNODE)

>

Dense
Layer

(1)

v J v J V J

Figure 6.1: The figure shows the architecture of the base model (Model 1), which forms
the basis for all other models developed in this thesis.

• receiver_tag=tfgnn.TARGET - specifies the direction of message passing, here it is
along the direction of the edges (tfgnn.SOURCE would be in the opposite direction).

• node_set_names=None - updates nodes of all node set types. For the last layer, the
value is set to AST_N0DE in order to modify only nodes from the AST_N0DE node set
from which the following pooling layer reads. Hidden states of other node sets are
discarded by the pooling layer, making it unnecessary to update their values in the
last round of message passing.

• state_dropout_rate=0.1 - the dropout rate applied to the pooled and combined
messages from all edges.

• simple_conv_reduce_type='mean| sum' - the type of message aggregation.

• next_state_type=residual - can be set to dense or residual, where residual
adds a residual connection from the old to the new node state.

Following the MtAlbis layers is a Pool layer of type max, which reads hidden states only
from nodes of the AST_N0DE node set. Here, for example, it could read from the root of the
A S T tree, where information would accumulate when changing the orientation of the AST
edges (as mentioned in Section 4.1.4), but this would require the tree depth to be equal to
or less than the number of G N N layers so that information from leaf nodes could reach the
root. Since the depth varies and E C P G s are not just trees, it utilizes all AST_N0DE nodes
whose information is eventually aggregated using the Pool layer.

The context features, along with the output of the Pool layer, are inputs to the Dense (1)
layer with the sigmoid activation function, which transforms the values into the range (0,1).
The base model uses the Adam optimizer with a learning rate of 0.000002. The loss function
used is BinaryCrossentropy. The model is trained in batches of size 11 (limited due to
G P U memory) over 300 epochs, where the number of steps per epoch is the dataset size
divided by batch size. The model employs EarlyStopping with patience set at 20 (thus,
the models are not trained for 300 epochs but only for tens of epochs, see Section 6.2).
The base model is trained separately on each project from D2A - this represents a form of
3-fold validation.

83

Although the architecture is trained for binary classification, the goal of the models is
ranking, not classification. Therefore, it does not make sense to monitor separate metrics
such as precision, recall, or accuracy in this case, since these are designed specifically for
classification. These metrics are also not suitable for unbalanced data. The metric that
appropriately reflects ranking and can be used for unbalanced data is the Area Under
the Receiver Operating Characteristic Curve (A U R O C C) . The R O C C [64] plots the True
Positive Rate (i.e., recall) on the Y-axis and the False Positive Rate on the X-axis for each
classification threshold (previously mentioned metrics use only a single threshold), thereby
clearly describing the ranking ability of the model. The True Positive Rate is defined as
(here true positives and false positives relate to the model, not to the results of Infer):

m „ „ True Positives (TP)
True Positive Rate (TPR) -

True Positives (TP) + False Negatives (FN)

The False Positive Rate is then defined as:

False Positives (FP)
False Positive Rate (FPR)

False Positives (FP) + True Negatives (TN)

A U R O C C for a random model is 0.5 (indicated by a dashed line in all subsequent figures,
see Figure 6.2) and for a perfect model is 1 (a model that can perfectly separate the
classes). For the reasons mentioned above, A U R O C C on validation data is monitored for
early stopping in all trained models - the models are thus trained to achieve the highest
possible A U R O C C .

6.2 Hyperparameters Tuning

After the base model is created, it is necessary to tune its hyperparameters to adapt it to
the specific task - in this case, the ranking of reports from Infer. If, even after tuning the
hyperparameters, the architecture does not yield satisfactory results, a different architec
ture is typically tried. As will be evident from the results below, the architecture of the
base model achieved very good results during the hyperparameter tuning process. There
fore, there was an effort to optimally tune this architecture. Due to limited computing
resources, it was not possible to use automated hyperparameter tuning, which typically
involves training many models with different settings. Thus, a manual approach had to be
used, which requires fewer computing resources compared to automatic tuning but relies
on experience and knowledge in the field.

A total of 14 models were trained, the results on validation data and their number of
parameters are in Table 6.1. The models are trained and tested, due to limited computing
resources, only on the smallest projects - httpd, libtiff, and nginx. The A U R O C C of
each model is either the average validation A U R O C C across the individual projects or the
validation A U R O C C on a set of validation data composed of all the tested projects, as
detailed below.

The following description includes a list of changes for each model compared to the previous
model:

1. Model 1 - base model, described in Section 6.1.

81

2. Model 2 - increased network complexity - hidden state size increased to 18, an addi
tional MtAlbis layer added, a Dense (4) added for context features, and a Dense (8)
layer added before the final Dense (1) layer. The increase in complexity required
reducing the batch size to 6. Also, the state dropout was increased to 0.15.

3. Model 3 - reduced network complexity - decreased the size of hidden states to 12 but
increased the batch size to 10.

4. Model 4 - reducing complexity led to much worse results, so complexity was further
increased - hidden state size increased to 20 at the cost of removing one MtAlbis
layer and reducing the batch size to 6. A Dropout (0.15) layer was also added right
after the Pool layer. The learning rate was decreased to 0.000001.

5. Model 5 - added one MtAlbis layer (total of 9) at the cost of reducing the size of
hidden states to 18.

6. Model 6 - instead of training 3 models for each project, Model 6 (and all subsequent
models) is trained on all 3 projects at once (combining their training and validation
sets). The learning rate was substantially increased to 0.0001, and the Dropout layer
was removed from the G N N head.

7. Model 7 - increased state dropout to 0.2, tried only mean for simple_conv_reduce,

and switched to dense for next_state_type.

8. Model 8 - since Model 7 experienced a significant drop in A U R O C C , Model 6 was
restored. Only the state dropout was kept at 0.2 and an L2 regularization was added
with a value of 0.00001 since the training A U R O C C for Model 6 was nearly 0.95 -
the model manages to learn on training data, now it needs to better generalize.

9. Model 9 - set edge dropout (in MtAlbis layers) to 0.2.

10. Model 10 - the edge dropout led to a significant deterioration, so it was set back to 0.
However, the state dropout was increased to 0.25, and the learning rate was decreased
to 0.00005.

11. Model 11 - again tried the so-far best Model 8 but in a bi-directional mode - the di
rection of message passing in the MtAlbis layers is alternated using the receiver_tag
parameter (see Section 6.1).

12. Model 12 - again tried Model 8 and utilized edge features - ARGUMENT_INDEX (until
now all edge features were ignored).

13. Model 13 - again tried Model 8 but with attention - trainable message aggregation
in MtAlbis layers. Used type gat_v2 with 3 attention heads (4 are default, but the
size of the hidden state - 18 - must be divisible by the number of attention heads).

14. Model 14 - slightly increased the state dropout to 0.22.

The models have only been briefly described. Their source files can be found in the GitHub
repository in commits labeled as, for example, Model 8 - AUC 0.818

2

 (the best-performing
2Source code of Model 8: https://github.com/TomasBeranek/but-masters-thesis/blob/

idcaa8e5f896d50c9b55a616cea84d56a058d45f/model/src/mixed_nodes_model.py.

85

https://github.com/TomasBeranek/but-masters-thesis/blob/

Table 6.1: The table shows the results of hyperparameter tuning and the size of each model.
Validation data from httpd, libtiff, and nginx projects were used for the evaluation.

Model Parameters A U R O C C
Model 1 96,515 0.630
Model 2 137,499 0.668
Model 3 61,941 0.557
Model 4 150,093 0.607
Model 5 137,499 0.598
Model 6 137,499 0.787
Model 7 106,071 0.632
Model 8 137,499 0.818
Model 9 137,499 0.775
Model 10 137,499 0.793
Model 11 140,523 0.786
Model 12 140,451 0.788
Model 13 109,563 0.816
Model 14 109,563 0.746

model). However, these historical versions of the training script (described in Section 5.7)
were in the development stage and should only serve as a reference for the definition of the
model architectures.

From Table 6.1, it is evident that the best performing models are Model 8, Model 13, and
Model 10, respectively. A l l these models are very small - with less than 140 thousand
parameters (which is about —500KB on disk) - yet they achieve very good results. These
models were trained (hardware specifications used are in Chapter 5) for 69 epochs (~460s
per epoch), 7 epochs (~l,350s per epoch), and 73 epochs (~450s per epoch), respectively.

6.3 Models Comparison

As previously mentioned, this thesis compares with the models developed in [94, 68] which
also focus on reducing false positives reported by Infer. For this comparison, the three
best-performing models on the validation data, specifically Model 8, Model 10, and Model
13, were selected based on Table 6.1. Additionally, a 3-soft-vote model was created,
which ranks based on a soft score - the sum of the scores from the three top-performing
models. Moreover, a 6-sof t-vote model comprising the six top-performing models (Model
6, 8, 10, 11, 12, and 13) was also created. It is important to note that the models are not
compared on identical test sets as the Graph D2A contains fewer samples than the original
D2A dataset due to:

1. Support for only certain error types (see Section 4.1.1). The number of unsupported
samples is —1.6 % of the total D2A samples, thus minimally influencing the results.

2. The inability to generate E C P G from some D2A samples. These cases are significantly
more frequent and could more substantially impact the results. Their quantity varies
depending on the project, ranging from 3 % to 23 % for tested projects (see Table 5.1).

86

Table 6.2: A comparison of the existing models vote, c-bert, and vote-new with the
models developed in this thesis. The comparison criterion is A U R O C C on test data.

Model httpd libtiff nginx
vote 0.77 0.89 0.77
c-bert 0.82 0.94 0.89
vote-new 0.90 0.98 0.93
Model 8 0.80 0.95 0.94
Model 10 0.79 0.91 0.91
Model 13 0.74 0.87 0.83
3-soft-vote 0.80 0.96 0.95
6-soft-vote 0.83 0.96 0.94

Table 6.2 presents a comparison of the Model 8, Model 10, Model 13, 3-soft-vote, and
6-soft-vote developed in this thesis with the existing vote, c-bert, and vote-new models
from [94, 68]. The models are compared based on A U R O C C on the test data, which is the
only common metric across all models. The comparison is only shown for the projects
httpd, libtiff, and nginx due to limited computational resources. The vote, c-bert, and
vote-new models are trained on training and validation data, whereas the models developed
in this thesis are trained only on training data with validation data used for early stopping.

From Table 6.2, it is evident that the developed G N N models can match or even surpass
the state-of-the-art models, especially for nginx. However, the results for httpd are lower,
likely due to a lack of data. As indicated in Table 6.1, models using a combined training
set (Model 6 and above) achieve significantly better results. It is possible that compared to
existing models, these GNNs require more training data. The httpd project has the fewest
samples in the original D2A dataset, and an additional —22 % of samples were removed
when generating Graph D2A from httpd, which greatly complicates learning.

However, models can also be compared from other perspectives, such as their size, which
relates to the inference speed. A l l existing solutions are closed source, making it impossible
to determine their sizes. Similarly, it is not possible to verify their results, experiment with
the models, or use them. Hence, the models developed in this thesis are a promising open
source alternative.

Specific R O C curves for the developed models on the combined test sets can be seen in
Figure 6.2. R O C curves for individual projects are provided in the appendices in Figure C . l
(httpd), Figure C.2 (libtiff), and Figure C.3 (nginx).

The intended use case for these models is to rank Infer reports by likelihood of being a real
error. Developers would then typically check only the most promising reports - for example,
the top 5 % (the same value was chosen in [68]). Consider now the best-performing model
(on average), 6-soft-vote, which is deployed on the test data of the libtiff project. The
percentage of real errors (equivalent to precision * 100) in the libtiff project test data
in Graph D2A is —4.7 % (see Table 5.1). This number remains unchanged (on average) if
a random 5 % of samples are checked - equivalent to ranking by a random model. However,
if the top 5 % of samples according to the 6-soft-vote model are selected, the amount
of true positives increases to —57.1 %. In terms of the number of samples - in unsorted
reports, there will be on average 2.3 real errors for every 49 checked reports. In the sorted

87

Receiver Operating Characteristic (test-combined)

False Pos i t ive Rate

Figure 6.2: The figure shows the R O C curves for the top-performing models developed in
this thesis, evaluated on a combined test set from the httpd, libtiff, and nginx projects.

reports, 28 real errors will be found for the same number of checked reports, which is more
than 13 times as many.

Graphs showing precision values for different percentages of top samples and for top-
performing models are presented in Figure C.4 (combined data from all projects), Fig
ure C.5 (httpd), Figure C.6 (libtiff), and Figure C.7 (nginx). This metric becomes more
sensitive as fewer top samples are considered.

6.4 Comparison with C h a t G P T

In recent years, Large Language Models (LLMs) such as Cha tGPT have become increasingly
recognized by both professionals and the general public. Cha tGPT can respond to textual
inputs (and in version 4, even, e.g., image inputs) with textual outputs (again in version
4, even, e.g., image outputs). The introduction of Cha tGPT [67] demonstrates the model's
capabilities to search for and correct errors in code. The ability of Cha tGPT (especially
version 4) to handle programming tasks compared to other L L M s is discussed in [15], where
ChatGPT4 is shown to be particularly effective. These results raise the question of how
ChatGPT might perform in reducing false reports.

For the experiment, the 6-soft-model, which on average achieved the best results in Sec
tion 6.3, was used. Ten true positives and ten false positives were randomly selected from
the test set of the libtiff project. These samples, in their original JSON format (without
class information), were submitted to a modified version of ChatGPT4 that could interpret
code and search the internet, with the following instructions:

88

Figure 6.3: The figure shows R O C curves comparing 6-soft-vote and ChatGPT4, on
a randomly selected (with balanced classes) 20 samples from the test data of the libtiff
project.

Behave like a binary classification model. You will receive a sample

from the D2A dataset, containing reports from Meta Infer static

analyzer. Your goal is to output a number in the range <0,1>. The
higher the number, the more certain you are that the report from Infer

is true. Individual samples contain the report i t s e l f , the location of

the error, codes of functions related to the error, and other useful

information.

From Figure 6.3, which displays the R O C curves for the scores from 6-soft-vote and from
ChatGPT version 4, it is apparent that ChatGPT4 exhibits random behavior in terms
of ranking these selected samples. In contrast, 6-soft-vote achieves a perfect score -
distinguishing between the classes perfectly. When comparing the models in terms of their
size, 6-soft-vote again prevails with only 800 thousand parameters (comprising 6 sub
models), while ChatGPT4 has approximately 1.76 trillion parameters [57]. However, it is
important to note that Cha tGPT is a general-purpose model and not a classifier specifically
designed for ranking reports from static analysis.

6.5 Cross-analysis

The ultimate goal of all models in the field of static analysis report filtering/ranking, based
on the likelihood of being true positive, is to function on cross-analysis. Existing models
vote, c-bert, and vote-new from [94, 68] are designed only for self-analysis - the model is

89

Receiver Operating Characteristic (test-libav)

False Posit ive Rate

Figure 6.4: The figure shows R O C curves for the top performing models developed in this
thesis in cross-analysis mode. The models were trained on the httpd, libtiff, and nginx
projects and tested on the test data of the libav project.

trained and tested on the same project. However, the self-analysis is also useful in practice,
especially for large projects with extensive git histories that can be used to train models.

A primary objective of feature engineering in Section 4.1.4 was to eliminate information
that could lead the models to overfit to a specific project. To test cross-analysis capabilities,
the top performing models were tested on the test data of the libav project. The results
in Figure 6.4 indicate that the models, on average, exhibit random behavior. The devel
oped models, like all existing ones, thus fail to function on cross-analysis, which represents
a significant challenge in this research field.

6.6 Summary and Future Work

From the experiments in this chapter, it is evident that GNNs, and specifically the models
developed in this thesis, are suitable for ranking reports from the Meta Infer static analyzer.
The created models were able to match best existing solutions in this area that we are aware
of, which were developed by strong industrial team from I B M . In the case of the nginx
project, the existing models were even surpassed. However, results on the httpd project
were weaker, which may be due to a lack of data for the httpd project, which is not only the
smallest project in terms of the number of samples in the D2A dataset but also experienced
high sample losses during the generation of Graph D2A. Nonetheless, we believe that these
results demonstrate that the developed models are a promising open-source alternative to
existing solutions, which are unfortunately all closed source.

90

The best-performing model, 6-soft-vote , was also compared with the L L M model Chat-
G P T version 4. The model developed in this thesis proved superior with a perfect score, in
contrast to ChatGPT4, which was unable to differentiate between false and real reports.

The models were also tested on a cross-analysis. None of the models were able to correctly
distinguish false reports from real ones. Cross-analysis thus emerges as an unexpectedly
challenging problem in this research area as no existing model that we are aware of functions
effectively on cross-analysis either.

Future work should focus on testing self-analysis on all projects in the D2A dataset, which,
however, requires training on a large number of samples and thus needs significant compu
tational resources. Considering the results of experiments on the httpd project, it would
be necessary to focus on improving the training pipeline to avoid such high sample losses.
Specifically, it would be beneficial to increase the timeout for the L L V M Sheer tool and to
focus on improving the success rate of L L V M bitcode extraction. Particularly, it should
focus on the minority class - true positives (not just for httpd), which are naturally very
scarce.

Various ways of future improvements have already been mentioned in previous chapters.
Considering the results of the models on cross-analysis, it would be necessary to focus
especially on adjusting feature engineering - more information that allows models to overfit
on individual projects should be discarded. Additionally, refining the extraction of slicing
criteria could help future graphs to contain less noise (i.e., redundant information).

There is also a plan to deploy the developed models as part of the csmock tool [21, 20],
which allows the automatic running of various analyzers on S R P M packages. A plugin
for the csmock tool that adds support for static analysis by Meta Infer was created in the
author's bachelor's thesis [3]. It would simply involve supplementing this plugin with the
developed models, which would rank the results of Infer.

91

Chapter 7

Conclusion

This thesis aimed to develop a machine learning-based system for ranking reports from
the Meta Infer static analyzer based on their likelihood of being real error. Graph Neural
Networks (GNNs) were selected due to their suitability for modeling various source code
properties. The D2A dataset from I B M , which contains labeled Infer reports, was used for
training. This dataset required conversion from a textual to a graphical format. To achieve
this, a training pipeline was developed to produce Graph D2A - a graphical representa
tion of D2A. This pipeline improves existing graph generation techniques by considering
conditional compilation. The raw format of graphs in Graph D2A necessitated the design
of a feature engineering process that optimizes and transforms these graphs into Extended
Code Property Graphs (ECPGs) , which enrich commonly used Code Property Graphs by
including Call Graphs, data types, and other information.

Experimental results with G N N models trained on projects httpd (A U R O C C 0.83), libtiff
(A U R O C C 0.96), and nginx (A U R O C C 0.94) show that the developed models are competi
tive with existing state-of-the-art solutions created by strong industrial teams. The models
even reached state-of-the-art results on the nginx project although they performed less well
on the httpd project, likely due to a low number of samples. Nonetheless, these experiments
show that the developed models are a promising open-source alternative since all existing
solutions are closed-source. The models were also tested using cross-analysis, which unfor
tunately did not yield useful results. Cross-analysis remains a significant challenge as none
of the existing models compared in this thesis function effectively in this mode either.

In this thesis, an inference pipeline was also developed for the automatic Infer analysis,
construction of E C P G s , and model inference on real-world C (and subset of C++) software.
Even if cross-analysis does not work, the inference pipeline could be utilized in the future
for inference on the projects on which the models were trained.

Future work should focus on evaluating and fine-tuning the developed models on larger
projects from the D2A dataset. Based on the experiment results from the httpd project, the
training pipeline should be improved to minimize the loss of samples during transformation.
Specifically, increasing the timeout for the L L V M Sheer tool and focusing on generating
L L V M bitcode, especially for the minority class - real errors. There are also plans to deploy
the developed models in the csmock tool, which automates analyses on S R P M packages.

Preliminary results of this thesis were presented at the Excel@FIT'24 conference, where it
received an award from the expert panel.

92

Bibliography

[1] A L M A B E T T E R . Data Normalization in Machine Learning online. 2023. 2023-06-08.
Available at: https://www.almabetter.com/bytes/tutorials/data-science/
normalization-in-machine-learning.

[2] A U G U S T , D. Lecture 2: Basic Control Flow Analysis online. Princeton University,
2004-02-10. Available at: https://www.cs.princeton.edu/courses/archive/spr04/
c o s 5 9 8 C / l e c t u r e s / 0 2 - C o n t r o l F l o w . p d f . Subject: COS 598C Advanced Compilers.

[3] B E R Á N E K , T . Practical Application of Facebook Lnfer on Systems Code. Brno, CZ,
2021. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních
technologií. Available at: https ://www.fit .vut.cz/study/thesis/24187/.

[4] B E R D I N E , J . ; C A L C A G N O , C. and O ' H E A R N , P. W . Smallfoot: Modular Automatic
Assertion Checking with Separation Logic. In: B O E R , F. ; B O N S A N G U E , M . ; G R A F ,
S. and R O E V E R , W . , ed. Proceedings of the 4th Lnternational Symposium on Formal
Methods for components and Objects (FMCO). Amsterdam, Netherlands: Springer,
Berlin, Germany, November 2005, p. 115-137. ISBN 978-3-540-36750-5.

[5] B E R Á N E K , T . Graph D2A: D2A Dataset for Vulnerability Detection Transformed
into ECPG Format for Training GNNs online. Zenodo, 15. may 2024. Available at:
h t tps : //do i . o rg/10.5281/zenodo.11187083.

[6] B R O W N L E E , J . SMOTE for Lmbalanced Classification with Python online. 17. march
2021. 2021-03-17. Available at: https://machinelearningmastery.com/smote-
oversampling -for-imbalanced-classification/.

[7] B R O W N L E E , J . A Gentle Lntroduction to k-fold Cross- Validation online. 04. October
2023. 2023-10-04. Available at:
https : //machinelearningmastery.com/k-fold-cross-validation/.

[8] B U R A T T I , L . ; P U J A R , S.; B O R N E A , M . ; M C C A R L E Y , S.; Z H E N G , Y . et al. Exploring
software naturalness through neural language models. ArXiv preprint
arXiv:2006.12641, 2020, abs/2006.12641. Available at:
https : //arx iv . o rg /abs/2006.12641.

[9] C A O , S.; S U N , X . ; B o , L . ; W E I , Y . and L i , B . B G N N 4 V D : Constructing
Bidirectional Graph Neural-Network for Vulnerability Detection. Lnformation and
Software Technology. Elsevier, 2021, vol. 136, p. 106576. ISSN 0950-5849. Available
at: https: //www. sciencedirect.com/science/art i c l e / p i i / S 0 9 5 0 5 8 4 9 2 1 0 0 0 5 8 6 .

93

https://www.almabetter.com/bytes/tutorials/data-science/
https://www.cs.princeton.edu/courses/archive/spr04/
https://www.fit.vut.cz/study/thesis/24187/
https://doi.org/10.5281/zenodo.11187083
https://machinelearningmastery.com/smote-
http://sciencedirect.com/

[10] C H A L U P A , M . D G : A program analysis library. Software Impacts. Elsevier, 2020,
vol. 6, p. 100038. ISSN 2665-9638. Available at:
https://www.sciencedirect.com/science/article/pii/S2665963820300294.

[11] C H A L U P A , M . D G : analysis and slicing of L L V M bitcode. In: H U N G , D. V .
and S O K O L S K Y , O . , ed. Automated Technology for Verification and Analysis: 18th
International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020,
Proceedings 18. Cham: Springer International Publishing, 2020, p. 557-563. ISBN
978-3-030-59152-6.

[12] C H A L U P A , M . Llvm-slicer online. Masaryk University, may 2021, 2021-05-06.
Available at: https://github.com/mchalupa/dg/blob/master/doc/llvm-slicer.md.

[cit. 2024-05-01].

[13] C H E N G , X.; W A N G , H . ; H U A , J.; X u , G . and Sui, Y . Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network. ACM
Transactions on Software Engineering and Methodology (TOSEM). A C M New York,
N Y , USA, april 2021, vol. 30, no. 3, p. 1-33. ISSN 1049-331X. Available at:
https://doi.org/10.1145/3436877.

[14] C H O L L E T , F . Deep learning v jazyku Python. Praha: Grada Publishing, a.s., 2019.
Myslime v ... ISBN ISBN 978-80-247-3100-1.

[15] C O E L L O , C. E . A. ; A L I M A M , M . N . and K O U A T L Y , R. Effectiveness of Cha tGPT in
Coding: A Comparative Analysis of Popular Large Language Models. Digital.
M D P I , 2024, vol. 4, no. 1, p. 114-125.

[16] DENISOV, A . and Y A M A G U C H I , F . LLVM meets Code Property Graphs online.
L L V M Project, 23. february 2021. Available at:
https : //blog.llvm.org/posts/2021-02-23-llvm-meets-code-property-graphs/, [cit.
2024-04-11].

[17] D E V L I N , J.; C H A N G , M.-W. ; L E E , K . and T O U T A N O V A , K . Bert: Pre-training of
deep bidirectional transformers for language understanding. ArXiv preprint
arXiv:1810.04805, 2018. Available at: https://arxiv.org/abs/1810.04805.

[18] DISTEFANO, D.; FÄHNDRICH, M . ; LOGOZZO, F . and O ' H E A R N , P. W. Scaling static
analyses at Facebook. Communications of the ACM, 2019, vol. 62, no. 8, p. 62-70.
ISSN 1557-7317.

[19] D U A N , X.; W u , J.; J i , S.; R u i , Z.; L u o , T. et al. VulSniper: Focus Your Attention
to Shoot Fine-Grained Vulnerabilities. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence. A A A I Press, 2019, p. 4665-4671.
IJCAI'19. ISBN 9780999241141.

[20] D U D K A , K . Fully Automated Static Analysis of Fedora Packages. In: Flock. Prague,
Czech Republic: [b.n.], August 2014. Available at:
https : //kdudka.f edorapeople.org/static-analysis-flock2014.pdf.

[21] D U D K A , K . Static Analysis and Formal Verification at Red Hat. In: 13th Alpine
Verification Meeting (AVM'19). Brno, Czech Republic: [b.n.], September 2019.
Available at: https://kdudka.fedorapeople.org/avml9.pdf.

94

https://www.sciencedirect.com/science/article/pii/S2665963820300294
https://github.com/mchalupa/dg/blob/master/doc/llvm-slicer.md
https://doi.org/10.1145/3436877
http://llvm.org/posts/2021-02-23-llvm-meets-
https://arxiv.org/abs/1810.04805
http://edorapeople.org/
https://kdudka.fedorapeople.org/avml9.pdf

[22] E B A L A R D , A . ; M O U Y , P. and B E N A D J I L A , R. Journey to a RTE-free X.509 parser.
In: Proceedings of the Symposium sur la securite des technologies de I'information et
des communications(SSTIC). Rennes, France: [b.n.], June 2019, p. 171-200. ISBN
78-2-9551333-4-7.

[23] E M A N U E L S S O N , P. and NlLSSON, U . A Comparative Study of Industrial Static
Analysis Tools. Electronic Notes in Theoretical Computer Science. Elsevier, 2008,
vol. 217, p. 5-21. ISSN 1571-0661. Available at:
https : //www.sciencedirect.com/science/article/pii/S1571066108003824.
Proceedings of the 3rd International Workshop on Systems Software Verification
(SSV 2008).

[24] F A C E B O O K , INC. . Analyzing apps or projects online. Facebook, Inc., february 2015.
Available at: https://fbinfer.com/docs/analyzing-apps-or-projects. [cit.
2023-01-29]. Infer vl.1.0.

[25] F A C E B O O K , INC. . Infer Static Analyzer online. Facebook, Inc., february 2015.
Available at: https://fbinfer.com/. [cit. 2023-01-29].

[26] F A C E B O O K , INC. . List of all issue types online. Facebook, Inc., february 2015.
Available at: https://fbinfer.com/docs/all-issue-types/. [cit. 2023-01-29]. Infer
vl.1.0.

[27] F A C E B O O K , INC. . Separation logic and hi-abduction online. Meta, february 2015.
Available at: https://fbinfer.com/docs/separation-logic-and-bi-abduction/. [cit.
2023-01-29]. Infer vl.1.0.

[28] F A N G , Y . ; H U A N G , C ; Z E N G , M . ; Z H A O , Z . and H U A N G , C. JStrong: Malicious
JavaScript detection based on code semantic representation and graph neural
network. Computers & Security. Elsevier, 2022, vol. 118, p. 102715. ISSN
0167-4048. Available at:
https ://www.sciencedirect .com/science/art icle/pii/S0167404822001110.

[29] F E R L U D I N , O.; E IGENWILLIG, A . ; B L A I S , M . ; Z E L L E , D.; P F E I F E R , J . et al. Tf-gnn:
Graph neural networks in tensorflow. ArXiv preprint arXiv:2207.03522, 2022.

[30] G A N Z , T.; H A R T E R I C H , M . ; W A R N E C K E , A . and R I E C K , K . Explaining Graph
Neural Networks for Vulnerability Discovery. In:. New York, N Y , USA: Association
for Computing Machinery, 2021, p. 145-156. AlSec '21. ISBN 9781450386579.
Available at: h t tps : / /do i .o rg/10.1145/3474369.3486866.

[31] G O O G L E L L C . Protocol Buffers Documentation online. 2021. 2021-12-21. Available
at: https://protobuf.dev/. [cit. 2023-05-08].

[32] G R A P H V I Z . DOT Language online. Graphviz, 2022, 2022-10-04. Available at:
https://graphviz.org/doc/info/lang.html. [cit. 2023-01-29].

[33] G U A N , Z . ; W A N G , X . ; X I N , W. and W A N G , J . Code property graph-based
vulnerability dataset generation for source code detection. In: X u , G.; L I A N G , K .
and Su, C , ed. Frontiers in Cyber Security: Third International Conference, FCS
2020, Tianjin, China, November 15-17, 2020, Proceedings. Singapore: Springer
Singapore, 2020, p. 584-591. ISBN 978-981-15-9739-8.

95

http://www.sciencedirect.com/science/article/pii/S1571066108003824
https://fbinfer.com/docs/analyzing-apps-or-projects
https://fbinfer.com/
https://fbinfer.com/docs/all-issue-types/
https://fbinfer.com/docs/separation-logic-and-bi-abduction/
http://www.sciencedirect.com/science/article/pii/S0167404822001110
https://doi.org/10.1145/3474369.3486866
https://protobuf.dev/
https://graphviz.org/doc/info/lang.html

[34] H A N I F , H . and M A F F E I S , S. VulBERTa: Simplified Source Code Pre-Training for
Vulnerability Detection. In: 2022 International Joint Conference on Neural
Networks (IJCNN). 2022, p. 1-8.

[35] H A N I F , H . ; N A S I R , M . H . N . M . ; A B R A Z A K , M . F.; F IRDAUS, A . and A N U A R ,
N . B . The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches. Journal of Network and Computer
Applications. Elsevier, 2021, vol. 179, p. 103009. ISSN 1084-8045. Available at:
https : //www.sciencedirect.com/science/article/pii/S1084804521000369.

[36] H A R M I M , D. Advanced Static Analysis of Atomicity in Concurrent Programs
through Facebook Infer. Brno, CZ, 2021. Diplomová práce. Vysoké učení technické v
Brně, Fakulta informačních technologií. Available at:
https : //www.fit.vut.cz/study/thesis/24185/.

[37] H E R O U T , P. Testování pro programátory. 2nd ed. Kopp, 2016. ISBN
978-80-7232-481-1.

[38] H V I L S H 0 J , F . Introduction to Balanced and Imbalanced Datasets in Machine
Learning online. 11. november 2022. 2023-11-11. Available at:
https : //encord. com/blog/an-introduction-to-balanced-and-imbalanced-datasets-
in-machine-learning/.

[39] I B M . Sample Description and Dataset Stats online. I B M , april 2021, 2021-04-14.
Available at: https://github.com/IBM/D2A/blob/main/docs/dataset_stats.md. [cit.
2024-05-01].

[40] I B M R E S E A R C H . D2A - Differential Analysis Dataset online. I B M , 11. february
2021. Available at: https://developer.ibm.com/exchanges/data/all/d2a/. [cit.
2023-01-29].

[41] I E E E . I E E E Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), 2019, p. 1-84.

[42] J A C K S O N , W . Static vs. dynamic code analysis: advantages and disadvantages
online. Government Media Executive Group L L C , 09. february 2009. Available at:
https: //gcn.com/cybersecurity/2009/02/static-vs-dynamic-code-analysis-
advantages-and-disadvantages/287891/. [cit. 2023-01-29].

[43] JAVATPOINT. Normalization in Machine Learning online. 2022. 2022-01-27.
Available at: https://www.javatpoint.com/normalization-in-machine-learning.

[44] JOHNSON, B. ; S O N G , Y . ; M U R P H Y H I L L , E . and B O W D I D G E , R. Why don't software
developers use static analysis tools to find bugs? In: Proceedings of the 35th
International Conference on Software Engineering (ICSE). San Francisco, C A ,
USA: I E E E , New York, N Y , USA, May 2013, p. 672-681. ISSN 1558-1225.

[45] K I T W A R E , IN C. . CMAKE_EXPORT_COMPILE_COMMANDSonline. December
2018,2023-01-19. Available at: https:
//cmake.org/cmake/help/latest/variable/CMAKE_EXP0RT_C0MPILE_C0MMANDS.html. [cit.
2023-01-29]. CMake v3.25.2.

96

http://www.sciencedirect.com/science/article/pii/S1084804521000369
http://www.fit.vut.cz/study/thesis/24185/
https://github.com/IBM/D2A/blob/main/docs/dataset_stats.md
https://developer.ibm.com/exchanges/data/all/d2a/
https://www.javatpoint.com/normalization-in-machine-learning

[46] K W A N G K E U N , Y . Inferbo: Infer-based buffer overrun analyzer online. Meta, 06.
february 2017. Available at: h t t p s :

/ / r e s e a r c h , f b . c o m / b l o g / 2 0 1 7 / 0 2 / i n f e r b o - i n f e r - b a s e d - b u f f e r - o v e r r u n - a n a l y z e r / ,

[cit. 2023-01-29].

[47] L i , X . ; W A N G , L . ; X I N , Y . ; Y A N G , Y . and C H E N , Y . Automated vulnerability
detection in source code using minimum intermediate representation learning.
Applied Sciences. M D P I , 2020, v o l . 10, no. 5, p. 1692. ISSN 2076-3417. Available at:
h t t p s : / / w w w . m d p i . c o m / 2 0 7 6 - 3 4 1 7 / 1 0 / 5 / 1 6 9 2 .

[48] L i , Y . ; T A R L O W , D.; B R O C K S C H M I D T , M . and Z E M E L , R. Gated graph sequence
neural networks. ArXiv preprint arXiv:1511.05493, 2015.

[49] L i , Z . ; Z O U , D.; X U , S.; C H E N , Z . ; Z H U , Y . et al. Vuldeelocator: a deep
learning-based fine-grained vulnerability detector. IEEE Transactions on
Dependable and Secure Computing. I E E E , 2021, vol. 19, no. 4, p. 2821-2837.

[50] L i , Z . ; Z O U , D.; X U , S.; J IN , H . ; Z H U , Y . et al. Sysevr: A framework for using deep
learning to detect software vulnerabilities. IEEE Transactions on Dependable and
Secure Computing. I E E E , 2021, vol. 19, no. 4, p. 2244-2258.

[51] L i , Z . ; Z O U , D.; X U , S.; O U , X . ; J IN , H . et al. Vuldeepecker: A deep learning-based
system for vulnerability detection. CoRR, 2018, abs/1801.01681. Available at:
h t t p : / / a r x i v . o r g / a b s / 1 8 0 1 . 0 1 6 8 1 .

[52] L I N , G.; Z H A N G , J.; L u o , W . ; P A N , L . and X I A N G , Y . P O S T E R : Vulnerability
discovery w i t h f u n c t i o n representation learning from unlabeled projects.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. New York, N Y , USA: Association for Computing
Machinery, 2017, p. 2539-2541. CCS '17. ISBN 9781450349468. Available at:
h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 1 3 3 9 5 6 . 3 1 3 8 8 4 0 .

[53] L i u , S.; C H E N , Y . ; X I E , X . ; Slow, J . and L i u , Y . Retrieval-augmented generation
for code summarization via hybrid gnn. ArXiv preprint arXiv:2006.05405, June
2020, p. arXiv:2006.05405.

[54] L L V M P R O J E C T . LLVM Bitcode File Format online. L L V M Project, 2003,
2023-01-28. Available at: h t t p s : / / l l v m . o r g / d o c s / B i t C o d e F o r m a t . h t m l . [cit.
2023-01-29].

[55] L L V M P R O J E C T . LLVM Language Reference Manual online. L L V M Project, 2003,
2023- 01-28. Available at: h t t p s : / / l l v m . o r g / d o c s / L a n g R e f . h t m l . [cit. 2023-01-29].

[56] L L V M P R O J E C T . Llvm-link - LLVM bitcode linker online. L L V M Project, 2003,
2024- 05-03. Available at: h t t p s : / / l l v m . o r g / d o c s / C o m m a n d G u i d e / l l v m - l i n k . h t m l .

[cit. 2024-05-03]. L l v m - l i n k vl7.0.0.

[57] L U B B A D , M . GPT-4 Parameters: Unlimited guide NLP's Game-Changer online.
Medium, 19. march 2023. Available at:
h t t p s : / / m e d i u m . c o m / @ m l u b b a d / t h e - u l t i m a t e - g u i d e - t o - g p t - 4 - p a r a m e t e r s -

e v e r y t h i n g - y o u - n e e d - t o - k n o w - a b o u t - n l p s - g a m e - c h a n g e r - 109b8767855a. [cit.
2024-05-12].

97

http://fb.com/blog/2017/02/
https://www.mdpi.com/2076-3417/10/5/1692
http://arxiv.org/abs/1801.01681
https://doi.org/10.1145/3133956.3138840
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/CommandGuide/llvm-link.html

[58] M A R C I N , V . Statická analýza v nástroji Facebook Infer zaměřená na detekci
uváznutí. Brno, CZ, 2019. Bakalářská práce. Vysoké učení technické v Brně,
Fakulta informačních technologií. Available at:
https : //www.fit.vut .cz/study/thesis/21920/.

[59] M A R E K , D. Static Analysis Using Facebook Infer Focused on Errors in RCU-Based
Synchronisation. Brno, CZ, 2022. Bakalářská práce. Vysoké učení technické v Brně,
Fakulta informačních technologií. Available at:
https : //www.fit.vut .cz/study/thesis/25138/.

[60] M E N Z L I , A . Graph Neural Network and Some of GNN Applications: Everything You
Need to Know online. Neptune Labs, 27. January 2023. Available at:
https : //neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications,
[cit. 2023-01-29].

[61] M I K O L O V , T.; C H E N , K . ; C O R R A D O , G . and D E A N , J . Efficient estimation of word
representations in vector space. ArXiv preprint arXiv:1301.3781, 2013.

[62] M 0 L L E R , A . and SCHWARTZBACH, M . I. Static Program Analysis. Department of
Computer Science, Aarhus University, October 2018. Available at:
http://cs.au.dk/~{}amoeller/spa/.

[63] M U S K E , T. B. ; B A I D , A . and S A N A S , T. Review efforts reduction by partitioning of
static analysis warnings. In: Proceedings of the 13th International Working
Conference on Source Code Analysis and Manipulation (SCAM). Eindhoven,
Netherlands: I E E E , New York, N Y , USA, September 2013, p. 106-115.

[64] N A R K H E D E , S. Understanding AUC - ROC Curve online. 26. june 2018. 2018-06-26.
Available at:
https : //towardsdatascience.com/under standing-auc-roc-curve -68b2303cc9c5.

[65] N E O 4 J , INC. . Native Graph Database / Neo4J Graph Database Platform online.
Neo4j, Inc., 08. may 2009. Available at:
https : //neo4j.com/product/neo4j-graph-database/, [cit. 2023-01-29].

[66] O L I V E I R A , D. HOW to properly generate TFRecord files from your datasets. Writing
TFRecord Files the Right Way online. 31. march 2021. 2021-01-31. Available at:
https: / /pub.towardsai .net /wri t ing-tfrecord-f i les- the-r ight-way -7c3cee3d7bl2.

[67] O P E N A I . Introducing ChatGPT online. OpenAI, 30. november 2022. Available at:
https://openai.com/index/chatgpt/. [cit. 2024-05-12].

[68] P U J A R , S.; Z H E N G , Y . ; B U R A T T I , L . ; LEWIS , B. ; C H E N , Y . et al. Analyzing source
code vulnerabilities in the D2A dataset with M L ensembles and C - B E R T . Empirical
Software Engineering. Springer, 2024, vol. 29, no. 2, p. 48. Available at:
h t t p s : / / l i n k . s p r i n g e r . c o m / a r t i c l e / 1 0 . 1 0 0 7 / s l 0 6 6 4 - 0 2 3 - 1 0 4 0 5 - 9 .

[69] R A B H E R U , R.; H A N I F , H . and M A F F E I S , S. A hybrid graph neural network
approach for detecting P H P vulnerabilities. In: I E E E . 2022 IEEE Conference on
Dependable and Secure Computing (DSC). 2022, p. 1-9.

98

http://www.fit.vut.cz/study/thesis/21920/
http://www.fit.vut.cz/study/thesis/25138/
http://cs.au.dk/~%7b%7damoeller/spa/
http://towardsai.net/writing-tfrecord-files-the-right-way-7c3cee3d7bl2
https://openai.com/index/chatgpt/
https://link.springer.com/article/10.1007/sl0664-023-10405-9

[70] R U S S E L L , R . ; K I M , L . ; H A M I L T O N , L . ; L A Z O V I C H , T.; H A R E R , J . et al. Automated

v u l n e r a b i l i t y d e t e c t i o n in s o u r c e c o d e u s i n g d e e p r e p r e s e n t a t i o n l e a r n i n g . In:

I E E E . 2018 17th IEEE international conference on machine learning and
applications (ICMLA). 2018, p. 757-762.

[71] S A C C E N T E , N . ; D E H L I N G E R , J . ; D E N G , L . ; C H A K R A B O R T Y , S. and X I O N G , Y .

Project a c h i l l e s : A p r o t o t y p e t o o l fo r s t a t i c m e t h o d - l e v e l v u l n e r a b i l i t y d e t e c t i o n of
J a v a s o u r c e c o d e u s i n g a r e c u r r e n t n e u r a l n e t w o r k . In: I E E E . 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
Workshop (ASEW). 2019, p. 114-121.

[72] S A X E N A , S. Binary Cross Entropy/Log Loss for Binary Classification o n l i n e .

Analytics Vidhya, 13. September 2023. 2023-09-13. Available at:
h t t p s : / / w w w . a n a l y t i c s v i d h y a . c o m / b l o g / 2 0 2 1 / 0 3 / b i n a r y - c r o s s - e n t r o p y - l o g - l o s s -

f o r - b i n a r y - c l a s s i f i c a t i o n / . [cit. 2024-05-09].

[73] SIKIC, L . ; K U R D I J A , A . S.; V L A D I M I R , K . and SILIC, M . Graph Neural Network for

Source Code Defect Prediction. IEEE Access. I E E E , 2022, vol. 10, p. 10402-10415.

[74] SONI, B . Topic: 11 Feature Construction & Splitting online. 05. march 2023.
2023-03-05. Available at: h t t p s : / / m e d i u m . c o m / O b r i j e s h _ s o n i / t o p i c - l l - f e a t u r e -

c o n s t r u c t i o n - s p l i t t i n g - b l l 6 c 6 0 c 4 b 2 f # 7 9 b 0 . [cit. 2023-05-08].

[75] S U N E J A , S.; Z H E N G , Y . ; Z H U A N G , Y . ; L A R E D O , J . a n d M O R A R I , A . Learning to
m a p s o u r c e c o d e to s o f t w a r e v u l n e r a b i l i t y u s i n g code-as-a-graph. CoRR, 2020,
abs/2006.08614. Available at: h t t p s : / / a r x i v . o r g / a b s / 2 0 0 6 . 0 8 6 1 4 .

[76] T E N S O R F L O W . Data Preparation and Sampling o n l i n e . TensorFlow, d e c e m b e r 2023,
2023-12-14. Available at: h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / g n n / c o m m i t s / m a i n /

t e n s o r f l o w _ g n n / d o c s / g u i d e / d a t a _ p r e p . m d . [cit. 2024-05-06].

[77] T E N S O R F L O W . Describing your Graph online. TensorFlow, november 2023,
2023- 11-16. Available at: h t t p s :

/ / g i t h u b . c o m / t e n s o r f l o w / g n n / b l o b / m a i n / t e n s o r f l o w _ g n n / d o c s / g u i d e / s c h e m a . m d . [cit.

2024- 05-08].

[78] T E N S O R F L O W . Input pipeline online. TensorFlow, december 2023, 2023-12-11.
Available at: h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / g n n / b l o b / m a i n / t e n s o r f l o w _ g n n / d o c s /

g u i d e / i n p u t _ p i p e l i n e . m d . [cit. 2024-05-08].

[79] T E N S O R F L O W . Introduction to GraphTensor o n l i n e . TensorFlow, d e c e m b e r 2023,
2023-12-23. Available at: h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / g n n / b l o b / m a i n /

t e n s o r f l o w _ g n n / d o c s / g u i d e / g r a p h _ t e n s o r . m d . [cit. 2024-05-06].

[80] T E N S O R F L O W . Model Template ,filbis" o n l i n e . TensorFlow, d e c e m b e r 2023,
2023-12-13. Available at: h t t p s : / / g i t h u b . c o m / t e n s o r f l o w / g n n / b l o b / m a i n /

t e n s o r f l o w _ g n n / m o d e l s / m t _ a l b i s / R E A D M E . m d . [cit. 2024-05-09].

[81] T E N S O R F L O W . Ragged tensors o n l i n e . TensorFlow, J u n e 2023, 2023-06-07. Available
at: h t t p s : / / w w w . t e n s o r f l o w . o r g / g u i d e / r a g g e d _ t e n s o r . [cit. 2024-05-08].

99

http://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-
https://medium.com/Obrijesh_soni/topic-ll-feature-
https://arxiv.org/abs/2006.08614
https://github.com/tensorflow/gnn/commits/main/
https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/docs/
https://github.com/tensorflow/gnn/blob/main/
https://github.com/tensorflow/gnn/blob/main/
https://www.tensorflow.org/guide/ragged_tensor

[82] T E N S O R F L O W . TF-GNN Modeling Guide online. TensorFlow, July 2023, 2023-7-14.
Available at: https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/docs/
guide/gnn_modeling.md. [cit. 2024-05-08].

[83] T E N S O R F L O W . The TF-GNN Runner online. TensorFlow, July 2023, 2023-07-14.
Available at: https:
//github.com/tensorflow/gnn/blob/main/tensorflow_gnn/docs/guide/runner.md. [cit.
2024-05-09].

[84] T E N S O R F L O W . TFRecord and tf.train.Example online. TensorFlow, September 2023,
2023-09-28. Available at:
https : //www.tensorflow.org/tutorials/load_data/tf record, [cit. 2024-05-05].

[85] T E N S O R F L O W . TF-GNN Models online. TensorFlow, march 2024, 2024-03-20.
Available at:
https : //github.com/tensorf low/gnn/blob/main/tensorf low_gnn/models/README.md.
[cit. 2024-05-09].

[86] T H E C L A N G T E A M . Clang command line argument reference online. 2007.
Available at: https://clang.llvm.org/docs/ClangCommandLineReference.html. [cit.
2023-01-29]. Clang vl7.0.0.

[87] T H E J O E R N P R O J E C T . Joern - The Bug Hunter's Workbench online. The Joern
Project, 17. april 2019. Available at: https://joern.io/. [cit. 2023-01-29].

[88] T H E J O E R N P R O J E C T . Overview / Joern Documentation online. Apr i l 2019.
Available at: https://docs.joern.io/. [cit. 2023-01-29].

[89] T O N D E R , R . and G O U E S , C. L . Static automated program repair for heap
properties. In: ICSE '18: Proceedings of the 40th International Conference on
Software Engineering. Gothenburg, Sweden: Association for Computing Machinery,
New York, N Y , USA, May 2018, p. 151-162. ISBN 978-1-4503-5638-1.

[90] W u , Y . ; L u , J . ; Z H A N G , Y . and J IN , S. Vulnerability detection in c/c++ source
code with graph representation learning. In: I E E E . 2021 IEEE 11th Annual
Computing and Communication Workshop and Conference (CCWC). 2021,
p. 1519-1524.

[91] X I A O M E N G , W.; T A O , Z . ; R U N P U , W.; W E I , X . and C H A N G Y U , H . C P G V A : code
property graph based vulnerability analysis by deep learning. In: I E E E . 2018 10th
International Conference on Advanced Infocomm Technology (ICAIT). 2018,
p. 184-188.

[92] Y A M A G U C H I , F.; G O L D E , N . ; A R P , D. and R I E C K , K . Modeling and discovering
vulnerabilities with code property graphs. In: I E E E . 2014 IEEE Symposium on
Security and Privacy. 2014, p. 590-604.

[93] Y A M A G U C H I , F.; L O T T M A N N , M . ; SCHMIDT, N . ; P O L L M E I E R , M . ; S H A R M A , S. et al.
Code Property Graph Specification 1.1 online. 1.1th ed. The Joern Project, august
2023,2023-08-15. Available at: https://cpg.joern.io/. [cit. 2024-05-04].

100

https://github.com/tensorflow/gnn/blob/main/tensorflow_gnn/docs/
http://www.tensorflow.org/tutorials/load_data/tf
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://joern.io/
https://docs.joern.io/
https://cpg.joern.io/

[94] Z H E N G , Y . ; P U J A R , S.; L E W I S , B. ; B U R A T T I , L . ; E P S T E I N , E . et al. D2A: A dataset
built for ai-based vulnerability detection methods using differential analysis. In:
I E E E . 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 2021, p. 111-120.

[95] Z H O U , Y . ; L I U , S.; SIOW, J . ; D u , X . and L i u , Y . Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Advances in neural information processing systems. Curran Associates,
Inc., 2019, vol. 32. Available at: h t t p s : / / p r o c e e d i n g s . n e u r i p s . c c / p a p e r / 2 0 1 9 / f i l e /

4 9 2 6 5 d 2 4 4 7 b c 3 b b f e 9 e 7 6 3 0 6 c e 4 0 a 3 1 f - P a p e r . p d f .

[96] Zou, D.; W A N G , S.; X U , S.; L I , Z. and J IN , H . /xVulDeePecker: A Deep
Learning-Based System for Multiclass Vulnerability Detection. IEEE Transactions
on Dependable and Secure Computing. I E E E , 2019, vol. 18, no. 5, p. 2224-2236.

[97] E U C A L Y P . Automatic Icons. Flaticon. Available at:
h t t p s : //www.f laticon.com/free-icons/automatic.

[98] WISHFORGE.GAMES. Compile Compiler Script Code. S V G Repo L L C . Available at:
h t t p s : / / w w w . s v g r e p o . c o m / s v g / 3 8 4 6 9 6 / c o m p i l e - c o m p i l e r - s c r i p t - c o d e - c o n f i g .

[99] E U C A L Y P . Funnel. Flaticon. Available at:
h t t p s : //www.f l a t i c o n . c o m / f r e e - i c o n / i n f o r m a t i o n _ 2 4 9 1 8 2 .

[100] F R E E P I K . IBM icon. Freepik. Available at:
h t t p s : //www.f reepik .com/icon/ibm_5969147.

[101] G R A F I X P O I N T . Knowledge Graph Icons. Flaticon. Available at:
h t t p s : //www.f laticon.com/free-icons/knowledge-graph.

[102] CHANG, T. LLVM Icon. L L V M . Available at: ht tps: / / l lvm .org/Logo .html.

[103] LONG, J . Logos. Git . Available at: ht tps ://git-scm.com/downloads/logos.

[104] F R E E P I K . Neural Network Icons. Flaticon. Available at:
h t t p s : //www.f la t i con . com/ f ree - i cons /neu ra l - ne twork .

[105] U N I C O N L A B S . Preprocessing Icons. Flaticon. Available at:
h t t p s : //www.f l a t i c o n . c o m / f r e e - i c o n s / p r e p r o c e s s i n g .

[106] G O O D W A R E . Risk. Flaticon. Available at:
h t t p s : //www.f l a t i c o n . c o m / f r e e - i c o n / r i s k _ 5 9 9 9 2 1 8 .

[107] S H I F T L E F T INC. . ShiftLeft Inc. Available at:
h t t p s : //github .com/Shif t L e f t S e c u r i t y .

101

https://proceedings.neurips.cc/paper/2019/file/
http://www.f
http://laticon.com/free-
https://www.svgrepo.com/svg/384696/compile-compiler-script-code-config
http://www.f
http://laticon.com/free-
http://www.f
http://reepik.com/icon/
http://www.f
http://laticon.com/free-icons/knowledge-graph
https://llvm.org/Logo.html
https://git-scm.com/downloads/logos
http://www.f
http://laticon.com/free-icons/neural-network
http://www.f
http://laticon.com/free-icons/preprocessing
http://www.f
http://laticon.com/free-icon/risk_5999218

Appendix A

Contents of the Attached Memory
Media

This appendix describes the contents of the attached memory media. The memory media
contains:

• d2a/ - the original D2A dataset, which can also be downloaded from [40].

• d2a-bitcode/ - zipped L L V M bitcode for the httpd project - only for testing the
generation of Graph D2A, so that L L V M bitcode does not have to be re-generated (it
is computationally expensive).

• d2a-f iltered/ - filtered D2A dataset.

• graph-d2a/ - zipped Graph D2A (raw ECPGs) for all projects from which TFRecords
were generated, namely httpd, libtiff, nginx, and libav (the latter is divided into sev
eral parts as detailed below). So far, it has not been possible to find a place for online
storage of the entire D2A Graph, which occupies hundreds of GBs when compressed.
Once the D2A Graph is uploaded, a link will be provided in the README.md of the
repository.

• httpd-dependencies/ - already configured libraries necessary for generating L L V M
bitcode for httpd.

• repository/ - all the source files, which are also available on Gi tHub 1

— dataset/ - source files for the D2A to Graph D2A transformation.

* construction_phase_d2a - for generating Graph D2A, see Section 5.4.
* filter.py - for filtering D2A, see Section 5.1.
* generate_bitcode.py - for generating L L V M bitcode, see Section 5.2
* Makefile - for automating the execution of these scripts.

— dev-utils/ - a set of scripts that do not belong to the main implementation
but were used, for example, for data exploration and other useful tasks.

* concat_tf records .py - for concatenating TFRecords files.
1 GitHub repository: https: //github.com/TomasBeranek/but-masters-thesis.

102

* extract_sample .py - for extracting and displaying samples from D2A.
* find_unique_values.py - for finding unique attribute values in Graph

D2A.
* graphs_comparison. sh - for comparing different versions of Graph D2A.
* records_counter.py - for counting samples in TFRecords files.
* remove_duplicates.py - for removing duplicate samples in D2A at the

L L V M bitcode level.
* remove_invalid_symlinks .py - for removing incorrect symlinks in L L V M

bitcode (this issue has been fixed).
* stats.py - for generating statistics about D2A - Tables C . l and C.2.

— experiments/ - a set of experiments that support and demonstrate various
claims made in this thesis. If an experiment is executable, it can be run using
the make command in its directory. Details of the experiment are provided for
each experiment separately (typically in Makefile).

* arg-passing/ - demonstration of argument passing in raw E C P G .
* comparison-with-chatgpt/ - data for comparison with ChatGPT, from

Section 6.4.
* compilation-from-D2A/ - demonstration that code cannot be compiled

directly from D2A.
* entry-function/ - demonstration that Infer always reports the entry func

tion in the procedure attribute.
* global-vars/ - demonstration of storing access to global variables in raw

E C P G .
* include-headers-to-bitcode/ - demonstration that slicing criteria can

also be specified for .h files because they are included in L L V M bitcode.
* joern-batch-processing/ - demonstration that Joern batch processing is

equivalent to single sample processing.
* line-slicing/ - demonstration that L L V M sheer retains everything on the

line specified as the slicing criterion.
* removing-duplicates/ - test to demonstrate the functionality of removing

duplicate samples.
* speed-test/ - comparison of repository search types by speed when gener

ating L L V M bitcode.
* struct-alias/ - demonstration of storing structures and aliases in raw

E C P G .

— inference-pipeline/ - source code of the inference pipeline.

* example/ - an artificial example to demonstrate the functionality of the
inference pipeline.

* inf erence_pipeline - inference pipeline, see Section 5.10.
* Makefile - for installing/uninstalling compiler wrappers and running the

experiment.
* model_inference.py - for inference using G N N models, see Section 5.10.
* slicing_criteria_extraction.py - for extraction of slicing criteria, from

Section 5.3.

103

* wrapper - template for compiler wrapper, see Section 5.9.

— model/ - source files for feature engineering, training, and testing models.

* schemas/ - source files for feature engineering.
• extended_cpg.pbtxt - T F G N N schema for E C P G .
• feature_engineering.py - feature engineering, see Section 5.6.
• f ind_normalization_coeff icients .py - for extraction of normaliza

tion coefficients, see Section 5.5.
• Makefile - targets for automating the execution of these scripts.

* src/ - source files for models.
• evaluate_model .py - for model evaluation, see Section 5.8.
• mixed_nodes_model .py - for model training, see Section 5.7.

* Makefile - targets for training models, evaluating models, and scenarios.

— sep-presentation-en/ - D T ^ X source code of the SEP presentation.

— sep-text-en/ - I^TgK source code of the SEP text.

— text-en/ - DTgX source code of this thesis.

— text-template/ - DT£]X source code of the used template.

— xberan46-2024.pdf - P D F version of this thesis.

— .gitignore

— README.md

• results/ - output graphs for all scenarios from Section 5.8.

• saved_models/ - all trained models - Model 1 to Model 14.

• text-en/ - WT^K. source code of this thesis.

• tf records/ - dataset in TFRecords format for all projects that were used for training
or testing, namely httpd, libtiff, nginx, and libav. The dataset in this format was also
published on Zenodo [5].

• xberan46-2024.pdf - P D F version of this thesis.

104

Appendix B

Installation and User Manual

This appendix contains the installation and user manual, which were tested on a clean,
normal (i.e., not minimal) installation of Ubuntu 20.04.2.0 LTS. For training or evaluat
ing G N N models, it is advisable to have a G P U compatible with the TensorFlow library,
otherwise the computation will be significantly slower.

Ins ta l la t ion

A l l source code for training and inference pipelines is in script form, so there is no need for
any installation, except for installing a compiler wrapper using a make target (see below).
However, it is necessary to install required dependencies.

L L V M Sheer can be installed as follows1:

sudo apt install git cmake make llvm zliblg-dev clang g++ python3.8

git clone https://github.com/mchalupa/dg

cd dg

mkdir build && cd build

cmake ..

make -j4

sudo In -s ${PWD}/tools/llvm-slicer /usr/bin/llvm-slicer

Joern can be installed using:

sudo apt install curl default-jdk default-jre

git clone https://github.com/joernio/joern

cd joern

sudo ./joern-install.sh

For L L V M 2 C P G , it is necessary to download the binary release for Ubuntu 20.042 and then
install it using:

unzip llvm2cpg-0.8.O-LLVM-11.0-ubuntu-20.04.zip

1Official installation guide for L L V M Slicer: https://github.com/mchalupa/dg/blob/master/doc/
compiling.md.

2 LLVM2CPG's binary release for Ubuntu 20.04: https://github.com/ShiftLeftSecurity/llvm2cpg/
releases/download/0.8.0/llvm2cpg-0.8.0-LLVM-11.0-ubuntu-20.04.zip.

105

https://github.com/mchalupa/dg
https://github.com/joernio/joern
https://github.com/mchalupa/dg/blob/master/doc/
https://github.com/ShiftLeftSecurity/llvm2cpg/

mv llvm2cpg-0.8.0-LLVM-ll.0-ubuntu-20.04/ llvm2cpg

sudo In -s ${PWD}/llvm2cpg/llvm2cpg /usr/bin/llvm2cpg

To generate L L V M bitcode, the following dependencies need to be installed for various
projects:

• httpd

sudo apt install libpcre3 libpcre3-dev autoconf libtool-bin

. libtiff
sudo apt install libgl-dev freeglut3-dev

• ffmpeg (the same applies to libav as they share some libraries)

sudo apt install nasm yasm libsdl2-dev

• openssl

sudo apt install perlbrew

perlbew init # follow the instructions to finish the installation

perlbrew install perl-5.28.0

It is also necessary to install Infer using the binary release3:

tar xf infer-linux64-vl.1.O.tar.xz

sudo In -s ${PWD}/infer-linux64-vl.1.0/bin/infer /usr/bin/infer

Additionally, the following Python3.8 packages must be installed:

sudo apt install python3-pip

python3.8 -m pip install tqdm "pandas==l.3.4" "networkx==3.1" \

"matplotlib==3.4.3" "scikit-learn==l.2.0" "tensorflow-gnn==0.6.1"

The command line tool parallel also have to be installed:

sudo apt install parallel

For experiments, the following dependencies are necessary:

sudo apt install graphviz tree

User M a n u a l

The training pipeline is divided into individual phases and is generated in parts due to its
high computational demands. To simplify generation, a set of Makefiles has been created.
However, using these Makefiles requires storing the individual outputs in directories exactly
as defined below (or it is possible to modify the paths in the Makefiles, or call the tools

3Infer's binary release: https: //github.com/f acebook/inf er/releases/download/vl.l.O/inf er-
linux64-vl.l.0.tar.xz.

106

without using Makefiles). The manual assumes that the starting working directory contains
directories and files from the attached memory media.

The first step is to prepare D2A:

mv d2a repository/dataset/

D2A is then filtered:

cd repository/dataset/ && make filter-d2a

Next, the slicing criteria are extracted:

make slicing-info

Then, prepare a directory for the repositories of individual projects from D2A, add pre-
configured libraries for httpd (it is also possible to download from official sites and configure
it as described in Section 5.2), and download the original project repositories:

mkdir projects && mv ../../httpd-dependencies projects/

make download-repos

From this point forward, commands will only be listed for the httpd project; other projects
are generated similarly unless otherwise noted. L L V M bitcode is generated using:

make bitcode-httpd-1

make bitcode-httpd-0

Before generating L L V M bitcode for openssl, it is necessary to switch the Perl version as
follows:

perlbrew switch perl-5.28.0

After generating the L L V M bitcode, it is possible to start generating the D2A Graph:

mkdir -p graph-d2a/httpd_l && make graph-httpd-1

mkdir -p graph-d2a/httpd_0 && make graph-httpd-0

The D2A Graphs for projects from which TFRecords were generated, namely httpd, libtiff,
nginx, and libav, are zipped on the attached memory media in the graph-d2a/ directory
to avoid re-generation. Because the D2A Graph is not only computationally expensive
to create but also memory-expensive to store, libav 0 is split into 3 .zip files, which
must be transformed into TFRecords separately, and the results combined using the script
repository/dev-utils/concat_tfrecords .py (an example of its usage is provided in
side) .

Normalization coefficients could be extracted here, but they have already been generated
and are inserted directly in feature_engineering.py. However, for demonstration, it can
be done using:

cd ../model/schemas && make extract-norm-coeffs-httpd

Extraction of normalization coefficients is also possible for libtiff and nginx. For other
projects, make targets were not created as they were not used for training.

To generate TFRecords, enter (current working directory is repository/model/schemas):

107

mkdir ../tfrecords

make transform-httpd-1

make transform-httpd-0

Once TFRecords for the httpd, libtiff, and nginx projects are created, training can com
mence. As their generation is also time-consuming, they are included on the memory media
in the tf records directory, or are available on Zenodo [5]. To start training the currently
configured model (the architecture of Model 8 - the best standalone model) with combined
data, along with adding tf record from the media and also adding models from the media
(saved_models/), use:

cd . .

mv ../../tfrecords .

mv ../../saved_models .

make train-combined-model

For example, Model 8 can be evaluated on the test data using:

make evaluate-model-test ID=8

Alternatively, it is possible to run, for example, a combined scenario:

make scenario-combined

For a demonstration of the inference pipeline, a simple project was created in which In
fer finds 3 errors - l x DEAD_STORE (which is not supported as it is always true positive)
and 2x NULL_DEREFERENCE. When executing the experiment, compiler wrappers are first
installed, the project is compiled, the inference pipeline is run, and finally, the wrap
pers are uninstalled. The experiment can be initiated (assuming the working directory
is repository/model/):

cd ../inference-pipeline

make

The output is ranked_report. json, where errors are scored (attribute model_score) and
ranked using Model 8.

108

Appendix C

Additional Data

This appendix contains supplementary tables and figures that provide additional data rel
evant to the discussions and experiments presented in earlier chapters of the thesis.

Receiver Operating Characteristic (test-httpd)

False Pos i t ive Rate

Figure C . l : The figure shows R O C curves for the top-performing models developed in this
thesis. The models were evaluated on test data from the httpd project.

109

Receiver Operating Characteristic (test-libtiff)

False Posit ive Rate

Figure C.2: The figure shows R O C curves for the top-performing models developed in this
thesis. The models were evaluated on test data from the libtiff project.

Receiver Operating Characteristic (test-nginx)

False Posit ive Rate

Figure C.3: The figure shows R O C curves for the top-performing models developed in this
thesis. The models were evaluated on test data from the nginx project.

110

Table C . l : The table contains the distribution of all D2A samples (except the after fix type)
by error type and label (true positive/false positive). This table shows the distribution for
the openssl, libav, and nginx projects. Table C.2 shows the distribution for the remaining
projects. The green highlighted rows represent the types of errors supported by the system
designed in this thesis.

Error Type openssl libav nginx

INTEGER_OVERFLOW_L5 4046/166221 2892/156942 162/4333
BUFFER_OVERRUN_L5 1656/81700 684/27403 39/2070
BUFFER_OVERRUN_L4 758/24928 165/9560 83/5016
INTEGER_OVERFLOW_U5 191/11015 178/9944 30/1254
NULLPTR_DEREFERENCE 125/10055 78/8580 2/132
BUFFER_OVERRUN_U5 297/14353 82/3944 67/2992
INTEGER_OVERFLOW_L2 178/8008 55/2819 20/625
NULL_DEREFERENCE 98/4336 24/4810 3/37
INFERBO_ALLOC_MAY_BE_BIG 49/734 237/3098 0/0
BUFFER_OVERRUN_L3 382/9391 16/805 6/366
UNINITIALIZED_VALUE 28/695 55/3526 3/116
BUFFER_OVERRUN_L2 80/594 97/1664 1/243
PULSE_MEMORY_LEAK 18/4046 0/0 1/586
DEAD_STORE 50/1355 15/1011 0/12
MEMORY_LEAK 18/3021 4/214 0/66
DANGLING_POINTER_DEREFERENCE 13/1353 2/636 0/3
BUFFER_OVERRUN_L 1 14/319 9/767 0/3
DIVIDE_BY_ZERO 0/33 1/318 0/0
INTEGER_OVERFLOW_LI 11/235 3/200 2/22
USE_AFTER_FREE 2/391 15/47 1/9
INTEGER_OVERFLOW_R2 0/0 1/91 0/0
BUFFER_OVERRUN_S2 7/217 0/21 1/28
RESOURCE_LEAK 1/118 1/11 0/28
PREMATURE_NIL_TERMINATION_ARGUMENT 0/0 0/0 0/0
INFERBO_ALLOC_IS_ZERO 0/0 0/4 0/1
INFERBO_ALLOC_IS_BIG 0/3 0/0 0/1
DEALLOCATE_STACK_VARIABLE 0/14 0/0 0/0
INFERBO_ALLOC_MAY_BE_NEGATIVE 0/1 0/0 0/2
BIABD_USE_AFTER_FREE 0/11 0/0 0/0
BUFFER_OVERRUN_R2 0/0 0/0 0/0
POINTER_TO_INTEGRAL_IMPLICIT_CAST 0/1 0/0 0/0
All Types 8022/343148 4614/236405 421/17945

111

Table C.2: The table contains the distribution of all D2A samples (except the after fix type)
by error type and label (true positive/false positive). This table shows the distribution for
the libtiff, httpd, and ffmpeg projects. Table C . l shows the distribution for the remaining
projects. The green highlighted rows represent the types of errors supported by the system
designed in this thesis.

Error Type libtiff httpd ffmpeg
INTEGER_OVERFL OW_L5 306/5917 64/2632 2912/394952
BUFFER_OVERRUN_L5 101/2468 45/1534 590/110655
BUFFER_OVERRUN_L4 9/682 28/835 190/25546
INTEGER_OVERFL OW_U5 67/562 21/1338 241/32493
NULLPTR_DEREFERENCE 2/70 14/2521 201/24812
BUFFER_OVERRUN_U5 27/524 25/2477 142/19479
INTEGER_OVERFLOW_L2 7/488 8/99 101/10391
NULL_DEREFERENCE 2/210 0/388 74/10228
INFERBO_ALLOC_MAY_BE_BIG 4/5 0/0 70/9113
BUFFER_OVERRUN_L3 9/334 0/48 47/1615
UNINITIALIZED_VALUE 0/111 3/59 151/5549
BUFFER_OVERRUN_L2 0/0 0/27 44/2572
PULSE_MEMORY_LEAK 6/141 0/11 0/0
DEAD_STORE 0/117 7/115 24/1582
MEMORY_LEAK 2/121 0/87 3/604
DANGLING_POINTER_DEREFERENCE 0/121 0/142 7/1742
BUFFER_OVERRUN_L 1 0/5 1/13 4/1255
DIVIDE_BY_ZERO 4/166 0/0 11/776
INTEGER_OVERFL OW_L 1 0/9 1/3 5/595
USE_AFTER_FREE 0/0 0/18 1/251
INTEGER_OVERFL OW_R2 0/0 0/0 3/561
BUFFER_OVERRUN_S2 7/32 0/0 3/73
RESOURCE_LEAK 0/0 0/12 1/26
PREMATURE_NIL_TERMINATION_ARGUMENT 0/0 0/116 0/0
INFERBO_ALLOC_IS_ZERO 0/7 0/0 1/3
INFERBO_ALLOC_IS_BIG 0/0 0/0 0/10
DEALLOCATE_STACK_VAPJABLE 0/0 0/0 0/0
INFERBO_ALLOC_MAY_BE_NEGATIVE 0/6 0/0 0/2
BIABD_USE_AFTER_FREE 0/0 0/0 0/0
BUFFER_OVERRUN_R2 0/0 0/0 0/6
POINTER_TO_INTEGRAL_IMPLICIT_CAST 0/0 0/0 0/0
All Types 553/12096 217/12475 4826/654891

112

Table C.3: The table shows all selected node sets and their attributes during the feature
selection phase. It also indicates which node sets will be merged. The symbol V denotes
an attribute that is used, the symbol 'X ' denotes an unused attribute, '-' indicates that the
attribute does not exist, and '0' indicates that the attribute does not exist but will be filled
with zeros for the purpose of merging node sets.

Node Set LABEL
ARGUMENT

INDEX
CODE ORDER

FULL
N A M E

IS
EXTERNAL

New Node Set

METHOD / 0 X / / /
AST_NODE

METHOD_INFO
METHOD

PARAMETER
IN

/ 0 X / - - AST_NODE

METHOD
RETURN

/ 0 X / - - AST_NODE

MEMBER / - / - - MEMBER
T Y P E / - - - - TYPE

BLOCK / / X / - - AST_NODE
CALL / / X / - - AST_NODE

FIELD
IDENTIFIER

/ / X / - - AST_NODE

IDENTIFIER / / X / - - AST_NODE

LITERAL / / / / - -
AST_NODE

LITERAL_INFO
LOCAL / 0 X / - - AST_NODE

METHOD
REF

/ / X / - - AST_NODE

RETURN / / X / - - AST_NODE
UNKNOWN / / X / - - AST_NODE

113

Top N% Precision (test-combined)

0.5

0.4 -

m

0.3

0.2

0.1

Mode l 8

Mode l 10

Mode l 13

3-soft-vote

6-soft-vote

20 40 60

Top N% Samp l e s

80 100

Figure C.4: The figure shows the precision of top-performing models for various percentages
of top-ranked samples. The models were evaluated on combined test data from the httpd,
libtiff, and nginx projects. The dashed horizontal line indicates the precision of a random
model.

Top N% Precision (test-httpd)

0 20 40 60 80 100

Top N% Samp le s

Figure C.5: The figure shows the precision of top-performing models for various percentages
of top-ranked samples. The models were evaluated on test data from the httpd project.
The dashed horizontal line indicates the precision of a random model.

114

Top N% Precision (test-libtiff)

0 20 40 60 80 100

Top N% S a m p l e s

Figure C.6: The figure shows the precision of top-performing models for various percentages
of top-ranked samples. The models were evaluated on test data from the libtiff project.
The dashed horizontal line indicates the precision of a random model.

Top N% Precision (test-nginx)

Mode l 8

Mode l 10

Mode l 13

0 20 40 60 80 100

Top N% S a m p l e s

Figure C.7: The figure shows the precision of top-performing models for various percentages
of top-ranked samples. The models were evaluated on test data from the nginx project.
The dashed horizontal line indicates the precision of a random model.

115

Table C.4: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 1. The remaining parts are in
Tables C 5 , C.6, C.7, C.8, and C 9 .

Node Set ID LABEL
LINE

NUMBER
CODE

COLUMN
NUMBER

ORDER NAME

META DATA X X - - - - -

FILE X X X X X X X
NAMESPACE X X X X X X X
NAMESPACE

BLOCK
X X X X X X X

METHOD X / X X X / X
METHOD

PARAMETER
IN

X / X X X / X

METHOD
PARAMETER

OUT
X X X X X X X

METHOD
RETURN

X / X X X / -

MEMBER X / X X X / X
T Y P E X / - - - - X

T Y P E DECL X X X X X X X
BLOCK X / X X X / -

CALL X / X X X / X
FIELD

IDENTIFIER
X / X X X / -

IDENTIFIER X / X X X / X
LITERAL X / X / X / -

LOCAL X / X X X / X
METHOD

REF
X / X X X / -

RETURN X / X X X / -

UNKNOWN X / X X X / -

116

Table C.5: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 2. The remaining parts are in
Tables C 4 , C.6, C.7, C.8, and C 9 .

Node Set
ARGUMENT

INDEX
ARGUMENT

N A M E

T Y P E
FULL
NAME

DYNAMIC T Y P E
HINT FULL NAME

FILENAME
FULL

NAME

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE
BLOCK - - - - X X

METHOD - - - - X /

METHOD
PARAMETER

IN
- - X X - -

METHOD
PARAMETER

OUT
- - X - - -

METHOD
RETURN - - X X - -

MEMBER - - X X - -

T Y P E - - - - - /

T Y P E DECL - - - - X X
BLOCK / X X X - -

CALL / X X X - -

FIELD
IDENTIFIER

/ X - - - -

IDENTIFIER / X X X - -

LITERAL / X X X - -

LOCAL - - X X - -

METHOD
REF

/ X X X - -

RETURN / X - - - -

UNKNOWN / X X X - -

117

Table C.6: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 3. The remaining parts are in
Tables C 4 , C.5, C.7, C.8, and C 9 .

Node Set SIGNATURE
METHOD

FULL
NAME

PARSER
TYPE
NAME

EVALUATION
STRATEGY

HASH
AST PARENT
FULL NAME

META DATA - - - - X -

FILE - - - - X -

NAMESPACE - - - - - -

NAMESPACE
BLOCK - - - - - -

METHOD X - - - X X
METHOD

PARAMETER
IN

- - - X - -

METHOD
PARAMETER

OUT
- - - X - -

METHOD
RETURN

- - - X - -

MEMBER - - - - - -

T Y P E - - - - - -

T Y P E DECL - - - - - X
BLOCK - - - - - -

CALL X X - - - -

FIELD
IDENTIFIER - - - - - -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - - - -

METHOD
REF

- X - - - -

RETURN - - - - - -

UNKNOWN - - X - - -

118

Table C.7: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 4. The remaining parts are in
Tables C 4 , C.5, C.6, C.8, and C 9 .

Node Set
AST

PARENT
TYPE

IS
EXTERNAL

INDEX
IS

VARIADIC

COLUMN
NUMBER

END

LINE
NUMBER

END

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE
BLOCK - - - - - -

METHOD X - - X X
METHOD

PARAMETER
IN

- - X X - -

METHOD
PARAMETER

OUT
- - X X - -

METHOD
RETURN - - - - - -

MEMBER - - - - - -

T Y P E - - - - - -

TYPE DECL X - - - -

BLOCK - - - - - -

CALL - - - - - -

FIELD
IDENTIFIER - - - - - -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - - - -

METHOD
REF

- - - - - -

RETURN - - - - - -

UNKNOWN - - - - - -

119

Table C.8: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 5. The remaining parts are in
Tables C 4 , C.5, C.6, C.7, and C 9 .

Node Set

T Y P E
DECL
FULL
NAME

ALIAS
T Y P E
FULL
NAME

CONTAINED
REF

CLOSURE
BINDING

ID

CANONICAL
NAME

DISPATCH
TYPE

META DATA - - - - - -

FILE - - - - - -

NAMESPACE - - - - - -

NAMESPACE
BLOCK

- - - - - -

METHOD - - - - - -

METHOD
PARAMETER

IN
- - - - - -

METHOD
PARAMETER

OUT
- - - - - -

METHOD
RETURN - - - - - -

MEMBER - - - - - -

T Y P E X - - - - -

TYPE DECL - - - - -

BLOCK - - - - - -

CALL - - - - - X
FIELD

IDENTIFIER - - - - X -

IDENTIFIER - - - - - -

LITERAL - - - - - -

LOCAL - - - X - -

METHOD
REF

- - - - - -

RETURN - - - - - -

UNKNOWN - - X - - -

120

Table C.9: The table shows all attributes for every node set present in Graph D2A. This
table is divided into multiple parts by columns; this is Part 1. The remaining parts are in
Tables C 4 , C 5 , C 6 , C 7 , and C 8 .

Node Set LANGUAGE OVERLAYS ROOT VERSION
INHERITS FROM

T Y P E FULL NAME
META DATA X X X -

FILE - - - - -

NAMESPACE - - - - -

NAMESPACE
BLOCK - - - - -

METHOD - - - - -

METHOD
PARAMETER

IN
- - - - -

METHOD
PARAMETER

OUT
- - - - -

METHOD
RETURN

- - - - -

MEMBER - - - - -

T Y P E - - - - -

TYPE DECL - - - - X
BLOCK - - - - -

CALL - - - - -

FIELD
IDENTIFIER

- - - - -

IDENTIFIER - - - - -

LITERAL - - - - -

LOCAL - - - - -

METHOD
REF

- - - - -

RETURN - - - - -

UNKNOWN - - - - -

121

