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Abstrakt
Cílem této diplomové práce je automatizace detekce vad ve vláknitých ma-

teriálech.
Firma SILON se již přes padesát let zabývá výrobou jemné vaty z recyklo-

vaných PET lahví. Tato vata se následně používá ve stavebnictví, automo-
bilovém průmyslu, ale nejčastěji v dámských hygienických potřebách a dět-
ských plenách. Cílem firmy je produkovat co nejkvalitnější výrobek a proto
je každá dávka testována v laboratoři s několika přísnými kritérii. Jednám z
testů je i množství vadných vláken, jako jsou zacuchané smotky vláken, nebo
nevydloužená vlákna, která jsou tvrdá a snadno se lámou.

Navrhovaný systém sestává ze snímací lavice fungující jako scanner, která
nasnímá vzorek vláken, který byl vložen mezi dvě skleněné desky. Byla prove-
dena série testů s různým osvětlením, která ověřovala vlastnosti Rhodaminu,
který se používá právě na rozlišení defektů od ostatních vláken. Tyto defekty
mají zpravidla jinou molekulární strukturu, na kterou se barvivo chytá lépe. Pro-
tože je Rhodamin fluorescenční barvivo, je možné ho například pod UV světlem
snáze rozeznat. Tento postup je využíván při manuální detekci. Při snímání
kamerou je možno si vypomoci filtrem na kameře, který odfiltruje excitační
světlo a propustí pouze světlo vyzářené Rhodaminem.

Součástí výroby skeneru byla i tvorba ovládacího programu. Byla vytvořena
vlastní knihovna pro ovládání motoru a byla upravena knihovna pro kameru.
Oba systém pak bylo možno ovládat pomocí jednotného GUI, které zajišt’ovalo
pořizování snímku celé desky.

Pomocí skeneru byla nasnímána řada snímků, které bylo třeba anotovat, aby
bylo možné naučit počítač rozlišovat defekty. Anotace proběhla na pixelové
úrovni; každý defekt byl označen v grafickém editoru ve speciální vrstvě.

Pro rozlišování byla použita umělá neuronová sít’, která funguje na principu
konvolucí. Tento typ sítě je navíc plně konvoluční, takže výstupem sítě je obraz,
který by měl označit na tom původním vadné pixely.

Výsledky naučené sítě jsou v práci prezentovány a diskutovány. Sít’ byla
schopna se naučit rozeznávat většinu defektů a spolehlivě je umí rozeznat a
segmentovat. Potíže má v současné době s detekcí rozmazaných defektů na
krajích zorného pole a s defekty, jejichž hranice není tolik zřetelná na vstupních
obrazech.

Nutno zmínit, že zákazník má zájem o kompletní řešení scanneru i s de-
tekčním softwarem a vývoj tohoto zařízení bude pokračovat i po závěru této
diplomové práce.
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Abstract
Following Master’s Thesis is presenting the creation of scanning unit, that

will automate the quality check process in company SILON, for their fibered
material.

The process of manual detection is discussed and the automated solution is
proposed. Several test are shown, that demonstrate effects of different lights
on fibres dyed in Rhodamine. Optimal filter for camera is chosen, to achieve
images with highest resolution possible and with enough definition.

Next, the software tools for hardware control are presented and tools for
building neural networks. Also, some basic info on current state of the art is
provided, to explain some of the tools used. The network itself is shown and
also its learning process and capabilities of defect detection.

Keywords
Fibre material, Rhodamine, scanner, linescan camera, fluorescence, transmis-

sion, artificial neural network, ANN, convolutional neural network, CNN, fully
convolutional network, FCN, machine learning, image recognition.
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INTRODUCTION
SILON s.r.o has been manufacturing TESIL R© polyester fibres for over 50

years and was creating them using exclusively PET bottle flakes since 2002 [1].
Quality control is essential part of every industrial process. TESIL R© has

been, until now, inspected by hand, using carding machines. The carded fiber
is laid on lit surface and quality inspector checks for any thick and/or bundled
threads. Final number is counted and then extrapolated to whole batch.

The machine consists of a linescan camera, two lighting units, linear actuator
and a glass cover, creating a scanning unit. Two prototypes have been built,
demonstrating scaning capabilities, resolution and field of view of camera. The
lights are tested with different filters and different configurations to find optimal
solution.

Software tools used to control the drive and the camera are also presented and
discussed.

The tools for creating neural network are presented, along with the network
itself and the result is tested and evaluated.
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APPLICATION
CHAPTER1

The company’s Silon s.r.o name comes from first product – polyamide filament
yarn – that was used for ladies’ stockings. Today, Silon is a manufacturer of
polymer compound granulates and polyester fibres for use in construction, au-
tomotive industry and for hygiene and medical products. The fibres are made
exclusively from used PET bottle flakes since 2002.

Figure 1.1: Sample of tesil fibre. [2]

The quality control is essential part or manufacturing. It consists of several
steps, according to [3]:

• basic mechanical fiber properties (strength, elongation at break, fineness),

• color shade inspection,

• crimp characteristics,

• staple length,

• friction and cohesion measurements,

• staple length,

• shrinking.
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CHAPTER 1 1.1. Current process

1.1 Current process

At this time is the process of quality control fully manual. The lab assistant’s job
is first to prepare the sample to be examined. This is done in a carding machine.
It draws and straightens bundles of raw fibre that has come off of the production
line. Those fibres are then inspected for nondrawn fibres (that are thicker and
tend to break), and bundles of material that is stuck together. The laboratory
sample between two glass panes can be seen on figure 1.3.

Figure 1.2: Carding machine straightening colored wool. This is an industrial machine, the
laboratory uses much smaller one. [15]

The fibre is often dyed by fluorescent coloring named Rhodamine B. This
chemical compound and dye, red in color, is used for quality control of polyester
fibres. It sticks better to nondrawn and bundled fibres due to different molecular
structure. Fluorescence spectrum has one peak at 564 nm [11]. That coresponds
to yellowish green in visible spectrum. It’s the color that will be emitted after
excitation with absorbed light. Its absorption spectrum has two notable peaks;
first one around 358 nm, the second one at 543 nm. First wavelength is in ul-
traviolet spectrum and is used in human inspection, because UV light, being
invisible, will not prevent from seeing the emitted light. Second peak is much
higher, but also very close to emitted wavelength, so it’s more challenging to
isolate those two colors and this wavelength is not usable by humans. For refer-
ence see figures 1.4, 1.5 and 1.6.

The search is very time-consuming, often taking twenty minutes to half an
hour to sort through the sample and find all defects. It’s also very monotonous
and tiring to constantly look at UV lit surface, even when the worker is required
to wear safety goggles with UV filter. That means that many defect might not
be found, degrading quality control process.

13



CHAPTER 1 1.2. Proposed improvement

Figure 1.3: This is a sample of corded fiber with many defects (bundles)between two glass
panes.

1.2 Proposed improvement

Main goal of this thesis is to find and propose solution to partial automation
of defect searching process. The idea is to build a scanning bench with high
resolution camera and lights. The sample will be pressed between two glass
panes in a uniform layer. This should reveal any bigger bundles (as seen on
figure 1.3, where the sample has extra defects added) and allow the sample to
be properly scanned. The picture will be taken with a high resolution line-
scan camera, similarly to standard scanners. The image will be then saved on
computer for further analysis.

The proposed method is to combine both fluorescence and transmission im-
ages and treat them as two channels of one image. Analogically to usual RGB
image, with this having two channels, both taken as grayscale pictures. These
images will then be fed into neural network that is supposed to discriminate be-
tween defect and non-defect on the pixel-base level, thus creating another layer
of image with highlighted areas where the defects are present.

14



CHAPTER 1 1.2. Proposed improvement

Figure 1.4: Absorption spectrum of Rhodamine B. [11]

Figure 1.5: Fluorescence spectrum of Rhodamine B. [11]

15



CHAPTER 1 1.2. Proposed improvement
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FRAME &
DRIVE

CHAPTER2
During the development there were two prototypes built, both of them similar
in design, the second being more streamlined and lighter. Both scanners use
MiniTec R© aluminium profiles and feature one linear motor, two light units and
one line-scan camera.

Figure 2.1: Scanner setup with frame (violet), motor (yellow) and “C” arm (red) highlighted.

2.1 Frame

As was mentioned, whole contruction is made from MiniTec R© aluminium pro-
files. The linear motor is serving as a centerpiece to the whole machine. On both
sides there are aluminium stands supporting glass working plane laid on top of
them. Second version has only two legs, so the top light can move freely across
the whole length. On the linear actuator is affixed “C” arm that serves as a sup-
port for transmission light. The very first prototype (not featured on pictures)
had camera on top of the moving beam, but vibrations during movement caused
degradation of resulting image, so the camera has been moved to the bottom.

17



CHAPTER 2 2.2. Linear Motor

Figure 2.2: Second prototype of the scanner. The front legs were removed to allow free move-
ment of the “C” beam.

2.2 Linear Motor

The linear actuator is made by Lithuanian company STANDA R©. The motor is
controlled by two-axis driver that is powered by 12 – 36 V DC and communicates
with computer using simple RS-232 protocol. There’s been discusion about
using second actuator perpendicular to the first one that will allow scanning of
wider strips of material in multiple passes. This version however currently uses
only one.

This motor unit has very simple interface with all parameters available for
setting. With poorly written manual though, it was difficult to find proper setup.
Many combinations of parameters resulted in jerky movement, unacceptably
loud noise or motor not moving entirely. After the most quiet setting was found,
it was set as default and informed other decisions in design, as describer further
in chapter 3.

18



CAMERA &
LIGHTING

CHAPTER3

Figure 3.1: Close-up to camera, and both transmission and fluorescence lights.

3.1 Linescan camera

This type of camera reads one line at a time. This makes it suitable to scan
long strips of material, where one picture from conventional area scan cameras
doesn’t cover the whole object. It’s especially advantageous for moving objects,
for example endles webs of material that move underneath the camera.

The other possibility is to move the camera, which is the case in most scan-
ners, this one being no exception.

Single Basler Racer linescan camera was used. It has resolution of 6144 kpx
and maximal refreshing rate 17 kLPS (thousands of lines per second).

The camera is situated under the working plane, looking up. Alternative po-
sition above the working plane on top of “C” arm was refused due to vibrations
during movement.

19



CHAPTER 3 3.1. Linescan camera

3.1.1 Resolution of linescan camera

The resolution was computed using calibration sheet. This is usually piece of
paper with print of exact and known dimensions, that is scanned with the cam-
era. Apart from calibration of traditional matrix camera, speed of movement
and shutter frequency is also an important factor in the linescan camera. The
translation speed was set due to noise limitations of the motor, so the shutter
frequency fs was set according to following formula:

ts = tm. (3.1)

This means that to achieve square pixels, the time to take one picture must be
equal to the time the drive moves to the position of the next pixel.

fs =
1
ts
, (3.2)

v =
s
tm
. (3.3)

Frequency of the shutter and speed of the drive are trivial.

fs =
v
s
. (3.4)

Units: ts is time required to shoot one picture, one pixel high; [s],
tm is time required for the drive to move one pixel further; [s],
fs is frequency of the shutter; [Hz],
s is length of one pixel; [m],
v is speed of the drive; [m · s−1].

Frequency of the shutter is speed of the drive over desired length of one pixel.
The aim is to achieve the same length as height, as pixels in computer are square
and the image would seem to be compressed or elongated otherwise.

The other approach is experimental; camera scans the calibration sheet sev-
eral times with different shutter speeds and the value is found experimentally.
Due to insufficient documentation on the drive and technical complications tied
to exact measurements of speed and submillimeter lengths, the second approach
was chosen.

When the final image of the calibration sheet is stitched together, the final
resolution may be computed as follows:

r =
l
N
. (3.5)

Units: r is computed resolution; [m],
l is measured length; [m],
N is number of pixels in the measured length; [-].

This setup was able to achieve resolution of 12 µm per pixel. Compared to
standard office copier that scans at 300 d pi which is 84 µm per pixel. That is

20



CHAPTER 3 3.2. Lens

seven times better performance, which allows for very detailed images. How-
ever, this setup has several drawbacks that will be explained further.

3.2 Lens

The ordinary 50 mm Nikon lens with variable aperture was used for prototyping.
There is also close-up lens added to the front to lower the distance between
camera and the observed plane. This also distorts the image on the edges, so for
a trade-off between lower distortion and distance, +4 diopters close-up lens was
chosen.

The 50 mm lens has angle of view equal to 47 ◦that creates 15 cm field of view,
together with the close-up lens. Given that sides of the picture are distorted
and generally out of focus, the resulting working area is even narrower and
the system will need either multiple cameras scanning overlapping strips, or
second linear drive moving the camera perpendicularly to achieve same effect
in multiple passes. To combat out of focus borders, it’s advisable to increase the
aperture. But this allows less light onto the chip, thus requiring stronger lighting
and/or increasing exposure time. The exposure is however limited by the shutter
speed. The camera parameters can be seen in tables 3.1 and 3.2.

parameter value
shutter speed 500 LPS
exposure 1.99 ms

Table 3.1: Fixed settings of the camera.

mode parameter value
fluorescence gain 2047

aperture 5.6

transmission gain 1000
aperture 22

Table 3.2: Variable settings based on the type of lighting.

The gain value is arbitrary 29 number set by API.
Because the aperture inceases the depth of field, the main goal was to increase

it as much as possible. That means increasing exposure to maximum achievable
value and adjusting brightness by gain which should remain as little as possible
to reduce noise. (Exposure times shutter speed is not equal exactly one second
because of the camera’s computation overhead.)

The transmission mode gets more light in the camera so the aperture can be
closed all the way while gain can be on the half of maximum value. Fluores-
cence carries much less light so the aperture must be partially open, while gain
is at maximum.

21



CHAPTER 3 3.3. Ligths

3.3 Ligths

The scanner features two Corona II LED linescan lights, made by german com-
pany Chromasens. They are generally used for linescan cameras as transmission
or reflect lights. While this scanner uses lights with infinite focal length, there
are different focal lengths available.

Figure 3.2: Placement of Transmission and Fluorescence lights. Side view.

3.3.1 Fluorescence

When analyzing the fibre sample, lab assistants use UV light when searching
for defects dyed in Rhodamine. Because Rhodamine has much higher response
to green light, it’s more convinient to use green LED light with narrow spectral
characteristics to excite the dye and then use filter on the lens to let in only flu-
oresced light. The wavelength of green LED diodes in Corona light is 520 nm.
When compared to figure 1.6, the highest peak in absorption spectrum of Rho-
damine is right around this value.

As can be seen on figure 3.2, the green light shines straight on the plane that is
in camera view. Apart from reflection camera, the fluorescence occurs in every
direction and the reflected light from glass plane is avoided.

3.3.2 Transmission

This light sits above the camera, on the other side of moving “C” profile from
camera. It illuminates the working plane and shines straight into the lens. There
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CHAPTER 3 3.4. Filter

is also diffusor cover between the light and the working plane to ensure uniform
distribution of light. That creates bright image in the camera, except for light
blocking objects. They appear as black shadows on bright surface. This is espe-
cially helpful for detection of bundles of threads and thick standalone threads.
The light is white in color so the filter lets at least part of it come through.

3.4 Filter

Among available filters, three were selected and tested as fluorescence filter.
Important properties were amount of fluoresced light gone through (the more
the better) and amount of background light from other sources (the less the
better) such as exciting light, sun, etc.

Comparison of all three filters can be seen in figures 3.3 through 3.5. First
and second filter are single frequency filters with FWHM (full width at half
maximum) of 50 nm. The third filter has two bands, one at 470 nm, the other
one at 645 nm. Second fiter has very little light going through, as the filter’s
wavelength is far from fluoresced one. The third filter has lots of ambient light
shining through the sample. The first filter has the best definition and crisp
edges, so this filter was used for the rest of the experiments.

Figure 3.3: 605 nm. Figure 3.4: 635 nm. Figure 3.5: 470 nm, 645 nm.
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NEURAL
NETWORKS

CHAPTER4
In recent years there has been enormous boom in neural networks with emer-
gence of convolutional neural networks. That allows many possibilities in image
processing; previously too complex tasks are now feasible with use of machine
learning.

4.1 Neural Networks

Artificial Neural Networks (ANN) are an atempt to model vast web of connec-
tions in human brain. First model of neuron – perceptron – has been proposed
in 1958 [14]. After criticism of this mathematical model by Minsky and Pa-
pert [13] whole research field of machine learning stagnated. They proposed
two key issues: current neural networks weren’t able to reproduce simple XOR
logic gate, the second being the computing power required by networks was
beyond what was possible at the time.

New interest in machine learning and ANNs was sparked by Werbos’ back-
propagation algorithm in 1975 [16]. That allowed learning of multilayered net-
works, resulting in overcoming the XOR problem. Also, computing power has
been steadily growing, allowing more complex applications and whole whole
field of study became more accessible for wider audience.

4.2 Convolutional Neural Networks

Second (and recent) advance has come with creating deep convolutional neural
network (CNN) in 2011 [12]. It also models function of animal brain, more
specifically, function of visual cortex, part of brain that processes visual infor-
mation. The network uses little to no standard preprocessing methods and in-
stead is emulating them via complex of interconected convolutions. The weights
of every convolutional kernel are subject to adjustment by the backpropagation
algorithm. That is useful for applications where preprocessing using standard
(non-learning) methods are very complex or even impossible to manufacture.

The convolutional network follows traditional concept of layers. Instead of
using fully conected layers though, that get rid of majority of spatial informa-
tion, convolutional layers are main tool.

4.2.1 Convolutional Layers

They use mathematical operation called convolution, that is usually used in im-
age processing as first step of edge detection, blurring and other applications.

24



CHAPTER 4 4.2. Convolutional Neural Networks

Convolution uses kernel, that is usually hand-picked for specific task. In case
of neural network, each value of this kernel becomes parameter that is affected
by learning and participates in final error of the network for backpropagation
algorithm. This way the previous, deliberately picked kernels, are replaced by
organically evolved substitutes.

It’s possible to visualize the results as seen in image 4.1. It’s much harder to
visualize the kernels in deeper layers. The input image has only three channels
(RGB), but deeper representations can have even hundreds of layers, which is
impossible to show easily in three-dimensional color space.

The convolutional layer also uses strides to determine size of output image. If
the stride is one in each direction, resulting image will be the same as original.
Stride two in any direction means, that every other pixel will be left out as center,
but will participate as border in others. In stride three, for 3× 3 kernels, some
pixels will be left out completely.

Figure 4.1: Example of kernels in first layer of CNN. [17]

4.2.2 Pooling Layers

Every neural network works with enormous amount of data, and with CNNs
even more so. The pooling layers have helped to handle the ammount of pa-
rameters in the network. Most common and generally most effective method is
called max pooling. It takes highest value from area of the picture, say a square
2×2. This done on whole picture effectively downsamples the picture to quarter
its size, lowering number of parameters required in the network.

This also means that some information is inevitably lost by this process.
Therefore it’s important to be aware of this when designing the network.

Another type of pooling is for example average pooling.

4.2.3 Batch Normalization

Batch normalization is process that speeds up learning and allows each layer to
learn independently on the previous layers. It normalizes (subtracts the mean
and divides by standard deviation) currently processed batch. That means, that
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every layer will work with normalized and therefore similar data, so the weights
won’t drift so far from starting location.

4.2.4 Fully Connected Layers

Last part of convolutional network is usually some sort of classification. One of
the ways is to use fully connected standard neural network.

This is however by no means necessary. What the convolutional part of the
network creates in fact is a feature vector, that can be used in numerous ways,
only one of which is neural network. One could as well put any other classifier
at the end, for example SVM (support vector machine) decision trees, etc. On
the picture 4.2 you can see four layers of fully connected network, ending in
1000 categories.

Figure 4.2: Example of CNN architecture (VGG16). [4]

4.3 Fully Convolutional Networks

Usual CNNs create feature vector that can be then classified into single or mul-
tiple classes. But where’s the need for image segmentation instead of classifi-
cation, the standard CNN falls short. That’s where fully connected network (or
FCN) comes.

Instead of having picture with classes associated to it forming the training
dataset, there is now set of two pictures. First one is the original, the second one
is a map of present objects. That allows for finding borders of distinct objects in
the picture, but is also very difficult to get dataset large enough to train this type
of network.

This network consists of convolutional layers, pooling layers and new type of
layer, that is (according to Stanford lectures [5]) called transpose convolution.
It’s sometimes in the literature incorrectly called “deconvolution”.

The transpose convolution uses its filter to project single value to larger field
as explained in figure 4.4. Other types of upsampling include various versions
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CHAPTER 4 4.3. Fully Convolutional Networks

Figure 4.3: Example of fully connected network from Standford lectures [5].

of unpooling, also discussed in the lecture. It can be copying single value to
2×2 fields, or placing a single value in one of the corners of this 2×2 field and
filling the rest with zeros (so-called “bed of nails”).

Figure 4.4: Description of transposed convolution from Standford lectures [5].
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SOFTWARE
IMPLEMENTATION

CHAPTER5
During the lifetime of the project, several programs were written to control var-
ious parts of scanner. While one unified interface is still not created, majority
of the scanning process is automated and controlled by custom software. The
motor came with only a basic library for C, so the effort was made to write more
complete API to operate the drive. Both motor and camera controls are written
in C#, while the neural network was completely written in Python. The deci-
sion and advantages are discussed further. The image preprocessing script was
writen in MATLAB as it was meant to use one time only.

5.1 Motor Control

Company Standa included simple library written for C with only three com-
mands: Open connection, Send command and Close connection. For purposes
of this project, simple library in C# was written to accommodate basic required
tasks, such as move set number of steps, go to either end, set acceleration ramp
and so on. List of commands is presented as an appendix. Because the provided
library is so simple and the communication is a simple protocol across RS-232,
it would’ve been arguably easier to write own library from the ground up.

With the library came also simple demo program allowing to control the mo-
tor via GUI or simple custom terminal. Because the applications were so poorly
created though, they were used only in the initial tests. Custom GUI handling
basic commands had been written in C#.

5.2 Image Aquisition

Basler cameras come with advanced proprietary software, ready to set up any
camera and use it in various modes. It also comes with full library in C# ready to
work with every camera, however custom class specific to Basler Racer had to
be written. It used event system generated by camera to handle every incoming
image and either show it on the monitor, or save it on the disc.

Apart from that, custom GUI, handling both motor control and image aquisi-
tion had been created. It only served test purposes so it had only basic function-
ality, but it allowed to start the motor run and the image aquisition in one button
click.

28



CHAPTER 5 5.3. Image Preprocessing

Figure 5.1: Motor control GUI.

5.3 Image Preprocessing

Resulting images have resolutions around 6000×20000 px, which is unsuitable
for convolutional neural network that accepts input usually in hundreds of pixels
across. That means the input image had to be split into manageable chunks, in
this case 512×512 px large. The images were composed of layer of transmis-
sion image and fluorescence image, separately, but in same manner, true values
were kept. They were created by tracing each defect by hand, making map of
defects in large image. To create training and testing dataset, the resulting im-
ages were rotated and flipped in every direction, effectively creating eight times
larger datasets. The algorithm 1 illustrates the process.

initialization;
while images left in folder do

read fluorescence image;
read transmission image;
create two-channel image;
read true image;
rotate and flip images;
append images to dataset;

end
save dataset;

Algorithm 1: Image preprocessing.

29
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Figure 5.2: GUI controlling both camera and linear drive.

5.4 Neural Network

For the convolutional neural network, the Python programming language has
been chosen. It currently has the largest community of data scientists and pro-
grammers interested in machine learning, provides most backend and frontend
frameworks and has largest ammount of reference material available.

While MATLAB might have been good tool for fast prototyping, Python, with
its data manipulation and data science package, and its availability for free, has
gained ever growing popularity and in field of neural networks with support of
GPUs, is downright superior.

5.4.1 Backend

There are many many choices of backend for CNNs, such as Tensorflow [6],
Theano [7], MXNet [8], CNTK by Microsoft [9], PlaidML [10], etc.

Tensorflow is an open source library for tensor computation. It is developed
by Google and is available for both CPU and GPU computing. GPU is using
CUDA R©, parallel computing platform developed by NVIDIA, running on their
graphics cards. Tensorflow was chosen for familiarity with the framework and
for its popularity.

5.4.2 Frontend

As a Python 3 package, Tensorflow provides frontend suite named Keras. Keras
is a high-level API, written in Python. It runs on top of Tensorflow, Theano or
CNTK. It serves as unified interface, inspired by scikit-learn – another machine
learning Python package – allowing fast prototyping.

5.4.3 Architecture

For the application, the fully convolutional network (FCN) has been chosen
because the output should be in form of an image, highlighting defects. Several
designs has been tested with the final one presented in table 5.1.
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layer type output channels strides note

Conv2D 10 1
BatchNormalization
Conv2D 10 2
BatchNormalization
Conv2D 15 2
BatchNormalization

Conv2D 20 1
BatchNormalization
Conv2D 40 1
BatchNormalization
Conv2D 40 1
BatchNormalization

Conv2DTranspose 20 2
BatchNormalization
Conv2DTranspose 20 2
BatchNormalization
Conv2D 2 1 softmax activation

Table 5.1: Architecture of the FCN.

The network has shape of an hourglass. The stride two halves the resolution
of the image, while the increasing number of channels preserves the amount
of information. In the transposed convolution, the stride two means basically
stride 1/2, which results in doubling the resolution. Every layer uses the ReLU
activation function (nonlinearity), except for last one, which takes the result with
maximum value for each pixel. The padding of each layer has been set so the
original dimensions would be preserved.

5.4.4 Dataset

Due to a time consuming process of defect highlighting in graphical software,
the working dataset was fairly small, which harmed the performance of the net-
work. The original dataset consisted of thirty unique defect images. After en-
hancing dataset by rotating and fliping the images, the resulting dataset had 240
images. Example of the dataset can be seen in figure A.10. Red color is reserved
for true labels, green and blue are for fluorescence and transmission respectively.

5.4.5 Learning

Thanks to Tensorflow and Keras, training the model is matter of calling one
function. The model is generated and initialized with random values. After that,
the training process presents every training sample in batches and continues to
do so for number of epochs. Due to memory constraints, the batch size has
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been quite small – only seven samples. The training process was going for 200
epochs, which even with high-end GPU took about 15 minutes to complete.
After each training session it was possible to save trained model and resumed
training anew. The simple version is shown in the algorithm 2.

initialization;
load dataset;
start learning session;
initialize model;
for i = 0 to epochs do

fit model;
end
clear session;
save model;

Algorithm 2: Model fitting.

Figure 5.3: Model accuracy and model loss.
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TESTS &
PROJECT FUTURE

CHAPTER6
First tests were made on the first scanner prototype to determine the best filter to
use. The results are presented in figures 3.3 through 3.5 and discussed in section
3.4. The figure 6.1 shows the sample that was tested. As was stated before, the
combination of 520 nm light and 605 nm filter was chosen as most suitable.

Figure 6.1: Layer of rhodamine colored fibres between two glass sheets.

Comparing transmission and fluorescence images in figures 6.2, 6.3 and 6.4
show the importance of both modes of lighting, as some defects get completely
lost without the fluorescence light.
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Figure 6.2: Image under transmission light(left) and fluorescence light (right).

Figure 6.3: Image under transmission light(left) and fluorescence light (right).
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Figure 6.4: Image under transmission light(left) and fluorescence light (right). Here would be
the thick fiber completely undetectable without rhodamine coloring.

The final figure 6.5 shows the performance of the network. The first and
second column show both channels of the input image. The third and fourth
images are the same, but inverted, because the discriminator is binary. They
are the predicted data, from which the fourth column is predicted defect. Fifth
column shows the ground truth.

It can be seen that it’s fairly good at recognising well defined structures, either
in transmission, or fluorescence. But it still has troubles in partially obscured
areas. Further development and fine-tuning of the network will be done before
presenting the system to the customer.

Figure 6.5: Prediction of the network. Larger verision available as figure A.11.
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CONCLUSION
The goal of this thesis was to create prototype of scanning bench for defect

detection in SILON’s quality check process of fibre material, to at least partially
automate so far manual process.

Two scanners were built, providing large enough resolution for such task.
Software tools were developed to control the scanner and to aquire images
from it. It’s possible to send commands to the drive and continuously scan
the area using linescan camera.

Several tests were done to choose best lighting and filters to get the best image
possible.

The fully convolutional network was chosen to automatically detect any de-
fects in the fibre, such as bundles of thread or thick, brittle threads. The FCN
was implemented in Python, using Tensorflow and Keras packages.

The functionality of the network was demonstrated on custom made dataset
of fibre defects, proving at least partial ability to find defects and mark them.
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Appendices

Contents of included CD

•

Hardware

Figure A.1: Linear actuator by STANDA R©.

Figure A.2: Standa linear actuator schematics.
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Figure A.3: Linescan camera – front.

Figure A.4: Linescan camera – back.
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Figure A.5: Nikon lens 50 mm.

Figure A.6: Set of close-up lenses.
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Figure A.7: Light filter temporarily fixed to the back side of a lens. Note professional attach-
ment.

Software

List of linear drive commands

• Open(device)

• Close(device)

• Step(steps)

• Goto(left/right)

• Start_speed(speed)

• Max_speed(speed)

42



Motor control GUI by Standa

Figure A.8: COM port selection screen.

Figure A.9: Operating software of STANDA R© motor.
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Dataset

Figure A.10: Example of the training dataset. Red color is for true labels, green and blue are for
fluorescence and transmission respectively.
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Prediction

Figure A.11: Prediction of the network.
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