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Abstract 
This thesis follows the trend of last decades in using neural networks in order to detect 
speech in noisy data. The text begins with basic knowledge about discussed topics, such 
as audio features, machine learning and neural networks. The network parameters are 
examined in order to provide the most suitable background for the experiments. The main 
focus of the experiments is to observe the influence of various sound events on the speech 
detection on a small, diverse database. Where the sound events correlated to the speech 
proved to be the most beneficial. In addition, the accuracy of the acoustic events, previously 
used only as a supplement to the speech, is also a part of experimentation. The experiment 
of examining the extending of the datasets by more fairly distributed data shows that it 
doesn't guarantee an improvement. And finally, the last experiment demonstrates that the 
network indeed succeeded in learning how to predict voice activity in both clean and noisy 
data. 

Abstrakt 
Tato práce navazuje na trend posledních desetiletí ve využívaní neuronových sítí za účelem 
odhalení řeči v zašuměných datech. Text začíná základními poznatky o probíraných té­
matech, jako jsou audio příznaky, strojové učení a neuronové sítě. Síťové parametry jsou 
zkoumány s cílem poskytnout nejvhodnější zázemí pro experimenty. Hlavní úkol exper­
imentů je sledovat vliv různých zvukových událostí na detekci řeči na malé a různorodé 
databáze. Přičemž se ukázalo, že nejvýhodnější jsou zvukové události v korelaci s řečí. 
Kromě toho, přesnost akustických událostí, dříve použita pouze jako doplněk k přesnosti 
řeči, je také součástí experimentování. Experiment zkoumání datových sad rozšířených 
o více spravedlivě rozděleny data ukázal, že samotné rozšíření nezaručuje zlepšení. Na 
závěr, poslední experiment demonstruje, že síti se skutečně podařilo naučit, jak předpovědět 
hlasové aktivity v obou případech čistých i zašuměných dat. 
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Chapter 1 

Introduction 

Since the invention of a computer, scientists tried to use its computing power to achieve 
things unimaginable before. Computers dramatically accelerated technology researches in 
various industries, e.g. medical, military and space industry. 

However, some fields didn't seem as promising as was hoped for. Specifically, computer 
vision and speech recognition, which proved to be too difficult to be solved by regular rule-
based systems. To achieve this, it would require to simulate the activity of human brain, 
specifically neural networks. There was an idea of creating an artificial neural network, but 
it required much higher performance than the technology back then offered. 

As the time passed, the technology allowed to develop far more powerful computers every 
year. Therefore, a great progress in the field of speech (voice, generally) recognition thanks 
to the using the artificial neural networks in the last decade was noted. These achievements 
can improve life in many ways, such as voice remote control and speech-to-text processing. 

Despite the progress, the efforts for better results still continue and many different 
approaches of improving the accuracy are studied. The main motivation behind this thesis 
is to contribute to this topic by experimenting with parallelism in the neural networks in 
order to better the results. Details of the objectives will be described in the following 
section. 

The structure of this thesis is logically divided into three more chapters, besides the 
introduction. 

The second chapter is dedicated to the theoretical background of this thesis, more 
specifically a basic knowledge of the detection process. This chapter describes the feature 
extraction, some basic division of classification methods used in machine learning with the 
emphasis on the neural networks and finally the post-processing of the outputs. The last 
section summarizes the implementation details, the programming language and tools used 
in this thesis. 

The third chapter is the core chapter, since all the important experiments are included. 
In the final chapter is the recapitulation of results and achieved objectives with the 

ultimate conclusion. 

1.1 A i m of the thesis 

The main aim of this thesis is to experiment with neural networks in the matter of the 
detection of acoustic events. This aim consists of several lesser steps, objectives. Which 
are described in the following sections. 
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1.1.1 Voice activity detection 

The first and also primary objective is to detect the presence of human speech sequences 
in the given input signal with emphasis on noisy data. Voice activity detection (VAD) 
[11], also known as speech activity detection, is a process, which determines the presence 
of human speech in an input audio signal. 

V A D has a wide field of use in communication, such as speech coding, speech enhance­
ment, speech recognition or real-time VoIP applications. 

The approach to this matter can differ according to the quality of the input signal. 
While receiving a clean input, recorded in a quiet environment, it is easier to successfully 
detect speech, compared to noisy record capturing a dialogue, with a city traffic acoustic 
events as its background. Which means, that especially in the second case, V A D is not as 
trivial task as it seems and most of the V A D algorithms, fail with the increased amount of 
noise. 

1.1.2 Acoustic event detection 

Next step is to extent the classification set (so far composed of the speech and the non-speech 
class) by additional groups of sound events. This extension includes groups correlated to 
the speech class, e.g. the conversational tone of speech, and on the other hand, the type 
of noise or music during the non-speech sequence. The aim of the acoustic event detection 
(AED) is to identify the sequential segments of of sound events present in audio input. 

The neural network will be adjusted to be able to detect classes of each group simulta­
neously, which is also the second objective of this thesis. 

1.1.3 Influence on V A D 

If these objectives are successful, then the third objective will be to determine, how is the 
primary task, the speech classification, influenced by the secondary tasks, the detection 
of other acoustic events. And, finally, whether they improve the accuracy of the speech 
detection and whether it is regarding the relation between the primary and the secondary 
task. 

1.1.4 Noisy and clean evaluation 

Moreover, these experiments will be conducted on a diverse data, therefore it will be also 
possible to divide data into noisy and clean datasets and compare results produced from 
both types of data. And the last, but not least objective will be to decide whether is the 
speech detection successful on the noisy data. 
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Chapter 2 

Detection process 

This chapter is addressed to the process of detection in the matter of speech and acoustic 
events. In the last years, the speech and acoustic event detection is increasingly being used 
in many fields. Therefore, there exists many different methods. In the following sections, 
two main detection steps - feature extraction and classification, are described. The last 
step, although optional, is described in the last section. 

non-speech 

s p ee ch 
i i i 

i i i i 
yelling i yell in 

20000' 

E < 

noise 

Figure 2.1: A n example of the detection of speech in the input audio signal with present 
various background sounds. 
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2.1 Feature extraction 

The first procedure is a feature extraction, which means acquiring the acoustic features 
from the audio signal, so that it can be processed by a classification algorithm. 

Because of the constant changes in the audio signal, the signal is divided into frames, 
where presumably the vocal-tract parameters change less, compared to the whole signal. 
These frames are overlapping segments, generally several tens long. Next step is to compute 
a power spectrum of each frame. This periodogram estimate identifies which frequencies 
are present in the frame. 

The difference between two close frequencies is hardly distinguishable, which is getting 
even more noticeable with higher frequencies. This is why a Mel-scale filterbank[16] is 
applied. Each of filters middle frequency is placed in the way, so that they follow the 
Mel scale. Which means that the filterbank shows different perceptual effects at different 
frequency bands. 

Fig. 5.3 Mel-Scale Filter Bank 

Figure 2.2: Mel-scale filterbank1. 

The length of output is corresponding to the number of used filters. And after applying 
the logarithm on these outputs, the result is log frequency filter bank parameters ( F B A N K ) . 
Which is the first of two types of features widely used in speech recognition systems, which 
have been proven to be a good representation of speech spectral structure. 

x h t t p : / / w w w . e e . c o l u m b i a . e d u / l n / r o s a / d o c / H T K B o o k 2 1 / n o d e 5 4 . h t m l 

G 

http://www.ee.columbia.edu/ln/rosa/doc/HTKBook21/


Example: Mel-Frequency Cepstral 
Coefficients (MFCC) 

Figure 2.3: The steps of extraction of the M F C C features2. 

Although, often are desired cepstral parameters, so the next step is to calculate Mel-
Frequency Cepstral Coefficients (MFCCs) by using the Discrete Cosine Transform on the 
log interbank amplitudes. 

F B A N K s and M F C C s are the most common types of features used in speech recognition 
and A E D . 

2.2 Classification methods 

Next step is the classification. There are several techniques based on different approaches 
[11], while they can be divided into two main groups: 

• Statistical modelling 

• Machine learning 

Techniques of both approaches are sensitive to noise, because they are based on the 
learning from the training data, where it is not possible to contain all noisy scenarios. 

In the following section will be shown examples of each group, however only the tech­
nique of neural networks from the machine learning group will be discussed in detail. 

2.2.1 Statistical modelling 

A statistical modelling system focuses on inferring the process how has been the given data 
collected. It uses probability functions to determine the most likely output. The most 

2http://slideplayer.com/slide/4966500/ 
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common model is Hidden Markov Model [18]. 
The Markov model is a finite state automaton consisting of states, which directly corre­

spond to observable events, inputs and transitions with probabilities between them. How­
ever, in the Hidden Markov model, the states are abstract, separated from observations, 
where observations are probabilistic functions of the state. The H M M is specified by num­
ber of states, number of distinct observation symbols per state, in this case speech alphabet 
size. Besides that, it also includes model measures: a state transition probability distri­
bution, an observation symbol probability distribution in specific state and an initial state 
probability distribution. Hidden Markov models face and answers three questions: 

• Evaluation problem - calculating the probability of an observation sequence 

• Decoding problem - determining an optimal corresponding state sequence to an ob­
servation sequence 

• Training problem - updating the model measures to maximize a probability of an 
observation sequence 

This H M M method can be used in speech recognition with the goal of finding the most 
likely model according to the speech observation sequence. Where a is state representing a 
specific speech unit, e.g. a word. 

This method is used for experimenting in the fields of speech recognition - for example 
speech emotion [19] and the detection of common acoustic events in a real-life [15]. 

2.2.2 Machine learning 

The last approach is a machine learning. As opposed to the statistical modelling, the 
machine learning emphasizes on how to predict possible future data, instead of studying 
the process which was the given data generated by. 

First technique belonging to this group is support vector machine (SVM) [ ]. Which 
is a non-probabilistic binary classifier. Its goal is constructing a hyperplane in the feature 
space, which maximizes the margin between classes. SVMs are also especially used as a 
classification technique for speech and language detection [ ]. 

Another machine learning method is an artificial neural network, which is described 
in the following section 2.3. Nowadays, various types of neural networks are widely used 
in the applications performing the acoustic events detection. In the presence, the highest 
utilization is in the field of speech recognition [ ], which is based on the current trend of the 
developing voice-user interfaces for computers, smartphones and other devices and therefore 
competition between the leading companies in this field. Besides, the speech enhancement 
is another task implemented by neural network [6]. 

2.3 Neural networks 

This whole section is dedicated to the basic knowledge about neural networks, which are 
implemented as the classification algorithm used in experiments of this thesis. 

2.3.1 Biological neural networks 

For the beginning, it would be most suitable to start with the explanation, where does the 
idea of algorithm based on neural networks come from. Simply put, this concept comes 
(both figuratively and literally) from a human brain. 
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The study of artificial neural networks is based on the successfully working biological 
systems [12]. The reason why, is that these biological systems have several significant 
capabilities. 

• The brain consists of numerous nerve cells called neurons, that work massively in 
parallel. 

• The neural networks aren't explicitly programmed, they are using a learning procedure 
according to training samples. 

• The result of this learning is a high fault tolerance against noisy signals, because 
of the capability to generalize and associate data, which helps to find solutions for 
similar problems. 

Human nervous system consists of the central nervous system and the peripheral nervous 
system. 

The peripheral nervous system consists of nerves outside brain and spinal cord. They 
form a network, which is throughout the whole body. The central nervous system is formed 
by the brain and the spinal cord. This system stores and manages all information received 
from senses. 

As mentioned before, the base cell unit of the brain is called a neuron. The number of 
neurons in the human brain is approximately 10 1 1 units. These neurons have connections 
to other neurons and their function is to send and receive nerve signals. 

The direction of spreading the electrical information in the neuron starts with the den­
drites, which are structures in a tree-like form (dendrite tree), branching from the neuron's 
cell body (soma), where they afterwards transfer the received electrical signals. Neurons 
receive incoming neural pulses from the other neurons with connections called the synapses 
located at the dendrites. 

The cell nucleus is accumulating received signals until they reach a certain threshold 
value. Then the soma activates a electrical signal, which is transmitted to the surrounding 
connected neurons. 

The transferring to the neurons is accomplished due to the axon. The axon is a long 
and thin projection of the cell nucleus, which leads to dendrites. 

Dend r i t e 

N u c l e u s 

Figure 2.4: A biological neuron with the most important parts: cell body (soma), nucleus, 
dendrites and axon [12]. 
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The process of learning means that the synapses' effectiveness is changed, which also 
changes the influence of one neuron on another. 

2.3.2 Artificial neural networks 

So how are the biological neural networks related to the artificial ones? A n artificial neural 
network is a radically simplified version of the biological one. The scientists try to simulate 
the essential fundamentals of neurons and their connections. 

Structure of neural network 

The neural network consists of layers with neurons. There are three layers: input, hidden 
and output layer. The leftmost, input layer contains the input neurons, which receive input 
values. The rightmost, output layer is formed by the output neurons (in this case by a 
single neuron) and the hidden layer between them, consists of neurons which are neither 
input or output. The neural network can have multiple hidden layers. 

input layer < 

Figure 2.5: A n illustration of an artificial neural network consisting of neuron layers: an 
input layer, two hidden layers and an output layer [17]. 

There are two basic types of neural network architectures based on the way how neurons 
interact witch each other [10]: 

• Feedforward architecture - in the feedforwarding neural networks, where are connec­
tion only between the neurons from the adjacent layers, they do not keep a memory 
of previous outputs and states 

• Feedback architecture - in the recurrent neural networks, the neuron output also 
depends on the previous states, the connections are between neurons from different 
layers and also connections in form of feedback loops 

Artificial neuron 

The most basic artificial neuron is called a perceptron [17]. On the input of his kind of 
neuron are binary inputs and on the output is a single binary output (0 or 1). The output 
value is determined by comparing the weighted sum of inputs to the threshold value. 
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i nput 1 

input 2 ou tpu t 

input 3 

Figure 2.6: A n example of perceptron with three inputs and a single output [17]. 

To simplify the condition of determining the output value, the threshold can be moved 
to the other side of inequality, forming a bias. In a relation to the biological neuron it can 
be imagined as a measure how easy it is to get the perceptron to activate the transmission 
of a signal. In the technological view of point, it is a measure how easy it is that perceptron 
outputs a 1. This conditioning is called a step function with the output y computed [17]: 

where x is input and w, b means weight, respectively bias. 
The process of learning is to changing the weights or biases to improve the accuracy of 

classification. The problem of perceptrons is that when the change of weights and bias flips 
the value of the certain output, it may change the behaviour for the rest of outputs. 

The modified version of the perceptron is called a sigmoid neuron. This kind of neuron 
can input and output real number values belonging to < 0,1 >. This means, that the output 
can have more different values. Therefore, the alteration of weights and bias doesn't cause 
such a massive difference in changing the output, like when flipping between binary values. 

In the contrast with the perceptron's step function, the sigmoid neuron uses a sigmoid 
function a [17]: 

Both step and sigmoid functions determine output with taking to account inputs, 
weights and bias, what is generally called the activation function. 

The difference between these two functions can be easily understood by comparing their 
graphs (Figure 2.7). It can be seen, that the shape of the sigmoid function is a smoothed 
version of the step function. Which is what is really important, because thanks to this 
smoothness the relation between the changes of the weights and bias and the changes of 
output is more adequate. 

The learning process 

How does the neural network learning process work? It learns from a given input dataset 
called a training dataset [17]. 

The task is to find the right weights and bias, which would allow the neural network to 
successfully approximate the outputs. Therefore the training is the process of approximating 
the most suitable weights and bias. To evaluate the fitness of current weights and bias, 
there is defined a quadratic cost function: 

w • x + b < 0 
w • x + b > 0 

(2.3) 
X 
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where, w denotes the collection of all weights in the network, b all the biases, n is the 
total number of training inputs, a is the vector of outputs from the network when x is 
input, and the sum is over all training inputs. 

The desired situation is when the neural network outputs are approximately equal to 
the desired training outputs. In this case the cost approximately equals a zero. To find a 
set of weights and bias that result in the most possible cost, it is needed to find a minimum 
of a function with a large number of parameters. To do that, there is an algorithm called 
a gradient descent [13]. 

This algorithm starts with a randomly initialized set of parameter values and iteratively 
updates these parameters, getting closer to the values, which minimize the function. The 
nature of this update is computed by iterating in the opposite direction of the gradient. To 
make the gradient descent work correctly, it is required to set correctly a positive parameter 
called a learning rate. 

-1 - 0 . 8 - 0 . 6 - 0 . 3 - 0 . 2 0 0.2 0.4 0 .6 0.8 1 -1 - 0 . 6 - 0 . 6 - 0 . 4 - 0 . ; 0 0.2 0.4 0 .6 0.8 1 

L o q MSE (dB} L o q MSE (dB) 

Figure 2.9: A n example of a gradient descent in order to adequately (left) and too high 
(right) set learning rate [13]. 

For a fast computing of gradients, there is an algorithm known as a backpropagation 
[13]. 
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2.3.3 Multi-task neural networks 

Multi-task learning [ ], is a mechanism, which purpose is to enhance the generalization 
performance. It is achieved by training all tasks simultaneously while they share network's 
representation. More specifically, it uses shared hidden layers trained in parallel. 

The cost is calculated for each task separately. The gradient is computed from all costs 
of all tasks and then backpropagated through the nodes of tasks. Therefore the correlation 
between tasks improves their learning ability. 

The main idea of multi-task networks is demonstrated on comparison of the Figure 3.8, 
which illustrates the intention of using the same input for different tasks and the Figure 
3.9 with the structure of an actual multi-task network. 

inputs inputs inputs 

i I I I I I i I I 

task 1 
output 

task 2 
output 

task 3 
output 

Figure 2.10: A n illustration of single task neural networks with the same inputs. 

inputs 

\ I J 

task 1 task 2 task 3 
output output output 

Figure 2.11: A n illustration of a multi-task network with the same input for every task. 
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One of the recent works regarding multi-task networks [ ] shows that in the speech 
recognition, the multi-task network with supportive models of broad acoustic units outper­
forms the conventional network by decreasing the error rate up to 10.7%. Another research 
[ ] proposes a method of robust voice activity detection under non-stationary noises, which 
is an important problem, because the most o systems doesn't work accurately with noises 
from the real-life environment. However, not only the speech detection, but also the acous­
tic event detection is topic of research. The paper [2] examining the polyphonic detection 
of overlapping sound events from a real-life recordings shows overall frame accuracy 63.8% 
and an 19% improvement compared to the result of the system using H M M . 

2.4 Post-processing 

The network output is a matrix of posterior probabilities, therefore a post-processing of 
outputs needs to be done necessarily. 

This problem can be solved by decoder implementing Viterbi algorithm [8]. The input is 
the vector of logarithm probabilities of classes. One specific path maximizes the probability 
of reaching the desired state. The probability is influenced by a parameter called insertion 
penalty, which is added to the current accumulated value in the case of transition between 
two states. And the optimal state sequence is formed by states along this path. This 
algorithm saves the calculation time expense when finding this particular path, because if 
several paths converge at a specific state at the time, for calculating the next step (from 
this state to the following one), it continues with calculation only with the most likely path, 
because it is sure, that there is only one the most likely path for each state at the time. 
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Path without an insertion penalty 
probab i l i t ies 

f r a m e 1 f r a m e 2 f r a m e 3 f r a m e 4 f r a m e 5 f r a m e 6 

speech 0 . 9 0 . 7 
\ 

0.4 0.2 0 . 8 0 . 9 
- • 

nonspeech 0.1 0.3 0 . 6 
/ 

0 . 8 0.2 0.1 

log(0.4) < log(0.6) 

Path with an insertion penalty 

speech 

nonspeech 

0 . 9 0 .7 
- • — 

0 . 4 

\ 
0.2 0 .8 

* — 

0 .9 

0.1 0.3 0.6 0 .8 0.2 0.1 

penalty = -0.5 / log(0.4) > log(0.6) + penalty 
-0 .398 > -0 .222 -0 .5 
-0 .398 > -0 .722 

Figure 2.12: A n illustration of Viterbi decoder - finding an optimal path with choosing only 
the most likely option, first case without any penalty, the second with its value -0.5. 

The output of the neural network is vector of classes predicted for each frame (10 ms). 
These outputs might include sequences with the length of only few frames, for example music 
with the duration of 0.05 seconds. However, in the recordings of the real world situations 
acoustic events doesn't last this shortly and therefore in the case of a such prediction, it 
is more likely that it is an incorrect output than a successful prediction of such a short 
sequence. 

The manipulation with the insertion penalty value helps with the elimination with such 
outputs. Lowering this penalty (to negative values) means, that there will be less surplus 
transitions, but more missing transitions according to the labels. 

2.5 Implementation 

A l l the algorithms used for this term project, including data preprocessing, feature extrac­
tion, neural network and evaluation, are written in Python language. These algorithms are 
using mathematical tool-kits and libraries. 

Specifically speaking, tools Sound eXchange3 (SoX) and FFmpeg 4 were used for the 
conversion and resampling to the desired audio format. Moreover, H T K Speech Recognition 
Toolkit [20], which was used for manipulation with audio files, feature files and labels in 

3http://sox.sourceforge.net/  
4https://ffmpeg.org/ 
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Python. Another one was the Theano [l] library, providing tools necessary for neural 
networks. This library interacts with other two used packages, NumPy 5 and SciPy 6 , which 
are package offering multi-dimensional arrays, resp. library for scientific computing. 

The implementation is based on algorithms and libraries created and provided by B U T 
Speech Processing Group' . 

5http://www.numpy.org/  
6https://www.scipy.org/  
7 h t t p : / / s p e e c h . f i t . v u t b r . c z / 
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Chapter 3 

Experimentation 

This is the core chapter of the thesis. It describes the performed experiments, the evaluation 
of results and conclusions. As mentioned before, there were used two approaches differing 
in the type of used neural network. Whereas a simple network was sufficient for the first 
approach, the advanced approach required a multi-task network. A l l experiments were used 
on two different databases. 

3.1 Databases 

The following sections describe datasets used in experiments. Source audio/video files with 
corresponding annotation files were gathered, annotated and provided for experimental 
purposes by B U T Speech Processing Group. From these files were created two databases, 
used later in the experiments. 

3.1.1 Diverse Audio Database 

The purpose of the experiments on this database is to train the network to detect the speech 
and later other acoustic events especially on the data with high amount of noise. The first 
database originally consists of 169 audio files with each recording lasting 180 seconds and 
with overall duration of 5 hours and 45 minutes. 

Description 

This database has a great variety of recordings with different acoustic events. The majority 
of recordings are news reports and amateur footages capturing warfare in the Middle East. 
The language spoken in these recordings varies as well, starting with Asian (mostly Arabic), 
continuing with several European (e.g. English, French, Dutch) and ending with African 
dialects. These footages are rich in both stationary (e.g. babbling) and non-stationary 
noises (gunfire, explosions, etc.) and also greatly differ in the audio quality. In addition, 
there are occasional music sequences with or without singing. The database also includes 
samples from documentary films with the presence of animal and nature sounds. This 
database is rather small, but very diverse in the matter of acoustic events. 

The desired 16-bit, 8kHz mono waveform files were extracted from the source au­
dio/video files in AVI format. 
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Table 3.1: Table with enumeration and description of all Diverse Audio Database sound 
events and characteristics, which can possible occur during the classification process. 

Group Class Description 

speech 
speech The presence of a human voice (not singing). 

speech 
non-speech The absence of a human voice. 
monolog Monologue voice tone. 
conversational Voice tone suggesting an ongoing conversation. 

speech type emotional A n expressive tone (e.g. yelling). 
crosstalk Presence of multiple speakers at once. 
none The absence of speech. 
music The presence of music (without singing). 

music song The presence of music with singing. 
none The absence of any sort of music. 
close Speaker is at a close distance . 

microphone 
distant 
telephone 

Speaker is located more distantly. 
Speech on telephone. 

none The absence of speech. 
vehicle Sounds of moving cars, helicopters, etc. 
gun The sound of a gunfire including explosions. 

non-stationary noise animal 
human 

The natural sounds of animals. 
Human-noise (e.g. coughing). 

other Sounds not belonging to any of previous classes. 
none The absence of non-stationary noise. 
nature The sounds of nature. 

stationary noise 
babbling The indistinguishable human voice. stationary noise 
other Other types of distracting noise. 
none The absence of stationary noise. 

Classes 

The database's annotation files provides 10 different characteristics. Three of them are 
discarded. The stationary noise level characteristics isn't related to the primary task, 
speech detection, therefore it isn't beneficial for the purpose of the thesis. The remaining 
two characteristics are on the other hand related to the speech, the age and the gender of 
speaker is rather useless in V A D . The class groups chosen for the classification are in the 
following table: 

Notably, the structure of the network's output layer depends on the concept of these 
groups, therefore it should be chosen wisely. Of course, classes within the same group are 
mutually excluded, although groups are not. According to the fundamentals of multi-task 
networks, there must be active one class of every group in the same frame. 

Therefore the last class of each group is intended to signalize the absence of the sound 
event (this class is generally called „none", with the exception of the speech group, where 
this class is named „non-speech"). Also, the speech type group is a subgroup of the speech 
one, which implies that the last class is equivalent to the non-speech class and the remaining 
classes are subsets of the speech class. Of course, classes within the same group are mutually 
excluded, however groups are not, 

Only the first class group (the speech and non-speech detection) is evaluated in the 
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simple approach, the advanced focuses on all six groups. 
The annotation files, which were provided with the source audio files, were processed 

into transcription files called Master label files (MLFs), each corresponding to a specific 
class group. 

The purpose of this file is to carry the expected correct classes outputs (referred as 
labels) according to the audio segment defined by a start and an end frame, which is used 
during the training and testing process. 

The structure of M L F starts with M L F tag o the first line. Afterwards, there are file 
names of the recording labels in the each line with corresponding segment dictionary, ended 
by a dot mark. A dictionary segment has three parts: on the left a starting frame in 100 
nanoseconds, in the middle an ending frame in 100 nanoseconds and a class assigned to this 
segment. 

s p e e c h m u s i c non-s t n o i s e 

#!MLF!# 
"*/fc9480e70delca..._001.lab" 
0 9400000 nonspeech 
9400000 15600000 speech 
15600000 26900000 nonspeech 
26900000 38300000 speech 
38300000 56800000 nonspeech 
56800000 64800000 speech 
64800000 64950000 nonspeech 
64950000 84650000 speech 
84650000 84850000 nonspeech 

#!MLF!# 
"*/fc9480e70delca..._001.lab" 
0 144700000 none 
144700000 236700000 music 
236700000 781250000 none 
781250000 868520000 music 
868520000 1223000000 none 
1223000000 1259480000 music 
1259480000 1800000000 none 

"*/39b76b20bafa2b... 003.lab" 

#!MLF!# 
"*/fc9480e70delca..._001.lab" 
0 5900000 gun 
5900000 15800000 none 
15800000 21800000 gun 
21800000 42900000 none 
42900000 50000000 gun 
50000000 97400000 none 
97400000 106100000 gun 
106100000 121050000 none 
121050000 131350000 gun 

Figure 3.1: Examples of M L F of the speech, music and non-stationary noise groups in 
following format: a M L F tag, a filename, a dictionary (a start frame, an end frame and a 
class ), an end of file tag. 

Datasets 

The database has to be divided into three datasets, due to the process of classification. 
The variety of Diverse Audio Database data is not caused by the data variety within in­
dividual recordings, but by including diverse recordings in the database. For example, in 
one recording there might be 10 000 frames of a specific class, however in the following five 
recordings there is non of them. As a result the database suffers from an unbalanced data 
distribution. This is a problem for the neural network learning process, because it inflicts 
over-fitting to the class with the major probability in the dataset. 

The best solution would be to acquire more balanced data. On the other hand, the 
easiest solution is an over-sampling (duplicating suitable recordings) and an under-sampling 
(removing of unsuitable recordings) [5]. However, the first method cannot be used because 
of the multiple tasks. More specifically, where the addition of one recording would improve 
classification of one task, it would also diminish the classification of other tasks. The under-
sampling method is performed in order to balance the data distribution and prevent this 
over-fitting phenomenon. The under-sampling needs to be applied accordingly to every 
speech group, therefore the number of suitable recordings is significantly lower as can be 
seen in the Table 3.2. Which is also a potential problem for the learning process, as it might 
stop before learning anything useful. 
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Table 3.2: Comparison between the original and processed data duration 

Class Full-size data duration Under-sampled data duration 
all 8h 27m 3h 15m 
speech 6h 04m l h 43m 
music 2h 12m l h 18m 
stationary noise 2h 05m l h 46m 

For this reason, one of the experiments will be performed regarding whether the under-
sampling actually helps and which datasets to use in the remaining experiments. 

Three datasets are created from the full-size data: a training set (105 files), a cross-
validation set (30 files) and a testing set (34 files). 

Similarly, the under-sampled data is also divided into three sets: a training dataset 
of 40 recordings, a cross-validation dataset of 12 recordings and a testing dataset of 13 
recordings. 

Notably, the recordings in the testing datasets were intentionally chosen in the way 
that they contain both extreme (with absence, resp. rich presence of classes) and average 
samples for every class group. 

Table 3.3: Comparison between the V A D experiment results performed on the full-size and 
under-sampled training data. The original-size testing set was used for the evaluation of 
both experiments, because of the higher number of recordings. 

Data FAcc Hit rate BAcc 
full-size 88.89% 28.51% 10.42% 
under-sampled 89.81% 35.01% 17.03% 

The results from the Table 3.3 suggest that the under-sampled datasets are indeed 
more suitable, despite their smaller size. One more experiment will be conducted in order 
to either confirm or disprove this statement. These results will be from the network using 
multi-tasking. 

Table 3.4: Comparison between the multi-task experiment results performed on the full-size 
and under-sampled training data. The original-size testing set was used for the evaluation 
of both experiments, because of the higher number of recordings. 

Data Group FAcc Hit rate BAcc 
baseline 87.82% 25.78% 6.51% 
type 76.02% 26.54% 8.45% 

full-size 
music 65.86% 26.60% -129.26% 

full-size 
microphone 81.98% 28.37% 9.30% 
non-st noise 81.08% 8.76% 3.85% 
st noise 64.63% 13.24% 13.24% 
baseline 89.07% 35.29% 17.70% 
type 72.51% 31.89% 5.38% 

under-sampled 
music 64.77% 26.60% -143.09% 

under-sampled 
microphone 79.33% 40.42% 14.76% 
non-st noise 80.21% 8.11% 4.42% 
st noise 64.63% 13.24% 13.24% 
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The comparison shown in the Table 3.3 confirms the previous statement. The under-
sampled datasets are more suitable for the upcoming experiments than the original-sized 
datasets, thus they will be actually used. Only exception is the testing dataset, which will 
be used from the original-sized, because it contains not only all of the recordings from the 
down-sampled training set, but also additional 21 unique recordings. Which will provide a 
more precise evaluation, because the class distribution of set doesn't matter any more in 
the testing phase. 

3.1.2 Clean Radio Database 

The second database will be used as a supplement to the noisy data the first database in 
order to watch how does extending the dataset by more clean data alters the results. Clean 
Radio Database is formed by 72 audio files with the duration approximately one hour, 
together giving 71 hours and 41 minutes of recordings. 

Description 

This database consists of radio broadcast recordings in English, Arabic, Cuba Spanish, 
Asian and African languages. Which include interviews, reports, songs and music. The 
amount of noise in this database is significantly lower compared to the Diverse Audio 
Database, since the recordings were taken from clear radio environment and the major 
sound events are music and speech sequences. 

The motivation of introducing this database with clean data is that even with the V A D 
in noisy data being the main objective of this thesis, adding fairly distributed clean speech 
data might prove beneficial as a supplement for the first database datasets. 

The audio files were converted from R A W format to 16-bit monophonic audio files in 
waveform format with 8kHz sample rate. 

Classes 

Annotation files of this database don't include details about the type of speech and there 
wasn't present any noticeable non-stationary noise during the radio broadcast, therefore 
there are five class groups in overall. It also differs in the structure of the group for stationary 
noise, because the annotation files don't differentiate between the types of this noise, which 
results in detection either presence or absence of the stationary noise. Therefore, these class 
groups can be classified in Clean Radio Database: 

Datasets 

In the contrast with Diverse Audio Database, this database has a balanced data distribution, 
therefore adjusting datasets is not necessary. 

This database has a low amount of noise and additionally has a fair distribution of the 
speech and the music. Also, its size is approximately nine times larger than the size of 
Diverse Audio Database. It can be presumed, that only a portion of data will be needed to 
improve the training capability of Diverse Audio Database from the effectiveness perspective 
without any drastic reduction of accuracy. 
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Table 3.5: Table containing acoustic events and characteristics used in the classification 
process of Clean Radio Database data, as they are divided into groups and their class, also 
with their description. 

Group Class Description 

speech 
speech 
non-speech 

The presence of a human voice (not singing). 
The absence of a human voice (including singing). 

monolog Monologue voice tone. 
conversational Voice tone suggesting an ongoing conversation. 

speech type emotional A n expressive tone (e.g. yelling). 
crosstalk Presence of multiple speakers at once. 
none 4The absence of speech. 
music The presence of music (without singing). 

music song The presence of music with singing. 
none The absence of any sort of music. 
close Speaker is at a close distance . 

microphone 
distant 
telephone 

Speaker is located more distantly. 
Speech on telephone. 

none The absence of speech. 

st noise 
stationary noise The presence of stationary noise. 

st noise 
none The absence of stationary noise. 

Table 3.6: Comparison between the original and processed data duration 

Class Full-size data Reduced data 
all 71h 41m l l h 56m 
speech 
music 
stationary noise 

32h 43m 
33h 22m 
4h 53m 

5h 50m 
6h 28m 
l h 03m 

Thus, as can be seen on the Table 3.6, the data distribution is persevered in the reduced 
database and therefore it may suffice as a supplement for the datasets from Database. This 
statement is the task of the following experiment, in which the database of the original size 
is split into three sets of the following proportion of a training, a cross-validation and a 
testing set: 40, 15 and 17 and the data of the reduced size: 8, 2, 2, both in the same way 
as in the section 3.1.1. 

Table 3.7: Comparison between the V A D experiment results performed on the full-size and 
reduced training data. The original-size testing set was used for the evaluation of both 
experiments, because of the higher number of recordings. 

Data FAcc Hit rate BAcc 
full-size 88.89% 28.51% 10.42% 
under-sampled 89.81% 35.01% 17.03% 

This database does not include a great variety of acoustic events, but provides a better 
data distribution for the speech and music groups. This extension should improve the 
speech and music detection, albeit lower the accuracy of the noise detection. 
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3.1.3 Used datasets 

In summary, the databases, which will be used for the upcoming experiments, are: 

• The under-sampled noisy and diverse Diverse Audio Database (with overall duration 
3h 15m), where the training dataset of 40 recordings, the cross-validation dataset 
of 12 recordings and the testing dataset of 13 recordings will be used as a primary 
experiment data. 

• The reduced-sized clean and fairly-distributed Clean Radio Database (with overall 
duration l l h 56m), where the training dataset of 8 recordings, the cross-validation 
dataset of 2 recordings and the testing dataset of 2 recordings will be used as a 
supplement data in order to improve results. 

Table 3.8: Duration of the database versions used in the experiments - under-sampled 
Diverse Audio Database and reduced Clean Radio Database. 

Database Group Duration 
all 3h 15m 

Diverse Audio Database 
speech 
music 
stationary noise 

l h 43m 
l h 18m 
l h 46m 

all l l h 56m 

Clean Radio Database 
speech 
music 
stationary noise 

5h 50m 
6h 28m 
l h 03m 

3.2 Metrics 

There are totally three metrics used during the experimentation phase. First is frame-based 
and the remaining two are based on segments. 

The first metric used for evaluation is a frame accuracy (FAcc). It simply compares the 
outputs of the network to the labels and represents the percentage of correctly predicted 
classes on all frames. 

The next step is a process called segmentation, which means creating sequences of classes 
from the output in a vector, where every class instance represents a prediction made from 
a single frame. 

The second metric is a boundary accuracy (BAcc). The boundaries between sequences 
created by the segmentation process both from predicted outputs and labels are organized 
into an alignment of pair of boundaries. They are organized in a way that in the case 
the distance between them is lower than a threshold, they are paired, otherwise they are 
marked as unpaired. Afterwards, the algorithm counts the number of pairs with the same 
classes (known as correct hits) hit, substitutions of classes sub, redundant insertions of the 
predicted boundaries ins and label boundaries without a pair, marked as deletions del. The 
BAcc (%) is defined as: 

„ . , ins + del + sub. hit — ins 
BAcc = 100 • (1 - — — -) = 100-— — (3.1) 

hit + del + sub hit + del + sub 
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Figure 3.2: A n illustration of insertions, a hit, a deletion and a substitution instances during 
the calculation of BAcc. 

Notably, this formula calculates the accuracy with respect to the total number of refer­
enced sequence boundaries, therefore the results might be below 0.0%. Which would mean, 
that the number of insertions is higher than number of hits. The BAcc results from a 
successfully learnt neural network are supposed to be positive values, otherwise negative. 

Also, as can be seen in Figure 3.2 between 100th and 150th frame, if one output bound­
ary is being misplaced, while having one corresponding label boundary, it is counted both 
as an insertion and as a deletion this implementation of the BAcc. Therefore the error is 
markedly higher than in the BAcc variant counting it as only one miss. 

And the last used metric is a hit rate. Which is the ratio between the correctly predicted 
segment boundaries and the all predicted segment boundaries. The hit rate is defined 
accordingly to the expressions established in the second metric: 

hitrate = 100 • (3.2) 
hit + del + sub 

The goal is to correctly detect the whole segments, therefore the most important is the 
BAcc metric. Moreover, even high accuracy doesn't ensure the absence of over-fitting or 
correctly predicted segments and the hit rate of boundaries is a component of the more 
complex B E R . Thus, all the experiment decisions will be made with respect to the BAcc. 

3.3 The simple approach 

The first objective is to experiment with a neural network as an implementation of V A D 
algorithm. A simple network with two output nodes is used in this approach. It learns how 
to predict only one of two classes (speech or non-speech) belonging to the same V A D class 
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group. The experiments will be performed on both databases described before. These are 
the baseline experiments for the further experimenting. 

This section starts with the experiment of the V A D on this simple neural network. The 
second experiment will be the V A D on the extended datasets created from Diverse Audio 
Database and Clean Radio Database all together. And the last experiment will test the 
influence of the network parameter values. Finally, the results with the conclusion will be 
discussed in the last subsection. 

Notably, the alignment pairing threshold and the Viterbi insertion penalty is implicitly 
set to 20, respectively -20.0, unless stated otherwise. 

The features used as input to the network's first layer were extracted from the input 
signal, by using 23 Mel-scale filterbank, where the frame window length was 25 ms and with 
10 ms overlapping and by applying logarithm function afterwards. Finally, these features (in 
H T K known as F B A N K ) , now as network's inputs, are pre-processed by applying Hamming 
D C T of 16 basis functions, which results in input vectors with size 368. 

input signal Windowing ^ FFT 

input signal 

size: 25ms 
overlap: 10ms 

FFT 

Hamming Log 23 Mel-scale 
DCT 16 

Log 
fi lterbank 

features 
(vectors of size 368) 

Figure 3.3: The process of the feature extraction. 

The structure of neural network used in this experiment is composed of input vectors 
length 368, as stated above, one hidden layer consisting of 500 units and 2 output units 
consisting of two classes - speech and non-speech. 

3.3.1 Diverse Audio Database voice activity detection experiment 

The first experiment is designed to show the efficiency of the neural network in the detection 
of speech and non-speech sequences. Wi th the Diverse Audio Database being rather small 
and noisy, the results will be later compared to the results of the second larger database. 
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With the network parameters set, the network's learning process ended after 11 itera­
tions. 

Table 3.9: Frame accuracy and BAcc of the first experiment - V A D on the Diverse Audio 
Database 

FAcc Hit rate BAcc 
89.81% 35.01% 17.03% 

-£= 
U 
O) 
O) 
Q . 
Ul c o c 

lunfire missile 

— l abe l s 

— n e t w o r k o u t p u t s 

warfare noise 

500 1000 
frames 

1500 2000 

Figure 3.4: A n example of comparison between labels and network outputs of the speech 
detection in a 20 seconds long passage from a warfare footage. This recording includes 
gunfire, launch of missile and more warfare noise. The results for this input are: FAcc 
89.57%, hit rate 8.11% and BAcc -78.38%. 

According to the results, which can be seen in Table 3.9 (FAcc 89.81% and BAcc be­
ing positive) and an example of visual comparison of a reference and a network output 
demonstrated in the Figure 3.4, the network successfully adapted V A D on Diverse Audio 
Database. 
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Figure 3.5: A n example of comparison between labels and network outputs of the speech 
detection in a 20 seconds long passage from a radio recording. Whole passage consists of 
music with singing sequences. 

Probably the most problematic issue for the classifier is to correctly detect a non-speech 
in a song segment. As shown in the Figure 3.5, the classifier mistakenly predicts the 
sequence of singing as speech. The voiceless music is correctly identified as a non-speech. 
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Figure 3.6: A n example of comparison between labels and network outputs of the speech 
detection in a 20 seconds long passage from a warfare footage. This recording includes 
gunfire, launch of missile and more warfare noise. The results are: FAcc 93.45, hit rate 
66.67% and BAcc 54.17%. 

On the other hand, the detector seems to respond relatively accurately to the noise. A n 
example can be seen in the Figure 3.6, which demonstrates a report with a sound of jet and 
helicopter flying and a heavy vehicle moving in the background. In this case, the speech 
segments are recognized correctly, despite the high noise. 

3.3.2 Network parameter experiments 

In these experiments, the objective is to watch how does the network size changes the 
results. The experimenting with network settings is performed on Diverse Audio Database, 
because a smaller size and a greater diversity are promising more interesting results. The 
experimentation behind choosing the insertion penalty and threshold to -20.0 and 20 frames 
respectively is also demonstrated in this subsection. 
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Figure 3.7: Dependency of the number of hidden layer units on the accuracy on the 
Database 1 

As can be seen in the Figure 3.7, the neural network results does not improve until 1000 
hidden units, when training on small Diverse Audio Database. 

0 5 10 15 2 0 25 3 0 3 5 4 0 
pe r c en t 

Figure 3.8: Dependency of the number of hidden layers on the accuracy on the Diverse 
Audio Database 

29 



As shown in the Figure 3.8, the network gets over-trained even with the hidden layer 
size of 2. The hidden layer of size 500 units has been chosen for experimenting with the 
number of hidden layers. 

100 
threshold 

Figure 3.9: Dependency of the threshold on the accuracy on the Diverse Audio Database 

Nextly, an illustration of tuning the threshold in order to achieve better BAcc is in the 
Figure 3.9. Starting on 10 frames (10ms), the results become better with wider threshold, 
however the acceptable threshold is 20 frames (200ms). 
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Figure 3.10: Dependency of the insertion penalty on the accuracy on the Diverse Audio 
Database 

The last parameter observation, in the Figure 3.10, is influence of the insertion penalty 
on the BAcc. The results were slightly improving to the peak at value -20.0, than they 
started to drastically decrease. 

3.3.3 Summary 

The simple approach experiments proved that the neural network has successfully learned to 
detect the speech and the non-speech. Furthermore, it is capable of the V A D for both noisy 
and clean data. It has problems with sequences of singing, low quality speech recording 
with reverberation, multiple sources of heavy noise. And in the next analysis, the dataset 
is too small and prone to over-fitting to use more hidden layers than 1. Lastly, the insertion 
penalty -20.0 and threshold 20 frames are the mos suitable values of these parameters 
accordingly to the current scenario. 

3.4 The advanced approach 

In this section, there will be details about experimentations towards the multi-task neural 
network. The purpose of first experiment will be comparison of results with and without 
using more tasks, which will lead to decision whether is this method beneficial for the 
V A D . The interest of the next experiment will be to observe the accuracy of the multi-task 
acoustic event detection. Experimenting on the extended database, consisting from Diverse 
Audio Database datasets and additional Clean Radio Database data, will be approached 
by the third experiment. The final test will compare the V A D and sound events detection 
results between noisy and clean data. 
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The neural network has the same structure as in the simple approach with the exception 
of varying size of output layer. 

3.4.1 Diverse Audio Database multi-task voice activity detection 
experiment 

The aim of this experiment is to show whether is the multi-task beneficial for the speech 
detection and which of the secondary tasks influences it the most. The results of V A D from 
the simple approach experiment (the subsection 3.3.1) are used as a baseline. 

One of the objectives of this thesis is - does the multi-tasking improve the efficiency 
of V A D ? To answer this question, the experiment begins with the training of the neural 
network to detect all class groups. Henceforth, the incremental experimenting succeeds. 
Which consists of training the network always on only one class group in addition to the 
V A D . This part of the experiment is supposed to unravel which of the class groups influences 
the primary one the most. The learning process of these experiment ended after sixth 
iteration in the most cases. 

Only the outputs corresponding to the speech detection are kept for the evaluation, the 
outputs of other groups are discarded. 

Table 3.10: Results of the V A D and the difference of BAcc compared to the baseline 
experiment. Included results are from overall and incremental experimenting. 

Task FAcc Hit rate BAcc BAcc diff 
baseline 89.81% 35.01% 17.03% 0.0 
all 89.07% 35.29% 17.70% +0.67% 
type 89.84% 36.87% 17.94% +0.53% 
music 87.17% 30.61% 14.41% -2.62% 
microphone 89.70% 37.92% 19.06% +2.03% 
non-st noise 89.73% 34.52% 17.42% +0.39% 
st noise 88.82% 34.17% 16.89% -0.24% 

The results demonstrated in the Table 3.10 indicate, that even if performed on a small 
dataset, the multi-task learning actually improves the accuracy of V A D , specifically the 
BAcc by 0.67%. Moreover, most secondary tasks improved the boundary accuracy of the 
V A D . The highest performance boost can be observed in the case of the microphone distance 
as a supportive task, not only improving the B E R by 2.03%, but also enhancing the hit 
rate by 2.91%, which is this experiment's maximum. 

A n interesting observation occurred - while the speech type and the microphone distance 
are obviously correlated to the speech detection and both have benefiting effect, on the other 
hand class groups uncorrelated to the speech with the exception of non-stationary noise tend 
to diminish the results. 

Another experiment will be conducted in order to study this observation further. The 
secondary tasks will be chosen according to whether they are related to the speech. The 
first multi-task will learn to detect the speech type and the microphone distance in addition 
to the V A D . The second will focus on the remaining uncorrelated groups together with the 
V A D . 
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Table 3.11: Results of the V A D with the correlated and uncorrelated groups as the sec­
ondary tasks, and the difference of B E R compared to the baseline experiment. 

Task FAcc Hit rate BAcc BAcc diff 
baseline 89.81% 35.01% 17.03% 0.0 
all 89.07% 35.29% 17.70% +0.67% 
correlated 89.72% 38.13% 18.89% +1.86% 
uncorrelated 88.49% 34.66% 16.61% -0.42% 

A n additional experiment, which can be seen in the Table 3.11, was performed in interest 
of sustaining the previously stated observation. The uncorrelated groups (music and noises) 
actually have even a negative impact on the V A D resulting in the BAcc lower by 0.42%. 
than the baseline. In contrast, the correlated groups achieved the improvement of the BAcc 
by 1.86%. These results confirm that the secondary task relation is an important factor in 
the matter of improving the primary task accuracy. 

3.4.2 Diverse Audio Database multi-task acoustic event detection 
experiment 

The accuracy of acoustic events besides the speech is also one of the objectives. Experiments 
towards this topic are located in this subsection. 

The first experiment is performed on the multi-task network with only two tasks. Each 
test evaluates the accuracy of one secondary task, which has been trained simultaneously 
only with the primary task. 

Table 3.12: Results of acoustic events after the multi-task learning only with the speech. 

Task FAcc Hit rate BAcc 
type 73.27% 33.02% 6.75% 
music 64.47% 27.13% -136.17% 
microphone 79.57% 42.07% 16.81% 
non-st noise 82.26% 11.79% 5.90% 
st noise 64.53% 13.24% 11.62% 

And finally, the experiment, in which the network learned all the tasks in parallel. 

Table 3.13: Results of all secondary tasks after the multi-task learning all simultaneously 
with their comparison to result of training the speech in pair with each another task. 

Task FAcc Hit rate BAcc BAcc diff 
type 72.51% 31.89% 5.38% -0.67% 
music 64.77% 26.60% -143.09% -6.52% 
microphone 79.33% 40.42% 14.76% -2.05% 
non-st noise 80.21% 8.11% 4.42% -1.48% 
st noise 64.63% 13.24% 13.24% +1.62% 

As shown above in the Table 3.13, every task has worse results than the previous 
experiment (in the Table 3.12) with the exception of the stationary noise, which has actually 
improved BAcc by 1.62%. 
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The network also successfully learned to predict the type of speech and the speaker's 
distance from the microphone. The non-stationary and stationary noise learned to detect 
only some of their classes, due to the over-fitting. On the contrary, tests shown that the net­
work completely failed to learn the music detection. It is probably caused by that the music 
class involves both background and foreground music, however the background doesn't have 
as sharp frequency amplitudes as the foreground and it can be easily misinterpreted as a 
non-music sequence. 

3.4.3 Extended database multi-task acoustic event detection 
experiment 

The dataset from Diverse Audio Database extended by 12 recordings from Clean Radio 
Database is used in this experiment. The goal is to find out, how does extending the 
dataset by a clean and more fairly distributed data alters the results. 

Both experiments are evaluated on the extended testing set. 

Table 3.14: Results of the all acoustic events after the multi-task learning. Note: the 
insertion penalty used for the music evaluation was -100.0. 

Task FAcc Hit rate BAcc 
speech 89.27% 37.04% 19.10% 
type 72.96% 33.56% 7.22% 
music 70.93% 30.11% -12.37% 
microphone 79.57% 42.46% 17.90% 
st noise 64.50% 13.96% 9.97% 

Table 3.15: Results of the all acoustic events after the multi-task learning. Note: the 
insertion penalty used for the music evaluation was -100.0. 

Task FAcc Hit rate BAcc BAcc diff 
speech 84.07% 19.87% 1.08% -18.02% 
type 72.73% 16.80% -2.86% -10.08% 
music 60.63% 26.06% -51.06% -38.69% 
microphone 75.71% 17.48% -5.46% -23.36% 
st noise 64.12% 14.25% 1.42% -8.55% 

The testing was performed on the same dataset as in the previous experiments. The 
results from Table 3.15 in comparison with the Table 3.10 are worse. It might be because 
of the great difference between the diversity and noisiness of the first and second database. 

3.4.4 Noisy and clean multi-task acoustic event detection 
experiment 

This subsection aims for the comparison of the comparison between the V A D performed on 
the noisy and clean data. Two new testing datasets were created specially for the following 
experiment. The first dataset contains averagely or severely noised data, whereas the second 
dataset consists of clean data, without any significant noise. 
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Table 3.16: Results of the all acoustic events after the multi-task learning evaluated on the 
clean dataset. 

Task FAcc Hit rate BAcc 
baseline 93.59% 36.12% 21.32% 
type 82.02% 39.47% 10.35% 
music 51.79% 15.70% -75.21% 
microphone 90.31% 50.90% 23.06% 

Testing the non-stationary and stationary class groups doesn't make sense in this case, 
therefore it was excluded. 

Table 3.17: Results of the all acoustic events after the multi-task learning evaluated on the 
noisy dataset. 

Task FAcc Hit rate BAcc 
baseline 85.49% 34.78% 15.42% 
type 65.00% 27.40% 2.44% 
music 75.03% 46.27% -265.67% 
microphone 70.66% 33.72% 9.47% 

The results, which are demonstrated in the Table 3.17, confirm that the speech detection 
is successfully detected both in the clean and noisy data. The detection in the clean data 
is more accurate, specifically speaking result of every metric is higher: the FAcc by 8.10%, 
the hit rate by 234% and the BAcc by 5.50%. 

3.4.5 Summary 

On the basis of the previous experiments, it can be concluded that multi-task system in­
cluding involved acoustic events is beneficial for the V A D . The first experiment showed that 
the speech type and the microphone distance characteristics improve the VAD's accuracy. 
The music and noise in the contrary diminish the results. Which altogether indicated that 
the correlated events have potential to be beneficial. Henceforth, the consecutive experi­
ment based on comparing the correlated and uncorrelated groups confirmed this statement. 
Extending the database by clean data was rather unsuccessful, probably because of the lack 
of noise. Which escalated into decreased accuracy in the noisy testing dataset. In the final 
analysis, it was proven, that the neural network is capable of performing the V A D both on 
clean and noisy data. 

3.5 The experimentation conclusion 

This section summarizes every important observation during the experimentation phase. 
The V A D was successfully implemented by using a simple neural network. The network 

learned how to predict the speech class with the BAcc 10.24%, hit rate 28.51% and FAcc 
88.89% despite the small size and the diversity of Diverse Audio Database. After applying 
an under-sampling method on the original database, the detection even reached the BAcc 
of 17.03%, hit rate 35.01% and FAcc 89.81%. Moreover, the under-sampled database was 
more successful also in the multi-tasking with the Bacc 17.70% compared to 6.51% BAcc 
of thefull-sized data. 
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However, the size and diversity of data resulted into over-fitting while using more than 
one hidden layer. While adding the hidden layer units, the network's performance didn't 
improve until 1000 nodes. 

The threshold started to converge to the maximum accuracy at 80 frames and the 
insertion penalty achieved peak with value -20.0. 

In the second phase, the adjusted network also coped with multi-tasking and improved 
the BAcc to 17.70% and even 19.06%, when using the microphone distance as the only 
secondary task during the incremental experimenting. On the other hand, two of five 
secondary tasks, music and stationary noise, even diminished the accuracy. The worst case 
was registered with the music secondary task, decreasing the BAcc by -2.62%. As the 
experiments had shown, the most beneficial class groups was the speech type microphone 
distance, thanks to it's correlation to the speech task, enhancing the baseline BAcc by 
2.03%. The follow-up experiment proved that the relation between the primary task and 
the supplementary task really matters, because the group of correlated tasks bettered the 
BAcc by 1.86%, on the other side the uncorrelated lowed by 0.24%. 

Also the uncorrelated tasks completely failed to be successfully detected. The lowest 
accuracy was in the case of the music during the full multi-task, where the number of 
insertion was even higher then hits, resulting into the BAcc -143.09%. Neither of noise 
events didn't have a negative BAcc, however their hit rates were both under 10%. On 
the contrary, the best results, the BAcc 16.81% and hit rate 42.07%, had the microphone 
distance task while trained only with the speech. 

The multi-tasking turned out to be a boost only for the stationary noise, improving the 
BAcc by 1.62%, the accuracy of every other secondary task decreased. 

According to the different distribution of noise, extending the training dataset by data 
from Clean Radio Database didn't prove to be useful, due to the fact that every results 
decreased. 

Finally, the objective achievement of the speech detection was confirmed in the last 
experiment dividing the testing dataset into the noisy and clean part. Where the baseline 
achieved the BAcc 21.32%, hit rate 36.12% and FAcc 93.53% in the clean data. Although 
the results can't be compared due to the different testing sets, the results BAcc 15.42%, hit 
rate 34.78% and the FAcc 85.49% confirm success in this cas as well. 
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Chapter 4 

Conclusion 

The main aim of this thesis was to successfully implement the V A D by neural network. 
Train it on noisy data and predict the outputs correctly. The observations of the behaviour 
of the multi-task network were also a part of the objective. 

After a chapter dedicated to the theoretical basis, mentioning the feature extraction, 
classification methods, neural networks and post-processing, the experiments were per­
formed. 

The experimentation phase confirmed achieving the outlined objectives. The first ex­
periment showed that the neural network could be used as a voice activity detector. The 
advanced approach demonstrated how is the multi-tasking beneficial for the speech detec­
tion. The best results were achieved with the correlated class group as the secondary tasks. 
Unfortunately, the experiments also showed that the network wasn't able to learn prediction 
of music and stationary noise. Other secondary tasks were more or less successful. 

The final analysis demonstrated that although with slightly worse results, the network 
managed to detect the speech both in clean and noisy data. In a word, the main objective 
of this thesis is accomplished as well. 

The future plans of this research begin with collecting more data, preferably with a 
better class distribution, so it is easier to manipulate with datasets. According to the results 
of experimentation, the detection of acoustic events with a multi-task neural network seems 
promising. However, database size is the weakness of otherwise excellent tool such a neural 
network truly is. There is a potential of satisfyingly accurate results with a wider database 
with a fair distribution of classes. 

Anther option is to try to minimize the diversity between the classes by implementing 
a more sophisticated method than an under-sampling. 

A n obvious possible continuation of this research is to perform experiments with new 
class groups or divide the existing ones into more specific classes. 

These suggestion are, however, only a mere insight of all the possible options. 
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Appendix A 

Contents of the C D 

The attached C D contains: 

• P D F version of this document 

• L^TeX version of this document 

• Python scripts directory 

• experimentation results directory 

• demonstration video 

• A2 poster 
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Appendix B 

Graphical examples of outputs 

B . l Speech detection 
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Figure B . l : A n example of the speech detection output, labels and audio signal from the 
100th second to 120th second. This footage is from documentary film with natural noises, 
the most noticeable are elephant sounds starting approximately in 108th second. 
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B.2 Music detection 
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Figure B.2: A n example of the music detection output, labels and audio signal from the 
20th second to 40th second. This part is from a radio with music, the example illustrates 
a problem of recognizing background music, the only detected sequence is a noticeable 
foreground music located around 30th second. 
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B.3 Music detection 

— labels 
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Figure B.3: A n example of the non-stationary detection output, labels and audio signal 
from the first 20 seconds. This is a footage recording a warfare in the Middle East. The 
class „gun" correctly classified instances of gunfire and tank firing. 
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