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Abstract
This thesis follows the trend of last decades in using neural networks in order to detect
speech in noisy data. The text begins with basic knowledge about discussed topics, such
as audio features, machine learning and neural networks. The network parameters are
examined in order to provide the most suitable background for the experiments. The main
focus of the experiments is to observe the influence of various sound events on the speech
detection on a small, diverse database. Where the sound events correlated to the speech
proved to be the most beneficial. In addition, the accuracy of the acoustic events, previously
used only as a supplement to the speech, is also a part of experimentation. The experiment
of examining the extending of the datasets by more fairly distributed data shows that it
doesn’t guarantee an improvement. And finally, the last experiment demonstrates that the
network indeed succeeded in learning how to predict voice activity in both clean and noisy
data.

Abstrakt
Tato práce navazuje na trend posledních desetiletí ve využívaní neuronových sítí za účelem
odhalení řeči v zašuměných datech. Text začíná základními poznatky o probíraných té-
matech, jako jsou audio příznaky, strojové učení a neuronové sítě. Síťové parametry jsou
zkoumány s cílem poskytnout nejvhodnější zázemí pro experimenty. Hlavní úkol exper-
imentů je sledovat vliv různých zvukových událostí na detekci řeči na malé a různorodé
databáze. Přičemž se ukázalo, že nejvýhodnější jsou zvukové události v korelaci s řečí.
Kromě toho, přesnost akustických událostí, dříve použita pouze jako doplněk k přesnosti
řeči, je také součástí experimentování. Experiment zkoumání datových sad rozšiřených
o více spravedlivě rozděleny data ukázal, že samotné rozšiření nezaručuje zlepšení. Na
závěr, poslední experiment demonstruje, že síti se skutečně podařilo naučit, jak předpovědět
hlasové aktivity v obou případech čistých i zašuměných dat.
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Chapter 1

Introduction

Since the invention of a computer, scientists tried to use its computing power to achieve
things unimaginable before. Computers dramatically accelerated technology researches in
various industries, e.g. medical, military and space industry.

However, some fields didn’t seem as promising as was hoped for. Specifically, computer
vision and speech recognition, which proved to be too difficult to be solved by regular rule-
based systems. To achieve this, it would require to simulate the activity of human brain,
specifically neural networks. There was an idea of creating an artificial neural network, but
it required much higher performance than the technology back then offered.

As the time passed, the technology allowed to develop far more powerful computers every
year. Therefore, a great progress in the field of speech (voice, generally) recognition thanks
to the using the artificial neural networks in the last decade was noted. These achievements
can improve life in many ways, such as voice remote control and speech-to-text processing.

Despite the progress, the efforts for better results still continue and many different
approaches of improving the accuracy are studied. The main motivation behind this thesis
is to contribute to this topic by experimenting with parallelism in the neural networks in
order to better the results. Details of the objectives will be described in the following
section.

The structure of this thesis is logically divided into three more chapters, besides the
introduction.

The second chapter is dedicated to the theoretical background of this thesis, more
specifically a basic knowledge of the detection process. This chapter describes the feature
extraction, some basic division of classification methods used in machine learning with the
emphasis on the neural networks and finally the post-processing of the outputs. The last
section summarizes the implementation details, the programming language and tools used
in this thesis.

The third chapter is the core chapter, since all the important experiments are included.
In the final chapter is the recapitulation of results and achieved objectives with the

ultimate conclusion.

1.1 Aim of the thesis
The main aim of this thesis is to experiment with neural networks in the matter of the
detection of acoustic events. This aim consists of several lesser steps, objectives. Which
are described in the following sections.
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1.1.1 Voice activity detection

The first and also primary objective is to detect the presence of human speech sequences
in the given input signal with emphasis on noisy data. Voice activity detection (VAD)
[11], also known as speech activity detection, is a process, which determines the presence
of human speech in an input audio signal.

VAD has a wide field of use in communication, such as speech coding, speech enhance-
ment, speech recognition or real-time VoIP applications.

The approach to this matter can differ according to the quality of the input signal.
While receiving a clean input, recorded in a quiet environment, it is easier to successfully
detect speech, compared to noisy record capturing a dialogue, with a city traffic acoustic
events as its background. Which means, that especially in the second case, VAD is not as
trivial task as it seems and most of the VAD algorithms, fail with the increased amount of
noise.

1.1.2 Acoustic event detection

Next step is to extent the classification set (so far composed of the speech and the non-speech
class) by additional groups of sound events. This extension includes groups correlated to
the speech class, e.g. the conversational tone of speech, and on the other hand, the type
of noise or music during the non-speech sequence. The aim of the acoustic event detection
(AED) is to identify the sequential segments of of sound events present in audio input.

The neural network will be adjusted to be able to detect classes of each group simulta-
neously, which is also the second objective of this thesis.

1.1.3 Influence on VAD

If these objectives are successful, then the third objective will be to determine, how is the
primary task, the speech classification, influenced by the secondary tasks, the detection
of other acoustic events. And, finally, whether they improve the accuracy of the speech
detection and whether it is regarding the relation between the primary and the secondary
task.

1.1.4 Noisy and clean evaluation

Moreover, these experiments will be conducted on a diverse data, therefore it will be also
possible to divide data into noisy and clean datasets and compare results produced from
both types of data. And the last, but not least objective will be to decide whether is the
speech detection successful on the noisy data.
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Chapter 2

Detection process

This chapter is addressed to the process of detection in the matter of speech and acoustic
events. In the last years, the speech and acoustic event detection is increasingly being used
in many fields. Therefore, there exists many different methods. In the following sections,
two main detection steps - feature extraction and classification, are described. The last
step, although optional, is described in the last section.

missile  gun speech noise

non-speech

speech

yelling yelling

Figure 2.1: An example of the detection of speech in the input audio signal with present
various background sounds.
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2.1 Feature extraction
The first procedure is a feature extraction, which means acquiring the acoustic features
from the audio signal, so that it can be processed by a classification algorithm.

Because of the constant changes in the audio signal, the signal is divided into frames,
where presumably the vocal-tract parameters change less, compared to the whole signal.
These frames are overlapping segments, generally several tens long. Next step is to compute
a power spectrum of each frame. This periodogram estimate identifies which frequencies
are present in the frame.

The difference between two close frequencies is hardly distinguishable, which is getting
even more noticeable with higher frequencies. This is why a Mel-scale filterbank[16] is
applied. Each of filters middle frequency is placed in the way, so that they follow the
Mel scale. Which means that the filterbank shows different perceptual effects at different
frequency bands.

Figure 2.2: Mel-scale filterbank1.

The length of output is corresponding to the number of used filters. And after applying
the logarithm on these outputs, the result is log frequency filter bank parameters (FBANK).
Which is the first of two types of features widely used in speech recognition systems, which
have been proven to be a good representation of speech spectral structure.

1http://www.ee.columbia.edu/ln/rosa/doc/HTKBook21/node54.html
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Figure 2.3: The steps of extraction of the MFCC features2.

Although, often are desired cepstral parameters, so the next step is to calculate Mel-
Frequency Cepstral Coefficients (MFCCs) by using the Discrete Cosine Transform on the
log filterbank amplitudes.

FBANKs and MFCCs are the most common types of features used in speech recognition
and AED.

2.2 Classification methods
Next step is the classification. There are several techniques based on different approaches
[11], while they can be divided into two main groups:

∙ Statistical modelling

∙ Machine learning

Techniques of both approaches are sensitive to noise, because they are based on the
learning from the training data, where it is not possible to contain all noisy scenarios.

In the following section will be shown examples of each group, however only the tech-
nique of neural networks from the machine learning group will be discussed in detail.

2.2.1 Statistical modelling

A statistical modelling system focuses on inferring the process how has been the given data
collected. It uses probability functions to determine the most likely output. The most

2http://slideplayer.com/slide/4966500/
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common model is Hidden Markov Model [18].
The Markov model is a finite state automaton consisting of states, which directly corre-

spond to observable events, inputs and transitions with probabilities between them. How-
ever, in the Hidden Markov model, the states are abstract, separated from observations,
where observations are probabilistic functions of the state. The HMM is specified by num-
ber of states, number of distinct observation symbols per state, in this case speech alphabet
size. Besides that, it also includes model measures: a state transition probability distri-
bution, an observation symbol probability distribution in specific state and an initial state
probability distribution. Hidden Markov models face and answers three questions:

∙ Evaluation problem - calculating the probability of an observation sequence

∙ Decoding problem - determining an optimal corresponding state sequence to an ob-
servation sequence

∙ Training problem - updating the model measures to maximize a probability of an
observation sequence

This HMM method can be used in speech recognition with the goal of finding the most
likely model according to the speech observation sequence. Where a is state representing a
specific speech unit, e.g. a word.

This method is used for experimenting in the fields of speech recognition - for example
speech emotion [19] and the detection of common acoustic events in a real-life [15].

2.2.2 Machine learning

The last approach is a machine learning. As opposed to the statistical modelling, the
machine learning emphasizes on how to predict possible future data, instead of studying
the process which was the given data generated by.

First technique belonging to this group is support vector machine (SVM) [11]. Which
is a non-probabilistic binary classifier. Its goal is constructing a hyperplane in the feature
space, which maximizes the margin between classes. SVMs are also especially used as a
classification technique for speech and language detection [3].

Another machine learning method is an artificial neural network, which is described
in the following section 2.3. Nowadays, various types of neural networks are widely used
in the applications performing the acoustic events detection. In the presence, the highest
utilization is in the field of speech recognition [7], which is based on the current trend of the
developing voice-user interfaces for computers, smartphones and other devices and therefore
competition between the leading companies in this field. Besides, the speech enhancement
is another task implemented by neural network [6].

2.3 Neural networks
This whole section is dedicated to the basic knowledge about neural networks, which are
implemented as the classification algorithm used in experiments of this thesis.

2.3.1 Biological neural networks

For the beginning, it would be most suitable to start with the explanation, where does the
idea of algorithm based on neural networks come from. Simply put, this concept comes
(both figuratively and literally) from a human brain.

8



The study of artificial neural networks is based on the successfully working biological
systems [12]. The reason why, is that these biological systems have several significant
capabilities.

∙ The brain consists of numerous nerve cells called neurons, that work massively in
parallel.

∙ The neural networks aren’t explicitly programmed, they are using a learning procedure
according to training samples.

∙ The result of this learning is a high fault tolerance against noisy signals, because
of the capability to generalize and associate data, which helps to find solutions for
similar problems.

Human nervous system consists of the central nervous system and the peripheral nervous
system.

The peripheral nervous system consists of nerves outside brain and spinal cord. They
form a network, which is throughout the whole body. The central nervous system is formed
by the brain and the spinal cord. This system stores and manages all information received
from senses.

As mentioned before, the base cell unit of the brain is called a neuron. The number of
neurons in the human brain is approximately 1011 units. These neurons have connections
to other neurons and their function is to send and receive nerve signals.

The direction of spreading the electrical information in the neuron starts with the den-
drites. which are structures in a tree-like form (dendrite tree), branching from the neuron’s
cell body (soma), where they afterwards transfer the received electrical signals. Neurons
receive incoming neural pulses from the other neurons with connections called the synapses
located at the dendrites.

The cell nucleus is accumulating received signals until they reach a certain threshold
value. Then the soma activates a electrical signal, which is transmitted to the surrounding
connected neurons.

The transferring to the neurons is accomplished due to the axon. The axon is a long
and thin projection of the cell nucleus, which leads to dendrites.

Figure 2.4: A biological neuron with the most important parts: cell body (soma), nucleus,
dendrites and axon [12].
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The process of learning means that the synapses’ effectiveness is changed, which also
changes the influence of one neuron on another.

2.3.2 Artificial neural networks

So how are the biological neural networks related to the artificial ones? An artificial neural
network is a radically simplified version of the biological one. The scientists try to simulate
the essential fundamentals of neurons and their connections.

Structure of neural network

The neural network consists of layers with neurons. There are three layers: input, hidden
and output layer. The leftmost, input layer contains the input neurons, which receive input
values. The rightmost, output layer is formed by the output neurons (in this case by a
single neuron) and the hidden layer between them, consists of neurons which are neither
input or output. The neural network can have multiple hidden layers.

Figure 2.5: An illustration of an artificial neural network consisting of neuron layers: an
input layer, two hidden layers and an output layer [17].

There are two basic types of neural network architectures based on the way how neurons
interact witch each other [10]:

∙ Feedforward architecture - in the feedforwarding neural networks, where are connec-
tion only between the neurons from the adjacent layers, they do not keep a memory
of previous outputs and states

∙ Feedback architecture - in the recurrent neural networks, the neuron output also
depends on the previous states, the connections are between neurons from different
layers and also connections in form of feedback loops

Artificial neuron

The most basic artificial neuron is called a perceptron [17]. On the input of his kind of
neuron are binary inputs and on the output is a single binary output (0 or 1). The output
value is determined by comparing the weighted sum of inputs to the threshold value.

10



input 1

outputinput 2

input 3

Figure 2.6: An example of perceptron with three inputs and a single output [17].

To simplify the condition of determining the output value, the threshold can be moved
to the other side of inequality, forming a bias. In a relation to the biological neuron it can
be imagined as a measure how easy it is to get the perceptron to activate the transmission
of a signal. In the technological view of point, it is a measure how easy it is that perceptron
outputs a 1. This conditioning is called a step function with the output 𝑦 computed [17]:

y =

{︂
0 𝑤 · 𝑥+ 𝑏 ≤ 0
1 𝑤 · 𝑥+ 𝑏 > 0

(2.1)

where 𝑥 is input and 𝑤, 𝑏 means weight, respectively bias.
The process of learning is to changing the weights or biases to improve the accuracy of

classification. The problem of perceptrons is that when the change of weights and bias flips
the value of the certain output, it may change the behaviour for the rest of outputs.

The modified version of the perceptron is called a sigmoid neuron. This kind of neuron
can input and output real number values belonging to < 0, 1 >. This means, that the output
can have more different values. Therefore, the alteration of weights and bias doesn’t cause
such a massive difference in changing the output, like when flipping between binary values.

In the contrast with the perceptron’s step function, the sigmoid neuron uses a sigmoid
function 𝜎 [17]:

𝜎(𝑧) ≡ 1

1 + 𝑒−𝑧
(2.2)

Both step and sigmoid functions determine output with taking to account inputs,
weights and bias, what is generally called the activation function.

The difference between these two functions can be easily understood by comparing their
graphs (Figure 2.7). It can be seen, that the shape of the sigmoid function is a smoothed
version of the step function. Which is what is really important, because thanks to this
smoothness the relation between the changes of the weights and bias and the changes of
output is more adequate.

The learning process

How does the neural network learning process work? It learns from a given input dataset
called a training dataset [17].

The task is to find the right weights and bias, which would allow the neural network to
successfully approximate the outputs. Therefore the training is the process of approximating
the most suitable weights and bias. To evaluate the fitness of current weights and bias,
there is defined a quadratic cost function:

𝐶(𝑤, 𝑏) ≡ 1

2𝑛

∑︁
𝑥

‖𝑦(𝑥)− 𝑎‖2. (2.3)

11



Figure 2.7: Graphs of a step function
Figure 2.8: Graphs of a sigmoid function
[17].

where, 𝑤 denotes the collection of all weights in the network, 𝑏 all the biases, 𝑛 is the
total number of training inputs, 𝑎 is the vector of outputs from the network when 𝑥 is
input, and the sum is over all training inputs.

The desired situation is when the neural network outputs are approximately equal to
the desired training outputs. In this case the cost approximately equals a zero. To find a
set of weights and bias that result in the most possible cost, it is needed to find a minimum
of a function with a large number of parameters. To do that, there is an algorithm called
a gradient descent [13].

This algorithm starts with a randomly initialized set of parameter values and iteratively
updates these parameters, getting closer to the values, which minimize the function. The
nature of this update is computed by iterating in the opposite direction of the gradient. To
make the gradient descent work correctly, it is required to set correctly a positive parameter
called a learning rate.

Figure 2.9: An example of a gradient descent in order to adequately (left) and too high
(right) set learning rate [13].

For a fast computing of gradients, there is an algorithm known as a backpropagation
[13].
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2.3.3 Multi-task neural networks

Multi-task learning [4], is a mechanism, which purpose is to enhance the generalization
performance. It is achieved by training all tasks simultaneously while they share network’s
representation. More specifically, it uses shared hidden layers trained in parallel.

The cost is calculated for each task separately. The gradient is computed from all costs
of all tasks and then backpropagated through the nodes of tasks. Therefore the correlation
between tasks improves their learning ability.

The main idea of multi-task networks is demonstrated on comparison of the Figure 3.8,
which illustrates the intention of using the same input for different tasks and the Figure
3.9 with the structure of an actual multi-task network.

inputs

 task 1
output

inputs

 task 2
output

inputs

 task 3
output

Figure 2.10: An illustration of single task neural networks with the same inputs.

inputs

 task 1
output

 task 2
output

 task 3
output

Figure 2.11: An illustration of a multi-task network with the same input for every task.
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One of the recent works regarding multi-task networks [9] shows that in the speech
recognition, the multi-task network with supportive models of broad acoustic units outper-
forms the conventional network by decreasing the error rate up to 10.7%. Another research
[14] proposes a method of robust voice activity detection under non-stationary noises, which
is an important problem, because the most o systems doesn’t work accurately with noises
from the real-life environment. However, not only the speech detection, but also the acous-
tic event detection is topic of research. The paper [2] examining the polyphonic detection
of overlapping sound events from a real-life recordings shows overall frame accuracy 63.8%
and an 19% improvement compared to the result of the system using HMM.

2.4 Post-processing
The network output is a matrix of posterior probabilities, therefore a post-processing of
outputs needs to be done necessarily.

This problem can be solved by decoder implementing Viterbi algorithm [8]. The input is
the vector of logarithm probabilities of classes. One specific path maximizes the probability
of reaching the desired state. The probability is influenced by a parameter called insertion
penalty, which is added to the current accumulated value in the case of transition between
two states. And the optimal state sequence is formed by states along this path. This
algorithm saves the calculation time expense when finding this particular path, because if
several paths converge at a specific state at the time, for calculating the next step (from
this state to the following one), it continues with calculation only with the most likely path,
because it is sure, that there is only one the most likely path for each state at the time.
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probabilities
frame 1 frame 2 frame 3 frame 4 frame 5 frame 6

Path without an insertion penalty

Path with an insertion penalty

penalty = -0.5 log(0.4) > log(0.6) + penalty 

−0.398 > −0.222 −0.5
−0.398 > −0.722

log(0.4) < log(0.6)

Figure 2.12: An illustration of Viterbi decoder - finding an optimal path with choosing only
the most likely option, first case without any penalty, the second with its value -0.5.

The output of the neural network is vector of classes predicted for each frame (10 ms).
These outputs might include sequences with the length of only few frames, for example music
with the duration of 0.05 seconds. However, in the recordings of the real world situations
acoustic events doesn’t last this shortly and therefore in the case of a such prediction, it
is more likely that it is an incorrect output than a successful prediction of such a short
sequence.

The manipulation with the insertion penalty value helps with the elimination with such
outputs. Lowering this penalty (to negative values) means, that there will be less surplus
transitions, but more missing transitions according to the labels.

2.5 Implementation
All the algorithms used for this term project, including data preprocessing, feature extrac-
tion, neural network and evaluation, are written in Python language. These algorithms are
using mathematical tool-kits and libraries.

Specifically speaking, tools Sound eXchange3 (SoX) and FFmpeg4 were used for the
conversion and resampling to the desired audio format. Moreover, HTK Speech Recognition
Toolkit [20], which was used for manipulation with audio files, feature files and labels in

3http://sox.sourceforge.net/
4https://ffmpeg.org/
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Python. Another one was the Theano [1] library, providing tools necessary for neural
networks. This library interacts with other two used packages, NumPy5 and SciPy6, which
are package offering multi-dimensional arrays, resp. library for scientific computing.

The implementation is based on algorithms and libraries created and provided by BUT
Speech Processing Group7.

5http://www.numpy.org/
6https://www.scipy.org/
7http://speech.fit.vutbr.cz/
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Chapter 3

Experimentation

This is the core chapter of the thesis. It describes the performed experiments, the evaluation
of results and conclusions. As mentioned before, there were used two approaches differing
in the type of used neural network. Whereas a simple network was sufficient for the first
approach, the advanced approach required a multi-task network. All experiments were used
on two different databases.

3.1 Databases
The following sections describe datasets used in experiments. Source audio/video files with
corresponding annotation files were gathered, annotated and provided for experimental
purposes by BUT Speech Processing Group. From these files were created two databases,
used later in the experiments.

3.1.1 Diverse Audio Database

The purpose of the experiments on this database is to train the network to detect the speech
and later other acoustic events especially on the data with high amount of noise. The first
database originally consists of 169 audio files with each recording lasting 180 seconds and
with overall duration of 5 hours and 45 minutes.

Description

This database has a great variety of recordings with different acoustic events. The majority
of recordings are news reports and amateur footages capturing warfare in the Middle East.
The language spoken in these recordings varies as well, starting with Asian (mostly Arabic),
continuing with several European (e.g. English, French, Dutch) and ending with African
dialects. These footages are rich in both stationary (e.g. babbling) and non-stationary
noises (gunfire, explosions, etc.) and also greatly differ in the audio quality. In addition,
there are occasional music sequences with or without singing. The database also includes
samples from documentary films with the presence of animal and nature sounds. This
database is rather small, but very diverse in the matter of acoustic events.

The desired 16-bit, 8kHz mono waveform files were extracted from the source au-
dio/video files in AVI format.
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Table 3.1: Table with enumeration and description of all Diverse Audio Database sound
events and characteristics, which can possible occur during the classification process.

Group Class Description

speech speech The presence of a human voice (not singing).
non-speech The absence of a human voice.

speech type

monolog Monologue voice tone.
conversational Voice tone suggesting an ongoing conversation.
emotional An expressive tone (e.g. yelling).
crosstalk Presence of multiple speakers at once.
none The absence of speech.

music
music The presence of music (without singing).
song The presence of music with singing.
none The absence of any sort of music.

microphone

close Speaker is at a close distance .
distant Speaker is located more distantly.
telephone Speech on telephone.
none The absence of speech.

non-stationary noise

vehicle Sounds of moving cars, helicopters, etc.
gun The sound of a gunfire including explosions.
animal The natural sounds of animals.
human Human-noise (e.g. coughing).
other Sounds not belonging to any of previous classes.
none The absence of non-stationary noise.

stationary noise

nature The sounds of nature.
babbling The indistinguishable human voice.
other Other types of distracting noise.
none The absence of stationary noise.

Classes

The database’s annotation files provides 10 different characteristics. Three of them are
discarded. The stationary noise level characteristics isn’t related to the primary task,
speech detection, therefore it isn’t beneficial for the purpose of the thesis. The remaining
two characteristics are on the other hand related to the speech, the age and the gender of
speaker is rather useless in VAD. The class groups chosen for the classification are in the
following table:

Notably, the structure of the network’s output layer depends on the concept of these
groups, therefore it should be chosen wisely. Of course, classes within the same group are
mutually excluded, although groups are not. According to the fundamentals of multi-task
networks, there must be active one class of every group in the same frame.

Therefore the last class of each group is intended to signalize the absence of the sound
event (this class is generally called ”none“, with the exception of the speech group, where
this class is named ”non-speech“). Also, the speech type group is a subgroup of the speech
one, which implies that the last class is equivalent to the non-speech class and the remaining
classes are subsets of the speech class. Of course, classes within the same group are mutually
excluded, however groups are not,

Only the first class group (the speech and non-speech detection) is evaluated in the
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simple approach, the advanced focuses on all six groups.
The annotation files, which were provided with the source audio files, were processed

into transcription files called Master label files (MLFs), each corresponding to a specific
class group.

The purpose of this file is to carry the expected correct classes outputs (referred as
labels) according to the audio segment defined by a start and an end frame, which is used
during the training and testing process.

The structure of MLF starts with MLF tag o the first line. Afterwards, there are file
names of the recording labels in the each line with corresponding segment dictionary, ended
by a dot mark. A dictionary segment has three parts: on the left a starting frame in 100
nanoseconds, in the middle an ending frame in 100 nanoseconds and a class assigned to this
segment.

#!MLF!#
"*/fc9480e70de1ca..._001.lab"
0 144700000 none
144700000 236700000 music
236700000 781250000 none
781250000 868520000 music
868520000 1223000000 none
1223000000 1259480000 music
1259480000 1800000000 none
.
"*/39b76b20bafa2b..._003.lab"

...

speech

#!MLF!#
"*/fc9480e70de1ca..._001.lab"
0 9400000 nonspeech
9400000 15600000 speech
15600000 26900000 nonspeech
26900000 38300000 speech
38300000 56800000 nonspeech
56800000 64800000 speech
64800000 64950000 nonspeech
64950000 84650000 speech
84650000 84850000 nonspeech

...

music

#!MLF!#
"*/fc9480e70de1ca..._001.lab"
0 5900000 gun
5900000 15800000 none
15800000 21800000 gun
21800000 42900000 none
42900000 50000000 gun
50000000 97400000 none
97400000 106100000 gun
106100000 121050000 none
121050000 131350000 gun

...

non-st noise

Figure 3.1: Examples of MLF of the speech, music and non-stationary noise groups in
following format: a MLF tag, a filename, a dictionary (a start frame, an end frame and a
class ), an end of file tag.

Datasets

The database has to be divided into three datasets, due to the process of classification.
The variety of Diverse Audio Database data is not caused by the data variety within in-
dividual recordings, but by including diverse recordings in the database. For example, in
one recording there might be 10 000 frames of a specific class, however in the following five
recordings there is non of them. As a result the database suffers from an unbalanced data
distribution. This is a problem for the neural network learning process, because it inflicts
over-fitting to the class with the major probability in the dataset.

The best solution would be to acquire more balanced data. On the other hand, the
easiest solution is an over-sampling (duplicating suitable recordings) and an under-sampling
(removing of unsuitable recordings) [5]. However, the first method cannot be used because
of the multiple tasks. More specifically, where the addition of one recording would improve
classification of one task, it would also diminish the classification of other tasks. The under-
sampling method is performed in order to balance the data distribution and prevent this
over-fitting phenomenon. The under-sampling needs to be applied accordingly to every
speech group, therefore the number of suitable recordings is significantly lower as can be
seen in the Table 3.2. Which is also a potential problem for the learning process, as it might
stop before learning anything useful.
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Table 3.2: Comparison between the original and processed data duration

Class Full-size data duration Under-sampled data duration
all 8h 27m 3h 15m
speech 6h 04m 1h 43m
music 2h 12m 1h 18m
stationary noise 2h 05m 1h 46m

For this reason, one of the experiments will be performed regarding whether the under-
sampling actually helps and which datasets to use in the remaining experiments.

Three datasets are created from the full-size data: a training set (105 files), a cross-
validation set (30 files) and a testing set (34 files).

Similarly, the under-sampled data is also divided into three sets: a training dataset
of 40 recordings, a cross-validation dataset of 12 recordings and a testing dataset of 13
recordings.

Notably, the recordings in the testing datasets were intentionally chosen in the way
that they contain both extreme (with absence, resp. rich presence of classes) and average
samples for every class group.

Table 3.3: Comparison between the VAD experiment results performed on the full-size and
under-sampled training data. The original-size testing set was used for the evaluation of
both experiments, because of the higher number of recordings.

Data FAcc Hit rate BAcc
full-size 88.89% 28.51% 10.42%
under-sampled 89.81% 35.01% 17.03%

The results from the Table 3.3 suggest that the under-sampled datasets are indeed
more suitable, despite their smaller size. One more experiment will be conducted in order
to either confirm or disprove this statement. These results will be from the network using
multi-tasking.

Table 3.4: Comparison between the multi-task experiment results performed on the full-size
and under-sampled training data. The original-size testing set was used for the evaluation
of both experiments, because of the higher number of recordings.

Data Group FAcc Hit rate BAcc

full-size

baseline 87.82% 25.78% 6.51%
type 76.02% 26.54% 8.45%
music 65.86% 26.60% -129.26%
microphone 81.98% 28.37% 9.30%
non-st noise 81.08% 8.76% 3.85%
st noise 64.63% 13.24% 13.24%

under-sampled

baseline 89.07% 35.29% 17.70%
type 72.51% 31.89% 5.38%
music 64.77% 26.60% -143.09%
microphone 79.33% 40.42% 14.76%
non-st noise 80.21% 8.11% 4.42%
st noise 64.63% 13.24% 13.24%
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The comparison shown in the Table 3.3 confirms the previous statement. The under-
sampled datasets are more suitable for the upcoming experiments than the original-sized
datasets, thus they will be actually used. Only exception is the testing dataset, which will
be used from the original-sized, because it contains not only all of the recordings from the
down-sampled training set, but also additional 21 unique recordings. Which will provide a
more precise evaluation, because the class distribution of set doesn’t matter any more in
the testing phase.

3.1.2 Clean Radio Database

The second database will be used as a supplement to the noisy data the first database in
order to watch how does extending the dataset by more clean data alters the results. Clean
Radio Database is formed by 72 audio files with the duration approximately one hour,
together giving 71 hours and 41 minutes of recordings.

Description

This database consists of radio broadcast recordings in English, Arabic, Cuba Spanish,
Asian and African languages. Which include interviews, reports, songs and music. The
amount of noise in this database is significantly lower compared to the Diverse Audio
Database, since the recordings were taken from clear radio environment and the major
sound events are music and speech sequences.

The motivation of introducing this database with clean data is that even with the VAD
in noisy data being the main objective of this thesis, adding fairly distributed clean speech
data might prove beneficial as a supplement for the first database datasets.

The audio files were converted from RAW format to 16-bit monophonic audio files in
waveform format with 8kHz sample rate.

Classes

Annotation files of this database don’t include details about the type of speech and there
wasn’t present any noticeable non-stationary noise during the radio broadcast, therefore
there are five class groups in overall. It also differs in the structure of the group for stationary
noise, because the annotation files don’t differentiate between the types of this noise, which
results in detection either presence or absence of the stationary noise. Therefore, these class
groups can be classified in Clean Radio Database:

Datasets

In the contrast with Diverse Audio Database, this database has a balanced data distribution,
therefore adjusting datasets is not necessary.

This database has a low amount of noise and additionally has a fair distribution of the
speech and the music. Also, its size is approximately nine times larger than the size of
Diverse Audio Database. It can be presumed, that only a portion of data will be needed to
improve the training capability of Diverse Audio Database from the effectiveness perspective
without any drastic reduction of accuracy.
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Table 3.5: Table containing acoustic events and characteristics used in the classification
process of Clean Radio Database data, as they are divided into groups and their class, also
with their description.

Group Class Description

speech speech The presence of a human voice (not singing).
non-speech The absence of a human voice (including singing).

speech type

monolog Monologue voice tone.
conversational Voice tone suggesting an ongoing conversation.
emotional An expressive tone (e.g. yelling).
crosstalk Presence of multiple speakers at once.
none 4The absence of speech.

music
music The presence of music (without singing).
song The presence of music with singing.
none The absence of any sort of music.

microphone

close Speaker is at a close distance .
distant Speaker is located more distantly.
telephone Speech on telephone.
none The absence of speech.

st noise stationary noise The presence of stationary noise.
none The absence of stationary noise.

Table 3.6: Comparison between the original and processed data duration

Class Full-size data Reduced data
all 71h 41m 11h 56m
speech 32h 43m 5h 50m
music 33h 22m 6h 28m
stationary noise 4h 53m 1h 03m

Thus, as can be seen on the Table 3.6, the data distribution is persevered in the reduced
database and therefore it may suffice as a supplement for the datasets from Database. This
statement is the task of the following experiment, in which the database of the original size
is split into three sets of the following proportion of a training, a cross-validation and a
testing set: 40, 15 and 17 and the data of the reduced size: 8, 2, 2, both in the same way
as in the section 3.1.1.

Table 3.7: Comparison between the VAD experiment results performed on the full-size and
reduced training data. The original-size testing set was used for the evaluation of both
experiments, because of the higher number of recordings.

Data FAcc Hit rate BAcc
full-size 88.89% 28.51% 10.42%
under-sampled 89.81% 35.01% 17.03%

This database does not include a great variety of acoustic events, but provides a better
data distribution for the speech and music groups. This extension should improve the
speech and music detection, albeit lower the accuracy of the noise detection.
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3.1.3 Used datasets

In summary, the databases, which will be used for the upcoming experiments, are:

∙ The under-sampled noisy and diverse Diverse Audio Database (with overall duration
3h 15m), where the training dataset of 40 recordings, the cross-validation dataset
of 12 recordings and the testing dataset of 13 recordings will be used as a primary
experiment data.

∙ The reduced-sized clean and fairly-distributed Clean Radio Database (with overall
duration 11h 56m), where the training dataset of 8 recordings, the cross-validation
dataset of 2 recordings and the testing dataset of 2 recordings will be used as a
supplement data in order to improve results.

Table 3.8: Duration of the database versions used in the experiments - under-sampled
Diverse Audio Database and reduced Clean Radio Database.

Database Group Duration

Diverse Audio Database

all 3h 15m
speech 1h 43m
music 1h 18m
stationary noise 1h 46m

Clean Radio Database

all 11h 56m
speech 5h 50m
music 6h 28m
stationary noise 1h 03m

3.2 Metrics
There are totally three metrics used during the experimentation phase. First is frame-based
and the remaining two are based on segments.

The first metric used for evaluation is a frame accuracy (FAcc). It simply compares the
outputs of the network to the labels and represents the percentage of correctly predicted
classes on all frames.

The next step is a process called segmentation, which means creating sequences of classes
from the output in a vector, where every class instance represents a prediction made from
a single frame.

The second metric is a boundary accuracy (BAcc). The boundaries between sequences
created by the segmentation process both from predicted outputs and labels are organized
into an alignment of pair of boundaries. They are organized in a way that in the case
the distance between them is lower than a threshold, they are paired, otherwise they are
marked as unpaired. Afterwards, the algorithm counts the number of pairs with the same
classes (known as correct hits) ℎ𝑖𝑡, substitutions of classes 𝑠𝑢𝑏, redundant insertions of the
predicted boundaries 𝑖𝑛𝑠 and label boundaries without a pair, marked as deletions 𝑑𝑒𝑙. The
BAcc (%) is defined as:

𝐵𝐴𝑐𝑐 ≡ 100 · (1− 𝑖𝑛𝑠+ 𝑑𝑒𝑙 + 𝑠𝑢𝑏

ℎ𝑖𝑡+ 𝑑𝑒𝑙 + 𝑠𝑢𝑏
) ≡ 100 · ℎ𝑖𝑡− 𝑖𝑛𝑠

ℎ𝑖𝑡+ 𝑑𝑒𝑙 + 𝑠𝑢𝑏
(3.1)
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Figure 3.2: An illustration of insertions, a hit, a deletion and a substitution instances during
the calculation of BAcc.

Notably, this formula calculates the accuracy with respect to the total number of refer-
enced sequence boundaries, therefore the results might be below 0.0%. Which would mean,
that the number of insertions is higher than number of hits. The BAcc results from a
successfully learnt neural network are supposed to be positive values, otherwise negative.

Also, as can be seen in Figure 3.2 between 100th and 150th frame, if one output bound-
ary is being misplaced, while having one corresponding label boundary, it is counted both
as an insertion and as a deletion this implementation of the BAcc. Therefore the error is
markedly higher than in the BAcc variant counting it as only one miss.

And the last used metric is a hit rate. Which is the ratio between the correctly predicted
segment boundaries and the all predicted segment boundaries. The hit rate is defined
accordingly to the expressions established in the second metric:

ℎ𝑖𝑡𝑟𝑎𝑡𝑒 ≡ 100 · ℎ𝑖𝑡

ℎ𝑖𝑡+ 𝑑𝑒𝑙 + 𝑠𝑢𝑏
(3.2)

The goal is to correctly detect the whole segments, therefore the most important is the
BAcc metric. Moreover, even high accuracy doesn’t ensure the absence of over-fitting or
correctly predicted segments and the hit rate of boundaries is a component of the more
complex BER. Thus, all the experiment decisions will be made with respect to the BAcc.

3.3 The simple approach
The first objective is to experiment with a neural network as an implementation of VAD
algorithm. A simple network with two output nodes is used in this approach. It learns how
to predict only one of two classes (speech or non-speech) belonging to the same VAD class
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group. The experiments will be performed on both databases described before. These are
the baseline experiments for the further experimenting.

This section starts with the experiment of the VAD on this simple neural network. The
second experiment will be the VAD on the extended datasets created from Diverse Audio
Database and Clean Radio Database all together. And the last experiment will test the
influence of the network parameter values. Finally, the results with the conclusion will be
discussed in the last subsection.

Notably, the alignment pairing threshold and the Viterbi insertion penalty is implicitly
set to 20, respectively -20.0, unless stated otherwise.

The features used as input to the network’s first layer were extracted from the input
signal, by using 23 Mel-scale filterbank, where the frame window length was 25 ms and with
10 ms overlapping and by applying logarithm function afterwards. Finally, these features (in
HTK known as FBANK), now as network’s inputs, are pre-processed by applying Hamming
DCT of 16 basis functions, which results in input vectors with size 368.

Windowing
size: 25ms
overlap: 10ms

FFT

23 Mel-scale 
  filterbank

LogHamming
  DCT 16

input signal

      features
(vectors of size 368)

Figure 3.3: The process of the feature extraction.

The structure of neural network used in this experiment is composed of input vectors
length 368, as stated above, one hidden layer consisting of 500 units and 2 output units
consisting of two classes - speech and non-speech.

3.3.1 Diverse Audio Database voice activity detection experiment

The first experiment is designed to show the efficiency of the neural network in the detection
of speech and non-speech sequences. With the Diverse Audio Database being rather small
and noisy, the results will be later compared to the results of the second larger database.
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With the network parameters set, the network’s learning process ended after 11 itera-
tions.

Table 3.9: Frame accuracy and BAcc of the first experiment - VAD on the Diverse Audio
Database

FAcc Hit rate BAcc
89.81% 35.01% 17.03%

gunfire missile warfare noise

Figure 3.4: An example of comparison between labels and network outputs of the speech
detection in a 20 seconds long passage from a warfare footage. This recording includes
gunfire, launch of missile and more warfare noise. The results for this input are: FAcc
89.57%, hit rate 8.11% and BAcc -78.38%.

According to the results, which can be seen in Table 3.9 (FAcc 89.81% and BAcc be-
ing positive) and an example of visual comparison of a reference and a network output
demonstrated in the Figure 3.4, the network successfully adapted VAD on Diverse Audio
Database.
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music song music song

Figure 3.5: An example of comparison between labels and network outputs of the speech
detection in a 20 seconds long passage from a radio recording. Whole passage consists of
music with singing sequences.

Probably the most problematic issue for the classifier is to correctly detect a non-speech
in a song segment. As shown in the Figure 3.5, the classifier mistakenly predicts the
sequence of singing as speech. The voiceless music is correctly identified as a non-speech.
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jet helicopter jet vehicle

Figure 3.6: An example of comparison between labels and network outputs of the speech
detection in a 20 seconds long passage from a warfare footage. This recording includes
gunfire, launch of missile and more warfare noise. The results are: FAcc 93.45, hit rate
66.67% and BAcc 54.17%.

On the other hand, the detector seems to respond relatively accurately to the noise. An
example can be seen in the Figure 3.6, which demonstrates a report with a sound of jet and
helicopter flying and a heavy vehicle moving in the background. In this case, the speech
segments are recognized correctly, despite the high noise.

3.3.2 Network parameter experiments

In these experiments, the objective is to watch how does the network size changes the
results. The experimenting with network settings is performed on Diverse Audio Database,
because a smaller size and a greater diversity are promising more interesting results. The
experimentation behind choosing the insertion penalty and threshold to -20.0 and 20 frames
respectively is also demonstrated in this subsection.
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Figure 3.7: Dependency of the number of hidden layer units on the accuracy on the
Database 1

As can be seen in the Figure 3.7, the neural network results does not improve until 1000
hidden units, when training on small Diverse Audio Database.

Figure 3.8: Dependency of the number of hidden layers on the accuracy on the Diverse
Audio Database
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As shown in the Figure 3.8, the network gets over-trained even with the hidden layer
size of 2. The hidden layer of size 500 units has been chosen for experimenting with the
number of hidden layers.

Figure 3.9: Dependency of the threshold on the accuracy on the Diverse Audio Database

Nextly, an illustration of tuning the threshold in order to achieve better BAcc is in the
Figure 3.9. Starting on 10 frames (10ms), the results become better with wider threshold,
however the acceptable threshold is 20 frames (200ms).
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Figure 3.10: Dependency of the insertion penalty on the accuracy on the Diverse Audio
Database

The last parameter observation, in the Figure 3.10, is influence of the insertion penalty
on the BAcc. The results were slightly improving to the peak at value -20.0, than they
started to drastically decrease.

3.3.3 Summary

The simple approach experiments proved that the neural network has successfully learned to
detect the speech and the non-speech. Furthermore, it is capable of the VAD for both noisy
and clean data. It has problems with sequences of singing, low quality speech recording
with reverberation, multiple sources of heavy noise. And in the next analysis, the dataset
is too small and prone to over-fitting to use more hidden layers than 1. Lastly, the insertion
penalty -20.0 and threshold 20 frames are the mos suitable values of these parameters
accordingly to the current scenario.

3.4 The advanced approach
In this section, there will be details about experimentations towards the multi-task neural
network. The purpose of first experiment will be comparison of results with and without
using more tasks, which will lead to decision whether is this method beneficial for the
VAD. The interest of the next experiment will be to observe the accuracy of the multi-task
acoustic event detection. Experimenting on the extended database, consisting from Diverse
Audio Database datasets and additional Clean Radio Database data, will be approached
by the third experiment. The final test will compare the VAD and sound events detection
results between noisy and clean data.
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The neural network has the same structure as in the simple approach with the exception
of varying size of output layer.

3.4.1 Diverse Audio Database multi-task voice activity detection
experiment

The aim of this experiment is to show whether is the multi-task beneficial for the speech
detection and which of the secondary tasks influences it the most. The results of VAD from
the simple approach experiment (the subsection 3.3.1) are used as a baseline.

One of the objectives of this thesis is - does the multi-tasking improve the efficiency
of VAD? To answer this question, the experiment begins with the training of the neural
network to detect all class groups. Henceforth, the incremental experimenting succeeds.
Which consists of training the network always on only one class group in addition to the
VAD. This part of the experiment is supposed to unravel which of the class groups influences
the primary one the most. The learning process of these experiment ended after sixth
iteration in the most cases.

Only the outputs corresponding to the speech detection are kept for the evaluation, the
outputs of other groups are discarded.

Table 3.10: Results of the VAD and the difference of BAcc compared to the baseline
experiment. Included results are from overall and incremental experimenting.

Task FAcc Hit rate BAcc BAcc diff
baseline 89.81% 35.01% 17.03% 0.0
all 89.07% 35.29% 17.70% +0.67%
type 89.84% 36.87% 17.94% +0.53%
music 87.17% 30.61% 14.41% -2.62%
microphone 89.70% 37.92% 19.06% +2.03%
non-st noise 89.73% 34.52% 17.42% +0.39%
st noise 88.82% 34.17% 16.89% -0.24%

The results demonstrated in the Table 3.10 indicate, that even if performed on a small
dataset, the multi-task learning actually improves the accuracy of VAD, specifically the
BAcc by 0.67%. Moreover, most secondary tasks improved the boundary accuracy of the
VAD. The highest performance boost can be observed in the case of the microphone distance
as a supportive task, not only improving the BER by 2.03%, but also enhancing the hit
rate by 2.91%, which is this experiment’s maximum.

An interesting observation occurred - while the speech type and the microphone distance
are obviously correlated to the speech detection and both have benefiting effect, on the other
hand class groups uncorrelated to the speech with the exception of non-stationary noise tend
to diminish the results.

Another experiment will be conducted in order to study this observation further. The
secondary tasks will be chosen according to whether they are related to the speech. The
first multi-task will learn to detect the speech type and the microphone distance in addition
to the VAD. The second will focus on the remaining uncorrelated groups together with the
VAD.
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Table 3.11: Results of the VAD with the correlated and uncorrelated groups as the sec-
ondary tasks, and the difference of BER compared to the baseline experiment.

Task FAcc Hit rate BAcc BAcc diff
baseline 89.81% 35.01% 17.03% 0.0
all 89.07% 35.29% 17.70% +0.67%
correlated 89.72% 38.13% 18.89% +1.86%
uncorrelated 88.49% 34.66% 16.61% -0.42%

An additional experiment, which can be seen in the Table 3.11, was performed in interest
of sustaining the previously stated observation. The uncorrelated groups (music and noises)
actually have even a negative impact on the VAD resulting in the BAcc lower by 0.42%
than the baseline. In contrast, the correlated groups achieved the improvement of the BAcc
by 1.86%. These results confirm that the secondary task relation is an important factor in
the matter of improving the primary task accuracy.

3.4.2 Diverse Audio Database multi-task acoustic event detection
experiment

The accuracy of acoustic events besides the speech is also one of the objectives. Experiments
towards this topic are located in this subsection.

The first experiment is performed on the multi-task network with only two tasks. Each
test evaluates the accuracy of one secondary task, which has been trained simultaneously
only with the primary task.

Table 3.12: Results of acoustic events after the multi-task learning only with the speech.

Task FAcc Hit rate BAcc
type 73.27% 33.02% 6.75%
music 64.47% 27.13% -136.17%
microphone 79.57% 42.07% 16.81%
non-st noise 82.26% 11.79% 5.90%
st noise 64.53% 13.24% 11.62%

And finally, the experiment, in which the network learned all the tasks in parallel.

Table 3.13: Results of all secondary tasks after the multi-task learning all simultaneously
with their comparison to result of training the speech in pair with each another task.

Task FAcc Hit rate BAcc BAcc diff
type 72.51% 31.89% 5.38% -0.67%
music 64.77% 26.60% -143.09% -6.52%
microphone 79.33% 40.42% 14.76% -2.05%
non-st noise 80.21% 8.11% 4.42% -1.48%
st noise 64.63% 13.24% 13.24% +1.62%

As shown above in the Table 3.13, every task has worse results than the previous
experiment (in the Table 3.12) with the exception of the stationary noise, which has actually
improved BAcc by 1.62%.
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The network also successfully learned to predict the type of speech and the speaker’s
distance from the microphone. The non-stationary and stationary noise learned to detect
only some of their classes, due to the over-fitting. On the contrary, tests shown that the net-
work completely failed to learn the music detection. It is probably caused by that the music
class involves both background and foreground music, however the background doesn’t have
as sharp frequency amplitudes as the foreground and it can be easily misinterpreted as a
non-music sequence.

3.4.3 Extended database multi-task acoustic event detection
experiment

The dataset from Diverse Audio Database extended by 12 recordings from Clean Radio
Database is used in this experiment. The goal is to find out, how does extending the
dataset by a clean and more fairly distributed data alters the results.

Both experiments are evaluated on the extended testing set.

Table 3.14: Results of the all acoustic events after the multi-task learning. Note: the
insertion penalty used for the music evaluation was -100.0.

Task FAcc Hit rate BAcc
speech 89.27% 37.04% 19.10%
type 72.96% 33.56% 7.22%
music 70.93% 30.11% -12.37%
microphone 79.57% 42.46% 17.90%
st noise 64.50% 13.96% 9.97%

Table 3.15: Results of the all acoustic events after the multi-task learning. Note: the
insertion penalty used for the music evaluation was -100.0.

Task FAcc Hit rate BAcc BAcc diff
speech 84.07% 19.87% 1.08% -18.02%
type 72.73% 16.80% -2.86% -10.08%
music 60.63% 26.06% -51.06% -38.69%
microphone 75.71% 17.48% -5.46% -23.36%
st noise 64.12% 14.25% 1.42% -8.55%

The testing was performed on the same dataset as in the previous experiments. The
results from Table 3.15 in comparison with the Table 3.10 are worse. It might be because
of the great difference between the diversity and noisiness of the first and second database.

3.4.4 Noisy and clean multi-task acoustic event detection
experiment

This subsection aims for the comparison of the comparison between the VAD performed on
the noisy and clean data. Two new testing datasets were created specially for the following
experiment. The first dataset contains averagely or severely noised data, whereas the second
dataset consists of clean data, without any significant noise.
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Table 3.16: Results of the all acoustic events after the multi-task learning evaluated on the
clean dataset.

Task FAcc Hit rate BAcc
baseline 93.59% 36.12% 21.32%
type 82.02% 39.47% 10.35%
music 51.79% 15.70% -75.21%
microphone 90.31% 50.90% 23.06%

Testing the non-stationary and stationary class groups doesn’t make sense in this case,
therefore it was excluded.

Table 3.17: Results of the all acoustic events after the multi-task learning evaluated on the
noisy dataset.

Task FAcc Hit rate BAcc
baseline 85.49% 34.78% 15.42%
type 65.00% 27.40% 2.44%
music 75.03% 46.27% -265.67%
microphone 70.66% 33.72% 9.47%

The results, which are demonstrated in the Table 3.17, confirm that the speech detection
is successfully detected both in the clean and noisy data. The detection in the clean data
is more accurate, specifically speaking result of every metric is higher: the FAcc by 8.10%,
the hit rate by 234% and the BAcc by 5.50%.

3.4.5 Summary

On the basis of the previous experiments, it can be concluded that multi-task system in-
cluding involved acoustic events is beneficial for the VAD. The first experiment showed that
the speech type and the microphone distance characteristics improve the VAD’s accuracy.
The music and noise in the contrary diminish the results. Which altogether indicated that
the correlated events have potential to be beneficial. Henceforth, the consecutive experi-
ment based on comparing the correlated and uncorrelated groups confirmed this statement.
Extending the database by clean data was rather unsuccessful, probably because of the lack
of noise. Which escalated into decreased accuracy in the noisy testing dataset. In the final
analysis, it was proven, that the neural network is capable of performing the VAD both on
clean and noisy data.

3.5 The experimentation conclusion
This section summarizes every important observation during the experimentation phase.

The VAD was successfully implemented by using a simple neural network. The network
learned how to predict the speech class with the BAcc 10.24%, hit rate 28.51% and FAcc
88.89% despite the small size and the diversity of Diverse Audio Database. After applying
an under-sampling method on the original database, the detection even reached the BAcc
of 17.03%, hit rate 35.01% and FAcc 89.81%. Moreover, the under-sampled database was
more successful also in the multi-tasking with the Bacc 17.70% compared to 6.51% BAcc
of thefull-sized data.
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However, the size and diversity of data resulted into over-fitting while using more than
one hidden layer. While adding the hidden layer units, the network’s performance didn’t
improve until 1000 nodes.

The threshold started to converge to the maximum accuracy at 80 frames and the
insertion penalty achieved peak with value -20.0.

In the second phase, the adjusted network also coped with multi-tasking and improved
the BAcc to 17.70% and even 19.06%, when using the microphone distance as the only
secondary task during the incremental experimenting. On the other hand, two of five
secondary tasks, music and stationary noise, even diminished the accuracy. The worst case
was registered with the music secondary task, decreasing the BAcc by -2.62%. As the
experiments had shown, the most beneficial class groups was the speech type microphone
distance, thanks to it’s correlation to the speech task, enhancing the baseline BAcc by
2.03%. The follow-up experiment proved that the relation between the primary task and
the supplementary task really matters, because the group of correlated tasks bettered the
BAcc by 1.86%, on the other side the uncorrelated lowed by 0.24%.

Also the uncorrelated tasks completely failed to be successfully detected. The lowest
accuracy was in the case of the music during the full multi-task, where the number of
insertion was even higher then hits, resulting into the BAcc -143.09%. Neither of noise
events didn’t have a negative BAcc, however their hit rates were both under 10%. On
the contrary, the best results, the BAcc 16.81% and hit rate 42.07%, had the microphone
distance task while trained only with the speech.

The multi-tasking turned out to be a boost only for the stationary noise, improving the
BAcc by 1.62%, the accuracy of every other secondary task decreased.

According to the different distribution of noise, extending the training dataset by data
from Clean Radio Database didn’t prove to be useful, due to the fact that every results
decreased.

Finally, the objective achievement of the speech detection was confirmed in the last
experiment dividing the testing dataset into the noisy and clean part. Where the baseline
achieved the BAcc 21.32%, hit rate 36.12% and FAcc 93.53% in the clean data. Although
the results can’t be compared due to the different testing sets, the results BAcc 15.42%, hit
rate 34.78% and the FAcc 85.49% confirm success in this cas as well.
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Chapter 4

Conclusion

The main aim of this thesis was to successfully implement the VAD by neural network.
Train it on noisy data and predict the outputs correctly. The observations of the behaviour
of the multi-task network were also a part of the objective.

After a chapter dedicated to the theoretical basis, mentioning the feature extraction,
classification methods, neural networks and post-processing, the experiments were per-
formed.

The experimentation phase confirmed achieving the outlined objectives. The first ex-
periment showed that the neural network could be used as a voice activity detector. The
advanced approach demonstrated how is the multi-tasking beneficial for the speech detec-
tion. The best results were achieved with the correlated class group as the secondary tasks.
Unfortunately, the experiments also showed that the network wasn’t able to learn prediction
of music and stationary noise. Other secondary tasks were more or less successful.

The final analysis demonstrated that although with slightly worse results, the network
managed to detect the speech both in clean and noisy data. In a word, the main objective
of this thesis is accomplished as well.

The future plans of this research begin with collecting more data, preferably with a
better class distribution, so it is easier to manipulate with datasets. According to the results
of experimentation, the detection of acoustic events with a multi-task neural network seems
promising. However, database size is the weakness of otherwise excellent tool such a neural
network truly is. There is a potential of satisfyingly accurate results with a wider database
with a fair distribution of classes.

Anther option is to try to minimize the diversity between the classes by implementing
a more sophisticated method than an under-sampling.

An obvious possible continuation of this research is to perform experiments with new
class groups or divide the existing ones into more specific classes.

These suggestion are, however, only a mere insight of all the possible options.
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Appendix A

Contents of the CD

The attached CD contains:

∙ PDF version of this document

∙ LATEX version of this document

∙ Python scripts directory

∙ experimentation results directory

∙ demonstration video

∙ A2 poster
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Appendix B

Graphical examples of outputs

B.1 Speech detection

speech

non-speech

speech

non-speech

Figure B.1: An example of the speech detection output, labels and audio signal from the
100th second to 120th second. This footage is from documentary film with natural noises,
the most noticeable are elephant sounds starting approximately in 108th second.
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B.2 Music detection

speech

music

none

music

none

song

song

Figure B.2: An example of the music detection output, labels and audio signal from the
20th second to 40th second. This part is from a radio with music, the example illustrates
a problem of recognizing background music, the only detected sequence is a noticeable
foreground music located around 30th second.
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B.3 Music detection

none

vehicle

gun
animal
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other

none

vehicle

gun
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other

Figure B.3: An example of the non-stationary detection output, labels and audio signal
from the first 20 seconds. This is a footage recording a warfare in the Middle East. The
class ”gun“ correctly classified instances of gunfire and tank firing.
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