

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ENERGETICKÝ ÚSTAV

ENERGY INSTITUTE

PARNÍ KOTEL NA ODPADNÍ TEPLO Z KOGENERAČNÍ JEDNOTKY

HEAT RECOVERY STEAM BOILER FOR COGENERATION UNIT

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Filip Vilga

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Zdeněk Skála, CSc.

BRNO 2017

Zadání diplomové práce

Ústav:	Energetický ústav
Student:	Bc. Filip Vilga
Studijní program:	Strojní inženýrství
Studijní obor:	Energetické inženýrství
Vedoucí práce:	doc. Ing. Zdeněk Skála, CSc
Akademický rok:	2016/17

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Parní kotel na odpadní teplo z kogenerační jednotky

Stručná charakteristika problematiky úkolu:

Navrhněte parní kotel na odpadní teplo spalin z kogenerační jednotky bioplynové stanice. Průtok spalin 0,8 Nm3/s, teplota spalin 440 °C. Požadovaný tlak páry 0,4 MPa(g).

Cíle diplomové práce:

Návrh optimálního využití energií v rozsahu kotelny.

- Zpracování bilančního schématu kotelny.

- Tepelné, aerodynamické a hydraulické výpočty zařízení.

 Projekční výkres zařízení v rozsahu umožňujícím zpracování následné konstrukční a výrobní dokumentace.

- Pevnostní dimenzování tlakové části kotle.

- Návrh osazení kotelny všemi důležitými prvky (kotel, výměníky, armatury, potrubí, různé nádrže nezbytné pro provoz apod.).

Seznam literatury:

DLOUHÝ, Tomáš. Výpočty kotlů a spalinových výměníků. Vyd. 3. V Praze: Nakladatelství ČVUT, 1999. ISBN 9788001037577.

BALÁŠ, Marek. Kotle a výměníky tepla. Vyd. 2. Brno: Akademické nakladatelství CERM, 2013. ISBN 9788021447707.

BUDAJ, Florian. Parní kotle: podklady pro tepelný výpočet. 4. přeprac. vyd. Brno: Vysoké učení technické, 1992.

ČERNÝ, Václav, Břetislav JANEBA a Jiří TEYSSLER. Parní kotle. Praha: SNTL-Nakladatelství technické literatury, 1983. Technický průvodce.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2016/17

V Brně, dne

L. S.

doc. Ing. Jiří Pospíšil, Ph.D. ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

Abstrakt

Cieľom diplomovej práce bol návrh parného kotla na odpadné teplo spalín z kogeneračnej jednotky bioplynovej stanice pri stanovenom prietoku a teplote spalín z výfuku motora a pre požadovaný tlak pary. Súčasťou práce je tepelný, aerodynamický a hydraulický výpočet zariadenia spolu s pevnostným overením navrhnutých hrúbok stien tlakových častí kotla. V nadväznosti na výsledky z týchto výpočtov boli vypracované projekčné výkresy zariadenia a zároveň aj návrh osadenia kotolne potrebnými prvkami.

Abstract

The main goal of this Master's thesis was to design heat recovery steam boiler for cogeneration unit of a biogas plant while flue gas was flowing from an engine exhaust. Its temperature and required pressure of a steam were assigned. The thesis contains thermal, aerodynamic, hydraulic calculations and verification of wall thicknesses for pressure parts of the boiler. Followup results of these calculations served for making of projection drawings as well as equipment needed for reliable boiler operation.

Kľúčové slová

Kotol, žiarotrubný, odpadné teplo, para, bioplyn

Key words

Boiler, smoke tube, waste heat, steam, biogas

Bibliografická citácia

VILGA, F. *Parní kotel na odpadní teplo z kogenerační jednotky*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 93 s. Vedoucí diplomové práce doc. Ing. Zdeněk Skála, CSc..

Čestné prehlásenie

Prehlasujem, že som svoju diplomovú prácu na tému *Parní kotel na odpadní teplo z kogenerační jednotky* spracoval samostatne. Všetky pramene a zdroje informácií, ktoré som použil k vypracovaniu tejto práce, sú uvedené v zozname použitých zdrojov.

V Brne dňa 24. 5. 2017

Podpis:

Poďakovanie

Touto cestou by som chcel poďakovať svojmu konzultantovi Ing. Stanislavovi Kramlovi a vedúcemu diplomovej práce doc. Ing. Zdeňkovi Skálovi, CSc. za ústretovosť, pomoc a odborné rady.

Obsah

1	ÚVOD	11
2	ANALÝZA ÚLOHY A PREDLOŽENÝCH PODKLADOV	12
	2.1 ANALÝZA ZADANIA	12
	2.2 Stručná charakteristika výroby bioplynu	12
	2.3 STRUČNÁ TEÓRIA KOGENERAČNEJ JEDNOTKY	13
	2.4 KOTLE NA ODPADNÉ TEPLO	14
	2.4.1 Voľba druhu kotla na odpadné teplo	15
	2.5 VOĽBA TEPLOTY NAPAJACEJ VODY	.10
	2.6 VOLBA OPTIMALIZOVANYCH PARAMETROV	17
	2.6.1 Volba neaonrevu preu vyparnikom	18
	2.0.2 Volou piner-point	18
•		20
3	STECHIOMETRIA SPALOVANIA V MOTORE KJ	20
	 3.1 ZLOZENIE BIOPLY NU	20
	3.3 MINIMALNE OBJEM I KI SLIKA A VZDUCHU	20
	3.4 SPAI'OVANIE S PREBYTKOM VZDUCHU	21
	3.5 OBJEMOVÉ ZLOŽENIE SPALÍN	23
	τερεί Νύ χύροζετ	77
4		<u>4</u> 1 27
	4.1 PILOVY DIAGRAM	27
	4.2 I ARAMETRE VODTA FART	
	4.4 PARNÝ VÝKON	29
	4.5 TEPLOTA SPALÍN NA KONCI KOTLA	31
5	ριι Ανζνά schéma κοτοι νε	32
5		
6	NAVRH TEPLOSMENNYCH PLOCH	34
	6.1 NAVRH VYHREVNYCH PLOCH VYPARNIKA	54 31
	6.1.2 Priečny prierez a nočet trubiek	34
	6.1.3 Prostun tenla	35
	6.1.4 Teplotný spád	38
	6.1.5 Výhrevná plocha	39
	6.2 NÁVRH VÝHREVNÝCH PLÔCH EKONOMIZÉRA	40
	6.2.1 Návrh geometrie	40
	6.2.2 Priečny prierez a počet trubiek	40
	6.2.3 Prostup tepla	41
	6.2.4 Teplotný spád	44
	6.2.5 V yhrevna piocha	44
7	MATERIÁL KOTLA A KOTLOVÝCH SÚČASTÍ	46
	7.1 MATERIÁLOVÁ ANALÝZA VÝPARNÍKA	46
	7.2 MATERIALOVA ANALYZA EKONOMIZERA	46
	7.3 MATERIAL POTRUBNYCH TRAS	40
8	KONŠTRUKČNÉ PREVEDENIE KOTLA	47
	8.1 KONŠTRUKCIA VÝPARNÍKA	47
	8.1.1 Rozteč trubiek výparnika	4/
	8.1.2 Expanzny priestor u trubkovnic	40 ۱۶
	6.1.5 F ocel tanov a obralova komora vyparnika	4 0 <u>4</u> 0
	8.2 KONŠTRUKCIA FKONOMIZÉRA	
	8.2.1 Rozteč trubiek ekonomizéra	51
	8.2.2 Expanzný priestor plochých dien	51
	 8.2.2 Expanzný priestor plochých dien 8.3 KONŠTRUKCIA POTRUBNÝCH TRÁS 	51 52
9	 8.2.2 Expanzný priestor plochých dien 8.3 KONŠTRUKCIA POTRUBNÝCH TRÁS HYDRALILICKÝ VÝPOČET 	51 52
9	 8.2.2 Expanzný priestor plochých dien	51 52 . 53 53

16	ZOZNAI	M PRÍLOH	93
15	ZOZNAI	M POUZITYCH SKRATIEK A SYMBOLOV	90
14	ZOZNAI	M POUZITYCH ZDROJOV	87
15	LAVER		
12	7ÁVFP		85
	12.3.3	Pomocné konštrukcie	84
	12.3.2	Regulačná a zabezpečovacia technika	84
	12.3.1	Úprava a cirkulácia vody	84
1	2.3 Ost	ATNÉ POTREBNÉ ZARIADENIA	83
1	2.2 VÝS	TROJ EKONOMIZÉRA	83
1	2.1 VÝS	TROJ VARNEJ ČASTI KOTLA	81
12	NÁVRH	OSADENIA KOTOLNE	81
1	1.5 ZHR	INUTIE PEVINUSTINEHU UVEKENIA HKUBKY STIEN TLAKUVYUCH CASIT	
1	11.2.5	ΠΓΙΟΚΑ SIENY ΙΓΙΟΚΟΥΠΙΟ ΕΚΟΠΟΠΙΖΕΓΑ	۶۷ ۸۵
	11.2.2	Πruoka sieny piasta ekonomizera Ηψίμες stam trubkovníc akonomizára	70 70
	11.2.1	nruoka sieny iruoky ekonomizéra	// 78
1	1.2 VYF	UUEI HKUBKI SIENI EKUNUMIZEKA	
1	11.1.5 1.2 Vizz	ΠΓΙΟΚΑ SIENY ΓΓΙΟΚΟΥΝΙC ΥΥΡΑΓΝΙΚΑ ΦΟ ΣΤ ΠΡΙΊΡΥΝ ΣΤΕΝΎ ΕΓΟΝΟΜΙΖΈΡΑ	יייי. דר
	11.1.2 11 1 2	пгилка steny plasta vyparnika Нијрка steny trupkovnic výnavnika	75 76
	11.1.1 11 1 2	11 μυκα διεπγ μ μυτεκ νγραμικα Ηπίμλα stany plášťa výparníka	, - 75
1	1.1 VYP 1111	UUEI IRUDRI SIENI VIFARNIRA Hwihka stanu tmihiak unmamika	,+ 74
11	ΓΕΥΝΟΣ 1.1 - Μτύτε	ΛΓΥΤ ΥΤΙ Ουμι	74
11	DEVNOS	την νύροζετ	74
1	0.6 CEL	KOVÁ TLAKOVÁ STRATA SPALÍN	73
	10.5.4	Celková ťahová strata vo výstupnom spalinovode	73
	10.5.3	Vztlak vertikálnej časti spalinovodu	72
	10.5.2	Strata miestnymi odpormi	72
	10.5.1	Strata trením vo výstupnom spalinovode	71
1	0.5 Тан	OVÁ STRATA VÝSTUPNÉHO SPALINOVODU	70
	10.4.3	Celková ťahová strata spalín v ekonomizéri	70
	10.4.2	Strata miestnymi odpormi	68
	10.4.1	Strata trením v trubkách ekonomizéra	68
10	0.4 Ťah	OVÁ STRATA EKONOMIZÉRA	67
	10.3.3	Celková ťahová strata v prepájacom spalinovode	67
	10.3.2	Strata miestnymi odpormi	67
	10.3.1	Strata trením v prepájacom spalinovode	66
10	0.3 Ťah	OVÁ STRATA PREPÁJACIEHO SPALINOVODU	66
	10.2.3	Celková ťahová strata vo výparníku	66
	10.2.2	Strata miestnymi odpormi	63
	10.2.1	Strata trením v trubkách	63
10	0.2 Ťан	OVÁ STRATA VÝPARNÍKA	62
	10.1.3	Celková ťahová strata na vstupnom spalinovode	62
	10.1.2	Strata miestnymi odpormi	62
	10.1.1	Strata trením vo vstupnom spalinovode	61
1(0.1 Ťан	OVÁ STRATA NA VSTUPNOM SPALINOVODE	60
10	AERODY	NAMICKÝ VÝPOČET	60
9.	.4 Cell	KOVA TLAKOVA STRATA PRACOVNEHO MEDIA KOTLA	58
-	9.3.3	Celková tlaková strata prepájacieho potrubia	
	9.3.2	Strata miestnymi odpormi prepájacieho potrubia	58
	9.3.1	Strata trením v prepájacom potrubí	57
9.	.3 TLA	KOVÁ STRATA PREPÁJACIEHO POTRUBIA	56
	9.2.3	Celková tlaková strata ekonomizéra	56
	9.2.2	Tlaková strata vplyvom hydrostatického tlaku	56
	9.2.1	Tlaková strata na výstupe z ekonomizéra	56
9.	2 TLA	KOVÁ STRATA EKONOMIZÉRA	
	9.1.4	Celková tlaková strata vstupného potrubia	.55
	913	Tlaková strata vplvvom hvdrostatického tlaku	.55
	9.1.1	Strata miestrymi odpormi vstupného potrubia	.55
	011	Strata traním vo vstupnom potruhí	53

1 Úvod

Nárast spotreby energie je problematický, čomu prispieva hlavne rýchly populačný rast a návyky spoločnosti. Problematické začínajú byť veľké energetické zdroje, ktoré nie sú schopné flexibilne hospodáriť s výrobou a spotrebou energie, čo sa zákonite prejaví na raste ceny. Zmena energetického systému však nie je jednoduchá, keď že je viazaná platnou legislatívou a ekonomickými podmienkami daného štátu.

Jedným z riešení reštrukturalizácie energetického sektoru sa javí byť decentralizácia, ktorá je úzko spätá s technickou inováciou a environmentálnymi aspektami. Menšie lokálne zdroje, ktoré by takto vznikli, by mohli byť prispôsobené miestnym podmienkam, čím sa zvýši účinnosť transformácie energie. Obrovským plusom je aj nižšia potreba prenosu daná kratšími vzdialenosťami, či sa už jedná o vedenie elektrickej energie alebo potrubia s teplonosným médiom. Lepšia účinnosť procesu znamená menšiu spotrebu paliva, čo sa logicky prejaví na nižšej produkcii škodlivín.

Decentralizovaná energetika je pojem vychádzajúci z podmienky, že spotrebiteľ je blízko zdroja energie, ktorý produkuje energiu o vysokej účinnosti, či už ide o elektrinu alebo teplo. Výkon, druh paliva, či rozsah technológie je prísne daný miestnymi podmienkami. Do tejto skupiny sa zaraďujú hlavne kogeneračné jednotky tvorené najčastejšie spaľovacím motorom, prípadne plynovou alebo malou parnou turbínou a miestne energetické systémy, využívajúce obnoviteľné zdroje energie, odpadné teplo alebo iné formy energie, ktoré nie sú doposiaľ využívané.

Teplo vo forme odchádzajúcich spalín z výfuku kogeneračnej jednotky (ďalej len KJ) bioplynovej stanice sa javí ako typická forma bežne nevyužívanej energie. Keďže spaliny za KJ dosahujú teploty až 500 °C, nasadenie určitého výmenníka na túto trasu by malo byť vhodným riešením k zvýšeniu celkovej účinnosti obehu. V predloženej práci sa odpadné spaliny využívali na tvorbu pary v parnom kotle.

2 Analýza úlohy a predložených podkladov

Na začiatok bolo potrebné zanalyzovať zadané podklady. Z nich bolo nutné vyvodiť predbežné návrhy a voľby, aby bolo možné splniť požadované zadanie, ktorým bol návrh parného kotla na odpadné teplo spalín vznikajúcich v kogeneračnej jednotke bioplynovej stanice.

2.1 Analýza zadania

Zadanie práce bolo upresnené týmito parametrami:

- Prietokom spalín $0.8 \text{ Nm}^3/\text{s}$,
- Teplotou spalín 440 °C,
- Požadovaným tlakom pary 0,4 MPa(g).

Pri návrhu kotla je však nutné poznať aj ďalšie parametre a to hlavne:

- Parný výkon kotla,
- Teplotu pary na výstupe z kotla,
- Teplotu napájacej vody.

Parný výkon kotla bol dopočítaný v kapitole 4.4. Voľba požadovanej teploty pary a teploty napájacej vody boli rozoberané v nasledujúcich podkapitolách.

2.2 Stručná charakteristika výroby bioplynu

Bioplyn je plynné palivo, ktoré vzniká ako hlavný produkt pri biochemickej premene biomasy, zvanej anaeróbna fermentácia. Tak ako evokuje názov, jedná sa o kvasenie bez prístupu kyslíka. Vedľajším produktom fermentácie je vysoko kvalitné hnojivo alebo kompost [1].

Bioplyn tvorí zmes plynov, z ktorých najväčší podiel predstavuje metán (45 až 70 %) a CO₂ (25 až 40 %). Ideálne by bioplyn obsahoval len tieto dve zložky, v skutočnosti má však aj mnoho ďalších prímesí (Tab.: 3.1). Výhrevnosť bioplynu sa pohybuje od 14 do 27 MJ/Nm³ a jej presná hodnota závisí hlavne od objemového množstva metánu. Samotný obsah metánu ovplyvňujú hlavne tieto kritériá [1, 2, 3]:

- zloženie pôvodných surovín viac bioplynu vzniká z látok obsahujúcich tuky a proteíny:
 - až 85 % CH₄ pri bioplyne vznikajúceho z kalov (hlavne ČOV),
 - o d 55 do 75 % CH₄ pri použití poľnohospodárskych plodín (hlavne kukuričná siláž a repkové rezky) a živočíšnych odpadov (kejda, hnoj a močovka),
 - o len do 55 % CH4 pri použití odpadu zo skládok,
- priebeh procesu fermentácie pri dvojstupňovej fermentácii má plyn z druhého stupňa väčší obsah CH₄ a menší obsah CO₂,
- teplota substrátu nutné udržovať vyhnívaciu nádrž pri určitej teplote (podľa typu baktérií, ktoré sa podieľajú na rozklade).

Zariadenie, kde sa tento plyn vyrába, sa nazýva bioplynová stanica. Schematicky sú jednotlivé časti tejto stanice znázornené na Obr. 2.1. Odpady zo živočíšnej produkcie a časti poľnohospodárskych plodín sa zmiešajú a vháňajú do fermentačných staníc. Tam dochádza k vlastnej

anaeróbnej fermentácii. Fermentor musí byť vyhrievaný na teplotu, pri ktorej dochádza k najúčinnejšiemu kvaseniu. Primárny produkt fermentoru je bioplyn, ktorý je kompresorom vháňaný do plynojemu. Skvasovaný substrát (zvyšný produkt) sa uskladňuje v zbernej nádrži a používa sa ako poľnohospodárske hnojivo. Bioplynová stanica musí mať súbor bezpečnostných zariadení na zabránenie výbuchu unikajúceho bioplynu. V prípade prebytku bioplynu sa musí zabrániť úniku do atmosféry (CH₄ je skleníkový plyn) a k tomu slúži bezpečnostný plameň. Každá stanica má ešte ďalšie dúchadlá, regulačné, kontrolné prvky a zariadenia na úpravu a čistenie bioplynu [1,3].

Obr. 2.1: Schéma bioplynovej stanice s dvojstupňovým fermentorom [4]

Vyprodukovaný plyn obsahuje po vyrobení pomerne veľké množstvo vodnej pary a sírovodíku. Aby sa zabránilo korózii potrubných ciest a zariadení, ktorými bioplyn prechádza, je nutné odstrániť jeho vlhkosť a vyčistiť ho [1, 3].

Využitie bioplynu môže byť rôznorodé. Najvyužívanejším spôsobom užitia je kogenerácia tepla a elektrickej energie, kde sa bioplyn používa pre pohon spaľovacích motorov, prípade turbín, ktoré poháňajú generátory na výrobu elektrickej energie. Odpadné teplo z chladiaceho okruhu motora sa používa k vykurovaniu priľahlých objektov alebo technologických zariadení. Okrem kogenerácie sa bioplyn často využíva na priame spaľovanie v kotloch s atmosférickými horákmi a následne vykurovanie budov. Do budúcnosti sa počíta s možnosťou dodávky bioplynu do rozvodných sietí [3, 5].

2.3 Stručná teória kogeneračnej jednotky

Kogenerácia vyjadruje združenú výrobu elektrickej energie a tepla. Zmyslom kogenerácie je hlavne zníženie primárnych energetických zdrojov. Súbežné vyrábanie elektrickej energie a tepla je výhodnejšie aj z ekologického hľadiska (znižuje emisie škodlivých látok). Energetický, ekologický, ale aj ekonomický efekt kogeneračnej výroby je priamo úmerný veľkosti modulu teplárenskej výroby (pomer vyrobenej elektrickej energie a dodaného tepla) [6, 7].

Veľké kogeneračné celky sa nazývajú teplárne. V súčasnej dobe je však trend nasadzovania menších kogeneračných jednotiek. Najvyužívanejšie sú KJ so spaľovacími motormi, existujú však aj jednotky s plynovými či malými parnými turbínami [6, 7].

Samotnú kogeneračnú jednotku tvoria nasledujúce časti [6]:

- generátor premieňa mechanickú točivú energiu na energiu elektrickú,
- spal'ovací motor roztáča pripojený generátor a zároveň produkuje teplo, ktoré je predávané do vody, ktorá koluje v plášti motora a následne je použitá pre ďalšie účely (vykurovanie budov alebo technologických zariadení),
- rozvádzač a riadiaci systém slúžia k ovládaniu KJ.

Hlavné časti KJ sú znázornené na Obr. 2.2 [8].

Obr. 2.2: Popis kogeneračnej jednotky [8]

Zároveň z motora KJ unikajú spaliny, ktoré nesú nevyužitú tepelnú energiu, ktorú je možné ďalej využívať k ohriatiu technologickej alebo vykurovacej vody, poprípade k výrobe pary [6].

2.4 Kotle na odpadné teplo

Tak ako udáva zadanie, táto práca sa zaoberá implementáciou kotla na odpadné teplo spalín vychádzajúcich z motora KJ bioplynovej stanice do technologického celku. Pre spalinové kotle je typické, že nemajú spaľovaciu komoru a k ohrevu vody, respektíve k výrobe pary sa využíva len odpadné teplo spalín. Samotné prevedenie takéhoto parného kotla môže byť dvojaké [2, 9]:

- *vodotrubný kotol* pára, respektíve voda prúdi vo vnútri trubiek, spaliny obtekajú trubky z vonkajšej strany,
- *žiarotrubný (veľkopriestorový) kotol* vo vnútri trubiek kolujú spaliny a voda/para trubky objíma z vonkajšej strany.

Vodotrubné kotle na odpadné teplo majú výparník tvorený vnorenými trubkami a nie membránovými stenami, ako to bolo u kotlov so spaľovacou komorou. Buď sa používajú zväzkové

Veľmi často sa pre spalinové kotle volí veľkopriestorové prevedenie. Názov je odvodený od väčšieho množstva vody v kotle. Tieto kotle sa používajú maximálne do tlaku pary 1,6 MPa a pre prietok spalín do 12 Nm³/s. Pre parné kotle sa využíva hlavne horizontálne prevedenie, avšak existujú aj kotle s prevedením vertikálnym. Veľkopriestorové kotle môžu byť žiarotrubné (trubky sú ponorené vo vriacej vode) alebo kombinované, kedy prvý ťah tvorí plamenec (zvlnená trubka o väčšom polomere) a ďalšie ťahy sú už tvorené žiarovými trubkami [9, 10, 11].

2.4.1 Voľba druhu kotla na odpadné teplo

Vzhľadom k zadaným parametrom (kapitola 2.1) bolo zvolené žiarotrubné prevedenie kotla. Zariadenie malo byť lacné, kompaktné a nenáročné na údržbu. Voľba tohto typu kotla bola odôvodnená nasledujúcimi poznatkami [10, 11, 12, 13]:

- nedefinovaný druh výstupnej pary v zadaní možnosť použitia sýtej formy ako výstup (typické pre žiarotrubné kotle) sýta para má po odvodnení obrovskú výhodu stabilného stavu v podobe presne definovanej teploty pri danom tlaku (využitie v chemickom alebo potravinárskom priemysle),
- nízke kolísanie tlaku pary množstvo vody v kotli zabraňuje prudkým zmenám tlaku výstupnej pary pri náhlych a veľkých odberoch,
- nižšie nároky na priestor a plochu kotolne pri porovnateľných tepelných výkonoch sú priestorové požiadavky žiarotrubných kotlov značne menšie než je to u vodotrubných (bubon, prístupové plošiny...),
- kompaktnosť zariadenia žiarotrubný kotol je jeden celok (blokové prevedenie na zvarenom ráme) a z tohto dôvodu je jeho doba výstavby a uvedenie do prevádzky kratšie než je to u kotlov vodotrubných,
- nižšia citlivosť na zhoršenú kvalitu napájacej vody možná prevádzka s nízkym obsahom soli v kotlovej vode, ktorá teplosmenné plochy nezasolí, pretože veľkopriestorové kotle majú účinný systém odluhu,
- jednoduchá údržba prístup k trubkám cez otvory v stene plášťa kotla, pričom väčšina kotlových častí môže byť po tlakovej vodnej skúške skontrolovaná vizuálne, nie je potrebný ultrazvuk, ako pri vodotrubnom prevedení, kde sú vizuálne nedostupné miesta,
- nižšia cena v porovnaní s vodotrubnými, čo vyplýva z vyššie uvedených zákonitostí.

Použitie tohto kotla za kogeneračnou jednotkou zároveň eliminovalo jeho hlavné nedostatky, keď že išlo o doplňujúce zariadenie na vylepšenie celkovej účinnosti obehu. Veľká tepelná strata pri častejších odstávkach a nutnosť zdĺhavého nábehu za studena by nemali byť problémové, keď že sa predpokladalo, že kotol bude pracovať počas celej prevádzky bioplynovej stanice a odstavovať sa bude len na dlhšie časové úseky (zimné obdobie, plánované opravy a kontroly) [2, 10, 12].

Ďalšou otázkou bola voľba typu ekonomizéru. V praxi sa ako kombinácia k žiarotrubnej varnej časti používajú vodotrubné, tak aj žiarotrubné ohrieváky napájacej vody. Voľba padla opäť na žiarotrubné prevedenie a to z dôvodu, že samostatne stojaca jednotka bude jednoduchšie udržiavaná a dostupnejšia, ako by to bolo v prípade vodotrubného ekonomizéru umiestneného vo výstupnom spalinovode [10].

Celkové prevedenie žiarotrubného kotla je možné vidieť v priložených výkresoch a bolo rozoberané v nasledujúcich kapitolách tejto práce.

2.5 Voľba teploty napájacej vody

Teplota vody vstupujúcej do kotla je daná teplotou, pri ktorej dochádza k ďalšej úprave tejto vody – jej odplyneniu. Teplota napájacej vody patrí k základným parametrom kotla a meria sa pred miestom, kde začína prívod tepla z paliva do napájacej vody (v tomto prípade pred ohrievákom vody). Odplynenie sa deje v časti napájacej nádrže, ktorá sa nazýva odplyňovač. Pred týmto dejom prešla voda demineralizáciou a zmäkčovaním, ale to nebolo podstatné pre účely určenia vhodnej teploty napájacej vody [12, 14].

U obehoch s parným kotlom nižších parametrov je najrozšírenejšie termické odplynenie, kedy sa parciálny tlak plynu zníži nahradením atmosféry nad vodou vodnou parou. Aby sa pri odplynení udržala atmosféra pary nad hladinou a parciálny tlak plynu, ktorý má byť odstránený, sa znížil na nulu, je odplyňovaná voda ohriata na teplotu blízku teplote varu pri danom tlaku. Účelom odplynenia je hlavne odstránenie kyslíku a oxidu uhličitého, čo sú plyny, ktoré pôsobia korozívne. Samotným ohriatím na teplotu blízku teplote varu dôjde k uvoľneniu niekedy až 95 % plynov. Klesajúca rozpustnosť kyslíka pri zvyšujúcej sa teplote napájacej vody je znázornená na Obr. 2.3. Zvyšný plyn zostáva v kvapkách a do pary sa dostáva difúziou, pri-čom difúzna rýchlosť závisí na polomere kvapiek. Preto sa konštrukčným prevedením odply-ňovača snažíme o zmenšenie kvapiek, čo sa prejaví na zrýchlení difúzneho prechodu. Tento druh odplynenia reprezentuje zároveň aj významný regeneratívny ohrev [14, 15, 16].

Obr. 2.3: Závislosť rozpustnosti kyslíku na teplote v napájacej vode [15]

Princípom všetkých odplyňovákov je maximálny možný kontakt s parou, kedy dochádza k spomenutému dohriatiu na teplotu blízku bodu varu a následne k odplyneniu. Najpoužívanejším typom odplyňovača je kaskádový odplyňovač, ktorý je súčasťou napájacej nádrže (Obr. 2.4). Voda vstupuje na jednotlivé kaskády (misy s dierkami), medzi ktorými prúdi para a difúzne odoberá plyny zo vznikajúcich tenkých prúdov. Výsledný obsah plynov v odplynenej vode závisí na koncentrácii plynov v pare. Odlúčené plyny (brýdy) odchádzajú odfukom mimo nádrž a obsahujú maximálne 1 % vyrobenej pary (tzv. brýdová para). Účinok sa dá zvýšiť

ďalším stupňom odplynenia vo forme barbotrážnych vstavieb na spodku napájacej nádrže. Niekedy sa ešte používa aj doplnkové dávkovanie siričitanu sodného do vody kvôli lepšiemu odstráneniu kyslíka [14, 15, 17].

Obr. 2.4: Napájacia nádrž s kaskádovým odplyňovačom (bez barbotrážnej vstavby) [14]

Teplota napájacej vody rastie s tlakom výstupnej pary. Preto sa u vysokotlakových kotlov využíva nízkotlakový alebo vysokotlakový regeneračný ohrev napájacej vody. Ak by sa tak nedialo, teplo k dohrevu napájacej vody k medzi sýtosti by bolo príliš veľké a účinnosť obehu nízka. Pre kotle s nízkym pracovným tlakom (do 2,5 MPa), čo bol prípad tejto práce, nie je nutné používať regeneračné ohrevy. Odplynenie napájacej vody preto prebiehalo pri teplote **105** °C, čo je doporučená normovaná teplota, pri ktorej je garantovaná veľmi vysoká účinnosť odplynenia [13, 14].

2.6 Voľba optimalizovaných parametrov

Pri návrhu kotla poznáme dva základné parametre, ktoré volí samotný konštruktér. Ide o teplotný nedohrev vystupujúcej napájacej vody z ekonomizéra oproti teplote varu a tzv. pinchpoint, teda najmenší teplotný rozdiel medzi pracovným médiom a spalinami v obehu.

2.6.1 Voľba nedohrevu pred výparníkom

Ohrievák vody sa zaraďuje ako prvá teplosmenná plocha zo strany vody a v tomto prípade je druhou a zároveň poslednou plochou v smere spalín. Miera ohrevu vody v ekonomizéri závisí hlavne na pracovnom tlaku. Upravená napájacia voda sa tu ohreje na teplotu blízku teplote varu, avšak nesmie vrieť, inak by dochádzalo k zlému chladeniu stien a k možným poruchám. Nedohrev oproti bodu varu by mal ležať v rozmedzí 20 až 30 °C, resp. entalpický rozdiel

by mal byť 120 až 170 kJ/kg. V tomto prípade bol zvolený nedohrev napájacej vody na výstupe z ekonomizéru (a teda na vstupe do výparníka) $\Delta t = 20$ °C (Obr. 4.1), čo odpovedalo hraničnej hodnote nájdenej v literatúre [2, 12].

2.6.2 Voľba pinch-point

Pinch-point vyjadruje najmenší teplotný rozdiel medzi pracovným médiom (vodou/parou) a spalinami v tepelnom obehu. V tomto prípade išlo o teplotný rozdiel spalín v bode B a práve sýtej vody v bode 2 (Obr. 4.1). Pri voľbe hodnoty pinch-pointu sa muselo brať v úvahu to, že jeho znižovaním síce rástol výkon a účinnosť kotla, ale zväčšovala sa teplosmenná plocha (tým aj cena kotla). Graf rastu prestupnej plochy so znižujúcou sa hodnotou pinch-pointu má približne hyperbolický charakter (Obr. 2.5). S poklesom Δt_{pp} by sa zároveň musel klásť väčší doraz na bezpečnosť prevádzky (väčšie bezpečnostné opatrenia, čo by sa mohlo opäť prejaviť opäť na zvyšení nákladov). Nie je prípustný stav, aby spaliny boli ohrievané pracovným médiom [9, 12, 19, 20].

Obr. 2.5: Vplyv veľkosti pinch pointu na veľkosť teplosmennej plochy [19, 20]

Pinch-point teplotný rozdiel pre kotle na odpadné teplo sa v praxi volí v rozsahu 5 až 15 °C (výnimočné až 40 °C) [12, 19]. V tomto prípade bolo po konzultácii zvolené $\Delta t_{pp} = 10$ °C.

2.7 Priestorové usporiadanie kotolne

Pri návrhu je veľmi dôležité aj priestorové umiestnenie jednotlivých zariadení. Na tento účel bola vytvorená bloková schéma technologickej sústavy (Obr. 2.6), kde je možné vidieť, ktoré technologické časti ležia vo vnútri kotolne. Požiadavka bola, aby kogeneračná jednotka a kotol s príslušenstvom ležali spoločne v objekte kotolne pre lepší prehľad a šetrenie s materiálom pre spalinovody a potrubia pracovného média.

Samotná kogeneračná jednotka je znázornená len jedným blokom, ale obsahovala všetky potrebné súčasti, ktoré boli spomenuté v kapitole 2.3. Na ohrev fermentoru sa využívala voda, ktorá chladila motor KJ. Motor KJ používal k spaľovaniu okolitý vzduch. Kotol (varná časť + ekonomizér) mal zostrojený bypass, aby v prípade poruchy a odstávok bolo možné spaliny z KJ odvádzať priamo do komína.

V kapitole 5 sú hlavné časti kotolne, ktoré podliehali návrhovému výpočtu, popísané podrobnejšie z hľadiska bilancie, keď že bilančná schéma bola súčasť ou zadania tejto práce.

Obr. 2.6: Bloková schéma technologickej sústavy

3 Stechiometria spaľovania v motore KJ

Cieľom stechiometrického výpočtu spaľovania bioplynu v motore kogeneračnej jednotky je získanie zloženia spalín po tomto procese. Samotný výpočet sa skladá z viacerých častí, o ktorých pojednávajú nasledujúce kapitoly.

3.1 Zloženie bioplynu

Vzhľadom k tomu, že zloženie vznikajúceho bioplynu vo fermentačnej jednotke nebolo súčasťou zadania, muselo byť určené z literatúry [2]. Percentuálny podiel zložiek pre vybraný suchý bioplyn je v nasledujúcej tabuľke (Tab.: 3.1).

	Podiel v celkovom objeme suchého plynu			
Zložky bioplynu	Percentuálny podiel [%]	Objemový zlomok V _i [Nm ³ /Nm ³]		
CH ₄	66	0,66		
CO_2	25	0,25		
СО	3	0,03		
H_2	2	0,02		
N_2	2	0,02		
O_2	1	0,01		
H_2S	1	0,01		

Tab.: 3.1: Zloženie bioplynu o výhrevnosti 20 MJ/Nm³ [2]

V úvahu sa berie nulový percentuálny podiel vody, keďže bioplyn je pred vstupom do spaľovacieho motora vysušený (v praxi obsahuje bioplyn vždy trochu vlhkosti) [1].

Z uvedeného zloženia bioplynu a hlavne z vyššieho obsahu metánu by sa dalo usúdiť, že išlo o exkrementy zo živočíšnej výroby (kejda, hnoj a zvyšky jedla) značne doplnené o zvyšky z rastlinnej biomasy (hlavne kukuričná siláž a repné rezky) [1].

3.2 Minimálne objemy kyslíka a vzduchu

Tým, že zloženie bioplynu bolo získané v objemových koncentráciách (objem plynnej zložky v 1 Nm³ suchého bioplynu), v stechiometrických výpočtoch dôjde k značnému zjednodušeniu. Nie je potreba používať molárne hmotnosti zložiek, ale len podiely reálnych molárnych objemov (odvodenie týchto stechiometrických rovníc je možné nájsť napríklad v literatúre [2]). Z tejto úvahy potom vychádzajú nasledujúce výpočty pre dokonalé spaľovanie bioplynu.

Minimálny objem kyslíka potrebný pre dokonalé spálenie 1 Nm³ suchého bioplynu [17]:

$$V_{O_2min} = 0.5 \cdot \left(V_{H_2} + V_{CO} \right) + 1.5 \cdot V_{H_2S} + 2 \cdot V_{CH_4} - V_{O_2} \quad [Nm^3/Nm^3]$$
(3.1)

 $V_{O_2min} = 0.5 \cdot (0.02 + 0.03) + 1.5 \cdot 0.01 + 2 \cdot 0.66 - 0.01 = 1.35 Nm^3 / Nm^3$

Minimálny objem suchého vzduchu potrebný pre dokonalé spálenie 1 Nm³ bioplynu [12]:

$$V_{VSmin} = \frac{V_{O_2min}}{0.21} = \frac{1.35}{0.21} = 6,43 Nm^3 / Nm^3$$
(3.2)

 Minimálny objem vlhkého vzduchu potrebný pre dokonalé spálenie 1 Nm³ bioplynu [12]:

$$V_{VVmin} = V_{VSmin} \cdot f \quad [Nm^3/Nm^3] \tag{3.3}$$

Kde súčiniteľ f [-] vyjadruje podiel vodnej pary pripadajúcej na 1 Nm³ suchého vzduchu a bol určený pomocou nasledujúceho vzťahu [12]:

$$f = 1 + \frac{\varphi}{100} \cdot \frac{p''}{p_c - \frac{\varphi}{100} \cdot p''} \quad [-]$$
(3.4)

V danej rovnici φ [%] vyjadruje relatívnu vlhkosť vzduchu, p´´ [MPa] je parciálny tlak vodnej pary na medzi sýtosti pre danú teplotu vzduchu t_{vz} (Tab.: 3.2) a p_c [MPa] je celkový tlak (bola použitá hodnota 0,1 MPa).

Relatívna vlhkosť vzduchu bola zistená ako priemer pre Brno v roku 2016 a jej hodnota bola $\varphi = 63,3 \%$ [20]. Teplota vzduchu (t_{vz} = 10,89 °C) bola určená pomocou štatistických údajov ako aritmetický priemer jednotlivých mesačných priemerných hodnôt v roku 2016 [21]. Následne bol určený tlak p´´ pomocou interpolácie hodnôt obsiahnutých v Tab.: 3.2:

$$p_{t_{vz}}^{''} = (t_{vz} - t_{10}) \cdot \frac{p_{20}^{''} - p_{10}^{''}}{t_{20} - t_{10}} + p_{10}^{''} \quad [MPa]$$
(3.5)

$$p_{t_{vz}}^{''} = (10,89 - 10) \cdot \frac{0,0023368 - 0,0012277}{20 - 10} + 0,0012277 = 0,001326 \, MPa$$

Tab.: 3.2: Závislosť parciálneho tlaku vodnej pary na teplote vzduchu [12]

Nakoniec mohol byť vypočítaný súčiniteľ f podľa rovnice (3.4):

$$f = 1 + \frac{63,3}{100} \cdot \frac{0,001326}{0,1 - \frac{63,3}{100} \cdot 0,001326} = 1,00847$$

A pomocou tohto súčiniteľa aj minimálny objem vlhkého vzduchu (rovnica (3.3)):

$$V_{VVmin} = 6,43 \cdot 1,00847 = 6,483 Nm^3 / Nm^3$$

a objem vodnej pary v tomto objeme [12]:

$$V_{H_2O}^{VV} = V_{VVmin} - V_{VSmin} = 6,483 - 6,429 = 0,054 Nm^3 / Nm^3$$
(3.6)

3.3 Minimálny objem spalín

Minimálny objem suchých spalín (pri prebytku vzduchu $\alpha = 1$) je daný súčtom plynných zložiek vznikajúcich pri spaľovaní alebo zo zložiek spaľovacieho vzduchu, ktoré do spalín prechádzajú. Výpočet týchto zložiek bol vykonaný podľa nasledujúcich vzťahov [12, 17]:

• Objem oxidu uhličitého v suchých spalinách:

$$V_{CO_2}^s = V_{CO_2} + 0.994 \cdot (V_{CO} + V_{CH_4}) + 0.0003 \cdot V_{VSmin} \quad [Nm^3/Nm^3]$$
(3.7)
$$V_{CO_2}^s = 0.25 + 0.994 \cdot (0.03 + 0.66) + 0.0003 \cdot 6.43 = 0.938 Nm^3/Nm^3$$

• Objem dusíku v suchých spalinách:

$$V_{N_2}^s = V_{N_2} + 0.7805 \cdot V_{VSmin} = 0.02 + 0.7805 \cdot 6.43 = 5.038 Nm^3 / Nm^3$$
(3.8)

• Objem argónu v suchých spalinách¹:

$$V_{Ar}^{s} = V_{Ar} + 0,0092 \cdot V_{VSmin} = 0 + 0,0092 \cdot 6,43 = 0,059 Nm^{3}/Nm^{3}$$
(3.9)

• Objem oxidu siričitého v suchých spalinách (vznikajúceho zo sírovodíku):

$$V_{SO_2}^s = 0.01 \cdot V_{H_2S} = 0.01 \cdot 0.01 = 0.0001 Nm^3 / Nm^3$$
(3.10)

Členy s označením V_i [Nm³/ Nm³] udávajú objemové zlomky jednotlivých zložiek bioplynu (Tab.: 3.1).

Výsledný objem suchých spalín je potom určený ako súčet vyššie určených zložiek [12]:

$$V_{SSmin} = V_{CO_2}^s + V_{N_2}^s + V_{Ar}^s + V_{SO_2}^s [Nm^3/Nm^3]$$
(3.11)
$$V_{SSmin} = 0.938 + 5.038 + 0.059 + 0.0001 = 6.035 Nm^3/Nm^3$$

Následne bolo nutné určiť objem vodnej pary v spalinách po stechiometrickom spálení bioplynu² [12]:

$$V_{H_2O}^S = V_{H_2O} + V_{H_2} + 2 \cdot V_{CH_4} + V_{H_2O}^{VV} [Nm^3/Nm^3]$$
(3.12)
$$V_{H_2O}^S = 0 + 0.02 + 2 \cdot 0.66 + 0.054 = 1.394 Nm^3/Nm^3$$

Súčet minimálneho objemu suchých spalín a objemu vodnej pary v spalinách udáva minimálny objem vlhkých spalín [12]:

$$V_{SVmin} = V_{SSmin} + V_{H_20}^S = 7,429 Nm^3 / Nm^3$$
(3.13)

3.4 Spal'ovanie s prebytkom vzduchu

V praxi sa nevyskytuje spaľovanie s prívodom teoretického (minimálne potrebného) množstva spaľovacieho vzduchu, pretože by dochádzalo k nedokonalému režimu (nedokonalé premiešanie okysličovadla a horľaviny). Preto sa do spaľovacej komory privádza väčšie množstvo vzduchu ako teoretické. Tento prebytok vzduchu je závislý na kvalite premiešania paliva

¹ podiel Ar v bioplyne bol nulový, to znamená, že Ar obsiahnutý v spalinách bol len zo spaľovacieho vzduchu ² podiel vody v bioplyne bol nulový, pretože plyn bol pred vstupom do spaľovacieho motora vysušený

a vzduchu v spaľovacej komore a súhrnne je vyjadrený pomocou tzv. súčiniteľa prebytku vzduchu, ktorý vyjadruje pomer objemu vzduchu skutočne privedeného do ohniska $V_{vz \ skut} \ [m^3]$ a objemu vzduchu potrebného pre dokonalý režim spaľovania $V_{vz \ min} \ [m^3] \ [2, \ 12]$:

$$\alpha = \frac{V_{vz\,skut}}{V_{vz\,min}} \quad [-] \tag{3.14}$$

V našom prípade bola zvolená hodnota súčiniteľa prebytku vzduchu $\alpha = 1,3$, vzhľadom k tomu, že bolo predpokladané, že KJ používala klasický plynový motor so spaľovaním pri nízkom prebytku vzduchu, pre ktorý sa pohybuje hodnota súčiniteľa od 1,2 po 1,35 [6]. Zvolená hodnota bola skonzultovaná a uznaná za vhodnú.

Pre skutočné množstvo vlhkých spalín potom platí [12]:

$$V_{SV} = V_{SVmin} + (\alpha - 1) \cdot V_{VVmin} \quad [Nm^3/Nm^3]$$
(3.15)
$$V_{SV} = 7,429 + (1,3-1) \cdot 6,483 = 9,374 Nm^3/Nm^3$$

3.5 Objemové zloženie spalín

Určenie objemového zloženia vznikajúcich spalín v motore kogeneračnej jednotky vychádzalo z rovnice (3.15), kde prvý člen rovnice vyjadroval minimálny obsah vlhkých spalín a druhý člen prebytok vzduchu, pričom sa jednalo o vlhký vzduch. Zloženie skutočných spalín bolo potom dané zo súčtu jednotlivých zložiek obsiahnutých v stechiometrickom množstve spalín (člen prvý) a v prebytku spaľovacieho vzduchu.

Objemové zlomky zložiek spalín boli určené v predchádzajúcej kapitole 3.3 pomocou rovníc (3.7) až (3.10). Spaliny obsahovali aj vodnú paru a jej objemová koncentrácia bola vypočítaná pomocou rovnice (3.12).

Jednotlivé zložky použitého prebytku vzduchu vychádzali z objemového zloženia suchého atmosférického vzduchu (Tab.: 3.3). Objem prebytku vzduchu vztiahnutý na 1 Nm³ suchého bioplynu bol určený pomocou druhého člena rovnice (3.15) [12]:

$$V_{\alpha} = (\alpha - 1) \cdot V_{VVmin} = (1, 3 - 1) \cdot 6,483 = 1,945 \, Nm^3 / Nm^3$$
(3.16)

Plynná zložka	Objemový obsah zložky [%]
$Dusik - N_2$	78,09
Kyslík – O_2	20,95
Argón - Ar	0,93
Oxid uhličitý – CO ₂	0,03

Tab.: 3.3: Objemové zloženie suchého atmosférického vzduchu³ [22]

Objemové zložky atmosférického vzduchu (Tab.: 3.3) boli stiahnuté na jednotku suchého vzduchu (napr. na 1 Nm³ suchého atmosférického vzduchu). Preto bolo nutné prenásobiť jednotlivé percentuálne objemy z Tab.: 3.3 objemom suchého vzduchu potrebného pre dokonalé spálenie 1 Nm³ bioplynu:

³ stopové množstvá ostatných plynných zložiek obsiahnutých vo vzduchu neboli brané v úvahu

$$V_{N_2}^{VS} = \frac{78,09}{100} \cdot V_{VSmin} = 0,7809 \cdot 6,43 = 5,02 Nm^3 / Nm_{bioplyn}^3$$
(3.17)

$$V_{O_2}^{VS} = \frac{20,95}{100} \cdot V_{VSmin} = 0,2095 \cdot 6,43 = 1,35 \, Nm^3 / Nm_{bioplyn}^3$$
(3.18)

$$V_{Ar}^{VS} = \frac{0.93}{100} \cdot V_{VSmin} = \frac{0.93}{100} \cdot 6.43 = 0.06 Nm^3 / Nm_{bioplyn}^3$$
(3.19)

$$V_{CO_2}^{VS} = \frac{0.03}{100} \cdot V_{VSmin} = \frac{0.03}{100} \cdot 6,43 = 0,002 \ Nm^3 / Nm_{bioplyn}^3$$
(3.20)

K získaniu objemových zlomkov jednotlivých zložiek použitého prebytku vzduchu bolo potrebné všetky objemové zlomky suchého vzduchu (rovnice (3.17) až (3.20)) prepočítať na objem vlhkého vzduchu:

$$x_{N_2}^{VV} = \frac{V_{N_2}^{VS}}{V_{VVmin}} = \frac{5,02}{6,48} = 0,774 \ Nm^3 / Nm_{VV}^3$$
(3.21)

$$x_{O_2}^{VV} = \frac{V_{O_2}^{VS}}{V_{VVmin}} = \frac{1,35}{6,48} = 0,208 Nm^3 / Nm_{VV}^3$$
(3.22)

$$x_{Ar}^{VV} = \frac{V_{Ar}^{VS}}{V_{VVmin}} = \frac{0.06}{6.48} = 0.0092 \ Nm^3 / Nm_{VV}^3$$
(3.23)

$$x_{CO_2}^{VV} = \frac{V_{CO_2}^{VS}}{V_{VVmin}} = \frac{0,002}{6,48} = 0,0003 Nm^3 / Nm_{VV}^3$$
(3.24)

Zložkou vlhkého vzduchu bola aj vodná para:

$$x_{H_2O}^{VV} = \frac{V_{H_2O}^{VV}}{V_{VVmin}} = \frac{0,054}{6,48} = 0,0084 Nm^3 / Nm_{VV}^3$$
(3.25)

Objemové zloženie použitého vlhkého vzduchu je prehľadne zaznamenané v Tab.: 3.4.

Zložka vlhkého vzduchu	Objemový zlomok [Nm ³ / Nm ³]	Percentuálne zastúpenie [%]
$Dusík - N_2$	0,774	77,4
Kyslík – O ₂	0,208	20,8
Argón – Ar	0,0092	0,92
Oxid uhličitý – CO ₂	0,0003	0,03
Vodná para – H ₂ O	0,0084	0,84

Tab.: 3.4: Objemové zloženie použitého vlhkého vzduchu

Prebytok spaľovacieho vzduchu bol taktiež vlhký vzduch a jeho jednotlivé objemové koncentrácie vztiahnuté na 1 Nm³ bioplynu boli určené následne:

$$V_{N_2}^{\alpha} = x_{N_2}^{VV} \cdot V_{\alpha} = 0,774 \cdot 1,945 = 1,506 Nm^3 / Nm_{bioplyn}^3$$
(3.26)

$$V_{O_2}^{\alpha} = x_{O_2}^{VV} \cdot V_{\alpha} = 0,208 \cdot 1,945 = 0,404 Nm^3 / Nm_{bioplyn}^3$$
(3.27)

$$V_{Ar}^{\alpha} = x_{Ar}^{VV} \cdot V_{\alpha} = 0,0092 \cdot 1,945 = 0,018 Nm^3 / Nm_{bioplyn}^3$$
(3.28)

$$V_{CO_2}^{\alpha} = x_{CO_2}^{VV} \cdot V_{\alpha} = 0,0003 \cdot 1,945 = 0,00058 Nm^3 / Nm_{bioplyn}^3$$
(3.29)

$$V_{H_20}^{\alpha} = x_{H_20}^{VV} \cdot V_{\alpha} = 0,0084 \cdot 1,945 = 0,0163 Nm^3 / Nm_{bioplyn}^3$$
(3.30)

Následne mohli byť určené zložky vznikajúcich skutočných spalín a to sčítaním príslušných objemových koncentrácií vztiahnutých na 1 Nm³ bioplynu v minimálnom množstve spalín a v prebytku vzduchu:

$$V_{N_2}^{sk} = V_{N_2}^s + V_{N_2}^a = 5,038 + 1,506 = 6,543 Nm^3 / Nm_{bioplyn}^3$$
(3.31)

$$V_{O_2}^{sk} = V_{O_2}^{\alpha} = 0,404 Nm^3 / Nm_{bioplyn}^3$$
(3.32)

$$V_{Ar}^{sk} = V_{Ar}^{s} + V_{Ar}^{a} = 0,059 + 0,018 = 0,077 Nm^{3}/Nm_{bioplyn}^{3}$$
(3.33)

$$V_{CO_2}^{sk} = V_{CO_2}^s + V_{CO_2}^a = 0,938 + 0,00058 = 0,9383 Nm^3 / Nm_{bioplyn}^3$$
(3.34)

$$V_{SO_2}^{sk} = V_{SO_2}^s = 0,0001 Nm^3 / Nm_{bioplyn}^3$$
(3.35)

$$V_{H_20}^{sk} = V_{H_20}^s + V_{H_20}^a = 1,394 + 0,0163 = 1,411 Nm^3 / Nm_{bioplyn}^3$$
(3.36)

Pre lepšiu prehľadnosť boli jednotlivé objemové koncentrácie v minimálnom množstve spalín, v prebytku vzduchu a v skutočnom množstve spalín zobrazené v Tab.: 3.5.

Celkové množstvo skutočných spalín bolo určené sčítaním jednotlivých zložiek spalín:

$$V_{sk} = \sum V_i^{sk} = 9,374 \, Nm^3 / Nm^3_{bioplyn} \tag{3.37}$$

Podelením jednotlivých objemových koncentrácií zložiek skutočných spalín celkovým množstvom spalín bolo získané percentuálne zastúpenie jednotlivých zložiek vzniknutých spalín (Tab.: 3.6):

$$x_i^{sk} = \frac{V_i^{sk}}{\sum V_i^{sk}} \cdot 100 \quad [\%]$$
(3.38)

Tab.:	3.5:	Obiemové	koncentrácie	zložiek	spalín
1 uo	5.5.	objemove	Roncentracie	LICLICK	spann

Dânad dažim	Objemové koncentrácie zložiek spalín $[Nm^3/Nm^3_{bioplyn}]$					
Povod złożky	$V_{N_2}^i$	$V_{O_2}^i$	V_{Ar}^i	$V_{CO_2}^i$	$V_{SO_2}^i$	$V_{H_2O}^i$
Minimálne množstvo spalín V _i s	5,038	0	0,059	0,938	0,0001	1,394
Prebytok spaľovacieho vzduchu V _i ^a	1,506	0,404	0,018	0,00058	0	0,0163
Skutočné množstvo spalín V _i ^{sk}	6,543	0,404	0,077	0,9386	0,0001	1,411

Tab.: 3.6: Percentuálne zastúpenie jednotlivých zložiek vo vzniknutých spalinách

Table 5.0. Tereentdame zastupenne jednotny yen zioziek vo vzinkhutyen spannaen						
N ₂ [%]	O ₂ [%]	Ar [%]	CO ₂ [%]	SO ₂ [%]	H ₂ O [%]	
69,81	4,31	0,82	10,01	0,0011	15,05	

4 Tepelný výpočet

Táto kapitola pozostávala z výpočtu potrebných parametrov pary, respektíve napájacej vody a spalín, ktoré boli použité k určeniu parného výkonu kotla a tepelných výkonov kotlových častí (výparníka a ekonomizéru). Niektoré časti tepelného výpočtu úzko súviseli s hydraulickým, aerodynamickým a pevnostným výpočtom kotla. Z tohto dôvodu boli všetky typy výpočtu vykonávané paralelne.

4.1 Pilový diagram

Pilový diagram (Obr. 4.1) znázorňuje dôležité body charakterizujúce stavy pracovného média (modrá krivka) a spalín (červená krivka) počas prechodu kotlom. Dôraz pri návrhu sa kládol na rozdiel teplôt spalín v bode B a parovodnej zmesi v bode 2 (Δt_{pp}), ktorý bol rozobraný v kapitole 2.6.2. Dôležitým teplotným rozdielom bol aj ten medzi bodmi 2 a 3 (Δt), ktorý určoval veľkosť nedohrevu napájacej vody na medzu sýtosti (bod varu) pri vstupe do výparníka (Kapitola 2.6.1).

Obr. 4.1: Predbežný pilový diagram zobrazujúci pracovné body spalín a pracovného média

4.2 Parametre vody a pary

Pomocou programu X-steam (parné tabuľky integrované do programu MS Excel) boli stanovené jednotlivé hodnoty tlaku, teploty a entalpie pary, respektíve vody v bodoch znázornených v pilovom diagrame:

bod 1 (výstup sýtej pary z výparníku) – pri výpočte sa vychádzalo zo zadaného tlaku pary na výstupe (p₁) a suchosti pary (sýta para → x₁=1):

- $x_1 = 1 \rightarrow \text{vyplývalo z analýzy a voľby druhu kotla (výstup sýta para),}$
- $t_1 = 151,94 \ ^\circ C \rightarrow určené z X-steam,$
- $i_1 = 2748,23 \text{ kJ/kg} \rightarrow \text{určené z X-steam.}$
- bod 2 (stav sýtej vody vo výparníku) pri výpočte sa vyšlo z tlaku, ktorý bol rovnaký ako v bode 1 (izobarický dej hydraulické straty trením vyšli výpočtovo veľmi malé a neboli brané v úvahu) a z hodnoty suchosti pary (sýta kvapalina → x₂ = 0), respektíve z teploty sýtej vody, ktorá bola rovnaká ako teplota sýtej pary (izotermický dej):

 $p_2 = p_1 = 0,501325 \text{ MPa} \rightarrow \text{vo výparníku prebieha izobaricko-izotermický dej},$ $x_2 = 0 \rightarrow \text{bod saturácie vody},$ $t_2 = t_1 = 151,94 \text{ °C} \rightarrow \text{vo výparníku prebieha izobaricko-izotermický dej},$ $i_2 = 640,62 \text{ kJ/kg} \rightarrow \text{určené z X-steam}.$

bod 3 (vstup do výparníka a výstup z ekonomizéru)⁴ – výpočet vychádzal z nedohrevu výstupnej vody (Δt = 20 °C) oproti teplote sýtosti (kapitola 2.6.1):

 $p_3 = p_2 = 0,501325 \text{ MPa} \rightarrow \text{bola braná v úvahu nulová zmena tlaku,}$ $t_3 = t_2 - \Delta t = 131,94 \text{ °C} \rightarrow \text{vychádzalo z voľby nedohrevu napájacej vody,}$ $i_3 = 554,8 \text{ kJ/kg} \rightarrow \text{určené z X-steam.}$

bod 4 (vstup vody do ekonomizéru) – určenie parametrov vychádzalo z hydraulického výpočtu (Kapitola 9) a z teploty napájacej vody (Kapitola 2.5):

 $t_4 = 105$ °C → teplota napájacej vody, $p_4 = p_3 + \Delta p = 0,501325 + 0,017 = 0,5183$ MPa → dané tlakovou stratou ekonomizéru⁵, $i_4 = 440,51$ kJ/kg → určené z X-steam.

4.3 Entalpie spalín

K výpočtu entalpií spalín v jednotlivých bodoch pilového diagramu (tj. pri daných teplotách spalín) bolo nutné vychádzať z entalpií jednotlivých zložiek (Tab.: 4.1) a ich objemového zastúpenia v spalinách (Tab.: 3.6).

t [°C]	100	200	300	400	500		
I _{CO2} [kJ/Nm ³]	170	357	559	772	994		
I_{O2} [kJ/Nm ³]	132	267	407	551	699		
I_{N2} [kJ/Nm ³]	130	260	392	527	666		
I _{H2O} [kJ/Nm ³]	150	304	463	626	795		
I _{Ar} [kJ/Nm ³]	93	186	278	372	456		
I _{SO2} [kJ/Nm ³]	189	392	610	836	1070		
I _{sp} [kJ/Nm ³]	137,554	277,746	421,939	570,208	723,256		

Tab.: 4.1: Entalpie zložiek spalín pri normálnych podmienkach

⁴ vstupujúcim médiom do výparníka (a teda výstupom z EKO) bola nenasýtená voda, ktorá však veľmi rýchlo po vstupe do priestoru výparníka dosiahne mez sýtosti

⁵ tlaková strata pracovného média bola braná v úvahu od výtlaku napájacieho čerpadla až po vstup do varnej časti

Jednotlivé entalpie spalín pri teplotách 100 až 500 °C (spodný riadok v Tab.: 4.1) boli vypočítané nasledovným spôsobom (príklad výpočtu je pre teplotu 100 °C):

$$I_{sp} = x_{CO_2}^{sk} \cdot I_{CO_2} + x_{O_2}^{sk} \cdot I_{O2} + x_{N_2}^{sk} \cdot I_{N_2} + x_{H_2O}^{sk} \cdot I_{H_2O} + x_{Ar}^{sk} \cdot I_{Ar} + x_{SO_2}^{sk} \cdot I_{SO_2}$$
(4.1)

 $I_{sp} = 0,11 \cdot 170 + 0,024 \cdot 132 + 0,689 \cdot 130 + 0,167 \cdot 150 + 0,008 \cdot 93 + 0,00001 \cdot 189$

$$I_{sp} = 137,554 \, kJ / Nm^3$$

Následne mohli byť pomocou lineárnych interpolácií dopočítané aj entalpie spalín v pozo-rovaných bodoch:

 bod A (vstup do kotla) – pri výpočte sa vychádzalo zo zadanej teploty spalín na vstupe do kotla:

> $t_A = t_{sp} = 440 \text{ °C} \rightarrow vstupná teplota spalín zo zadania,$ $I_A – určená pomocou nasledujúceho interpolačného výpočtu:$

$$I_A = (t_A - 400) \cdot \frac{I_{sp_{500}} - I_{sp_{400}}}{500 - 400} + I_{sp_{400}}$$
(4.2)

$$I_A = (440 - 400) \cdot \frac{717,95 - 566,19}{500 - 400} + 566,19 = 626,89 \, kJ/Nm^3$$

bod B (oblasť výstupu z výparníku a vstupu do ekonomizéru) – pri výpočte entalpie sa vychádzalo z voľby pinch-pointu (Δt_{PP} = 10 °C – rozoberané v kapitole 2.6.2):

 $t_B = t_2 + \Delta t_{PP} = 161,94 \text{ °C} \rightarrow \text{vychádzalo z hodnoty pinch-pointu,}$ $I_B - \text{určená interpolačne (analogicky podľa rovnice (4.2)):}$

$$I_B = (t_B - 100) \cdot \frac{I_{sp_{200}} - I_{sp_{100}}}{200 - 100} + I_{sp_{100}}$$
(4.3)

$$I_B = (161,94 - 100) \cdot \frac{276,03 - 136,8}{200 - 100} + 136,8 = 223,03 \ kJ/Nm^3$$

bod C (výstup spalín z kotla) – určené až v kapitole 4.5, pretože nebola známa teplota spalín na konci kotla.

4.4 Parný výkon

Pred samotným výpočtom parného výkonu kotla museli byť určené tepelné straty sálaním a konvekciou do okolia (množstvo tepla, ktoré uniká plášťom kotla do okolia – Q_{RC} [MW]). Bežne nie je možné merať tieto straty, preto musel byť použitý empirický výpočet, v ktorom bolo nutné vypočítať maximálny teoreticky využiteľný tepelný výkon spalín Q_A [MW]. Následne mohla byť táto strata určená pomocou vzorca (4.5), kde C je konštanta, ktorej hodnota bola volená pre kotle na kvapalné a plynné palivá. Porovnanie týchto tepelných výkonov udávalo stratu sálaním a konvekciou (rovnica (4.6)) [24].

$$\dot{Q}_A = \dot{V}_{sp} \cdot I_A = 0.8 \cdot 626.89 = 501.51 \, kW = 0.502 \, MW$$
 (4.4)

$$\dot{Q}_{RC} = C \cdot \dot{Q}_A^{0,6} = 0,0072 \cdot 0,502^{0,6} = 0,0048 \, MW = 4,76 \, kW$$
 (4.5)

$$z_s = \frac{\dot{Q}_{RC}}{\dot{Q}_A} = \frac{4,76}{501,51} = 0,0095 = 0,95\%$$
(4.6)

Celková tepelná strata zdieľaním tepla do okolia činila približne 0,95 %.

K výpočtu samotného parného výkonu kotla bolo potrebné poznať teplo odovzdané spalinami vo výparníku (medzi bodmi A a B):

$$\dot{Q}_{AB} = \dot{V}_{sp} \cdot (I_A - I_B) = 0.8 \cdot (626.89 - 223.03) = 323.09 \, kW$$
 (4.7)

Tepelný výkon výparníka (teplo zo spalín predané vode k vzniku sýtej pary – medzi bodmi 1 až 3 v pilovom diagrame) bol ponížený o straty zdieľaním tepla do okolia:

$$\dot{Q}_{13} = \dot{Q}_{AB} \cdot (1 - z_s) = 323,09 \cdot (1 - 0,0095) = 320,02 \, kW$$
 (4.8)

Tepelný výkon varnej časti kotla bol zároveň daný súčtom tepelných výkonov sýtej pary Q_P [kW] a odluhu Q_O [kW].

$$\dot{Q}_{13} = \dot{Q}_P + \dot{Q}_O = \dot{M}_P \cdot (i_1 - i_3) + \dot{M}_O \cdot (i_2 - i_3) \quad [kW]$$
(4.9)

Pre reálnejší návrh bolo brané v úvahu 4 % množstvo odluhu z celkového parného výkonu, ktorý vlastne vyjadruje hmotnostný tok vyrobenej sýtej pary:

$$\dot{M}_0 = 0.04 \cdot \dot{M}_P \quad [kg/s]$$
 (4.10)

Následne mohli byť dané do rovnosti vzťahy (4.8) a (4.9), pričom hmotnostný odvod odluhom bol vyjadrený z rovnice (4.10):

$$\dot{Q}_{AB} \cdot (1 - z_s) = \dot{M}_P \cdot (i_1 - i_3) + 0.04 \cdot \dot{M}_P \cdot (i_2 - i_3)$$
(4.11)

Z toho bol vyjadrený parný výkon kotla M_P [kg/s]:

$$\dot{M}_P = \frac{\dot{Q}_{AB} \cdot (1 - z_s)}{(i_1 - i_3) + 0.04 \cdot (i_2 - i_3)}$$
(4.12)

$$\dot{M}_{P} = \frac{323,09 \cdot (1 - 0,0095)}{(2748,23 - 554,8) + 0,04 \cdot (640,62 - 554,8)} = 0,1457 \, kg/s$$

Pomocou rovnice (4.10) bol spätne určený aj hmotnostný tok odluhu:

$$\dot{M}_{O} = 0.04 \cdot 0.1457 = 0.0058 \, kg/s$$

Hmotnostný tok napájacej vody prechádzajúcej ekonomizérom a vstupujúcej do varnej časti kotla bol daný súčtom hmotnostného toku sýtej pary a odluhu:

$$\dot{M}_{NV} = \dot{M}_P + \dot{M}_O = 0.1457 + 0.0058 = 0.1515 \, kg/s$$
 (4.13)

Vďaka známemu množstvu napájacej vody bol určený aj tepelný výkon ekonomizéra:

$$\dot{Q}_{34} = \dot{M}_{NV} \cdot (i_3 - i_4) = 0,1515 \cdot (554,8 - 440,51) = 17,32 \ kW$$
 (4.14)

Celkový tepelný výkon kotla bol vypočítaný ako súčet jednotlivých tepelných výkonov:

$$\dot{Q}_{14}^{celk} = \dot{Q}_{13} + \dot{Q}_{34} = 320,02 + 17,32 = 337,34 \, kW$$
 (4.15)

4.5 Teplota spalín na konci kotla

Po výpočte parného výkonu bolo možné určiť entalpiu a teplotu v bode C (na konci kotla, tj. po výstupe spalín z ekonomizéru). Entalpia spalín bola určená pomocou vzorca vyjadrujúceho množstvo tepla, ktoré spaliny odovzdajú vode v ekonomizéri:

$$I_C = I_B - \frac{\dot{Q}_{34}}{(1 - z_s) \cdot \dot{V}_{sp}} = 223,03 - \frac{17,32}{(1 - 0,0095) \cdot 0,8} = 201,18 \, kJ/Nm^3 \qquad (4.16)$$

Teplota na konci kotla bola následne vypočítaná pomocou lineárnej interpolácie entalpií spalín pri 100 a 200 °C (Tab.: 4.1):

$$t_{C} = \frac{(I_{C} - I_{sp_{100}}) \cdot (200 - 100)}{I_{sp_{200}} - I_{sp_{100}}} + 100$$
(4.17)

$$t_{C} = \frac{(201,18 - 136,8) \cdot (200 - 100)}{276,03 - 136,8} + 100 = 146,24 \,^{\circ}C \tag{4.18}$$

5 Bilančná schéma kotolne

Jedným z cieľov diplomovej práce bolo vypracovanie bilančnej schémy dôležitých zariadení umiestnených v priestoroch kotolne, ktoré podliehali návrhovému výpočtu (Obr. 5.1).

Samostatný bilančný systém pozostával z niekoľkých uzlových blokov: kogeneračnej jednotky (riešená z hľadiska spaľovania bioplynu), varnej časti kotla a zo samostatne stojaceho ekonomizéra. Objemové toky bioplynu a spaľovacieho vzduchu neboli známe a nebolo ani potrebné ich vypočítať vzhľadom k účelom tejto práce, keď že objemový tok spalín z KJ bol súčasťou zadania. Bolo predpokladané, že bioplyn pred vstupom do spaľovacieho motora KJ bol úplne vysušený (nulový obsah vody). Použitý spaľovací vzduch bol rozoberaný v stechiometrickom výpočte (Kapitola 3). Spaliny boli určené teplotou a entalpiou, pričom ich množstvo a zloženie sa po výstupe z KJ už nemenilo, keď že kotlové časti boli len spalinovými výmenníkmi a neprebiehala v nich chemická reakcia. Výstupy z KJ vo forme elektrickej energie a teplej vody neboli účelom výpočtu a preto k nim neboli priradené bližšie parametre. Základným interesom práce bol výstup z kotla vo forme sýtej pary, ktorý bol definovaný hmotnostným tokom (parný výkon kotla), tlakom a teplotou. Táto para putovala následne do spotrebičov pary. Súčasťou práce nebolo presné určenia využitia tejto pary, ale vzhľadom k jej parametrom (sýty stav, nižší tlak a teplota) sa zrejme jednalo o technologickú paru využiteľnú v chemickom alebo potravinárskom priemysle, kde sa hojne využíva fakt, že sýta para má presne stanovenú teplotu pri danom tlaku (teplota sýtosti) [9].

V schéme (Obr. 5.1) sa neobjavuje napájacia nádrž aj napriek tomu, že bola súčasťou kotolne, ale jej bilancia nebola počítaná a teplota napájacej vody bola vybratá z normovaných hodnôt (Kapitola 2.5). V bilančnej schéme chýba aj obtokový spalinovod (bypass), keď že pri bilancii sa brala v úvahu klasická prevádzka, kedy spaliny z KJ prechádzajú kotlovými časťami.

Je nutné podotknúť, že sa jedná o atypickú bilančnú schému, keďže nevytvára žiadnu kompletnú hmotnostnú ani energetickú bilanciu, ale slúži na lepší prehľad zmien fyzikálnych vlastností a objemového zloženia jednotlivých látok vstupujúcich a vystupujúcich z jednotlivých skúmaných častí kotolne. Schéma neobsahuje žiadne armatúry ani pomocné zariadenia (čerpadlá a kompresory), keďže pre dané bilancovanie neboli podstatné. Tie boli rozoberané v poslednej kapitole práce týkajúcej sa osadenia kotolne (Kapitola 12).

Obr. 5.1: Bilančná schéma kotolne

6 Návrh teplosmenných plôch

Kapitola pojednáva o návrhu oboch použitých výhrevných plôch, teda výparníka (nazývaného aj varná časť) a ekonomizéra. Postup výpočtu bol pri oboch plochách podobný, keď že obe mali žiarotrubné prevedenie. Pre obe plochy sa vytvoril detailný konštrukčný návrh, ktorý vychádzal zo zvolených dimenzií trubiek (použité normalizované rozmery trubiek podľa normy ČSN EN 10216-2 [25]), zo zvoleného usporiadania a zapojenia plochy a z rýchlosti spalín a pracovného média. Z tohto dôvodu bolo opäť nutné používať paralelný postup riešenia s ostatnými časťami výpočtu. Cieľom návrhu bolo určiť dostatočnú veľkosť plôch na prenesenie navrhnutého výkonu z tepelného výpočtu. Tento návrh sa realizoval pomocou výpočtu zdieľania tepla. Jednotlivé postupy boli vysvetlené v nasledujúcich podkapitolách.

6.1 Návrh výhrevných plôch výparníka

Výparník bol zvolený ako žiarotrubný s rovnými bezšvovými trubkami bez plamencovej časti.

6.1.1 Návrh geometrie

Pre trubky výparníka boli zvolené rozmery v Tab.: 6.1. Hrúbka steny trubky bola overená pevnostným výpočtom (Kapitola 11.1.1).

Tab.: 6.1: Ro	ozmery trubky	výparníka [25]
---------------	---------------	----------------

Rozmer	Značenie	Hodnota [mm]
Vonkajší priemer trubky	D_{vyp}	31,8
Hrúbka steny trubky	Str	3,6
Vnútorný priemer trubky	d _{vyp}	24,6

Vnútorný priemer trubky bol určený z vonkajšieho priemeru a hrúbky steny trubky:

$$d_{vyp} = D_{vyp} - 2 \cdot s_{tr} = 31,8 - 2 \cdot 3,6 = 24,6 \ mm \tag{6.1}$$

6.1.2 Priečny prierez a počet trubiek

Stredná rýchlosť spalín vo výparníku bola na začiatku návrhu odhadnutá na nasledujúcu hodnotu:

$$w_{sp-odh}^{AB} = 18 \, m/s$$

Pri odhade sa vychádzalo z teoretických poznatkov o plynnom palive, ktoré vykazuje nízku popolnatosť. Nedochádza tým pádom k abrazii výhrevných plôch popolčekom, tak ako u zariadení spaľujúcich tuhé palivá. Nebolo preto nutné nejak markantne uvažovať so znížením rýchlosti spalín. Jediným limitom bol aerodynamický výpočet (Kapitola 10), z ktorého vychádzala povolená rýchlosť spalín [2, 10].

Pre presnejší návrh bola vypočítaná stredná teplota spalín vo výparníkových trubkách:

$$t_{AB} = \frac{t_A + t_B}{2} = \frac{440 + 161,94}{2} = 300,97 \,^{\circ}C \tag{6.2}$$

Následne bolo nutné prepočítať zadaný objemový prietok spalín z KJ z normálnych jednotiek na skutočné (pomocou vyššie určenej strednej teploty spalín)⁶ [12]:

$$\dot{V}_{sp}^{sk} = \dot{V}_{sp} \cdot \frac{t_{AB} + 273,15}{273,15} = 0.8 \cdot \frac{300,97 + 273,15}{273,15} = 1,68 \, m^3/s \tag{6.3}$$

Z odhadovanej strednej rýchlosti spalín a skutočného prietoku spalín bol dopočítaný priečny prierez spalinových trubiek (spalinového ťahu) [18]:

$$S_{sp} = \frac{\dot{V}_{sp}^{sk}}{w_{sp-odh}^{AB}} = \frac{1,68}{18} = 0,093 \ m^2 \tag{6.4}$$

Pomocou priečnej plochy spalinového ťahu bol určený počet trubiek. Ten bol následne zaokrúhlený nahor [18]:

$$n_{tr} = \frac{4 \cdot S_{sp}}{\pi \cdot d_{vvp}^{2}} = \frac{4 \cdot 0,093}{\pi \cdot 0,0246^{2}} = 196,54 \doteq 197$$
(6.5)

Zaokrúhlením počtu trubiek sa mohol mierne zmeniť prierez spalinového ťahu, preto bol nutný prepočet [18]:

$$S_{sp}^{sk} = n_{tr} \cdot \frac{\pi \cdot d_{vyp}^{2}}{4} = 197 \cdot \frac{\pi \cdot 0,0246^{2}}{4} = 0,094 \, m^{2}$$
(6.6)

Nakoniec bola prepočítaná aj stredná rýchlosť spalín [18]:

$$w_{sp}^{AB} = \frac{\dot{V}_{sp}^{sk}}{S_{sp}^{sk}} = \frac{1,68}{0,094} = 17,96 \, m/s \tag{6.7}$$

6.1.3 Prostup tepla

Výpočet pozostával z dielčich výpočtov jednotlivých členov potrebných pre určenie súčiniteľ a prostupu tepla (vzťah (6.14)).

Ako je vidieť vo vzťahu (6.14), pre výpočet súčiniteľa prostupu tepla bolo potrebné vedieť len súčiniteľ prestupu tepla zo spalín do steny trubky - α_{sp} [W/m²K]. To znamenalo, že bolo potrebné zistiť len vybrané veličiny (kinematickú viskozitu, tepelnú vodivosť a Prandtlovo číslo) pre strednú teplotu spalín a nie pre pracovné médium. Tieto fyzikálne vlastnosti boli vybrané z Tab.: 6.2, pričom vzhľadom k priaznivej hodnote strednej teploty spalín (300,97 °C) nemusela byť vykonaná interpolácia. Hodnoty boli teda určené pre 300 °C:

•	kinematická viskozita spalín:	$v_{sp}^{AB} = 0,000044 \ m^2/s$
•	tepelná vodivosť spalín:	$\lambda_{sp}^{AB} = 0,0484 W/mK$
•	Prandtlovo číslo spalín:	$Pr_{sp}^{AB} = 0,65$

⁶ tlak spalín sa neprepočítava, pretože jeho zmena počas prechodu teplosmennou plochou je malá [12]

t _{sp} [°C]	ν [m²/s]	λ[W/mK]	Pr [-]
0	0,0000119	0,0228	0,74
100	0,0000208	0,0319	0,7
200	0,0000316	0,0401	0,67
300	0,0000439	0,0484	0,65
400	0,0000578	0,057	0,64
500	0,000073	0,0656	0,62

Tab.: 6.2: Fyzikálne charakteristiky spalín stredného zloženia [12]

Fyzikálne charakteristiky z Tab.: 6.2 boli pre spaliny stredného zloženia, čo predstavovalo 11 % objem vodnej pary a 13 % objem oxidu uhličitého v spalinách. Zmena obsahu CO₂ nevytvára veľkú odlišnosť hodnôt fyzikálnych charakteristík, kdežto obsah vodnej pary vykazuje veľkú citlivosť. Z tohto dôvodu bolo nutné jednotlivé vybrané fyzikálne vlastnosti korigovať na skutočný pomerný obsah vodnej pary v spalinách (Tab.: 3.6) [18]:

$$\nu_{sp-kor}^{AB} = \nu_{sp}^{AB} \cdot M_{\nu} = 0,000044 \cdot 1 = 0,000044 \ m^2/s \tag{6.8}$$

$$\lambda_{sp-kor}^{AB} = \lambda_{sp}^{AB} \cdot M_{\lambda} = 0,0484 \cdot 1,02 = 0,0494 \, W/mK \tag{6.9}$$

$$Pr_{sp-kor}^{AB} = Pr_{sp}^{AB} \cdot M_{Pr} = 0,65 \cdot 1,028 = 0,6682$$
(6.10)

 M_v [-], M_λ [-] a M_{Pr} [-] boli opravné koeficienty závislé na obsahu vodu v spalinách a teplote spalín. Ich hodnoty boli určené pomocou grafov na Obr. 6.1, Obr. 6.2 a Obr. 6.3.

Obr. 6.1: Opravný koeficient pre prepočet kinematickej viskozity spalín stredného zloženia [12]

Obr. 6.2: Opravný koeficient pre prepočet tepelnej vodivosti spalín stredného zloženia [12]

Obr. 6.3: Opravný koeficient pre prepočet Prandtlovho čísla spalín stredného zloženia [12]

Vo vzorci (6.12) pre konvekčný súčiniteľ prestupu tepla zo spalín do steny trubky α_k [W/m²K] sa vyskytovali aj ďalšie opravné súčinitele, ktoré bolo treba určiť [18]:

- teplotný opravný koeficient C_t [-] pri ochladzovaní spalín sa volí hodnota C_t = 1.
- opravný koeficient na pomernú dĺžku C₁ [-] určuje sa len v prípade, že pomer $l_{vyp}/d_e < 50$:

$$\frac{l_{vyp}}{d_e} = \frac{l_{vyp}}{d_{vyp}} = \frac{4,776}{0,0246} = 194,2 > 50$$
(6.11)

Dĺžka trubiek výparníka l_{vyp} [m] bola ešte neznáma, preto bol nutný iteračný výpočet. Ekvivalentný priemer trubiek d_e [m] je v prípade pozdĺžneho prúdenia spalín vo vnútri trubky rovný vnútornému priemeru trubiek d_{vyp} [m]. Hodnota pomeru l_{vyp}/d_e bola vyššia ako 50 a preto bol opravný koeficient C₁ = 1.

• opravný koeficient C_m [-] – zavádza sa len v prípade prúdenia v kanáloch medzikružia, preto pre tento prípad (prúdenie vo vnútri trubiek) bola volená hodnota $C_m = 1$.

Súčiniteľ prestupu tepla konvekciou pri pozdĺžnom prúdení vo všeobecnosti závisí na charakteru prúdenia spalín (spravidla turbulentný režim). Tento súčiniteľ sa potom stanoví z rovnice [18]:

$$\alpha_k = 0.023 \cdot \frac{\lambda_{sp-kor}^{AB}}{d_e} \cdot \left(\frac{w_{sp}^{AB} \cdot d_e}{v_{sp-kor}^{AB}}\right)^{0.8} \cdot Pr^{0.4} \cdot C_t \cdot C_l \cdot C_m$$
(6.12)

$$\alpha_k = 0.023 \cdot \frac{0.0494}{0.0246} \cdot \left(\frac{17.96 \cdot 0.0246}{0.000044}\right)^{0.8} \cdot 0.6682^{0.4} \cdot 1 \cdot 1 \cdot 1 = 62.57 \ W/m^2 K$$

Celkový súčiniteľ prestupu tepla zo spalín do steny trubky bol daný vzorcom (6.13). Vzhľadom k faktu, že teplota spalín dosahovala maximálnu hodnotu 440 °C a ako hranica, pod ktorú je už podiel sálania na celkový tepelný tok malý, sa uvádza 500 °C, bolo možné vplyv sálania zanedbať ($\alpha_s = 0 \text{ W/m}^2\text{K}$). Súčiniteľ využitia ω [-] udával neúplne omývanie teplosmennej plochy spalinami vplyvom vzniku tzv. mŕtvych kútov. Pre pozdĺžne prúdenie bola braná hodnota $\omega = 1$ (úplné omývanie výhrevnej plochy). Po aplikovaní týchto úvah sa vzťah zjednodušil na tvar [12, 18]:

$$\alpha_{sp} = \omega \cdot \alpha_k + \alpha_s = \alpha_k = 62,57 \, W/m^2 K \tag{6.13}$$

Nakoniec mohol byť určený súčiniteľ prostupu tepla spalín vo výparníku [18]:

$$k = \Psi \cdot \alpha_{sp} = 0.85 \cdot 62.57 = 53.19 \, W/m^2 K \tag{6.14}$$

Hodnota súčiniteľu tepelnej efektívnosti $\Psi = 0,85$ bola zvolená pre výparník podľa literatúry [18].

6.1.4 Teplotný spád

Tepelný výkon výparníka závisel na rozdielu teplôt ochladzovaných spalín a ohrievaného pracovného média. Pre výpočet celkového teplotného spádu výparníka bolo nutné vypočítať najprv jednotlivé teplotné rozdiely na vstupe a výstupe z výparníka (uvažované v smere spalín) [18]:

$$\Delta t_{vst}^{v\circ p} = t_A - t_1 = 440 - 151,94 = 288,06 \,^{\circ}C \tag{6.15}$$

$$\Delta t_{v \acute{y} s t}^{v \acute{y} p} = t_B - t_2 = 161,94 - 151,94 = 10 \,^{\circ}C \tag{6.16}$$

Do výparníku síce ešte ústila ohriata voda z ekonomizéru, ktorá bola určená teplotným nedohrevom (Kapitola 2.6.1), ale vzhľadom k veľkému objemu pracovného média bolo uvažované len s teplotou sýtosti, keďže sa predpokladalo, že voda sa po vstupe okamžite rozptýli a dosiahne danú teplotu t₂ (Obr. 6.4).

Obr. 6.4: Určenie teplotného spádu vo výparníku

Následne bol logaritmický teplotný spád varnej časti daný vzorcom:

$$\Delta t_{ln}^{v \circ p} = \frac{\Delta t_{vst}^{v \circ p} - \Delta t_{v \circ st}^{v \circ p}}{ln \frac{\Delta t_{vst}^{v \circ p}}{\Delta t_{v \circ st}^{v \circ p}}} = \frac{288,06 - 10}{ln \frac{288,06}{10}} = 82,74 \,^{\circ}C$$
(6.17)

6.1.5 Výhrevná plocha

K určenie celkovej výhrevnej plochy výparníka bolo nutné poznať celkový vnútorný obvod všetkých trubiek výparníka:

$$o_{vyp} = \frac{S_{vyp}}{l_{vyp}} = \frac{n_{tr} \cdot \pi \cdot d_{vyp} \cdot l_{vyp}}{l_{vyp}} = n_{tr} \cdot \pi \cdot d_{vyp} = 197 \cdot \pi \cdot 0,0246 = 15,23 m \quad (6.18)$$

Následne mohla byť určená dĺžka trubiek výparníka, ktorá vychádzala z vypočítaného tepelného výkonu výparníka Q_{13} [kW] v Kapitole 4.4:

$$l_{vyp} = \frac{\dot{Q}_{13}}{k \cdot o_{vyp} \cdot \Delta t_{ln}^{výp}} = \frac{320,02}{53,19 \cdot 15,23 \cdot 82,74} = 4,776 \, m \tag{6.19}$$

Výhrevná plocha výparníka bola potom daná súčinom obvodu všetkých trubiek výparníka a celkovou dĺžkou ťahu trubiek:

$$S_{vyp} = o_{vyp} \cdot l_{vyp} = 15,23 \cdot 4,776 = 72,72 \, m^2 \tag{6.20}$$

6.2 Návrh výhrevných plôch ekonomizéra

Ekonomizér bol zvolený taktiež ako žiarotrubný, hlavne z dôvodu lepšej dostupnosti pri odstávkach a následnej údržbe tohto zariadenia. Ekonomizér bol samostatne zvisle stojace zariadenie. V prípade vodorovného prevedenia by mohol nastať problém s nerovnomerným ohrevom napájacej vody, keď že ohriata voda by mala tendenciu vzhľadom k svojej nižšej hustote držať sa na vrchu výmenníka [9].

6.2.1 Návrh geometrie

Zvolené rozmery trubiek ekonomizéra sú súčasťou Tab.: 6.3. Hrúbka steny trubky bola overená pevnostným výpočtom (Kapitola 11.2.1).

Rozmer	Značenie	Hodnota [mm]
Vonkajší priemer trubky	D _{eko}	33,7
Hrúbka steny trubky	Str	3,6
Vnútorný priemer trubky	d _{eko}	26,5

Tab.: 6.3: Rozmery trubky ekonomizéra [25]

Vnútorný priemer trubky bol určený z vonkajšieho priemeru a hrúbky steny trubky:

$$d_{eko} = D_{eko} - 2 \cdot s_{tr} = 33,7 - 2 \cdot 3,6 = 26,5 \, mm \tag{6.21}$$

6.2.2 Priečny prierez a počet trubiek

Na vstupe do trubiek ekonomizéra bola zvolená rovnaká hodnota rýchlosti ako pre vstup do varnej časti:

$$w_{sp-odh}^{BC} = 18 \, m/s$$

Dôvod pomerne vysokej rýchlosti bol ten, že pri prevádzke môže dôjsť k prípadom, kedy sa v spalinách vyskytne vyššie množstvo síry, než stopové, ktoré bolo predpokladané vo výpočte (bioplyn bol odsírený). To by mohlo spôsobiť usadzovanie sírnych zlúčenín v trubkách ekonomizéra a vzhľadom k nízkym teplotám, ktoré sa tu vyskytujú, by mohlo dochádzať k nízkoteplotnej korózii. Z tohto dôvodu sa volila relatívne vyššia rýchlosť spalín na vstupe do trubiek, aby sa čo najviac zabránilo k tvorbe nánosov síry v trubkách [10].

Pre návrh ekonomizéra bolo taktiež dôležité pracovať so strednou teplotou spalín pri prechode touto plochou [18]:

$$t_{BC} = \frac{t_B + t_C}{2} = \frac{161,94 + 146,24}{2} = 154,09 \,^{\circ}C \tag{6.22}$$

Pôvodný objemový prietok spalín pri normálnych podmienkach zo zadania musel byť prepočítaný na skutočné podmienky, respektíve na strednú teplotu spalín [18]:

$$\dot{V}_{sp}^{sk} = \dot{V}_{sp} \cdot \frac{t_{BC} + 273,15}{273,15} = 0.8 \cdot \frac{154,09 + 273,15}{273,15} = 1,25 \ m^3/s \tag{6.23}$$

Následne bol určený priečny prierez spalinového ťahu [18]:

$$S_{sp} = \frac{\dot{V}_{sp}^{sk}}{w_{sp-odh}^{BC}} = \frac{1.25}{18} = 0.0695 \, m^2 \tag{6.24}$$

Pomocou priečneho prierezu bol určený počet trubiek, ktorý bol zaokrúhlený nahor [18]:

$$n_{tr} = \frac{4 \cdot S_{sp}}{\pi \cdot d_{eko}^2} = \frac{4 \cdot 0,0695}{\pi \cdot 0,0246^2} = 126,6 \doteq 128$$
(6.25)

Kvôli symetrickejšiemu rozloženiu trubiek bola hodnota zaokrúhlená na najbližšie párne číslo.

Priečna plocha spalinového ťahu musela byť prepočítaná s novým zaokrúhleným počtom trubiek [18]:

$$S_{sp}^{sk} = n_{tr} \cdot \frac{\pi \cdot d_{eko}^2}{4} = 128 \cdot \frac{\pi \cdot 0,0246^2}{4} = 0,071 \, m^2 \tag{6.26}$$

A nakoniec bola vypočítaná stredná rýchlosť prechodu spalín skrz ekonomizér [18]:

$$w_{sp}^{BC} = \frac{\dot{V}_{sp}^{sk}}{S_{sp}^{sk}} = \frac{1,25}{0,071} = 17,73 \ m/s \tag{6.27}$$

6.2.3 Prostup tepla

Podobne ako u výparníka, aj pri výpočte prostupu tepla eka bolo na začiatku potrebné určiť fyzikálne charakteristiky spalín. Vzhľadom k hodnote strednej teploty (154,09 °C) bolo nutné interpolovať hraničné hodnoty charakteristík pri teplotách 100 °C a 200 °C z Tab.: 6.2:

 lineárna interpolácia pre určenie hodnoty kinematickej viskozity spalín pri teplote t_{BC}:

$$\nu_{sp}^{BC} = (t_{BC} - 100) \cdot \frac{\nu_{sp}^{200 \,^{\circ}C} - \nu_{sp}^{100 \,^{\circ}C}}{100} + \nu_{sp}^{100 \,^{\circ}C} \tag{6.28}$$

$$v_{sp}^{BC} = (154,38 - 100) \cdot \frac{0,0000316 - 0,0000208}{100} + 0,0000208 = 0,0000267 \ m^2/s$$

• lineárna interpolácia pre určenie hodnoty tepelnej vodivosti spalín pri teplote t_{BC}:

$$\lambda_{sp}^{BC} = (t_{BC} - 100) \cdot \frac{\lambda_{sp}^{200\,°C} - \lambda_{sp}^{100\,°C}}{100} + \lambda_{sp}^{100\,°C}$$
(6.29)
$$\lambda_{sp}^{BC} = (154,38 - 100) \cdot \frac{0,0401 - 0,0319}{100} + 0,0319 = 0,0363 \, W/mK$$

• lineárna interpolácia pre určenie hodnoty Prandtlovho čísla spalín pri teplote t_{BC}:

$$Pr_{sp}^{BC} = (t_{BC} - 100) \cdot \frac{Pr_{sp}^{200\,^{\circ}C} - Pr_{sp}^{100\,^{\circ}C}}{100} + Pr_{sp}^{100\,^{\circ}C}$$
(6.30)

$$Pr_{sp}^{BC} = (154,38 - 100) \cdot \frac{0,67 - 0,7}{100} + 0,7 = 0,684$$

Vybrané fyzikálne charakteristiky boli opäť viazané pre spaliny stredného zloženia s 11 % obsahom vodnej pary. Preto bolo nutné tieto hodnoty korigovať na skutočné zloženie spalín podľa obsahu vody v nich [12, 18]:

$$\nu_{sp-kor}^{BC} = \nu_{sp}^{BC} \cdot M_{\nu} = 0,0000267 \cdot 0,991 = 0,0000264 \, m^2/s \tag{6.31}$$

$$\lambda_{sp-kor}^{BC} = \lambda_{sp}^{BC} \cdot M_{\lambda} = 0,0364 \cdot 1,015 = 0,0369 \, W/mK \tag{6.32}$$

$$Pr_{sp-kor}^{AB} = Pr_{sp}^{AB} \cdot M_{Pr} = 0,684 \cdot 1,028 = 0,703$$
(6.33)

Opravné koeficienty M_v [-], M_λ [-] a M_{Pr} [-] závislé na obsahu vodu v spalinách boli opäť určené z grafov na Obr. 6.1, Obr. 6.2 a Obr. 6.3.

Pre výpočet bolo nutné poznať aj ďalšie opravné súčinitele [18]:

- teplotný opravný koeficient C_t [-] jedná sa o ochladzovanie spalín, opäť sa volí hodnota C_t = 1.
- opravný koeficient C_m [-] len v prípade prúdenia v kanáloch medzikružia, preto pre tento prípad (prúdenie vo vnútri trubiek) bola volená hodnota $C_m = 1$.
- opravný koeficient na pomernú dĺžku C₁ [-] určuje sa len v prípade, že pomer $l_{eko}/d_e < 50$:

$$\frac{l_{eko}}{d_e} = \frac{l_{eko}}{d_{eko}} = \frac{0,386}{0,0246} = 25,6 < 50 \tag{6.34}$$

Ekvivalentný priemer trubiek d_e [m] je v prípade pozdĺžneho prúdenia spalín vo vnútri trubky rovný vnútornému priemeru trubiek d_{vyp} [m]. Hodnota pomeru l_{vyp}/d_e bola nižšia ako 50 a preto bol opravný koeficient C₁ = 1,08 určený z grafu (Obr. 6.5). Vzhľadom k tomu, že dĺžka trubiek l_{eko} bola spočiatku neznáma, bol nutný iteračný výpočet. Dĺžka trubiek bola prerátavaná s rôznymi hodnotami opravného koeficientu C₁, až dokým sa odhadovaná hodnota dĺžky spalinových trubiek približne nerovnala hodnote vypočítanej [12, 18].

Obr. 6.5: Závislosť veľkosti dĺžkového opravného súčiniteľa na pomere l/de [12]

Súčiniteľ prestupu tepla konvekciou pri pozdĺžnom prúdení sa potom stanovil pomocou rovnice [18]:

$$\alpha_k = 0.023 \cdot \frac{\lambda_{sp-kor}^{AB}}{d_e} \cdot \left(\frac{w_{sp}^{AB} \cdot d_e}{v_{sp-kor}^{AB}}\right)^{0.8} \cdot Pr^{0.4} \cdot C_t \cdot C_l \cdot C_m$$
(6.35)

$$\alpha_k = 0.023 \cdot \frac{0.0369}{0.0246} \cdot \left(\frac{17.73 \cdot 0.0246}{0.0000264}\right)^{0.8} \cdot 0.703^{0.4} \cdot 1 \cdot 1.08 \cdot 1 = 75.44 \, W/m^2 K$$

Pre celkový súčiniteľ prestupu tepla zo spalín do steny trubky platili rovnaké zákonitosti (súčiniteľ využitia plochy $\omega = 1$ a vplyv sálania je zanedbateľný, teda $\alpha_s = 0$ W/m²K) ako pri výparníku a jeho vzťah mohol byť teda zjednodušený na [18]:

$$\alpha_{sp} = \omega \cdot \alpha_k + \alpha_s = \alpha_k = 75,44 \, W / m^2 K \tag{6.36}$$

Hľadaný súčiniteľ prostupu tepla sa potom rovnal [18]:

$$k = \Psi \cdot \alpha_{sp} = 0.9 \cdot 75.44 = 67.9 \, W/m^2 K \tag{6.37}$$

Kde hodnota súčiniteľu tepelnej efektívnosti $\Psi = 0,9$ bola zvolená pre ekonomizér podľa literatúry [18].

6.2.4 Teplotný spád

Ekonomizér bol konštruovaný ako protiprúdý výmenník. Pre výpočet celkového logaritmického teplotného spádu ekonomizéra bolo nutné vypočítať najprv jednotlivé teplotné rozdiely na vstupe a výstupe (uvažované v smere spalín) [18]:

$$\Delta t_{vst}^{eko} = t_B - t_3 = 161,94 - 131,94 = 30 \,^{\circ}C \tag{6.38}$$

$$\Delta t_{vvst}^{eko} = t_c - t_4 = 146,24 - 105 = 41,24 \,^{\circ}C \tag{6.39}$$

Obr. 6.6: Určenie teplotného spádu v ekonomizéri

Logaritmický teplotný spád ekonomizéra bol potom vyrátaný pomocou vzťahu:

$$\Delta t_{ln}^{eko} = \frac{\Delta t_{v\acute{y}st}^{eko} - \Delta t_{vst}^{eko}}{ln \frac{\Delta t_{v\acute{y}st}^{eko}}{\Delta t_{vst}^{eko}}} = \frac{41,24 - 20}{ln \frac{41,24}{20}} = 35,32 \,^{\circ}C$$
(6.40)

6.2.5 Výhrevná plocha

K určenie celkovej výhrevnej plochy ekonomizéru bolo opäť nutné poznať celkový obvod všetkých spalinových trubiek:

$$o_{eko} = \frac{S_{eko}}{l_{eko}} = \frac{n_{tr} \cdot \pi \cdot d_{eko} \cdot l_{eko}}{l_{eko}} = n_{tr} \cdot \pi \cdot d_{eko} = 128 \cdot \pi \cdot 0,0246 = 10,66 \, m \quad (6.41)$$

Následne mohla byť určená dĺžka trubiek ekonomizéra, ktorá vychádzala z vypočítaného tepelného výkonu eka Q₃₄ [kW] z kapitoly 4.4:

$$l_{eko} = \frac{\dot{Q}_{34}}{k \cdot o_{eko} \cdot \Delta t_{ln}^{eko}} = \frac{17,32}{67,9 \cdot 10,66 \cdot 35,32} = 0,677 \, m \tag{6.42}$$

Výhrevná plocha ekonomizéra bola nakoniec daná súčinom obvodu všetkých trubiek a celkovej dĺžky spalinového ťahu:

$$S_{eko} = o_{eko} \cdot l_{eko} = 10,66 \cdot 0,677 = 7,22 \ m^2 \tag{6.43}$$

7 Materiál kotla a kotlových súčastí

Materiálová analýza pozostávala len z určenia vhodného typu materiálu pre tlakovú časť kotla, respektíve častí, ktoré pracovali pri vyšších teplotách. V úvahu nebol braný materiál pre nosnú konštrukciu, oplechovanie a ostatné ocele pre službu za normálnych teplôt.

7.1 Materiálová analýza výparníka

Jednotlivé materiály pre tlakové časti výparníka sú v Tab.: 7.1. Zvolený materiál bol vybraný ako vhodný vzhľadom k parametrom na strane spalín a pracovného média a patrí pod bežne používané materiály pre podobné aplikácie. Materiál obratovej komory nebol uvažovaný, keď že sa nejednalo o tlakovú časť kotla.

Tab.: 7.1: Použitý materiál pre komponenty varnej časti [26]

Súčasť vornai časti	Materiál		
Sucast varnej casti	Značka	Číslo materiálu	
Hladké trubky	P235GH	1.0345	
Plášť	P265GH	1.0425	
Trubkovnice	P265GH	1.0425	

7.2 Materiálová analýza ekonomizéra

Na tlakové časti ekonomizéra boli použité rovnaké druhy materiálov ako pre varnú časť (Tab.: 7.2).

Súžasť skonomizára	Mat	eriál
Sucast ekonomizera	Značka	Číslo materiálu
Hladké trubky	P235GH	1.0345
Plášť	P265GH	1.0425
Trubkovnice	P265GH	1.0425

Tab.: 7.2: Použitý materiál pre komponenty ekonomizéra [26]

7.3 Materiál potrubných trás

Pre spalinovody, parovody a ostatné potrubia bol navrhnutý materiál P265GH. Tento materiál bol volený z praktických dôvodov, keďže sa jedná o pomerne hojne využívaný typ uhlíkovej oceli používaný pre potrubné trasy s médiom pri zvýšených teplotách. Ďalšou výhodou tohto typu ocele je dobrá zvárateľnosť, čo sa hodilo hlavne pri spájaní jednotlivých potrubných častí. Rozbor materiálov armatúr a ostatného príslušenstva nebol v tejto práci vykonaný [10, 26].

8 Konštrukčné prevedenie kotla

Táto kapitola pojednáva o konštrukčných zákonitostiach pri návrhu hlavných kotlových súčastí varnej časti a ekonomizéra. V prílohách tejto práce je možné nájsť jednotlivé výkresy varnej časti, ekonomizéra, ako aj ich spoločnú zostavu.

8.1 Konštrukcia výparníka

Celková konštrukcia varnej časti kotla vychádzala z počtu a dĺžky trubiek z návrhu výhrevných plôch (Kapitola 6.1). Celkový konštrukčný návrh vychádzal hlavne z normy ČSN EN 12953-3 [27]. Použité trubky boli hladké, čo umožňovalo jednoduchšie čistenie a údržbu. K valcovému plášťu boli z oboch strán privarené trubkovnice. Tvar a rozloženie ťahov a trubiek na trubkovniciach je rozobraný v kapitole 8.1.3. Hrúbky stien jednotlivých častí boli skontrolované v pevnostnom výpočte (Kapitola 11). Na podoprenie trubkovníc boli použité rohové výstuže, ktoré boli umiestnené vo voľnom (parnom) priestore.

8.1.1 Rozteč trubiek výparníka

Trubky boli usporiadané do rovnostranných trojuholníkov. Išlo o bežné usporiadanie trubkových výmenníkov, keď že pri správnom návrhu rozteče, zaberajú čo najmenší priestor [27].

Samotná vzdialenosť medzi otvormi trubiek musela byť taká, aby pre minimálnu šírku mostíka m_{min} medzi otvormi platilo [27]:

$$0,125 \cdot D_{vyp} + 7 \ mm \le m \le 15 \ mm \tag{8.1}$$

 $0,125 \cdot 31,8 \ mm + 7 \ mm \le m \le 15 \ mm$

 $m_{min} = 10,975 mm$

Z minimálnej šírky mostíka bola určená minimálna rozteč otvorov trubiek s_{min} [27]:

$$s_{min} = D_{vyp} + m_{min} = 31,8 + 10,975 = 42,775 \, mm \tag{8.2}$$

Následne bola určená skutočná rozteč zaokrúhlením jej minimálnej hodnoty. Z tejto hodnoty bola prepočítaná aj skutočná mostíková vzdialenosť:

$$s = 43 \ mm \to m = 11,2 \ mm \tag{8.3}$$

Trojuholníkové usporiadanie a vzdialenosti jednotlivých premostení a osí spalinových trubiek výparníka sú znázornené na nasledujúcom obrázku (Obr. 8.1).

Obr. 8.1: Usporiadanie trubiek výparníka

Rôzne časti kotla pracujú počas prevádzky pri rozdielnych teplotách. V tomto prípade by dochádzalo hlavne k rozdielnej dilatácii trubiek voči plášťu kotla. Trubky boli privarené na trubkovnice, ktoré boli rovnako spojené zvarmi s plášťom. Prehnutie na trubkovniciach vplyvom rozdielnej teplotnej rozťažnosti by v prípade tesného usporiadania trubiek pri plášti mohlo zasiahnuť až do zvarovej oblasti plášťa a trubkovníc a spôsobiť poškodenie. Z tohto dôvodu sa volí minimálna vzdialenosť trubiek od plášťa. Pre prípad žiarotrubného kotla tvoreného len spalinovými trubkami sa jedná o vzdialenosť najmenej 50 mm alebo 3 % vonkajšieho priemeru plášťa (rozhodujúca je väčšia z hodnôt), ale maximálne to je 100 mm. V danom prípade bola zvolená vzdialenosť 90 mm najbližšie položenej trubky od vonkajšej plochy plášťa (Obr. 8.2) [27].

Obr. 8.2: Expanzný priestor na trubkovnici varnej časti

8.1.3 Počet ťahov a obratová komora výparníka

Vzhľadom k pomerne veľkej dĺžke zväzku trubiek (4,78 m) bolo lepšie rozdeliť trubky na dva ťahy ($2 \times 2,39$ m), čím sa značne ušetril priestor v kotolni a zariadenie tým získalo praktickejšie rozmery. Trubky jednotlivých ťahov boli od seba vzdialené minimálne 50 mm (Obr. 8.3) kvôli rozdielnej teplotnej dilatácii v prvom a v druhom ťahu [27].

Obr. 8.3: Vzdialenosť ťahov výparníka

Vstup spalín bol zvolený do spodnejšieho ťahu výparníka, aby ich výstup bol z vrchnej časti, keď že vstup spalín do ekonomizéra bol navrhnutý z vrchu (viac informácií v kapitole 8.2). Rozloženie trubiek v ťahoch varnej časti je možné vidieť na nasledujúcom obrázku (Obr. 8.4).

Obr. 8.4: Tvar a rozloženie ťahov vo varnej časti

Rozloženie a konštrukcia jednotlivých ťahov výparníka mali vplyv aj na tvar obratovej komory, ktorá prepájala oba ťahy (Obr. 8.5)⁷.

Obr. 8.5: Tvar obratovej komory

8.1.4 Úrovne hladiny vody vo výparníku

Veľmi dôležitým parametrom pri žiarotrubných kotloch je výška hladiny vody vo varnej časti. Pri návrhu sa uvažovalo s nasledujúcimi levelmi hladín vody:

- *Minimálna hladina* úroveň hladiny vody v kotle, ktorá musí byť minimálne 100 mm nad najvyšším miestom výhrevnej plochy (HHS),
 - táto úroveň hladiny musí byť trvalo a čitateľne označená na skle vodoznaku [28],
 - pri návrhu bola použitá limitná hodnota 100 mm od HHS,
- *Maximálna hladina* navrhovaná výrobcom, ale nemusí byť nutne vyznačená na skle vodoznaku [28],
 - v tomto prípade bola pre maximálnu úroveň hladiny vody v kotle zvolená vzdialenosť 275 mm od stropu valca kotla (vnútornej strany).
- "*50 mm nad HHS*" ukazovateľ úrovne hladiny vody musel byť zabudovaný tak, aby táto hranica bola viditeľná [28].

⁷ obrázok vyjadruje len tvar obratovej komory, nie je tam znázornený revízny otvor a oporná konštrukcia (viď Príloha 1)

- v našom prípade bola zvolená vzdialenosť 70 mm od HHS.
- Havarijné maximum dosiahnutie tejto úrovne aplikuje uzatvorenie prívodu vody do varnej časti [28],
 - pri návrhu bola použitá vzdialenosť 205 mm od vnútornej steny stropu valcového plášťa.

Regulačný rozsah bol potom udaný vzdialenosťou medzi minimom a maximom (60 mm). Na indikáciu kritických úrovní vody boli nainštalované obmedzovače a indikátory hladiny vody (viac informácií v Kapitole 12).

Obr. 8.6: Úrovne hladiny vody vo varnej časti

8.2 Konštrukcia ekonomizéra

Ekonomizér tvoril samostatne stojacu jednotku. Základom konštrukčného návrhu bola norma ČSN EN 12953-3 [27] a vypočítaná dĺžka, respektíve počet trubiek v ekonomizéri z kapitoly 6.2. Použité trubky boli opäť hladké.

8.2.1 Rozteč trubiek ekonomizéra

Trubky boli rovnako ako u varnej časti usporiadané do rovnostranných trojuholníkov kvôli šetrnejšiemu zaobchádzaniu s priestorom [27].

Pri výpočte priečnej rozteče trubiek bol aplikovaný rovnaký postup ako pri výparníku. Najprv bola navrhnutá minimálna šírka mostíka medzi otvormi a minimálna rozteč otvorov trubiek a potom aj skutočná mostíková vzdialenosť, respektíve skutočná priečna rozteč trubiek [27]:

$$0,125 \cdot D_{eko} + 7 \ mm \le m \le 15 \ mm \tag{8.4}$$

 $0,125\cdot 33,7\ mm+7\ mm\leq m\leq 15\ mm$

 $m_{min} = 11.2125 \ mm$

$$s_{min} = D_{vvp} + m_{min} = 33,7 + 11,2125 = 44,91 \, mm$$
 (8.5)

$$s = 45 \ mm \to m = 11,3 \ mm$$
 (8.6)

Obr. 8.7: Usporiadanie trubiek ekonomizéra

8.2.2 Expanzný priestor plochých dien

Vzdialenosť expanzného priestoru najbližších trubiek od vonkajšieho plášťa bola zvolená na 50 mm, čo bola minimálna možná vzdialenosť podľa normy (Obr. 8.8). Táto hodnota bola zvolená kvôli faktu, že ekonomizér pracoval s nižšou teplotou spalín, čím sa logicky očakávala miernejšia teplotná dilatácia v porovnaní s varnou časťou kotla [27].

Obr. 8.8: Expanzný priestor na trubkovnici ekonomizéra

Vzhľadom k rozsahu tejto práce sa neuvažovalo nad komplexnejším návrhom potrubí. Spalinovody a aj potrubia s pracovným médiom boli navrhnuté a umiestnené podľa priestorového usporiadania jednotlivých častí kotolne a ich dimenzie a rozmery boli volené hlavne z aerodynamického (Kapitola 10), respektíve hydraulického výpočtu (Kapitola 9). Celkový výkres zostavy varná časť a ekonomizér je súčasťou príloh (Príloha 3).

Tlaková strata pracovného média bola počítaná len na strane vody, to znamená po vstup do varnej časti. Vo výparníku táto strata nebola uvažovaná vzhľadom k tomu, že je tu dvojfázové prúdenie a výpočet by bol zložitejší. Zároveň išlo o veľkoobjemové zariadenie, kde rýchlosti média nedosahujú vysoké hodnoty, čo sa prejaví aj na zanedbateľne malej tlakovej strate vplyvom trenia materiálu (tá nebola uvažovaná ani pri ekonomizéri). V samotnom výpočte sa preto uvažovalo len s tlakovými stratami na vstupe a výstupe, stratami v potrubiach, pri prechode armatúrami a vplyvom rozdielu výšok (zmena hydrostatického tlaku) [10, 29, 30].

9.1 Tlaková strata vstupného potrubia

Pre výpočet straty vstupného potrubia do ekonomizéra bolo nutné poznať dimenziu potrubia, dĺžku potrubia od napájacieho čerpadla, tlak za napájacím čerpadlom a množstvo napájacej vody. Tieto parametre boli buď navrhnuté alebo vypočítané v predchádzajúcich výpočtoch a sú prehľadne zapísané v Tab.: 9.1. Je nutné poznamenať, že tlak bol určený iteračne a vychádzal práve z celkového hydraulického výpočtu. Z týchto veličín bola následne určená hustota vody, priečny prierez potrubia a rýchlosť vody.

Veličina	Označenie	Hodnota	Jednotka
Vnútorný priemer potrubia	d _{potr}	25	mm
Množstvo napájacej vody	M_{nv}	0,1515	kg/s
Dĺžka potrubia	L _{potr}	3	m
Tlak za NČ	$p_{n\check{c}}$	5,183	bar
Hustota vody v potrubí	ρ_{nv}	954,9	kg/m ³

Tab.: 9.1: Vypočítané alebo volené hodnoty parametrov potrebných pre hydraulický výpočet

Dĺžka potrubia bola odhadovaná, keďže presné umiestnenie napájacieho čerpadla nebolo súčasťou práce. Hustota vody bola určená pomocou programu X-steam z teploty napájacej vody t_{nv} [°C] a z odhadovaného tlaku za napájacím čerpadlom p_{nč} [bar]. Potrubie sa uvažovalo ako dokonale izolované a z tohto dôvodu sa brala v úvahu konštantná hustota média pre celú dĺžku potrubia.

Pomocou hustoty vody bol prepočítaný hmotnostný tok vody na objemový:

$$\dot{V}_{nv} = \frac{\dot{M}_{nv}}{\rho_{nv}} = \frac{0.1515}{954.9} = 0.0001587 \ m^3/s \tag{9.1}$$

Následne mohla byť určená rýchlosť vody v potrubí:

$$w_{potr} = \frac{\dot{V}_{nv}}{\pi \cdot \frac{d_{potr}^2}{4}} = \frac{0,0001587}{\pi \cdot \frac{0,025^2}{4}} = 0,323 \ m/s \tag{9.2}$$

9.1.1 Strata trením vo vstupnom potrubí

Tlaková strata trením v potrubí bola určená pre celú dĺžku potrubia. Pre výpočet bolo dôležité určiť Re (Reynoldsovo kritérium), ktoré určovalo typ prúdenia. Na výpočet Re [-] bolo potrebné poznať dynamickú viskozitu μ_{nv} [kg/ms]. Tá bola určená interpolačne podľa Tab.: 9.2:

$$\mu_{nv} = (t_{nv} - 100) \cdot \frac{\mu_{nv}^{120 \ \circ C} - \mu_{nv}^{100 \ \circ C}}{20} + \mu_{nv}^{100 \ \circ C}$$
(9.3)

$$\mu_{nv} = (105 - 100) \cdot \frac{0,00023 - 0,000279}{20} + 0,000279 = 0,0002668 \ kg/ms$$

Tab.: 9.2: Dynamická viskozita vody pri tlaku 0,5 MPa [30]

Teplota vody [°C]	Dynamická viskozita [kg/ms]
100	0,000279
120	0,00023
140	0,000195
160	0,00001431

Reynoldsovo číslo bolo potom určené [29]:

$$Re = \frac{w_{potr} \cdot d_{potr} \cdot \rho_{nv}}{\mu_{nv}} = \frac{0.323 \cdot 0.025 \cdot 954.9}{0.0002668} = 28925.5$$
(9.4)

Súčiniteľ trenia λ [-] bol funkciou pomernej drsnosti trubiek ϵ [-] [30]:

$$\varepsilon = \frac{k}{d_{potr}} = \frac{0.15}{0.025} = 0.006$$
 (9.5)

Kde k [mm] bola absolútna drsnosť trubky, ktorej hodnota bola zvolená pre mierne použitú oceľovú zvarenú trubku [30].

Pre určenie súčiniteľa trenia λ pomocou rovnice (9.8) bolo ešte potrebné vypočítať koeficienty A [-] a B [-] [29, 30]:

$$A = (2,457 \cdot ln \cdot \left(\frac{1}{\left(\frac{7}{Re}\right)^{0,9} + 0,27 \cdot \varepsilon}\right)^{16} = 1,745 \cdot 10^{20}$$
(9.6)

$$B = \left(\frac{37530}{Re}\right)^{16} = 64,5 \tag{9.7}$$

$$\lambda = 8 \cdot \left(\left(\frac{8}{Re}\right)^{12} + \frac{1}{(A+B)^{1,5}} \right)^{\frac{1}{12}} = 0,0236$$
(9.8)

Následne mohla byť vypočítaná tlaková strata trením pomocou rovnice [29]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{potr}}{d_{potr}} \cdot \frac{w_{potr}^2}{2} \cdot \rho_{nv} = 0,0236 \cdot \frac{3}{0,025} \cdot \frac{0,323^2}{2} \cdot 954,9 = 141,24 \ Pa \tag{9.9}$$

Uzatváracia armatúra

15

9.1.2 Strata miestnymi odpormi vstupného potrubia

Pri tlakovej strate spôsobenej miestnymi odpormi za výtlakom napájacieho čerpadla boli uvažované odpory, ktorých súčinitele sú zhrnuté v Tab.: 9.3. Vstupné potrubie napájacej vody nebolo súčasťou výkresov. Viac informácií o osadení vstupnej trasy do ekonomizéra je možné nájsť v poslednej kapitole venovanej osadeniu kotla (Kapitola 12).

Tab.: 9.5. Wheshe stratove suchitere vstupileno portubra ekonomizera [50, 51]				
Miestny odpor	Počet	Označenie	Hodnota stratového súčiniteľa [-	
Koleno 90°	2	ζ _{kol}	1,5	
Výstup z trubky	1	ζvyst	1	
Spätný ventil	1	ζ _{sv}	10	

Tab.: 9.3: Miestne stratové súčinitele vstupného potrubia ekonomizéra [30, 31]

1

Tlaková strata miestnymi odpormi na vstupnom potrubí ekonomizéra sa potom vypočítala pomocou vzťahu [29]:

ζua

$$\Delta p_{\zeta} = \left(2 \cdot \zeta_{kol} + \zeta_{vyst} + \zeta_{sv} + \zeta_{ua}\right) \cdot \frac{w_{potr}^2}{2} \cdot \rho_{nv}$$
(9.10)

$$\Delta p_{\zeta} = (2 \cdot 1, 5 + 1 + 10 + 15) \cdot \frac{0,323^2}{2} \cdot 954, 9 = 1471,38 \, Pa$$

9.1.3 Tlaková strata vplyvom hydrostatického tlaku

Napájacie čerpadlo muselo vytlačiť vodu do výšky vstupného hrdla ekonomizéra. Keďže prívodné potrubie napájacej vody nebolo súčasťou výkresu a tým pádom presná poloha čerpadla nebola známa, bola uvažovaná výtlačná výška h_v [m] od podlahy kotolne po vstupné hrdlo [10]:

$$\Delta p_{hvdr} = h_v \cdot \rho_{nv} \cdot g = 1,092 \cdot 954,9 \cdot 9,81 = 9873,34 \, Pa \tag{9.11}$$

Veličina g [m/s²] vyjadruje tiažové zrýchlenie.

9.1.4 Celková tlaková strata vstupného potrubia

Celková tlaková strata vstupného úseku ekonomizéra bola daná súčtom tlakovej straty trením vnútornej steny trubky, tlakovej straty miestnymi odpormi a zmenou hydrostatického tlaku:

$$\Delta p_{vp} = \Delta p_{tr} + \Delta p_{\zeta} + \Delta p_{hydr} = 141,24 + 1471,38 + 9873,34 = 11485,99 \, Pa \qquad (9.12)$$

9.2 Tlaková strata ekonomizéra

Vo vnútri ekonomizéru prebiehalo pozdĺžne obtekanie trubkového zväzku. Celková strata ekonomizéra sa mala teda skladať z tlakovej straty vplyvom trenia vo vnútri valcového telesa, straty hydrostatickým tlakom, keďže voda prúdila zdola nahor a tlakovej straty na výstupnom hrdle. Hydraulická strata na vstupnom hrdle ekonomizéra bola už riešená v predchádzajúcej kapitole (miestny odpor - výstup zo vstupného potrubia). Vzhľadom k faktu, že sa jednalo

o veľkoobjemové zariadenie, v ktorom bola rýchlosť vody veľmi malá (veľký priečny prierez), tlaková strata trením bola zanedbateľne malá (desatiny jednotiek Pa) a nebola braná v úvahu.

9.2.1 Tlaková strata na výstupe z ekonomizéra

Tlaková strata na výstupe z ekonomizéra bola daná miestnym odporom vo forme vstupu napájacej vody do potrubia. Jednalo sa teda o stratu pri vstupe do trubky (stratový súčiniteľ $\zeta_{vyst} = 0,5$) [29]:

$$\Delta p_{\zeta} = \zeta_{vst} \cdot \frac{w_{potr}^2}{2} \cdot \rho_3 = 0.5 \cdot \frac{0.323^2}{2} \cdot 933.3 = 24.94 \, Pa \tag{9.13}$$

Hustota vody ρ_3 [kg/m³] bola daná stavom na výstupe z ekonomizéra (bod 3 v pilovom diagrame) a výpočtovo bola určená pomocou programu X-steam pomocou známej teploty a tlaku. Rýchlosť vo výstupnom potrubí w_{potr} [m/s] z ekonomizéra bola rovnaká ako pre vstupné potrubie, keď že išlo o trubky s rovnakou dimenziou (Tab.: 9.1).

9.2.2 Tlaková strata vplyvom hydrostatického tlaku

Zmena hydrostatického tlaku bola určená pomocou vzťahu [10]:

$$\Delta p_{hydr} = h_v \cdot \rho_{34} \cdot g = 0,518 \cdot 943,97 \cdot 9,81 = 4891,26 \ Pa \tag{9.14}$$

Výtlačná výška h_v [m] bola daná výškovým rozdielom medzi vstupným a výstupným hrdlom ekonomizéra. Hustota vody ρ_{34} [kg/m³] bola strednou hodnotou hustôt vody ρ_3 a ρ_{nv} .

9.2.3 Celková tlaková strata ekonomizéra

Celková tlaková strata tlakovej časti ekonomizéra bola daná súčtom vyššie uvedených strát:

$$\Delta p_e = \Delta p_{\zeta} + \Delta p_{hydr} = 24,94 + 4891,26 = 4916,2 \ Pa \tag{9.15}$$

9.3 Tlaková strata prepájacieho potrubia

Táto časť sa venuje tlakovej strate ohriatej napájacej vody po výstupe z ekonomizéra smerujúcej do varnej časti cez prepájacie potrubie. Pre výpočet straty v tejto potrubnej trase bolo nutné poznať dimenziu a dĺžku potrubia, tlak a hustotu ohriatej vody (Tab.: 9.4).

Veličina	Označenie	Hodnota	Jednotka
Vnútorný priemer potrubia	d _{potr}	25	mm
Dĺžka potrubia	L _{potr}	3,22	m
Tlak vody	\mathbf{p}_{m}	5,156	bar
Hustota vody v potrubí	$ ho_{ m m}$	933,3	kg/m ³

Tab.: 9.4: Vypočítané alebo volené hodnoty parametrov potrebných pre hydraulický výpočet

Dĺžka rovného úseku bola daná súčtom jednotlivých častí (Príloha 3). Tlak vody bol daný súčtom vyššie vyrátaných tlakových strát pričítaných k tlaku na vstupe do výparníka:

$$p_m = p_3 + \Delta p_{vp} + \Delta p_e = 5,01325 + 0,1149 + 0,02784 = 5,177 \ bar \tag{9.16}$$

Hustota média v potrubí $\rho_m [kg/m^3]$ bola určená cez program X-steam pomocou teploty napájacej vody na výstupe z ekonomizéra t₃ [°C] a tlaku p_m [bar]. Potrubie bolo uvažované ako do-konale izolované a z tohto dôvodu preň platila konštantná hustota média pre celú dĺžku.

Pomocou hustoty vody bola určená rýchlosť vody v potrubí:

$$w_{potr} = \frac{\frac{\dot{M}_{nv}}{\rho_m}}{\pi \cdot \frac{d_{potr}^2}{A}} = \frac{\frac{0,1515}{933,3}}{\pi \cdot \frac{0,025^2}{4}} = 0,331 \, m/s \tag{9.17}$$

9.3.1 Strata trením v prepájacom potrubí

Pre výpočet Reynoldsova čísla Re [-] bolo nutné získať hodnotu dynamickej viskozity μ_m [kg/ms] pomocou lineárnej interpolácie z Tab.: 9.2:

$$\mu_m = (t_3 - 100) \cdot \frac{\mu_m^{140 \,\,^\circ C} - \mu_m^{120 \,\,^\circ C}}{20} + \mu_m^{120 \,\,^\circ C} \tag{9.18}$$

$$\mu_{nv} = (131,94 - 100) \cdot \frac{0,000195 - 0,00023}{20} + 0,00023 = 0,000209 \, kg/ms$$

Reynoldsovo číslo bolo následne určené nasledujúcim spôsobom [29]:

$$Re = \frac{w_{potr} \cdot d_{potr} \cdot \rho_m}{\mu_m} = \frac{0,331 \cdot 0,025 \cdot 933,3}{0,000209} = 36898,2$$
(9.19)

Na výpočet súčiniteľ a trenia λ [-], ktorý je funkciou pomernej drsnosti trubiek ϵ [-] [30]:

$$\varepsilon = \frac{k}{d_{potr}} = \frac{0.15}{0.025} = 0.006 \tag{9.20}$$

Kde k [mm] bola absolútna drsnosť trubky, ktorej hodnota bola zvolená pre mierne použitú oceľovú zvarenú trubku [30].

Pri určení súčiniteľa trenia λ pomocou rovnice bolo ešte potrebné poznať pomocné koeficienty A [-] a B [-] [29, 30]:

$$A = (2,457 \cdot \ln \cdot \left(\frac{1}{\left(\frac{7}{Re}\right)^{0,9} + 0,27 \cdot \varepsilon}\right))^{16} = 2,767 \cdot 10^{20}$$
(9.21)

$$B = \left(\frac{37530}{Re}\right)^{16} = 1,312 \tag{9.22}$$

$$\lambda = 8 \cdot \left(\left(\frac{8}{Re}\right)^{12} + \frac{1}{(A+B)^{1,5}} \right)^{\frac{1}{12}} = 0,0223$$
(9.23)

Následne mohla byť vypočítaná tlaková strata trením pomocou rovnice [29]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{potr}}{d_{potr}} \cdot \frac{w_{potr}^2}{2} \cdot \rho_{nv} = 0,0236 \cdot \frac{3,22}{0,025} \cdot \frac{0,331^2}{2} \cdot 933,3 = 104,4 \, Pa \qquad (9.24)$$

9.3.2 Strata miestnymi odpormi prepájacieho potrubia

Prepájacie potrubie obsahovalo odporové prvky, ktoré sú obsiahnuté v Tab.: 9.5 spolu s ich stratovými súčiniteľmi. Viac informácií o osadení prepájacieho potrubia medzi ekonomizérom a varnou časťou je možné nájsť v poslednej kapitole venovanej osadeniu kotla (Kapitola 12).

Tab.: 9.5. Wiestie stratove suchitere prepajacieno portubia [50, 51]				
Miestny odpor	Počet	Označenie	Hodnota stratového súčiniteľa [-]	
Koleno 90°	2	ζkol	1,5	
Výstup z trubky	1	ζ _{vyst}	1	

Tab.: 9.5: Miestne stratové súčinitele prepájacieho potrubia [30, 31]

Výstup z trubky charakterizoval odpor vstupného hrdla do varnej časti.

Tlaková strata miestnymi odpormi na prepájacom potrubí bola následne vypočítaná pomocou vzťahu [29]:

$$\Delta p_{\zeta} = \left(2 \cdot \zeta_{kol} + \zeta_{vyst}\right) \cdot \frac{w_{potr}^2}{2} \cdot \rho_m \tag{9.25}$$

$$\Delta p_{\zeta} = (2 \cdot 1, 5 + 1) \cdot \frac{0,331^2}{2} \cdot 933,3 = 51,03 \, Pa$$

9.3.3 Celková tlaková strata prepájacieho potrubia

Celková tlaková strata prepájacieho potrubia spájajúceho eko a varnú časť bola daná súčtom tlakovej straty trením vnútornej steny trubky a tlakovej straty miestnymi odpormi:

$$\Delta p_{pp} = \Delta p_{tr} + \Delta p_{\zeta} = 104.4 + 51.03 = 155.39 \, Pa \tag{9.26}$$

9.4 Celková tlaková strata pracovného média kotla

Celková tlaková strata kotla bola daná súčtom jednotlivých strát častí kotla (rovnica (9.27)). Vo varnej časti sa neuvažovalo so žiadnou stratou, keďže hydraulická strata trením pri nízkych rýchlostiach bola veľmi malá. Zároveň sa vo výparníku odohráva dvojfázové prúdenie, čo sa z hľadiska tlakových strát veľmi ťažko popisuje. Z tohto dôvodu bol pre výparník braný v úvahu ideálny izotermicko-izobarický dej [2].

$$\Delta p_{eko} = \Delta p_{vp} + \Delta p_e + \Delta p_{pp} \tag{9.27}$$

 $\Delta p_{eko} = 11485,99 + 4916,2 + 155,39 = 16557,6 Pa = 0,1656 bar$

Celková tlaková strata hrala dôležitú úlohu pri tepelnom výpočte kotla (Kapitola 4). V danom výpočte bola táto strata pre zjednodušenie celá priradená k deju odohrávajúcemu sa v ekonomizéri (dej medzi bodmi 3 a 4 v pilovom diagrame – Obr. 4.1). Z tohto dôvodu bolo aj označenie tejto straty ako Δp_{eko} [bar].

Aerodynamický výpočet stanovuje celkovú ťahovú stratu kotla po celej trase spalín od výstupu z KJ až po odvod do atmosféry. V zadaní nebol stanovený žiadny limit pre celkovú ťahovú stratu trasy spalín za kogeneračnou jednotkou, preto bola ako hranica zvolená hodnota 2000 Pa podľa zdroja [32], kde bola používaná KJ s podobnými parametrami. Preto cieľom výpočtu ťahovej straty bolo neprekročiť tento limit, inak by mohlo dochádzať k nesprávnemu odvodu spalín.

Celková tlaková strata spalín bola daná ako súčet jednotlivých tlakových strát v jednotlivých častiach. Výpočet bol realizovaný paralelne s návrhom teplosmenných plôch (Kapitola 6), keď že rýchlosť spalín navrhovaná v aerodynamickom výpočte úzko súvisela s veľkosť ou teplosmennej plochy.

10.1 Ťahová strata na vstupnom spalinovode

Vstupný spalinovod do varnej časti bol tvorený rovným potrubím s vnútorným priemerom DN 400. Dĺžka potrubia medzi kogeneračnou jednotkou a vstupom do varnej časti bola zvolená na 3 metre. Na hlavné potrubie, ktoré viedlo spaliny do kotla, bolo napojené potrubie obtoku (bypass), ktorý spaliny v prípade potreby odvedie mimo kotlové časti priamo do komína. Z tohto dôvodu bol hlavný spalinovod osadený šupátkom. Uzatváracie šupátko bolo aj na obtokovom spalinovode, ale jeho miestny odpor nebol riešený, keďže aerodynamický výpočet sa vzťahoval len na hlavnú spalinovú trasu.

Pri aerodynamickom výpočte bolo dôležité poznať hustotu spalín pri normálnych podmienkach (rovnica (10.1)), pretože pomocou nej sa potom určovala hustota spalín pri skutočnej teplote (zmena tlaku spalín sa nebrala v úvahu, keďže bola veľmi malá). Zároveň bol nutný prepočet na skutočný objemový tok spalín. Z toho bola potom určená rýchlosť spalín, ktorá mala veľký vplyv na veľkosť ťahovej straty.

$$\rho_{sp} = x_{N_2} \cdot \rho_{N_2} + x_{O_2} \cdot \rho_{O_2} + x_{Ar} \cdot \rho_{Ar} + x_{CO_2} \cdot \rho_{CO_2} + x_{H_2O} \cdot \rho_{H_2O}$$
(10.1)

 $\rho_{sp} = 0.698 \cdot 1.251 + 0.043 \cdot 1.429 + 0.008 \cdot 1.784 + 0.1 \cdot 0.1.977 + 0.15 \cdot 0.804$

$$\rho_{sp} = 1,268 \, kg / Nm^3$$

Veličiny x_i [-] vyjadrovali objemové zastúpenie zložiek spalín (Tab.: 3.6) a ρ_i [-] boli hustoty jednotlivých zložiek spalín pri normálnych podmienkach (Tab.: 10.1). Objemové zloženie a hustota SO₂ nebola braná v úvahu kvôli jeho stopovému množstvu [10].

Tab.: 10.1: Hustoty jednotlivych zložiek spalin pri normalnych podmienkach [10]

J	5			L J
ρ_{N2} [kg/m ³]	ρ _{O2} [kg/m ³]	ρ_{Ar} [kg/m ³]	ρ _{CO2} [kg/m ³]	ρ _{H2O} [kg/m ³]
1,977	1,429	1,251	0,804	1,784

Následne bola vypočítaná hustota pri skutočnej teplote spalín:

$$\rho_A = \rho_{sp} \cdot \frac{273,15}{273,15 + t_A} = 1,268 \cdot \frac{273,15}{273,15 + 440} = 0,486 \, kg/m^3 \tag{10.2}$$

Teplota t_A [°C] bola výstupnou teplotou z KJ a bolo predpokladané, že jej hodnota sa nemení po celej trase vstupného spalinovodu.

Pre určenie rýchlosti musel byť určený aj objemový prietok pri skutočnej teplote spalín:

$$\dot{V}_A = \dot{V}_{sp} \cdot \frac{273,15}{273,15+t_A} = 0.8 \cdot \frac{273,15}{273,15+440} = 2.09 \ m^3/s \tag{10.3}$$

Nakoniec mohla byť určená samotná rýchlosť spalín v tomto úseku:

$$w_{vs} = \frac{\dot{V}_A}{S_{vs}} = \frac{\dot{V}_A}{\pi \cdot \frac{d_{vs}^2}{4}} = \frac{2,09}{\pi \cdot \frac{0,4^2}{4}} = 16,62 \ m/s \tag{10.4}$$

10.1.1 Strata trením vo vstupnom spalinovode

K výpočtu straty trením bolo potrebné poznať Reynoldsovo číslo. Kinematická viskozita bola určená najskôr interpolačne pre spaliny stredného zloženia pomocou Tab.: 6.2:

$$\nu_{sp}^{A} = (t_{A} - 400) \cdot \frac{\nu_{sp}^{500\,^{\circ}C} - \nu_{sp}^{400\,^{\circ}C}}{100} + \nu_{sp}^{400\,^{\circ}C}$$
(10.5)

$$v_{sp}^{A} = (500 - 400) \cdot \frac{0,000073 - 0,0000578}{100} + 0,0000578 = 0,0000639 \, m^{2}/s$$

Následne musela byť vypočítaná hodnota kinematickej viskozity ešte korigovaná na skutočný pomerný obsah vody v spalinách [12]:

$$\nu_{sp-kor}^{A} = \nu_{sp}^{A} \cdot M_{\nu} = 0,0000639 \cdot 1,01 = 0,0000645 \ m^{2}/s \tag{10.6}$$

Reynoldsovo kritérium bolo potom určené následne:

$$Re = \frac{w_{vs} \cdot \rho_A}{v_{sp-kor}^A} = \frac{16,62 \cdot 0,486}{0,0000639} = 103046,5$$
(10.7)

Keďže hodnota Reynoldsova čísla ležala medzi hodnota 10^5 až 10^8 , mohol byť použitý nasledujúci vzťah pre určenie súčiniteľa trenia [10]:

$$\lambda = 0.857 \cdot (\log Re)^{-2.4} = 0.857 \cdot (\log 103046.5)^{-2.4} = 0.0179$$
(10.8)

Tlaková strata trením spalín o vnútornú stranu spalinovodu bola potom určená [30]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{vs}}{d_{vs}} \cdot \frac{w_{vs}^2}{2} \cdot \rho_A = 0,0179 \cdot \frac{3}{0,4} \cdot \frac{16,62^2}{2} \cdot 0,486 = 9 Pa$$
(10.9)

10.1.2 Strata miestnymi odpormi

Potrubie bolo priame a obsahovalo len uzatváracie šupátko, ktoré v prípade potreby uzavrelo spalinovú trasu cez kotol. Stratový súčiniteľ šupátka bol stanovený na 0,4. Rovnica na výpočet tlakovej straty miestnym odporom šupátka bola potom daná [30]:

$$\Delta p_{\zeta} = \zeta_{sup} \cdot \frac{w_{vs}^2}{2} \cdot \rho_A = 0.4 \cdot \frac{16.62^2}{2} \cdot 0.486 = 26.84 \, Pa \tag{10.10}$$

10.1.3 Celková ťahová strata na vstupnom spalinovode

Celková ťahová strata na vstupnom spalinovode do výparníka bola daná súčtom vyššie vypočítaných tlakových strát spalín v tomto úseku:

$$\Delta p_{vs} = \Delta p_{tr} + \Delta p_{\zeta} = 9 + 26,84 = 35,84 \, Pa \tag{10.11}$$

10.2 Ťahová strata výparníka

Na výpočet ťahovej straty spalín pri prechode varnou časťou bolo nutné poznať hustotu spalín na vstupe, ktorá bola rovnaká ako hustota ρ_A , hustotu na výstupe výparníka ρ_B [kg/m³] (vypočítaná rovnakým spôsobom ako hustota ρ_A) a strednú hustotu spalín ρ_{AB} [kg/m³]:

$$\rho_B = \rho_{sp} \cdot \frac{273,15}{273,15+t_B} = 1,268 \cdot \frac{273,15}{273,15+161,94} = 0,796 \, kg/m^3 \tag{10.12}$$

$$\rho_{AB} = \frac{\rho_A + \rho_B}{2} = \frac{0.486 + 0.796}{2} = 0.603 \ kg/m^3 \tag{10.13}$$

Rovnaký prepočet musel byť spravený aj pre objemový prietok V_B [m³/s], pričom objemový prietok V_A bol už známy:

$$\dot{V}_B = \dot{V}_{sp} \cdot \frac{273,15}{273,15+t_B} = 0.8 \cdot \frac{273,15}{273,15+161,94} = 1,27 \, m^3/s \tag{10.14}$$

Stredný objemový tok nebolo nutné určovať, keď že stredná rýchlosť spalín w_{AB} [m/s] v trubkách varnej časti bola vypočítaná v návrhu teplosmenných plôch pomocou rovnice (6.7).

Rýchlosť w_A [m/s] na vstupe do výhrevných trubiek varnej časti a rýchlosť w_B [m/s] (na výstupe z trubiek) boli potom dané z rovníc:

$$w_A = \frac{\dot{V}_A}{S_{vyp}} = \frac{\dot{V}_A}{\pi \cdot \frac{d_{vyp}^2}{4}} = \frac{2,09}{\pi \cdot \frac{0,0246^2}{4}} = 22,31 \, m/s \tag{10.15}$$

$$w_B = \frac{\dot{V}_B}{S_{vyp}} = \frac{\dot{V}_B}{\pi \cdot \frac{d_{vyp}^2}{4}} = \frac{1,27}{\pi \cdot \frac{0,0246^2}{4}} = 13,56 \, m/s \tag{10.16}$$

10.2.1 Strata trením v trubkách

Postup výpočtu bol rovnaký ako pri výpočte tlakovej straty spalín vo vstupnom spalinovode. K výpočtu Reynoldsova čísla boli v tomto prípade známe všetky veličiny, keď že stredná hodnota kinematickej viskozity korigovaná na skutočný pomerný obsah vody v spalinách bola už spočítaná v návrhovom výpočte (Kapitola 6.1):

$$Re = \frac{w_{AB} \cdot \rho_{AB}}{v_{sp-kor}^{AB}} = \frac{17,96 \cdot 0,603}{0,0000439} = 10063,2$$
(10.17)

Keďže hodnota Re ležala v rozmedzí 4000 až 10⁵, mohol byť použitý nasledujúci vzťah pre určenie súčiniteľa trenia [10]:

$$\lambda = 0.316 \cdot Re^{-0.25} = 0.316 \cdot 10063.2^{-0.25} = 0.0316 \tag{10.18}$$

Pri paralelne radených trubkách je tlaková strata trením spalín o vnútornú steny trubky daná pre celý zväzok vzťahom pre jednu trubku [12]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{vyp}}{d_{vyp}} \cdot \frac{w_{potr}^2}{2} \cdot \rho_{AB} = 0,0316 \cdot \frac{4,78}{0,0246} \cdot \frac{17,96^2}{2} \cdot 0,603 = 595,94 \, Pa \qquad (10.19)$$

 L_{vyp} [m] bola dĺžka trubiek výparníka a d_{vyp} [m] bol vnútorný priemer trubky. Oba tieto rozmery boli určené v návrhu výhrevných plôch (Kapitola 6.1). Trenie v obratovej komore nebolo brané v úvahu.

10.2.2 Strata miestnymi odpormi

Varná časť bola pre tento výpočet braná v úvahu podľa návrhového výkresu (Príloha 1). V tomto úseku boli pri výpočte ťahovej straty uvažované miestne odpory zhrnuté v Tab.: 10.2. Pri prechode obratovou komorou sa neuvažoval žiadny odporový vplyv.

	J	
Miestny odpor	Označenie	Hodnota stratového súčiniteľa [-]
Vstupný prechod - rozšírenie	ζroz	0,6
Vstup do trubiek – 1. ťah	ζvst1	0,5
Výstup z trubiek – 1. ťah	$\zeta_{\rm vyst1}$	1
Vstup do trubiek – 2. ťah	ζvst2	0,5
Výstup z trubiek – 2. ťah	$\zeta_{\rm vyst2}$	1
Výstupný prechod - zúženie	ζzúž	0,1

Tab.: 10.2: Miestne stratové súčinitele varnej časti na trase spalín [10, 30]

Do vstupnej časti výparníka vchádzali spaliny cez rozšírenie charakterizované priemerom vstupného potrubia (DN 400) prechádzajúceho do obdĺžnikového tvaru (Obr. 10.1). Aj napriek faktu, že išlo o postupné zväčšenie prierezu, tento prechod musel byť riešený podľa pravidiel náhleho rozšírenia, keďže uhol rozšírenia ($\alpha = 43,2^{\circ}$) bol väčší ako hraničný uhol 30° z grafu pre postupné rozširujúci sa prechod z literatúry [10].

Obr. 10.1: Rozmery vstupného rozširujúceho sa prechodu

K určeniu stratového súčiniteľ a vstupného rozšírenia ζ_{roz} bolo nutné poznať priečny prierez počiatku (kruhová plocha vnútra vstupného potrubia S_{potr} [m²]) a konca prechodovej časti (obdĺžniková plocha S_{obd} [m²]). Tieto plochy vychádzali z výrezu výkresu (Obr. 10.1) a ich pomer bol potom určujúcim faktorom pre hodnotu miestneho odporu pomocou grafu na

Obr. 10.2 [10]:

$$\frac{S_{potr}}{S_{obd}} = \frac{\pi \cdot \frac{d_{potr}^2}{4}}{a \cdot b} = \frac{\pi \cdot \frac{0.4^2}{4}}{0.82 \cdot 0.62} = \frac{0.126}{0.508} \approx 0.25$$
(10.20)

Obr. 10.2: Súčiniteľ tlakovej straty pre zmenu prierezu [10]

Vstupný priestor, ohraničený vstupným rozšírením a vstupom do teplosmenných trubiek varnej časti, nebol z hľadiska aerodynamiky vyšetrovaný. Hodnoty stratových súčiniteľov pri vstupe a výstupe zo žiarových trubiek ζ_{vst1} , ζ_{vyst1} , ζ_{vst2} a ζ_{vyst2} (1. a 2. ťah) boli zvolené podľa literatúry, pričom vzhľadom k paralelnému rozloženiu trubiek platilo, že tlaková strata spalín pri prechode týmto zväzkom trubiek bola rovná prechodu jednou trubkou [10].

Výstupná komora výparníka ústila do zužujúceho sa prechodu (Obr. 10.3), ktorého stratový súčiniteľ nebol počítaný, keď že pre uhol zúženia nižší ako 45° platila hodnota $\zeta = 0,1$ (uhol zúženia $\alpha = 44,6^{\circ}$) [10].

Obr. 10.3: Rozmery výstupného zužujúceho sa prechodu

Dielčie tlakové straty boli potom určené nasledujúcimi rovnicami:

$$\Delta p_{\zeta roz} = \zeta_{roz} \cdot \frac{w_{vs}^2}{2} \cdot \rho_A = 0.6 \cdot \frac{16.62^2}{2} \cdot 0.486 = 40.25 \, Pa \tag{10.21}$$

$$\Delta p_{\zeta vst1} = \zeta_{vst1} \cdot \frac{w_A^2}{2} \cdot \rho_A = 0.46 \cdot \frac{22.31^2}{2} \cdot 0.486 = 60.42 \, Pa \tag{10.22}$$

$$\Delta p_{\zeta 2} = (\zeta_{vyst1} + \zeta_{vst2}) \cdot \frac{w_{AB}^2}{2} \cdot \rho_{AB} = (1+0,5) \cdot \frac{17,96^2}{2} \cdot 0,603 = 145,93 \, Pa \qquad (10.23)$$

$$\Delta p_{\zeta vyst2} = \zeta_{vyst2} \cdot \frac{w_B^2}{2} \cdot \rho_B = 1 \cdot \frac{13,56^2}{2} \cdot 0,796 = 73,15 \ Pa \tag{10.24}$$

$$\Delta p_{\zeta z \acute{u} \breve{z}} = \zeta_{z \acute{u} \breve{z}} \cdot \frac{w_{ps}^2}{2} \cdot \rho_B = 0, 1 \cdot \frac{10, 14^2}{2} \cdot 0,796 = 4,09 \ Pa \tag{10.25}$$

Pre tlakovú stratu pri výstupe z 1. ťahu a vstupe do 2. ťahu bola použitá stredná rýchlosť spalín w_{AB} [m/s]. Pri tlakovej strate výstupného zúženia bolo počítané s rýchlosťou spalín prepájacieho spalinovodu w_{ps} [m/s] medzi varnou časťou a ekonomizérom (vypočítaná v podkapitole 10.3).

10.2.3 Celková ťahová strata vo výparníku

Bola daná súčtom tlakovej straty spalín trením vo vnútri teplosmenných trubiek a dielčích strát miestnymi odpormi pri prechode spalín výparníkom:

$$\Delta p_{vyp} = \Delta p_{tr} + \Delta p_{\zeta roz} + \Delta p_{\zeta vst1} + \Delta p_{\zeta 2} + \Delta p_{\zeta vyst2} + \Delta p_{\zeta z \acute{u} \breve{z}}$$
(10.26)

 $\Delta p_{vvp} = 595,94 + 40,25 + 60,42 + 145,93 + 73,15 + 4,09 = 879,53 Pa$

10.3 Ťahová strata prepájacieho spalinovodu

Prepájací spalinovod spájal varnú časť kotla s ekonomizérom a jeho dimenzia bola rovnaká ako u vstupného spalinovodu. Dĺžka tohto spalinovodu bola daná súčtom okótovaných častí tohto potrubia v projekčnom výkrese (Príloha 3). Postup výpočtu tlakovej straty na strane spalín bol podobný ako pre vstupný spalinovod. Po celej dĺžke tohto potrubia bolo uvažované s konštantnou teplotou, takže sa nemenila ani hustota spalín ρ_B . Rýchlosť spalín v tomto spalinovom potrubí bola potom daná:

$$w_{ps} = \frac{\dot{V}_B}{S_{ps}} = \frac{\dot{V}_B}{\pi \cdot \frac{d_{ps}^2}{4}} = \frac{1,27}{\pi \cdot \frac{0,4^2}{4}} = 10,14 \, m/s \tag{10.27}$$

10.3.1 Strata trením v prepájacom spalinovode

K výpočtu bolo potrebné poznať Reynoldsovo číslo. Kinematická viskozita spalín stredného zloženia bola vypočítaná interpolačne pomocou Tab.: 6.2:

$$\nu_{sp}^{B} = (t_{B} - 100) \cdot \frac{\nu_{sp}^{200\,^{\circ}C} - \nu_{sp}^{100\,^{\circ}C}}{100} + \nu_{sp}^{100\,^{\circ}C}$$
(10.28)

$$v_{sp}^{B} = (161,94 - 100) \cdot \frac{0,0000316 - 0,0000208}{100} + 0,0000208 = 0,0000275 \ m^{2}/s$$

Následne musela byť vypočítaná hodnota kinematickej viskozity ešte korigovaná na skutočný pomerný obsah vody v spalinách [12]:

$$\nu_{sp-kor}^B = \nu_{sp}^B \cdot M_{\nu} = 0,0000275 \cdot 0,99 = 0,0000272 \ m^2/s \tag{10.29}$$

Reynoldsovo kritérium bolo následne určené:

$$Re = \frac{w_{ps} \cdot \rho_B}{v_{sp-kor}^B} = \frac{10,14 \cdot 0,796}{0,0000272} = 297789,9$$
(10.30)

Hodnota Re ležala v rozmedzí 10⁵ až 10⁸, takže na určenie súčiniteľa trenia mohol byť použitý vzorec [10]:

$$\lambda = 0.857 \cdot (\log Re)^{-2.4} = 0.857 \cdot (\log 297789.9)^{-2.4} = 0.0145$$
(10.31)

Tlaková strata trením spalín o vnútornú stenu prepájacieho spalinovodu bola daná [10]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{ps}}{d_{ps}} \cdot \frac{w_{ps}^2}{2} \cdot \rho_B = 0.0145 \cdot \frac{3.07}{0.4} \cdot \frac{10.14^2}{2} \cdot 0.796 = 4.55 \, Pa \tag{10.32}$$

10.3.2 Strata miestnymi odpormi

Prepájacie potrubie medzi varnou časťou a ekonomizérom obsahovalo miestne odpory len vo forme 2 kusov 90° kolien o priemere potrubia (Príloha 3). Hodnota ich stratového súčiniteľ a bola určená pomocou vzorca (10.33), ktorých opravné koeficienty ζ_0 [-], x_1 [-], x_2 [-] a x_3 [-] rešpektujúce hodnotu Re, uhol kolena a typ prierezu boli určené z grafov v literatúre [10]:

$$\zeta_{kol} = \zeta_0 x_1 x_2 x_3 = 0.25 \cdot 1.1 \cdot 1 \cdot 1 = 0.275 \tag{10.33}$$

Tlaková strata spalín spôsobená ohybom pri prechode dvomi 90° kolenami bola potom vypočítaná pomocou rovnice [10]:

$$\Delta p_{\zeta ps} = 2 \cdot \zeta_{kol} \cdot \frac{w_{ps}^2}{2} \cdot \rho_B = 2 \cdot 0.275 \cdot \frac{10.14^2}{2} \cdot 0.796 = 22.96 \, Pa \tag{10.34}$$

10.3.3 Celková ťahová strata v prepájacom spalinovode

Celková tlaková strata spalín pri prechode medzipotrubím bola určená súčtom ťahovej straty trením vo vnútri spalinovodu a miestnymi odpormi vo forme dvoch 90° kolien:

$$\Delta p_{ps} = \Delta p_{tr} + \Delta p_{\zeta} = 4,55 + 22,96 = 27,06 \, Pa \tag{10.35}$$

10.4 Ťahová strata ekonomizéra

Výpočet bol podobný ako pre varnú časť. Išlo však o jednoduchší prípad, keďže výhrevné trubky tvorili len jeden ťah. Pre výpočet bolo potrebné poznať hustotu spalín na výstupe z trubiek ekonomizéra ρ_C [kg/m³] a strednú hustotu spalín ρ_{BC} [kg/m³]:

$$\rho_{c} = \rho_{sp} \cdot \frac{273,15}{273,15+t_{c}} = 1,268 \cdot \frac{273,15}{273,15+146,24} = 0,818 \, kg/m^{3}$$
(10.36)

$$\rho_{BC} = \frac{\rho_B + \rho_C}{2} = \frac{0,796 + 0,826}{2} = 0,811 \, kg/m^3 \tag{10.37}$$

Zároveň bola určená rýchlosť spalín na vstupe do teplosmenných trubiek ekonomizéra w_B' [m/s] a na výstupe z trubiek w_C [m/s] podľa prepočítaného objemového prietoku a priečneho prierezu spalinového kanálu. Stredná rýchlosť spalín w_{BC} [m/s] bola už známa z rovnice (6.27).

$$\dot{V}_{C} = \dot{V}_{sp} \cdot \frac{273,15}{273,15+t_{C}} = 0.8 \cdot \frac{273,15}{273,15+146,24} = 1,23 \, m^{3}/s \tag{10.38}$$

$$w_{B}' = \frac{\dot{V}_{B}}{S_{eko}} = \frac{\dot{V}_{B}}{\pi \cdot \frac{d_{eko}^{2}}{4}} = \frac{1,27}{\pi \cdot \frac{0,0265^{2}}{4}} = 17,95 \, m/s \tag{10.39}$$

$$w_{C} = \frac{\dot{V}_{C}}{S_{eko}} = \frac{\dot{V}_{C}}{\pi \cdot \frac{d_{eko}^{2}}{4}} = \frac{1,23}{\pi \cdot \frac{0,0265^{2}}{4}} = 17,3 \ m/s \tag{10.40}$$

10.4.1 Strata trením v trubkách ekonomizéra

Veličiny pre výpočet Re boli v tomto prípade známe, keďže stredná hodnota kinematickej viskozity korigovaná na skutočný pomerný obsah vody v spalinách bola už spočítaná v návrhovom výpočte ekonomizéra (Kapitola 6.2):

$$Re = \frac{w_{BC} \cdot \rho_{BC}}{v_{sp-kor}^{BC}} = \frac{17,72 \cdot 0,811}{0,0000264} = 17790,2$$
(10.41)

Hodnota Re ležala v rozmedzí 4000 až 10⁵, takže mohol byť použitý nasledujúci vzťah pre určenie súčiniteľa trenia [10]:

$$\lambda = 0.316 \cdot Re^{-0.25} = 0.316 \cdot 17727, 2^{-0.25} = 0.0274 \tag{10.42}$$

Pri paralelne radených trubkách je tlaková strata trením spalín o vnútornú steny trubky daná pre celý zväzok vzťahom pre jednu trubku [12]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{eko}}{d_{eko}} \cdot \frac{w_{BC}^2}{2} \cdot \rho_{BC} = 0,0274 \cdot \frac{0,678}{0,0265} \cdot \frac{17,72^2}{2} \cdot 0,811 = 89,09 \, Pa \tag{10.43}$$

 L_{eko} [m] bola dĺžka spalinových trubiek ekonomizéra a d_{eko} [m] bol ich vnútorný priemer. Oba tieto rozmery boli určené v návrhu výhrevných plôch (Kapitola 6.2).

10.4.2 Strata miestnymi odpormi

Pri tomto výpočte sa brala hraničná oblasť ekonomizéru od vstupného rozšírenia spalinovodu až po výstupné zúženie výstupného spalinového potrubia. Jednotlivé miestne odpory na tejto trase sú uvedené v Tab.: 10.3.

Miestny odpor	Označenie	Hodnota stratového súčiniteľa [-]
Vstupný prechod - rozšírenie	ζroz	0,35
Vstup do trubiek	ζvst	0,5
Výstup z trubiek	ζ _{vyst}	1
Výstupný prechod - zúženie	ζzúž	0,33

Tab.: 10.3: Miestne stratové súčinitele ekonomizéra na trase spalín [10, 30]

Postupné rozšírenie na vstupe do telesa ekonomizéra (Obr. 10.4) malo pravidelne rozširujúci sa kruhový tvar (tzv. kónický tvar). Uhol rozšírenie α bol však väčší ako limitná hodnota 45°, preto bolo nutné použiť postup výpočtu súčiniteľa odporu pre prípad náhlej zmeny prierezu podobne ako pre vstup spalín do varnej časti [10, 33]:

$$\frac{S_{potr}}{S_{vh}} = \frac{\pi \cdot \frac{d_{potr}^2}{4}}{\pi \cdot \frac{d_{vh}^2}{4}} = \frac{\pi \cdot \frac{0.4^2}{4}}{\pi \cdot \frac{0.61^2}{4}} = \frac{0.126}{0.292} \approx 0.43$$
(10.44)

Podľa hodnoty pomeru prierezu potrubia S_{potr} [m²] a prierezu vstupného hrdla ekonomizéra S_{vh} [m²] bol z grafu na Obr. 10.2 určený stratový súčiniteľ.

Obr. 10.4: Rozširujúci sa prechod pre vstup spalín do ekonomizéra

Následný vstup spalín do trubkovej časti a výstup z nej bol ošetrený rovnakým spôsobom ako u varnej časti.

Výstupný prechod sa opäť vyznačoval zúžením. Odporový súčiniteľ tejto redukcie (Obr. 10.5) musel byť určený rovnakým spôsobom ako pri vstupnom prechode. Z grafu (Obr. 10.2) bola vybraná vhodná hodnota podľa pomeru vstupného a výstupného prierezu tohto prechodu [10]:

$$\frac{S_{potr}}{S_{vysth}} = \frac{\pi \cdot \frac{d_{potr}^2}{4}}{\pi \cdot \frac{d_{vysth}^2}{4}} = \frac{\pi \cdot \frac{0.4^2}{4}}{\pi \cdot \frac{0.61^2}{4}} = \frac{0.126}{0.292} \approx 0.43$$
(10.45)

Kde S_{vysth} [m²] charakterizovalo prierez výstupného hrdla ekonomizéra.

Obr. 10.5: Zužujúci sa prechod pre výstup spalín z ekonomizéra

Následne mohli byť vyjadrené straty týmito miestnymi odpormi [29]:

$$\Delta p_{\zeta roz} = \zeta_{roz} \cdot \frac{w_{ps}^2}{2} \cdot \rho_B = 0.35 \cdot \frac{10.14^2}{2} \cdot 0.796 = 14.33 \ Pa \tag{10.46}$$

$$\Delta p_{\zeta vst} = \zeta_{vst} \cdot \frac{w_{BC}^2}{2} \cdot \rho_A = 0.5 \cdot \frac{17.72^2}{2} \cdot 0.811 = 64.11 \, Pa \tag{10.47}$$

$$\Delta p_{\zeta vyst} = \zeta_{vyst} \cdot \frac{w_{BC}^2}{2} \cdot \rho_A = 1 \cdot \frac{17,72^2}{2} \cdot 0,811 = 123,59 \, Pa \tag{10.48}$$

$$\Delta p_{\zeta z \acute{\text{u}} \breve{z}} = \zeta_{z \acute{\text{u}} \breve{z}} \cdot \frac{w_{vysts}^2}{2} \cdot \rho_c = 0.32 \cdot \frac{9.77^2}{2} \cdot 0.826 = 13.02 \, Pa \tag{10.49}$$

Pri tlakovej strate výstupného kónického zúženia bolo počítané s rýchlosť ou spalín výstupného spalinovodu w_{vysts} [m/s] (vypočítaná v podkapitole 10.5).

10.4.3 Celková ťahová strata spalín v ekonomizéri

Bola určená ako súčet tlakových strát vplyvom trenia v teplosmenných trubkách a strát miestnymi odpormi patriacimi telesu ekonomizéra:

$$\Delta p_{eko} = \Delta p_{tr} + \Delta p_{\zeta roz} + \Delta p_{\zeta vst} + \Delta p_{\zeta vyst} + \Delta p_{\zeta z \acute{u} \breve{z}}$$
(10.50)

 $\Delta p_{eko} = 89,09 + 14,33 + 64,11 + 123,59 + 13,02 = 304,13 \ Pa$

10.5 Ťahová strata výstupného spalinovodu

Výstupný spalinovod z ekonomizéra bol poslednou časťou, v ktorej prúdili spaliny. Tie dosiahli na výstupe z výhrevných trubiek ekonomizéra výstupnú teplotu t_C [°C], ktorá až do výstupu do ovzdušia zostávala konštantná (spalinovod sa bral ako dokonale zaizolovaný). Z tohto predpokladu vychádzala konštantná hustota ρ_C (už známa z rovnice (10.36)), objemový tok (rovnica (10.38)) a rýchlosť spalín v spalinovode, ktorá bola daná vzťahom:

$$w_{vysts} = \frac{\dot{V}_C}{S_{vysts}} = \frac{\dot{V}_C}{\pi \cdot \frac{d_{vysts}^2}{4}} = \frac{1,23}{\pi \cdot \frac{0,4^2}{4}} = 9,77 \text{ m/s}$$
(10.51)

Spalinovod nebol súčasťou návrhových výkresov, schematicky je ho však možné vidieť na Obr. 10.6. Od výstupu z ekonomizéra až po tlmič hluku mal spalinovod dĺžku 3 m. Vertikálna časť mala 4 m. Obtoková vetva nebola pri aerodynamickom výpočte braná v úvahu a slúžila len pri stavoch, kedy bolo nutné spaliny viesť mimo kotlových častí. Jednotlivé armatúry a miestne odpory nachádzajúce sa na tomto potrubí sú riešené v nasledujúcich podkapitolách.

Obr. 10.6: Schéma výstupného spalinovodu za tlakovými časťami kotla

10.5.1 Strata trením vo výstupnom spalinovode

Reynoldsovo číslo bolo potrebné pre výpočet straty trením. Pre jeho určenie bolo nutné poznať kinematickú viskozitu spalín stredného zloženia, ktorá bola vypočítaná interpolačne pomocou Tab.: 6.2:

$$\nu_{sp}^{C} = (t_{C} - 100) \cdot \frac{\nu_{sp}^{200 \,^{\circ}C} - \nu_{sp}^{100 \,^{\circ}C}}{100} + \nu_{sp}^{100 \,^{\circ}C}$$
(10.52)

$$v_{sp}^{c} = (146,24 - 100) \cdot \frac{0,0000316 - 0,0000208}{100} + 0,0000208 = 0,0000258 \, m^{2}/s$$

Následne musela byť vypočítaná hodnota kinematickej viskozity ešte korigovaná na skutočný pomerný obsah vody v spalinách [12]:

$$\nu_{sp-kor}^{C} = \nu_{sp}^{C} \cdot M_{\nu} = 0,0000269 \cdot 0,99 = 0,000026 \ m^{2}/s$$
(10.53)

Reynoldsovo kritérium bolo následne určené:

$$Re = \frac{w_{vysts} \cdot \rho_C}{v_{sp-kor}^C} = \frac{9,77 \cdot 0,826}{0,000026} = 153110,1$$
(10.54)

Hodnota Re ležala v rozmedzí 10⁵ až 10⁸, takže na určenie súčiniteľa trenia mohol byť použitý vzorec [10]:

$$\lambda = 0.857 \cdot (\log Re)^{-2.4} = 0.857 \cdot (\log 151979.4)^{-2.4} = 0.0165$$
(10.55)

Tlaková strata trením spalín o vnútornú stenu výstupného spalinovodu bola daná [10]:

$$\Delta p_{tr} = \lambda \cdot \frac{L_{vysts}}{d_{vysts}} \cdot \frac{w_{vysts}^2}{2} \cdot \rho_c = 0.0165 \cdot \frac{7}{0.4} \cdot \frac{9.87^2}{2} \cdot 0.826 = 12.62 \ Pa \tag{10.56}$$

10.5.2 Strata miestnymi odpormi

Osadenie výstupného spalinovodu je zrejmé z Obr. 10.6 a hodnoty stratových súčiniteľov sú v Tab.: 10.4.

<u></u>		
Miestny odpor	Označenie	Hodnota stratového súčiniteľa [-]
Koleno 90°	ζkol	0,3
Šupátko	ζ _{šup}	0,4
Výstup do ovzdušia	ζovz	1

Tab.: 10.4: Miestne stratové súčinitele výstupného spalinovodu [10, 30]

Hneď po výstupe spalín z ekonomizéra prechádzali 90° ohybom. Stratový súčiniteľ tohto kolena bol určený pomocou rovnice [10]:

$$\zeta_{kol} = \zeta_0 x_1 x_2 x_3 = 0.25 \cdot 1.2 \cdot 1 \cdot 1 = 0.3 \tag{10.57}$$

Koeficienty ζ_0 [-] a x₁ [-] mali zvolené hodnoty podľa pomeru ohybu ku priemeru potrubia, respektíve podľa hodnoty Re z grafov v literatúre [10]. Súčinitele x₂ [-] a x₃ [-] boli rovné 1, keďže uhol kolena bol 90° a prierez bol kruhový [10].

Ďalším miestnym odporom v smere prúdenia spalín bolo uzatváracie šupátko, ktoré slúžilo na uzatvorenie trasy spalín cez žiarotrubný kotol.

Na spalinovode bol osadený aj tlmič hluku v tvare "L" a jeho tlaková strata Δp_{tlm} bola zvolená po dohode s konzultantom na 600 Pa.

Tlaková strata spalín výstupného potrubia bola potom daná [30]:

$$\Delta p_{\zeta} = \left(\zeta_{kol} + \zeta_{\tilde{s}up} + \zeta_{ovz}\right) \cdot \frac{w_{vysts}^2}{2} \cdot \rho_C + \Delta p_{tlm}$$
(10.58)

$$\Delta p_{\zeta} = (0,3+0,4+1) \cdot \frac{9,77^2}{2} \cdot 0,811 + 600 = 667,07 \ Pa$$

10.5.3 Vztlak vertikálnej časti spalinovodu

Pri výpočte vztlaku spalín bolo uvažované len s konečnou vertikálnou časťou spalinovodu. Ostatné časti spalinovodu neboli pre vztlak brané v úvahu, keďže celkový výškový rozdiel týchto častí bol takmer nulový, tzn. že výška výstupu spalín z KJ bola zhruba na rovnakej výškovej úrovni ako výstup z ekonomizéra [10, 34].

Pre výpočet vztlaku vertikálneho spalinovodu bolo potrebné poznať hustotu vzduchu:

$$\rho_{\nu z} = x_{N_2} \cdot \rho_{N_2} + x_{O_2} \cdot \rho_{O_2} + x_{Ar} \cdot \rho_{Ar} + x_{CO_2} \cdot \rho_{CO_2} + x_{H_2O} \cdot \rho_{H_2O}$$
(10.59)

 $\rho_{vz} = 0,774 \cdot 1,251 + 0,208 \cdot 1,429 + 0,0092 \cdot 1,784 + 0,0003 \cdot 1,977 + 0,0084 \cdot 0,804$

$$\rho_{vz} = 1,289 \, kg / Nm^3$$

Veličiny x_i [-] vyjadrovali objemové zastúpenie zložiek použitého vlhkého vzduchu (Tab.: 3.4) a ρ_i [-] boli hustoty jednotlivých zložiek vzduchu pri normálnych podmienkach (Tab.: 10.1).

Hustota vzduchu musela byť prepočítaná na skutočnú teplotu t_{vz} [°C], ktorá bola určená ako priemerná ročná teplota vzduchu (Kapitola 3):

$$\rho_{vz-skut} = \rho_{vz} \cdot \frac{273,15}{273,15+t_{vz}} = 1,289 \cdot \frac{273,15}{273,15+10,89} = 1,24 \ kg/m^3 \tag{10.60}$$

Ostatné veličiny pre výpočet vztlaku vertikálnej časti spalinovodu boli známe:

$$\Delta p_{vztlak} = L_{ver} \cdot g \cdot (\rho_{vz-skut} - \rho_c) \tag{10.61}$$

$$\Delta p_{vztlak} = 4 \cdot 9,81 \cdot (1,24 - 0,826) = 16,24 \, Pa$$

L_{ver} [m] vyjadrovalo výšku tejto časti spalinovodu. Vztlak spalinovodu zmenšoval celkovú tlakovú stratu spalín pri prechode spalinovodom a jeho časťami.

10.5.4 Celková ťahová strata vo výstupnom spalinovode

Celková tlaková strata spalín vo výstupnom spalinovode bola daná ako súčet strát trením a miestnymi odpormi (medzi nimi aj tlmič hluku), pričom vztlak spalinovodu pôsobil proti tejto strate [10]:

$$\Delta p_{vysts} = \Delta p_{tr} + \Delta p_{\zeta} - \Delta p_{vztlak} = 12,62 + 667,07 - 16,24 = 663,44 Pa$$
(10.62)

10.6 Celková tlaková strata spalín

Celková tlaková strata spalín bola určená ako súčet ťahových strát jednotlivých častí umiestnených na výstupnom spalinovode z KJ, ktoré boli spočítané v predchádzajúcich podkapitolách:

$$\Delta p_{spal} = \Delta p_{vs} + \Delta p_{vyp} + \Delta p_{ps} + \Delta p_{eko} + \Delta p_{vysts}$$
(10.63)

 $\Delta p_{spal} = 35,84 + 879,53 + 27,06 + 304,13 + 663,44 = 1910,02 Pa < 2000 Pa$

Celková tlaková strata spalín v spalinovej trase za KJ je menšia ako stanovený limit 2000 Pa.

Pevnostný výpočet pozostával z určenia minimálnej hrúbky steny žiarových trubiek, trubkovníc a plášťa varnej časti a ekonomizéra. Išlo o praktické overenie zvolenej hrúbky steny v návrhovom výpočte (Kapitola 6). Nebola počítaná hrúbka stien ostatných častí, ktoré neboli tlakové. Pevnostný výpočet úzko súvisel s ostatnými časťami návrhu, preto bol vykonávaný paralelne s ďalšími výpočtami.

11.1 Výpočet hrúbky steny výparníka

Výparník bola časť kotla, kde sa produkovala výstupná sýta para, preto bol predpoklad, že tu bude nastávať najväčšie pevnostné namáhanie.

11.1.1 Hrúbka steny trubiek výparníka

Žiarové trubky boli navrhnuté ako rovné a vzhľadom k veľkopriestorovému prevedeniu šlo o trubky namáhané vonkajším tlakom. Výpočet bol vykonaný podľa platnej normy [27].

Podmienkou použitia daného výpočtu bol vonkajší menovitý priemer, ktorý musel byť menší alebo rovný ako 170 mm [27]. Vzhľadom k zvoleným rozmerom trubky (Kapitola 6.1.1), bola táto požiadavka splnená. Hrúbka steny trubiek sa potom určila buď podľa vzorca (11.1) alebo podľa Tab.: 11.2. Rozhodujúca bola väčšia z hodnôt [27].

Prvý bol vykonaný výpočet pomocou vzorca pre rovné trubky namáhané vonkajším tlakom [27]:

$$e_{\nu} = e_{ct} + c_1 + c_2 = 0,084 + 0,45 + 0,75 = 1,28 \, mm$$
 (11.1)

Kde c_1 [mm] bola mínusová tolerancia na objednanej menovitej hrúbke steny, c_2 [mm] bol prídavok na koróziu a opotrebenie kovu a e_{ct} [mm] bola hrúbka steny trubky bez prídavkov určená zo vzorca (11.3) [27].

Mínusová tolerancia hrúbky steny trubky c₁ bola určená ako medzná úchylka steny, kde platilo, že jej hodnota bola $\pm 12,5$ % alebo $\pm 0,4$ mm. Platila väčšia z hodnôt [26]. Vychádzalo sa z vopred zvolenej hodnoty hrúbky steny (Kapitola 6.1.1) [26]:

$$c_1 = 0.125 \cdot s_{tr} = 0.125 \cdot 3.6 = 0.45 \ mm > 0.4 \ mm \rightarrow zvolené \ 0.45 \ mm$$
 (11.2)

U zariadení pri bežných prevádzkových podmienkach s hrúbkou steny rovnou alebo menšou ako 30 mm sa používa minimálny úbytok kovu $c_2 = 0,75$ mm. Vzhľadom k nenáročným parametrom kotla bola zvolená práve hodnota 0,75 mm [27].

Hrúbka steny trubky bez prídavkov ect bola daná nasledujúcim vzťahom [27]:

$$e_{ct} = \frac{p_c \cdot d_o}{1.6 \cdot f} = \frac{0.501325 \cdot 31.8}{1.6 \cdot 124.67} = 0.084 \ mm \tag{11.3}$$

Kde p_c [MPa] bol výpočtový tlak – zvolená najvyššia hodnota (tlak sýtej pary), d_o [mm] udávalo menovitý vonkajší priemer trubky a f [MPa] bolo dovolené namáhanie použitého materiálu P235GH. Dovolené namáhanie sa určilo ako minimálna hodnota z nasledujúceho vzťahu [27]:

$$f = \min\left\{\frac{R_{p0.2}}{1.5}; \frac{R_m}{2.4}\right\} = \min\left\{\frac{177,84}{1.5}; \frac{360}{2.4}\right\} = 118,56 MPa$$
(11.4)

 $R_{p0,2}$ [MPa] vyjadrovalo minimálnu 0,2 % zmluvnú medzu klzu príslušného materiálu (v tomto prípade išlo o P235GH) pri výpočtovej teplote t_c, ktorá bola pre výparné plochy daná rovnicou [27]:

$$t_c = t_s + 25 = 151,94 + 25 = 176,94 \,^{\circ}C \tag{11.5}$$

Kde t_s [°C] odpovedala teplote sýtej pary pri konštrukčnom tlaku [27]. Medza klzu bola potom interpolačne vypočítaná pomocou Tab.: 11.1 pre túto teplotu [26, 36]:

$$R_{p0.2t_c} = (t_c - 150) \cdot \frac{R_{p0.2,200} - R_{p0.2,150}}{200 - 150} + R_{p0.2,150}$$
(11.6)

$$R_{p0.2t_c} = (176,94 - 150) \cdot \frac{170 - 187}{200 - 150} + 187 = 177,84 MPa$$

R_m [MPa] udávalo minimálnu pevnosť v ťahu príslušnej akosti materiálu (P235GH) pri teplote miestnosti. Z Tab.: 11.1 bola zvolená najnižšia hodnota pre daný materiál [26, 36].

	<u> </u>			
			$R_{p0,2}$ [MPa]	
Materiál	R _m [MPa]	teplota [°C]		
		100	150	200
P235GH	360 až 500	198	187	170
P265GH	410 až 570	226	213	192

Tab.: 11.1: Hodnoty medze pevnosti a klzu pre zvolené materiály [26]

Tab.: 11.2: Výňatok z tabuľky najmenších menovitých hrúbok stien trubiek [27]

Menovitý vonkajší priemer trubiek	Najmenšia menovitá hrúbka steny trubky – e _{tab}
[mm]	[mm]
$26.9 \le do \le 54$	2,2

Pri porovnaní minimálnych hrúbok stien trubiek z výpočtu (11.1) a z Tab.: 11.2 je zrejmé, že vyššia bola hodnota tabuľková:

$$e_v = 1,28 \ mm < e_{tab} = 2,2 \ mm \to e_{min} = 2,2 \ mm$$
 (11.7)

Vzhľadom k faktu, že v žiarových trubkách bude prúdiť bioplyn, ktorého zloženie môže počas prevádzky značne kolísať a tým pádom, môže prenikať do spalín väčšie množstvo síry a iných nežiadúcich látok alebo sa môžu meniť pracovné parametre, bola hrúbka steny trubky zvolená až na **3,6 mm**.

11.1.2 Hrúbka steny plášťa výparníka

Najmenšia dovolená hrúbka steny plášťa bola daná rovnicou [27]:

$$e_{min} = e_{cs} + c_1 + c_2 = 2,68 + 1,5 + 1,5 = 5,68 mm$$
 (11.8)

Kde prídavok na koróziu a opotrebenie kovu bol zvolený na hodnotu $c_2 = 1,5$ mm. Koeficient $c_1 \text{ [mm]}$ vyjadrujúci mínusovú toleranciu objednanej menovitej hrúbky steny bol zvolený z odhadovanej hodnoty hrúbky steny plášť a (s_{pl} = 12 mm) [27]:

$$c_1 = 0,125 \cdot s_{pl} = 0,125 \cdot 12 = 1,5 \, mm \tag{11.9}$$

V rovnici (11.8) vystupoval ešte člen e_{cs} [mm], ktorý udával hrúbky steny valcového plášťa bez prídavkov [27]:

$$e_{cs} = \frac{p_c \, d_{os}}{(2 \, f_s - p_c) \, v + 2 \, p_c} \tag{11.10}$$

$$e_{cs} = \frac{0,501325 \cdot 1300}{(2 \cdot 142,9 - 0,501325) \cdot 0,85 + 2 \cdot 0,501325} = 2,68 \, mm$$

Kde d_{os} [mm] udávalo vonkajší priemer valcového plášťa (z návrhového výkresu), v [-] bol zvolený súčiniteľ zvarového spoja a f_s [MPa] udávalo dovolené namáhanie podľa rovnice [27]:

$$f_s = \min\left\{\frac{R_{p0.2}}{1.5}; \frac{R_m}{2.4}\right\} = \min\left\{\frac{213}{1.5}; \frac{410}{2.4}\right\} = 142,87 MPa$$
(11.11)

Kde $R_{p0,2}$ [MPa] bolo vybraté pre materiál P265GH z Tab.: 11.1 pre teplotu 150 °C (výpočtová teplota bola v tomto prípade 151,93 °C, čo odpovedalo teplote sýtej pary). R_m [MPa] pre P265GH bolo zvolené taktiež z Tab.: 11.1 [26, 36].

Vypočítaná minimálna možná hrúbka steny plášťa z rovnice (11.8) bola kvôli bezpečnosti navýšená na zvolenú hrúbku **12 mm**.

11.1.3 Hrúbka steny trubkovníc výparníka

K overeniu navrhovanej hrúbky steny trubkovníc varnej časti bol použitý vzorec pre výpočet minimálnej dovolenej hrúbky steny trubkovnice [27]:

$$e_{min} = e_{ch} + c_1 + c_2 = 8,88 + 2 + 1,5 = 12,38 \, mm \tag{11.12}$$

Veličiny c_1 [mm] a c_2 [mm] vyjadrovali rovnaké koeficienty ako v predchádzajúcich podkapitolách. Hodnota c_2 bola zvolená na 1,5 mm. Mínusová tolerancia c_1 [mm] bola opäť určená ako 12,5 % z objednanej hrúbky trubkovnice (s_{trubk} = 16 mm) [27]:

$$c_1 = 0,125 \cdot s_{trubk} = 0,125 \cdot 16 = 2 mm \tag{11.13}$$

Poslednou neznámou v rovnici (11.14) bol člen e_{ch} [mm] vyjadrujúci hrúbku steny trubkovnice bez prídavkov [27]:

$$e_{ch} = C_4 \ b \ y \sqrt{\frac{p_c}{f}} = 0.3 \cdot 320.5 \cdot 1.56 \cdot \sqrt{\frac{0.501325}{142.87}} = 8.88 \ mm$$
 (11.14)

Koeficient y [-] vyjadroval druh plochy trubkovnice – pre tento prípad išlo o kruhovú plochu podopretú len plášťom varnej časti, preto y = 1,56. Konštanta $C_4 = 0,3$ bola zvolená podľa formy opier (v tomto prípade len rohové výstuhy privarené o trubkovnice a plášť). Použitý materiál bol rovnaký ako pre plášť varnej časti, takže dovolené namáhanie f_c malo rovnakú hodnotu. K výpočtu rozmeru výpočtovej plochy b [mm] musel byť najskôr určený výpočtový priemer otrubkovanej plochy [27, 35]:

$$D_t = 2 \cdot s \cdot \sqrt{\frac{n}{\pi \cdot \theta}} = 2 \cdot 43 \cdot \sqrt{\frac{197}{\pi \cdot 1,15}} = 635 \, mm$$
 (11.15)

V tomto vzorci vystupovala rozteč trubiek výparníka s [mm] určená v Kapitole 8.1.1, počet trubiek n [-] a koeficient θ [-] vyjadrujúci rozloženie trubiek – pre usporiadanie do rovnostranných trojuholníkov sa θ = 1,15 [35].

Následne mohol byť určený potrebný rozmer výpočtovej plochy b pomocou vzorca [35]:

$$b = \frac{d_{pl} - D_t}{2} = \frac{1276 - 635}{2} = 320,5 \ mm \tag{11.16}$$

Kde d_{pl} [mm] bol priemer trubkovnice a zároveň vnútorný priemer plášťa.

Zvolená hrúbka **16 mm** pre trubkovnice bola vyššia ako minimálna výpočtová z rovnice (11.12) a tak mohla byť použitá pre tento prípad.

11.2 Výpočet hrúbky steny ekonomizéra

Hrúbky stien tlakových častí ekonomizéra boli overované rovnakým spôsobom ako to bolo v predchádzajúcej kapitole v prípade varnej časti.

11.2.1 Hrúbka steny trubky ekonomizéra

Pre ekonomizér boli navrhnuté taktiež rovné žiarové trubky. [27]. Pre pevnostné overenie hrúbky steny trubky ekonomizéra platila rovnaká podmienka použitia, a síce, aby bol vonkajší menovitý priemer trubky menší alebo rovný ako 170 mm. Vzhľadom k zvoleným rozmerom trubky (Kapitola 6.2.1), bola táto požiadavka splnená. Hrúbka steny trubiek sa potom určila buď podľa vzorca pre namáhanie vonkajším tlakom (11.17) alebo podľa Tab.: 11.2. Rozhodujúca bola väčšia z hodnôt [27].

$$e_v = e_{ct} + c_1 + c_2 = 0,09 + 0,45 + 0,75 = 1,29 mm$$
(11.17)

Pre koeficient úbytku kovu pre koróziu a iné opotrebenie c₂ bola zvolená rovnaká hodnota (0,75 mm) ako u varnej časti [27].

Mínusová tolerancia hrúbky steny trubky c_1 bola určená ako medzná úchylka steny, kde platilo, že jej hodnota bola ±12,5 % alebo ±0,4 mm, pričom opäť platila väčšia z hodnôt [26]. Pri jej určení sa vychádzalo z vopred zvolenej hodnoty hrúbky steny (Kapitola 6.2.1) :

$$c_1 = 0,125 \cdot s_{tr} = 0,125 \cdot 3,6 = 0,45 \ mm > 0,4 \ mm \rightarrow zvolené 0,45 \ mm$$
 (11.18)

Poslednou neznámou vo vzorci (11.17) bola hrúbka steny trubky bez prídavkov ect [27]:

$$e_{ct} = \frac{p_c \cdot d_o}{1.6 \cdot f} = \frac{0.517 \cdot 33.8}{1.6 \cdot 120.54} = 0.09 \, mm \tag{11.19}$$

Kde p_c [MPa] bol výpočtový tlak – zvolená najvyššia hodnota (tlak vody za napájacím čerpadlom), d_o [mm] udávalo menovitý vonkajší priemer trubky a f [MPa] bolo dovolené namáhanie použitého materiálu P235GH. Dovolené namáhanie sa určilo ako minimálna hodnota z nasledujúceho vzťahu [27]:

$$f = \min\left\{\frac{R_{p0.2}}{1.5}; \frac{R_m}{2.4}\right\} = \min\left\{\frac{180.8}{1.5}; \frac{360}{2.4}\right\} = 120,54 MPa$$
(11.20)

 $R_{p0,2}$ [MPa] vyjadrovalo minimálnu 0,2 % zmluvnú medzu klzu príslušného materiálu (v tomto prípade išlo o P235GH) pri výpočtovej teplote t_c. Výpočtová teplota bola pre prípad ekonomizéra strednou teplotou kovu a bola daná ako [27]:

$$t_c = t_s + 25 = 151,94 + 25 = 176,94 \,^{\circ}C \tag{11.21}$$

Kde teplota t_s predstavovala teplotu sýtej pary pri konštrukčnom tlaku a bola určená pomocou X-steam programu pre najvyšší tlak v ekonomizéri (0,517 MPa) [27]. Medza klzu bola určená interpolačne pomocou Tab.: 11.1 pre teplotu t_c [26, 36]:

$$R_{p0.2t_c} = (t_c - 150) \cdot \frac{R_{p0.2,200} - R_{p0.2,150}}{200 - 150} + R_{p0.2,150}$$
(11.22)
$$R_{p0.2t_c} = (178, 1 - 150) \cdot \frac{170 - 187}{200 - 150} + 187 = 180,82 MPa$$

R_m [MPa] udávalo minimálnu pevnosť v ťahu príslušnej akosti materiálu (P235GH) pri teplote miestnosti. Z Tab.: 11.1 bola zvolená najnižšia hodnota pre daný materiál [26, 36].

Pri porovnaní minimálnych hrúbok stien trubiek z výpočtu (11.17) a z Tab.: 11.2 je zrejmé, že vyššia bola hodnota tabuľková:

$$e_v = 1,29 \ mm < e_{tab} = 2,2 \ mm \to e_{min} = 2,2 \ mm$$
 (11.23)

Zvolená hrúbka **3,6 mm** teda vyhovovala, keďže bola vyššia ako minimálna dovolená hrúbka steny trubky e_{min}.

11.2.2 Hrúbka steny plášťa ekonomizéra

Najmenšia dovolená hrúbka steny plášťa ekonomizéra bola daná vzťahom [27]:

$$e_{min} = e_{cs} + c_1 + c_2 = 1,45 + 1,5 + 1,5 = 4,45 mm$$
(11.24)

Kde prídavok na koróziu a opotrebenie kovu bol zvolený na hodnotu $c_2 = 1,5$ mm a koeficient c_1 [mm] vyjadrujúci mínusovú toleranciu objednanej menovitej hrúbky steny bol zvolený z odhadovanej hodnoty hrúbky steny plášť a (s_{pl} = 12 mm) [27]:

$$c_1 = 0,125 \cdot s_{pl} = 0,125 \cdot 12 = 1,5 \ mm \tag{11.25}$$

V rovnici (11.24) vystupoval ešte člen e_{cs} [mm], ktorý udával hrúbky steny valcového plášťa ekonomizéra bez prídavkov [27]:

$$e_{cs} = \frac{p_c \, d_{os}}{(2 \, f_s - p_c) \, v + 2 \, p_c} \tag{11.26}$$

$$e_{cs} = \frac{0,518 \cdot 680}{(2 \cdot 142,9 - 0,517) \cdot 0,85 + 2 \cdot 0,517} = 1,45 \ mm$$

Kde d_{os} [mm] udávalo vonkajší priemer valcového plášťa (z návrhového výkresu), v [-] bol zvolený súčiniteľ zvarového spoja a f_s [MPa] udávalo dovolené namáhanie podľa rovnice [27]:

$$f_s = \min\left\{\frac{R_{p0.2}}{1.5}; \frac{R_m}{2.4}\right\} = \min\left\{\frac{215}{1.5}; \frac{410}{2.4}\right\} = 142,87 MPa$$
(11.27)

Kde R_{p0,2} [MPa] bolo vybraté pre materiál P265GH z Tab.: 11.1 pre výpočtovú teplotu 150 °C (výpočtová teplota bola v tomto prípade rovná teplote nasýtených pár pri konštrukčnom tlaku ekonomizéra t_s = 153,1 °C – určené programom X-steam). R_m [MPa] pre P265GH bolo zvolené taktiež z Tab.: 11.1 [26, 36].

Vypočítaná minimálna možná hrúbka steny plášťa z rovnice (11.24) bola nižšia ako zvolená hrúbka **12 mm**, takže prvotný predpoklad vyhovoval.

11.2.3 Hrúbka steny trubkovníc ekonomizéra

K overeniu navrhovanej hrúbky steny trubkovníc ekonomizéra bol použitý rovnaký vzorec pre výpočet minimálnej dovolenej hrúbky steny trubkovnice ako to bolo pri varnej časti [27]:

$$e_{min} = e_{ch} + c_1 + c_2 = 1,87 + 1,5 + 1,5 = 4,87 mm$$
(11.28)

Hodnota prídavku na opotrebenie a koróziu kovu c_2 bola zvolená na 1,5 mm. Mínusová tolerancia c_1 [mm] bola opäť určená ako 12,5 % z objednanej hrúbky trubkovnice (s_{trubk} = 12 mm) [27]:

$$c_1 = 0,125 \cdot s_{trubk} = 0,125 \cdot 12 = 1,5 \, mm \tag{11.29}$$

Člen e_{ch} [mm] vyjadrujúci hrúbku steny trubkovnice bez prídavkov bol vypočítaný pomocou [27]:

$$e_{ch} = C_4 \ b \ y \ \sqrt{\frac{p_c}{f}} = 0.33 \cdot 60.15 \cdot 1.56 \cdot \sqrt{\frac{0.518}{142.87}} = 1.93 \ mm$$
 (11.30)

Koeficient y [-] vyjadroval druh plochy trubkovnice – opäť išlo o kruhovú plochu, ktorá bola podopretá len plášť om ekonomizéra, preto y = 1,56. Konštanta $C_4 = 0,33$ bola zvolená podľa formy opier (v tomto prípade trubkovnice len privarené o plášť, bez výstuh). Použitý materiál bol rovnaký ako pre plášť ekonomizéra, takže dovolené namáhanie f_c malo rovnakú hodnotu.

K výpočtu rozmeru výpočtovej plochy b [mm] musel byť najskôr určený výpočtový priemer otrubkovanej plochy [27, 35]:

$$D_t = 2 \cdot s \cdot \sqrt{\frac{n}{\pi \cdot \theta}} = 2 \cdot 45 \cdot \sqrt{\frac{128}{\pi \cdot 1, 15}} = 535,7 \, mm$$
 (11.31)

V tomto vzorci vystupovala rozteč trubiek ekonomizéra s [mm] určená v Kapitole 6.2.1, počet trubiek n [-] a koeficient θ [-] vyjadrujúci rozloženie trubiek – pre usporiadanie do rovnostranných trojuholníkov sa θ = 1,15 [35].

Následne mohol byť určený potrebný rozmer výpočtovej plochy b pomocou vzorca [35]:

$$b = \frac{d_{pl} - D_t}{2} = \frac{656 - 531,5}{2} = 60,15 mm \tag{11.32}$$

Kde d_{pl} [mm] bol priemer trubkovnice a zároveň vnútorný priemer plášťa.

Zvolená hrúbka **12 mm** pre trubkovnice ekonomizéra bola vyššia ako minimálna výpočtová z rovnice (11.28) a tak sa predpoklad javil ako správny.

11.3 Zhrnutie pevnostného overenia hrúbky stien tlakových častí

Pre lepší prehľad sú v Tab.: 11.3 zhrnuté minimálne výpočtové a navrhnuté hrúbky tlakových častí kotla.

	Varná časť		Ekonomizér	
Tlakové časti	Minimálna výpočtová hrúbka [mm]	Navrhnutá hrúbka [mm]	Minimálna výpočtová hrúbka [mm]	Navrhnutá hrúbka [mm]
Žiarové trubky	2,2	3,6	2,2	3,6
Plášť	5,68	12	4,45	12
Trubkovnice	12,38	16	4,87	12

Tab.: 11.3: Zhrnutie výpočtových a navrhnutých hrúbok častí výparníka a ekonomizéra

12 Návrh osadenia kotolne

Potrebné osadenie navrhnutého kotla bolo rozobraté v nasledujúcich častiach. Armatúry, fitingy a ostatná výstroj kotla bola volená podľa platnej normy [28].

12.1 Výstroj varnej časti kotla

Jednotlivé prvky varnej časti sú obsiahnuté v Tab.: 12.1. Zoznam hrdiel varnej časti je súčasťou výkresu (Príloha 1). V ďalšom texte je bližšia špecifikácia k niektorým súčastiam.

Názov súčasti	Poz.	Poloha	Počet
Hlavná parná uzatváracia armatúra	1	Výstupný parovod	1
Poistný ventil	2	Teleso varnej časti	1
Závesné oká	3	Teleso varnej časti	2
Revízny otvor na strane pary	4	Teleso varnej časti	1
Jímka teplomeru pre výstupnú sýtu paru	5	Výstupný parovod	1
Ukazovateľ úrovne hladiny (stavoznak)	6	Teleso varnej časti	1
Tlakomer s prípojkou pre skúšobný tlakomer	7	Napojené na stavoznak	1
Prevodník tlaku	8	Napojené na stavoznak	1
Obmedzovač tlaku	9	Napojené na stavoznak	1
Merač vodivosti	10	Teleso varnej časti	1
Obmedzovač hladiny (elektróda)	11	Teleso varnej časti	2
Prevodník hladiny	12	Teleso varnej časti	2
Snímač hladiny	13	Teleso varnej časti	2
Revízny otvor na strane spalín	14	Na obratovej komore	1
Odkalovací ventil	15	Teleso varnej časti	1
Revízny otvor na strane vody	16	Teleso varnej časti	1
Rohové výstuhy	17	Vnútro varnej časti	8

Tab.: 12.1: Výstroj varnej časti kotla

Obr. 12.1: Osadenie varnej časti – pohľad z boku

Obr. 12.2: Osadenie varnej časti - pohľad na obratovú komoru

Uzatváracia armatúra výstupného parovodu by mala byť zaistená v otvorenej polohe kvôli bezpečnosti [28].

Poistný ventil je hlavné zabezpečovacie zariadenie proti pretlaku v kotli. Bol namontovaný priamo na tlakovú časť výparníka. Výfukové vedenie nebolo súčasť ou tejto práce, každopádne musí zaobstarať plynulý a bezpečný vývod odfukovej pary mimo priestor kotolne. Z tohto dôvodu nesmie výfukové potrubie obsahovať žiadny uzatvárací ventil [28, 40].

Stavoznak bol priamo pripojený k varnej časti, pričom z neho vychádzal vývod pre meranie tlaku. Pripojený tlakomer musel obsahovať prípojku na skúšobný tlakomer v priebehu prevádzky kotla, ktorým by sa overovala presnosť daného tlakomeru. Spodná časť stavoznaku obsahovala odvzdušňovací ventil [28].

Namontované obmedzovače hladiny vody slúžia na prerušenie prívodu tepla, ak úroveň hladiny vody poklesne pod minimálnu medzu (Kapitola 8.1.4) [28].

Obmedzovač tlaku musí prerušiť a zablokovať prívod spalín, v prípade, že by bol dosiahnutý nastavený tlak poistného ventilu [28].

Odkalovací ventil bol súčasťou odvodňovacieho potrubia, pričom toto potrubie ústilo z najnižšieho miesta varnej časti. Kvôli lepšiemu odvodu vody bolo na tejto trase umiestnené hrdlo so záslepkou, kde sa mohol hromadiť kal z kotla a slúžilo ako tzv. odlučovač (Príloha 1) [28, 37].

Čidlo s meračom vodivosti slúžilo na kontrolu, či je kvalita vody v dovolených provozných medziach. Meranie vodivosti bolo plne automatizované spolu s odluhom. Podrobné riešenie odluhového systému nebolo cieľom tejto práce [28, 37].

Revízne otvory museli byť na strane pary, spalín aj vody. Kontrolný otvor na strane spalín bol umiestnený na dno obratovej komory. Tabuľka kontrolných otvorov je súčasť výkresu (Príloha 1) [28, 38].

12.2 Výstroj ekonomizéra

Osadenie ekonomizéra je prehľadne zhrnuté v Tab.: 12.2. Podľa pozičných čísel je na Obr. 12.3 možné vidieť aj ako boli dané prvky umiestnené. Zoznam hrdiel ekonomizéra je súčasťou zostavného výkresu (Príloha 2).

Názov súčasti	Poz.	Poloha	Počet
Spätný ventil	1	Vstupné potrubie	1
Uzatváracia armatúra	2	Vstupné potrubie	1
Obmedzovač minimálneho prietoku vody	3	Vstupné potrubie	1
Jímka pre regulátor kvality vody	4	Vstupné potrubie	1
Jímka teplomeru pre vstupnú vodu	5	Vstupné potrubie	1
Jímka pre regulátor najnižšej teploty vstupnej vody	6	Vstupné potrubie	1
Poistný ventil	7	Teleso ekonomizéra	1
Tlakomer s prípojkou pre skúšobný tlakomer	8	Teleso ekonomizéra	1
Prevodník tlaku	9	Teleso ekonomizéra	1
Obmedzovač tlaku	10	Teleso ekonomizéra	1
Jímka teplomeru pre výstupnú vodu	11	Výstupné potrubie	1

Obr. 12.3: Osadenie ekonomizéra

Ekonomizér bol súčasťou kotla a preto spätný ventil a uzatváracia armatúra boli len na vstupnom potrubí napájacej vody do tejto tlakovej časti a nie do časti varnej [28].

Na vstupnom potrubí bol namontovaný aj obmedzovač minimálneho prietoku vody, ktorý v prípade nedostatku napájacej vody signalizoval poruchu [28].

12.3 Ostatné potrebné zariadenia

Okrem priameho osadenia tlakových častí (výparníku a ekonomizéru) armatúrami boli pre bezpečnú prevádzku kotla dôležité aj ďalšie zariadenia (hlavne zariadenia na úpravu vody, čerpadlá, riadiace jednotky a pomocné konštrukcie), ktoré sú stručne opísané v nasledujúcom texte. Bližšia špecifikácia nebola cieľom tejto práce a preto tieto časti neboli ani súčasťou projekčných výkresov.

12.3.1 Úprava a cirkulácia vody

Cez parný kotol musela prúdiť chemicky a tepelne upravená napájacia voda, aby látky obsiahnuté vo vode (kyslík, oxid uhličitý, vápnik, horčík a iné) nespôsobili škodu formou korózie alebo vápenatými usadeninami. Požadovaná kvalita napájacej, respektíve prídavnej vody je stanovená normou ČSN EN 12953-10 [41]. Druh úpravy vody sa môže líšiť podľa kvality používanej surovej vody. K odporúčaným zariadeniam na úpravu vody pre daný kotol patrili nasledujúce položky [10, 38, 41]:

- zariadenia na chemickú úpravu surovej vody,
- odsol'ovacie zariadenie,
- dávkovacie stanice,
- napájacia nádrž s termickým odplyňovákom (všeobecne rozobratá v Kapitole 2.5),
- iné voliteľné zariadenia (napr. zariadenia na spätné získavanie tepla).

Na cirkuláciu vody slúžilo napájacie čerpadlo (navrhnuté dva, jedno slúžilo ako záloha), ktoré spoločne s napájacou hlavou (uzatváracia armatúra a spätný ventil) tvorili napájacie zariadenie. Napájacie zariadenie muselo byť spoľahlivé a schopné zaistiť, aby doba poklesu hladiny vody z prevádzkového stavu na minimálny pri menovitom výkone bola dlhšia ako doba potrebná k naplneniu kotla z minimálneho stavu na normálny prevádzkový. Napájací modul bol vybavený motorom s frekvenčným meničom (docielenie čo najplynulejšej regulácie množstva vody), filtrom a tlakomerom. Na dopravu kondenzátu boli potrebné kondenzátne čerpadlá, ktoré mali podobnú výbavu ako čerpadlá napájacie [37, 41].

12.3.2 Regulačná a zabezpečovacia technika

Niektoré prvky z výstroja kotlových častí (hlavne obmedzovače a iné bezpečnostné prvky) boli súčasťou automatického systému a ich obvody boli vyvedené tak, aby ústili do rozvádzacieho zariadenia, ktoré sa montuje buď na valcový plášť kotla (po oplechovaní) alebo je samostatne stojace pri kotle. Všetky riadiace prístroje a obmedzovače musia byť pravidelne a opakovane funkčne overované podľa prevádzkových pokynov [10, 37].

12.3.3 Pomocné konštrukcie

Varná časť kotla bola podopretá na oceľových T-profiloch (Obr. 12.1 a Obr. 12.2). Materiál stojanov nemusel patriť do kategórie tepelne a tlakovo namáhaných materiálov, ale musel byť vhodný pre zváranie. Bližšia špecifikácia nebola cieľom tejto práce [10].

Dná varnej časti boli osadené podperami vo forme zvarených oceľových pásov do tvaru mriežky, ktorá mala chrániť pred prípadnou deformáciu spôsobenou neočakávaným nárastom vnútorného tlaku. Na strane obratovej komory bola táto mriežka mierne prispôsobená revíznemu otvoru (Obr. 12.2). Pre materiál platili rovnaké pravidlá ako v predošlom texte.

Na plášť ekonomizéra boli navarené tri stojné nohy obdĺžnikového profilu z rovnakého materiálu ako pri varnej časti. Ich prevedenie je zrejmé z Obr. 12.3 alebo prehľadnejšie z priloženého výkresu (Príloha 2). Pre výber materiálu platili rovnaké požiadavky ako pri podpornej konštrukcii varnej časti.

V priložených projekčných výkresoch neboli spracované ďalšie potrebné pomocné konštrukcie, ako sú prístupové rebríky a plošiny alebo podpery pre potrubia.

13 Záver

Hlavným cieľ om diplomovej práce bolo pre zadané parametre výstupnej pary (tlak a teplotu) a pomocou známej teploty a množstva spalín z výfuku KJ vypracovať návrh kotla na odpadné teplo. Para bola zvolená v sýtej forme, čo nahrávalo zvolenému veľkopriestorovému prevedeniu kotla so žiarovými trubkami bez plamencovej časti. K varnej časti bol pripojený samostatne stojatý ekonomizér takisto v žiarotrubnom prevedení. V prvej časti práce boli ešte zanalyzované neznáme vstupné parametre, ktoré neobsahovalo zadanie, ale boli potrebné pre návrh kotla. Išlo o teplotu napájacej vody (zvolená teplota 105 °C), teplotný nedohrev na výstupe z ekonomizéru ($\Delta t = 20$ °C) a tzv. pinch point ($\Delta t_{pp} = 10$ °C).

Keďže zloženie spalín zo spaľovacieho motora KJ nebolo súčasťou zadania, musel byť vykonaný stechiometrický výpočet na ich určenie. Ten vychádzal z vyhľadaného zloženia bioplynu. Pri výpočte bol braný v úvahu súčiniteľ prebytku vzduchu charakteristický pre klasické plynové motory ($\alpha = 1,3$). Výsledné percentuálne zastúpenie zložiek v spalinách je možné vidieť v Tab.: 3.6. Predpokladalo sa, že bioplyn bol pred vstupom do spaľovacieho motora odsírený, preto spaliny obsahovali len stopové množstvo síry.

K výpočtu parného výkonu kotla bolo potrebné poznať parametre pracovného média a spalín v určujúcich pracovných bodoch, ktoré boli schematicky znázornené v pilovom diagrame (Obr. 4.1). Parný výkon bol stanovený na 0,146 kg/s.

Jedným z cieľov práce bolo aj vypracovanie bilančnej schémy zariadení kotolne (Obr. 5.1). Bilančná schéma nebola klasického typu, keďže neboli známe všetky potrebné toky pre energetickú či hmotnostnú bilanciu. V schéme nebola napájacia nádrž, aj keď bola súčasťou kotolne, ale vzhľadom k neznámemu stavu vracajúceho sa kondenzátu nebola pre tento účel podstatná a tak bol namiesto nej znázornený len definovaný tok napájacej vody do ekonomizéra.

Pri návrhu teplosmenných plôch bolo zvolený vonkajší priemer žiarových trubiek podľa platnej normy ČSN EN 10216-2. Pre varnú časť bol zvolený vonkajší priemer 31,8 mm, pre trubky ekonomizéra 33,7 mm. Pomocou zvolených spalinových rýchlosti na vstupe do výhrevných plôch a predvypočítaných parametrov pracovného média a spalín sa následne určili potrebné výstupné hodnoty pre projekčné zhotovenie. Varná časť mala trubky dlhé 4,776 m pri celkovej výhrevnej ploche 72,72 m². Trubky ekonomizéra tvorili výhrevnú plochu o 7,22 m² pri dĺžke 0,677 m.

Materiály oboch tlakových častí boli rovnaké. Hladké trubky boli z ocele P235GH, kdežto plášť a trubkovnice pozostávali z materiálu P265GH.

Konštrukčné rozloženie trubiek v tlakových častiach bolo realizované pomocou platnej normy ČSN EN 12953 tak, aby bola zaistená bezpečná a čo najúčinnejšia prevádzka kotla.

V hydraulickom výpočte bol určený tlakový pokles napájacej vody pri prechode potrubiami a telesom ekonomizéra, ktorý bol potrebný pre výpočet parametrov v tepelnom výpočte. Jeho hodnota bola stanovená na 0,166 bar.

Pre aerodynamický výpočet bola zvolená podmienka, aby celková ťahová strata spalín od výfuku KJ až po výstup do ovzdušia neprekročila hodnotu 2000 Pa. Celková tlaková strata pri použitých rýchlostiach spalín vyšla na hodnotu 1910 Pa, čím sa potvrdila správnosť návrhu.

Okrem overenia navrhnutej hrúbky stien žiarových trubiek boli v práci pevnostne skontrolované aj hrúbky stien ostatných tlakových častí (plášť a trubkovnice). Všetky navrhnuté hrúbky boli väčšie ako vypočítané minimálne prípustné hodnoty.

Návrh osadenia kotolne potrebnými prvkami bol rozobratý v poslednej kapitole. Okrem armatúr potrebných pre správny chod kotla, tu boli stručne rozobraté aj potrebné zariadenia pre úpravu napájacej vody, regulačná a zabezpečovacia výstroj a pomocné konštrukcie. Pre účely tejto práce sa s väčším rozborom tejto problematiky neuvažovalo.

Výstupom práce boli projekčné výkresy varnej časti, ekonomizéra a spoločnej zostavy, ktoré sú súčasťou príloh.

Výpočtové časti práce boli spracovávané hlavne v prostredí MS Excel 2016 za pomoci programu X-steam 2.6. Projekčné výkresy boli spracované v programe AutoCAD 2016.

Výstupná teplota spalín (cca 146 °C) evokuje potrebu umiestniť ešte tzv. dodatočnú plochu za ekonomizér (napr. ohrievač teplej vody pre miestnu spotrebu). To však vzhľadom k použitému palivu vo forme bioplynu, ktorý často obsahuje síru, nemusí byť úplne ideálne riešenie. Síra totiž zvyšuje rosný bod spalín a mohla by v takomto prípade spôsobiť nízkoteplotnú koróziu na posledných teplosmenných plochách.

Na záver je nutné dodať, že navrhnuté zariadenie bolo technicky realizovateľné, ale z praktického hľadiska by bola nutná podrobná ekonomická analýza určujúca návratnosť takéhoto projektu. Využitie odpadného tepla sa však javí ako správna voľba k vylepšeniu celkovej účinnosti obehu, keďže dochádza k podstatnému zníženiu množstva vstupných surovín (v tomto prípade bioplynu do KJ). Dá sa očakávať, že kotle na odpadné teplo budú pri čoraz častejšej energetickej decentralizácii frekventovanou voľbou zákazníka aj v menších prevedeniach, nielen ako súčasť veľkých paroplynových celkov.

14 Zoznam použitých zdrojov

- [1] MICHAL, Petr. *Bioplyn Energie ze zemědělství*. Praha, 2005.
- [2] BALÁŠ, Marek. *Kotle a výměníky tepla*. Vyd. 2. Brno: Akademické nakladatelství CERM, 2013, 119 s. ISBN 978-80-214-4770-7.
- [3] VÁŇA, Jaroslav a Antonín SLEJŠKA. *Bioplyn z rostlinné biomasy: (studijní zpráva)*.
 1. Praha: Ústav zemědělských a potravinářských informací, 1998. Studijní informace. ISBN 80-861-5392-4.
- [4] *Biogás El Gas Combustible Alternativo ElBlogVerde.com* [online]. Madrid: Tendenzias Media, 2016 [cit. 2017-02-01]. Dostupné z: http://elblogverde.com/el-biogas/
- [5] OCHODEK, Tadeáš, Jan KOLONIČNÝ a Michal BRANC. Ekonomika při energetickém využívaní biomasy. In: *Možnosti lokálního vytápění a výroby elektřiny z biomasy*.
 1. Ostrava: Vysoká škola banská - Technická univerzita Ostrava, 2008, s. 116. ISBN 978-80-248-1751-4.
- [6] KRBEK, Jaroslav a Bohumil POLESNÝ. *Kogenerační jednotky malého výkonu v komunálních a průmyslových tepelných zdrojích*. Brno: PC-DIR, 1997. Učební texty vysokých škol. ISBN 80-214-0889-8.
- [7] KRBEK, Jaroslav, Ladislav OCHRANA a Bohumil POLESNÝ. Zásobování teplem a kogenerace. Brno: PC-DIR Real, 1999. Učební texty vysokých škol. ISBN 80-214-1347-6.
- [8] *Kogenerační jednotka* | *ČEZ Energo* [online]. Praha: ČEZ Energo, 2016 [cit. 2017-02-01]. Dostupné z: http://www.cezenergo.cz/cs/o-kogeneraci/kogeneracni-jednotka.html
- [9] DLOUHÝ, Tomáš a Michal KOLOVRATNÍK. *Průmyslová energetika*. Vyd. 2. přeprac. V Praze: Vydavatelství ČVUT, 2004. ISBN 80-010-2883-6.
- [10] ČERNÝ, Václav, Břetislav JANEBA a Jiří TEYSSLER. *Parní kotle*. Praha: SNTL-Nakladatelství technické literatury, 1983. Technický průvodce (SNTL-Nakladatelství technické literatury).
- [11] VILIMEC, Ladislav. *Stavba kotlů I.* Ostrava: Vysoká škola báňská Technická univerzita, 2002. ISBN 80-248-0076-4.
- [12] DLOUHÝ, Tomáš. Výpočty kotlů a spalinových výměníků. Vyd. 3. V Praze: Nakladatelství ČVUT, 1999. ISBN 978-80-01-03757-7.
- [13] Odborná informace: Válcové žárotrubné kotle v porovnání s vodotrubnými kotli [online]. Bosch Industriekessel, 2012 [cit. 2017-02-20]. Dostupné z: http://www.bosch-industrial.com/files/fb013_cz.pdf
- [14] HÜBNER, Pavel. *Úprava vody v energetice*. Praha: Vydavatelství VŠCHT, 2010. ISBN 978-80-7080-746-0.
- [15] WÜNSCH, Josef. Tlakové thermické odplynováky: Napájecí vody pro parní kotle : Určeno konstruktérům odplynováků, projektantům a techn. kádrům v elektrárenských a kotelních provozech i prům. Praha: SNTL, 1953. Řada energetické strojírenské literatury.
- [16] KARAS, František. *Úprava kotelní vody a čistota páry*. Praha: Státní nakladatelství technické literatury, 1965.

- [17] MALÝ, Josef a Jitka MALÁ. *Chemie a technologie vody*. Brno: NOEL 2000, 1996. ISBN 80-860-2013-4.
- [18] BUDAJ, Florian. Parní kotle: podklady pro tepelný výpočet. 4. přeprac. vyd. Brno: Vysoké učení technické, 1992.
- [19] Heat Recovery Steam Generators. In: KTH | Energiteknik [online]. Stockholm [cit. 2017-02-14]. Dostupné z: http://www.energy.kth.se/compedu/web-compedu/webhelp/media%5Cprint%5Cs1b4c2_a4.pdf
- [20] NEAGA, Constantin a Laurentiu FLOAREA. Influence of pinch and approach point on construction of a heat recovery steam generator in a combined cycle. *Scientific Bulletin*. 2009, **4**(71), 12. ISSN 1454-2358.
- [21] Stanice Brno, aktuální teplota, rekordy, archiv, průměry. In-počasí [online]. InMeteo, 2015 [cit. 2017-02-19]. Dostupné z: http://www.in-pocasi.cz/archiv/stanice.php?stanice=brno
- [22] Historie teplot v Brně. *Teplárny Brno* [online]. Brno: Teplárny Brno, 2016 [cit. 2017-02-19]. Dostupné z: http://www.teplarny.cz/mapa-venkovnich-teplot/?rok=2016
- [23] Složení atmosferického vzduchu. TZB-info [online]. Ostrava, 1980 [cit. 2017-02-19]. Dostupné z: http://www.tzb-info.cz/tabulky-a-vypocty/74-slozeni-atmosferickehovzduchu
- [24] ČSN EN 12953-11. *Válcové kotle: Část 11: Přejímací zkoušky*. Praha: Český normalizační institut, 2004.
- [25] ČSN EN 10216-2. *Bezešvé ocelové trubky pro tlakové nádoby a zařízení Technické dodací podmínky: Část 2: Trubky z nelegovaných a legovaných ocelí se zaručenými vlastnostmi při zvýšených teplotách.* Praha: Český normalizační institut, 2003.
- [26] ČSN EN 12953-2. Válcové kotle: Část 2: Materiály pro části kotlů a příslušenství namáhaných tlakem. Praha: Český normalizační institut, 2002.
- [27] ČSN EN 12953-3. *Válcové kotle: Část 3: Konstrukce a výpočet částí namáhaných tlakem.* Praha: Český normalizační institut, 2003.
- [28] ČSN EN 12953-6. *Válcové kotle: Část 6: Požadavky na výstroj kotle*. Praha: Český normalizační institut, 2003.
- [29] KRBEK, Jaroslav a Bohumil POLESNÝ. Závěrečný projekt: výpočet tepelných turbín a jejich příslušenství. Brno: Vysoké učení technické, 1987.
- [30] KRBEK, Jaroslav, Bohumil POLESNÝ a Jan FIEDLER. *Strojní zařízení tepelných centrál: návrh a výpočet*. Brno: PC-DIR, 1999. Učební texty vysokých škol. ISBN 80-214-1334-4.
- [31] Vliv místních odporů na tlakové ztráty v potrubí. *TZB-info stavebnictví, úspory ener-gií, technická zařízení budov* [online]. Topinfo, 2001 [cit. 2017-04-14]. Dostupné z: http://voda.tzb-info.cz/teorie-voda-kanalizace/8514-vliv-mistnich-odporu-na-tlakove-ztraty-v-potrubi
- [32] Kogenerační jednotka TEDOM Cento T150 SP. Dostupné také z: http://china.tedom.com/downld/139.pdf

- [33] HAVLÍK, Aleš a Tomáš PICEK. *Hydraulika potrubí*. Fakulta stavební ČVUT v Praze. Dostupné také z: http://hydraulika.fsv.cvut.cz/Hydraulika/Hydraulika/Predmety/HY2V/ke_stazeni/prednasky/HY2V_04_Hydraulika_potrubi.pdf
- [34] Komíny a kouřovody. *TZB-info stavebnictví, úspory energií, technická zařízení budov* [online]. Topinfo, 2001 [cit. 2017-04-19]. Dostupné z: http://vytapeni.tzbinfo.cz/kominy-a-kourovody
- [35] ČSN 69 0010. *Tlakové nádoby stabilní: TECHNICKÁ PRAVIDLA*. Brno: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 1993.
- [36] ČSN EN 12953-1. *Válcové kotle: Část 1: Všeobecné požadavky*. Brno: Český normalizační institut, 2003.
- [37] *Efektivita ve velkém měřítku: Parní kotle*. Praha, 2012. Dostupné také z: https://www.bosch-industrial.com/files/BR_SteamBoilers_cz.pdf
- [38] Parní a spalinové kotle. Chrášťany, 2012. Dostupné také z: http://www.viessmann.cz/
- [39] UNIVERSAL low-pressure steam boiler U-ND: In Flame-tube smoke-tube technology. 2012. Dostupné také z: https://www.bosch-industrial.com/files/mng/DA024en.pdf
- [40] ČSN EN 12953-8. Válcové kotle: Část 8: Požadavky na zabezpečovací zařízení proti přetlaku. Brno: Český normalizační institut, 2002.
- [41] ČSN EN 12953-10. Válcové kotle: Část 10: Požadavky na kvalitu napájecí vody a kotelní vody. Brno: Český normalizační institut, 2008.

15 Zoznam použitých skratiek a symbolov

Δt	[°C]	nedohrev napájacej vody oproti bodu varu
Δt_{pp}	[°C]	najmenší teplotný rozdiel medzi prac. médiom a spalinami
KJ		skratka pre kogeneračnú jednotku
eko		skratka pre ekonomizér
Vi	[Nm ³ /Nm ³]	objemový podiel plynnej zložky v suchom bioplyne
V _{O2min}	$[Nm^3/Nm^3]$	minimálny objem kyslíka (dokonalé spaľovanie bioplynu)
V _{VSmin}	[Nm ³ /Nm ³]	minimálny objem suchého vzduchu (dokonalé spaľovanie)
V _{VVmin}	$[Nm^3/Nm^3]$	minimálny objem vlhkého vzduchu (dokonalé spaľovanie)
f	[-]	súčiniteľ určujúci podiel vodnej pary v suchom vzduchu
φ	[%]	relatívna vlhkosť vzduchu
p´´	[MPa]	parciálny tlak vodnej pary na medzi sýtosti
t_{vz}	[°C]	teplota vzduchu
pc	[MPa]	celkový tlak vzduchu (atmosférický tlak)
WVV	$[N]m^3/N]m^3]$	objem vodnej pary v minimálnom objeme vlhkého vzdu-
VH₂0		chu
α	[-]	súčiniteľ prebytku vzduchu
Vis	$[Nm^3/Nm^3]$	objem plynnej zložky v suchých spalinách
V_{SSmin}	$[Nm^3/Nm^3]$	výsledný objem suchých spalín
$V_{H_2O}^{s}$	$[Nm^3/Nm^3]$	objem vodnej pary v spalinách
V_{SVmin}	$[Nm^3/Nm^3]$	minimálny objem vlhkých spalín
V_{SV}	$[Nm^3/Nm^3]$	skutočný objem vlhkých spalín
V_{α}	$[Nm^3/Nm^3]$	objem prebytku vzduchu
WS	$[Nm^3/Nm^3]$ 1	objemové zložky suchého vzduchu vztiahnuté na 1 Nm ³
v _i	[14111 / 1411 bioplyn]	bioplynu
vVV	$[Nm^3/Nm^3]$	objemové zlomky plynných zložiek prebytku vzduchu
Λ ₁		(vlhkého vzduchu)
V; ^α	$[Nm^3/Nm_{bionlum}^3]$	objemové koncentrácie zložiek prebytku vzduchu vztiah-
.1	Diopiyiis	nuté na 1 Nm ³ bioplynu
V; ^{sk}	$[Nm^3/Nm_{bionlyn}^3]$	objemové koncentrácie plynných zložiek skutočných spa-
1		lin vzniknutých z 1 Nm ³ bioplynu
V_{sk}	[Nm ³ /Nm ⁵ _{bioplyn}]	celkové množstvo skutočných spalín z Nm ³ bioplynu
p1 až p4	[MPa, bar]	tlak pracovného média pre i-tý pracovný bod
t_1 až t_4	[°C]	teploty pracovného média
Xi	[-]	suchosť pracovného média
\mathbf{i}_{i}	[kJ/kg]	entalpia pracovného média pre i-tý pracovný bod
I_i	[kJ/Nm ³]	entalpia i-tej zložky spalín
I _{sp}	[kJ/Nm ³]	entalpia spalín
I _A až I _C	[kJ/Nm ³]	entalpia spalín v pracovných bodoch
t _A až t _C	[kJ/Nm ³]	teplota spalín v pracovných bodoch
Q _{RC}	[MW]	tepelné straty sálaním a konvekciou do okolia
$\dot{\mathrm{Q}}_{A}$	[MW]	maximálny teoreticky využiteľný tepelný výkon spalín
С	[-]	konštanta pre plynné palivá (straty zdieľaním tepla)
<i>V</i> _{sp} −	[Nm ³ /s]	objemový tok spalín pri normálnych podmienkach
Z _S	[%]	celková tepelná strata zdieľaním tepla do okolia
М _Р	[kg/s]	parný výkon kotla
Mo	[kg/s]	hmotnostný tok odluhu
-0		5

Energetický ústav Fakulta strojního inženýrství Vysoké učení technické v Brně

М _{NV}	[kg/s]	hmotnostný tok napájacej vody
d _{vyp}	[mm]	vnútorný priemer trubky varnej časti kotla
D_{vvp}	[mm]	vonkajší priemer trubky varnej časti kotla
Str	[mm]	hrúbka steny trubky
deko	[mm]	vnútorný priemer trubky ekonomizéra
Deko	[mm]	vonkaiší priemer trubky ekonomizéra
Wen	[m/s]	rýchlosť spalín
V sk	$[m^3/s]$	obiemový tok spalín pri skutočných podmienkach
•sp S	$[m^2]$	priočny prioroz ťaby spalín trubkomi
S _{sp}	[111]	priecity priecz tanu spann truokann
IItr	$\begin{bmatrix} - \end{bmatrix}$	linemetielie vielezzite spelin
Vsp	$\begin{bmatrix} III / S \end{bmatrix}$	kinematicka viskozita spanii
Λ _{sp} Dr		Providel occo žíslo spalin
Pr _{sp}	[-]	Pranduovo cisio spalin
M _v	[-]	opravny koeficient kinematickej viskozity spalin
M_{λ}	[-]	opravny koeficient tepelnej vodivosti spalin
M_{Pr}	[-]	opravny koeficient Prandflovho čísla spalin
l _{vyp}	[m]	dĺžka trubiek varnej časti kotla
l _{eko}	[m]	dlžka trubiek ekonomizéra
α_k	$[W/m^2K]$	súčiniteľ prestupu tepla konvekciou
Ψ	[-]	súčiniteľ tepelnej efektívnosti
k	$[W/m^2K]$	súčiniteľ prostupu tepla spalín
Ature	[°C]	teplotný rozdiel medzi pracovným médiom a spalinami na
Δtvst		vstupe spalín
Atoriat	[°C]	teplotný rozdiel medzi pracovným médiom a spalinami na
Zuvyst		výstupe spalín
Δt_{ln}	[°C]	logaritmický teplotný spád
0	[m]	celkový vnútorný obvod trubiek
S	$[m^2]$	teplosmenná plocha
m	[mm]	mostík medzi osami otvorov trubiek
S	[mm]	rozteč osí otvorov trubiek
d _{potr}	[mm]	vnútorný priemer potrubia
L _{potr}	[m]	dĺžka potrubia
Wpotr	[m/s]	rýchlosť vody v potrubí
Re	[-]	Reynoldsovo číslo
μ	[kg/ms]	dynamická viskozita
λ	[-]	súčiniteľ trenia
3	[-]	pomerná drsnosť trubiek
k	[mm]	absolútna drsnosť trubiek
А	[-]	koeficient pri výpočte súčiniteľ a trenia
В	[-]	koeficient pri výpočte súčiniteľ a trenia
_ Δp	[Pa]	tlaková strata
—г ([-]	stratový súčiniteľ
ר ס	$[m/s^2]$	tiažové zrýchlenie
ອ h.	[m]	výtlačná výška
Δn	[III] [Pa]	vytuonu vysku vztlak snalín
	[r "] [mm]	vznak spann výnočtová hrúbka steny trubky
Cv O	լոոոյ [mm]	vypočová hrubka steny trubky bez prídovkov
Cct	[IIIIII] [mm]	vypocióva inuoka sieny nuoky dez pridavkov
	[111111]	minusova toreranera na objednanej menovitej mubke stelly

c ₂ f, f _s	[mm] [MPa]	prídavok na koróziu a opotrebenie kovu dovolené namáhanie použitého materiálu
$R_{p0,2}$	[MPa]	minimálna 0,2 % zmluvná medza klzu pri výpočtovej tep- lote
R _m	[MPa]	minimálna pevnosť v ťahu použitého materiálu pri teplote miestnosti
t _c	[°C]	výpočtová teplota
e _{min}	[mm]	minimálna povolená hrúbka steny tlakovej časti
e _{cs}	[mm]	výpočtová hrúbka steny plášťa bez prídavkov
d _{os}	[mm]	vonkajší priemer plášťa tlakovej časti
ν	[-]	súčiniteľ zvarového spoja
e _{ch}	[mm]	výpočtová hrúbka steny trubkovnice bez prídavkov
C_4	[-]	konštanta zohľadňujúca formu opier
У	[-]	koeficient vyjadrujúci druh plochy trubkovnice
b	[mm]	výpočtová plocha trubkovnice
Dt	[mm]	výpočtový priemer otrubkovanej plochy
θ	[-]	koeficient vyjadrujúci rozloženie trubiek
d_{pl}	[mm]	priemer trubkovnice (vnútorný priemer plášťa)

16 Zoznam príloh

Príloha 1	Varná časť – zostavný výkres A1-DP-2017-1
Príloha 2	Ekonomizér – zostavný výkres A2-DP-2017-2
Príloha 3	Varná časť + Ekonomizér – zostavný výkres A2-DP-2017-3
Príloha 4	CD (Elektronická verzia diplomovej práce)