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ABSTRACT 
The purpose of this study is to prepare lead-free piezoelectric powders and ceramics 

with composition 0.5Ba(Zro.2Tio.s)03-0.5(Bao.7Cao.3)Ti03 and subsequent measurement 
of their physical and electrical properties. This thesis contains a literature review 
about piezoelectric ceramics and their properties, together with a description 
of the experimental approach to the preparation and measurement of properties 
of the samples. Contributions of the thesis are an exact description of the fabrication 
and measurement of properties, determination physical and electrical properties 
of this lead-free piezoceramic and suggestions for further development. The best electrical 
properties were measured on samples sintered at a temperature of 1425 °C, with 
d.33 = 290.5 p C / N , average value of grain size is 46.8 um and relative density of 93.9 %. 

Key words 

lead-free materials, piezoceramics, Bi-doped ceramics, piezoelectric properties, 
piezoelectric materials 

ABSTRAKT 
Účelem této práce je příprava prášku a bezolovnaté keramiky se složením 

0,5Ba(Zro,2Tio,8)03-0,5(BaojCao,3)Ti03 a následné měření jejích fyzikálních a elektrických 
vlastností. Práce obsahuje literární rešerši na téma piezokeramické materiály a jejich 
vlastnosti, společně s experimentální částí, která popisuje přípravu a měření vlastností 
vzorků. Přínosy práce jsou přesný popis výroby a měření vlastností, stanovení fyzikálních 
a elektrických vlastností této bezolovnaté piezoelektrické keramiky a návrhy na další vývoj. 
Nejlepší elektrické vlastnosti byly naměřeny na vzorcích slinovaných při teplotě 1425 °C 
a to d.33 = 290.5 p C / N , průměrná velikost zrn 46.8 um a relativní hustota 93.9 %. 
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bezolovnaté materiály, piezokeramiky, keramiky dopované B i , piezoelektrické vlastnosti, 
piezoelektrické materiály 
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1. Introduction 
Piezoelectric ceramics are key materials in many sensor and actuator applications 

and are used widely in practically all areas of everyday life including transport, energy, 
healthcare, communications and the home environment. The piezoelectric effect was first 
discovered in single crystal materials in the late nineteenth century. But first utilization came 
during the Second Wor ld War with the arrival of new polycrystalline piezoelectric ceramics. 
Since the 1950's Lead Zirconate Titanate (PZT) has been used. [1, 2, 3] 

Lead-based piezoelectric materials have dominated the commercial market 
for electromechanical devices for more than half a century, because of their superior 
piezoelectric properties. However, the environmental pollution caused by highly toxic lead has 
induced an urgent need in developing lead-free piezoelectric materials for the demands 
of various applications. [3, 4] 

In 2009 L i u and Ren published an article about a new piezoelectric composition named 
(l-jc)Ba(Zro.2Tio.8)03-x(Bao.7Cao.3)Ti03, abbreviated as B C T Z . It shows further promise 
in the area of lead-free piezoelectric ceramics as their properties are comparable to standard 
lead-based materials. [5] 
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2. Literature review 

2.1. Piezoelectricity 

2.1.1. Piezoelectric effect 
The piezoelectric effect is the ability of certain materials to generate electric charge during 

distortion. There exists a direct and an indirect piezoelectric effect. The direct piezoelectric 
effect means polarization (P) is developed by a stress (7). It is represented by the following 
formula P = dT, where d is the piezoelectric charge constant. The indirect effect means strain (S) 
is developed by an electric field (E). It is represented by the following formula S = dE. [1,6] 

(i) (") 

Fig. 2.1 (a) The direct and (b) inverse piezoelectric effect: (i) contraction; 
(ii) expansion. The broken lines indicate the original dimensions. [1] 

2.1.2. Ferroelectricity 
Ferroelectric materials are a group of materials which have a spontaneous electric 

polarization, that can by reversed by the application of an external electric field. There are areas 
in material where dipole moments are equally oriented. These dipole moments stay 
in the material even i f we disconnect the external electric field. Direction of the polarization 
vector can be changed by an electric field. Similar type of materials is Pyroelectric materials 
which change their polarization by changing the temperature. Each ferroelectric material has 
a piezoelectric behavior, but not all of piezoelectric materials are ferroelectric materials. [11] 

The ferroelectric materials exhibit ferroelectric behavior only below the phase transition 
temperature (Curie temperature Tc), above this temperature, these materials 
are paraelectric. [2, 11, 12] 
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Fig. 2.2 The subgroups of dielectrics. 

Ferroelectric polarization describes the hysteresis loop, which is dependent of the size 
of polarization (P) on the intensity electric field (£ ) , example of hysteresis loop you can see 
in Figure 2.3. 

Fig. 2.3 Hysteresis loop of ferroelectric material. 

2.1.3. Origin of piezoelectric effect 
Piezoelectric properties are exhibited only in non-centrosymmetric crystals. Crystals 

are composed of ions. Ions in cells without center of symmetry can arrange themselves so that 
the center of the positive and negative charges are not coincident, and can be influenced during 
the application of mechanical stress. It causes the creation of dipoles in material. Such dipoles 
cannot exist in crystals with a center of symmetry. The origin of this effect is in crystal without 
mechanical stress the positions of positive and negative charge centers are the same. During 
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mechanical stress, the positions of the charge centers are changed, creating a dipóle. Dipole 
moments exist in the crystal only during mechanical stress. Overall crystal is still electrically 
neutral, even with a dipole. [1,6] 

The size of created electric charge is linearly dependent on the magnitude of the mechanical 
deformation. [1,2] Of course size of electric charge is dependent on quality of piezoceramic, 
shape and size of the testing piece and size and location action of the external strain. [1,6] 

2.1.4. History of piezoelectricity 
The direct piezoelectric effect was first demonstrated by brothers Pierre and Jacques Curie 

in 1880. Brothers Currie had knowledge of crystallography and both were excellent physicists. 
Using knowledge of the Pyroelectric effect and internal structures of crystals they prepared 
experiments with crystals of Tourmaline (aluminum borosilicate of iron) and the results 
demonstrated the direct piezoelectric effect. [2, 6, 7] Indirect piezoelectric effect was 
mathematically predicted by Gabriel Lippmann in 1881. Later it was proved experimentally by 
brothers Curie. [6] Research culminated in 1910 when Woldemar Voigt wrote a publication 
Crystal Physics, where he described 20 natural crystals, which have piezoelectric properties. 
He rigorously defined their piezoelectric constants. [1, 6, 8] 

The first device containing piezoelectric components was sonar. Sonar was invented in 1917 
during World War I. in France by Paul Langevin. The success of sonar caused further 
development of piezoelectric materials. In the interwar period the piezoelectric parts began 
to acquire usage in other applications such as gramophones and radios. During World War II. 
was invented a new class of synthetic ferroelectric materials, which had significantly better 
piezoelectric properties than natural crystals. Between these materials were BaTi03 
and Pb(Zr x Tii- x )03, abbreviated as PZT. That led to research and development of synthetic 
piezoelectric ceramics. This ceramics quickly received wide usage in radio electronics, 
automation, telecommunication, IT technology, medicine, aviation, aerospace and military 
technology. [2, 6] 

Presently the subjects of research are improving piezoelectric properties, finding new 
lead-free piezoceramics, increasing efficiency amd improve thermal stability. [2] 

2.1.5. Variables and constants 

o Mathematical description 
Piezoelectricity is the combined effect of the electrical and mechanical behavior 

of the material [9, 10]: 

D = e * E, (1) 
S = s*T, (2) 

where D electric induction, 
e permittivity, 
E electric field strength, 
S mechanical strain, 
s elastic compliance, 
T mechanical stress. 

o Permittivity 
Permittivity is degree of proportionality between the intensity of the electric field (E) 

and the electric induction (D) inside the dielectric. Designation of absolute permittivity is e. 
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Absolute permittivity is product of multiplication of the permittivity of vacuum 
(so = 8.854-10"12 Fm" 1) and the relative permittivity of the material (sr). [9] 

When describing piezoelectric ceramic is often used dielectric constant KT. [1, 6, 9] 

[-1 (3) 

where £33 permittivity is indicate under constant mechanical stress in the third 
axis. 

o The piezoelectric charge coefficient 
This coefficient has designation d. Another possible designation is dy, where i is the axis 

in which the electric charge is generated and j is the axis in which the mechanical stress 
is applied or observed. This coefficient describes size of electrical charge, which is generated 
in material under mechanical stress. This coefficient is the most important for piezoelectric 
materials. [1,9] 

o Young's modulus of elasticity 
The modulus of elasticity describes the elasticity of material. It is the ratio of mechanical 

stress and mechanical deformation. Designation of the modulus is E. [6] 

d = 
strain development short circuit charg edensity 

[ p C * N _ 1 (4) 
applied electricfield applied mechanical stress 

a mechanical stress 
E =- = 

e relative deformation 
[Pa] (5) 
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2.2. Piezoelectric materials and applications 
A boom of piezoelectric materials began in the twentieth century during the 1950s 

and 1960s. A t that time research and mass production were started. Previously, it was only 
possible to gain piezoelectric components from natural crystals. Currently, piezoelectric 
components are made from polycrystalline substances called piezoceramics and are produced 
industrially. [6] 

The research focuses on improving properties, like better temperature stability, better 
efficiency or lower supply voltage. Last but not least, much of the research is dedicated 
to finding new and better materials. [6] 

2.2.1. Piezoelectric effect in crystals 
Crystals were the first materials to be discovered with piezoelectric properties. 

Among the most popular materials belonged to the sixties of the twentieth century. The most 
famous of these crystals are quartz (Si02) and Tourmalines. Another used minerals 
were Lithium niobate (LiNbCb), Berlinite ( A I P O 4 ) , Lithium tantalate (LiTaCb) or Germanium 
bismuth (Bi i 2 Ge0 2 o) etc. [6, 13] 

• Tourmalines 
Tourmaline is mineral occurring in nature in many modifications. Piezoelectric behavior 

was first demonstrated on the Tourmaline. Its symmetry is oriented only to the axis z. 
Tourmaline is used for example in sensors. Tourmaline has similar properties like quartz, but it 
is very dependent on the temperature because it has pyroelectric behavior as well . [6] 

• Quartz 
Quartz is one of the most common minerals in the earth's crust. It was the first industrially 

used piezoelectric material. Quartz is chemically resistant and it has good mechanical properties 
and it is resistant to high pressures. Quartz was originally mined from the nature. However their 
properties are not suitable for commercial applications. Therefore, the technically used quartz 
is produced artificially. Advantages of quartz are stability even at high temperatures 
(about 573 °C), high hardness etc. Disadvantage is worse piezoelectric properties 
than piezoceramics. [6] 

2.2.2. Piezoelectric ceramics 
Piezoceramics are artificially created materials with piezoelectric properties. They 

are polycrystalline materials. Artificially produced piezoceramics have an exact 
composition. [6] 

First of piezoceramics were barium titanate (BaTi03) , lead titanate (PbTiCb), lead zirconate 
(PbZrCb) and of course the most widely used combination of these compositions P Z T 
(Pb(Zr xTii- x)03). These materials have better properties and lower price than piezoelectric 
crystals for some applications. Therefore piezoceramic acquires wide use in various 
applications. Most of these materials have the Perovskite structure, which imparting good 
piezoelectric properties. [14] Advantage of piezoceramics is high value of piezoelectric 
constants. The biggest disadvantage of this material is relatively low Curie temperature. [6] 

2.2.3. Perovskite structure 
Name for this group of structures comes from the name of nature mineral Perovskite 

(CaTiCb) which has this type of structure. This structure is adopted by many oxides. Perovskite 
structure has the chemical formula A B O 3 . In basic cubic cell A and B most often represent 
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cation with oxidation number +2 and cation with oxidation number +4, respectively. 
O is oxygen with oxidation number -2. [2] 

Fig. 2.4 Basic cell of perovskite structure. [2] 

Materials with perovskite structure exhibit many interesting properties. For example 
colossal magnetoresistance, ferroelectricity, superconductivity etc. [2, 11] 

2.2.4. Morphotropic phase boundary 
The term M P B (Morphotropic phase boundary) was previously used for area of chemical 

composition of the solid solution, where in wide temperature range two phases can coexist. [2] 
Nowadays, M P B is used to refer to the phase transition between the tetragonal 
and the rhombohedral ferroelectric phases as a result of varying the composition or as a result 
of mechanical pressure. [11] 

Just around M P B material has the best piezoelectric properties. Therefore we try 
in the production of piezoelectric materials to obtain chemical composition close 
to the M P B . [2] Common ferroelectric materials which use M P B are complex-structured solid 
solution. The most widely used piezoelectric material is system based on Pb(Zn- x TL)03 (PZT), 
a solid solution of PbZr03 and PbTiCb as shown in F ig 2.5. 

5001 1 1 ' r 

Fig. 2.5 Phase stabilities in the system Pb(Tii- x Zr x )03. [1] 
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2.2.5. Curie temperature 
Different piezoelectric materials have different Curie temperature (Tc). For example PbZrCb 

has Tc = 230 °C, P b T i 0 3 has Tc = 490 °C and B a T i 0 3 has Tc = 130 °C. Disadvantage of current 
lead-free piezoelectric ceramic is its low Tc only about 100 °C. This temperature is critical 
for piezoelectric behavior, because Tc is the interface between ferroelectric and paraelectric 
phases of material. This means the ferroelectric of piezoelectric material loses its beneficial 
properties. A t this temperature the crystal structure changes from non-symmetrical 
to symmetrical and this transformation causes loss of piezoelectric and ferroelectric 
properties. [2, 5, 9, 11] Note that the direction of polarization is different in the different 
ferroelectric phases (Fig 2.6). 

Fig. 2.6 Changes of crystal structure ofBaTiCbdepending on the temperature. [1] 

2.2.6. New developments 

> Polymers 
Piezoelectric behavior of these materials was discovered at 1969. The most widely used 

of these materials are polyvinylidenefluoride (PVDF) and difluoropolyethylene ( P V F 2 ) . 
Piezoelectricity occurs in polymers due to anisotropy. Part of the polymer is in the form 
of crystals and part is in the form amorphous chains. Polymers have better piezoelectric 
properties than quartz. Their advantages are the possibility of working with high voltage, easy 
production, pliability and elasticity. Organic polymers are used for sensitive sensors 
of vibration. [6, 13] 

> Ceramic-polymer composites 
Composite piezoelectric materials are materials, in which at least one component has 

piezoelectric properties, and the resulting properties are usually better than either 
of the materials individually. Composite foundation is usually ceramic, but it is not the rule. [6] 

Connection of polymer and piezoceramic can mean resolving the disadvantages of both 
materials. Ceramics are fragile and hard but have better piezoelectric properties than polymers. 
Polymers are flexible and tough. Composite technology in general sets out to combine materials 
in such a way that the properties of composite are optimum for a particular application. 
The property, whether mechanical, thermal, electrical etc., is determined by the choice 
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of component and their relative amounts and, most importantly, the 'connectivity', 
that is the manner in which the components are interconnected. [1] 

There are eight different types of two-phase piezocomposites (0-3, 1-3, 2-2, 2-3, 3-0, 3-1, 
3-2 and 3-3). The firs number in the notation denotes the physical connectivity of the active 
phase and the second number refers to the physical connectivity of the passive phase. [18] 
There are two commonly used connections, 0-3 and 1-3. [1] 

particles in a polymer 
(0-3) 

laminated composite 
(2-2) 

perforated composite 
(3-1) 

perforated composite 
(3-2) 

transverse poled composite 
(2-2) 

honeycomb composite 
(3-1 S) 

replamine composite 
(3-3) 

ffiW € ^ 
PZT spheres in a polymer diced composite 

(1-3) (1-3) 

PZT shell 
(2-3) 

honeycomb composite 
(3-1 P) 

BURPS composite 
(3-3) 

PZT rods in a polymer 
0-3) 

d̂ j honeycomb 
(3-1) 

ladder structure 
(3-3) 

Fig. 2.7 Connectivity of constituents in piezoelectric ceramic-polymer composites. [18] 

• Composites with 1 -3 connectivity 
The composites with 1-3 connectivity are the most studied and utilized of all 

the two-phase connectivity types. This composite consists of individual P Z T rods 
or fibers aligned in a direction parallel to the poling direction and surrounded 
by a polymer matrix. The rod diameter, rod spacing, composite thickness, volume 
percent of rods, and polymer compliance all influence the composite 
performance. [18] 

• Composites with 0-3 connectivity 
Composites with 0-3 connectivity consist of a random array of piezoelectric 

particles dispersed in a 3D polymer matrix. The primary advantage of these 
composites is their ability to be formed into shapes while remaining piezoelectrically 
active. [18] 
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2.2.7. Types of piezoelectric components 
In applications piezoelectric materials can be formed of one or multilayer structures. [6] 

• Unimorphs 
Unimorphs are made of metal plate bonded to a piezoelectric layer and contacts. Unimorphs 

are used in electroacoustic transducers and sensors of non-electrical quantities. [13] 

• Bimorphs 
Bimorphs are made of two piezoelectric layers. It can be combined with other materials 

such as metal plates or plastics. There are two possible connections, series connection 
and parallel connection. Bimorphs are used in actuators and sensors. [9, 13] 

• Multi-layer materials 
Multilayered piezoelectric components with high energy conversion efficiency. Multi-layer 

materials are used in actuators in low-energy applications and applications with large 
displacements whist requiring low actuating voltages. [13] 

Fig. 2.8 Cantilever bimorphs showing (a) series connection and (b) parallel 
connection of beams. [1] 
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2.2.8. Applications of piezoceramics 
Piezoceramics have wide usage.in a range of applications as shown in Figure 2.9. Some 

applications for example ultrasound transducers utilize both the direct and the indirect 
piezoelectric effects. Important applications wi l l be further discussed in more details. 

Piezoelectric 
elect 

Direct effect 

I 
Static 

sensors 
Generators 
of charge Resonators 

Indirect effect 

Force, 
accelaration Ultrasound RF technique Rezonant 

sensors 

Actuators 

Nonresonant Rezonants 

Ultrasound 
probes, 

sonochemistry 

Quartz 
watches 

Detectors of 
gas and 

chemicals 

Fold 
structures 

Ultrasound 
engines 

Fig. 2.9 Division of uses the piezoelectric effect. [6] 

• Generators 
These systems use mechanical energy from the surroundings, such as vibration, acoustic 

noise, movement of the human body and can generates electric charge, which can then be used 
to generate a voltage. [6] 

Piezoelectric generators are several types. Pressure piezoelectric generators operate 
on the principle of compression. During compression a small voltage is generated. This type 
of generator is used for example in the gas lighter or in heels of shoes. During the walk you can 
generate power. Vibration generators use vibration of the surroundings. There are three types 
of vibration piezogenerators. First type uses vibration from seismic inertia. Resulting electric 
charge is generated by compressing and stretching of piezoelectric component. Electric charge 
is directly proportional to stress. The second type uses torsional oscillations of piezoelectric 
rollers. The third type uses fixed beam, which free end oscillates and piezoelectric component 
is stretched and compressed, for example using the cantilever structures described above [6] 

• Sensors 
Sensors convert vibrations, upheavals, pressure or acoustic waves to the electric signal. 

They are usually small and very sensitive components. The ability to capture even the most 
subtle vibrations is more important than the production of power. It is difference between 
generators and sensors. L ike piezoelectric materials in sensors are used for example quartz 
in certain crystallographic orientations, piezoelectric composite or polycrystalline ceramics. [6] 
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Piezoelectric sensors are used in safety sensors, sensors of sound in acoustic guitars, 
pressure gauges etc. [6] 

• Motors and actuators 
Piezoelectric actuators are used in applications with A C power with excitation which has 

own value of frequency. Microactuator produces movement which creates piezoelectric motor. 
Linear or rotary movement of the engine is achieved by friction forces. Friction forces 
are a result of generated displacements. These motor can be used only for small movements. 
Advantages of piezoelectric motors are high density of power, precise control, quiet operation, 
absence of magnetic field and construction simplicity. These components are used for example 
in printers and microengines. [6] 

Magnified displacement 

I 
Fig. 2.10 The 'Moonie ' actuator. [1] 

• Sonic and Ultrasonic devices 
Sonic or ultrasonic waves are energized and received by piezoelectric transducer. Incoming 

wave is changed to electric signal in the transducer and conversely acoustic energy can be 
produced by the application of a suitable electrical impulse. Properties and quality 
of the generated waves are given by shape and the ratio of characteristic dimensions 
of the piezoelectric body to wavelength. Important parameter of transducer is his resonant 
frequency. These devices are used in microphones, speakers, buzzers, sonars etc. [6] 

Two 'PZT' toroids poled in 
opposite senses 

as indicated 

Fig. 2.11 The essentials of a power transducer for ultrasonic cleaning (the component 
is cylindrically symmetrical about the vertical axis). [1] 
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2.3. Fabrication of piezoelectric ceramics 
The objectives of fabrication are to produce: [1] 

1. a material with specific properties 
2. a body of a required shape and size specified dimensional tolerances 
3. the required component at an economic cost 

Properties of ceramic are affected by composition, purity, grain size, porosity and density 
of the sintered ceramic. Fabrication of piezoceramics has big impact on the resulting properties 
too. The most important steps during fabrication are calcination and sintering. During these 
processes the free energy of the system goes down. New phases are formed, the particle surface 
area decreases and grain size increases. Always the sample shrinks. It is important 
that the sample shrinks throughout the volume as well otherwise the shape w i l l be distorted. [1] 

The fabrication process comprises five stages: [1] 

1. The specification, purchase and storage of raw materials 
2. The preparation of a composition in powder form 
3. Forming the powder into a shape 
4. Densification 
5. Finishing 

2.3.1. Solid state route 
Process begins with precision weighing of raw materials followed by mixing and grinding 

of these materials. Raw materials must be high purity about 95.5 %. The impurities cause 
degradation of the properties. Starting materials are oxides for example PbO, ZrCh and TiCh 
to produce P Z T powder or BaCCb, BaO and T1O2 to produce BaTiCb powder. Quantity 
of oxides is calculated by stoichiometric ratio dependent on the desired composition. 
The weighed powders are ball - milled on a horizontal mi l l in an aqueous or non-aqueous 
solution with milling media, where mixing and milling of the powders is achieved. The particles 
of powder are mixed up and big agglomerates are broken down. The next step is calcination 
at elevated temperature. During calcination, a chemical reaction takes place to form 
the appropriate solid solution with the required composition and phase structure. 
After calcination the calcined powders are milled again in aqueous or non-aqueous solution 
with mill ing media. After each milling the mixture must be thoroughly dried. The milling media 
must be cleaned thoroughly after each milling and dried to prevent any possible contamination. 
The particle size is measured during the milling process to be able to control and achieve 
the required particle size for further product development. The sizes of the particles vary from 
1 to 10 pm. The last step is the addition of organic binders (for example P E G , P V A ) which wi l l 
allow much better shaping or forming of the powders to the desired shape. Shape of green body 
is created by pressing into molds, extruding or tape-casting, depending on the shape required. 
In Figure 2.12 can be seen a schematic diagram of uniaxial dry pressing. Other methods can be 
seen in Table 2.1. [1,2, 17] 
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Tab. 2.1 Feed materials for various shaping methods and the type of product. [1] 

Shaping method Type of feed material Type of shape 

Dry-pressing Free-flowing granules Small simple shapes 

Isostatic pressing Fragile granules Large more intricate shapes 

Calendering; viscous Plastic mass based on an 
plastic proccesing elastic polymer 

Thin plates; Simple shapes 

Extrion 
Plastic mass using a viscous Elongated shapes of constant 

Extrion 
polymer solution cross-section 

Jiggering Stiff mud containg clay Large simple shape 

Injction moulding 
Organic binder giving fluidity 

when hot 
Complex shapes 

Slip-castig Free-flowing cream Mainly hollow shapes 
Band-casting Free-flowing cream Thin plates and sheets 

Screen-printing Printing ink consistency Thin layers on substrates 

Fig. 2.12 The stages in dry pressing. [1] 

After shaping the ceramics are ready to be sintered. The sintering is a process for forming 
a dense mass by heating compacted powders. [12] The binder burns out at high temperature 
around 500 °C, depending on the type of binder. The density grows and size of pores decreases 
during sintering of samples. Finished samples can be conventionally machined to the desired 
shape. The last step of fabrication is deposition of electrodes (sputtering of A u or Pt electrodes 
or method called screen-plating) and poling. Solid state route is commercially the most widely 
used method of preparing electroceramic components. [1,2, 17] 
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2.3.2. Calcination 
Calcination causes the constituents to interact by interdiffusion of their ions and so reduces 

the extent of the diffusion that must occur during sintering in order to obtain a chemically 
homogeneous body. The calcination conditions are important factors controlling the fabrication 
process. The required final phases may not be completely formed but the remaining chemical 
gradients may assist sintering. The main requirement is that calcination should yield a very 
consistent product. Calcination can be carried out by placing the mixed powders in crucibles 
in a furnace. The surface of crucible is in immediate contact with the powder and is made 
of inert material such as AI2O3 or Zr02. The calcined material has usually undergone a limited 
amount of sintering and must be milled to reduce the particle size in order to give a powder 
or slip suitable for the shaping stage. [1] 

2.3.3. Sintering 
Sintering is the high-temperature treatment that causes particles to join, gradually reducing 

the volume of pore space between them. Wi th finer particles, many atoms or ions 
are at the surface for which the atomic or ionic bonds are not satisfied. As a result, a collection 
of fine particles of a certain mass has higher energy than that for a solid cohesive material 
of the same mass. Therefore, the driving force for solid state sintering of ceramics 
is the reduction in the total surface area and surface energy of the powder particles. When 
a powdered material is compacted into a shape, the powder particles are in contact with one 
another at numerous sites, with a significant amount of pore space between them. In order 
to reduce the total energy of the material, atoms diffuse to the points of contact, bonding 
the particles together and eventually causing the pores to shrink. Lattice diffusion from the bulk 
of the particles into the neck region causes densification. Surface diffusion, and lattice diffusion 
from curved surfaces into the neck area between particles do not lead to densification, but can 
contribute to the overall sintering process. [12] 

Compacted product Partly sintered product 

Fig. 2.13 Diffusion processes during sintering. Atoms diffuse to points of contact, 
creating bridges and reducing the pore size. [12] 
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2.3.4. Poling of piezoceramics 
P Z T ceramics are polycrystalline materials with various grain sizes. Ferroelectric materials 

like P Z T contain domains in grains. Domains are areas of material where polar axis has different 
orientations within the allowed range of directions in the crystal system during 
the transformation from the paraelectric to ferroelectric phase. Ceramics with-unpoled domain 
structure do not show an overall piezoelectric effect. In a raw ceramic the spontaneous 
in the grains has different directions. This is caused by the random orientation of the grains. 
The domain structure can be changed by mechanical stress and electric field. In practice, 
the electric field (about 2 to 4 kilovolts per millimeter) is applied to the ceramics material 
and polarization occurs, with the polarization directions of the individual grains aligning 
as close as possible to the applied electric field. The best overall polarizability is attained 
in a material with chemical composition near the M P B , resulting in the best piezoelectric 
properties. It is necessary to add that all types of piezoceramic have to be poled to obtain their 
required piezoelectric properties. [1, 2, 7] 

a) Random orientation 
of polar domains 

b) Polarization in D C electric 
field 

c) Remanent polarization 
after electric field 
removed 

Fig. 2.14 Polarization (poling) a piezoelectric ceramic. [7] 

2.4. Lead - based piezoceramics 
Lead based piezoelectric materials are the most widely used, due to the favorable price 

and excellent properties. The problem with this material is that it is very difficult to recycle. 
Therefore toxic lead escapes to nature and causes pollution. The European Union has tried 
to prevent the use of lead based materials, therefore the development of new lead free 
piezoceramics is required. [1, 2, 4, 9] 

2.4.1. PZT ceramics 
Composition P Z T is composed solid solutions of PbZr03 (PZ) and PbTiCb (PT). P Z T has 

Curie temperature between 230 and 490 °C depending on the ratio of content of P Z 
and PT. [1,2] 

P Z T composition was invented in the 1950's and development continued during the 1960s. 
A t that time, very good material properties were discovered and P Z T ceramics are among 
the most industrially produced piezoelectric materials. Pure P Z has trigonal symmetry and pure 
PT has tetragonal symmetry. P Z T has perovskite structure. P Z T has a composition given 
by the following formula Pb(Zr xTii- x)03, where most often x = 0.48 - 0.52. The Morphotropic 
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phase boundary ( M P B ) exists in the range 0.455 < x < 0.48 at room temperature. A t graph 
in Figure 2.15 we can see, that around M P B P Z T has high value of sr and kp. [1, 2, 4, 5] 

The P Z T composition can be doped with a small amounts of other elements in order 
to improve some properties. Typical concentration of dopants are 0.05-5 at.%. It must result 
in the formation of dipolar pairs between an appreciable fraction of the dopant ions 
and the vacancies. P Z T ceramics can be doped with ions to form "hard" and "soft" PZTs. 
It is necessary to take into account that some elements w i l l strengthen the desired property 
but worsen another. Most used dopants are La , Nb and, Sr. [1, 15] 

Advantages of P Z T are good stability and high piezoelectric constants. Disadvantages 
are difficult processing, anisotropy of electromechanic properties and of course lead content. [6] 

o Soft PZT 
Soft P Z T is created by donor elements, which are added to composition. Donor is element, 

which has one electron more than the ion it replaces. For example in place of bivalent ion A 2 + 

is added trivalent ion, like L a 3 + , B i 3 + or N d 3 + . In place of quadravalent ion B 4 + is added 
pentavalent ion, like N b 5 + or Sb 5 + . This leads to the creation of site A site vacancies 
in the lattice. [6, 15] Donor - cation vacancy combinations can be assumed to have a stable 
orientation so that their initially random state is unaffected by spontaneous polarization 
or applied fields. [1] 

Advantages of this type of ceramic are higher charge constant, higher permittivity 
and the ability to achieve greater mechanical deformation than hard piezoelectric ceramics. Soft 
piezoceramics are used for sensors of vibration and in acoustics. Disadvantage is low resistance 
to depolarization, and high losses due to domain wall movement. Due this problem it is not 
suitable for high electric voltage applications. [6, 15] 
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o H a r d P Z T 
Hard P Z T arises when acceptor ions are added to the composition. A n acceptor ion has one 

electron less than the ion it replaces. For example in place of bivalent ion A 2 + is added 
monovalent ion, like A g + or K + . In place of quadrivalent ion B 4 + is added trivalent ion, like 
F e 3 + , N i 3 + or M n 3 + . This is compensated for by the creation of oxygen vacancies 
in the lattice. [6, 15] Acceptor - oxygen vacancy combinations are likely to be less stable 
and thermally activated reorientation may take place in the presence of local or applied fields. 
The dipoles, once oriented in a common direction, w i l l provide a field stabilizing the domain 
structure. [1] 

Advantages of this type of ceramic are high stability, high resistance to depolarization, high 
value of voltage constant gy, high mechanical quality factor and low dissipation factor tanS. 
Due to its properties, this material is suitable for high performance applications and applications 
working with high mechanical stress and high electric voltage. [6, 15] 

2.4.2. Fabrication of PZT 
The most used method of fabrication of P Z T ceramics is via the solid state route. During 

addition of oxide powders we want as accurate as possible composition based on stoichiometric 
coefficient of required composition. The best properties have ceramics with exactly required 
composition, without impurities and with high density. Therefore, there is a need careful control 
at all process stages. [1] 

Basic oxide of this composition is PbO, which is volatile at temperature above 800 °C 
but sintering temperature is between 1200 °C and 1300 °C. Therefore calcination and sintering 
is usually carried out in covered crucibles with PbO-rich atmosphere (components surrounded 
by PbO-rich powders e.g. PbZrCb). Content of PbO have to be compensated by an addition 
to the starting material. Other important powders are Ti02 and Zr02. The Ti02 powder reacts 
rapidly with PbO, and the resulting titanates only take up Z r 4 + ions slowly from unreacted Zr02. 
These reactions occur in the solid state at temperature above 800 °C. The result is solid solution 
PZT. [1] 

Next step is shaping and sintering. The sintered component should have a density higher 
than 95 % of theoretical density and a grain size in range from 5 to 30 urn. Silver electrodes 
are painted to the desired location and fired on at 600 - 800 °C. N i - C r or gold electrodes 
are sputtered or evaporated. Last step of fabrications is poling. [1,2] 
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Fig. 2.16 Diagram of the fabrication process. [16] 

2.5. Lead - free alternatives 
The use of lead-based materials w i l l be prohibited by the environmental regulations 

of the waste electrical and electronic equipment directive and the restriction of hazardous 
substances in Europe. [3] These regulations escalated a big boom in research of new lead free 
piezoelectric materials. There are previously known piezoelectric materials for example Quartz 
and BaTiCb. A n d there are new piezoelectric ceramics for example 
(l-x)Ba(Zr0.2Tio.8)03-x(Bao.7Cao.3)Ti0 3 (BCTZ) , Bi 0 .5 (Na x Ki- x )o .5Ti0 3 ( B N K T ) , (K, N a ) N b 0 3 

( K N N ) or piezoelectric polymers in the development, but so far no lead free equivalent of P Z T 
was found. 
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2.5.1. The comparison of selected piezoceramics 

Tab. 2.2 Typical values of the properties of some piezoelectric materials. [1] 

Property Unit a-Quartza BaTi0 3 PZT A b P Z T B b PbNb 2 0 6 \ Ia 1 / 2 K 1 / 2 NbO : LiNbO/ LiTaO/ PbTi0 3

c PVDF 

Density M g m 3 2.65 5.7 7.9 7.7 5.9 4.5 4.64 7.46 7.12 

T °C 130 315 220 560 420d 1210 665 494 80 (film) 
X 

E r33 4.6 1900 1200 2800 225 400 29 43 203 10 
X 

£ rll 1600 1130 - - 600 85 53 -

tan5 10 3 7 3 16 10 10 - - 22 0,01 (film) 

k P 
0.38 0.56 0.66 0.07 0.45 0.035 0.1 -

k3i 0.21 0.33 0.39 0.045 0.27 0.2 0.07 0.052 
k 3 3 0.49 0.68 0.72 0.38 0.53 0.17 0.14 0.35 

k i 5 
0.44 0.66 0.65 - - 0.61 - 0.36 

(ll) e0.1 

kjk (ll) e0.05 
d 3 1 -79 -119 -234 -11 -50 -0.85 -3 -7.4 

d 3 3 pCNT1 190 268 480 80 160 6 5.7 47 

d i 5 
270 335 - - -50 69 26 -

djk (ll) e2.3 
(ll) e0.67 

d„ 14 

Qm >106 500 1000 50 11 240 - - 326 
E 

S 11 12.8 8.6 12.2 14.5 29 9.6 5.8 4.9 11 
E 

S 12 um N" 1 -1.8 -2.6 -4.1 -5.0 - - -1.2 -0.52 -
E 

S 13 -1.2 -2.9 -5.8 -6.7 -5 to-8 - -1.42 -1.28 -
E 

S 3 3 

9.6 9.1 14.6 17.8 25 10 5.0 4.3 11 
E S 44 20.0 23 32 - - - 17.1 10.5 -

a Single crystals. 
b PZT A and PZT B are two typical PZT materials illustrating, in particular, the range of achievable Q m values. 
c + 5 mol% Bi 2 / 3 Zn 1 / 3 Mb 2 / 3 0 3 . 
d Depots above 180 °C. 
e Numbers in parentheses are jk values. 
PZT A is Hard PZT and PZT B is Soft PZT 

2.5.2. BaTiOa 
BaTiCb was the first developed piezoelectric ceramic material. Due to its properties it was 

used in area of the generation and detection of acoustic and ultrasonic energy. In most 
commercial sectors it was replaced by P Z T which had superior performance. Structural 
transitions of this type of piezoceramic are accompanied by changes in electrical 
and mechanical properties. Technically pure BaTiCb has a high loss at high field strengths 
which is required to generate useful ultrasonic powers. BaTiCb doped with Co is used 
for producing high acoustic powers despite its inferior piezoelectric activity. Properties 
and the transition temperature can be affected by substitutions on the A and B sites. 
The substitution of Pb and Ca for B a decreases the transition temperature and affects 
the piezoelectric properties around 0 °C which is important for underwater detection and echo 
sounding. The substitution Zr or Sn for T i increase working temperature. [1] 
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2.5.3. BiosNaosTiOa 
The composition Bio.sNao.sTiCb has an abbreviation B N T and it is piezoelectric ceramic. 

B N T is one of the candidates to replace P Z T ceramics in the future. It has a perovskite structure 
with rhombohedral symmetry at room temperature. B N T shows strong ferroelectric properties 
with a relatively high Curie temperature at about 320 °C and large remnant polarization 
of about 38 \xC/cm. Compared with PZT, B N T possesses high anisotropic electromechanical 
coupling properties. It used in ultrasonic applications due to its characteristics. B N T is more 
interesting piezoelectric material than BaTiCb because BaTiCb has relatively high sintering 
temperature. B N T is mostly prepared by solid state reaction routes with conventional sintering 
for easy synthesis and low cost. For this type of piezoceramic sintering at high temperatures 
unsuitable as both the N a and B i are quite volatile. The low sintering temperature is required 
to maintain the stoichiometry or nominal composition with a corresponding reduction of energy 
consumption. [19] 

2.5.4. (K,Na)Nb0 3 

The composition (K, Na)Nb03 has an abbreviation K N N and perovskite structure like most 
of piezoelectric materials. Most often there are potassium and sodium in the ratio approximate 
to 1:1. K N N ceramic passes through three phase transformations. A t room temperature it has 
an orthorhombic phase at low temperature (under 123 °C) it has a rhombohedral phase, between 
200 °C and 410 °C it has tetragonal phase and above 410 °C (the Curie temperature) it has 
a cubic phase. There is a problem of K N N ceramic different phases has different properties 
and it is another possibility for research. Of course the position of the phase transformations 
can be changed by other elements. Pure K N N ceramics have a low d.33 coefficient of about 80 
p C / N . Good properties and value of d.33 between 200 and 300 p C / N , K N N can be obtained 
after doping with other elements like L i , Ta and Sb. It also has relatively high Curie 
temperature. K N N ceramics can be used in the future in high-frequency ultrasonic transducers 
and surface acoustic wave devices. [20] 

2.5.5. Bio.5(NaxKi-x)o.5Ti03 

The composition Bio.5(Na xKi- x)o.5Ti03 is represented by abbreviation B N K T . It is lead free 
piezoelectric ceramic. Among the lead-free piezoelectric ceramics that have been developed, 
Bio.sNao.sTiOs (BNT) and Bio.sKo.sTiCb ( B K T ) systems have received a great deal of attention 
due to their excellent ferroelectric and piezoelectric properties, as well being close 
to rhombohedral-tetragonal (MPB) compositions. In the B N T - B K T binary system, 
the tetragonal Bio.5(Nao.7sKo.22)o.5Ti03 side of the M P B composition possesses high electric 
field-induced strain and excellent electromechanical properties, and therefore can be considered 
for actuator applications. [21] 

According to the literature B N K T was sintered at temperatures from 1075 °C to 1175 °C. 
The density was increased to temperature about 1150 °C. A t 1175 °C the density declined 
sharply as can be seen in figure 2.17. The lower density of the B N K T ceramics sintered 
at 1075 °C is due to poor atomic diffusion and insufficient sintering of the ceramics. It has been 
demonstrated both theoretically and experimentally that the number of vacancies increases 
with increasing in sintering temperature. As a result, better atomic diffusion during the sintering 
process occurs and thus, promotes densification. However, the low density at a higher sintering 
temperature of 1175 °C may be due to evaporation of the volatile alkali metal. [21] 
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Fig. 2.17 The bulk densities of B N K T ceramics as a function of sintering temperature. [21] 

B N K T ceramics sintered at an optimal temperature of 1150 °C showed high remnant 
polarization (Pr = 18.5 uC/cm 2 ) and dynamic piezoelectric coefficient ( J 3 3 * = 247 pm/V). 
These results can be attributed to the high density and larger grain size of B N K T ceramics 
sintered at 1150 °C, both factors affecting the piezoelectric properties. [21] 

B N K T is used as a dopant or it is doped with other elements or compositions. The literature 
described doping of B N K T by BCTZ. It is represented by this chemical formula 
(l-jc)Bio.5i(Nao.82Ko.i8)o.5Ti03-Jc(Bao.85Cao.i5)(Tio.9oZro.io)03. Temperatures of phase transitions 
were strongly independent on the BCTZ content. The sintering temperature 
and the poling electric field strongly affect the piezoelectric properties. A n optimum electrical 
behavior of d33~ 205 and kp ~ 0.25 was demonstrated in the ceramic with x = 0.02 when sintered 
at 1180 °C and poled at an optimum electric field. [3] 

2.5.6. (l-x)Ba(Zro.2Tio.8)03-x(Bao.7Cao.3)Ti03 
The abbreviation is BCTZ. Its composition and properties follows the ceramic discovered 

by L i u and Ren. They presented lead-free pseudobinary ferroelectric system 
(l-x)Ba(Zro.2Tio.8)03-x(Bao.7Cao.3)Ti03, or abbreviated ( l - x ) B Z T - x B C T where x is the molar 
percent of B C T . They used a conventional solid state reaction method, calcination temperature 
1350 °C and sintering temperature from 1450 °C to 1500 °C in air. B y measuring they 
discovered the existence of C - R - T triple point situated at x ~ 32 % and T~ 57 °C as can be seen 
in figure 2.18. Around the triple point they measured very good piezoelectric properties. They 
measured high spontaneous polarization, high permittivity and high d.33. The relative 
permittivity was comparable with soft P Z T materials (e ~ 3060). Value of CI33 was measured 
between 560 and 620 p C / N depending on poling conditions. This high d.33 value even exceeds 
that of many soft PZTs. [5] 
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Fig. 2.18 (a) Phase diagram of pseudobinary ferroelectric 
system Ba(Zro.2Tio.8)0"3-(Bao.7Cao.3)TiO"3,abbreviated as 
B Z T B C T . (b) - (d) Dielectric permittivity curves for 20BCT, 
50BCT and 90BCT, respectively. [5] 

Different authors are interested in the study of this material. They published many scientific 
articles on the topic. They dealt with properties of B C T Z with exact chemical composition and 
dependence of properties on sintering and calcination temperatures and searching for ideal 
values of these temperatures. They used BaCO"3, CaCCb, ZrO"2 and TiO"2 as raw materials 
and they worked with this formula (Ba xCai-x)(Ti yZri- y)03. From the research results that 
different compositions have different properties and the best piezoelectric properties 
are measured at different sintering temperatures. Almost seems to be that better piezoelectric 
properties were measured when x was higher than 0,9 so ideal sintering temperature was about 
1450 °C and when x was lower than 0,9 so ideal sintering temperature was about 1540 °C. 
Publications also show dependence of electrical properties, microstructure, grain size 
and density on calcination and sintering temperatures. In some cases, the results of B C T Z show 
better values than the PZT. This is the reason why B C T Z is an interesting perspective 
for the future. [4, 22, 23] 

3. Project aims 
The previous summary shows how important is research of lead-free piezoceramics 

and I would like to contribute to the research with my experimental part, where I deal 
with preparation of 0.5Ba(Zro.2Tio.8)0"3-0.5(Bao.7Cao.3)TiO"3 piezoceramic composition 
and study of physical and electrical properties. 
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4. Experimental Approach 
Preparation of the B C T Z powder was performed by conventional solid state route. Powder 

was milled and calcined. On prepared powder was performed phase analysis by X-ray 
diffraction ( X R D ) . From prepared powder was pressed samples. Samples were sintered 
at temperatures from 1300 °C to 1525 °C. Sintered samples were produced on which grain size, 
density and some of piezoelectric properties were measured. 

4.1. Used powders 
As the starting raw materials were used oxides with high purity shown in Tab. 4.1. Resulting 

powder with composition 0.5Ba(Zro.2Tio.s)03-0.5(Bao.7Cao.3)Ti03 (BCTZ) was made by mixed 
oxide route. 

Tab. 4.1 The list of powders. 

Powders Purity Producer 

B a C 0 3 99.5% Dakram Materials Ltd (Great Britain) 

Z r 0 2 99.5% Dakram Materials Ltd (Great Britain) 

T i 0 2 99.5% Dakram Materials Ltd (Great Britain) 

C a C 0 3 99.4% Lach-ner, s.r.o. (Czech Republic) 

4.2. Fabrication procedure 
Fabrication procedure is composed of several steps. In the next section, the individual steps 

of production w i l l be explained. 

4.2.1. Weighing of powders 
The raw powders were dried at 120 °C for one hour to get rid of any moisture. The dried 

powders were weighed on the scale K E R N P L T 2000-3DM to accuracy to three decimal points. 
The weight of individual powders can be seen in Table 4.2. 

Tab. 4.2 Quantities of powders for the fabrication of 200 grams of composition. 

Powder Weight 
BaC0 3 150.478 g 
Zr0 2 11.054 g 
Ti0 2 64.482 g 

CaC0 3 13.467 g 

4.2.2. Milling in horizontal mill 
Powders are put into plastic container for mixing with 350 g of Zr02 milling media. 

There is also added 380 ml deionized water. Weight of mill ing media and quantity of deionized 
water is for fabrication of 200 g of resulting B C T Z powder. During first 6 hours of milling 
it is necessary to do control once per hour. The suspension must have a viscosity like "cream." 
The speed was adjusted to 27 rpm because the suspension must be mixed and i f suspension 
is too thick we can add another 50 ml of deionized water after two hours of milling. Total 
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milling time was 24 hours. During milling in horizontal mi l l powders are mixed. Mi l l i ng 
was performed on horizontal mi l l with mill ing stool type M L 0 1 . 

Fig. 4.1 The container and milling media for horizontal mi l l . 

Fig. 4.2 The containers with powders on horizontal mi l l . 

After milling the suspension must be dried in a laboratory oven at 80 °C. The suspension 
was placed in large crystallization bowl during drying. M i l l i n g media were removed 
after drying. Dry powder was crushed in a mortar. After mill ing the powder was ready 
for calcination. 
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4.2.3. Calcination 
Calcination occurs in a furnace N A B E R T H E R M model H T 08/17 no. 203511. Powder 

was in crucible. Crucible is made of AI2O3. Calcination temperature was 1100 °C for 4 hours. 
The heating profile for the calcination is shown in Figure 4.3. 

Temperature 
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5C 1100 ° C / 4 h 
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10 12 14 16 Time [h] 

Fig. 4.3 The process of calcination. 

4.2.4. Milling in planetary ball mill 
Powder after calcination contains a large amount of agglomerates and large grains. 

Agglomerates are crushed in a mortar. Before mill ing binders to facilitate pressing were added. 
Used binders were Duramax B 1000 and B 1007. Weight of binders is calculated 
by the following formulas. 

_ 0.03 
wsiooo — 055 w P o w d e r (6) 

- a 0 2 m 
W B 1 0 0 7 — Q g y wpowder V> 

During milling in planetary ball mi l l other agglomerates are broken down, powder is mixed 
with the additives and grains after mill ing are finer. Powder was divided into four ZrCh bowls. 
Deionized water and ZrCh milling media were added to bowls. In each bowl was 100 g 
of powder, 250 ml of deionized water and 250 g of mill ing media. M i l l i n g was performed 
on Planetary ball mi l l F R I T S C H pulverisette® type 05.102. Speed was adjusted to 224 rpm. 
Total mill ing time was 24 hours. 

In planetary ball mi l l support plate rotates and mi l l bowls rotate in the opposite direction. 
The centrifugal forces act on powder and milling media in bowls. 

After mill ing the suspension must be dried in a laboratory oven at 80 °C. M i l l i n g media 
were removed by sieves before drying. The suspension was placed in large crystallization bowl 
during drying. Dry powder was crushed in a mortar. The last step of fabrication of B C T Z 
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powder is sieving. Crushed powder was sieved through 300 p:m stainless steel sieve Laboratory 
test sieve B S 410-1 serial no. 6293141. 



4.2.5. Pressing of samples 
The samples were prepared by dry uniaxial pressing. A schematic diagram of uniaxial 

pressing can be seen in Figure 2.12. Pressing was conducted at room temperature. Green bodies 
with a diameter of 13 mm were compressed by pressure about 148 M P a . 

4.2.6. Sintering 
Sintering of green bodies occurs in a furnace N A B E R T H E R M model H T 08/17 no. 203511. 

Fig. 4.6 The furnace N A B E R T H E R M . 

The binders were removed by pre-sintering cycle. Sintering temperature was from 1300 °C 
to 1525 °C for 4 hours. The temperature profile of the sintering process with pre-sintering cycle 
can be seen in Figure 4.7. After sintering samples were polled at room temperature by D C high 
voltage power supply with maximum voltage of 30 k V . Samples were in container with silicon 
oi l . A n d temperature was at room temperature. Poling conditions have big impact on the final 
properties especially on value d.33. Therefore, strict poling conditions must be adhered. 
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Fig. 4.7 The process of sintering of samples. 

4.3. Preparation of samples for Microstructural Examination using SEM 
S E M is an abbreviation for scanning electron microscope. Thanks to S E M , it is possible 

takes photos of microstructure and determines grain size. 
The sintered discs were cut in half using a Struers Accutom-50 saw (Figure 4.8) with cutting 

disc MOD 13. The prepared samples were sealed into the polystyrene (PS) for better handling 
during grinding and polishing. 

Grinding and polishing were carried out on the Struers TegraPol-25 with additional head 
TegraForce-5 (Figure 4.9). The conditions and used grinding and polishing wheels can be seen 
in Table 4.3. The grinding was carried out on grinding wheel M D Piano 120 and with water as 
a wetting fluid, there was used a standard rotary grinding procedure. A climb rotary grinding 
procedure was used incorporating three cycles of polishing on polishing wheels M D Alegro 
Largo and M D Dac with TegraDoser DiaPro diamond suspensions of the appropriate 
granularity. 

Tab. 4.3 Used grinding and polishing wheels and conditions of use. 

Grinding or polishing wheel 
+ diamond suspension 

Granularity 
[Hm] 

Time 
[min] 

Pressing 
force [N] 

Speed 
[rpm] 

M D Piano 120 (with water) 120 5 30 300 

M D Alegro Largo + DiaPro 9 \xm 9 10 25 150 

M D Dac + DiaPro 3 \xm 3 6 20 150 

M D Dac + DiaPro 1 urn 1 6 15 150 

After grinding and polishing the PS must be dissolved and samples removed. Polystyrene 
was dissolved by heating. Residues of PS on samples were dissolved in Xylene. The samples 
were washed in ethanol and deionized water. The samples were thermally etched 
for the observation of grain boundaries. 
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Fig. 4.8 StruersAccutom-50 Fig. 4.9 Struers TegraPol-25 with 
additional head 
TegraForce-5 

4.4. Measurement of properties 
The phase analysis was performed on the Automatic diffractometer SmartLab 3kW 

(Rigaku) in geometry Bragg-Brentano with linear encoder sensitive detector 
with CuKai ,2 radiation. In the analyzed powder was found phase composition, lattice 
parameters and theoretical density. 

Density was determined using the Archimedes method in accordance with standard 
C S N E N 623-2. Weight of samples and temperature of water were measured on the Analytical 
balance with density kit for measurement of density using the Archimedes method Mettler 
Toledo M E 104. Sample was at first wiped dry and weighed (mi). The dried sample 
was immersed in a beaker with water and m2 was measured, mj is the mass of again dried 
sample. Based on following formulas, we can calculate the absolute (8) and relative (9) density. 

m 
Pabs 

Prel 

hrPwater [kg m 3] 

* 100 [%] 

m 3 — m 2 

m l Pwater 
m3 m2 Ptheretical 

(8) 

(9) 

Microstructure was evaluated on images from scanning electron microscope Zeiss U L T R A 
P L U S . Grain size was determined from the imagines using linear intercept method 
in accordance with standard C S N E N 623-3. From each sample which was sintered at one 
of sintering temperatures were done several photographs from different locations. On these 
photographs was measured grain size. Values from different photographs were averaged 
and from the differences of values were established standard deviations. 
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On the samples, dimensions and weights before and after sintering were measured. 
From the measured values were calculated weight loss (10) and shrinkage (11) of samples 
during sintering. Values of weight loss and shrinkage are shown in percentages. 

m . 
Weight loss = 100 * 100 [%] (10) 

TTI-after sintering 

Shrinkage = 100 - Diameter-f^ sintering # 1 0 Q [ % ] ( 1 1 } 

Diameterjjgj'Qy-Q sintering 

The values of d.33 were measured at Berlincourt d33-meter by quasi-static method at room 
temperature. The sample was clamped between two spikes, which vibrated at frequency 110 Hz . 
The pressure of spikes was 0.25 N . Sample was pressed and generated electric charge which 
was measured. The meter automatically calculated from the measured values value of d.33. 
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5. Results and discussion 
The X R D analysis has revealed the lattice parameters (Tab 5.1). Values of the lattice 

parameters shown that it was achieved single phase composition with a tetragonal structure 
which corresponds with the literature [5]. X R D analysis demonstrated the tetragonal structure 
as can be seen in figure 5.1 which is example of the X R D trace for sintering temperature 
1325 °C. For other sintering temperatures are the X R D traces very similar and in a common 
plot peaks would be overlayed. The theoretical density (ptheoretkai = 5.7298 g-cm"3) 
was calculated from these parameters (Tab 5.1). 

Tab 5.1 Average values of the lattice parameters. 

a b c a ß Y 
Ä Ä Ä 0 0 0 

4.0082 4.0082 4.0160 90 90 90 

Cn.rt 
|5-S 1 J.l KOMP-ICE l a t e r e iH-^J-Tteta 

S5Ĉ 0.1 EiTBieZKl 1DÜ ietr100D% 

M I L 1 

-j j j-

Fig. 5.1 The X R D trace for sintering temperature 1325 °C. 

The relative density was calculated from theoretical density (9). A plot of the dependence 
of density on sintering temperature can be seen in Figure 5.2. 

- 3 9 -



98.0 

96.5 
96.1 96.3 

95.3 

93.9 

96.2 

95.4 

93.6 

91.3 

r o r , Relative density vs. sintering temperature 
Prel I- >°\ 

100 

99 

98 

97 

96 

95 

94 

93 

92 

91 

90 
1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 T s i n t [ °C] 

Fig. 5.2 Plot of dependence of density on sintering temperature. 

Standard deviations are about 2 %, except for the samples sintered at 1450 °C, where 
a higher value was measured. Assuming that the true value lies in the indicated range it can 
be said that the relative density is about 96 %. It is in contradiction with the literature [23], 
where authors claimed that the density should increase with increasing sintering temperature 
until Tsint = 1450 °C. In accordance with the literature [23] is the maximum relative density 
of about 96 % and a decrease of the relative density for sintering temperatures above 1450 °C. 

From the weights and dimensions of the samples the shrinkage (11) and weight losses (10) 
during sintering were calculated. 

Shrinkage vs. sintering temperature 

17.5 

1300 1325 1350 1375 1400 1425 1450 1475 1500 1525T s i n t [ °C] 

Fig. 5.3 Plot of dependence of shrinkage on sintering temperature. 
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Fig. 5.4 Plot of dependence of weight losses on sintering temperature. 

In Figure 5.3 can be seen shrinkage around 17 % at all temperatures. In Figure 5.4 can be 
seen gradually increasing the value of weight loss from 5.98 % to 10.26 % with increasing 
sintering temperature. The values of weight loss at temperatures 1375 °C and 1450 °C don't fit 
into the gradually increasing profile, but standard deviations of these values are high, therefore, 
they can be incorporated to the gradually increasing profile. 

5.1. Microstructure 
Microstructure was observed using S E M . In Figure 5.5 can be seen images from S E M 

for the different sintering temperatures. 

•in 

M fwA y 

I 

v 

a) r . S Í „ ř = 1300°C 
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i) 7/™ f= 1500°C j) Tsint= 1525 °C 

Fig 5.5 The microstructure of samples at different sintering temperatures (TSi„t). 

Images show that porosity is decreasing with increasing of sintering temperature 
which corresponds with the literature [23]. The values of grain size depending on sintering 
temperature can be seen in Figure 5.6. The grain size of samples which were sintered at low 
temperature (1300 °C) is under 10 um and increases with increasing sintering temperature. 
This is consistent with the literature [23]. Grain size increases to TSi„t = 1400 °C. 
Above this temperature is almost constant until last value, there is a small drop. But this value 
has big standard deviation from this we can conclude that the value falls to the almost constant 
course. Constant progression above TSi„t= 1400 °C is also mentioned in the literature [22]. 
Also worth pointing out that the grain size in samples sintered at temperatures 1400 °C 
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and below have large range of grain sizes - some very large, some small as can be seen 
in figures 5.5 a) - e). 

Grain size [[im\ 

70 

Grain size vs. sintering temperature 

42.78 

1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 T s i n t [°C] 

Fig 5.6 Plot of dependence of grain size on sintering temperature. 

5.2. Electrical properties 
Measured values of d.33 can be seen in Figure 5.7. The plot shows d.33 increasing 

with increasing sintering temperature to TSi„t= 1425 °C followed by drop and the further course 
is almost constant which is consistent with the literature [22]. 
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Fig 5.7 Plot of dependence of d.33 on sintering temperature. 
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The high (I33 published in the literature [5] were not achieved. The reasons may be different 
calcination temperature or poling conditions. Especially poling conditions have a large 
influence as mentioned above. Another reason may be there are no measurement conditions 
mentioned in the literature [5]. Value of d.33 is dependent on place of measurement, therefore, 
it is necessary to do measuring at several places on sample. Value of d.33 can't be compared 
with literature [5] because in this literature poling conditions aren't mentioned 
and measurement conditions aren't mentioned too. 

According to the literature [4], density and grain size have an important effect 
on the piezoelectric constant, but grain size affects more markedly than density. This also 
demonstrates our progress. Y o u can compare effect of grain size and relative density 
to cfoin Figure 5.8. The relative density is highest at low sintering temperature but grain size 
at low sintering temperature is very small and J J J is small too. Comparing the density and 
grain size for the sample sintered at 1350C one can say that a grain size of at least 25 microns 
is needed for a reasonable value of A t TSmt= 1525 °C we can see relatively high value of 
d33 but relative density is the smallest, we can conclude grain size lies at the upper limit of the 
standard deviation. Because of this we can considered as constant the plot of dependence grain 
size on sintering temperature above TSi„t= 1400 °C. 
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Fig 5.8 Plot of dependence of on grain size and relative density. 
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6. Conclusions 
In the literature review was prepared treatise about basic principles, properties, history, 

fabrication and applications of leaded and lead-free piezoelectric ceramics. 
In the experimental approach the fabrication of lead-free piezoceramic B C T Z powders, 

preparation of sintered samples from this ceramic powder and measurement of the physical 
and piezoelectric properties were described. 

The X-ray diffraction analysis showed samples had single phase structure. The best 
electrical properties were measured at a sintering temperature of 1425 °C, 
where d.33 = 290.5 p C / N , average value of grain size is 46.8 um and relative density is 93.9 %. 

B C T Z lead-free piezoceramics are promising for the future, but further research 
and development in this field is necessary. One potential line of research could be to investigate 
doping the B C T Z composition with other elements or other compositions. 

Aspects of this work have contributed to a scientific publication to be presented 
at the International Symposium on the Applications of Ferroelectrics (ISAF), Singapore, 
24.-27. M a y 2015, and a copy of the paper is given in the Appendix. 
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Abstract—This paper reports an investigation of 
(Bao.ssCao.i5)(Zn.iTio.9)03 (50BCZT) piezoelectric 
ceramics doped with Bio.s(Nao.s2Ko.is)o.sTi03 (18BNKT). 
For compositions between 1-5 wt% 18BNKT, a 
perovskite phase was observed in the sintered ceramics, 
with dss values of approximately 370 pC/N measured at 
room temperature, which is about 80 % of that of pure 
50BCZT. Also, the doped materials exhibit a remanent 
polarization of 2-5 fiC/cm2 at temperatures above the 
Curie temperature (> 90 °C) of the pure 50BCZT 
composition. This research shows a promising route to 
improve the working temperature range whilst maintain 
good piezoelectric properties of the 50BCZT ceramics. 

Keywords—piezoelectric, BCZT, BNKT, Curie 
temperature 

I. INTRODUCTION 

Driven by impending environmental legislation 
[1], there is now an urgent need to develop 
environmentally friendly piezoelectrics. The 
reason is that lead (Pb), a highly toxic element, is 
widely used in a range of piezoelectric ceramic 
compositions which have dominated the materials 
market of important sensors, actuators, transducers 
and energy harvesters. Lead zirconate titanate (PZT, 
PbZrxTii-xCb) is a typical representative which is 

targeted to be replaced by lead-free compositions. 
The lead-free perovskite solid-solution, (1-
x)(Bao.7Cao.3)Ti0 3-xBa(Zro.2Tio.8)0 3 ((1 - x ) B Z T -
x B C T ) , has been the subject of much research, with 
work on bulk ceramics [2], thin/thick-films [3, 4] 
and composites [5] having been reported. B Z T -
B C T has become significant among the families of 
lead-free piezoelectric materials showing promise 
to replace conventional P Z T , due to its potential for 
exhibiting piezoelectric properties which are 
comparable to those of 'soft' P Z T (e.g. d33 > 600 
p C / N , kp > 0.5), especially for the composition of 
0.5BZT-0.5BCT (alternatively expressed as 
(Bao.85Cao.i5)(Zro.iTio.9)03). It has been reported [2], 
that this centre composition of the B Z T - B C T 
pseudo-phase diagram is associated with a strongly 
curved morphotropic phase boundary ( M P B ) at 
approximately room temperature, which is 
probably at least partly responsible for the excellent 
piezoelectric properties. However, the low Curie 
temperature (Tc) o f about 90 °C of 0.5BZT-0.5BCT 
considerably restricts its application above room 
temperature. 

On the contrary, other lead-free systems exhibit 
much higher Curie temperatures, but with 
piezoelectric properties which are only about half 
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of those o f 'soft' P Z T [6]. In particular, the 
Bio.5(Nai-xK x)o.5Ti03 lead-free system is reported to 
have a Tc o f approximately 300 °C, and a de-poling 
temperature (Td) o f nearly 200 °C around its own 
M P B (0.16 < x < 0.2). However, the reported d.33 

and kp values are < 200 p C / N and < 0.5 
respectively [6]. One route to investigate enhancing 
the Tc of 0 . 5 B Z T - 0 . 5 B C T whilst minimizing any 
deterioration in its piezoelectric properties would 
be through a combination of 0 . 5 B Z T - 0 . 5 B C T and 
Bio.5(Nai-xK x)o.5Ti03. Studies have been reported 
where 0 . 5 B Z T - 0 . 5 B C T has been added as a dopant 
to Bi0.5(Nao.82Ko.i8)o.5Ti03 ( 1 8 B N K T ) [7]. However, 
it has been found that both the piezoelectric 
properties (e.g. tfe, kp) and the TJTd are 
approximately independent of the 0 . 5 B Z T - 0 . 5 B C T 
doping, with the 1 8 B N K T always appearing to 
dominate the performance of the system. This 
paper presents the research of an alternative 
approach, where 1 8 B N K T is doped into 0 .5BZT-
0 . 5 B C T . 

II. E X P E R I M E N T A L 

The compositions of (Bao.85Cao.i5)(Zro.iTio.9)03 

(0 .5BZT-0 .5BCT) and Bio. 5(Nao.8 2K 0.i8)o.5Ti0 3 

( 1 8 B N K T ) were prepared separately via solid-state 
reaction, calcined at 1100 °C and 750 °C 
respectively. The starting oxides were B a C 0 3 
(> 99.5 %, Dakram, U K ) , C a C 0 3 (PA, Lachner, 
Czech Republic), Z r 0 2 (> 99.5 %, Dakram, U K ) 
and T i 0 2 (> 99.5 %, Dakram U K ) for the 0 .5BZT-
0 .5BCT, and B i 2 0 3 (PA, Dakram, U K ) , N a 2 C 0 3 

(PA, Penta, Czech Republic), K 2 C 0 3 (PA, Penta, 
Czech Republic) and T i 0 2 for the 1 8 B N K T . 0.5 
m o l % excess B i 2 0 3 was added to the 1 8 B N K T 
composition in order to compensate for B i loss 
during high temperature sintering. Subsequently, 
doped compositions were made by adding calcined 
1 8 B N K T powder into the calcined 0 . 5 B Z T - 0 . 5 B C T 
powder at concentrations of 1, 3 and 5 wt%, but 
without re-calcination. The combined powders were 
then mixed with a P V A binder (5 wt% D U R A M A X 
B-1000 + 5 wt% D U R A M A X B-1007, Chesham 
Chemicals Ltd . , U K ) and pressed into discs by 
uniaxial pressing, followed by sintering at 
temperatures between 1250-1500 °C for 4 hours. 
The density of the sintered ceramics were calculated 
by the Archimedes method, and then expressed as a 
percentage of the theoretical density, this ratio being 
defined as the relative density. The sintered samples 
with sputtered A u - C r electrodes (K575X, Emitech, 
U K ) or printed and fired A g electrodes (Gwent 
Group, U K ) were tested on a piezoelectric 

5 wt% BNKI 1BCZT 
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Relative permittivity  
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Fig. 1. Dependence of remanent polarization and relative 
permittivity on temperature for the 5 wt% BNKT+BCZT 
samples sintered at (a) 1300 °C and(b) 1500 °C, and(c) 

the pure BCZT sample sintered at 1500 °C. 

evaluating system ( A i x P E S , Aixacct , Germany) at 
temperatures in the range of -30 to 120 °C. In 
addition, the samples were poled with 3 k V / m m 
electric field for 10 minutes at room temperature in 
silicone o i l and subsequently characterised at room 
temperature on an impedance analyzer (4294A, 
Agilent, U S A ) and a Berlincourt d 3 3-meter 
(YE2730A, Sinoceera, China). The relative 
permittivity (e r), piezoelectric coefficient (<fe), and 
polarization-electric field (P-E) and strain-electric 
field (S-E) hysteresis loops were then obtained. X -
ray diffraction ( X R D , SmartLab, Rigaku, Japan) 
was used for structural characterization. Polished 
samples were thermally etched at 100 °C below the 
sintering temperatures and then observed using 
scanning electron microscopy ( S E M , Ultra Plus, 
Zeiss, U S A ) . Pure 1 8 B N K T and 0 . 5 B Z T - 0 . 5 B C T 
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ceramics were also fabricated and characterized 
with the same processes, providing base line 
references to the doped compositions. In this paper, 
the doped samples are abbreviated to 
x wt% B N K T + B C Z T (x=l , 3, 5), whilst the pure 
1 8 B N K T and 0 . 5 B Z T - 0 . 5 B C T samples are further 
shortened to B N K T and B C Z T respectively for ease 
of repetition. 

III. R E S U L T S A N D DISCUSSIONS 

A. Phase Transitions and Ferroelectric 
Properties 

The variations of remanent polarization (Pr+ 
and Pr-) and relative permittivity (er) with 
temperature for the 5 wt% B N K T + B C Z T samples 
sintered at 1300 °C and 1500 °C, and the pure 
B C Z T samples sintered at 1500 °C, are shown in 
F ig . 1. It can be seen that the pure B C Z T exhibited 
3 peaks in the relative permittivity in the range of -
30 °C to 120 °C, at around 0 °C, 30 °C and 90 °C 
respectively (Fig. 1 (c)). This may imply 3 
corresponding phase transitions, including 2 
ferroelectric-ferroelectric and 1 ferroelectric-
paraelectric transitions [8]. The transition around 90 
°C is indicative of the Tc, where the remanent 
polarization dropped to zero as the structure became 
cubic. Be low the Tc, the remanent polarization 
gradually decreased with the increase of 
temperature, and two gradient changes are observed 
corresponding to the other phase transition 
temperatures. However, for the samples doped with 
5 wt% B N K T , a very broad peak of sr with 
temperature was observed (Fig. 1 (a) and (b)), which 

may imply a rather wide phase transition 
temperature range. This phenomenon was similar to 
that observed for pure B N K T [7] but which was 
observed at a much higher temperature (peak at 
about 300 °C). Interestingly, compared to the pure 
B C Z T sample where the remanent polarization 
completely disappeared above Tc, the remanent 
polarizations of the 5 wt% B N K T + B C Z T samples 
reached a minimum at a temperature corresponding 
to the maximum in sr, but never actually reached 
zero. Then, as the temperature was increased above 
approximately 70 °C an increase in remanent 
polarization was observed (Fig. 1 (a) and (b)), 
especially for the sample sintered at 1500 °C. This 
indicates a possibility of maintaining piezoelectric 
response for the sample in the full range of -30 °C 
to 120 °C. The remanent polarizations exhibited at 
lower temperatures in F ig . 1 (a) and (b) might be 
contributed by the B C Z T composition, while those 
at higher temperatures might come from the B N K T 
dopant. 

The P - E and S-E loops of the 5 wt% 
B N K T + B C Z T sample sintered at 1500 °C and 
measured at different temperatures are shown in 
F ig . 2. Spontaneous and remanent polarization 
values in the ranges of 5-10 LiC /cm 2 and 2-5 
LiC /cm 2 , respectively were measured for 
temperatures between 20 and 110 °C. Between 20 
and 60 °C (Fig. 2 (a) to (c)), both the spontaneous 
and remanent polarizations decreased with 
increased temperature. However, at temperatures 
from 80 °C (Fig. 2 (d)) and beyond the spontaneous 
polarization retained approximately the same value 
while the remanent polarization 
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Fig. 2. Dependence of polarization and strain on electric field measured at (a) 20 °C (b) 40 °C (c) 60 °C (d) 80 °C (e) 100 °C and 
(f) 110 °Cfor the 5 wt% BNKT+BCZT sample sintered at 1500 °C. 

increased with increasing temperature. It can also (Fig. 2 (a) to (c)) the sample became "softer" as 
been seen that in the temperature range 20-60 °C the coercive electric field was reduced, however, 
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as the temperature was increased further (from 
Fig . 2 (d)) the coercive electric field was 
increased. The reported coercive electric field 
values for pure 0 . 5 B Z T - 0 . 5 B C T [8] are much 
smaller than for 1 8 B N K T [7] (about 0.5 and 
1 .7kV/mm respectively). Therefore, in the 
temperature range 80-110 °C (Fig. 2 (d) to (f)) 
there is an indication that the properties were 
becoming more like B N K T as the contribution 
from B C Z T diminished. In addition, although the 
polarization varied irregularly as discussed 
above, the maximum strain of the sample, and the 
strain hysteresis, decreased with increasing 
temperature over the entire measured range, 
indicating a deterioration of the actuating 
properties, with the data between 80-110 °C being 
more indicative of electrostrictive behaviour. 

The X R D patterns of the individually calcined 
B N K T and B C Z T powders as wel l as the 5 wt% 
B N K T + B C Z T ceramic sample sintered at 1500 
°C are shown i n F ig . 3. Both the individually 
calcined B N K T and B C Z T powders formed 
single phase perovskite structures during 
calcination (Fig. 3 a and b). The sintered doped 
material also appears to form a single phase 
perovskite phase (Fig. 3 c). However, as the 
concentration of the B N K T dopant was very low, 
any secondary phases may be below the detection 
limit of the X R D system. 

a - calcined B N K T powder 
b - calcined B C Z T powder 
c - sintered 5 wt°o B N K T - B C Z T ceramic sample 

b h 

1 1 i 1 1 . k . . A 

15 25 35 45 55 65 75 85 95 

29 (°) 

Fig. 3. XRD patterns of the calcined BNKT and BCZT powders, 
and the 5 wt% BNKT+BCZT ceramic sample sintered at 1500 °C. 

S E M images of polished and thermal-etched 
surfaces of the 5 wt% B N K T + B C Z T samples 
sintered at temperatures from 1300 °C to 1500 °C 
are shown in F ig . 4. The sample sintered at 
1300 °C, exhibited an irregular grain size from a 
few microns to 30 urn (Fig. 4 (a)). The grain size 
of the samples sintered at 1400 °C and 1500 °C 
(Fig. 4 (b) and (c)) were more regular, being in 
the range 20-30 urn and 40-50 um, respectively, 
the overall grain size increasing with increased 
sintering temperature. 

Fig. 4. SEM images polished and thermal-etched 
surfaces of the 5 wt% BNKT+BCZT samples sintered at 

(a) 1300 °C (b) 1400 °C (c) 1500 °C. 

B. Physical, dielectric and Piezoelectric 
Properties 

The density, relative permittivity and d33 

values of the 1 wt%, 3 wt% and 5 wt% 
B N K T + B C Z T samples sintered at different 
temperatures and measured at room temperature 
are shown in F ig . 5. A l l of the samples sintered 
below 1500 °C obtained densities > 90 % (Fig. 5 
(a)). However, the densities tended to decrease 
with increasing sintering temperature, which 
might be due to B i loss at high temperatures. The 
5 wt% B N K T + B C Z T samples sintered at 1500 
°C exhibited a significantly lower density 
compared to those of other compositions and 
sintering temperatures. The variation in sr was 
quite different to that of the density. Wi th 
increased sintering temperature, the 1 wt% 
B N K T + B C Z T samples tended to exhibit 
increased sr. In comparison, both the 3 wt% and 5 
wt% B N K T + B C Z T samples showed peaks in the 
er data at sintering temperatures of 1400 and 1300 
°C respectively (Fig. 5 (b)). Among the three 
compositions, the largest sr value was obtained on 
the 5 wt% B N K T + B C Z T samples sintered at and 
below 1450 °C and on the 1 wt% B N K T + B C Z T 
samples sintered at 1500 °C. The trend in d33 

values was much more consistent compared to the 
density and sr. For a l l the compositions, d33 values 
increased with sintering temperature (Fig. 5 (c)). 
However, the doping of B N K T had a 
considerable deteriorating effect with maximum 
d33 values reducing from 370 to 100 p C / N as the 
dopant concentration increased from 1 to 5 wt% 
B N K T . Compared to pure B C Z T (optimum sr of 
1800 and d33 of about 460 p C / N ) and pure B N K T 
(optimum sr of 1400 and d33 of 165 p C / N , based 
on samples fabricated and measured in our own 
laboratories using the same methods described 
here), the 1 wt% B N K T + B C Z T samples sintered 
at 1500 °C achieved an er value of about 3600 and 
optimum d33 of 370 p C / N . The sr value was 2-2.5 
times, and the d33 value reached 80 % and 280 % 
respectively, of those exhibited by the pure B C Z T 
and B N K T ceramics. Such values are much better 
than those reported for B N K T + B C Z T ceramics 
where the B C Z T is the minor dopant [7]. This 
may be due to the better piezoelectric properties 
in pure B C Z T compared to those in the pure 
B N K T [2, 6, 7]. 
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Fig. 5. Dependence of (a) relative density (b) erand(c) dss on 
sintering temperature for the 1 wt%, 3 wt% and 5 wt% 

BNKT+BCZT samples and measured at room temperature. 

I V . C O N C L U S I O N S 

Sintered ceramics with compositions of 1, 3 
and 5 wt% Bio.5(Nao.82Ko.i8)o.5TiC>3 doped 
(Bao.85Cao.i5)(Zro.iTio.9)C>3 have been fabricated 
and characterized. Perovskite ferroelectric phases 
have been formed by the reaction of the dopant 
and matrix during sintering. A t room temperature, 
the 1 wt% doped samples have exhibited 
comparable functional properties to the samples 
made from the pure matrix composition and much 
better than those of pure dopant composition. 
Al so , in the doped samples, ferroelectric 
behaviour, exemplified by the remanent 
polarization, is observed at temperatures above 
the Curie temperature of the matrix composition. 
Although an increase in Curie temperature has 
not yet been clearly defined, the doping has 
shown a definite effect of enhancing the working 
temperature of the (Bao.85Cao.i5)(Zro.iTio.9)C>3 
piezoelectric ceramics by at least 30 °C. Further 
investigations into the variation of piezoelectric 
properties with temperature and identification of 
the phase transitions are on-going. 
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