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I N T R O D U C T I O N 

M a n y applications of numerical methods in many scientific disciplines can benefit 
from efficient implementations of linear algebra kernels. There are many implementa
tions that provide comparable functionality, often providing standard Basic Linear A l 
gebra Subprograms (BLAS) or Linear Algebra Package (LAPACK) interfaces that helped 
a great deal for linear algebra package development using a simple set of state-less C 
or Fortran functions. These functions are divided into several groups (or levels) by their 
complexity; L i contains the linear time functions on vectors, L2 contains quadratic 
time matrix-vector functions and L3 contains cubic time functions on matrices. 

With the advent of C++, modern object-based interfaces w i t h focus on intuitiveness, 
ease of use and safety became available. But that is not the only thing the object-based 
design has to offer: techniques such as expression templates can help fuse the com
putation kernels and reduce unnecessary data movement. The procedural and object-
oriented approaches are not mutually exclusive: an efficient BLAS implementation can 
be conveniently wrapped in an expression templates interface. 

Parallel implementations of BLAS kernels are the obvious next step to increase 
performance. Although the technologies are evolving constantly and Moore's law 
promises bigger Central Processing Units (CPUs) every year and a half, this no longer 
goes hand in hand with increasing clock frequencies. The era of constant increases in 
frequency and of architectural improvements that made newer CPUs faster "for free" 
is over. The performance is now obtained from parallelism, which requires effort also 
on the side of the algorithms and data structures. 

While consumer multicore processors have been available since the early 2000s, the 
industry has not made major strides in the meantime - today's chips still have only 
up to 22 cores 1 in a single package. However, other architectures are available. One of 
those is the Graphics Processing Unit (GPU). 

GPUs have been steadily gaining complexity for the past few years. Fueled by 
the massive entertainment industry, they provide relatively cheap performance. A t 
first, they could only be utilized for computation by hacking the graphics pipeline. 
Later, specialized interfaces for general purpose computation on Graphics Processing 
Units (GPGPU) emerged that make it easier to leverage their performance for nongraph-
ics applications, including linear algebra. G P U is a sireammg-oriented architecture that 
focuses on raw processing power wi th thousands 2 of relatively simple cores organized 
in three tier hierarchy, wi th only a very small amount of cache available (hence stream
ing). The memory subsystem is highly optimized as the memory resides directly on 
the G P U and cannot be changed or upgraded the way the C P U memory can. 

Other architectures include e.g. Intel's M a n y Integrated Cores (MIC) architecture 
wi th hundreds 3 of cores based on updated Pentium designs. Although the cores in 

1 E.g. a 22 core Xeon E5-2696 v4 released in April 2016, priced at $4100. 
2 E.g. NVIDIA Titan X introduced in May 2015 has 3072 cores and sells for about $1500. 
3 E.g. Xeon Phi 7120A released in April 2014 with 61 cores costs about $4000. 
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different architectures are hardly comparable, this gives some idea about the levels of 
parallelism attainable on a modern workstation. 

1.1 D E N S E A N D SPARSE P R O B L E M S 

Although seemingly very simple, the implementation of dense operations on mod
ern hardware is not straightforward, if it needs to be done efficiently. This is due 
to the complexity of the CPUs in use today, which have a rather complex memory 
subsystem [23] w i t h several levels of cache, support for paging and an autonomous 
prefetches There are also very fast Single Instruction Mult iple Data (SIMD) instruction 
sets for arithmetics, w i t h their own complicated rules. 

To illustrate this w i t h an example, a simple matrix product of the form A • B w i l l 
run several times faster if A is first transposed, even at the cost of copying and re
ordering the data. To limit the amount of temporary storage and to otherwise aid 
the memory subsystem, dense routines are often blocked, meaning that the operation 
is not performed on the entire matrix at once but the matrix is divided into several 
blocks that are processed individually. High-performance implementations such as 
the Goto BLAS [37] focus on fine-tuning the sizes of blocks to match various machine 
limits (in this case the size of the Translation Look-aside Buffer (TLB)). 

For certain applications, the matrices have a substantial portion of zero entries. Us
ing dense matrix algorithms would be a waste of both memory and computation - that 
is where the sparse linear algebra comes in (and of course also sparse BLAS). For sparse 
algorithms, the matrix is represented in such a way that only the non-zero entries are 
stored and the computation can be performed efficiently both in terms of storage and 
the ratio of the arithmetic operations to the rest of the algorithm. Sparse algorithms 
are typically much more complicated compared wi th the dense algorithms, due to 
the necessity of matching the non-zero entries that interact in the given operation 
and at the same time forming the sparse structure in case the result is a matrix. Effi
cient sparse algorithms are usually a fine mix of numerical methods and graph theory. 
There is a certain threshold of useful sparsity beyond which it is better to just represent 
the matrix as a dense matrix, from the performance point of view. 

To illustrate the difficulty in implementing efficient sparse operations, e.g. sparse 
matrix-vector multiplication algorithms often run at one tenth of the peak hardware 
performance [83] and the situation can be even worse for the matrix-matrix mult i 
plication [6, 17]. This is due to irregularity of memory accesses and various other 
overheads. A t the same time, those algorithms are typically much harder to adapt for 
hardware acceleration. 

1.2 F O C U S OF T H E THESIS 

The general objective of this thesis is to identify a suitable class of problems and 
to propose a computation acceleration scheme. However, the topic of application of 
G P G P U to accelerate linear algebra is too wide to specify a clear research goal. Rather 
than pursuing fast implementations of a few randomly chosen algorithms, this thesis 
examines a particular class of applications that are commonly solved using numerical 
sparse linear algebra. 
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1.2 F O C U S O F T H E T H E S I S 3 

Several estimation problems fall into this category. In general, an estimation prob
lem finds an optimal configuration of a set of variables given a vector of their initial 
values and a set of relations between those variables. If represented using a graph, the 
nodes in the graph are given by the variables to be estimated and the edges are the 
relations between those variables. 

It is common to use tools such as graphical models to capture the structure and 
dependencies of the estimation problems. Bayes Nets (BNs), Markov Random Fields 
(MRFs) or Factor Graphs (FGs) are commonly used for this purpose. While BNs are 
linked to the generative aspects and explicitly show the dependencies of the variables 
in solving the problem, MRFs and FGs better capture the structure and the connection 
wi th the underlying linear algebra, in particular the matrices. 

A condition for the problem to be sparse is that each of the variables must only 
relate to a small subset of the other variables. This translates into an underlying graph 
with a low maximum degree. 

Examples of such problems can be found in robotics and computer vision. Simulta
neous Localization and M a p p i n g (SLAM) estimates the pose of a robot in conjunction 
wi th the map of the environment from various sensor measurements. Similarly, Bun
dle Adjustment (BA) or Structure from Mot ion (SfM) in computer vision estimate the 
camera parameters together w i t h the 3D structure observed from different locations 
of the same or different cameras. 

These problems have been widely studied in the past decades, yet the computa
tional complexity is still an open issue. A S L A M problem in general grows w i t h every 
step the robot takes, and for long runs (several days of robot operation) this can be
come intractable using limited computational resources on board a robotic platform. 
Similarly, reconstructing a large 3D environment using a BA algorithm may involve 
millions of variables. 

To handle the inherent sensor noise, those problems are formulated in a probabilis
tic framework. M a x i m u m Likelihood Estimation (MLE) is a way to incorporate noise 
models into the estimation problem. In general, those models are nonlinear (e.g. the 
motion model of a robot involves rotations, vision problems work wi th 3D projective 
geometry). Under the assumption of Gaussian noise, M L E has an elegant Nonlinear 
Least Squares (NLS) solution. 

NLS problems are typically solved numerically, and that requires calculating deriva
tives to linearize the problem locally and then solve the resulting system of linear 
equations. In the above problems, each of the variables only has a limited number of 
relations to the others. In consequence, the Jacobian matrices obtained by calculating 
derivatives of the functions relating the estimated variables are sparse. Furthermore, 
those Jacobian matrices have a direct connection to the incidence matrix of the under
lying graph. Similarly, the adjacency matrix corresponds to the Hessian matrices. 

Another important characteristic of such problems is the fact that the variables 
are often multivariate, e.g. a 3D robot pose may have six Degrees of Freedom (DOFs) 
(three for position and three to represent the orientation), a landmark three DOFs. 
This structure appears implicit ly in the resulting system matrices, where the elements 
corresponding to each variable can be conceptually grouped into blocks, g iving rise 
to sparse block matrices. 

http://software
http://eigen.tuxfamily.org
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(a) (b) (c) 

Figure 1.1: Examples of approximately block matrices from the University of Florida Sparse M a 
trix Collection [18], specifically i n the D I M A C S i o dataset [76], a) an approximate 
block matrix w i th scattered nonzero elements, b) a block matrix w i th unaligned 
blocks, and in the Oberwolfach dataset [57], c) an approximate block matrix wi th 
overlapping blocks. Note that the block boundaries (in red) are only suggested - not 
a part of the original matrices. 

Figure 1.2: A n example of a randomly generated sparse block matrix composed of 31 blocks, 
3 x 3 elements each, used in testing operations on block matrices. 

A block matrix is a matrix that is conceptually partitioned into blocks. A block 
matrix can have either an exact block pattern or an approximate one where scattered 
nonzero entries are allowed, as in Figure 1.1a. Another distinction is the presence of 
unaligned or overlapping blocks - whether the conceptual edges of a block could 
intersect those of another block, as in Figure 1.1c. 

While approximate block patterns are sometimes employed to limit the required 
communication bandwidth in parallel algorithms [73, 78], this work relates to exact 
block patterns such as in the matrix in Figure 1.2. While one may object that such 
matrices are rare, the opposite is true. In Figure 1.3, there is a plot of the distribution of 
matrix nonzeros between elementwise and block matrices in the University of Florida 
Sparse Matrix Collection [18]. To generate it, the algorithm from [75] was employed 
to discover block structure in the matrices. The horizontal axis of the plot is given 
by the percentage of nonzeros of each given matrix residing in blocks of at least 
three elements. Although the number of block matrices is somewhat lower than that of 
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To extend the applicability of the proposed methods, other decompositions than 
Cholesky should be implemented. While being computationally efficient, it is only 
applicable to symmetric, positive definite matrices. A n efficient pivoting strategy is 
needed for implementation of L U and QR factorizations, which can be used on general 
square or rectangular matrices, where it directly affects the numerical stability of the 
factorization and also affects the resulting fi l l - in. 

The implementation of the specialized block matrix kernels expects a complete, 
exhaustive list of block sizes that can occur in the input - it is fully specialized. It 
would be very simple to specialize it only partially - to handle matrices wi th blocks 
of sizes that are not on the list, i.e., specifying only a few of the most common block 
sizes to be processed by the specialized dense kernels while the few blocks of different 
sizes would be handled using a generic variable-size dense kernel. This w o u l d reduce 
the depth of the block-size decision tree on matrices that contain many different block 
sizes and at some point would outperform the fully specialized version. 

In the incremental Cholesky factorization, a constrained fill-reducing ordering on 
a section of the matrix is employed. The whole section is then refactorized using 
the resumed Cholesky algorithm. It is possible to track the variable dependencies in 
the factorization and only recalculate those columns that are affected by the update. 
Alternatively, the Bayes Tree algorithm demonstrates that it is possible to reorder 
variables in an already factorized matrix. It should be possible to reorder the variables 
so as to best accommodate the update (e.g., by ordering the affected variables last) and 
to reduce the f i l l - in at the same time. 

The MIS and AMICS orderings for the Schur complement only focus on maximizing 
the size of the diagonal section. While that leads to a reduction in the size of the 
Schur complement and thus memory savings, the variables inside each diagonal block 
and the diagonal blocks themselves can be arbitrarily reordered. This can be used 
to improve memory access patterns, possibly also saving some fi l l - in in the Schur 
complement. 

The block matrix kernels on the G P U are designed wi th small blocks in mind , which 
means that the individual blocks have to fit into the shared memory. It w o u l d be sim
ple to also design an implementation for very large blocks that do not fit, and slightly 
more challenging to design an implementation that allows mixtures of both small and 
large blocks while being able to facilitate reasonable load balancing. Applications of 
block matrices w i t h very large blocks can be found e.g. in computational chemistry. 

The algorithms described in this thesis were implemented wi th a single-process 
model in m i n d and could also be extended to G P U - C P U hybrid or distributed comput
ing and out-of-core processing. The derivatives are now calculated on the C P U and 
consume a significant portion of the time budget. If the analytic expressions for the 
derivatives are known, it is straightforward to offload this computation onto the G P U . 
Expression templates and concurrent evaluation of the expression dependency trees 
could also increase performance. 

1.2 F O C U S O F T H E T H E S I S 5 

* * l a S s l f f i l s s f f i l l s R l l l s l 
Percentage of Matrix NNZ in Blacks 

Figure 1.3: Distribution of data between elementwise and block sparse matrices i n the University 
of Florida Sparse Matrix Collection [18]. 

sparse matrices, this plot shows that the majority of the data in this dataset is in fact 
in block matrices. 

The focus of this thesis is to propose new algorithms and implementations to ac
celerate linear algebra operations in N L S problems wi th a sparse, block structure. A 
new data structure is proposed to benefit highly from the block structure and incre
mental nature of those problems, when iteratively calculating the solution of an NLS. 
Furthermore, the possibilities of G P U acceleration are explored. The thesis shows that 
the proposed methods supersede all existing implementations in this direction and 
generate state of the art algorithms for problems such as S L A M and B A or SfM. 

The proposed solutions can also benefit other fields. In addition to the estimation 
problems described here, there are other problems w i t h inherent block structure, such 
as Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in physics 
simulations which also have an underlying graph and a block structure, Lapped Or
thogonal Transforms (LOTs) in image processing have a particular block structure. In 
addition, a number of methods exist [24, 25, 73, 47, 83, 85] to consolidate general 
sparse matrices into block matrices, making acceleration of problems without inher
ent block structure also possible. 



S L A M ++ B L O C K M A T R I X D E S I G N 

M a n y applications ranging from physics, computer graphics, computer vision to 
robotics rely on efficiently solving large nonlinear systems of equations, as illustrated 
in the previous chapter. In the case of using a Gauss-Newton-like algorithm, the so
lution can be approximated by iteratively solving a series of linearized problems. In 
some applications, the size of the system can be considerably large. The most com
putationally demanding part is to assemble and solve the linearized system at each 
iteration. This chapter shows solutions that exploit both, the block structure and the 
sparsity of the corresponding matrices and offers very efficient methods to manipu
late, assemble and perform arithmetic operations on them. 

A block matrix is a matrix which is interpreted as partitioned into sections called 
blocks that can be manipulated at once. A matrix is called sparse if many of its entries 
are zero. Considering both, the block structure and the sparsity of the matrices can 
bring important advantages in terms of storage and operations. 

Block matrices can be more or less permissive as to the shape and placement of the 
dense blocks. The blocks can be overlapping or non-overlapping and at the same time 
aligned or unaligned. Note that any of the first three combinations can be converted 
to the fourth - aligned, non-overlapping - by fragmenting the blocks as needed and 
summing up the remaining fully overlapping blocks, as illustrated in Figure 2.1. The 
only downside is that in some cases, the fragmentation can leave many 1 x 1 blocks 
behind or even yield an elementwise sparse matrix. 

A n overlapping block matrix may be obtained e.g. by a procedure for f inding block 
structure in general sparse matrices which aims at covering all matrix nonzeros by the 
minimum number of blocks possible, see e.g. Figure 1.1c or Figure 2.1a. Unaligned 
block matrices (Figure 1.1b or Figure 2.1c) arise naturally e.g. in LOTs [12,13] in image 
processing, where each two adjacent blocks overlap in order to avoid discontinuities 
in the processed image. 

(a) (b) (c) (d) 

Figure 2.1: Block placements i n sparse block matrices: a) unaligned block matrix w i t h four blocks, 
two of w h i c h overlap, b) aligned block matrix - the unaligned blocks were fragmented 
(now there are 8 blocks two of which still overlap), c) unaligned w i t h the overlapping 
blocks fragmented and fused (total of 5 blocks) and d) aligned non-overlapping block 
matrix (7 blocks). 

C O N C L U S I O N S 

The main focus of this thesis was on efficient sparse numerical linear algebra routines 
wi th applications in Nonlinear Least Squares (NLS) solving. We selected a particular 
class of NLS problems that are sparse and exhibit a natural block structure. This block 
structure was exploited in the implementation of S L A M ++, a high performance NLS 
solver. Having fast arithmetics on block matrices naturally led to the development 
of more efficient algorithms for incremental matrix factorization and direct solving 
which would have been impractical or elaborate when using elementwise sparse ma
trices. G P U acceleration of the key routines on those matrices was also performed. A l l 
of the algorithms were rigorously evaluated on standard datasets and compared wi th 
similar state of the art implementations. 

To summarize, the main contributions of the work presented in this thesis are: 

• N e w Sparse Block Matrix Format. 
• Efficient Arithmetics for Sparse Block Matrices. 
• Sparse Block Matrix Factorizations. 
• Efficient Variable Reordering Strategy for Incremental Cholesky Factorization. 
• Analysis of the Computational Complexities in Schur Complement. 
• Clique-Based Ordering for Schur Complement. 
• Incremental Schur Complement. 
• Sparse Block Matrix Formulation of the Recursive Formula. 
• Incremental Covariance Matrix Update and Downdate. 
• Sparse Covariance Recovery for Schur Complemented Systems. 
• Fast G P U Sorting Kernel. 
• Fast G P U Sparse Matrix Multiplication Kernel. 

IO.I F U T U R E WORK 

The sparse block matrix factorizations presented here, despite being highly competi
tive and outperforming even state of the art implementations such as Cholmod [20], 
are just the first attempts wi th hardly any performance tuning. It is possible to em
ploy dense block vectors to accumulate dot products between block columns wi th 
different sparsity patterns (as described e.g., in [40]), rather than using the ordered 
merge algorithm. The memory alignment is currently performed on all of the blocks, 
likely hurting performance when small blocks are present. It is straightforward to 
add a memory alignment policy that would disable alignment of those small blocks, 
based either on expert knowledge or auto-tuning. A number of other low-level im
provements and optimizations could be implemented, including also compile-time 
optimizations. 

Furthermore, the proposed block matrix factorizations are simplical. Their supern-
odal forms can be implemented to gain significantly better performance. Efficient m u l -
tifrontal or parallel C P U implementations w o u l d also yield a considerable speedup. 

6 6? 
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Figure 9.1: GPU-accelerated NLS solving performance on the standard B A datasets. 

speedups. To further accelerate the solving, it w o u l d be necessary to calculate the 
Jacobians also on the G P U . Al though that w o u l d be suitable for a specialized system, 
it would be difficult to implement generally in an extensible library such as S L A M ++. 

The x 2 errors of all the implementations are basically the same, w i t h differences 
appearing at the eighth or ninth decimal place. The GPUs have consistently higher 
error, but the difference is entirely insignificant. Note that all these computations are 
performed in double precision. In context of G P U computing, single precision is more 
common. However, the N L S solving can be numerically demanding and could easily 
diverge or produce special numbers if using single precision only. For that reason, 
the Tesla-class GPUs were used in this comparison. Those are specifically tailored for 
scientific computation and have more double precision units than gaming or other 
professional GPUs. 

The G P U proves to be an useful tool in the context of small-scale acceleration, such 
as in the robotics scenarios where the processing needs to be performed in an online 
fashion. However, the limit of acceleration seems to be low, perhaps wi th the excep
tion of image processing and other embarrassingly parallel tasks. For large-scale par-
allelization, distributed processing on CPUs seems to be a better choice, although it 
presents its own set of challenges. 

(a) 

a 

b d g 

e 

c f 

(b) 

Figure 2.2: Relation of expressions on block and elementwise sparse matrices: a) aligned non-
overlapping block matrix and b) a structurally equivalent elementwise sparse matrix. 

Assuming aligned, non-overlapping matrices has its benefits. Each block of the ma
trix can be treated as a (scalar) variable in an ordinary (elementwise) sparse matrix 
and formulas applicable to the elements can be automatically extended to blocks (see 
Figure 2.2), wi th the difference that scalar operations become operations on matrices: 
addition becomes elementwise addition of the blocks, multiplication becomes matrix 
multiplication, division becomes linear solving or backsubstitution in case the blocks 
are triangular, square root becomes Cholesky factorization. The only issue is that the 
blocks interacting in an arithmetic operation must have compatible dimensions. For
tunately, for most of the matrix algorithms, only the blocks in the same block row or 
block column are interacting and the dimensions are therefore guaranteed to match. 

Similarly, operations taking multiple matrices as input (e.g. matrix addition or m u l 
tiplication) can rely on the blocks of the two matrices to be aligned wi th each other. 
This makes the implementation of the arithmetic operations simpler and faster as 
only entire blocks interact (rather than the overlapping parts of the blocks interacting 
in case the matrices weren't aligned). In our implementation, it is required for the 
matrices to be aligned w i t h each other, or in different words, to have a compatible 
block layout. 

Using dense blocks is a natural way to minimize cache misses, since the C P U auto
matically prefetches the data as they are accessed. Nevertheless, taking care of the 
layout of the individual blocks in memory is also very important in order to avoid 
cache misses at block boundaries, especially if the blocks are very small. Finally, the 
compressed format the blocks are to be stored in , needs to be chosen carefully - other
wise the handling of the blocks can easily outweigh the advantages of cache efficiency. 

Some of the existing state of the art NLS solvers rely on sparse block structure 
schemes. In general, the block structure is maintained unti l the point of solving the 
linear system. Here is where e.g. CSparse [19] or Cholmod [20] libraries are used to 
perform the matrix factorization. 

The advantage of elementwise sparse matrix schemes is that the arithmetic opera
tions can be performed efficiently. Compressed sparse column (CSC) format [75] used 
in CSparse is an efficient way to store the sparse data in memory. The disadvantage of 
this format is its inability or impracticality to change a matrix structurally or numer
ically once it has been compressed. The block-wise schemes are complementary, their 
advantages include both easy numeric and sometimes also structural matrix modifi 
cation, at the cost of slight memory overhead and reduced arithmetic efficiency. 



2.1 P R O P O S E D I M P L E M E N T A T I O N 8 

block column layout 
0 4 6 8 12 14 18 22 26 28 32 36 

null block columns block column layout cumulative sums and the accompanying block lists 

(a) (b) 

Figure 2.3: Block row / column layout of a block matrix, a) A n example of a sparse block matrix 
and the actual values of the cumulative block sum (on top and left side). Non-zero 
dense blocks are shown i n violet. Yellow shows n u l l rows/columns, b) Dense block 
data i n segregate storage. O n the bottom, we show the block column layout and the 
corresponding sorted list of pairs of type (iRL, pDB), where iRL is the index of the 
row layout, and p D B is the pointer to the block data in the memory. 

Matrix assembly is a notable bottleneck in many situations: the time needed for 
putting the matrix together is comparable to the numerical operations which follow. 
The elementwise CSC representation [75] can be as efficient as any block matrix struc
ture, in case of assembling a set of structurally-different matrices. The NLS solvers, 
however, involve operating iteratively on matrices where large portions of the matrix 
structure do not change between the iterations. In such case, block matrix schemes 
can be very proficient, as they allow for modifying parts of the block structure as well 
as efficiently modifying the numeric content. 

In this chapter, a fast and cache efficient data structure for sparse block matrix rep
resentation is proposed, which combines the advantages of elementwise and block-
wise schemes. It enables simple matrix modification, be it structural or numerical, 
while also maintaining, and often even exceeding the speed of elementwise opera
tions schemes. Another important advantage of the proposed scheme is the overall 
robustness of the structure, allowing for validation and error-checking. 

2.1 P R O P O S E D I M P L E M E N T A T I O N 

When dealing w i t h matrices wi th a block structure, operating on dense blocks is a 
natural way to support vectorization and improve cache efficiency without any ad
ditional effort. Note that this only holds for SIMD type processors, and likely would 
not be practical for true vector processors, such as Cray machines, where interleaved 
block storage would be more beneficial. O n the other hand, the use of dense blocks 
allows efficient data representation at their natural granularity, making it simple to 
reference the data inside the matrix and change their value when it is needed. 

A C C E L E R A T I N G T H E N O N L I N E A R L E A S T S Q U A R E S 
S O L V E R S O N G P U 

This chapter contains a brief evaluation of the proposed G P G P U methods in the context 
of NLS solving. The focus is on timing evaluation, as the precision of the solutions 
calculated using the proposed methods is not expected to decrease, save for possible 
rounding errors due to different order of floating-point operations in the parallel 
implementation and due to a different implementation of the IEEE 754 standard than 
in the C P U . 

The evaluation was done on standard BA datasets, in the batch mode. This is be
cause in there, the amount of time spent in matrix multiplication in forming the Schur 
complement is significant compared to the rest of the operations. Fast & Furious 6 is a 
bundle adjustment dataset comprising of 160 high-resolution D S L R stills of an open 
landscape and a highway bridge in Gran Canaria 1 . Guildford Cathedral comprises of 92 
DSLR stills of the Gui ldford Cathedral 2 (Surrey, London). Venice is a standard bundle 
adjustment dataset [55] created from an internet collection of 871 photos of a court
yard adjacent to the San Marco square in Venice, Italy. 

Some of the tests, including all the CPU -only tests, were performed on a machine 
wi th a pair of Intel Xeon E5-2470 CPUs running at 2.30 G H z and sharing 96 G B of 
R A M , equipped w i t h a single N V I D I A Tesla K20m G P U . Additionally, some tests were 
performed on an Intel Core i5 C P U 661 w i t h 8 G B of R A M and running at 3.33 G H z , 
equipped wi th N V I D I A Tesla K40c G P U . Dur ing the tests, the computers were not 
running any time-consuming processes in the background. Each test was run several 
times and the average time was calculated to avoid measurement errors. The turbo 
boost function of the Xeon C P U was disabled for the benchmarks, so as to not make 
the results dependent on the variations in the temperature. 

The results can be seen in Figure 9.1. The solutions using a direct solver with
out the Schur complement are denoted direct-A-CS (CSparse [19]), d i rec t -A-CM 
(Cholmod [20]) and direct-A-BC (the block Cholesky proposed in Chapter 2). The 
times are relatively similar, w i t h CSparse being better in the Fast & Furious 6 dataset, 
and the block Cholesky being better in the larger Venice dataset. The times wi th Schur 
complement, denoted Schur-BC, are improved by about a factor of two. Note that the 
reported times include also calculation of the Jacobians and other tasks that are the 
same for all the versions of the algorithm. This makes the perceived speedup slightly 
smaller than that of the linear solver only. 

The GPU-accelerated Schur complement achieves about 50% speedup compared to 
Schur complement using block Cholesky on the first two smaller datasets, but almost 
150% speedup on the larger Venice dataset, using Tesla K40. The time required to 
calculate the Jacobians and update the system is about 70% of the total time for Fast 
& Furious 6, 60% for the Guildford Cathedral and 42% for Venice, which explains the 

1 Kindly provided by Double Negative Visual Effects, http ://www.dneg. com/. 
2 Freely available at http://cvssp.org/impart/, upon request. 
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estimate the saturated costs to 27.7 ms/MFLOP for CSparse, 4.2 ms/MFLOP for C U S P 
and finally 3.0 ms/MFLOP for the proposed. 

A more conventional comparison is presented in Table 8.1. This comparison was 
performed on the S N A P subset of the University of Florida Sparse Matrix Collection. 
It contains 9 different classes of matrices, a single matrix was chosen from each of 
them, much like in the evaluation in [59]. Each of the matrices was multiplied by 
itself (or in case of rectangular matrices, by its transpose). The proposed solution 
maintains the best times for most of the matrices, except for roadNet-CA, where the 
number of scalar products per element of the r.h.s. matrix is very low, yielding high 
thread divergence in the proposed implementation. O n smaller matrices such as pzp-
Gnutellayi, C U S P does not scale well and is slower despite the divergence. Reducing 
this divergence is the subject of the future work. 

Note that on cit-Patents, both the proposed and C U S P ran out of memory on G T X 
680, and on as-Skitter there was not enough system memory to perform the mult ipl i 
cation even on the CPU. This is not a principal problem of the algorithm, rather it is an 
implementation issue. One would only need to add an extra parameter of how many 
columns of the r.h.s. matrix should be processed at a time (corresponding to the same 
number of columns of the result), and the CPU would schedule the multiplication as 
several calls of the original algorithm. 

For a synthetic benchmark of the sparse block matrix multiplication, the matrices 
from S N A P were used again. Each element was replaced by a dense block, while the 
block size was varied between the different tests. The algorithm was slightly mod
ified, to only perform product of the block structure of the matrix, and the actual 
arithmetics on the dense blocks is performed in the last stage of the algorithm. This 
significantly reduces the size of the expansion stage, permitting multiplication of even 
large matrices. The results of this benchmark are on Figure 8.3b. 

A s expected, the proposed implementation exhibits performance increase w i t h in
creasing block sizes. However, it was discovered that the loop unrolling for known 
block sizes which was so beneficial on a CPU is not helpful at al l on GPU. This is likely 
because the operation is memory bound and reducing the number of instructions 
does not yield additional performance. It would likely be more beneficial to use the 
block size information to choose a tuned implementation when dealing wi th matrices 
wi th multiple block sizes. This remains as a future work. 

2.1 P R O P O S E D I M P L E M E N T A T I O N Cj 

In the g20 [55] block matrix implementation, the blocks are allocated on the heap, 
and it can not be guaranteed that the blocks are allocated in close memory locations. 
If the blocks are allocated in distant memory locations, cache misses still occur. In 
the Ceres [1] implementation, the blocks are allocated in a linear array which would 
necessitate reallocation and data copying when incrementally adding new blocks to 
the matrix. It also uses element offsets rather than pointers, perhaps to avoid pointer 
arithmetics in reallocation but then pointer arithmetics is required every time when 
referencing the blocks. Additionally, Ceres does not align the memory, necessitating 
the use of slower unaligned SPMD instructions. To alleviate those problems, the pro
posed implementation allocates block memory in pages, which guarantees that the 
blocks are stored tightly next to each other while also allowing more blocks to be 
added without requiring to copy or shift the data. 

The arithmetic efficiency of block matrices is mostly reduced, compared to element-
wise sparse matrices, which might come as a surprise. That is because two or three 
extra inner loop counters for element rows and columns of the blocks are needed. 
This reduces the ratio of the arithmetics to flow control instructions. 

Fortunately, in the least square problems the size of the blocks corresponds to the 
number of Degrees of Freedom of the variables. The possible block sizes of a given 
problem are therefore known in advance, at compile time. It is possible to use this 
information to hint the individual operations on matrices w i t h lists of possible block 
sizes occurring in the operands. The proposed implementation is able to elegantly 
take advantage of this information using metaprogramming. 

2.1.1 The Data Structure 

In general, a vast majority of the existing block matrix schemes, including the pro
posed one, involves the same data layout as the CSC representation (or an equivalent 
one), but use more complex data structures to allow changes to the matrix structure 
which is useful especially in the context of incremental solving. For example, in the 
existing implementations [1, 54, 55], trees or other higher abstract data types are used. 

In the proposed block matrix implementation, block row and block column layouts 
are described using the same cumulative sum structure, as seen in Figure 2.3a on the 
top and left edge of the matrix. In addition, rhe columns structure contains the lists of 
non-zero matrix blocks, each comprising of a row index and a pointer to matrix data. 

The elements themselves are stored in forward-allocated segregated storage (see 
Figure 2.3b), a storage model similar to a pool but only permitting allocation and 
de-allocation of elements from the end of the storage, in the same manner stacks do. 
This yields fast allocation and improves cache coherence. 

The choice of a sorted list over e.g. a tree structure is given by the nature of matrix 
usage. When iteratively solving an NLS problem, the block columns or block rows are 
created once and used (referenced) many times. This reflects the nature of a sorted 
list where insertion is costly (except for the insertion at, or near the end) but lookup 
is fast. A t the same time the flat structure is cache friendly, allowing for fast iteration 
over the matrix data in arithmetics operations. Tree structures have more balanced 
insertion and lookup costs, but since the nodes of a tree are typically allocated on the 
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heap, cache misses are potentially incurred at every lookup. Also , traversal of all the 
nodes of the tree can be non-trivial. 

To allow for the acceleration using vectorization by the SPMD instructions and to 
make hardware implementations easier, the blocks should be memory-aligned. E.g. 
for Streaming SLMD Extensions (SSE), the addresses of the first element of each block 
need to be an integer multiple of 64 bytes. Similarly, GPUs require so-called read co
alescing which corresponds to alignment to 128 byte boundaries. It is possible in the 
proposed format to leave out unused entries so that each block is aligned (the pages 
are allocated aligned so that the first block is always aligned). In some cases, small 
blocks need not be aligned to save memory because vectorization w o u l d not be ap
plied in such case (e.g. 1 x 1 blocks for SSE). 

In order to enable the unusually fast 0(1) block lookup in arithmetic operations, 
one important restriction on block and column layouts must be applied. The whole 
area of the matrix needs to be represented, which means that the layout of n u l l block 
rows and columns needs to be represented as well . Those are marked in yellow in 
Figure 2.3a and their representation is shown in Figure 2.3b where the fifth and sixth 
fields in the block column layout are empty and similarly the block row 5 is not 
referenced by any of the blocks. 

This contrasts w i t h the usual sparse block matrix representations, which only de
scribe the layout of nonzero blocks without caring about the nul l elements in between. 
It comes at the cost of small increase in memory requirements, but only for the layout 
itself, not for the data. If nj, and mj, are the number of block rows and columns, re
spectively, up to 0(mt, +TLb +2) additional cumulative sums are stored in the worst 
case. These describe the layout of nul l block rows and columns, lease note that for 
the structurally full-rank matrices in NLS problems there are no such nul l columns or 
rows, therefore, no extra space requirements apply. 

2.1.2 Sparse Block Matrix Assembly 

In order to write (scatter) a block into a matrix, the block column and block row need 
to be resolved first. A d d i n g a new block row or column inside the matrix area, or 
alternatively reusing or subdividing an existing one is a logarithmic time operation. 
However, incrementally appending the matrix wi th blocks to or after the last block 
row or column is a constant time operation, as it only needs to determine whether to 
create a new block row or column at the end, or to use an existing one. This is a basic 
operation but frequently used in the context of incremental solvers where the system 
matrix grows every step. 

In order to look a block up by its position given by element coordinates of the 
starting row and column, the block row and block column are resolved first in 
Of lognj , -r-logmj,) time. Then the block needs to be found in the sorted list, taking 
additional O(logf^) time (f̂ , being the number of nonzero blocks (the fill) of a given 
column; for most sparse matrices f̂ , <C m.\,). This operation can mostly be avoided by 
storing a reference to the block after inserting it in the matrix. 

The proposed implementation also allows for making shallow copies of matrices, 
where the block data is w i t h the original matrix. That makes it possible to e.g. make 
permutation of a matrix using a fill-reducing ordering for factorization without the 
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Figure 8.3: a) Performance scaling comparison on Tesla K 4 0 . Note that both axes are logarithmic, 
b) Performance scaling comparison of sparse block matrix multiplication on the first 
four matrices from the S N A P dataset. 

Table 8.1: GPU sparse matrix multiplication performance comparison on the S N A P subset, the 
best times are in bold (all times i n seconds). The last two columns indicate relative 
speedup over CSparse and CUSP. 

G F G T X 680 Tesla K40 

Matrix C U S P ours C U S P ours MFLOPS x C S p . x C U S P 

roadNet-CA 0 . 1 5 6 0.199 0.103 0 . 0 9 9 223 .662 7.823 1.038 

web-Google 0.447 0 . 4 3 3 0.315 0 . 2 4 9 368 .356 21 .347 1.265 

email-Enron 0.360 0 . 2 7 1 0.247 0 . 1 7 3 418.961 6.645 1.429 

amazono3i2 0.209 0 . 2 4 1 0.141 0 . 1 2 3 344 .389 13.488 1.148 

ca-CondMat 0.035 0 . 0 2 7 0.024 0 . 0 1 5 394.591 9.347 1.575 

p2p-Gnutella3i 0.015 0 . 0 0 7 0.008 0 . 0 0 3 190.560 11.304 3 .003 

wiki-Vote 0.036 0 . 0 2 4 0.025 0 . 0 1 5 482.961 5 .482 1.633 

cit-Patents out of RAM 0.497 0 . 4 4 6 214 .127 30.089 1.114 

as-Skitter out ofRAMS 

not include the conversion or data transfers. The benchmarked version of the pro
posed algorithm handles all the rank deficient cases. The memory for the expansion 
and the product was allocated online, without any prior knowledge of the size of 
either. A l l the calculations were carried out in double precision. 

Timing results for the all-to-all product benchmarks are on Figure 8.3a. Note that for 
very small matrices of less than ten thousand FLOPs, CSparse is the fastest. For larger 
matrices, the proposed implementation takes over. Note that time of CSparse scales 
linearly w i t h the number of FLOPs, as can be expected from a serial implementation 
of [40]. The times of the parallelized implementations grow slowly before the GPU 
gets saturated, then also scale approximately linearly. Least squares were employed to 

5 Note that with only 16 GB of RAM, this matrix is too large even for CSparse: the product would take 26.4 GB. 
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moved by long distances, leading to large amount of potentially uncoalesced global 
memory traffic. These w i l l be ordered again in the later stages of the sort, by the most 
significant bits of the keys which correspond to the column indices, leading to long 
distance movement again. 

In the context of GPU computing, some operations have segmented variants, e.g. a seg
mented scan. Its input is a vector of values to calculate the scan of, and a vector of head 
flags, a binary vector w i t h ones at the positions of segment starts. Note that segmented 
operation is performed on the bulk of data rather than on the individual segments, 
and thus requires no explicit load balancing. However, radix sort is not a good candi
date for segmented implementation, as it would lead to both runtime and space tolls. 
Fortunately, for merge sort, segmented variants exist 2 , and the performance toll , com
pared to the non-segmented variant, is negligible. By using segmented sort, the time 
of the sorting stage was significantly reduced; one can compare Figure 8.1a where 
sorting takes only 34%, wi th Figure 4 in [17] where it is closer to 63% of the time. 

8.1.3 Compression Stage 

Once the expansion is sorted, the compression is a simple task of calculating sums of 
elements wi th the same row and column, which are now in contiguous segments of 
the expansion (see Figure 8.2b bottom). A simple segmented reduction can be used 
to calculate the sums, while the head flags can be calculated as a difference of row 
and column numbers between consecutive expansion elements. Note that similarly to 
expansion stage, the size of the compressed form needs to be calculated first (e.g. as 
a sum (reduction) of the head flags) so that the memory to store the results can be 
allocated, unless the size of the product is known beforehand. 

8.2 RESULTS 

In this section, the timing results of sparse matrix multiplication performed using the 
proposed implementation are compared w i t h a similar state of the art implemen
tation, C U S P 0.3.1 [63]. It was also compared to CSparse 1.2.0 [19], which runs on 
the CPU4. Despite all effort, we were unable to find any existing O p e n C L PSpGEMM 
implementations. The evaluation was performed by all-to-all multiplication of sparse 
matrices from The University of Florida Sparse Matrix Collection [18] and their trans
poses (for matrices which share a common dimension). 

A l l the tests were performed on a computer w i t h N V I D I A GeForce G T X 680 (3 GB 
R A M ) and Tesla K40 (12 G B R A M ) , a pair of A M D Opteron 2360 SE CPUs running at 
2.5 G H z and 16 G B of R A M . In both cases, the program was compiled as X64, and both 
CUDA and O p e n C L used 64-bit pointers. GPU drivers version 344.48 were used. CUDA 
implementations were linked against CUDA 6.5 S D K libraries. E C C was disabled on 
the Tesla GPU. 

Our implementation works wi th the CSC format. The implementations working wi th 
CSR format had their matrices converted (transposed) accordingly. Recorded times do 

2 One such implementation can be found at http ://nvlabs .github. io/moderngpu/segsort. html. 
3 The implementation of the proposed algorithm is available, at http: / / s f . net/p/blockmatrix/. 
4 CSparse is used as an orientative example, more efficient CPU implementations exist. 

need to copy block data or to create triangular views. A n y numerical modification to 
the original matrix is reflected in its copies. This feature is also vital in the context of 
nonlinear incremental solvers because it allows to reuse the permutation even after 
the linearization point (and so also the unordered matrix) has changed. 

2.1.3 Basic Arithmetic Operations 

The arithmetic operations on block matrices are typically carried out in the same 
manner as on elementwise sparse matrices, w i t h the exception of handling matrix 
blocks instead of scalar values. Most of the arithmetic operations require block lookup 
at some point. Other existing block matrix implementations require 0( log nj,) lookup. 

To improve performance, a function, mapping block rows of B to block columns of 
A can be used. Consider Algori thm 2.1: first, note the use of logical indexing of block 
rows and block columns by their id (lines 14 and 17), rather than by their physical 
position in elements. This mapping is calculated as a projection from block rows of 
the B matrix to block columns of the A matrix using a modified ordered merge. The 
cost of calculating the mapping function is 0(mt, + nj,) in the number of block rows 
or block columns. Note that the mapping function needs to be only calculated once, 
before the arithmetic operation takes place. Also note that the complexity involved 
is negligible, compared to the complexity of the arithmetic operation itself. This later 
allows to replace the logarithmic time lookup of columnAt,i o c k by an 0(1) lookup. 

Furthermore, insertion of a block only requires insertion into a sorted list which 
is up to 0 ( l o g f b ) but avoids the lookup of block row and block column. For some 
types of operands (such as diagonal matrices or symmetric matrices), the order of the 
inserted blocks can be anticipated and the O(logf^) time lookup can be avoided. In 
our implementation, this is used to optimize matrix products in the A T A form. 

A s mentioned above, the block sizes correspond to the DOF of the variables and, in 
general, are known in advance. Us ing typelists [2] and templates, decision trees are 
built at compile time that later at runtime enable the use of dense kernels generated 
for a given block size. This allows for optimization using loop unrolling and vector-
ization at the block level, e.g. in Algori thm 2.1 at line 18. It can be easily shown that if 
log2 of the number of possible block sizes is smaller than the average block size, the 
resulting code w i l l contain less branching and thus w i l l run faster. 

Note that in the proposed C++ implementation, this functionality is accessible us
ing simple and easy to read syntax where the list of block sizes is passed to each 
individual matrix operation call in angled brackets. It w o u l d also be possible to re
strict certain types or instances of matrices to only contain blocks of specified sizes, 
but such solution was seen as less versatile, and was not implemented. 

2.1.4 Sparse Block Matrix Factorizations 

A n indispensable tool for solving linear systems, most of the matrix factorizations 
borrow from, is Gaussian elimination. Gaussian elimination modifies a matrix into its 
upper-triangular form by performing linear combinations of rows and at the same 
time modifies the right-hand side. The solution of a triangular system is easily found 
by backsubstitution: the last variable does not depend on any other and the solution 



2.1 P R O P O S E D I M P L E M E N T A T I O N 12 8.1 A L G O R I T H M D E S I G N 57 

Algor i thm 2.1: Fast sparse block matrix multiplication. 

function F A S T M U L T ( A , B ) 
C = N E W M A T R I X ( R O W S ( A ) , C O L S ( B ) ) 
fmap = BLOCKLAYOUTMAPPING(BLOCKCOLS(A) ,BLOCKROWS(B)) 
colB i d = 0 
for each columnBt,i o ck i n B do 

for each blockB i n columnBt,i o ck do 
r o w B i d = RowlDOF(blockB) 
column A i d = f m ap ( rowB i d ) 
if c o l u m n A y = mismatch then 

return > block layout mismatch, product not defined 
else if c o l u m n A y = null then 

continue > the column in A is mismatched but also empty 
end if 
columnAbiock = BLOCKCoLs(A)[columnA i ( j ] > 0(1) 
for each blockA i n columnA^iock do 

r o w A i d = ROWIDOF (blockA) 
b l o c k d e s t = FiNDBLOCKLoG(rowAi d ,coLBi d , C ) t> < O(logf^) 
b l o c k d e s t = b l o c k d e s t + blockA • blockB 

end for 
end for 
co lB i d + + 

end for 
return C 

end function 
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is a simple ratio. The second last variable depends only on the last but now that it is 
known, it can be substituted to get a simple linear equation. The rest of the variables 
are solved for in similar manner, proceeding backwards, from the right to the left -
hence the name back-substitution. 

A n important problem in Gaussian elimination (and most of matrix factorizations 
in general), is stability: the elimination involves division by the diagonal element (a 
pivot). If this division is by a small number, numerical issues ensue. A simple example 
might be the following matrix: 

e 1 

1 0 
(2.1) 

Eliminating the 1 to get the matrix into the upper-triangular form requires division by 
a small quantity e which w i l l in turn amplify roundoff errors. A simple solution is to 
swap the rows first (and equally swap the rows of the right hand side). This process is 
called pivoting. The pivot can be chosen as the element of maximum magnitude, either 
only from the current column (partial pivoting) or from the lower-right submatrix 
that was not eliminated yet (full pivoting). Fu l l pivoting is understandably slower but 
typically leads to more numerically robust algorithms. 

8.1.1 Expansion Stage 

Although the first conceptual stage of the algorithm is expansion, on GPU it is not 
possible to directly proceed, without first knowing its size, as all the memory needs 
to be allocated before starting the computation. From [40], it is trivial to derive the 
exact size of the expansion: 

cols(B) nnzc(B,j) 

expansion(A, B) = ^ ^ nnzc(A,row(B, j ,k)) , 
j = l k=l 

.1) 

where cols(-) gets the number of columns of a matrix, nnzc(-, •) returns the number 
of nonzero elements in a specified column of a specified matrix and row(-, •, •) is the 
row of the given element in a column of a matrix. Note that all those are 0(1) array 
look-ups if the matrix is stored in CSC format. Also note that the expansion size is 
closely related to the number of FLOPs required to carry out the multiplication. 

The expansion size dictates the memory cost of the ESC algorithm (the proposed 
variant as well as [6, 17]). Figure 8.1b plots a ratio of expansion size to the number of 
nonzeros in the product. In certain cases lOOx more storage than the final product is 
required (please, refer to Section 8.2 for the description of the dataset). Fortunately, it 
is possible to transparently subdivide the product by cutting the B matrix to several 
column slices, producing one slice of the product at a time. 

The choice of granularity of expansion is crucial to load balancing. The proposed 
algorithm achieves perfect load balancing in the expansion stage by using the granu
larity of individual scalar products. To do that, it is necessary for each thread to find 
the elements of A and B to process. Here, the interpolation search [68] algorithm is em
ployed. It is a special case of binary search where the pivot is chosen based on linear 
interpolation of the values of the endpoints of the searched interval wi th the needle 
as the argument. 

The expanded scalar products are essentially the product matrix in the COO format; 
they can be stored in three vectors of the same length, e x c o i s contains column indices, 
exrows contains row indices and e X v a i u e s contains values of the elements (see Fig
ure 8.2b). Note that the sparse multiplication algorithm generates a partially ordered 
expansion, where e x c o i s is ordered and e x r o w s consists of many short ordered runs 
(given by the rows of elements in the columns of A , which are typically ordered). 

8.1.2 Sorting Stage 

The approach in [6] is to use a single global sort. O n GPU, the most efficient sort 
implementations use radix sort [60] wi th complexity O(kN) where k is proportional 
to the number of bits of the key. In the case of keys generated by the expansion, the 
number of bits is given by base 2 logarithm of the number of rows and columns, 
respectively, and this knowledge can be used to accelerate the sort. 

The radix sort may, however, not be the most efficient for a sequence which is 
already nearly sorted. A s the sort starts, the expansion w i l l be first ordered by the 
least significant bits of the keys, corresponding to the row indices. This w i l l shuffle 
the column indices which were already ordered at the beginning. The elements are 
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Figure 8.1: a) Time of different stages of the proposed algorithm, b) Expansion factor by the 
number of product nonzero entries. 
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Figure 8.2: Data at the indiv idual stages of the ESC algori thm 1 , a) the factors and their product, 
b) CSC representation of the factors, c) top: expansion of the product, segments of 
product columns indicated by alternating color, bottom: sorted expansion, segments 
of product elements indicated by alternating color and d) values of the product and 
its final CSC form. 

B.l A L G O R I T H M DESIGN 

The algorithm introduced in this chapter is based on the ESC algorithm [6, 17]. H o w 
ever, the focus is on removing load imbalances and on simplicity, as especially the 
improved ESC algorithm in [17] handles many special cases, depending on the mem
ory space (local or global) and granularity (thread, warp or thread group) of each par
ticular operation. In contrast, the proposed implementation only requires six custom 
kernels, some of which are merely a fusion of multiple general purpose operations 
such as scan, created for performance purposes only. 

1 An interactive demonstrator is available online at http://www. fit.vutbr. cz/-ipolok/esc. 

One disadvantage of Gaussian elimination becomes apparent in solving multiple 
right-hand sides: although the right hand sides can be modified by the row operations 
simultaneously, a problem appears if not all the right hand sides are available at the 
same time. It is possible to gather the row operations in a matrix instead which can 
later be used to mult iply each right hand side and apply those operations to it. Enter 
matrix factorizations. 

Cholesky factorization is a decomposition of a symmetric positive-definite matrix A 
to a product 1 R T R. Matrices involved in normal equations of NLS are positive-definite 
and thus Cholesky factorization is a popular method. To solve a system of linear equa
tions in the form A x = b, one first solves R T u = b and then Rx = y by forward- and 
back-substitution. Blocking Cholesky factorization is popular in dense linear algebra 
and is implemented e.g. in Eigen [39] but to our best knowledge, our sparse block 
Cholesky implementation is the first of its kind. 

Due to symmetry, Cholesky factorization can be row-wise or column-wise. A d d i 
tionally, the order of elimination can produce a row (a column) at a time (gather), or 
can modify the whole submatrix (scatter). A n appealing property of Cholesky factor
ization is that no pivoting is needed. 

In the sparse case, the order of operation is typically given by the underlying for
mat. Since the proposed block format is derived from CSC, the left-looking column 
algorithm is taken as the starting point. Implementing it is trivial - square root be
comes dense Cholesky decomposition, division becomes back-substitution w i t h m u l 
tiple right hand sides. The only tricky operation is a dot product of two columns 
becomes A T k • A y which needs to be resolved efficiently. Due to the sparsity not 
all the columns w i l l have blocks at the same positions so their contribution would be 
zero. Choosing the columns k that modify the current column j can be done efficiently 
using the elimination tree structure [19], a tree of variable dependences. To find the 
elements at the same row in the two columns, it is possible to employ a dense vector 
for the j t H column, in the style of CSparse. For the block case, this could cost quite 
a lot of additional storage therefore a different strategy using ordered merge (which 
runs in linear time) is employed. 

In sparse decompositions, a different notion of blocking is sometimes used. In some 
cases, several consecutive columns in the factorization w i l l have the same sparsity 
pattern, forming a dense block around the diagonal. This is commonly referred to 
as a supernode. While the proposed implementation and e.g. the one in CSparse are 
simplical, Cholmod implements a supernodal factorization [14] which identifies these 
supernodes and uses dense kernels to speed the computation up. It w o u l d similarly 
be possible to identify block-supernodes in the block structure of the factorized matrix 
but its implementation was not attempted. 

Another observation to be made about the Cholesky factorization is that it can intro
duce new non-zero entries: for two columns j and k which have nonzero values in the 
same row above the diagonal, R^j w i l l be nonzero (ignoring possible numerical can-

1 Or alternatively as A — I_I_T where I_ = R T . In this work, upper-triangular matrices are preferred, as most 
of the Cholesky factorization routines, including Cholmod, read only the upper-triangular part of the matrix 
and there seems to be some integrity in also writing an upper-triangular output. Additionally, for A T A — A 
and A = QR (where Q is orthogonal), it can be shown by writing A T A = R T Q T Q R = R T R that this R 
matrix is the same one as in the Cholesky factorization, up to the sign of the rows (Cholesky will always have 
positive diagonal entries). This choice of R over I_ is not motivated by any political or occult preferences. 

http://www
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cellation). This is commonly referred to as fill-in. The speed of the sparse factorization 
can be severely affected by the f i l l - in. A classical example is an arrow matrix: 

(1 1 1 ^ 0 1 \ 

2 0 0 
0 

V I 0 2 ) V o 1 ( J 

P T A P 
1 \ 

2 7 
(2.2) 

The Cholesky factorization of such A w i l l be a ful l matrix (all the columns share 
nonzeros in the first row). However, an appropriate permutation P of the original 
system of equations can be employed, yielding no fi l l - in at all in the factorization 
of P T A P . This requires the right-hand side vector (and the solution vector) to be 
permuted (inversely permuted) as well but that presents a negligible cost. Note that 
the permutation is rarely represented as a matrix in practice, rather it is represented 
as a vector of variable number reassignments (in this case p = (2,0,1)). 

Finding the best fill-reducing permutation is an NP-complete problem [86], how
ever many approximate algorithms are available. Based on the observation that the 
fi l l - in only occurs under the highest element of each column, initially the orderings 
strived to reduce the matrix profile or bandwidth, [36, 77, 30, 27], notably Reverse 
Cuthil l -McKee (RCM) [16]. Later, orderings based on the elimination graph were pro
posed such as Exact M i n i m u m Degree (EMD) and its modifications [58], Approximate 
M i n i m u m Degree (AMD) [4] or Nested Dissection [34]. 

The ordering can be done on the level of elements (customary in sparse linear alge
bra) or on the level of blocks. The proposed implementation depends on the ordering 
of the block structure, otherwise the elementwise permutation could scatter the block 
structure completely. O n the other hand, the block structure is represented by a much 
smaller matrix and the ordering heuristics thus run faster. At the same time, the qual
ity of such ordering is comparable to the conventional one if not better [52]. 

2.2 P E R F O R M A N C E A N A L Y S I S 

In this section, the t iming results for several matrix operations performed using the 
proposed implementation are compared to similar state of the art implementations 
such as CSparse, Ceres and NIST Sparse BLAS. NIST implementation can store matri
ces in several formats. CSR is a compressed sparse row elementwise format, similar 
to the one used in CSparse. BSR denotes constant block size compressed block row 
format, and is a simple block matrix format where all the blocks have the same size. 
Finally, VBR denotes variable block size compressed block row format, which is an 
extension of BSR where the individual blocks can have arbitrary size. This format is 
the most general, and is equivalent to the one used in Ceres and by the proposed 
solution. The proposed implementation is denoted as UBlock, and the version wi th 
metaprogramming optimization is denoted UBlock FBS (fixed block size). 

A l l the tests were performed on a computer wi th Intel Core i5 CPU 661 running at 
3.33 G H z and 4 G B of R A M . This is a quad-core CPU without hyperthreading and 
with ful l SSE instruction set support. The evaluation was performed on a subset of the 
The University of Florida Sparse Matrix Collection [18]. This collection was chosen 
because it contains sparse matrices corresponding to a diverse set of problems, and as 

F A S T S P A R S E M A T R I X M U L T I P L I C A T I O N O N G P U 8 
This chapter presents a novel and highly efficient parallel algorithm for sparse matrix 
multiplication. Sparse matrix-matrix multiplication is an important algorithm, useful 
in a wide variety of scientific tasks, including among others computational chemistry 
and physics, graph contraction, breadth-first search from multiple vertices, algebraic 
multigrid methods, finite element methods or solving (non)linear systems using Schur 
complement [87]. 

The sparse matrix algorithms are usually tightly coupled to the sparse matrix stor
age formats they use. Two of the popular formats are compressed sparse column 
(CSC) [19] and compressed sparse row (CSR). Those are closely related; matrices stored 
in one are transposes of the matrices stored in the other. CSC stores matrices as a vector 
of prefix sums of numbers of nonzero elements in each column and two vectors stor
ing element values and their respective rows. It is common for the elements in each 
column to be ordered by their row number. The use of the CSC format is assumed in 
the rest of this chapter, unless specified otherwise. 

Let us recall that in matrix multiplication C = A • B, each element of the product 
C| j is a sum of products of the corresponding elements in the i t H row of A and the 
j t H column of B. The number of columns of A must match the number of rows of B. 
In CSC, it is straightforward to look up elements by column (0(1)) but not to look up 
elements by row (O(n) in the number of nonzero elements), which would be needed 
to calculate the elements of C in ordered fashion (gather). 

The original algorithm for sequential sparse matrix multiplication [40] is imple
mented e.g. in the popular CSparse package [19] (used by Google's Ceres solver and 
Street View), and is work-efficient in terms of its complexity being proportional to the 
number of Floating Point Operations (FLOPs). It is worth mentioning that this level of 
efficiency is only reached for the price of calculating a partially unordered represen
tation of the product, which is still useful in practice, but not canonical. 

The algorithm [40] is efficient by traversing the elements of B column by column 
(assuming the CSC storage is used; for CSR all the terms are transposed), where each el
ement B y multiplies all the elements of A in the i t H column (the one corresponding 
to the row of the particular element B y ) . M a n y of the other sparse matrix mult i 
plication algorithms use this strategy. It produces partially ordered partial products 
(scatter), which need to be summed up. Gustavson [40] came up w i t h an elegant way 
of quickly merging these partially ordered sequences. 

Parallel sparse matrix multiplication algorithms (PSpGEMM in BLAS terminology), 
however, generally decompose the matrices to band or block submatrices and dis
tribute the computation of the partial products to different processors. Similarly like 
in the previous case, the results need to be merged to form the final product, using 
sparse matrix addition in this case. This approach is further referred as a coarse-grain 
work subdivision, since the submatrices are typically relatively large. Packages [5, 31] 
use this approach. 

RR 
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latter task, working w i t h vertex transforms and lighting computations was done in 
software rather than in hardware - especially because the applications used a variety 
of different tricks and approximations which would be hard to map to circuitry. It 
was also believed that a fast C P U would be able to keep the pace. 

But nevertheless along came the hardware transform and lighting pipeline which 
could be configured for a few different kinds of lighting effects or e.g. fog computa
tions, although performing e.g. skeletal character animation was difficult if not im
possible. Still, an undisputed benefit is that it had freed the C P U for other tasks. This 
was later followed by register combiners which had more flexibility, and eventually 
by shaders which were short C-like programs. 

Since the price to performance ratio of the GPUs sky-rocketed thanks to the digital 
entertainment industry and mass production, it is no surprise that they were popu
lar also for non-graphics computations. Early applications of the non-programmable 
graphics pipeline included e.g. fast collision detection using z-buffering and sten
cil operations [62] or matrix multiplication using multi-texturing and blending func
tions [56]. Addi t ion of programmable shaders allowed implementation of more com
plex algorithms, e.g. sparse matrix solvers [8]. 

The long tradition of abusing the graphics pipeline for purposes other than graphics 
was finally ended by the introduction of Application Programming Interfaces (APIs) 
for general purpose computations. Compute Device Unif ied Architecture (CUDA) was 
introduced by N V I D I A in 2008 and was intended as an extension of the C++ language 
for N V I D I A GPUs. In 2009, it was followed by a more general Open Compute Library 
(OpenCL) which targets many different kinds of parallel platforms, including GPUs. 
Both C U D A and OpenCL expose functionality hidden from the graphics APIs, such as 
random memory access (scatter in addition to gather), inter-thread communication 
using shared memory, atomics or double-precision instructions. This compelled most 
of the authors to abandon writ ing new implementations in shaders. Note that some 
of those features were later introduced to the graphics APIs in form of the compute 
shaders. 

Rather than describing the inner workings of a G P U , such as the thread or memory 
hierarchy. Please, k indly refer to one of the G P U programming guides, e.g. [66], or 
other plentiful material available on this topic. 

Block Size Block Size 

-»-Ceres -»-CSparse -*-UBIock -»-Ceres-»-CSparse -*-UBIock-«-UBIock FBS-«-NISTCSR NISTVBR NISTBSR 

(a) (b) 

Figure 2.4: a) Time for compression of the M C C A matrix (smaller is better), b) Performance 
scaling of general matrix vector product on the M C C A matrix. 

such it is suitable for testing of general purpose linear algebra implementations. Note 
that the goal of this benchmark was to ascertain the performance scaling and for that 
reason, only the structure of the matrices was used. In the tests, each nonzero element 
was assumed to be a block of size given by each particular test configuration. A s the 
speed of blockwise operations depends on block size, the block size was varied from 
1 x 1 to 30 x 30 elements. Note that these benchmarks are synthetic, but still highly 
relevant in the context of problems wi th naturally occurring block structure, such as 
(but not limited to) N L S , F E M or PDE. 

Several matrices were selected for comparison. In particular, the M C C A matrix from 
the Harwell-Boeing [26] collection, a relatively small matrix of 180 x 180 elements con
taining 2659 nonzero entries was used for the comparison w i t h the NIST implemen
tation. This matrix was selected because the authors already performed experimental 
evaluation [11] on it. Since the NIST BLAS is not widely used, this l imited comparison 
should be sufficient. 

A comparison of the time required to compress a sparse matrix using CSparse, 
Ceres and our implementation is shown in Figure 2.4a. The NIST implementation is 
missing from the plot because their library does not provide compression routines. 
Note that CSparse time is directly dependent on the number of matrix nonzero ele
ments. The block schemes become more efficient as the block size grows; our imple
mentation becomes the fastest for 6 x 6 blocks (or larger). 

Similarly, Figure 2.4b shows the time comparison for the general matrix vector prod
uct operation. For 1 x 1 blocks, CSparse is faster than every other implementation, 
except for the NIST elementwise implementation and the proposed fixed block size 
implementation. Although the NIST elementwise implementation is very fast and 
significantly outperforms CSparse, there is only small speedup w i t h their block ma
trix formats. For block size 1 x 1 , the NIST elementwise sparse implementation is the 
fastest. Interestingly enough, the Ceres implementation is slower than the NIST imple
mentation, approaching NIST performance as the block size grows. It becomes faster 
than CSparse for block size 5 x 5 . Our general implementation becomes faster than 
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Figure 2.5: a) Performance scaling of linear combination of the M C C A matrix and its transpose, 
b) Performance scaling of the product of the M C C A matrix and its transpose. 

CSparse for 4 x 4 blocks and is the fastest for 8 x 8 blocks or larger. However, the pro
posed fixed block size implementation is always the fastest, except that the NIST CSR 
is faster for 1 x 1 blocks (but our implementation is still slightly ahead of the CSparse 
library). 

A n additional benchmark is performed for the operation of addition of the ma
trix and its transpose. This operation is not particularly important in the context of 
nonlinear solvers, but due to its arithmetic simplicity it is sensitive to efficient data 
manipulation. Since the M C C A matrix is not structurally symmetric, the result of this 
operation has a different nonzero pattern than the operands. That can be expected in 
most matrix addition situations, therefore it serves as a val id benchmark. The results 
can be seen in Figure 2.5a. Note that the time spikes of the proposed implementation, 
especially on the fixed-block-size version, are caused by the compiler being able to 
generate more optimized code for blocks of sizes that are multiples of four, since the 
SSE registers store four values. 

Multiplication benchmark in Figure 2.5b displays similar behavior. Note that the 
gap between elementwise sparse and blockwise sparse implementation gets very wide 
as the block size increases. O n the other hand, most of the popular nonlinear least 
squares problems w i l l likely only use blocks up to no more than 10 x 10. O n the other 
hand, problems from the field of the computational chemistry may use even larger 
blocks. Still, it is fast enough to outperform even elementwise sparse implementations 
running on GPU, as w i l l be demonstrated later on. 

We also performed cache profiling using the Cachegrind 2 tool, wi th the default 
settings (64 kB of LI cache and 6 M B of L2 cache). The benchmark w i t h the M C C A 
matrix was run several times in order to identify outliers in Cachegrind results. The 
test was run wi th block size 4 x 4 , and confirmed that the proposed storage is indeed 
cache efficient. Matrix multiplication had 8.3% LI cache misses and 16.3% last level 
cache misses, compared to CSparse. Similarly, matrix vector multiplication reduced 
LI cache misses down to 14.2% and last level cache misses to 9.45%. 

2 A part of the Valgrind tool family, see http://www. v a l g r i n d . o r g / i n f o / t o o l s . html#cachegrind. 

A C C E L E R A T I N G T H E C H O S E N A L G O R I T H M S O N G P U 

The previous parts proposed an efficient implementation of a Nonlinear Least Squares 
(NLS) solver library. It proved to outperform similar state of the art implementations, 
on high level due to algorithmic improvements and on low level due to sparse block 
matrix storage and operations design. Apart from Chapter 5 which employed simple 
GPU acceleration using existing libraries for dense operations, all the experiments were 
running on CPU only. However, several bottlenecks were identified: 

SPARSE M A T R I X M U L T I P L I C A T I O N : used heavily in Schur complement, incremen
tal Schur complement and covariance recovery. 

SPARSE M A T R I X T R A N S P O S E : used in Schur complement, incremental Schur com
plement and covariance recovery. Although not directly a bottleneck, not having 
sparse transpose on G P U would necessitate copying the data back and forth, as 
well as C P U - G P U synchronization. The underlying operation is parallel sorting 
(the column-ordered entries of a sparse matrix are sorted by row, yielding a 
transpose matrix). 

SPARSE M A T R I X F A C T O R I Z A T I O N : general sparse factorization kernel w i l l proba
bly not yield a large speedup for SLAM applications as the matrices are very 
sparse [84]. O n the other hand, a jagged diagonal or band-diagonal matrix fac
torization would be useful in Schur complement implementation and would 
reduce the memory and computation requirements compared to a ful l dense 
factorization. 

B L O C K D I A G O N A L M A T R I X I N V E R S E : used in Schur complement, generally not a 
bottleneck (except if using AMICS ordering where the diagonal blocks can get 
large) but is easily parallelizable. 

7.1 A BRIEF HISTORY OF G P U C O M P U T I N G 

The complexity of computer generated imagery has been steadily increasing for the 
past few decades, hand in hand with the plausibility of its results. From the first 
computer animated movies which took days and weeks to render on large mainframes 
to today's video games which admittedly look much more realistic and render at 
steady 60 FPS on consumer hardware. O n one hand, this was made possible through 
the research and advances of algorithms and rendering methods. In the more recent 
years, special hardware for graphics computation acceleration appeared - the GPU. 

At first, the GPUs could only draw z-buffered polygons wi th color and texture 
and much of the initial development was focused on increasing the raw numbers 
of vertices (or polygons) that could be sent to the rendering pipeline and on the 
number of pixels that could be filled each frame. While the GPUs were good at the 

http://www
http://valgrind.org/info/tools
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Table 6.2: Characteristics of the BA datasets used i n covariance recovery evaluations. 

which was kindly provided by Double Negative Visual Effects5. Two additional meth
ods were compared: recursive formula on Cholesky factor of the system matrix, and 
recursive formula on Schur(D) as in (6.11). More details about the datasets are listed 
in Table 6.2. 

The experiments were performed on the Salomon supercomputer, part of the IT4I 
Czech National Supercomputing Center. Each compute node is equipped wi th a pair 
of 12-core Xeon E5-2680 v3 running at 2.50 G H z and 128 G B of R A M . Memory con
sumption tests were performed on SGI UV2000 node, equipped w i t h 14 of 8-core 
Xeon E5-4627 v2 at 3.3 G H z and 3.25 TB (Terabyte) of R A M ; timing of these tests is 
denoted by the dagger''' symbol. The turbo boost function of the Xeon CPUs was dis
abled for the benchmarks, so as to not make the results dependent on the variations 
in the temperature. 

Sparse block schemes [70] were used throughout the whole implementation, which 
previously proved about an order of magnitude speedups for batch recursive formula 
[46]. Block matrix products and decompositions were accelerated by Tesla K20X GPU. 

Times required to calculate the marginal covariances are reported in Table 6.1. The 
computation of the covariances of landmarks directly from Schur complement is the 
fastest for all tested datasets, followed by the use of recursive formula. The proposed 
method provides more than an order of magnitude speedup. The use of Schur(D) and 
recursive formula is prohibitive by both time and considerable memory requirements. 

The magnitudes of the calculated landmark covariances are displayed as false color, 
see Figure 6.2 or Table 6.2. From the colored view, it is apparent which parts of the 
reconstruction are more precise and which are not. The user can take advantage of 
such images to re-capture poorly reconstructed areas and obtain a high accuracy 3D 
reconstruction. 

1 http://www.dneg.com/ 
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Figure 2.6: The M C C A matrix a) w i t h the elements inflated to blocks of 4 different sizes and b) 
its split form. 

In solving FEM problems and perhaps also in other methods which rely on highly 
efficient matrix vector products, an approach called splitting [79, 69, 35] can be em
ployed. It refers to representing a matrix wi th blocks of multiple different sizes as a 
sum of several matrices, each containing blocks of one particular size. Then, each of 
those matrices can be represented using a simpler block matrix format and loops can 
be unrolled similarly as in the proposed Fixed Block Size (FBS) approach. To compare 
the performance of the splitting approach to the proposed decision tree approach, one 
more benchmark was performed. The M C C A matrix was used, and again its elements 
were inflated to blocks. In contrast to the previous benchmarks of performance scaling 
which used a single block size in the entire matrix, mixtures of different block sizes 
were generated. The mean block size was 9 x 9 for all cases, so that the number of 
Floating Point Operations (FLOPs) w o u l d be the same for all the tests. A n example for 
four different block sizes is given in Figure 2.6. O n the right, the matrix is reordered 
so that it can be split to four independent matrices, each of which contains only blocks 
of a single size. The matrix vector product is then performed separately for each of 
the four sub-matrices and the results are summed up. 

The results for this benchmark are in Figure 2.7. It can be seen that CSparse has 
the same performance for all the tests, since it does not work w i t h blocks at all . Sim
ilarly, NIST B L A S VBR and the proposed scheme denoted UBlock achieve relatively 
constant performance. Surprisingly, Ceres only achieves good performance for matri
ces wi th a single block size and then drops to the performance of CSparse and lower, 
even though it does not optimize for matrices wi th a single block size. The split ap
proach implemented using the BSR format of the NIST B L A S , denoted Split NIST BSR, 
achieves slightly higher performance than the VBR format up to 9 block sizes, then 
it becomes slower. The small yield is given by this implementation not being able to 
unroll the loops. The version of the split approach implemented using the proposed 
block matrix scheme with the loops unrolled, denoted Split UBlock FBS, gains much 
higher performance and always stays ahead of the proposed variable block scheme, al
though for more than 64 block sizes, it w o u l d drop below. The decision tree approach 
using the non-split matrix denoted UBlock FBS achieves better performance than the 
split one, w i t h the performance decreasing at lower rate wi th the growing number 

http://www.dneg.com/
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Figure 2.7: Comparison of splitting and the variable block size approaches. 

of block sizes. The performance hit of the decision tree version is related to the base 
2 logarithm of the number of block sizes, while the performance hit of the splitting 
approach is related to the number of block sizes directly. O n top of that, splitting also 
increases the bandwidth of the matrix, further increasing memory traffic. Note that 
for the splitting approaches, the time needed to reorder and split the matrix is not 
included in this evaluation. 
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Table 6.1: T iming results and the associated space requirements of the evaluated covariance re
covery methods (best times i n bold). 

Dataset Cathedral Venice Fast & Furious 6 

Landmarks, using (6.14) 

Size of sparse S ~ T 

0 . 1 6 5 s 
1.24 M B 

7 . 0 6 0 s 

109.79 M B 
0 . 2 9 3 s 

2.97 M B 

C h o l ( A ) 

Rec. formula all 

Size of C h o i ( A ) 

1.251 s 

3.308 s 

74.05 M B 

16.856 s 

82 .689 s 

572 .52 M B 

0.951 s 

3 .493 s 

93.33 M B 

S c h u r ( D ) 

C h o l ( S c h u r ( D ) ) 

Rec. formula lm. 

Size of S c h u r ( D ) 

Size of C h o l ( T ) 

160.662 s 

73^ hours 

4459 .647t s 

37 .87 G B 

106.70 G B 

4457.539t s 

N / A 

N / A 

398.01 G B 

~ 7.37 TB 

149.999 s 

139t hours 

5t hours 

46 .95 G B 

493.43 G B 

Cameras, using (6.10) 0.028 s 38 .809 s 0.045 s 

is no longer block diagonal and inverting it is much more difficult than inverting D 
in (5.2). A p p l y i n g the Woodbury formula to (6.11) gives: 

£1 = D " 1 + D " 1 U T ( A - U D " 1 U T ) " 1 U D " 1 , (6.12) 

£1 = D " 1 + D " 1 U T L p U D " 1 , (6.13) 

£1 = D " 1 + D - 1 U T S ' 1 S ' T U D - 1 . (6.14) 

Evaluating all of (6.14) would yield a dense matrix wi th the size approaching that of 
the ful l £ which would be counterproductive. Instead, taking advantage of symmetry 
of A (and thus also of D and £ ) , it is possible to write B = S ^ U D " 1 in order to get 
Lll. = + B T S B * J where D is blockwise representation of D . Note that U D " 1 

is a sparse matrix w i t h the number of nonzero blocks in each column equal to the 
number of cameras that observe the point corresponding to that column; S" T can be 
efficiently calculated using sparse sparse back-substitution. 

Finally, to get the cross-covariances between the camera and the landmark variables, 
it is possible to use (5.3) w i t h covariance in place of a and identity on the right: 

£ p l = ( S T S ) \ ( 0 - U D " 1 I l ) , (6.15) 

£ p l = - ^ U D " 1 . (6.16) 

Again, computation can be saved by taking advantage of sparsity of the matrices so 
that recovering the ful l £ p is not necessary. 

6.2.1 Experimental Evaluation 

The proposed method for recovering marginal covariances of points was tested on two 
public datasets, the Guildford Cathedral4, Venice [55] and on the Fast & Furious 6 dataset 

4 can be obtained at http://cvssp.org/impart/ 

http://cvssp.org/impart/
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The performance of our incremental N L S solver in [71] was also compared against 
G T S A M 2.3.1. However, the computation of the marginal covariances is not optimized 
for recovering all the block-diagonal elements in the current version of the G T S A M , 
therefore we excluded it from our comparisons. Nevertheless, we tested the available 
function for recovering the covariance of a single variable, the first variable (the most 
expensive one to calculate), against a similar function in S L A M ++, and this produced 
on Manhattan, 26.270 s G T S A M vs. 2.125 s S L A M ++, on 10k, 261.880 s vs. 50.550 s, 
and on Intel, 1.429 s vs. 0.148 s. 

In conclusion, the proposed implementation significantly outperforms all the exist
ing implementations due to the proposed incremental covariance update algorithm 
and the blockwise implementation of the recursive formula. 

6.2 RECOVERING COVARIANCE IN SCHUR COMPLEMENTED SYSTEMS 

In Section 6.1, it was described how the covariances of the variables in an N L S esti
mation may be recovered efficiently and how the incremental updates to the system 
translate to the updates of the covariance matrix. However, as demonstrated in Chap
ter 5, some of the problems can be solved more efficiently using Schur complement 
rather than by directly factorizing the system matrix A or A . In those cases, it is still 
possible to e.g. use the recursive formula (6.1) and (6.2) to obtain the covariances, but 
it comes at the cost of calculating an extra factorization of the entire system which 
would otherwise not be needed. 

Thus, the goal is to solve AL = I directly on the Schur complemented system: 

where both L and the identity matrix I are partitioned the same way as A is parti
tioned in (5.2). Note that the subscripts here are only identifiers rather than element 
indices. By taking Cholesky decomposition S T S = Schur(A), the covariances of the 
camera variables are: 

S T S L P = I p - U D ^ O 1 " = I p so L P = ( S T S ) " 1 , (6.10) 

and thus the recursive formula in (6.1) and (6.2) can be used efficiently. 
The situation is more interesting in recovering the covariances of the landmarks. It 

would be possible to make use of T T T = Schur(D) and (6.10) to write: 

£ L = ( D - I F A - 1 ! ! ) " 1 = ( F T ) " 1 . (6.11) 

The matrix inverted here is positive definite and the recursive formula could be used 
again. However, the inverse A " 1 is involved here: unless the underlying problem forms 
a bipartite graph which only really happens w i t h vanilla forms of B A and as soon as 
e.g. intrinsic camera parameters, GPS or odometry measurements are introduced, A 

B A T C H S O L V I N G I N S L A M + + 

In the previous chapter, a fast implementation of operations on sparse block matrices 
was introduced and its performance was evaluated on more or less synthetic dataset 
obtained by "inflat ing" elementwise sparse matrices into block matrices. This chapter 
discusses design of an efficient nonlinear least squares solver based on the block ma
trices and evaluates its performance on several well -known S L A M problems. We refer 
to gathering all the constraints and variables and calculating the solution at once as 
batch solving. In contrast, incremental solving would be first solving a small part of 
the problem, then adding some variables and constraints, solving this larger problem 
again, and so on. This scenario typically arises in online robotic applications where 
a robot is traveling through the environment, gathering data and at the same time 
requiring estimates of its position and of the map before it can plan its next actions. 

In robotics, Simultaneous Localization and M a p p i n g ( S L A M ) is often formulated as a 
nonlinear least squares problem. Similar problems such as Structure from Mot ion (SfM) 
in computer vision [28] or elastodynamic simulations in computer graphics [43] rely 
on solving large nonlinear systems. Efficient incremental online algorithms for solving 
the underlying nonlinear least square problem are essential in real-time applications. 
Solving the nonlinear system is usually addressed by iteratively solving a sequence 
of linear systems. The most computationally demanding part is to assemble and solve 
the linearized system at each iteration. 

The linear system can be solved either using direct or iterative methods. Direct 
methods, such as Cholesky or QR factorizations, are based on repeatedly factorizing 
a large matrix and backsubstitution to obtain the solution. Iterative methods, such as 
Conjugate Gradient ( C G ) , on the other hand, employ matrix-vector multiplications and 
iteratively approximate the solution of the linear system. Iterative methods are more 
efficient from the storage (memory) point of view, since they only require access to the 
gradient, but they can suffer from poor convergence. Direct methods produce more 
accurate solutions and avoid convergence difficulties but they typically require a lot 
of storage as wel l as efficient elimination orderings to be found in order to maintain 
the sparsity of the resulting factors. 

In robotics, approaching S L A M as a nonlinear optimization on graphs showed to 
provide very efficient solutions to moderate scale and well-behaved S L A M applica
tions [22, 38, 50, 51, 55]. Graphs allow more natural representation of nonlinear least 
squares problems such as S L A M , where a set of variables such as the robot poses and 
landmark positions are estimated, given a set of measurement constraints between 
those variables. The goal is to find the optimal configuration of the variables that 
maximally satisfy the set of nonlinear constraints. The existing methods repeatedly 
solve a sequence of linear systems in an iterative Gauss-Newton ( G N ) or Levenberg-
Marquardt (LM) nonlinear solver. Real applications such as online mapping and local
ization of a robot in a large area and over very long period of time require extremely 
fast methods for bui lding, updating and solving the sequence of linearized systems. It 

1Q 
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involves operating on matrices having a block structure, where the size of the blocks 
corresponds to the number of Degree of Freedom of the variables. 

Some of the existing implementations rely on sparse block-structure schemes [54, 
55]. The block structure is maintained unti l the point of solving the linear system. 
Here is where CSparse [19] or Cholmod [20] libraries are used to perform the matrix 
factorization. Those are state of the art elementwise implementation of operations on 
sparse matrices. 

3.1 INCREMENTAL SLAM 

Online robotic applications require fast and accurate methods for the estimation of 
the current position of the robot. In an online application, the state is incremented 
with a new robot position and/or a new landmark every step and it is updated with 
the corresponding measurements. This translates into changing the normal equation by 
adding new block columns to the matrix A corresponding to each new variable (e.g. 
a pose or a landmark) and new block rows corresponding to each measurement [22]: 

A = A bi 
b 2 + b u 

(3-i) 

where for the case of a single new measurement, A u = T^Z-]/2 and b u -
with Jk being the block row of the Jacobian matrix, corresponding to the residual r^ 
of the measurement function h ^ 

2-1- r k < 

J k 39 (3-2) 

Note that the additions in (3.1) may require padding A w i t h new zero columns and 
b 2 wi th new zero rows in case new variables are added. Extension to multiple new 
measurements is trivial. 

Similarly, for the A matrix in the normal equation, the increments translate to 
adding new block rows and block columns (as A is symmetric) w i t h the size of each 
new variable. Updates translate to (potentially) adding new nonzero entries. Updat
ing A and n is additive: 

A A l l 
A | 2 

A l 2 

A 2 2 + 0 r)2 + w 

(3-3) 

where like for the A matrix above, CI is the bottom-right section of Jk and cu is 

the bottom part of — J k ^ j ^ i V Also, one can see that A = A + A ^ A U and cu = J k b u . 
A batch computation of the solution of the new incremented and updated system 

is then performed at every n t H step. Ideally, the estimate is recalculated whenever 
new constraints or variables are added, to obtain the most accurate model of the 
environment that can be derived from all measurements gathered so far. For very 
large problems, batch solving at every step can become very expensive. Kaess et. al [50, 
51, 52] proposed efficient algorithms to incrementally solve the linear systems. Those 
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Figure 6.5: Covariance recovery performance evaluation; a) logarithmic plot of time on standard 
datasets and b) cumulative time on the Intel dataset. 

6.1.2 Experimental Evaluation 

In this chapter, the focus was on testing the proposed algorithms on S L A M applica
tions, but the applicability of the technique remains general. M a n y other applications 
from robotics such as active vision, planning in belief space etc. can benefit from the 
solutions proposed here. 

The computational efficiency and precision of the method and its implementation 
were tested and compared wi th similar state of the art implementations, in particular, 
i S A M [50] and g20 [55]. Both, i S A M and g20 use fairly similar implementation of 
the recursive formula (6.1), (6.2) together wi th a cache of already calculated covari-
ances, based on STL hash map containers. Although highly efficient, these implemen
tations do not handle incremental updates of the covariance and instead recalculate 
it from scratch at every step. The proposed online covariance recovery is available in 
the S L A M ++ l ibrary 3 . Other implementations can easily benefit from the proposed 
scheme. The only requirement on the solver is to be able to solve for dense columns 
of L and to have explicit A u or CI. 

The evaluation was performed on the standard robotics datasets. The tests were 
performed on a computer wi th Intel Core i5 C P U 661 running at 3.33 G H z and 8 GB 
of R A M . 

6.1.2.1 Time evaluation 

Figure 6.5a reports the covariance recovery time on logarithmic scale while Figure 6.5b 
shows the cumulative time of the incremental covariance computation on the Intel 
dataset during the execution of the algorithm. A n approximate time complexity was 
estimated from these readings using least squares. The time complexity for S L A M ++ 
O f n 1 ' 7 7 ) is superior to the ones of g20 0 ( n 2 3 1 ) or i S A M 0 ( n 2 3 6 ) . 

3 http://sf.net/p/slam-plus - plus/ 

http://sf.net/p/slam-plus
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Figure 6.4: Sparsity patterns involved in covariance update calculation. 

measurements involved in the update. For the simple case of a single measurement 
of a given DOF, m u = D O F , regardless of the number of variables involved or their 
respective DOFs. Furthermore, due to the fact that A u is very sparse, the computation 
of S can be performed very efficiently. The complex update in (6.5) becomes a simple 
block vector multiplication: 

A L = - B S ^ B 1 " where B = Z A ^ is a block vector. (6.6) 

Due to the sparsity of the A u , only few elements of the ful l L matrix are referenced, in 
particular only the block rows corresponding to the variables involved in the update. 
A simple example where the update involves two variables, is shown in Figure 6.4. 
Furthermore, the size of B is u x m u , but the product in (6.6) is a ful l matrix. Therefore 
the computation of the entire A l is prohibitive. We mentioned above that only some 
elements of the covariance are needed in the applications. For a single block, £ y , the 
update can be easily calculated as: 

A Z y = —B l S" 1 BJ" , (6.7) 

where B^ and Bj are block rows of B of size of the update and the DOFs of the 
variables i and j (DOF| x m u and m u x D O F , , respectively). A similar formulation 
of the covariance update was used in [45] in the context of filtering S L A M . In there, 
the marginal covariance of the variables were used to facilitate data association and 
graph sparsification using information theory measures. 

The storage of the dense matrix L must be avoided. Only the blocks required by the 
application (for instance only the diagonal of L) are stored in a sparse block matrix. 
However, in order to compute the update in (6.6) or in (6.7), other elements of L are 
needed (the block columns, corresponding to the variables v, involved in the update). 
Those are obtained by solving the system: 

A Z * / V — I*,v o r R£*,v ~ R - ' " ! *^ t (6-8) 

where I is an identity matrix of the same size as R and I » i V is a sparse block matrix 
containing only the block columns corresponding to the variables involved in the 
update. The complexity of this calculation is directly proportional to the sum of DOFs 
of the variables, involved in the update. For sparse R wi th n n z nonzero elements, 
calculating a single (elementwise) column of L » i V by forward and back substitution 
amounts to 0(2nnz). 

(a) Manhattan (b) 10k (c) look (d) Cityiok (e) CityTreesiok 

Figure 3.1: The synthetic datasets used i n the batch solver evaluations. 

(a) Intel (b) Killian (c) Victoria Park 

Figure 3.2: The real-world datasets used in the batch solver evaluations. 

algorithmic improvements offer very good solutions to online S L A M but they are out 
of scope of this chapter, which focuses on efficiently constructing the system at each 
iteration and speeding-up the basic arithmetic operations involved in batch solving. 

3.2 IMPLEMENTATION DETAILS 

In order to efficiently cope w i t h very large nonlinear systems, the process of assem
bling and solving the sequence of linear systems must be as fast as possible. The data 
structure has to allow for both, efficiently re-computing the values of the matrices A 
or A and the r.h.s. b or T| every time a new linearization point is available as wel l as 
efficiently updating the system when new measurements are available in incremental 
mode. One important characteristic of those matrices is their sparse block structure. 
For maintaining the A matrix, the individual Jacobian blocks are cached and the 
data flow of the product A T A is represented in such a way that it can be incrementally 
updated as the linearization point is changed. 

Operating on dense blocks is a natural way to support vectorization and improve 
cache efficiency without any additional effort. Also , the division of the data in blocks 
allows efficient data representation at their natural granularity, making it simple to 
reference the data inside the matrix and change their value when needed. 
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Figure 3.3: a) Comparisons of time per vertex i n the batch solvers ( C M refers to C h o l m o d and CS 
refers to CSparse), b) Time comparison of sparse block matrix operations performance 
on SLAM dataset matrices w i t h 6 x 6 blocks. For the comparison w i t h 3 x 3 blocks, 
please see [72]. 

3.3 E X P E R I M E N T A L E V A L U A T I O N 

In order to evaluate our new efficient block matrix scheme, two standard graph S L A M 
algorithms were implemented; one that builds the linear system in A x = b, that is 
denoted allBatch-A and another one that increments the information matrix in the 
normal equation A x = r| where A = A T A , r | = A T b , that is denoted allBatch-A. The 
timing results were compared to similar state of the art implementations such as 
i S A M [50], g20 [55], and SPA [53] (a 2D S L A M variant of sSBA [54]). 

The implementations were evaluated on five standard simulated datasets; Manhat
tan [67], 10k and 100k [38], Cityiok and CityTreeiok [49] and on three real datasets; 
Intel [44], Killian Court [9] and Victoria park [65] (see Figure 3.1 and Figure 3.2). These 
are 2D S L A M datasets commonly used in evaluating graph-SLAM implementations. 

A l l the tests were performed on a computer wi th Intel Core 15 C P U 661 running 
at 3.33 G H z and 8 G B of R A M , the same machine as in the previous chapter. This 
is a quad-core C P U without hyperthreading and wi th ful l SSE instruction set support. 
Each test was run ten times and the average time was calculated in order to avoid 
measurement errors, especially on smaller datasets. 

3.3.1 Tested Implementations 

A l l the implementations used for comparisons are based on relatively similar algo
rithms, both in batch and incremental mode. Gauss-Newton non-linear solver was 
tested in all cases, w i t h the exception of SPA which uses Levenberg-Marquardt in
stead. i S A M has the possibility to perform incremental updates to solve at every step 
and to perform expensive batch steps only when needed, but for comparison purposes 
we tested only the cases where batch, update and solve are all done together. 
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Figure 6.2: Marginal covariances used as a quality estimate of 3D reconstruction of the bridge 
sequence from the Fast & Furious 6 dataset, displayed i n false colors (orange means 
high confidence, blue - low confidence). Data courtesy of Double Negative Visual 
Effects. 
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Figure 6.3: Recovering the diagonal of the covariance matrix using the recursive formula. 

By applying the Woodbury formula, the above inverse can be written in terms of the 
previous covariance matrix: 

A " 1 - A ^ A ^ I + A u A - ^ ' V u A - 1 , 

L-LAT
U{I + AULAT

U)-'AUL. (64) 

This shows that, in contrast to the information matrix which is additive, the covariance 
is subtractive: 

L + AL, AZ -LAl{l + AuLAl)^AuL. (6-5) 

In S L A M , for example, this is easy to understand: a new measurement adds informa
tion to the system and reduces the uncertainty It is important to mention that the size 
of the matrix to be inverted, S = I + A u Z. A ^ , is very small compared to the system 
size. More precisely 2 , the size of S, m u x m u w i t h m u <C m , corresponds to the 

2 Assuming no new variables were added by the update, A is m x n , A u is m u X n and A is a n X n matrix. 
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Figure 6.1: Distance-based candidates for data association calculated using the marginal covari-
ances (95% confidence interval shown i n green), on the Intel dataset. 

block elements. In [48], it was shown how specific elements from the covariance matrix 
can be efficiently calculated from the R factor by applying the recursive formula: 

X Ri,k£k,i , (6.1) 
k=i+1,Ri,k^0 / 

Y_ R t A j - Y. R i , k £ j , k • (6-2) 
k=i+l ,R l i k ^0 k=j + l , R l i k ^ 0 / 

Note that above, the computations are carried out by blocks; the numerical result 
is the same as if computed by elements but the calculation can be performed more 
efficiently. In case that R is sparse, the formulas above can be used to compute the 
blocks of L at the positions of nonzero blocks in R quickly [7]. To compute multiple 
blocks of the covariance matrix, such as the whole block diagonal, these formulas are 
efficient, provided all the intermediate results are stored. Figure 6.3 1 shows which 
elements need to be calculated for a specific block diagonal element. 

6.1.1 Incremental Update of the Covariance Matrix 

In Chapter 4, it was mentioned that most of the algorithmic speedups can be applied 
in case the linearization point is kept the same. Then, the contribution of every new 
measurement can be easily integrated into the current system matrix A by a simple 
addition (see (3.3)), but things get complicated when the covariance is required: 

( A T A + A ^ A U ) " 1 (A + n r (6.3) 

1 An insightful animation of the covariance recovery is available online at http: //slam- plus - plus. s f . net/cov/ 
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Figure 3.4: Comparisons of time per vertex i n the batch solvers running i n incremental mode ( C M 
refers to C h o l m o d and CS refers to CSparse). 

g20 and SPA use their own sparse block matrix implementation. In g20, it is based 
on a dense vector of trees, where each tree contains blocks for one column. This 
allows relatively fast random access to matrix elements, only O(logf) compared to 
Of lognj , + logf ) in our implementation. However, our implementation always avoids 
accessing blocks randomly, while in g20 this complexity is enforced on block lookup 
in matrix operations, making them slower than both CSparse and our implementation. 
Overall, g20 is optimized for batch processing, but not for incremental solving. 

The good SPA timings come from the fact that their implementation is optimized 
for the specific 2D pose adjustment problem (or bundle adjustment problem in case 
on sSBA), thus SPA is unable to process datasets wi th landmarks. In contrast, our 
implementation is general, allowing any combination of any block sizes. 

The comparison wi th i S A M technically stands only for incremental every step. For 
incremental every 10 or every 100 steps, the other solvers perform state concatenation 
only and possibly also Jacobian computations. While the solution is still available 
at each step, the observation errors are only being reduced at every 1 0 t H or every 
100 t H step, respectively. i S A M , on the other hand, is able to reduce this error in every 
step of the algorithm even between the 1 0 t H or 100 t H ones, using an approximate 
Gauss-Newton step which reuses the factorization from the previous linearization 
point (which is different from the current one - hence the approximation). But since 
the factorization takes most of the time in al l the solvers, this comparison is still 
relevant. 

3.3.2 Discussion of the Results 

Timing results for running batch and incremental SLAM are shown in Figures 3.3a 
and 3.4, respectively. Note that the accompanying figures show time per vertex, as it 
was hard to display the radically different times for all the datasets in a single plot. 
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The Victoria park dataset is not included in the batch tests since it does not converge 
if solved as batch. Similarly, the 100k dataset is too large to be executed incrementally 
in reasonable time, and is not included either. In incremental mode, the tests were 
done using the linear solver which was the fastest in batch mode (Cholmod in case 
of g20 and CSparse in case of our implementation). The incremental results are split 
in three parts; solution updated every time a vertex is added, every 10 vertices and 
every 100 vertices. 

Our implementation outperforms all the existing implementations in both batch 
and incremental mode. The comparison in batch mode shows a speed up of 10% 
when compared to the fastest implementation. This is mainly due to the proposed 
block matrix scheme, the algorithm being very similar and the differences in the im
plementation style cannot cause such large speedups. Note that in this benchmark, 
the block Cholesky factorization is not used yet and so the proposed implementation 
also needs to resort to converting the block matrix to elementwise one and passing 
it to Cholmod or CSparse. The backsubstitution is then also performed using the 
elementwise code. 

However, observe that there is some imbalance between small speedup in batch 
mode and large speedup in incremental mode. This stems from the simple fact that in 
batch, the system is only constructed once and most of the time is spent in the linear 
solver. In incremental mode, the block scheme starts paying off as more time is spent 
in bui lding and updating the system matrix, especially on large datasets. 

3.3.3 Block Operations Tests 

Beyond the SLAM evaluation, matrix operations benchmarks were also ran on A and 
A matrices computed w i t h the corresponding SLAM solution. Times for elementary 
sparse matrix operations, such as compression, transpose, addition and multiplication 
were measured. Performance of CSparse [19], g20 [55] and our implementation were 
compared. SPA [53] was not included because it's block matrix scheme is similar as in 
g20. i S A M [50] was not included either, since it does not use any block matrix scheme. 
The results are shown in Figure 3.3b. 

Observe that CSparse is very good wi th matrix compression, since it's data structure 
is the least complicated. But the compression must be performed every time the sys
tem is updated, making CSparse compression effectively slower after two iterations. 
In the other tests, our block matrix implementation outperforms CSparse. The most 
of the speedup comes from the use of vectorization. Furthermore, the block schemes 
prove to be more cache friendly than elementwise especially in the case of matrix 
transposition. In case of g20 [55], matrix transposition and multiplication is slower 
because of the use of the slow O(logf) block lookup, but those functions are not used 
in the optimization framework for SLAM (those would be used for BA or SfM). 

C O V A R I A N C E R E C O V E R Y 

The existing incremental NLS solutions provide fast and accurate estimations of the 
mean state vector, for example the mean position of the robot and of the features 
in the environment. However, in real applications, the uncertainty of the estimation 
plays an important role. This is given by the covariance matrix, which generalizes the 
notion of variance to multiple dimensions. 

Data association is the problem of associating current observations wi th previous 
ones, and it is the key to reduce the uncertainty in SLAM. Finding those associations 
becomes very expensive for large problems, nevertheless it can be simplified when 
the uncertainties of the estimates are known [64, 48, 45].Figure 6.1 shows how the 
data association problem can be restricted to only a small set of sensor registration 
indicated by the gray links between the current pose of the robot and close poses 
already visited. 

3D reconstruction has a wide variety of applications in computer graphics, robotics 
or digital cinema production, among others. Most of the existing 3D reconstruction 
frameworks only recover the mean of the reconstructed geometry. However, variance 
is the natural choice of estimate quality indicator, see Figure 6.2 for an example of 
such use. 

Even though recovering the mean of the estimate in the BA problems is relatively 
simple even at large scale, as documented by the previous chapter, recovering its 
covariance is significantly more difficult. One of the problems is that while the sys
tem matrix is sparse and can get very large, its inverse is completely dense and the 
memory footprint of maintaining such a matrix w o u l d be prohibitive, easily reaching 
hundreds of G B . Fortunately, for quality assurance and many other applications, only 
certain parts of the inverse are of interest - especially its block diagonal. Still, the prob
lem of the computational complexity remains, which is the likely reason this problem 
was not widely addressed before. 

6.1 RECOVERING COVARIANCE IN GENERAL NLS PROBLEMS 

When using MLE in real, online applications, the recovery of the uncertainty of the 
estimate, the covariance, can become a computational bottleneck. The calculation of the 
covariance amounts to inverting the information matrix, L = A " 1 , where the resulting 
block matrix L is no longer sparse. In here, each block E - y corresponds to covariance 
between the individual variables 0 | and 0 , . 

Operating on dense matrices is unwanted, especially in the case of large size matrix 
such as E . Fortunately, most of the applications require only a few block elements of 
the covariance matrix, eliminating the need of recovering the ful l E . In general, the 
elements of interest are the block diagonal and the block column corresponding to the 
last pose. Some other applications only require a few block diagonal and off-diagonal 
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Table 5.1: Incremental nonlinear solving performance on the standard BA datasets, the best times 
are in bold (CS is CSparse, C M is Cholmod, BC is block Cholesky and K 2 0 m and K 4 0 c 
refer to GPU models). 

Dataset 
Fast & 
Furious 6 

Guildford 
Cathedral 

Venice 
Karlsruhe 
seq. 20 

allBatch-A-CS 

al lBatch-A-CM 

allBatch-A-BC 

359.962 

363.267 

334.708 

171.860 

181.735 

165.988 

16179.340 

11296.632 

12949.737 

3279.406 

2029.337 

1475.498 

Schur-BC 

Schur-GPU K20m 

Schur-GPU K40c 

220.304 

221.991 

43.034 

103.874 

102.105 

62.293 

4339.209 

2897.663 

1797.362 

1094.002 

605.795 

402.582 

incSchur-BC 

incSchur-GPU K20m 

incSchur-GPU K40c 

198.335 

197.285 

31.868 

90.103 

90.913 

56.255 

2701.169 

1249.735 

945.488 

775.428 

314.500 

177.476 

that the cameras go in a sequence and the landmarks are introduced once observed by 
at least two cameras (at that point they could have been triangulated). Addi t ional ly 
for the solver to determine the points where to optimize, frame boundaries markers 
are inserted. Note that this preprocessing would be unnecessary if the solver was 
connected to a vision pipeline - it is only needed when processing datasets where 
the variables were reordered and the frame boundaries were lost or perhaps a linear 
camera sequence never existed in the first place. The results are in Table 5.1 and 
involve the ful l solution of the nonlinear system. Note that the Kitti sequence 00 was 
not included in this evaluation due to its size - the problem is in the ordering. Unlike 
guided ordering, the orderings based on M a x i m u m Independent Set (MIS) are not 
stable in the sense that in one step, a variable may be a part of MIS but in the next 
step, a different independent set containing different variables may become maximal. 
This w o u l d require variable migration between the diagonal section and the reduced 
camera system which in itself is feasible, but the volume of the variables is practically 
unlimited. For that reason, incremental Schur complement was only evaluated wi th 
the guided ordering. 

I N C R E M E N T A L S O L V I N G I N S L A M + + 

The previous chapter discussed efficient methods for batch solving and although it 
touched the topic of incremental solving briefly, the implementation there d i d not 
really perform any increments and merely resorted to doing many batch steps of 
increasing size. While already quite fast, such approach is not very efficient as a lot of 
the computation is repeated unnecessarily. That is where the real incremental methods 
come in . Same as there, the focus of this chapter w i l l be on solving SLAM problems 
efficiently but also precisely. 

The challenge appears in online applications, where the state changes every step. 
In an online SLAM application, for example, every step the state is incremented wi th a 
new robot pose and wi th positions of the newly observed landmarks and it is updated 
with the corresponding measurements. For very large problems, updating and solving 
the nonlinear system at every step can become very expensive. Every iteration of the 
nonlinear solver involves bui lding a new linear system using the current linearization 
point, calculating its factorization and solving. In here, calculating the factorization is 
typically the most expensive step. 

This can be alleviated by changing the linearization point less frequently so that 
the factorization is not needed at every step. N e w variables can be added to the 
factorization e.g. using so called rank 1 updates [19,14]. The solution to the linearized 
system can then be calculated at any time, using back-substitution (which runs at a 
fraction of time needed for the factorization). Although the Jacobian matrix (and so 
the linearization point) does not correspond to the state, approximate Gauss-Newton 
steps can still reduce the error, unless close to an abrupt change in the derivatives 
(such as in the vicinity of a singularity). This is essentially the i S A M algorithm [50], 
although it uses Q-less QR factorization rather than the Cholesky decomposition. It 
was later reimplemented in an experimental branch of g20 1 using Cholmod's rank 
updates, w i t h comparable results. 

It would seem that the solution is to incrementally update the linear system in 
the already factorized form and to perform backsubstitution to compute the solution. 
However, there is still one more problem - the fi l l - in. Merely updating the factoriza
tion w i t h new variables without ever applying a fill-reducing ordering w o u l d quickly 
lead to a massive f i l l - in . . . and a correspondingly massive slowdown. In the context 
of robotics, this happens notoriously w i t h so called loop closures which occur when 
the robot is returning to a place it has visited before and begins establishing links be
tween the latest pose and some of the much older ones. In the matrix form, those links 
(measurements, observations) typically occupy far off-diagonal entries under which 
fi l l - in occurs. 

Conversely, odometric measurements (the other prominent type of measurement 
in robotics; no matter whether measured using an odometry sensor, expected from 

1 Can be found at https ://github .com/RainerKuemmerle/g2o. 
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the control commands to the actuators or calculated e.g. by laser scan matching) are 
between the consecutive poses only and can thus be handled relatively easily. 

Unfortunately, there is no viable algorithm for performing matrix permutation once 
it has been factorized as of yet, so the authors of i S A M [50] settled for periodic re
ordering and batch re-factorization. O n the other hand, different data structures were 
developed later that allow variable reordering in the factorization [52], so clearly it can 
be done also in matrices. This is typically done every 10 or every 100 steps in order 
to compromise between the f i l l - in rising uncontrollably and between performing too 
many batch steps. 

The new method introduced in this chapter has the advantage that it adapts to the 
size of the updates and performs batch steps only when needed while still keeping 
the option to set the frequency of the batch steps. It is based on several optimiza
tions of the incremental algorithm. The proposed implementation a) selects between 
three types of updates, depending on the size of the the update and the error b) uses 
double-constrained ordering by blocks c) performs backsubstitution by blocks and d) 
uses efficient block-matrix scheme for storage and arithmetic operations. These op
timizations allow for very fast online execution of the algorithm and provide very 
accurate solutions at every step. 

4.I ALGEBRAIC INCREMENTAL UPDATES OF THE CHOLESKY FACTOR 

In this section, the update of the Cholesky factor R = chol(R T R) is discussed. This 
update is referred to as an algebraic one because it is slightly different from the rank 
update. It can be used in order to avoid unnecessary and expensive matrix factoriza
tions every step. Observe that in (3.3) only a part of the information matrix and the 
information vector is changed in the update process and the same happens w i t h the 
upper triangular factor R. The updated R factor and the corresponding r.h.s. d can be 
written as: 

0 

R 1 2 

R22 
, d d , 

a 2 

(4-1) 

From Ä = R T R and (3.3), the equation (4.1) becomes: 

A22 = A 2 2 + 0 = R J 2 R i 2 + Ř l 2 Ř 2 2 , (4-2) 

and the part of the R factor that changes after the update can be computed by applying 
Cholesky decomposition to this matrix of the same size as CI: 

V22R22 = A 2 2 + n - R J 2 R 1 2 , 

R 2 2 = c h o l ( A 2 2 - R J 2 R 1 2 ) 

= c h o l ( R ^ 2 R 2 2 + 0_). 

(4-3) 

(4-4) 

(4-5) 

Further in this chapter, (4.4) is referred to as lambda-update because it uses parts of 
the A to update R and similarly (4.5) is referred to as omega-update since it directly 
uses i l to update R. 

• AMICS2 AMICS3 

Figure 5.5: Evaluation of nested Schur orderings for up to 3-level nested Schur complements on 
standard SLAM and up to 4-level on the Schur complements of the BA datasets (the 
bigger the percentage, the better - it means smaller, denser reduced camera system). 
The number after the ordering acronym indicates the nesting level. 

CSparse • Cholmod • block Cholesky • Guided 

• MIS1 • MIS 2 AMICS1 AMICS 2 

AMICS 3 AMICS4 

Figure 5.6: Comparison of the effects of ordering on the linear solving on the standard BA 
datasets. A l l Schur complement times were obtained using the K20m GPU. The miss
ing times for the Kitti sequence 00 dataset were caused by insufficient amount of 
available memory. 

in Venice, it ends up in the top-level Schur complement. For the last two datasets 
which are more sparse, AMICS gradually improves w i t h nesting. However, size is not 
everything, as reflected in Figure 5.6. Here, in the first two datasets all the order
ings come out more or less the same. In Venice, the nested MIS is surprisingly slightly 
faster while the AMICS are slightly slower. In Karlsruhe sequence 20, AMICS yield poor 
performance compared to simpler orderings. This is because the system is already suf
ficiently dense after the first level. O n the other hand, on Kitti sequence 00, the Schur 
complement is quite large and a few nestings are required to fit the problem into the 
G P U memory. Here is where AMICS triumphs. 

For the evaluation of the incremental solving, the B A datasets which are in graph 
format were preprocessed by an external too l 9 . First, the variables were reordered so 

9 This script can be found under 
http://sf.net/p/slam-plus - plus/. 

scripts/incremental_BA in the SLAM ++ library, at 

http://sf.net/p/slam-plus


54 E X P E R I M E N T A L E V A L U A T I O N 42 4.2 I M P L E M E N T A T I O N D E T A I L S 27 

M L 

........ •• "" " .. ' • 

(a) Fast & Furious 6 (b) Guildford Cathedral (c) Venice 

(d) Karslruhe sequence 20 (e) Kitti sequence 00 

Figure 5.4: The Bundle Adjustment (BA) datasets used i n the evaluations. The top row are 
datasets focused on 3D reconstruction, the datasets on the bottom row are visual 
odometry benchmarks. 

at 2.30 G H z and sharing 96 G B of R A M , equipped wi th a single N V I D I A Tesla K20m 
GPU. The turbo boost function of the Xeon CPUs was disabled for the benchmarks. 

The GPUs were employed for dense solving using C U L A 8 and for block diagonal 
inverse, using Cholesky and L U decompositions, respectively. A serial CPU implemen
tation of the sparse block matrix multiplications was employed in (5.2) or (5.3) as it 
proved to be faster than the off-the-shelf GPU routines. This further demonstrates the 
efficiency of the block schemes. 

The ordering algorithms for Schur complement were also evaluated. In Figure 5.5, 
different ordering strategies are compared in terms of the size of the diagonal section 
D relative to the size of the entire system (for nested Schur complements, these sizes 
are summed up). In the left portion of the figure, ordering performance on the SLAM 
datasets is compared. Since these datasets are typically very sparse, the MIS ordering 
is able to improve by nesting. However, the AMICS ordering yields much better results. 

O n the BA datasets in the right portion of the figure, rather than evaluating on the 
full matrix, the orderings are evaluated on the Schur complement obtained by the 
guided ordering (which is coincidentally the same one as the MIS and also the AMICS 
since the landmarks are the largest independent set and there are no cliques). These 
Schur complements are about two orders of magnitude more dense than the SLAM 
systems, which reflects poorly on the MIS orderings. 

For the first three datasets, AMICS ordering splits the Schur complement in almost 
completely dense block-diagonal section and another completely dense Schur com
plement. The difference between Fast & Furious 6 or Guildford Cathedral and Venice is 
that in the former two the most of the rank ends up in the diagonal section whereas 

j A readily available G P U accelerated L A P A C K implementation written in CUDA, can be obtained from 
http://www.culatools.com/, 

The part of the r.h.s. vector affected by the new measurement can also be easily 
updated. By expanding R T d = rj and focusing on the lower part that is changing, 
r j 2 = r\2 + "> = 1̂2̂ 1 + ^22^2 and so: 

RT

22d2 

d2 

r|2 + u j - R | 2 d i , 

R l 2 \ ( n 2 - R j 2 d i ) , 

(4-6) 

(4-7) 

where \ is linear solving operator; wi th R^2 being lower triangular, it can be realized 
using backsubstitution. After obtaining both R and d , forward substitution can be 
performed to find the solution of the linear system R6 = d 

4.2 IMPLEMENTATION DETAILS 

Online applications such as SLAM, require extremely fast methods for building, up
dating and solving the sequence of linearized systems. In this section, we introduce 
several optimizations towards high performance SLAM based on incremental updates 
of the factored representation. 

4.2.1 Efficient Ordering Strategies 

The f i l l - in of the factor R directly affects the speed of the backsubstitution and the 
updates. Its sparsity depends on the order of the rows and columns of the matrix A , 
called variable ordering. Unfortunately, finding an ordering which minimizes the fi l l - in 
of R is NP-complete. Therefore, heuristics have been proposed in the literature [3] to 
reduce the fi l l - in of the result of the matrix factorization. In the proposed implemen
tation, the constrained AMD ordering is used, available as a part of SuiteSparse family 
of libraries [19]. 

In an incremental SLAM process, the new variable - either the next observed land
mark or the next robot pose - is always linked to the current pose in the represen
tation. In order to be able to perform efficient incremental updates on the Cholesky 
factor, the last pose is constrained to be ordered last. This especially helps when up
dating using odometric constraints between the consecutive poses in Pose-SLAM type 
problems. For landmark SLAM, one landmark is often observed from several poses. 
Without an additional constraint, a recently observed landmark can be ordered any
where in the matrix, possibly causing large-size updates later on. To alleviate this 
problem, the proposed implementation constraints recently observed landmarks to 
immediately precede the last pose. Our experiments show that the used ordering re
strictions barely affect the fi l l - in. Furthermore, due to the inherent block structure, 
and in order to facilitate further incremental updates, the ordering is done by blocks. 
A p p l y i n g ordering by blocks instead of elementwise has very small influence in the 
fi l l - in of the R factor. 

4.2.2 Fast Update Factorization 

In the increment formula (4.5), a need arises to factorize a sparse block matrix. Note 
that this is slightly different from the batch solving where the aim was to solve a linear 

http://www.culatools.com/
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(a) (b) 

Figure 4.1: a) Time comparison of multiple NLS optimizers, b) Comparison of the x 2 errors, on 
the 10k dataset. 

system. O n the other hand, here we are interested in the factorization itself. In the 
proposed implementation, the Cholesky factorization is calculated using CSparse [19] 
or Cholmod [20] and then converted back to a sparse block matrix. This factorization is 
performed practically at every step and its speed affects the speed of the incremental 
solver. Fortunately, (4.5) is usually rather small and dense. 

A p p l y i n g dense Cholesky is faster than sparse Cholesky, up to a certain limit where 
the dense implementation gets beaten by the fact that it operates mostly on zeroes 
when R is very sparse. Therefore, dense Cholesky is applied for matrices up to 5 x 5 
blocks which occur relatively frequently in (4.5). This Cholesky is further optimized 
by anticipating the possible combinations of the sizes of R22 from the knowledge of 
the dimension of the variables. E.g. in 3D SLAM, the variables have 6 DOF and therefore 
the possible matrices can be 6 x 6, 12 x 12 and so on. 

4.3 E X P E R I M E N T A L RESULTS 

In order to evaluate the proposed incremental algorithm and its implementation 
this section compares timing wi th similar state of the art implementations such as 
i S A M [50], g20 [55], and SPA [53] (a 2D SLAM variant of sSBA). These implemen
tations are easy to use on standard datasets. i S A M 2 [51, 52], on the other hand, is 
an incremental algorithm based on G T S A M library, and, at the time of running the 
benchmarks, the source code for i S A M 2 was not available among the examples of the 
G T S A M library. The reported results from i S A M 2 papers [51, 52] cannot be used for 
comparisons since they were measured on a radically different platform. 

The evaluation was performed on three standard simulated datasets, Manhat
tan, [67], 10k and Citytreesiok, [49] and on three real datasets, Intel, [44], Killian 
Court, [9] and Victoria park [65] dataset. The solution for each dataset is shown in 
Figures 3.1 and 3.2. Again , the same machine as in the previous chapter was used for 
the tests, an Intel Core 15 CPU 661 w i t h 8 G B of R A M running at 3.33 G H z . 
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(a) Victoria Park (3 levels) (b) Kitti sequence 00 (5 levels, 
the bottom-most U, U T 

and D not shown) 

Figure 5.3: Examples of nested Schur complements using the AMICS ordering. 

camera system can hold only up to 3861 6D camera poses (assuming the internal 
parameters are either known and not optimized, or identical for all the frames - oth
erwise this figure would be even lower). This is often not sufficient, e.g. Kitti sequence 
00 [33] comprises over 4500 poses. 

5.4 E X P E R I M E N T A L E V A L U A T I O N 

The experimental evaluations were performed on several datasets which can be seen 
in Figure 5.4. Fast & Furious 6 is a bundle adjustment dataset comprising of 160 high-
resolution DSLR stills of an open landscape and a highway bridge in Gran Canaria 6 . 
The images were captured from a helicopter for production of special effects in a chase 
sequence in the movie of the same name. The dataset was kindly provided by Double 
Negative Visual Effects 7. Guildford Cathedral is another bundle adjustment sequence 
made up of 92 DSLR stills, scanning the front facade of the Gui ldford Cathedral 
(Surrey, London) in approximately right to left translational manner. The dataset is 
freely available (upon request) at http://cvssp.org/impart/. Venice is a standard 
bundle adjustment dataset [55] created from an internet collection of 871 photos of a 
courtyard adjacent to the San Marco square in Venice, Italy. 

Karlsruhe sequence 20 [32] is visual odometry benchmark, processed w i t h a stereo 
structure from motion pipeline. Although the observation model of the stereo BA 
is slightly different from the monocular one, the variable representations and the 
corresponding Jacobian matrices have exactly the same structure and dimensions. The 
images were taken w i t h a camera mounted on top of a car and this sequence has 967 
of them. A similar dataset, Kitti sequence 00 of the newer vision benchmark suite by the 
same authors [33] is a representative of a large problem, wi th its 4541 camera poses. 

Some of the tests were performed on an Intel Core i5 CPU 661 w i t h 8 G B of R A M and 
running at 3.33 G H z , equipped wi th the N V I D I A Tesla K40c GPU. Additionally, some 
tests were performed on a machine wi th a pair of Intel Xeon E5-2470 CPUs running 

6 GPS coordinates of the approximate center of the dataset are 28.139641 7N, 15.5973228W. 
7 http://www.dneg.com/ 

http://cvssp.org/impart/
http://www.dneg.com/
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Taking the difference A ( D _ 1 ) = D " 1 — D " 1 after the inverse, the update is: 

Schur(A) = A + A A - (U + A U ) ( D " 1 + A ( D - 1 ) ) ( U T + A U T ) 

= A + A A - ( U + A U ) D _ 1 ( U T + A U T ) - (11 + A U ) A ( D - 1 ) ( U t + A U T ) 

= A + A A - U D " 1 U T - U D " 1 A U T - A U D " 1 ( U t + A U T ) -

(U + A l l ) A ( D _ 1 ) ( U T + A U T ) 

= Schur(A) + A A - U D " 1 A U t - A U D " 1 U T - U A ( D _ 1 ) U T (5.6) 

and by taking advantage of symmetry: 

D " 1 = D " T , (5.7) 

( U D ' 1 A U T ) T = ( A U T ) T D " T U T = A U D _ 1 U T , (5.8) 

it is possible to further simplify (5.6) to: 

Schur(A) = S c h u r f A J + A A - f A U D ^ ^ r - A U D ^ ^ - U A t D " 1 ) ! ! 1 " 

= Schur(A) + A A - ( A U D _ 1 U T - A U D " 1 A U T ) T - A U D " 1 ! ! 1 " -

U A ( D _ 1 ) U T 

= Schur(A) + A A — (E — F A U T ) T — E — U A ( D _ 1 ) U T , (5.9) 

with E = F U T and F = A U D " 1 being common subexpressions. Note that this way, each 
of the product terms contains at least a single matrix of low rank (either A l l or A ( D _ 1 )) 
which limits the amount of computation and also only Schur(A) and D " 1 need to 
be stored from the previous step, l imiting the required amount of memory for the 
incremental solver. 

Due to the highly nonlinear nature of BA, the nonlinear solvers typically take 
some form of countermeasure to avoid local minima. By employing the Levenberg-
Marquardt algorithm [61], a diagonal damping term A is introduced, yielding a mod
ified normal equation ( A +AI)6 = r\. This term does change during the solving, caus
ing full-rank incremental updates. For that reason, the Dogleg algorithm [74, 10] is 
preferred for incremental solving. 

5.3 NESTED SCHUR COMPLEMENT 

Another interesting option of Schur complement is the possibility to create nested 
Schur complements. In (5.3), the reduced camera system needs to be solved. It can 
be readily solved using Cholesky factorization as described before, but in case it is 
sparse enough, it can be solved using another Schur complement, yielding a nested 
Schur complement method. Nesting the Schur complements is only beneficial in case 
the reduced camera system needs to be solved using a dense solver (e.g. a solver 
parallelized on a GPU) and still contains too many nonzero entries or is too large to fit 
into the memory at once. 

H i g h sparsity is typically not a case of BA problems where the reconstructed object 
is observed in its entirety by the majority of the cameras, but occurs in cases when the 
camera moves forward in exploratory mode and only rarely re-observes small parts of 
the scene. Size is a hard limit though; for a 4 G B memory budget, the dense reduced 

Figure 4.1a shows the execution times of different implementations evaluated on 
the above-mentioned datasets. The b i o and bioo flags represent the frequency of 
batch computations - once each 10 and once each 100 steps, respectively. For the 
results without those flags, the nonlinear system was solved at every step in order 
to obtain the current estimation or only when needed in the case of the proposed 
Incremental-R algorithm. Unlike g20 and SPA, i S A M and our implementation provide 
both the factorization and an error-minimizing solution at every step, even when the 
batch solver runs only each 10 or each 100 steps. This is an important characteristic 
for online applications. Therefore, and in order to make the spread of the plotted 
values lower, Figure 4.1a shows timing results only for i S A M and for the proposed 
implementation. 

Figure 4.1b compares the quality of the estimations measured by the sum of squared 
errors, the x2 errors. The test was performed for the 10k dataset. Observe that our new 
algorithm, Inc-R (in orange in Figure 4.1b), nicely follows the allBatch-A (in violet 
in Figure 4.1b). Spikes appear when performing periodic batch solve in i S A M bioo, 
i S A M b i o and Inc-R b i o due to the fact that the error increases between the batch 
steps and drops afterwards. 

A s an overall remark, the Inc-R has, in general, the best performance (which is only 
rivaled by allBatch-A from the previous chapter) and provides very accurate results 
every step. Compared to allBatch-A, it provides not only the solution but also the 
factorization at every step. That amounts to doing slightly more work, but allows 
doing one more Gauss-Newton step towards the solution, at virtually no cost. It also 
becomes important if the covariances of the solution need to be recovered as well . 
Therefore, it is the most suitable implementation for online applications which require 
efficient nonlinear least squares solving. 

4.4 IMPROVED ALGORITHM USING BLOCK CHOLESKY FACTORIZATION 

The incremental algorithm described so far made use of block matrix operations, ex
cept for the block Cholesky factorization. It needed to convert the A matrix to ele-
mentwise sparse one, factorize it using CSparse and then convert the factor back to 
blockwise representation. Although competitive, the incremental implementation is 
really taking the toll by performing this conversion at each step. Another disadvan
tage is its inability to reorder the variables in the factorization, after e.g. a loop closure 
occurs. It only relies on reordering when linearization point changes take place (they 
usually happen at loop closures) and on cleverly constraining the ordering in order 
to be able to efficiently update the factorization while going in an open loop. 

While the implementation described above was comparable w i t h the others of its 
time, Kaess et al. later introduced the Bayes tree data structure [52], which provides 
insights on the connection between graphical model inference and sparse matrix fac
torization. This offered the possibility of eliminating the periodic batch steps by al
lowing incremental variable re-ordering to reduce the f i l l - in and implementing fluid 
relinearization to guarantee good linearization points [51]. In the remaining part of 
this chapter, an improved incremental algorithm which takes advantage of the sparse 
block Cholesky factorization from Section 2.1.4 i s described and compared yet again 
to the state of the art solvers. 
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The work introduced in the paragraphs below combines the efficiency of operating 
directly on the matrix factorization wi th the insights gained from the Bayes tree data 
structure to produce highly efficient incremental solutions. The incremental solution 
proposed here is changing the linearization point every time if the error increases. This 
guarantees high quality estimates. Furthermore, it is based on a resumed2 Cholesky fac
torization which recalculates only the parts affected by the new updates, together wi th 
an incremental reordering scheme which maintains the factorization sparse without 
the need for periodic batch steps. 

This form of incrementally updating the Cholesky factor is very similar to the in
cremental updates proposed in [50], where the authors use Q-less QR factorization 
to incrementally factorize R. In its form, this factorization is de-facto resumed: the 
factor R is calculated by transforming rows of A by Givens rotations into R. After new 
observations are made, these are added as new rows to yield A . The factorization is 
then resumed at the first of these new rows, adding them to R. Similar row-oriented 
methods are used for out-of-core QR factorizations of large systems. 

However, this type of QR factorization does not make it possible to reorder the 
variables: A is ordered using column ordering. Therefore, reordering the columns po
tentially affects all the rows, making the tracking of changes in the factorization in 
order to reuse the unaffected parts infeasible. The recently introduced data structure, 
the Bayes tree [52], offers the possibility to develop incremental algorithms where 
variable reordering can be performed f lu idly Inspired by these recent advances, the 
resumed Cholesky factorization is an elegant and highly efficient solution which com
bines the efficiency of block matrix implementation and considers the insights gained 
using the Bayes tree data structure. 

4.5 INCREMENTAL UPDATES OF THE FACTOR USING RESUMED CHOLESKY 

Similarly as in Section 4.1, the task at hand is updating the Cholesky factor after 
new measurements have been added to the system (in case the added measurements 
involve new variables, the A and R matrices are first augmented wi th zero block rows 
and zero block columns, w i t h their number and size corresponding to the number 
and DOF of each new variable). It is possible to use equations (4.4) and (4.5) and a 
subsequent factorization to achieve that. It was already demonstrated that these only 
yield changes in A 2 2 but it was not shown how these affect the factor. The associated 
cost depends on the size of the update (the number of columns in CI or in A22) but 
also (and often more importantly) on the sparsity of the resulting factorization $.22-

In S L A M , the size of the update is typically small since the new observations tend to 
link variables recently added to the system, but in general, it can become very large if 
the new observations link variables far apart (such as in loop closures). It is impossible 
to guess which variables are going to be linked in the future and thus the size of the 

2 In the context of iterative numerical methods and subspace methods, the word restarted is sometimes used, 
meaning that the algorithm can stop iterating at some point and then be restarted later, possibly in different 
conditions. Our use of the word resumed refers to a direct method involving Cholesky factorization. Our 
implementation of Cholesky is left-looking and produces one column of the factor at a time. If the right part 
of the original matrix changes later, the factorization can be started in the middle (resumed), at the first column 
that will change to recalculate only the corresponding right portion of the factor while keeping the left part 
intact and saving computation. 

\ ! \ ! 
(a) Guided ordering of A (b) MIS ordering (c) Clique extended A (d) AMICS ordering 

Figure 5.2: F inding Schur ordering for landmark SLAM, on the Victoria park dataset. 

section wi th less than 20% of the rank). For that reason, a new ordering strategy 
was devised. The goal is to create a block diagonal section in D of the highest rank 
possible. To achieve that, the block diagonal does not need to be of the granularity 
of the individual variable blocks, but can contain greater blocks. Those correspond to 
the independent cliques in the original graph. The algorithm for finding the maximal 
(weighted) independent clique set is not implemented in the igraph library (or other 
library, to the best of our knowledge). The implementation is described concisely in 
Algori thm 5.1. In the first part of the algorithm, the cliques are found. Then, the 
original graph is extended wi th the cliques and the relations to other vertices and 
cliques are computed, see Figure 5.2c. 

While the performance of the maximal cliques algorithm is reasonable and typi
cally takes only a few milliseconds, the maximal independent vertex sets algorithm is 
not practical for even small graphs, e.g. on the Intel graph (943 vertices, 0.52% nonze-
ros) it requires more than 120 G B of memory. Therefore, an approximate algorithm 
was devised, based on a simple first-fit scheme followed by iterative refinement. The 
Approximate M a x i m u m Independent Clique Set (AMICS) ordering on Victoria park 
yields D which takes 50.61 % of the rank, see Figure 5.2d. 

5.2 INCREMENTAL SOLVING 

Similarly to S L A M , the BA-type problems are also often solved incrementally. This is 
needed to avoid divergence, especially due to poor prediction of camera parameters, 
which can lead to bad initialization of point positions and consequent camera poses 
quickly since the projection amplifies the error. Unlike S L A M where the update usually 
consisted of a handful of new observations and a single new pose, however, the rank 
of the updates is much bigger this time. For each new camera pose, thousands of 
points can be observed, many of them for the first time. 

The goal is to describe how changes in A translate to changes in the Schur comple
ment of A . Updates to D " 1 are handled easily, as all the updated diagonal blocks in 
D can be inverted individually and the rest does not change. It can be expected in 
practice that all four sections of A are going to change: 

( A" A lO = ( A U) + ( A A A U )• (5-5) I A j 2 A 2 2 ) V U T D ) V A L T A D ) 
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Algor i thm 5.1: F inding M a x i m u m Independent Cl ique Sets. 

1: function MICS(w, e) 
Require: w = [ w i , . . . , w n ] is the vector of vertex weights. 
Require: e = {ei . . . era} is a set of edges, where each edge is a pair (jt, lCj.). 

C = FINDCLIQUES(C) 

P = [0 0] 
for each c i n C do 

W : W'r Z W C i 

> Use e.g. algorithm of Eppstein et al. [29]. 
> P v is a set of cliques containing vertex v. 

> Clique weight is a sum of weights of its vertices. 

for each v i n c do 
P v = Pv U C 

end for 
end for 
for each c i n C do 

V, adj c u {v I 3et = (v, u) e e A u e c} > Vertices adjacent to clique c. 
Qdj = {Pv I v 6 V a i j j} > Cliques adjacent to clique c. 

e = e U {(c,v) I v e V a d j } U {(c, d) | d e C a d j } > A d d new edges, 
end for 
Return MAXINDEPENDENTSET(C,W) 

end function 
> Use e.g. Tsukiyama et al. [80]. 

brary5 implements [29] for finding maximal clique sets and [80] for f inding maximal 
independent vertex sets. Here, the word maximal means that for a given clique (or 
equally an independent vertex set), no additional vertices can be added to it. H o w 
ever, maximum (or the greatest) independent vertex set is the one set which has the 
most vertices of all the maximal independent vertex sets in the graph. This is what is 
referred to as M a x i m u m Independent Set (MIS). 

In BA problems, an often used approach is ordering the 3D point variables to reside 
in D since they are independent (there are no observations of a structure point by 
another structure point) and the rest of the variables to reside in A . This is referred to 
as the guided ordering. 

For landmark SLAM, the guided ordering is often a poor fit, since the landmarks 
often take up only a small fraction of the matrix rank. Consider the Victoria Park [65] 
dataset (described earlier in Section 3.1, Figure 3.2c), a 2D landmark SLAM dataset 
wi th 6969 poses and only 151 landmarks (1.44% of the rank, see the part of the matrix 
marked by the red square in Figure 5.2a). Note that although the top left part of the 
matrix appears diagonal, there are off-diagonal elements corresponding to the odom-
etry links which connect the consecutive poses. Those make the matrix band diagonal 
and no longer easily invertible. A better result is obtained by finding a M a x i m u m 
Independent Set (MIS) weighted by variable dimension which yields D that amounts 
to about 47.83% of the rank, see Figure 5.2b. 

Unfortunately, not al l graphs are so sparse and the MIS ordering does not always 
give such a good results (e.g. on the 10k dataset, the MIS ordering yields the diagonal 

5 Can be found at http://igraph.0rg/c/. 
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Figure 4.2: Evaluation of several ordering heuristics i n terms of nonzero elements compared to 
the actual number of non-zero elements i n the Incremental R algorithm. This is on 
the Manhattan dataset. 

update cannot be directly minimized. Ordering the recent variables last as suggested 
e.g. in [50] helps, but it is not a universal remedy. 

O n the other hand, there are efficient heuristics for variable reordering which min
imize f i l l - in and increase sparsity in the subsequent factorization, e.g. Approximate 
M i n i m u m Degree (AMD) [3]. It is therefore possible to reorder the variables involved 
in the update, so as to minimize the f i l l - in caused by observations that link variables 
far apart. Once the variables involved in the update were reordered, R21 also needs 
to be recalculated, in addition to 1?22- The following subsection describes how this 
reordering can be calculated incrementally. 

4.5.1 Incremental Ordering 

In order to efficiently maintain incremental factorization, incremental variable order
ing is considered. Note that so far, the sparsity of the updates in A were considered un
der the natural ordering (the order in which the variables are observed and introduced 
into the system). In this section, a permutation matrix O is introduced, which contains 
the fill-reducing ordering. In the implementation, it is represented in its vectorial form 
by the variable number reassignment vector o. This ordering is maintained incremen
tally, along wi th A and R. So far, the fill-reducing ordering was only implied. For the 
remainder of this section, A and 0 T A O are written explicitly, w i t h R = c h o l ( 0 T A O ) 
a n d R = c h o l ( 6 T A 6 ) . 

The proposed incremental ordering solution is to only calculate the new ordering 
for parts of R which are being affected by the update. In order to be able to calculate 
the new ordering 6 incrementally, the updated A matrix is first permuted wi th the 
ordering from the previous step, leading to M = 0 T A O (see Figure 4.3). The ordering 
increment P is then calculated on this matrix, and composed w i t h the old ordering to 
yield O = O • P (here the multiplication denotes composition). 

To delimit the area in M = 0 T A O affected by the update, two indices are intro
duced. The first one, o i 0 is given by the min imum variable index after the ordering. 
The second one, o^i, is simply the size of the matrix. Let M 0 l o : 0 h i i 0 l o : 0 h l be the lower 

http://igraph.0rg/c/
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A M = 0TAO 

Figure 4.3: Dataflow diagram of incremental block Cholesky factorization. Green parts of the 
matrices do not change, red parts represent the update and pink represents the parts 
that will change. White parts are zero. The explanation is simplified to updates in
volving only two variables. Note that the green parts in M = O T A O and in 0 T A O 
are unchanged with respect to the previous step. 

right submatrix of M delimited by those indices. In case the ordering is identity, this 
submatrix matches A22 - but generally 0 ^ 1 and so those are two different matrices 
of different size. Calculating the ordering update as AMD on M 0 l o : 0 h i i 0 l o : 0 h i is not suffi
cient and also leads to massive f i l l - in. This is caused by the AMD algorithm not having 
any information about the nonzero entries in M i : 0 l o - i , o i „ : o h i = o h 1 o - 1 ' which 
are also affected by this ordering (depicted by the blue blocks in Figure 4.3). A better 
ordering can be calculated as AMD of ful l M with constraints applied to ensure that 
the order of the variables unaffected by the update stays the same. This is however 
computationally expensive, since the update is typically much smaller than M and 
thus a relatively large number of ordering constraints is needed. 

Fortunately, it is not necessary to calculate the ordering using the entire M . It is 
possible to use a slightly expanded M22 — M 0 c u i : 0 h i i 0 c u i : 0 h i (see Figure 4.3) that satis
fies the conditions of being square and not having any nonzero elements above or left 
from it (so that M 1 : 0 c u t _ 1 / 0 c u t : 0 h . = M " ^ . ^ 1 : o ^ which correspond to the right and 

bottom portions of M i 2 and M\2' respectively are null). The ordering calculated on 
this submatrix is then combined wi th the original ordering, yielding a similar result 
as constrained ordering on ful l M in much smaller time. The minimal size of the ex
panded M22 can be calculated in linear time 0(o^ — Ocut)- First, a matrix wavefront is 
calculated. This is a vector containing the block row indices of the first nonzero block 
per each block column of M . Only a part of this vector is used, the one between o i 0 

and Oh;, and its min imum gives the index of the highest nonzero element, o c ut- In 
Figure 4.3 top right, it is depicted as the line keeping the blue nonzero blocks out of 
M i 2. Extending M22 makes AMD aware of all the nonzero elements that would affect 
the f i l l - in, leading to a better ordering. 

Once the new ordering is calculated, factorization can be performed. In case that 
the ordering is identity, it is possible to only update R22 and d2 using (4.5) and 

ings used for sparse Cholesky in BA implementations include Mult iple M i n i m u m De
gree (MMD) [58], AMD [4] or even Reverse Cuthil l -McKee (RCM) [16] (although most 
likely only in an attempt to point at the disadvantages of direct solvers). For perspec
tive, dense Cholesky solver on GPU achieves up to two orders of magnitude speedup 
(including the data transfers) but is limited by the available memory. 

While sparse L D L T , L U or even QR seem like viable options, it is necessary to take 
the pivoting into the account: these factorizations are not implicit ly numerically stable 
(unlike Cholesky) and may require row or column interchanges as the factorization 
progresses. These interchanges are typically implemented to improve the results nu
merically but ignore the f i l l - in they cause. 

Surprisingly, while using the Schur complement leads to reduction in computation 
time, it does not lead to reduction in complexity. For the Venice dataset, calculating 
the Cholesky factorization of A and solving for a single right hand side requires 
25.432 • 10 9 and 248.347 • 10 6 FLOPs, respectively3. O n the other hand, calculating the 
Schur complement and its Cholesky factorization takes 50.088 • 10 9 FLOPs and solving 
for a single r.h.s. takes 260.917 • 10 6 FLOPs. The situation is similar for the Cathedral 
and Fast & Furious 6 4 datasets, which observe 67.03% and 31.49% increase in the 
operations count, respectively. O n the other hand, using a serial implementation of 
Schur complement leads to speedups greater than 3.5 x in all three datasets, compared 
to the direct solution of normal equations via sparse block factorization. 

This is because the operations used in Schur complement are simpler ones (for the 
most part only multiplications and additions) compared to the Cholesky factorization 
(which requires also a fair amount of divisions and square roots). However, the dif
ferences of the cost of these operations is diminished by the use of SIMD instruction 
sets which can often execute any k ind of instruction in a single clock. The memory 
accesses are also more organized in Schur complement, making a better use of CPU 
cache. Additionally, matrix multiplication, block diagonal inverse and dense solving 
are all parallelizable, w i t h much better scaling than sparse Cholesky factorization. 

5.I FINDING GOOD ORDERING 

Linear solving using the Schur complement relies on D being diagonal, or rather 
block diagonal in the context of problems wi th multi-dimensional variables. A s men
tioned earlier, the graph theoretic algorithms useful for f inding diagonal sections are 
the ones for finding bipartite graphs and for f inding maximum independent sets. In 
the case a bipartite graph is found, ordering the variables in such a way that one set of 
independent variables resides in A and the other one in D yields a block-diagonal A 
and D wi th al l the off-diagonal entries collected in U and U T . If the problem at hand 
does not correspond to a bipartite graph, f inding a maximum independent set and 
ordering the independent variables to reside in D and the rest of the variables in A 
yields another configuration which can be efficiently solved using Schur complement. 
There are efficient implementations of both these algorithms, e.g. the igraph [15] l i -

3 These figures were calculated by defining a custom numeric type which counts operations performed and 
making the CXSparse library use it, thus counting exact numbers of FLOPs in sparse matrix operations. The 
implementation is available as a part of the SLAM ++ library, at h t t p : / / s f .net/p/slam-plus-plus. 

4 Kindly provided by Double Negative, http ://www.dneg .com. 
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(a) A of Venice (b) Reordered A of Venice (c) Schur compl. of Venice, 
enlarged 305 X 

(d) A of Cathedral (e) Reordered A of Cathe- (f) Schur compl. of Cathe
dral dral, enlarged 31 6 X 

(g) A of Parking Garage (h) A of Intel (i) A of Killian court 

Figure 5.1: Sparsity patterns involved i n common BA datasets (the first two rows) i n contrast to 
SLAM (the bottom row) datasets. Note that each nonzero is inflated so as to be visible. 
There is deliberately space left between the border and the matrix, to be able to better 
see the fine arrow-like patterns in BA datasets. 

procedure is that inverting D amounts to inverting its individual diagonal blocks 
which is an embarrassingly parallel operation. Additionally, in the BA type problems, 
D contains the most of the rank of the system matrix so that a large part of the system 
is solved quickly. 

The smaller dense system (5.3) is often referred to as the reduced camera system since 
it contains the camera poses. To solve it, several types of direct solvers have been 
applied in the literature. It is possible to use dense Cholesky or dense L D L T decom
positions 2 . Densities of as high as 40% occur on e.g. the Venice dataset [55] (see Fig
ure 5.1c). Sparse Cholesky solvers have shown about an order of magnitude speedups, 
especially on large systems and while using a good ordering. The fill-reducing order-

2 In here, the D is a generic diagonal matrix, other than that in (5.2). 

(4.7). Otherwise, the resumed Cholesky algorithm is employed. The column Cholesky 
is capable of calculating one column of the factor at a time, while only reading the 
values to the left from it. This algorithm can be modified to be able to "resume" 
the factorization in the right part of R while only using the corresponding part of 
( 0 T A O ) » 2 and Ri 1 as inputs. The advantage of this algorithm is overall simplicity of 
the incremental updates to the factor, while also saving substantial time by avoiding 
the recalculation of Ri 1, compared to the batch approach. Another advantage is higher 
numerical stability, compared to rank up- and downdate where near semidefinite 
matrices can occur and numerical errors can accumulate over time. 

4.6 E X P E R I M E N T A L E V A L U A T I O N 

This section evaluates both, the implementation of the incremental algorithm and of 
the incremental block Cholesky factorization by comparing t iming and the quality of 
the result w i t h similar state of the art implementations. The evaluation was performed 
on the same standard atasets as in the last chapter. A l l the tests were performed on 
an Intel Core i5 CPU 661 wi th 8 G B of R A M and running at 3.33 G H z , much like the 
benchmarks in previous chapters. 

The new library offers the possibility to switch between the "native" block Cholesky 
(BC) factorization and the Cholesky factorization form CSparse (CS) and Cholmod 
(CM). Those factorizations are compared on the allBatch-A algorithm which is rela
tively efficient even w i t h elementwise factorization. 

4.6.1 Performance and Accuracy 

The proposed incremental algorithm is different from the one employed in SPA and 
g20 or in our allBatch-A solver, where the batch solving is done once every n new vari
ables added to the system and no error reduction takes place in between. Therefore, 
the time comparison wi th these implementations is orientative. The comparison holds 
only for n = 1, where the solution is available at every step. i S A M , i S A M 2 and Inc-R 
provide solution every step. The main difference is that i S A M requires the periodic 
batch solves, the default setting of n = 100 is used in the comparison. But keeping the 
same linearization point for too long deteriorates the estimation. 

The improved implementation reaches the best times for the best accuracy on all 
evaluated datasets: except for the CityTreesiok dataset, the execution of the Inc-R out
performs all the implementations. This particular result is given by the dense structure 
of the problem. In this case, reordering every step is slightly more advantageous than 
incremental ordering. The closest time to Inc-R is reached by the i SAM2. The differ
ence between i S A M 2 and Inc-R is that i S A M 2 changes only the affected blocks of the 
R factor and relinearizes only affected variables at each 10 step, while Inc-R changes 
parts of the R factor and relinearizes all the affected variables when needed ( iSAM2 
was run wi th the default relinearization threshold 10). This leads to slightly worse 
accuracy of the estimation compared to Inc-R but makes i S A M 2 run faster than if it 
was relinearizing at each step. 

The proposed sparse block Cholesky factorization algorithm was tested on ful l sys
tem matrices of the same datasets used in the incremental algorithm evaluation. The 
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Figure 4.4: Cholesky factorization benchmark on the standard SLAM datasets, a) times of factor
ization only and b) times of linear solving. 

results are shown in Figure 4.4a. The proposed block Cholesky implementation is al
ways faster than the CSparse (V3.0.2) and is highly competitive wi th Cholmod (V2.1.2) 
which is only better on the wok and Sphere datasets where it takes advantage of large 
supernodes. Simplical Cholmod is always slower. Also note that the speedup grows 
wi th the block size, for 6 x 6 blocks it is more than double. The quality of the factoriza
tion is also good, the worst norm of difference between block Cholesky and CSparse 
was 2.6016-10~ 1 3 and occurred on the Cityiok dataset. 

The speedups get slightly bigger in linear solving in Figure 4.4b. Here, backsubstitu-
tion is performed along wi th fill-reducing ordering, Cholesky factorization (and block 
to sparse matrix conversion for CSparse and Cholmod). This benchmark is relevant 
because if demonstrates the real performance loss many state of the art N L S solvers 
pay by not using blockwise representation all the way through. 

S O L V I N G B U N D L E A D J U S T M E N T P R O B L E M S 5 
While the efficient N L S solutions described earlier could readily be used to solve Bun
dle Adjustment (BA) problems, advantage can be taken of the structure of such prob
lems. A p p l y i n g Schur complement is one of the common optimizations.This chapter 
reviews the implementation of the Schur complement methods and their efficiency in 
solving B A - but also other problems, by using appropriate variable orderings. 

In our context, the estimation problem is formulated as a M a x i m u m Likelihood 
Estimation (MLE) of a set of variables 0 = [9i . . . 9 n ] given a set of observations 
z = [zi . . .ZmJ- Without the loss of generality, it is possible to order the variables in 
such a way that 9i . . . 9 P are the p camera poses and 9 p + i • • • 9 n = p + i + ^ are the I 
landmark positions and to assume that each constraint is between a pose variable 
and a landmark variable. Situations w i t h additional types of variables (e.g. the in
trinsic camera parameters) are possible. Situations wi th only a single type of variable 
(e.g. as in pose graph optimization) are also possible, although the ordering for Schur 
complement is more elaborate. 

By taking advantage of the structure of the problem, rather than solving the normal 
equation directly using a sparse factorization solver, it is possible to employ the Schur 
complement trick. In case the poses are ordered first, followed by all the landmarks, 
the normal equation A 6 = T| can be partitioned as: 

A l l 
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A 1 2 
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b 

(5-i) 

where the D is supposed to be invertible and also block diagonal (since there are no 
observations that would directly relate two landmark variables and therefore no off-
diagonal blocks are filled). See Figures 5.1b and 5-ie for examples of matrices from 
Venice [55] and Guildford Cathedral1 datasets: the typical arrow shape shows that D 
is indeed diagonal (note that although A is only taking a single pixel in the top-left 
corner, it also is diagonal). The Schur complement of A is: 

Schur(A) = A — U D " 1 U T . 

This can be used to solve the original system as: 

( A - U D ^ U 1 " ) x 

y 

a - u r r V 
D" •U T x) 

(5-2) 

(5-3) 

(54) 

where the former is a smaller, more dense system that can be solved using a general 
linear solver and the latter is merely a matrix vector product. The advantage of this 

1 can be obtained at http://cvssp.org/impart/ 
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