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A B S T R A C T 
X-ray computed tomography is an imaging method which enables 3D observations 

of the inner structure of objects. The microstructure of objects carries essential 

information that could be used to characterize samples. The here presented research 

aims at connecting the microCT-derived data wi th their statistical elaboration in 

order to achieve the best description of analysed samples. The outcome of the thesis 

wi l l be the classification of samples based on their microstructure. Based on the 

information about classification, we can test some hypotheses concerning the origin 

of the samples. This thesis could serve as a cornerstone for a combination of datasets 

coming from various sources by the means of statistical methods. 

K E Y W O R D S 
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A B S T R A K T 
Rentgenová počí tačová tomografie je metoda sloužící ke 3D zobrazování vn i t řn í 

struktury objektů . Mikrostruktura ob jek tů uk rývá důležité informace, k teré mo

hou být použi ty k jejich charakterizaci. Tato práce p o d á v á spojení mezi datasety 

získanými pomoc í rentgenové počí tačové mikrotomografie a oblas t í s ta t is t ického 

zpracování dat. V ý s t u p e m metody, pak bude klasifikace vzorků na základě infor

mací o jejich mikros t ruk tu ře . Z výsledků klasifikace vzorků, pak můžeme vyvodit 

různé hypotézy týkající se původu vzorků. Tato práce by mimo j iné mohla sloužit 

jako takový nový vhled do problematiky kombinace dat různého původu , pomocí 

metod stat is t ické analýzy. 
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INTRODUCTION 
Using large datasets is becoming more and more common in every discipline. Today's 

biggest task is to find a tool which would reduce effectively their dimensionality. B y 

the word effectively here it is meant to keep the loss of information within datasets 

to a minimum, thus maintaining the interpretability of data at a maximum possible 

level. A n example of such a discipline where handling of large datasets is needed on 

a daily basis is X-ray computed tomography. X-ray computed tomography has be

come a standard method for 3D visualization of objects. Today this method covers 

a whole range of topics. Some examples are the visualization of biological samples, 

study of the inner structure of advanced materials and coatings or 3D modelling 

and characterization of archaeological samples. Last of the applications has still a 

hidden potential that remains to be fully uncovered. One of the current tasks that 

archaeologists deal wi th concerns the study of ancient technology, raw materials 

and possible origin of the artefacts, such as pottery. Such information are useful 

to reconstruct ancient manufacturing processes, exchange systems and trade. Thus 

developing a method that could help to solve this objective is of major interest. In 

this thesis, a big effort has been put in order to present a multi-analytical approach 

method that could serve as a cornerstone for these types of complex analyses. The 

main principle of the method wi l l be based on the extraction of important para

meters, from a group of pottery samples, for example area of inclusions, inclusions 

and clay ratios and so on. A l l these parameters wi l l then be used for a statistical 

analysis, namely principal component analysis ( P C A ) . The result of this analysis 

wi l l then be a classification of samples based on their microstructure. 

This thesis follows up my recent work done collaborating wi th local archaeolo

gical group at the International Centre for Theoretical Physics ( ICTP) in Trieste. 

The first achievements of our work were already presented at X V I I I International 

Conference on Science, Ar t s and Culture in Croatia. The publication that recently 

followed up was included as a supplementary material. The theoretical part of this 

work can be divided into three parts. In the first part (chapter 1), basics of X-ray 

computed tomography are explained, wi th particular emphasis given to the problem 

of reconstruction. The second part (chapter 2) addresses the problem of C T data 

representation, together wi th the presentation of various segmentation methods. In 

the third part (chapter 3), the main properties of P C A method are presented, wi th 

some emphasis placed on data clustering algorithms. The experimental part (chapter 

4 and chapter 5) deals wi th the physical realization of measurement of the samples, 

together with the presentation of the method that serves to classify the samples. 

Last but not least, in chapter 5, all achieved results are presented, along with their 

interpretation and a discussion. 
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1 X-RAY C O M P U T E D T O M O G R A P H Y 
Tomography from the Greek word "tomos" meaning slice or section and "graphien", 

meaning to write. C T is a non-destructive technique allowing 3D visualisation of 

objects. The first medical images were performed by Hounsfield in 1972. During this 

time, the problem of how to handle and store huge amount of data sti l l persisted. 

Later on in the 1980s, high speed and high memory computers appeared. W i t h this 

in mind, it was clear that it did not take too long and a whole new range of industrial 

applications had appeared [2]. 

The basic set-up consists of detecting the photons which are transmitted through 

the studied object. When radiation passes through the studied object, the intensity 

of the transmitted beam is changed. This change in beam intensity which we register 

at the detector is described by the Beer-Lambert law. 

I = IQe-^x\ XI) 

where I is the detected intensity of the transmitted beam, Jo defines the intensity 

of a beam generated by X-ray source, \x is the linear attenuation coefficient and x is 

the sample thickness. 

This formula holds only for a monochromatic beam and for cases when \x is 

a constant within whole material. In praxis this is not possible, and more general 

formula must be used. When the material is non-homogeneous, the linear attenuation 

coefficient \x is no longer a constant. 

^ 2̂ 

X-ray source 

tti 

x+Ax 

Fig . 1.1: Attenuation of X-rays in the case of (left) a homogeneous object (right) 

an object composed of different materials wi th different attenuation coefficients. 

Adjusted from [8]. 

In this case, the attenuation coefficient \i is defined as 

I 
fi(x)dx In ;i .2) 
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In addition, to adapt the relation to a polychromatic X-ray beam spectrum, this 

equation needs to be modified as follows: 

/ > [ , ) d , = - h p W B y ' ' W f f l ) , (1.3) 

where jo(E) is the spectral density and dE is the energy spread of X-ray spectra. 

1.1 X-ray sources 

Laboratory X-ray source scheme is on F ig . 1.2. Here electrons are emitted from a 

cathode, heated filament, and then the electrons are accelerated towards a metal 

target, usually thorium, molybdenum or copper. 

F ig . 1.2: Schematic representation of an X-ray tube. Electrons generated from the 

cathode are accelerated by applied voltage between cathode and anode. Generation 

of X-rays occurs when electrons hit the anode [8]. 

X-ray sources differ in many parameters, such as beam spot size, geometry, 

energy, etc. But two mechanisms correspond to the X-ray formation process that all 

these X-ray sources have in common. The first process is related to interactions of 

a free electron wi th those bound to an atom. If a charged particle with high energy 

approaches a solid metal, it wi l l be able to excite or ionise the atoms. Then during 

this process electrons of another energetic shell can refill the gap and during this 

transition, they wi l l emit the energy difference as radiation, known as characteristic 

radiation. The other process occurs due to the presence of electric forces that act 

on a charged particle when the particle hits a metal anode. These forces wi l l then 
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change the velocity of a charged particle, and from the Larmor's formula 1 [45] 

2 e2 • 
W(t) ~ 

3 c 3 Alter 
1.4) 

it is stated that accelerated particle yields electromagnetic radiation. This radiation 

is called braking radiation, sometimes referred to as Bremsstrahlung [26]. Both pro

cesses are depicted in F ig . 1.3. Unfortunately, the whole process of X-ray generation 

Incident 
elet:tron M • 

L 

« 2 • 
/ v ^ • " " Ejected 

X. - K-shell 

M # • electron 

• Nucleus P> 
Rebounded \ 

incident 
electron 

CharactensSc x-ray 
photon 'generated trom 
L "0 K elector! transition 

Fig . 1.3: Processes related to X-rays generation. Left: Creation of an characteristic 

Ka line. Right: Braking radiation (Bremsstrahlung) [3]. 

is not very efficient. About 99% of electrons that impact the target transfer their 

energy to processes that are related to heat production [20]. Both quality and quan

ti ty of the X-ray beam are then determined by many factors. Most importantly by 

acceleration voltage, tube current, beam filters and anode material. Acceleration 

voltage affects both energy interval and amplitude of the radiation. A n increase of 

tube voltage then corresponds to a shift of the X-ray spectra to higher energies. 

Another parameter that can be adjusted is tube current. Tube current generates a 

linear increase in X-ray intensity which changes the number of emitted X-ray quanta 

while maintaining the distribution of X-ray energies. Effect of different tube voltage 

and current on X-ray spectra is depicted in F ig . 1.4. 

Beam filtration is another important way of modifying beam quality. X-ray beam 

composes of photons wi th a wide range of energies. Due to the dependency of the 

attenuation coefficient on wavelength, lower energy photons are easily absorbed. A s 

a consequence, the centre of the polychromatic X-ray is shifted to higher energies, 

leading to the effect called beam hardening. To prevent beam hardening, physical 

installation of beam filters is employed. These filters are usually thin metal foils 

1 This formula shows total power radiated by a non relativistic point charge. 
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Photon EncrgyrkeV I'holun Energy/kcV 

Fig . 1.4: X-ray spectrum at; (a) 100, 120 and 150 k V , (b) 100 and 200 u A for a 

tungsten target. X-ray spectra were obtained by software SpekCalc [8]. 

which are inserted nearby the beam output window. Effects of different filters on 

the resulting beam is described in F ig . 1.5. 

I S * 1 0 ' 

1 

« 2.S 
3 O 

I 

0.5 

0 

0 20 40 60 HO 100 
Photon Encrgy/keV 

Fig . 1.5: Influence of X-ray filtration by different filter materials and thicknesses on 

X-ray spectra at an acceleration voltage 100 k V and a tungsten target material. 

X- ray spectra were obtained by software SpekCalc [8]. 

The anode material defines characteristic spectrum of an X-ray tube. The tar

get material used in an X-ray anode must have a high atomic number to maximise 

Bremsstrahlung output. The target material must also tolerate a tremendous heat 

load. Therefore tungsten is chosen as the target material for many laboratory purpo

ses due to its high atomic number, high melting point, and low vapour pressure [31]. 
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1.2 X-ray detectors 
A s mentioned in the previous section, X-rays passing through the sample are atte

nuated due to absorption or scattering processes. The attenuated intensity of X-rays 

is then measured by an X-ray detector. There are different kinds of X-ray detectors, 

based on a principle which they use to convert X-ray energy to electrical signals. 

Two main types of detectors are scintillation (solid state detectors) and gas ioni-

sation detectors [8]. In this section, the main focus wi l l be given to the description 

of the scintillation detectors, since these detectors are widely used in an industrial 

C T . 

Scintillation detectors as its name suggests consist of a scintillation medium, 

typically crystal, and a photodiode. In the first step, short-wave X-ray radiation is 

converted by the scintillation medium into visible light. This light is then directed to 

a photomultiplier tube, F ig . 1.6. A s the light strikes the photocathode, the electrons 

are emitted via the photoelectric effect. These electrons then cascade through the 

series of dynodes (electrode which serves as an electron multiplier through secondary 

emission) maintained at different potentials to result in an output signal [42]. 

Photocathode 
/ Focusing electrode Photomultiplier Tube (PMT) 

electron electrons 

Fig . 1.6: Principle of X-ray detection by scintillation detector [40]. 

Scintillation detectors are then extendable to multi-array system. These detec

tors come in two geometries, either flat or curved. Modern u C T detectors used in 

industry employ flat panel geometry. A typical composition of a flat panel detector 

manufactured by the General Electric company is presented in F ig . 1.7. 

X-ray quanta entering the detector are converted to the visible light in the C s l 

(caesium iodide) scintillation layer. Needle structure of the C s l then acts as an op

tical fibre and guides the light to the photodiode. Here the photons are absorbed, 

and electric charge is produced. Electric charge is then integrated and stored in the 

detection element unti l the end of detector exposure. Read-out process is then ini t i 

alised by the thin-film transistor ( T F T ) , which switches the charge to the read-out 
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Fig . 1.7: Composition of a digital flat panel detector (courtesy General Electric C T 

Systems). Outer carbon layer serves as protection from mechanical damage. A l layer 

serves as a mirror for reflected photons [8]. 

electronics via the data link. There, an amplification and anologue-digital conversion 

are performed [6]. 

1.3 Reconstruction 

In C T , the measurements coming from the scanner do not provide a final image, 

but rather the image is the result of intricate mathematical processing of the me

asured data. Tomography thus represents an inverse problem, where the unknown 

parameters of a system need to be estimated from the known reaction of the system 

to external signals [25]. 

A known reaction of the system is in case of C T represented by the intensity 

registered at the detector. The intensity of the X-ray reaching a position of the 

detector is proportional to the integral of the 2D transparency distribution of the 

object along the pass. Cross section images are a result of the reconstruction process 

of the 2D transparency distribution functions from the set of I D functions obtained 

by integrals along the lines of various directions. These integrals are called projecti

ons [15]. 

This projection is defined as: 

JJ f(x, y)5(x cos 9 + y sin 9 — s)dxdy, (1.5) 

—oo 

and represents Radon transform of the 2D distribution function f(x, y), F ig . 1.8. 
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Fig . 1.8: Radon transform of a 2D object as a function of a distance from origin s 

and angle 9 [15]. 

One of the most popular ways to represent projections is through sinogram space. 

Sinogram is formed by stacking all of the projections acquired at different angles [32]. 

The example of a sinogram is in F ig . 1.9. The term sinogram comes from the idea 

that an image can be regarded as a supersposition of single points. If we consider 

Radon transform of a single point, the 2D plot of all projected values as a function 

of an angle wi l l be a sine curve [26]. 

0 50 100 150 200 260 300 350 
t) (degrees) 

Fig . 1.9: Phantom generated in Mat lab (left), its sinogram (right). 

The Radon transform of a function f(x,y), in case of C T f(x,y) = fi(x,y), is 

defined as its line integral along a line inclined at an angle 9; 0 < 9 < TT from the 

y — axis and at distance s; — oo < s < oo from the origin [15]. 
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The act of reconstruction can be described as a process of inverting the Radon 

transform. Whole process of reconstruction is schematically depicted in F ig . 1.10. 

F ig . 1.10: From 2D slices to 3D object, (c) sinogram, ie., the projected profiles plot

ted as a function of an angle 9. These profiles can be inverted to obtain reconstructed 

slices, (b). These slices can be then vir tually stacked to yield (a) a 3D volume [26]. 

In [8] it is stated that Fourier transform of a parallel projection of an object 

f(x,y), obtained at an angle 9 describes a radial line, in the Fourier space of the 

object, taken at the same angle. This statement is known as Central or Fourier slice 

theorem, see F ig . 1.11, mathematically described as 

Po(oo) F(6,u>) ; i .6) 

and sets a basis for tomographic reconstruction [8]. 

Al though the process then may seem straightforward, there are some difficulties 

wi th the numerical implementation of the inverse 2D Fourier transform. F F T (Fast 

Fourier Transform) algorithm requires data on a Cartesian grid, but after applying 

I D F F T , the data are filled on a polar grid. To transform data back to Cartesian 

grid, interpolation must be performed. This procedure is schematically described in 

F ig . 1.12. 

Due to the problem of data interpolation in the frequency domain, alternative 

approaches have been developed. The most widely used of them is Filtered Back 

Projection ( F B P ) . Simple back-projection of Radon transform gives a product of 

convolution of original function wi th a point spread function (PSF) - which pro

duces blurring in the image. To overcome the limitations set by conventional back-

projection a filter back-projection method ( F P B ) has been developed [15]. 
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2D Fourier transform 

Fig . 1.11: Schematic representation of the Fourier slice theorem [8]. 
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Fig . 1.12: Illustration of the Fourier slice theorem for 2D case. The I D Fourier trans

form of a projection corresponds to a slice (red line) in the 2D Fourier transform of 

the object. If the function is given at discrete points, indicated by the black dots, 

a sophisticated interpolation in Fourier space is necessary to avoid artifacts in the 

tomographic reconstruction [26]. 
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2 IMAGE ANALYSIS 

In this chapter basics of digital image processing are covered together with the 

representation of the C T data. Castleman in [9] defines digital image processing as 

a process of subjecting numerical representation of objects to a series of operations 

in order to obtain a desired result. A digital image can be described as a matrix of 

numbers (pixels), where position of each element is identifiable using a Cartesian 

coordinate system [8]. 

Columns 
o t a 3 4 a s 7 a a 

9,4 

Right-handed cuürdinate system 
Jc, j- ate spatial coordinate 

4 
I 

White 
(1351 

timy-srafc 
I'd up rau üum 

Fig . 2.1: Left: Coordinate system used to describe position of pixels in the digital 

image. Right: Conversion of information contained inside voxel to a numerical value. 

A high number represents a high intensity and low number represents a low intensity, 

adapted from [8]. 

The parameters to describe image are: matrix, pixels (picture elements), bit 

depth and voxels [42]. Ma t r i x describes the size of the image. Size S of the matrix 

of m columns and n rows represented in bits can be calculated as: 

S = m x n x 2 k , (2.1) 

where k is a bit depth of the image (number of bits per pixel). In most applications 

it varies from 8-bit to 32-bit. 

Voxel is a 3D pixel that represents the information contained in a volume of a 

material. Voxel size is typically function of a detector pixel size and a magnification 

j& which depends on the ratio of distances between source and a detector D^SD) 

and the distance from source to object -D(so) [8]-

. pixel size DSD f o 0 , 
Voxel size = — ; — , M = ——. (2.2) 
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2.1 CT data representation 

The tomographic data are volumetric data formed up by stacking all the reconstruc

ted greyscale images. These images contain only information about the detected 

intensity represented by shades of grey. Number of grey values varies with the bit 

depth. Due to the fact that human eye can resolve only about 40 grey levels, 8 bit 

images (256 greyscale values) are sufficient enough for any further image analysis. 

Function that summarizes grey-level distribution in the image is grey-level histo

gram. This function shows for each grey level, the number of pixels in the image 

that have that grey level [9]. Example of a histogram can be seen in F ig . 2.2. 

Ie7 

0 20 40 oil 80 100 120 140 

Intensity value 

Fig . 2.2: Histogram of greyscale values for the volume of one randomly chosen sam

ple. 

2.2 Segmentation 

In image processing context, ability to distinguish the objects of interest from the 

background is highly desired. This task can be realized through segmentation [44]. 

The image segmentation is a process of partitioning of digital image into several 

non-overlapping regions. Region is then defined as a connected set of pixels [9]. 

During the years, many segmentation techniques have been developed. Some rely on 
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automatic or semi-automatic techniques and some are purely manual. Here we wi l l 

t ry to describe some of the most used techniques. Al though it may seem that these 

techniques appear here separately, in many practical cases a combination of several 

approaches is needed to obtain satisfying results. 

2.2.1 Thresholding 

One of the simplest segmentation techniques is tresholding. This procedure attempts 

to determine intensity value, called treshold, which separates the desired regions. The 

segmentation is then achieved by grouping all pixels wi th intensities greater than 

the threshold into one class and all other pixels into another class [37]. There are two 

types of tresholding methods. Global tresholding and adaptive tresholding. Global 

tresholding is a method which allows to select only one level of treshold, based 

on which the segmentation is performed. This could be suitable for cases where 

image consists of one structure and a background. In practical cases this is not true 

and adaptive tresholding must be used. Adaptive tresholding consists in analyzing 

the image intensities around each pixel and selecting an individual threshold for 

each pixel, taking in consideration the degree of the intensity values in its local 

neighborhood [44]. 

F ig . 2.3: Segmentation using different techniques. Left: Original image. Middle: Seg

mented image using global tresholding method, red-coloured areas correspond to 

inclusions captured by one specific treshold. Right: Manual segmentation using 

brushing tool. 

2.2.2 Region growing 

Region growing algorithm is a simple pixel-based image segmentation method, which 

involves the selection of pixels (the seeds), and then growing regions around these 

seeds, using a homogeneity criteria. If the joining pixels have similar image features 

as the seed, they are integrated into that region. 
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A n advantage is that region growing algorithms are fast and can perform accurate 

segmentations of regions that have the same features but are spatially separated. 

However, they are sensitive to noises and therefore may produce undesired segments, 

regions wi th holes or disconnected regions [44]. Example of segmentation using region 

growing method is in F ig . 2.4. 

F ig . 2.4: Segmentation using the magic wand tool. This tool allows user to select 

the position of the seed voxel, here indicated by the red cross. After setting suitable 

value of treshold it connects respected areas captured by this treshold. 

2.2.3 Machine learning 

Since 1990, artificial neural networks ( A N N ) have come to be used as a different 

approach for image segmentation. Their properties, such as graceful degradation in 

the presence of noise, their ability to be used in real-time applications and the ease 

of implementing them with V L S I (very large scale integration) processors, led to a 

booming of ANN-based methods for segmentation [1]. Machine learning algorithms 

can be divided into two basic groups, namely supervised and unsupervised machine 

learning algorithms. Supervised learning techniques learn mapping from input data 

to output (labels), during a procedure called training. The training data consist of 

a set of training examples. In supervised learning, each example is a pair consisting 

of an input object and the desired output value. A supervised learning algorithm 

analyzes the training data and produces an inferred function, which can be used for 

mapping new examples [11]. These techniques have shown great promise in image 

analysis [46]. Supervised techniques as name suggests require expert human input for 

segmentation. Usually this means that human experts are carefully selecting training 

images and manually segmenting them into sub-regions. Each region is assigned wi th 

a label and the proposed architecture is trained using the selected images as training 
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data. The method is then able to segment similar images [1]. Procedure depicted in 

F ig . 2.5. 

The humin expert or operator 
c h o c H t training irn*g** and 

manually tagmont them 

llr.itmnLi dalaj 

irchtactur* 
using the 

M dhoti 5 &egmcrlB 
the image 

jrid label* th* 
region* according 
to the trjmfHfl data 

complete 

Fig . 2.5: Typical workflow for supervised segmentation methods, while using neural 

networks. 

Unsupervised methods or clustering processes are semi or fully automatic. B i g 

disadvantage of supervised algorithms is that they require large amounts of manually 

annotated data. Thus, it is challenging for these methods to cope with the growing 

amount of images. A n alternative approaches have been proposed for example in 

[34], [27]. 
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3 PRINCIPAL COMPONENT ANALYSIS 
The starting point for al l multivariate analysis methods is a data matrix M . This 

matrix contains all the measured data wi th columns corresponding to variables and 

rows assigned to observations. When looked more formally, it turns out that P C A 

is a method that decomposes data matrix M into a product of two new matrices, 

the scores matrix T and loadings matrix P [38]. The loadings can be understood 

as the weights for each original variable when calculating the principal component 

(PC) , while scores represent the projection of observations from original space onto 

P C space. The original data matrix M can be represented as: 

where E is the error matrix compensating the deviation of the model data to the 

original data [13]. The minimisation of the error matrix (also known as the re

construction error) is another approach to derive P C A and was proposed by Car l 

Pearson in 1901 and can be found in [35]. 

3.1 Derivation 

In this chapter, the main emphasis is given to the mathematical derivation of P C A 

method. The whole process of derivation of P C A , including generalized form of 

equations can be found in [33]. 

Suppose that X is a vector of m random variables and that the variances of the 

m random variables and the structure of the covariances or correlations between m 

variables are of interest. For the purpose of simplicity the derivation of P C A was 

carried out just for one P C . Lets suppose that we can form a new latent variable y\ 

as a linear combination of original variables. 

where Xc = (x\ — /xi , x<i — /X2, • • • , xm — / x m ) T is a column vector of original centred 

variables, then variance is from the definition 

V a r ( y i ) = V a r ( \ / 1

T X C ) = E[{V? XC){V? XC)T] = l f £ ( X c X c

T ) V i = V?CVU (3.3) 

C is known as the covariance matrix. From this, it can be seen that the value of 

Var(yi) is dependent on the value of vector Vi, so it is clear that, as it stands, 

the maximum wi l l not be achieved for finite V\ so a normalization constraint must 

be imposed. For the purpose of derivation it is convenient to introduce a normali

zation constraint where V^V\ = 1. [18]. In the next step, we would like to maximise 

M = TPT + E, 

in 
(3.2) 
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the entity Var(?/i). For maximisation or minimisation of a function wi th respect to 

constraints, the natural tool is a method of Lagrange multipliers. 

g1 = v*cvx - h<y?vx - 1 ) = E E - ME K - x)> (3-4) 
i=l j=l i=l 

where l\ is a Lagrange multiplier. Then a vector V\ maximising G\ must fulfil con

dition 

dVl 

2CVi - 2ZiV[ = ( C - / i / ) ^ = 0, (3.5) 

where J stands for indentity matrix. Because V\ is non-zero, then C — l\I must be 

singular. This could be satisfied only when det(C — = 0, this gives in general 

ra-th order polynomial equation with roots A i > A 2 > • • • > \ m . If we mult iply the 

underlined part of eq. 3.5 by vector , after a short rearrangement, we get 

VTCV1 = hVfVi = h. (3.6) 

We have then arrived at a conclusion which states that variance of a first P C is 

equal to l\ and wi l l be maximized for Zi = A i . W i t h this, the derivation of the first 

P C is complete. For the derivation of other P C s , new constraints must be applied. 

These constraints are here to satisfy the assumption of orthonormality of P C s . This 

condition could be mathematically described as V?Vj = Sij. General derivation of 

all other P C s can be seen in [33]. 

3.2 Scaling and centring 

A n integral part of the data pre-processing is scaling and centring. In some cases, 

variables have different scales. The scale of variables usually corresponds to the unit 

in which they are measured. The goal is then to have a P C A model that would be 

independent on the scale of variables. The most common type of scaling is scaling 

to unit variance. This type of scaling is also useful in situations when no prior 

information about variables is available. Because the scaling procedure affects the 

covariation matrix, it must be done wi th caution. Mean-centring is the second part 

of a usual pre-processing procedure. W i t h mean-centring, the average value of each 

variable is calculated and then subtracted from the data. This procedure leads to 

repositioning of the origin of the coordinate system of the original data. Graphical 

representation of scaling and mean-centring procedure can be seen in F ig . 3.1. The 

influence of data standardization in case of chemical data has been widely studied 

in [39]. 
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Fig . 3.1: Mean centring and unit variance scaling of all variables. After this procedure 

all variables wi l l have equal 'length' and mean value zero [13]. 

3.3 Number of used principal components 

Visualizat ion of data sets is crucial in any field. If a given dataset of m variables is 

being plotted in m-dimensional space, then ability to visualize anything ends wi th 

m — 3. In many practical applications, where m normally exceeds 10, finding a way 

to visualize data in q dimensional subspace (q < m), without the loss of generic 

information is desired. The question that stands out now is, how to determine the 

dimension q of the subspace. When the correct dimensionality of the subspace is not 

retained we risk either loss of important information (underestimation) or we include 

noise in the subsequent analysis (overestimation) [36]. During recent years, various 

methods have been developed. Some were based on a purely statistical and mathe

matical description, for example Monte Carlo simulations [21], Cross Validat ion [13], 

while others were based on empirically derived methods. In this thesis, the number 

of P C s has been selected by a widely used method based on the cumulative per

centage of total variation. The number of selected P C s is then chosen to satisfy the 

condition when the cumulative percentage exceeds some selected percentage level. 

The cumulative percentage level tq retained by q number of P C s can be defined 

as: 

tq = 1 0 0 p = ^ . (3.7) 

This level should fall somewhere between 70 % to 90 %. Another way how to look 

at the variation, is through a plot of eigenvalue vs. P C number known as a scree 

plot, named after the shape of rocky detritus at the foot of a h i l l [18]. The Cattell 's 

scree plot was developed by R. B . Cattel l in 1966. It is based on the assumption 
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that relevant information is larger than random noise and that the magnitude of 

the variation of random noise seems to level off quite linearly wi th the number of 

components [7]. 

Scree plot 
64.7% 

1 2 3 4 5 6 7 8 9 10 
Dimensions 

Fig . 3.2: Example of a scree graph. It can be seen that 82.4 % is retained by using 

only first two P C s . 

Cattel l (1966) argues that the q should be chosen when the scree graph goes from 

'steep' to 'shallow', a point beyond which the scree graph first goes mostly linear. 

A more realistic cut off for the eigenvalues is obtained with the so called broken 

stick rule. In this model a line is added to the scree plot. This line is calculated 

assuming that random data wi l l follow a so-called broken stick distribution. The 

broken stick distribution hypothesizes how random variation wi l l partition and uses 

the analogy of how the lengths of pieces of a stick wi l l be distributed when broken 

at random places into j pieces [7]. 
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3.4 Geometrical interpretation of the PC A 
First P C can be understood as the line in the m-dimensional space that best apro-

ximates the data in the least square sense [13]. The new coordinates (scores) in the 

component space are calculated as the projections of observations onto this line. 

Similar procedure could be done for the second P C . This component can be also 

depicted as a line in the m-dimensional variable space, which passes through the 

average point while being also orthogonal to the first P C . These two P C s then form 

together a plane that serves as a window into the m-dimensional variable space. 

Projection of the original observation onto this plane can be depicted as in Fig.3.3. 

*3 

o 
P C 1 

0 o 

x i o / o Q \ 
Projection of 
observation i Projection of 

observation i 

Fig . 3.3: Left: The P C I is the line which best captures the variability of the point 

swarm. It represents the maximum variance direction in the data. Projection of 

observation onto this line is known as score. Right: The P C 2 then captures the 

second largest source if variation in the data, while also being orthogonal to P C I . 

These two components together form a plane. Each observation can be projected 

onto this plane, giving score for each [13]. 

Then it can be also stated that the P C loadings express the orientation of the 

model plane in the m-dimensional space. The relation between original variables and 

P C s is expressed by the cosine of the angles «1,2,3- This, for first P C is depicted in 

F ig . 3.4. 
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Fig . 3.4: The P C loadings uncover how the P C A model plane is inserted in the 

variable space [13]. 

3.5 Outliers detection 

Outliers are samples that are somehow disturbing or unusual. Outliers detection is 

about identifying and handling such observations. Several researchers have explained 

the concepts of applying P C A as a robust method in detecting these outliers in 

multivariate settings [41]. 

Detection of outliers is usually done after a score plot inspection. Removal of 

outliers is crucial because outliers have a tendency to rotate the component space 

towards themselves [13]. The effect of adding or removing an outlying observation 

on direction of the P C can be seen in F ig . 3.5. 

Thus, in order to produce a reliable cluster of these data, it is imperative to 

ensure that the dataset is free from outliers. Due to this, the cluster analysis usually 

involves a pre-processing step to identify the existence of outliers wi thin a data 

set [41]. 

In some situations, the removal of the outliers is not possible, for example when 

the outlying observation is an integral part of the study. 

3.6 Cluster analysis 

A s mentioned before, P C A can also be only a starting point for another type of 

analysis. One of the results of the P C A is a score plot in which observations that 

have similar properties tend to group. In some cases, when categorical variable, 

for example origin of the samples, is preliminarily known, P C A could be sufficient 
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Fig . 3.5: . The effects of adding/removing an outlier on the P C direction. Here 

clustered blue circles represent normal data instances, the red square denotes an 

outlier, and the green arrow is the dominant P C direction [28]. 

enough. Unfortunately, in most of the situations, this is not true, and we have no 

preliminary information about the sample groups. In these cases and also when 

the distinction between newly formed groups is not clear, cluster analysis can be 

performed to improve the cluster separation. Cluster analysis then tries to find a 

natural grouping of a data set which would minimise the variation within the clusters 

and maximise the variation between the clusters [13]. 

3.6.1 K-means clustering 

One of the oldest algorithms used for cluster analysis is the K-means algorithm. 

In its simplest form, this algorithm tries to find K non-overlapping clusters. These 

clusters are represented by their centroids. A centroid is calculated as a mean value 

of the data points within the cluster. Cluster analysis then follows this procedure. In 

the first step, a number of K clusters is selected by the user. Then each data point 

is assigned to its closest centroid. This collection of points then forms a cluster. 

The addition of a new point into a cluster leads to a recalculation of the centroid. 

This process is then repeated unti l no point changes its clusters [50]. In the case of 

euclidean distance this could be expressed by term [12]. 

K 
Jk = arg min ^ ^ (Mt - mk)2, (3.8) 

k=l i£Ck 

where ( M i , - - - ,Mn) = M is the data matrix and mk = J2ieCk

xi/nk * s the 

centroid of the cluster Ck and rik is the number of points in Ck-
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3.6.2 K-medoids clustering 

Due to the fact that mean is easily influenced by extreme values, another type of 

clustering algorithm has been designed. Medoid is the most centrally located object 

of the cluster, wi th a minimum sum of distances to other points [16]. Thus the 

partitioning method can still be performed based on the principle of minimizing 

the sum of the dissimilarities between each object and its corresponding reference 

point [49]. Comparison between using K-mean clustering and K-medoids clustering 

can be found in F ig . 3.6. 

[ • * • • * • 
\ * " / \ * • / 

Fig . 3.6: Mean vs medoid in 2D space; (a) Mean centroid, (b) Median centroid. The 

red cross represents the center found by mean or medoid calculation, [17]. 

3.6.3 Fuzzy clustering 

A big disadvantage of previous algorithms is their "hard clustering"nature. These 

algorithms force each data point to belong to a specific group wi th the same pattern. 

This procedure in some cases distorts the original data and could lead to confusing 

results. For this purpose, fuzzy clustering algorithms have been proposed to fight the 

hard clustering nature of previous algorithms [30]. A fuzzy set is described as a group 

of anything that cannot be precisely defined. Fuzzy clustering is a sophisticated 

method for handling data which are unlabeled, contain outliers or include unusual 

patterns, [24]. 
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4 EXPERIMENT 

4.1 Origin of the samples 
In the present study 18 samples have been analyzed using a multi-analytical appro

ach in order to study their microstructure. The information about composition of 

different samples can then help us test the hypothesis about different origin of the 

samples. 

The acquired samples were a product of an extensive investigation carried out 

between 2015 and 2018 at the U N E S C O site of A l K h u t m (Bat, Oman), F i g 4.1. 

This work has allowed us to uncover an important and well preserved Bronze 

Age complex [10]. The main achievement of the excavation is the exposure of a 

4 m high circular tower, an imposing 2 m high perimeter wall and several structures 

located inside the tower, including several entrances, a deep well found in the central 

corridor and two rows of rooms on both sides, F ig . 4.2. 

F ig . 4.1: Position of the U N E S C O site of A l K h u t m . 
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Fig . 4.2: The protohistoric tower at the U N E S C O site of A l K h u t m after the last 

excavation campaign in 2018. 



4.2 Measurement 

The samples (selection of them in F ig . 4.3) were imaged by X-ray mic roCT at the 

Mult idiscipl inary Laboratory of the Abdus Salam International Centre for Theore

tical Physics (Trieste, Italy), using a system specifically designed for the study of 

archaeological and palaeoanthropological materials [5]. 

F ig . 4.4: (a) C T station at I C T P , wi th a lead-shielded cabinet used to operate the 

system, (b) Inner part of the C T system wi th highlighted particular components. 

Both stage system and detector are mounted on a flexible mechanical set-up [48]. 

The mic roCT acquisitions of specimens were carried using a sealed X-ray source 

(Hamamatsu L8121-03) at a voltage of 110 k V , at a current of 90 u A and with a 

focal spot size of 5 um. The X-ray beam was filtered by a 0.1 m m thick copper 

absorber. A set of 1440 projections of the artefacts was recorded over a total scan 

angle of 360° by a flat panel detector (Hamamatsu C7942SK-25; pixel size of 50 um). 

The resulting mic roCT slices were reconstructed using the commercial software Dig i 

X C T (Digisens) in 32-bit format and obtaining an isotropic voxel size 12 um. 

4.3 Metrics extraction 

The resulting volumetric data have then been segmented using Avizo . Av izo is a 

very useful software in terms of segmentation. It offers a large set of segmentation 
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Fig . 4.5: C T cross sections of selected samples. Scale bar corresponds to 0.5 cm. 

tools, ranging from purely manual to fully automatic: brush (painting), lasso (con

touring), magic wand (region growing), thresholding, intelligent scissors, contour in

terpolation, extrapolation, etc. [47]. The segmentation of selected samples was done 

mainly using region growing techniques with a combination of different manual tech

niques to achieve satisfying results. After the segmentation process, it is important 

to find some parameters based on which the samples could be compared. There are 

certain possibilities offered by the commercial software which allow extraction of va

rious parameters that could be used for samples classification. One of the software 

that gives the opportunity to extract different metrics from the segmented image is 

Avizo . 

There are many parameters that could be exported from the Avizo . For exam

ple information about width, length and area of each single inclusion. From this, 

ratio between the total areas of different pottery components can be calculated. In

formation about the ratio between the total areas of different pottery components 

can give interesting insights on how the paste of the vessels was produced. Anyway, 

samples wi th a similar lithic inclusion/clay ratio could correspond to quite different 

pastes: the same ratio could be obtained considering a sample with very rare and big 

lithic grains or considering a vessel characterised by very abundant and small lithic 

inclusions. In order to overcome this bias, we have calculated, using A v i z o v.8 soft

ware, the number, the area, the maximum length and the maximum width of every 

single lithic inclusion within the three vir tual sections selected for all samples [5]. 

Selection of 2D segmentantion instead of 3D made the whole process of segmen-
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tation more time efficient, while the results were comparable wi th those obtained 

through 3D process [4]. The process of segmentation is shown in F ig . 4.6. 

After that, we have summed up the results for each sample, putt ing together the 

data obtained from the segmentation and analysis of the three virtual sections. 

F ig . 4.6: Left: 3D model of a selected sample; Middle: V i r tua l cross-section, position 

of the slice is indicated by the blue plane in the 3D model; Right: Segmentation of 

different pottery components of the sample. Green-clay, yellow-inclusions, purple-

voids. 
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4.4 Data preparation 
To manage the resulting huge amount of data, we have divided our datasets (values 

for area, maximum length and width of all inclusions) into four intervals using 

Matlab R2016b. The size of the intervals has been selected by taking into account 

the statistical distribution of each variable. This procedure was important to have 

the best representation of dimensional parameters describing the lithic inclusions 

within the paste, allowing a good separation between samples showing lithic grains 

of different sizes [5]. 

A s far as the area is concerned, the quartile values are 325 u m 2 , 1137 u m 2 

and 4714 u m 2 and the intervals have been set as follows: very small inclusions, 

0 - 325 u m 2 ; small inclusions, 325 - 1137 u m 2 ; medium inclusions, 1137 - 4714 u m 2 ; 

and big inclusions, bigger than 4714 u m 2 . A s far as the length is concerned, the quar

tile values are 28 um, 53 um and 108 um and the intervals have been set as follows: 

very small, 0 - 2 8 um; small, 28 - 53 um; medium, 53 - 108 um; and big, bigger 

than 108 um. A s far as the width is concerned, the quartile values are 12 um, 38 um 

and 66 um and the intervals have been selected as follows: very small, 0 - 1 2 um; 

small, 12 - 38 um; medium, 38 - 66 um; and big, bigger than 66 um. The result of 

this procedure is a table showing the number of inclusions falling into its respective 

interval. To overcome situations when there were too big differeces in number of 

inclusions wi thin sample, the percentages of lithic inclusions falling within the defi

ned size intervals have then been calculated. The result is summarized in Tab.4.1. 

Before the P C A the data were centred and scaled. The aim was to create a model 

that would be size and unit independent. 
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Tab. 4.1: Table showing the percentage of lithic inclusions falling into its respective interval. Considering the area, length and width 

of each single lithic inclusion. A s additional parameter, inclusion clay ratio has been calculated for each sample. 

Area Length Width Material 

N a m e V e r y s m a l L A S m a l L A M e d i u m _ A B i g _ A V e r y s m a l L L S m a l L L M e d i u m _ L B i g - L V e r y s m a l L W S m a l L W M e d i u m _ W B i g _ W I n c L C l a y 

049 5,10% 17,05% 32,26% 45,59% 7,00% 19,98% 27,16% 45,86% 9,29% 24,78% 21,08% 44,85% 41,55% 
050 8,33% 11,81% 40,28% 39,58% 10,42% 17,36% 40,97% 31,25% 10,42% 26,39% 24,31% 38,89% 0,70% 
051 9,49% 23,36% 42,34% 24,82% 13,87% 23,36% 41,61% 21,17% 14,23% 32,12% 29,56% 24,09% 0,18% 
052 6,48% 17,82% 43,29% 32,41% 7,41% 23,15% 37,96% 31,48% 11,34% 27,31% 28,94% 32,41% 0,63% 

053 4,38% 9,16% 31,87% 54,58% 4,78% 13,94% 30,68% 50,60% 5,58% 15,54% 25,10% 53,78% 0,84% 
054 7,23% 11,85% 35,94% 44,98% 7,83% 14,86% 35,54% 41,77% 8,63% 22,49% 23,90% 44,98% 1,68% 
055 6,37% 12,35% 31,85% 49,43% 8,30% 15,75% 28,00% 47,95% 9,14% 20,10% 22,72% 48,05% 24,76% 
056 39,31% 45,03% 13,57% 2,09% 50,22% 32,23% 14,69% 2,86% 60,93% 31,32% 5,36% 2,39% 0,80% 
057 7,24% 22,39% 38,05% 32,32% 9,26% 25,59% 32,66% 32,49% 12,63% 30,13% 25,08% 32,15% 1,37% 
058 6,73% 13,76% 38,99% 40,52% 8,56% 17,74% 35,93% 37,77% 10,09% 23,09% 27,98% 38,84% 0,71% 
059 41,99% 26,10% 24,28% 7,63% 45,70% 27,08% 20,36% 6,86% 50,87% 27,99% 13,72% 7,42% 0,73% 

060 1,90% 5,70% 43,04% 49,37% 2,53% 8,23% 47,47% 41,77% 3,16% 13,92% 29,75% 53,16% 0,44% 

061 35,81% 20,17% 26,53% 17,49% 32,72% 25,33% 24,21% 17,73% 35,73% 31,30% 14,99% 17,98% 2,93% 
062 63,64% 19,48% 11,76% 5,12% 54,31% 26,73% 13,55% 5,41% 60,06% 28,13% 6,44% 5,37% 0,83% 
063 6,72% 8,40% 36,97% 47,90% 6,72% 12,61% 34,45% 46,22% 6,72% 19,33% 26,89% 47,06% 0,41% 
064 13,87% 20,80% 41,18% 24,16% 10,92% 30,46% 34,66% 23,95% 14,92% 34,87% 27,52% 22,69% 0,45% 
065 5,59% 19,08% 36,18% 39,14% 5,59% 25,66% 34,21% 34,54% 9,87% 24,67% 26,32% 39,14% 0,52% 

066 3,93% 9,09% 22,36% 64,62% 3,93% 12,53% 22,36% 61,18% 6,39% 13,51% 16,95% 63,14% 1,91% 





5 DATA PROCESSING 

5.1 Principal component analysis 

In the next step, P C A has been performed using the programming language R [22]. 

The input dataset for P C A was table 4.1. Before the P C A , the data were centred 

and scaled (column-wise scaling to unit variance). The first outcome of the P C A 

method is a scree plot, showing the statistical significance of each P C . 

5 6 
Dimensions 

Fig . 5.1: Scree plot showing the variance captured by corresponding P C . 

If the first two or three P C s capture the most of the variation present in the 

data, the scree plot is a steep curve that bends quickly and flattens out. 

From the scree plot inspection, we can clearly see that 86.1% of variance is 

retained by using only first two P C s . Due to this, we have decided to use only first 

two P C s for the next calculations. 
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F i g 5.2, called loadings plot, shows how strongly each variable influences a P C . 

Their projected values on each P C then show how they are important in describing 

the differences between investigated samples. Another thing that can be deduced 

from the loadings plot is the relationship between variables and the quality of their 

representation. Variables positively correlated are grouped together, wi th small angle 

between them. Whi le those negatively correlated are located in opposite quadrants. 

Variables which are not correlated are perpendicular to each other. The quality of 

representation can be expressed by a value of square cosine (cos2). The distance 

between the end points of variables measures the quality of the variables. The best 

representation of a variable is given when its end lies on the correlation circle, a 

condition corresponding to the maximum square cosine value, that is 1. 

Variables - PCA 

-1.0 -d.5 o.o o!s i!o 
standardized PC1 (69.0% explained var.) 

Fig . 5.2: Loadings plot showing the correlation of variables. Here can be seen that 

by selecting four intervals we were able to divide our variables to four quadrants in 

the loadings plot. A , area; L , length; W , width; IncLClay, lithic inclusion/clay ratio. 
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A compact way to visualize the results of P C A is through biplot. In the bivariate 

plot (scores plot) in F ig . 5.3, we can observe the position of the samples wi th respect 

to P C I and P C 2 and the variables. When an observation falls close to a given 

variable, it has a high value of such a variable, while its value is low it is located on 

the opposite side of the same variable. 

Basically it follows common rule, when the points are far away from each other in 

the scores plot, they are different. If points are close together, they are more similar. 

PCA - Biplot 
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Fig . 5.3: Bivariate plot showing the variables (blue arrows) and the position of in

vestigated samples/observations (grey dots). Horizontal axis correponds to P C I , 

wi th 69.0% explained variance. Vert ical axis belongs to P C 2 , with 17.1% explained 

variance. 

In F ig . 5.3 we can already observe some formation of groups of samples. Just 

by visual inspection of the biplot three main groups of samples can be identified. 

Samples 061 and 059 can be classified as the samples wi th very small inclusions. 

Whi le on the other hand samples 053, 055 and 049 form a group of samples wi th 

big inclusions. There are also many samples, that would be hard to classify, just 

by looking. For example samples 052, 050, 058, etc. There are also some outlying 

observations, for example sample 066, 062, 056. But the detection of outliers is not 

an easy task and thus we need to proceed carefully. A n intuitive way, how to detect 
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the outliers, can be done by calculating the Euclidean distance of each observation 

to the origin of the coordinate system. The result is shown in F ig . 5.4. 

F ig . 5.4: Detected outlier using a standard Euclidean distance. Red dot corresponds 

to the origin of the P C space. 

Technically speaking, here we have empirically discovered four outlying observati

ons, just by visual inspection. Now we have to provide more quantitative analysis 

to support our hypothesis. For this reason we have calculated robust Mahalanobis 

distance [29] between individual observations and the geometric median, taking into 

account all observations. Result shown in F ig . 5.5. 

From this it is clear that samples 056, 062, 059, 061 are outliers. But in our case 

we were not allowed to remove these observations. The reason to do so was, that 

they were an important part of the analysis and removal of these samples would lead 

to losing one whole classified group of samples, i.e. samples with small inclusions. 

That is why we have decided to extend our analysis and take a different approach. 
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14 16 18 

Fig . 5.5: Detected outliers using a robust Mahalanobis distance [43]. Horizontal l i 

nes correspond to different signicance levels of the \ 2 test, used in [14]. Red line 

corresponds to a = 0.1, green line to a = 0.05 and blue line to a = 0.01. 

5.2 Cluster analysis 

In our case the separation between the observations is not very clear. Due to this, 

we have decided to do cluster analysis on the result of the P C A , to improve the 

separation of observations. In this part, performance of different clustering algori

thms has been tested. Due to the fact that all algorithms gave identical results, we 

have decided to randomly select one of these algorithms. The algorithm that has 

been selected was K-means clustering algorithm. The optimal number of clusters 

has been selected empirically by testing different number of clusters. Three clusters 

have been chosen due to the fact that in case of four clusters, one cluster was consu

med by only one observation (sample 066). This observation is clearly an outlier, see 

F ig . 5.6. Because of this, we have decided to perform P C A again, but now without 

sample 066. Result of the cluster analysis, is shown in F ig . 5.7. This time we have 

decided to form four clusters. 
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-1 0 1 

standardized PC1 (69.0% explained var.) 

Fig . 5.6: Result of the K-means cluster analysis for all observations. The ellipses 

around each group correspond to 95 % confidence interval. 

5.3 Interpretation 

Among all the samples, four main groups of samples have been identified. The first 

group (blue) corresponds to samples with prevalent number of very small or small 

inclusions (samples: 061, 059, 056, 062). Second group (violet) of samples are sam

ples wi th small and medium-sized inclusions (samples: 051, 064, 052, 057, 065). 

T h i r d group (red) is here as a some kind of intermission phase between medium-

sized samples and samples with big inclusions (samples: 050, 058, 054, 063, 060). 

The last group (green) that has been identified belongs to the samples that could 

be characterized as samples with big inclusions (samples: 049, 055), wi th a slight 

exception of sample 053, whose internal structure corresponds more to samples wi th 

medium-sized inclusions. Among all these observations, it can be seen that sample 

066 does not belong to any of the groups. The closest group, where this sample 

could belong is group of samples wi th high percentage of big inclusions. After this 

I have tried to confront the result of the cluster analysis wi th the data obtained by 

mic roCT imaging. 
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Fig . 5.7: Result of the K-means cluster analysis. Analysis was performed on the 

result of the P C A with removal of sample 066 which was identified as an outlier. 

F ig . 5.8: C T cross sections of samples that were categorized as samples wi th very 

small /small inclusions. Bright areas correspond to dense lithic inclusions, probably 

calcite. Scale bar corresponds to 0.5 cm. 
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Fig . 5.9: C T cross sections of samples that fell in the category of samples wi th 

medium-sized inclusions. Scale bar corresponds to 0.5 cm. 

F ig . 5.10: C T cross sections of samples that represent group that could be cha

racterized as an intermission phase between medium and big inclusions, wi th high 

percentage of medium-sized inclusions. Scale bar corresponds to 0.5 cm 

Fig . 5.11: C T cross sections of samples that were characterized as samples wi th 

prevalance of big inclusions. Sample 066 that was discovered to be an outlier was 

highlighted in red. Scale bar correponds to 0.5 cm. 
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M i c r o C T results have revealed that most samples show small-medium grain-size, 

while only a few ones show a coarse-grained paste with variably dense lithic inclusi

ons, which supports the results obtained through P C A . One thing that came out 

clear after visual inspection of mic roCT data was that sample 066 should belong to 

the samples wi th medium-sized inclusions. Due to the fact that it has been catego

rized as a sample wi th big inclusions, it gave us a first suspicion that the sample 066 

was something different. The conclusion of mic roCT analysis was that all the ana

lyzed samples were locally produced wi th the exception of sample 066. This results 

were confirmed by prompt gamma activation analysis ( P G A A ) , where as the result 

of the analysis was that all the samples share similiar chemical composition, wi th 

exception of sample 066. 
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CONCLUSION 
This thesis addresses the implementation of protocols to extract structural infor

mation from mic roCT data through segmentation procedures and the development 

of various statistical methods useful to classify archeological samples in order to 

study their technology and possible origin. 

The theoretical part of the thesis gives an insight into basic C T principles and 

some image processing methods. Later, the P C A method is presented, together wi th 

the derivation and geometrical interpretation of principal components. 

The experimental part of the thesis describes the experiment performed at the 

Mult idiscipl inary Laboratory of the International Centre for Theoretical Physics 

(Trieste, Italy), using a system specifically designed for the study of archaeological 

and paleoanthropological materials. The classification algorithm is presented in the 

next part. The classification algorithm was tested on pottery samples from the archa

eological site of A l K h u t m (Bat, Oman). In the first step, the samples were measured 

using a C T machine. A s the next step, the reconstructed volumetric data were seg

mented and then some parameters of interest, describing the pottery matrix, were 

exported using A v i z o v. 8. These parameters then served as an input for the P C A 

method, later followed by a cluster analysis. The outcome of the method was the 

identification of four main groups of samples, based on the size of their inclusions. 

Another significant result was the identification of one outlying observation (sample 

066), where preliminary results indicated that it had been probably imported from 

the Indus valley (present-day Pakistan). 

The presented method was based on data coming from segmentation, thus bound 

to one specific technique, i.e. C T . However, the use of statistical principles for the 

purpose of classification or characterization of samples is limitless and combination 

of datasets coming from various sources could offer whole new types of analyses in 

the future. 
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c speed of light 
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Abstract 
About 20 Late Copper Age bowls with cross-shaped foots from Deschmann's pile dwellings (Ljubljansko barje, central Slovenia) 
and Trieste Karst (North-Eastern Italy) have been investigated using X-ray computed microtomography (microCT) in order to 
study the vessel-forming technique, to characterise their pastes and to test the hypothesis that some Karst bowls could have been 
imported from nowadays central Slovenia or even more distant regions. In three selected virtual slices per sample, clay, lithic 
inclusions and pores have been segmented and quantified. In addition, the area, maximum length and width of each lithic 
inclusion have been calculated. Then, the microCT-derived results have been statistically analysed by principal component 
analysis (PCA). The orientation of pores and disjunctions in microCT volumes show that the basins of the bowls were built 
using mainly the coiling technique, while the base was shaped starting from a central piece, to which a layer of clay was added 
and then reshaped in order to produce the foots. The Slovenian bowls include both medium/coarse-grained and very fine- or fine
grained vessels mainly tempered with carbonate inclusions. The pastes of the Karst bowls are considerably heterogeneous. One 
bowl was most likely imported to the Karst but not from central Slovenia as it shows peculiar components, shape and decoration. 
The other two imported vessels show a very fine-grained paste comparable to the one of several samples from Deschmann's pile 
dwellings. Such technological similarity is confirmed by P C A of microCT data and petrographic observations. Our study 
confirms the existence of strong cultural connections between central Slovenia and the northernmost Adriatic coast during the 
Late Copper Age. 

Keywords Late Copper Age decorated bowls • Central Slovenia • Trieste Karst (North-Eastern Italy) • X-ray computed 
microtomography • P C A of microCT-derived data • Technology • Paste characterisation 
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Introduction 

The three Deschmann's pile dwellings (slo. Dezmanova 
kolisca), located near Ig in the Ljubljansko barje (central 
Slovenia), are one of the main third millennium BC archaeo
logical evidence in the south-eastern Alpine region (Fig. 1). In 
2011, they were inscribed on the World Heritage List of 
UNESCO in the transnational serial property prehistoric pile 
dwellings around the Alps. The well-preserved ceramic finds 
from these sites have been included in various typo-
chronological analyses to define the cultural development in 
this area during the Late Copper and Early Bronze ages (e.g. 
Dimitrijevic 1956, 1966, 1979; Korosec 1958-1959; Bona 
1965; Ecsedy 1977; Parzinger 1984; Govedarica 1989; 
Maran 1998; Leghissa 2017). According to the latest typolog
ical analyses and a few absolute dates (Leghissa 2017, 2018), 
two main phases have been identified in Deschmann's pile 
dwellings. The oldest one (twenty-eighth-twenty-sixth centu
ry BC) is mainly characterised by pottery typical of the Late 
Copper Age Vucedol culture, widespread from the Balkans to 
south-eastern Central Europe, and pottery pointing to 

connections with other cultures, located especially in Central 
Europe. The younger phase (twenty-sixth century B C to 
twenty-fifth century BC) is defined by finds of the Ljubljana 
culture that has developed under the influences of Corded 
Ware (and Globular Amphora) as well as Somogyvar-
Vinkovci and Bell Beaker cultures. 

The Ljubljana culture is mostly attested in Deschmann's 
pile dwellings, but some typical elements are present also in 
many caves of the Trieste Karst (North-Eastern Italy; Fig. 1) 
and eastern Adriatic coast (Montagnari Kokelj 1981; 
Govedarica 1989; Gil l i and Montagnari Kokelj 1993, 1994, 
1996; Montagnari Kokelj and Crismani 1997; Montagnari 
Kokelj et al. 2002; Leghissa 2017, Fig. 181). Contacts be
tween the two areas investigated in this contribution are al
ready attested during the oldest phase of Deschmann's pile 
dwellings, but they undoubtedly increased during the devel
opment and spread of the Ljubljana culture (see Leghissa 
2017 and the literature quoted there). 

Decorated bowls with cross-shaped foots are reported from 
central Slovenia and the Trieste Karst. This type of vessel is 
common in the Vucedol culture, spread from the Balkans to 

Fig. 1 Position of the archaeological sites where the investigated bowls have been discovered. 1, Deschmann's pile dwellings (Slovenia); 2, Ciclami 
cave; 3, Zingari cave; 4, Cotariova cave; 5, Pettine cave; 6, Edera cave. A l l cave sites are located in the Trieste Karst 
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south-eastern Central Europe, but it is also reported in other 
contemporaneous cultures in Central Europe. In Deschmann's 
pile dwellings, where this type is abundant, several variants 
are known, while only a few bowls were discovered in Trieste 
Karst. Despite the small number, the latter are heterogeneous 
as to shape and decoration. 

Most of the known bowls from the Trieste Karst and a 
selection of bowls from Deschmann's pile dwellings (Fig. 1) 
have been studied using X-ray computed microtomography 
(hereinafter microCT) to define their production technology 
and to characterise their pastes. MicroCT has already been 
applied to the study of ancient pottery providing information 
about vessel-forming techniques and provenance (Kahl and 
Ramminger 2012; Bernardini et al. 2013, 2015, 2016; 
Sanger 2016; Machado et al. 2017). When the artefacts under 
consideration cannot be sampled, such as in our case, 
microCT is a precious tool to perform fabric characterisation 
of pottery, allowing the visualisation and quantification of 
lithic inclusions, clay matrix, pores and disjunctures generally 
related to firing shrinkage, loss of organic temper or the result 
of how the vessels were shaped into their final form 
(Bernardini et al. 2016). 

We applied a similar approach to study the Copper Age 
bowls from Slovenia and the Trieste Karst, and we performed 
a multivariate statistical analysis of microCT-derived data. 
The obtained results have been used to discuss the origin of 
the few vessels found in the Karst area. In fact, they could 
have been imported to the Karst or they could have been 
loca l ly produced fo l l owing a model common in 
Deschmann's pile dwellings and beyond. 

Materials and methods 

In the present study, 23 bowls with cross-shaped foots have 
been studied: 14 from Deschmann's pile dwellings and 9 
from five caves of the Trieste Karst (Table 1; Fig. 2). These 
vessels are among the most abundant ceramic forms in 
Deschmann's pile dwellings. Most of them can be typolog-
ically ascribed to the Vucedol culture phase and just a few 
ones to the later Ljubljana culture. They are generally rich
ly decorated on the exterior, the interior and the rim with 
stab-and-drag, simple incised lines or rarely with impres
sions of cords wrapped around thin plates (i.e. the typical 
decoration technique of the Ljubljana culture; Leghissa 
2015). In the Trieste Karst, a few bowls of this type were 
found. Despite their small number, they are outstanding for 
their rich and complex decorations showing incised lines 
or impressions of a twisted double cord, a technique main
ly reported from contemporary Central European cultures 
(e.g. Schnurkeramische Kultur or Corded Ware culture; see 
Buchvaldek 1967; Furholt 2003). 

Macroscopic observation 

The surface of all samples has been observed using a stereo-
microscope and/or a magnifying glass in order to identify 
visible lithic grains. Most vessels contain quite abundant 
limestone/calcite inclusions, while white mica and quartz 
grains have been recognised in a few bowls (Table 2). 

Microfocus X-ray computed tomography 

The vessels were imaged by X-ray microCT at the 
Mul t id i sc ip l ina ry Laboratory of the Abdus Salam 
International Centre for Theoretical Physics (Trieste, Italy), 
using a system (Tuniz et al. 2013) specifically designed for 
the study of archaeological and palaeoanthropological mate
rials (e.g. Bernardini et al. 2012, 2016; Tuniz et al. 
2012, 2013; Bernardini et al. 2017; Duches et al. 2018). 

The microCT acquisitions of most specimens were carried 
out by using a sealed X-ray source (Hamamatsu L8121-03) at 
a voltage of 110 kV, at a current of 90 uA and with a focal spot 
size of 5 urn. A few very dense vessels were analysed using a 
voltage of 140 kV, a current of200 uA and a focal spot size of 
20 urn. The X-ray beam was filtered by a 0.1-mm-thick cop
per absorber. A set of 1440 or 1800 projections of the artefacts 
was recorded over a total scan angle of 360° by a flat panel 
detector (Hamamatsu C7942SK-25; pixel size of 50 urn). The 
resulting microCT slices were reconstructed using the com
mercial software Digi X C T (Digisens) in 32-bit format and 
obtaining an isotropic voxel size from about 20 to 40 um 
(Table 1). 

Most of the samples have been analysed two times with 
different resolutions. Data sets with a resolution of about 
20 um have been used to perform the segmentation of the 
paste components, while the data sets with a lower resolution, 
including the whole vessels or a larger part of them, have been 
mainly used to study technological production traces. 

Segmentations and microCT-derived data analysis 

Using Avizo v. 8 software, three virtual sections for each sam
ple, taken at the centre and the edges of each data set, have 
been segmented in order to separate the clay matrix from the 
lithic temper materials and the pores following a procedure 
already applied by Bernardini et al. (2016). In the same work, 
a comparison between results from 2D segmentation of select
ed slices and 3D segmentation of extracted sub-volumes of 
archaeological pottery has shown that the much faster 2D 
segmentation generally gives comparable results (for details, 
see Bernardini et al. 2016). 

After the segmentation process, we have first calculated, 
using the same software, the total area of clay matrix, pores 
and lithic inclusions (including both temper material and lithic 
components within the raw material) for all three virtual 
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Table 1 List of the studied Copper Age bowls with cross-shaped foots from central Slovenia and the Trieste Karst (North-Eastern Italy) 

Inventory number Site Cultural attribution Methods Voxel size References 

B1482 Deschmann's pile dwellings L. b. variant of V. c. uCT 41.01; 81.42 Korošec and Korošec 1969, T. 38: la, b; 
Leghissa2017, T. 91: 1 

B1963 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 43.15 Korošec and Korošec 1969, T. 44: 9a-c; 
Leghissa2017, T. 107: 2 

B1984 Deschmann's pile dwellings L. b. variant of V. c. uCT 39.71 Korošec and Korošec 1969, T. 46: 12; 
Leghissa 2017, T. 95: 1 

B1965 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 44: l la-c; 
Leghissa 2017, T. 102: 2 

B1939 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 47: 6a, b; 
Leghissa 2017, T. 93: 2 

B1994 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 45: 6a, b; 
Leghissa 2017, T. 95:5 

B1505 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 42: 3a-c; 
Leghissa 2017, T. 96: 2 

B5009 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 44.68 Korošec and Korošec 1969, T. 40: 4a, b; 
Leghissa 2017, T. 97:3 

N i l 9 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 39: 5; 
Leghissa 2017, T. 97: 4 

B1479 Deschmann's pile dwellings L. b. variant of V. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 40: 2a, b; 
Leghissa 2017, T. 103: 4 

B1972 Deschmann's pile dwellings L. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 47: 9; 
Leghissa 2017, T. 104: 3 

B1973 Deschmann's pile dwellings L. c. uCT 39.71 Korošec and Korošec 1969, T. 49: 4; 
Leghissa 2017, T. 99: 2 

B1490 Deschmann's pile dwellings L. c. uCT 21.42; 39.71 Korošec and Korošec 1969, T. 41: 7a, b; 
Leghissa 2017, T. 41: 7 a, b 

B1497 Deschmann's pile dwellings L. c. uCT 39.71 Korošec and Korošec 1969, T. 38: 2a, b; 
Leghissa 2017, T. 109:3 

3469 Zingari cave Influences of V. c. uCT 30.95 Gilli and Montagnari Kokelj 1996, Fig. 34: 202 
20591 Ciclami cave Influences of V. c. uCT 21.42; 42.19 Gilli and Montagnari Kokelj 1993, Fig. 51: 497 
20592 Ciclami cave Influences of V. c. uCT 21.42; 38.99 Gilli and Montagnari Kokelj 1993, Fig. 37: 355 
20419 Cotariova cave Influences of V. c. uCT 21.42; 43.33 Montagnari Kokelj et al. 2002, T. 27: 244 

139461 Cotariova cave Influences of V. c. uCT 21.42 Montagnari Kokelj et al. 2002, T. 27: 245 

SN Cotariova cave L.c. uCT 21.42 Montagnari Kokelj et al. 2002, T. 27: 246 

139462 Pettine cave Influences of V. c. uCT; OM 21.42 Marzolini 1983, Fig. 1: 22, 25 
139463 Pettine cave Influences of V. c. uCT; OM 21.42 Marzolini 1983, Fig. 1: 11 
139464 Edera cave Influences of V. c. uCT 21.42 Marzolini 1970, Fig. 2/1 

L. b. Ljubljansko barje, V. c. Vučedol culture, L. c. Ljubljana culture 

sections selected for all the artefacts. The ratio between the 
total areas of different pottery components can give interesting 
insights on how the paste of the vessels was produced (e.g. 
Bernardini et al. 2016). 

Anyway, samples with a similar lithic inclusion/clay ratio 
could correspond to quite different pastes: the same ratio could 
be obtained considering a sample with very rare and big lithic 
grains or considering a vessel characterised by very abundant 
and small lithic inclusions. In order to overcome this bias, we 
have calculated, using Avizo v.8 software, the number, the 
area, the maximum length and the maximum width of every 

single lithic inclusion within the three virtual sections selected 
for all samples. After that, we have summed up the results for 
each vessel, putting together the data obtained from the seg
mentation and analysis of the three virtual sections. 

To manage the resulting huge amount of data, we have 
divided our data sets (values for area, maximum length and 
width of all inclusions) into four intervals using Matlab 
R2016b. 

The size of the intervals has been selected by taking into 
account minimum and maximum values of each variable and 
its distribution. This procedure was important to have the best 
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Fig. 2 Drawings of selected 
Copper Age bowls. 1, 
Deschmann's pile dwelling 
B1482; 2, Deschmann's pile 
dwelling B1984; 3, Deschmann's 
pile dwelling B1939; 4, 
Deschmann's pile dwelling 
B1505; 5, Deschmann's pile 
dwelling B1963; 6, Ciclami cave 
20591; 7, Cotariova cave 20419; 
8, Pettine cave 139463; 9, 
Ciclami cave 20592. Scale 
bar = 3 cm; for the references, see 
Table 1 

representation of dimensional parameters describing the lithic 
inclusions within the paste, allowing a good separation be
tween samples showing lithic grains of different sizes. As far 
as the area is concerned, the minimum value is 458 | im 2 , the 
maximum value is 12,300,000 urn and the intervals have 
been set as follows: very small inclusions, 0-50,000 urn ; 
small inclusions, 50,000-100,000 urn ; medium inclusions, 
100,000-200,000 um ; and big inclusions, bigger than 
200,000 urn . As far as the length is concerned, the minimum 
value is 29 urn, the maximum value is 5457 urn and the 
intervals have been set as follows: very small, 0-500 urn; 
small, 500-1000 um; medium, 1000-1500 um; and big, big
ger than 1500 urn. As far as the width is concerned, the min
imum value is 21 um, the maximum value is 3653 urn and the 
intervals have been selected as follows: very small, 0-
200 urn; small, 200-300 um; medium, 300-400 um; and 
big, bigger than 400 um. The percentages of lithic inclusions 

falling within the defined size intervals have then been 
calculated. 

In order to extract the maximum information possible from 
the data, principal component analysis (PCA) (e.g. Jolliffe 
2002) has been performed using the programming language 
R (Kassambara 2017) and considering as variables inclusion/ 
clay ratio and percentages of area, maximum length and max
imum width. PCA is a multivariate analysis tool to reduce the 
dimensions of a given data set. It is based on the idea of 
rotating the original coordinate system to a new one. The 
direction of the new axes is then chosen to explain the maxi
mum variance within the data set. 

Optical microscopy 

Small samples have been extracted from the two fragmented 
bowls of Pettine cave (139462, 139463) located in the Trieste 
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Table 2 Minerals identified 
through a stereomicroscope and/ 
or a magnifying glass 

Inventory number Calcite Limestone Quartz White mica Observations 

B1482 / +++ / / / 

B1963 + / / / / 

B1984 / / / / Very fine-grained; no visible inclusions 
B1965 / / / + / 

B1939 +++ / •> / / 

B1994 / / 1 / Very fine-grained; no visible inclusions 
B1505 / / 1 / Very fine-grained; no visible inclusions 
B5009 +++ / 1 / / 

N i l 9 +++ / + / / 

B1479 +++ / / / / 

B1972 / + / / / 

B1973 + / / / / 

B1490 ++ •> / / Lithic fragments 
B1497 +++ +++ / / Possible feldspar 
3469 +++ + / / / 

20591 / / / +++ / 

20592 +++ / / / / 

20419 + + / / / 

139461 ++ + / / / 

SN / / / / Very fine-grained; no visible inclusions 
139462 / / / / Very fine-grained; no visible inclusions 
139463 / / / / Very fine-grained; no visible inclusions 
139464 + + / / / 

+ = present; ++ = common; +++ = abundant 

Karst, and they have been used to produce thin sections at the 
University of Padua. The thin sections have been observed via 
a polarising microscope at the Department of Mathematics 
and Geosciences of the University of Trieste. Unfortunately 
we have not been allowed to take samples from the other 
artefacts. 

Fig. 3 Lithic inclusion/clay ratio 0 2 

for the Slovenian (light blue) and 
Italian samples (red) 

D.1B 

0 14 

0.12 

0.1 

0.0S 

0.06 

0.04 

0.02 

Results 

Pastes 

The observation of the surfaces of the artefacts has allowed to 
identify lithic inclusions in many samples (Table 2) showing a 

..I 
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coarse-grained paste. Among the identified inclusions, calcite 
and fragments of limestones are the most abundant, while quartz 
and white mica, probably muscovite, are rare. It is worth to 
mention bowl 20591 from the Trieste Karst because it differs 
from all other samples for the presence of abundant white mica. 
A few crystals of the same mineral have been recognised in 
sample B1965 from Deschmann's pile dwellings. 

The segmentation of microCT data sets has allowed the 
virtual separation of the clay matrix, lithic inclusions and 
voids in 2D and their quantification. According to observa
tions of microCT-derived virtual slices and the resulting lithic 
inclusion/clay ratios, fine- and coarse-grained pastes have 
been recognised in both Slovenian and Italian samples but 
no sharp distinctions can be made between sample groups 
(Fig. 3). The coarse-grained samples show abundant temper 
material with a size up to very fine gravel (from < 1 to 2-
3 mm; lithic inclusion/clay ratio from about 0.04 up to 0.2), 
while the fine-grained vessels are variably tempered with lith
ic inclusions whose size is generally smaller than 1 mm (lithic 
inclusion/clay ratio lower than 0.04). 

MicroCT data have revealed the presence of calcite, iden
tifiable through the rhombohedral shape of crystals; clay pel
lets; grog fragments; rounded concentric inclusions often with 
a lighter centre, probably derived from the transformation of 

primary minerals during firing; low-density inclusions; and 
bone remains. The components identified in each sample are 
summarised in Table 3. It is not totally clear what the low-
density inclusions correspond to, but their density is lower 
than that of clay, and they could be identified as charcoal 
fragments, macroscopically observed in some specimens. 

Among Slovenian samples, some (Fig. 4; e.g. samples 
B1994, B1505, B1984, B1963, B1939, B1479 and B1965) are 
characterised by very fine- or fine-grained pastes with a lithic 
inclusion/clay ratio between 0.002 and 0.03 (Fig. 3). Small cal
cite crystals, clay pellets, rounded dense inclusions and bone 
remains have been identified in some samples (Fig. 4, Table 3). 
In sample B1939, a few small fish vertebrae have been identified 
and one of them has been virtually extracted (Fig. 5). 

In medium- and coarse-grained vessels, calcite crystals 
have been often recognised (Table 3, Fig. 6). 

Despite the small number of bowls discovered in the 
Karst area, they show quite heterogeneous features 
(Table 3, Fig. 7). Sample 20591 is different from all the 
other ones due to its very fine-grained (lithic inclusion/ 
clay ratio 0.002) and dense paste where clay pellets and 
very rare and dense small inclusions have been imaged. A 
probable fish vertebra has been identified in sample 
139464. 

Table 3 Paste components identified through microCT. D.p.d. Deschmann's pile dwellings 

Inventory number Site Grain size Calcite Grog Clay pellets Bones Concentric inclusions Low-density inclusions 

B1482 Dpd Coarse X / / / / / 
B1963 Dpd Fine X / X / X / 
B1984 Dpd Very fine 7 X X / X X 

B1965 Dpd Fine 7 / / / X / 
B1939 Dpd Fine 7 / X Fish vertebrae / X 

B1994 Dpd Very fine / / / / X / 
B1505 Dpd Very fine 7 / X / X X 

B5009 Dpd Coarse X / X / / / 
NI19 Dpd Coarse X / X / / / 
B1479 Dpd Fine X X X / / / 
B1972 Dpd Fine X / X / X / 
B1973 Dpd Fine 7 / X X / / 
B1490 Dpd Medium X / X X X / 
B1497 Dpd Coarse X / / 7 / X 

3469 Zingari cave Coarse X / / / X / 
20591 Ciclami cave Very fine / / X / / / 
20592 Ciclami cave Coarse X / X / / / 
20419 Cotariova cave Coarse X / X X / / 
139461 Cotariova cave Fine X / / / / / 
SN Cotariova cave Fine / 7 X / X / 
139462 Pettine cave Fine 7 / X / X / 
139463 Pettine cave Fine X X X / X / 
139464 Edera cave Coarse X / / Fish vertebra? X 
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Fig. 4 Virtual sections of selected 
fine-grained bowls from 
Deschmann's pile dwellings. Ca, 
calcite; Cp, clay pellet; Ri, 
rounded inclusion; scale bars = 
1 cm 

Only the two bowls from Pettine cave were sampled to 
produce thin sections. Sample 139462 shows a brown 
fabric characterised by quite abundant angular quartz with 
a grain size from silt to medium sand, quite abundant flint 
fragments up to 0.5 mm large and abundant grog frag
ments. The grog fragments present different fabric and 
colours, suggesting they were obtained by crushing differ
ent vessels. In addition, a quartzite fragment containing 
muscovite crystals has been identified (Fig. 8). Sample 
139463 shows a reddish paste containing similar compo
nents, such as quartz, angular flint grains, muscovite and 
grog fragments, but also rare calcite. It is worth mention
ing that some grog fragments contain abundant flint frag
ments (Fig. 8). 

Technology 

Discontinuities and pores within the paste can give informa
tion about the bowl-shaping techniques. Lindahl and Pikirayi 
(2010) have demonstrated that the orientation of pores within 
the ceramic body, from one wall surface to the other, can be 
used to distinguish vessel-forming techniques, in particular 
between U and N coiling and modelling techniques. The U 
coiling technique gives curved convex sub-parallel disconti
nuities, while N coiling technique produces sub-parallel pores 
with a diagonal orientation. In vessels produced by modelling 
techniques, the discontinuities are parallel to the wall surfaces. 

According to virtual cross sections of the rims of the inves
tigated bowls, the upper part of the vessels was produced 
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Fig. 5 Virtual extraction of a fish 
vertebra from sample B1939. a 
Virtual rendering of the artefact, b 
Virtual rendering of the artefact 
with the paste in transparency and 
the vertebra in red. c Extraction of 
the vertebra and selected virtual 
sections. Where not specified, the 
scale bar corresponds to 1 cm 

using both the coiling and the modelling techniques. Samples 
B1994, B1490 and 139464 show pores with diagonal orien
tation and were therefore produced by N coiling technique, 
while sample 3469 shows pores parallel to the surfaces of the 
vessel, produced by a modelling technique (Fig. 9). 

In virtual sections of both Italian and Slovenian samples, 
the core of the base is surrounded by a circular concentric 
layer of paste. This suggests the base was shaped starting from 
a central piece, to which a layer of clay was added and then 
reshaped in order to produce the foots (Fig. 10). The upper 
part of the bowl was probably separately produced and then 
joined to the base as it is suggested by the discontinuities in 
longitudinal virtual sections of sample B1482 (Fig. 11). 

Analysis of microCT-derived data 

After the segmentation of clay, lithic inclusions and pores in 
three slices per sample (Supplementary Table 1), we calculat
ed the area, the maximum length and the maximum width of 
every single lithic inclusion. Table 4 shows the number of 
lithic inclusions divided into four size intervals considering 
their area, maximum length and maximum width. 

In Fig. 12, we have plotted the percentages of inclusions 
falling within the different size intervals considering their ar
ea, maximum length and maximum width. Comparing Table 4 
and Fig. 12, the differences between samples can be observed. 

When the area of inclusions is considered (Fig. 12), several 
samples (B1479, B1939, B1963, B1965, B1972, B1973 and 
139461-139464, SN) show a higher percentage of very small 
inclusions and a gradual decrease in the percentage of small, 

medium and big inclusions. Sample 20591 has a peculiar 
paste characterised by rare very small and small inclusions 
without any medium and big ones. Other samples, such as 
samples B1497, N19 and 3469, show a completely different 
distribution of inclusions with a prevalence of very big lithic 
grains. Finally, other samples show similar percentages of 
inclusions belonging to all four classes or a prevalence of very 
small inclusions coupled with a similar lower percentage of 
inclusions belonging to other classes (20419 and 20592). 

Considering the maximum length of inclusions, a prevalence 
of very small inclusions (< 500 urn) has been detected in most 
samples. However, in some samples with a coarse grain size, the 
percentage of small inclusion (500-1000 urn) is similar to that 
one of very small inclusions (Fig- 12). The distribution of inclu
sions considering their maximum width is quite well comparable 
to that one obtained, taking into consideration the areas (Fig-12). 

To visualise and summarise the pottery fabric information 
given by microCT-derived inter-correlated data, PCA has then 
been performed, considering percentages of lithic inclusions, ar
ea, length, width and inclusion/clay ratio as variables. Figure 13a 
shows the relationships between variables and the quality of their 
representation. Variables positively correlated are grouped to
gether, while those negatively correlated are located in opposite 
quadrants. The quality of representation can be expressed by a 
value of square cosine (cos2). The distance between the end 
points of variables measures the quality of the variables. The best 
representation of a variable is given when its end lies on the 
correlation circle, a condition corresponding to the maximum 
square cosine value, that is 1. In Fig. 13a, variables are well 
represented and three main groups of variables are positively 
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correlated: very small area-very small length-very small width, 
small area-small width and small length-medium area-medium 
length-medium width-big area-big length-big width. 

In the bivariate plot of Fig. 13b, we can observe the posi
tion of the samples with respect to principal components 1 and 
2 and the variables. When a vessel falls close to a given var
iable, it has a high value of such a variable, while its value is 
low i f it is located on the opposite side of the same variable. 

The samples falling in the top right quadrant are characterised 
by very fine-grained fabric with prevalent very small inclusions. 
Most of them are from the Karst with exception of sample 
B1963, that is very close to the bottom right quadrant. In this 
quadrant, there are mainly fine-grained Slovenian samples and 
two bowls from Pettine cave (Trieste Karst). This group of 

materials is characterised by a high total clay area because they 
lie on the opposite side of the lithic inclusion/clay ratio variable. 
Samples with medium and big inclusions and a big lithic 
inclusion/clay ratio mainly fall in the top left quadrant. Even if 
this diagram simply provides a description of pottery fabric and 
lithic inclusions, it is interesting to note that in the bottom quad
rants, all the samples, with the exception of two Italian bowls, are 
from Deschmann's pile dwellings. 

Discussion and conclusions 

The orientation of pores and disjunctions in microCT volumes 
has allowed recognising the bowl-forming process in several 
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20419 

Fig. 7 Virtual sections of all 
analysed bowls from the Karst. 
Ca, calcite; Cp, clay pellet; scale 
bar = 1 cm 

artefacts. The basin was produced using mainly the N coiling 
technique, recognised in the rim of three artefacts (B1994, 
B1490 and 139464), but also the modelling one (3469; 
Fig. 9). The base was shaped starting from a central piece, to 
which a layer of clay was added and then reshaped in order to 
produce the foots. 

MicroCT analysis of the bowls with cross-shaped foots 
from Deschmann's pile dwellings has showed the use of two 
main paste types. The first one includes bowls with a medium 
or coarse-grained paste tempered with abundant and generally 
poorly sorted carbonate/calcite inclusions, identified through 
both macroscopic and microCT observations (B1482, B1490, 
B1497, B5009, N l 9). The lithic temper material has a size up 
to very fine gravel (from < 1 to 2-3 mm), and the paste lithic 
inclusion/clay ratio spans from about 0.04 up to 0.2. The big 
lithic inclusions (> 200,000 \im2) are prevalent (B1497, N19) 
or abundant (B1490, B5009; Figs. 3, 6 and 12). In the PCA 
bivariate plot, such vessels fall relatively close to each other in 

the top left quadrant, with the exception of sample B1482 
(Fig. 13). 

The second group is larger and includes very fine- or fine
grained vessels. Some of them show a paste almost without 
temper (B1994, B1505, B1984), while the others generally 
contain well-sorted fine calcite/limestone grains with a prev
alence of very small inclus ions (< 50,000 ]im2). 
Consequently, the inclusion/clay ratio is very low and spans 
between 0.002 and 0.03. Grog, clay pellets, rounded dense 
inclusions and bone remains have been identified in some of 
them (Figs. 3, 4 and 12, Table 3). A few small fish vertebrae 
have been identified in sample B1939. Most of the samples 
fall in the bottom right quadrant of P C A bivariate plot 
(Fig. 13). 

The two main pastes were used regardless of the bowl size 
and quality of decorations and manufacture. Calcite and lime
stone fragments, used as tempered material, are already report
ed from pottery assemblages of the Ljubljansko barje dated to 
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139462 Fig. 8 Microphotographs of thin 
sections produced from bowls 
139462 and 139463 rromPettine 
cave. The top left image was 
taken using plane-polarised light 
while all the others using crossed 
polars; scale bars = 0.5 mm. Cal, 
calcite; Fl, flint; Ms, muscovite; 
Qtz, quartz 

139463 

the fifth and fourth millennia BC, and they could be easily 
gathered from the karst outcrops south of the Ljubljansko 
barje (Zibrat Gasparic 2013). The presence offish remains 
within the paste would suggest that the clay raw material of 
sample B1939 was likely collected from local lake deposits. 

The results of microCT analysis support the hypothesis that 
the bowls were locally produced using different recipes. This is 
not surprising if we consider that the investigated material come 
from three pile dwellings in use for a few centuries. Non
destructive chemical analysis by prompt-gamma activation 

analysis (PGAA) of the same vessels and natural clay samples 
from Ljubljansko barje is in progress to confirm such 
interpretation. 

Even if the group of bowls from Trieste Karst includes only 
nine vessels, they show very heterogeneous pastes. 

Sample 20591 from Ciclami cave is different from all the 
investigated Slovenian and Italian artefacts. Its decoration 
shape and technique are not reported from the bowls with 
cross-shaped foots from Deschmann's pile dwellings. Its paste 
is rich of muscovite mica, very dense and without carbonate 

Fig. 9 Virtual transversal sections 
of the selected rims of 
investigated bowls showing 
technological traces highlighted 
by dotted red lines 
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Fig. 10 Virtual transversa] 
sections of the base of selected 
bowls from Slovenia (B1482) and 
Italy (20419 and 20592). 
Technological traces are 
highlighted by dotted red lines 

inclusions and contains only a few dense very small and small and abundant muscovite has not been reported so far (Spataro 
lithic grains (lithic inclusion/clay ratio 0.002). Neolithic pot- 1999; Bernardini et al. 2016). For all these reasons, bowl 
tery from the Trieste Karst is very rich in calcite inclusions, 20591 has likely been imported to the Karst area. According 

Fig. 11 Virtual longitudinal sections of the base of selected bowls from Slovenia (B1482) and Italy (20419 and 20592). Technological traces are 
highlighted by dotted red lines 
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Table 4 Number of lithic inclusions divided into four size intervals considering their area, maximum length and maximum width 

Name Area Maximum length Maximum width 

Very small Small Medium Big Very small Small Medium Big Very small Small Medium Big 
0- 50,000- 100,000- > 200,000 um 2 0-500 um 500- 1000- > 1500 um 0-200 Hm 200- 300- > 400 um 
50,000 um 2 100,000 um2 200,000 um 2 1000 um 1500 um 300 um 400 um 

B1505 30 32 18 10 60 27 3 0 20 30 24 16 
B5009 220 155 180 206 345 288 86 42 136 184 150 291 
B1482 237 309 306 157 509 449 47 4 156 313 249 291 
B1490 73 66 75 70 134 113 25 12 49 69 53 113 
B1479 78 68 32 20 130 59 7 2 55 55 48 40 
B1939 126 99 46 20 218 70 2 1 82 96 73 40 
B1963 255 54 16 7 309 22 1 0 185 109 25 13 
B1965 24 17 4 7 40 9 2 1 13 21 7 11 
B1972 257 118 44 13 353 73 4 2 183 148 67 34 
B1973 101 87 58 30 198 68 4 6 80 89 62 45 
B1984 1 7 9 7 8 12 1 3 0 6 9 9 
B1994 3 5 1 2 7 3 1 0 2 6 0 3 
B1497 193 185 339 453 413 545 162 50 173 141 257 599 
NI19 66 94 106 116 145 165 52 20 34 83 84 181 
3469 59 80 65 102 130 126 29 21 29 72 69 136 
20591 86 9 0 0 89 6 0 0 77 14 3 1 
20592 28 85 185 489 82 347 239 119 22 35 103 627 
20419 10 30 46 109 33 92 45 25 3 27 32 133 
139461 562 74 40 28 626 66 8 4 478 143 31 52 
SN 33 4 6 1 38 6 0 0 25 11 5 3 
139462 54 27 18 15 79 31 4 0 34 36 22 22 
139463 116 47 16 10 153 31 4 1 95 60 19 15 
139464 345 140 69 68 457 131 22 12 264 169 87 102 
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Fig. 12 Histograms showing the 
percentages of very small, small, 
medium and big lithic inclusions 
considering their area, length and 
width. Red labels, Karst samples; 
black labels, Slovenian samples 
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to available data, its technological features are different to Hungary, Serbia, etc., as far as Ukraine (see Leghissa 2017, 
those so far identified in the analysed artefacts from p. 172). The most similar bowls are some vessels from 
Deschmann's pile dwellings too. Bowls with similar decora- Moravia in the Czech Republic (Medunova-Benesova 1977, 
tions are known from Austria, Czech Republic, Slovakia, T. 47: la-c, 5a, b, 6a, b; 48: la-c;49: la-c; 48). Nevertheless, 
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Fig. 13 a Variable correlation 
plot showing the relationships 
among variables and the quality 
of their representation, b Bivariate 
plot showing the variables and the 
position of investigated samples 
from Slovenia (black labels) and 
Trieste Karst (red labels). A, area; 
L, length; W, width; Inclusions_ 
Clay, lithic inclusion/clay ratio 
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the precise origin of bowl 20591 from Ciclami cave cannot be 
precisely identified without further investigations. 

According to microCT results, the bowls 139462 and 
139463 from Pettine cave show a fine-grained paste (lithic 
inclusion/clay ratios 0.008 and 0.02, respectively) with a prev
alence of very small lithic inclusions (Fig. 12) comparable to 
that of several samples from Deschmann's pile dwellings 
(Fig. 3). In vessel 139463, calcite crystals and grog fragments 
have been identified, such as in the Slovenian samples B1479 

and B1984. The two bowls fall into the bottom right quadrant 
of PCA plot, very close to the fine-grained group of Slovenian 
samples, and they are the only two Italian artefacts included in 
the two bottom quadrants of the same diagram, indicating a 
similitude with a large group of bowls from Deschmann's pile 
dwellings. These data could suggest a possible origin from 
central Slovenia or surrounding areas, and optical microscopy 
supports this hypothesis. Abundant grogs and angular flint 
grains, quartzite and muscovite crystals are a pottery 
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component that is rare or so far not reported in the prehistoric 
ceramics of the Trieste Karst (Spataro 1999; Bernardini et al. 
2016), while they have been identified in those of Ljubljansko 
barje. Among the pottery fabric groups of Resnikov prekop, a 
fifth millennium Neolithic site very close to Deschmann's pile 
dwellings, fabric groups 3 and 4 are rich in flint and muscovite 
(Zibrat Gasparic 2013). 

Nevertheless, it is worth stressing that the decoration (i.e. 
impressions of twisted cord) of the two bowls from Pettine 
cave is not reported among the bowls with cross-shaped foots 
from Deschmann's pile dwellings but only, very rarely, on 
other types of vessels. For this reason, we cannot exclude that 
the Pettine bowls could have been imported from a different 
region, as supposed for the Ciclami bowl 201591. Chemical 
data obtained by P G A A (in progress) could help in answering 
to this question. 

The coarse-grained samples (3469, 20419 and 20592) are 
mainly calcite-tempered pottery with lithic inclusion/clay ra
tios from about 0.035 to 0.12 and a prevalence or high per
centage of big inclusions (> 200,000 |im 2) (Fig. 12). They are 
technologically similar to the Slovenian bowls with a 
medium- or coarse-grained paste. This is confirmed by the 
P C A plot where Karst samples fall into the top left quadrant 
(Fig. 13). However, sample 3469 is the only one where the 
orientation of pores suggests it was shaped using a modelling 
technique. 

The last three bowls from the Trieste Karst (SN, 139461 and 
139464) contain prevalent very small inclusions but the calcite-
tempered 139461 and 139464 artefacts show high lithic 
inclusion/clay ratios (0.07 and 0.12, respectively) due to the pres
ence of a few very large inclusions. Conversely, the bowl SN 
does not contain calcite and has a low lithic inclusion/clay ratio 
(0.03). They fall into the top right quadrant of PCA plot. The 
possible presence of a fish vertebra in sample 139464 would 
suggest that the clay raw material was gathered from a lacustrine 
environment, such as the one of Ljubljansko barje at that time. 

The origin and function of the bowls with cross-shaped 
foots is still debated (see e.g. Kulcsar 2009; Kaiser 2013), 
but the small number and beautiful decoration of those from 
the Trieste caves suggest that they could have been used as 
valuable ceremonial items. The probable origin of part of them 
from central Slovenia or even more distant regions would 
indicate that sometimes not only aesthetic and technological 
models but also the objects themselves moved from other 
regions to the Karst. The strong connections between central 
Slovenia and the Karst during the first half of the third millen
nium B C are confirmed by other classes of artefacts, such as 
copper and polished stone axes (Bernardini et al. 2014a, 
2014b; Bernardini 2018 and the references quoted there). 

From a methodological point of view, the present paper 
provides one of the first examples of statistical analysis of 
ceramic microCT-derived data, allowing a non-destructive ob
jective description of pottery fabrics. 
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