

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

Development of mobile applications for online shopping

Zhuman Aruzhan

© 2024 CZU Prague

Declaration

I declare that I have worked on my bachelor thesis titled "Development of mobile

applications for online shopping" by myself and I have used only the sources mentioned at

the end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not

break any copyrights.

In Prague on 11.03.2024 ___________________________

Acknowledgement

I would like to thank my supervisor Ing. Jan Pavlík, Ph.D. for his advice and

support during my work on this thesis.

 6

Development of mobile applications for online shopping

Abstract

 The rise of e-commerce has been accelerated by the widespread use of mobile devices

and mobile apps, which enable consumers to access e-commerce platforms from anywhere,

at any time. A huge variety of present development tools leads to a need to choose between

them carefully considering many constraints.

 The thesis aims to find the best development method among Swift programming

language, React Native framework, Flutter Flow platform and App My Site app builder for

an e-commerce mobile application. This goal will be attained by conducting a literature

review and MCDA which in its turn will be done according to a given scenario.

 Based on MCDA results the optimal solution will be developed in the form of an app

prototype that will have a completed user interface but with limited functionalities to

perform. The real results will be evaluated contrasting them with the expectations described

in the theoretical part and MCDA criteria assessment.

Keywords: mobile application, e-commerce, multiple criteria decision analysis, application

development, prototype, Swift, React Native, Flutter Flow, App My Site.

 7

Vývoj mobilních aplikací pro online nakupování

Abstrakt

 9]HVWXS� HOHNWURQLFNpKR� REFKRGX� E\O� XU\FKOHQ� UR]ãtĜHQêP� SRXåtYiQtP�PRELOQtFK�

]DĜt]HQt� D� PRELOQtFK� DSOLNDFt�� NWHUp� VSRWĜHELWHOĤP� XPRåĖXMt� SĜtVWXS� N� SODWIRUPiP�

HOHNWURQLFNpKR� REFKRGX� RGNXGNROL� D� NG\NROL�� 2EURYVNi� ãNiOD� VRXþDVQêFK� YêYRMRYêFK�

QiVWURMĤ�YHGH�N�SRWĜHEČ�VL�PH]L�QLPL�SHþOLYČ�Y\EUDW�V�RKOHGHP�QD�PQRKR�RPH]HQt�

 3UiFH� VL� NODGH�]D� FtO� QDMtW� QHMOHSãt�PHWRGX� YêYRMH�PH]L� SURJUDPRYDFtP� MD]\NHP�

6ZLIW��IUDPHZRUNHP�5HDFW�1DWLYH��SODWIRUPRX�)OXWWHU�)ORZ�D�WYĤUFHP�DSOLNDFt�$SS�0\�6LWH�

SUR�PRELOQt�DSOLNDFL�HOHNWURQLFNpKR�REFKRGRYiQt��7RKRWR�FtOH�EXGH�GRVDåHQR�SURYHGHQtP�

UHãHUãH�OLWHUDWXU\�D�YtFHNULWHULiOQt�DQDOê]\�YDULDQW��9$9���NWHUi�EXGH�SURYHGHQD�SUR�SRWĜHE\�

GDQpKR�VFpQiĜH�

 1D�]iNODGČ� YêVOHGNĤ� 9$9� EXGH� Y\YLQXWR� RSWLPiOQt� ĜHãHQt� YH� IRUPČ� SURWRW\SX�

DSOLNDFH��NWHUê�EXGH�PtW�GRNRQþHQp�XåLYDWHOVNp�UR]KUDQt��DOH�V�RPH]HQêPL�IXQNFHPL��5HiOQp�

YêVOHGN\� EXGRX� Y\KRGQRFHQ\� Y� NRQWUDVWX� V� RþHNiYiQtP� SRSVDQêP� Y� WHRUHWLFNp� þiVWL� D�

posouzením kritérií VAV.

.OtþRYi� VORYD� mobilní aplikace, e-commerce, vícekriteriální analýza variant, vývoj

aplikací, prototyp, Swift, React Native, Flutter Flow, App My Site.

 8

Table of Contents

1 Introduction .. 10

2 Objectives and Methodology... 11

2.1 Objectives .. 11

2.2 Methodology .. 11

3 Literature Review .. 12

3.1 Definition and growth of mobile e-commerce ... 12

3.2 Significance of mobile applications in e-commerce .. 13

3.3 Types of mobile applications ... 14
3.3.1 Native App ... 14
3.3.2 Cross-platform App ... 15
3.3.3 Hybrid App .. 16
3.3.4 Progressive Web App .. 16
3.3.5 Comparison of mobile app types ... 18

3.4 Application life cycle ... 19

3.5 Mobile application development approaches and tools 20
3.5.1 Swift ... 21
3.5.2 React Native ... 22
3.5.3 Flutter Flow.. 23
3.5.4 App My Site ... 24

3.6 Distribution to app stores ... 25

3.7 Revenue models ... 26

4 Practical Part.. 28

4.1 Research questions and scenario .. 28

4.2 MCDA of mobile application development tools .. 29
4.2.1 Criteria assessment .. 29
4.2.2 Calculations ... 32

4.3 Development of mobile application prototype .. 35
4.3.1 Planning ... 35
4.3.2 Design .. 36
4.3.3 Development .. 37

5 Results and Discussion... 39

6 Conclusion .. 41

7 References ... 42

8 List of figures, tables and images ... 45

8.1 List of figures ... 45

 9

8.2 List of tables... 45

8.3 List of images... 45

9 Appendix ... 46

 10

1 ,QWURGXFWLRQ

Over the past few decades, advances in the development of the Internet and devices

have led to a change in many human activities including shopping. The introduction of e-

commerce has made shopping flexible for consumers and has opened new opportunities for

entrepreneurs. Making the process of purchasing goods online as convenient as possible was

also thanks to mobile e-commerce.

Selling and buying goods and services using mobile phones can be done through

websites and mobile applications. This thesis will focus on the mobile applications sector.

There are four types of mobile applications: native apps, hybrid apps, cross-platform apps

and progressive web apps. Each business can choose one of these apps taking into account

business requirements and development resources. Each mobile app type in its turn has its

own development tools. For example, Android Studio or XCode for native apps and Flutter

or Xamarin for cross-platform apps. However, if we take it in general, there are three ways

in which mobile applications can be built: traditional development, no-code and low-code

approaches. These methods are classified based on the coding involvement level, so in the

first method, developers build the app by manually writing the source code while in the last

two methods, users create the apps in the graphical user interface and the code is generated

behind it. Different means of app development have different drawbacks and benefits which

will be described in this bachelor thesis.

 11

2 2EMHFWLYHV�DQG�0HWKRGRORJ\

2.1 Objectives

The thesis will focus on the topic of mobile application development. The primary

goal is to assess and compare methods of developing mobile applications in e-commerce and

to select a suitable approach for practical implementation.

Partial objectives:

- to investigate several approaches to developing mobile applications using available

literature and online sources

- to analyze selected approaches and choose the optimal option for practical implementation

- to develop a prototype mobile application using the chosen method and evaluate the results

2.2 Methodology

 The thesis will comprise theoretical and practical parts. The theoretical part will be

based on the analysis of professional literature and scientific resources. In the practical part,

chosen development methods will be compared, and the optimal method will be selected

using multiple criteria decision analysis. The selected development method will be analyzed

based on the practical implementation of a prototype application. Conclusions will be

formulated by combining the results of the theoretical and practical parts.

 12

3 /LWHUDWXUH�5HYLHZ

3.1 Definition and growth of mobile e-commerce

 Apart from the familiar e-commerce sector mobile e-commerce is gaining

popularity as well. On a global scale, mobile devices account for 72% of e-commerce sales,

and as shown in Figure 1 forecasts suggest that the mobile e-commerce share will surpass

87% by the year 2026.

Figure 1: Mobile share of global e-commerce revenue, Source: capitaloneshopping.com, 2024

 However, opinions differ as to whether mobile commerce is part of e-commerce or a

separate type of trading activity. Furthermore, the classification of devices used in these two

types of commerce also varies. Thus, there are several definitions of electronic commerce

and mobile electronic commerce:

1) E-commerce and m-commerce together make up digital commerce which indicates

transactions held over the Internet. While e-commerce includes transactions made on

desktop computers or laptops, m-commerce takes place on mobile phones or tablets.

Moreover, it is important to mention that m-commerce is not a derivative of e-

commerce (Swilley, 2015, p. 135, p. 15).

2) E-commerce refers to the digital trading and transfer of information, products,

services, and financial transactions through telecommunications networks. Mobile

 e-commerce, alternatively known as mobile commerce or m-commerce,

 encompasses any actions associated with a (possible) business transaction carried out

 using wireless devices such as mobile phones and laptop computers through

 communication networks (Tarasewich, Nickerson, Warkentin, 2002, p. 42).

 13

3.2 Significance of mobile applications in e-commerce

 In contrast to traditional e-commerce, which revolves around a company's online

store, with m-commerce consumers have the option to shop on their mobile phones from

brands and retailers through various channels including mobile websites, mobile commerce

apps and social media. Out of these three options mobile applications are mostly known for

their higher user satisfaction due to better performance. In fact, individuals look through

approximately 4.2 times more products per session within mobile apps than on mobile

websites (jmango360.com).

 One of the main advantages of mobile apps is that they can access WKH�GHYLFH¶V�QDWLYH�

features like a camera, which is why it leads to more user engagement and opens up a gate

for new app functions. For instance, the integration of augmented reality and virtual reality

is transforming online shopping from 2D product catalogs to 3D (Baker, Abu Bakar, Zulkifli,

2020 as cited in Ain, Missen, Prasath, 2023, p. 88). In addition, it is found that AR-mediated

m-commerce has a positive impact on customer confidence and perception of innovation

(Stoyanova, Gonçalves, Brito, Coelho, 2013 as cited in Ain, Missen, Prasath, 2023, p. 88).

Another beneficial feature that can be used in m-commerce applications is making

payments through biometrics. Based on a recent Juniper Research report, biometrics are

projected to verify over $3 trillion in payment transactions by 2025, a significant increase

from the roughly $404 billion recorded in 2020. As mobile payments become progressively

dominant in the payment landscape, biometric methods such as fingerprint, iris, voice, and

facial recognition are becoming crucial for enhancing user experiences within mobile apps

(Ain, Missen, Prasath, 2023, p. 88).

 Nevertheless, it is important to deliberate some subtleties of developing mobile

commerce apps. According to the research findings, firstly, there is a significant difference

in the behavior of males and females when ranking mobile shopping apps since women are

more involved in online shopping. Secondly, it turns out that the usability scores of shopping

apps for iOS and Android are very dissimilar. Moreover, due to the cultural divide and

resistance to technological advances, people in rural areas hesitate to buy online (Ain,

Missen, Prasath, 2023, p. 82).

 Many business owners are unwilling to include m-commerce in their strategy. Often

the reason for this is the involvement of higher costs, but despite that fact, the benefits then

can overweight the costs. Therefore, if businesses want to succeed, they need to be ready to

 14

allocate resources and funds towards both technological advancements and marketing works

to establish a solid and prosperous mobile commerce platform (Swilley, 2015, p.15).

3.3 Types of mobile applications

There are various mobile application types to choose from when it comes to

developing a mobile solution. Here "mobile application type" does not refer to the

functionality provided to the user, but to the methodology and structure used in building the

application (azure.microsoft.com).

In this research, the most common types of mobile app development will be reviewed,

each of which has its own features, benefits and capabilities:

� Native apps

� Cross-platform apps

� Hybrid apps

� Progressive Web Apps (PWA)

The choice of development type depends on various factors such as project

requirements, budget, timeline, and the need to access specific device features. Each of these

types has its own advantages and limitations, and developers should choose the appropriate

type according to the needs and requirements of their project.

3.3.1 Native App

While not requiring an online connection, native apps have excellent visual appeal.

For each platform and version you want to target, you will need to create and manage an app

depending on the audience. That is why native apps are usually expensive and time-

consuming to build and maintain, but they compensate for these drawbacks with high

performance.

App stores, both platform-specific and independent, are used to distribute native

software. A 30 percent revenue split and the usage of their own billing system are

requirements for the majority of app shops. It is crucial to learn how to make the app

noticeable among the other millions of apps available because one of the main difficulties

faced by app stores is discovery (Salz, Moranz, 2013).

Many various platforms were in competition in the early years before 2010, but now

there are just two major platforms (Majchrzak, Biørn-Hansen, Grønli, 2018, p. 5736). Java

or Kotlin are the languages that developers use to construct Android apps, with Android

 15

Studio serving as the official IDE (integrated development environment). While iOS

developers build apps in XCode using the languages Objective-C or Swift (Thomas, Devi,

2021, p. 117).

3.3.2 Cross-platform App

Cross-platform mobile development is the process of creating software programs that

are interoperable with a variety of mobile operating systems. All cross-platform app

development frameworks have the following fundamental quality: code is created just once

(Majchrzak, Biørn-Hansen, Grønli, 2018, p. 5737).

Code written in a single language that can be utilized by several platforms has its

pros and cons. On the one hand, because only one app needs to be created to support all

platforms, maintaining and updating apps is much more convenient. On the other hand, the

debugging process might be more difficult since some problems might only exist on certain

platforms (Jayvir, 2023).

Based on the results of the survey conducted among the developers from the year

2019 to 2022 (Figure 2), the list of the most used cross-platform frameworks was formulated:

1. Flutter

2. React Native

3. Cordova

4. Ionic

Figure 2: Most used cross-platform frameworks, Source: www.statista.com

 16

Cross-platform development is especially beneficial for small projects because the

charges for the application will be lower due to the need for fewer developers, and the

development process itself will be much faster. Applications that do not demand a lot of

resources from smartphones, like a basic social network or an online store, are less likely to

need to intervene in low-level activities. Simple apps will not be negatively impacted by this

in any manner in terms of quality or performance. However, this approach pales in

comparison to native development when it comes to projects that require lengthy

development cycles, ongoing enhancements, and feature expansion (Shevtsiv, Striuk, 2020,

p. 76).

3.3.3 Hybrid App

A hybrid application is created using web technologies and then covered in a shell

tailored to the target platform. The native shell gives the program a native appearance and,

more crucially, qualifies it for app store submission. Additionally, app developers may

incorporate some native functionality into a hybrid app, enabling it to utilize hardware

elements like built-in sensors and location as well as some native APIs (Application

Programming Interfaces) (Salz, Moranz, 2013). Hybrid apps are powered by a single

codebase allowing them to run on any platform. Usually, they are written in a well-used

programming language like JavaScript, Java, HTML, or CSS (www.ibm.com).

 The benefits of hybrid apps extend to content management. Without needing to

update the app in app stores, developers may make changes to the app's content directly on

the server. As a result, businesses can swiftly adjust to changing user or market demands.

Hybrid apps and cross-platform apps are very similar since they both share a single

codebase. However, they are still treated as different development approaches as each of

them has its own pros and cons. Firstly, the time that it takes for the development of a hybrid

solution is less compared to a cross-platform one. Secondly, access to native features is

limited in hybrid apps. In general, hybrid applications are inferior to cross-platform ones in

terms of similarity to native apps and the choice between the two mostly depends on business

requirements.

3.3.4 Progressive Web App

 To get around the limitations of mobile browsing and native programs, in 2015

Google developed Progressive Web Apps (PWA). Similar to how one would launch native

 17

applications, PWA may be accessed simply by clicking on an icon on the device's home

screen (Chavan, Bhatkar, Muley, 2022, p. 207).

PWAs are very safe since they only operate over HTTPS (Hypertext Transfer

Protocol Secure). However, because PWA is a relatively new technology, it is currently only

supported by a small number of browsers (Adetunji et. al, 2020, p. 95). For instance, it is

stated on the Google Chrome Help page that there is no PWA support in Chrome for iOS

(support.google.com), which is considered as an obvious disadvantage.

Since PWA lies on the border of mobile applications and web apps, the distinctions

between them are hazy. Therefore, several research works were done comparing these

approaches to answer the question of whether PWA can become a replacement.

Push notifications, offline capacity, and other native app-like capabilities cannot be

delivered by responsive web applications. To increase user engagement and conversions,

these elements are essential from a marketing viewpoint. Because of this, organizations tend

to replace responsive mobile websites by adopting progressive web apps (Chavan, Bhatkar,

Muley, 2022, p. 209). However, it is still too early to determine if PWA will be able to

displace current cross-platform development methodologies or whether if it can be claimed

that they now can meet many requirements for unified multi-platform development.

Moreover, even though PWAs aim to support many platforms from a single code base

(inherently being web-based), they may not have been recognized as a cross-platform

development technique up until this point (Majchrzak, Biørn-Hansen, Grønli, 2018, p. 5742,

p. 5737).

 18

3.3.5 Comparison of mobile app types

Table 1: Comparison of mobile app types

Native apps Cross-platform

apps
Progressive web

apps Hybrid apps

Number of
codebases One per platform One, but compiled

for each platform One total
One for the app,
another for the

container
Languages and
frameworks Native only Team's choice Web only Web and native

Access to SDKs
and APIs Yes Yes No Limited

Performance Highest High Lowest Low

Access to device
hardware Complete Most Very little Some

Responsiveness to
user input Good Good Worst Poor

Interactivity High High Lowest Low

Device resource
use High High Low Medium

Requires
connectivity No No Yes Yes

Cost to build and
maintain Highest High Lowest Lower

Where the app is
stored Device Device Server Device and server

Deployed through Marketplace Marketplace Browser Marketplace

Requires outside
approval Yes Yes No Yes

Source: azure.microsoft.com

 Given four types of mobile applications differ in every aspect required to be

considered in the development process. Thus, each of them will be very specific to the

business requirements and it is well seen in the summarized Table 1 with different feature

comparisons. The list below is created based on the performance power and consequently

also required costs because the higher the performance, the more resources are needed. From

Table 1, the application types can be listed in descending order:

1. Native apps

2. Cross-platform apps

3. Hybrid apps

4. Progressive web apps

 19

 High quality and capability, also known as the performance of the app, are achieved

through having such possibilities as access to SDKs (Software Development Kits) and APIs

(Application Programming Interfaces), access to device hardware, responsiveness to user

input and interactivity. All of these make devices use more resources but at the same time,

it leads to better user experience, and therefore, higher user satisfaction. In this case, building

a native app would be an ideal solution, however, in the real world, there are a lot of nuances

that no one could easily neglect. That is why other application types were created over time

which are enough to attain smaller business needs.

 In terms of app deployment PWAs stand out compared to others since it is a web app.

So, while the other three types are deployed through marketplaces and require external

approval, PWAs are simply published through browsers and do not need to be involved in

any approval processes. These web applications are stored on servers, but native and cross-

platform applications take up some memory on phones or tablets, and hybrid ones are located

both on the device and server. It also means that the applications that require servers do not

run without a network connection.

3.4 Application life cycle

 The application life cycle represents a sequence of steps that help in the successful

delivery of the product. However, the technical team does not have to follow the steps in a

strict order, meaning that they can always step back and alter something. Especially when

it comes to the testing phase because to resolve the defects found in the testing phase the

cycle needs to go back to the development phase. Also, requirements may be changed, or

new requirements may be added to the scope of the project. The application life cycle

includes:

1. Planning. The business unit defines the objectives that need to be attained by

delivering the application to the customers. Technical and non-technical

requirements are gathered from the stakeholders. Resources such as financial

resources and human resources are analyzed. Timelines for each cycle phase are

estimated.

2. Design. Application architecture, user interface and prototypes are settled.

3. Development. Actual building of the backend and frontend of the application.

4. Testing. This is the most important step before going live as all the issues with the

app should be investigated during testing real-life scenarios.

 20

5. Deployment. The final version of the application is released and published on the

selected platforms.

6. Maintenance. Since the testing cannot cover all possible use cases or simply

because some issues might be overlooked, the users may face some problems with

the app, so support should be provided. Apart from that the performance of the

application is monitored and new improvements are implemented.

 In the end, when the decision to retire the app is made, all the documentation and

data should be safely archived and that would be the end of the application life cycle.

3.5 Mobile application development approaches and tools

There have only ever been two options for business owners looking to develop

applications: either purchase already-made apps from a third-party vendor or create their

apps from the start with the help of knowledgeable developers and programmers. Today,

however, we are witnessing the emergence and advancement of low-code/no-code

development options that enable individuals with little or no programming skills to access

the potential of application development (www.sap.com). Thus, three different approaches

to software development can be distinguished:

� traditional development (also called pro-code)

� low-code

� no-code

 The classical approach to software development based on hand-writing source code

is known as traditional programming. Developers use programming languages and tools

such as IDE and cross-platform frameworks to create applications from scratch. This

method has a high degree of flexibility and control, allowing developers to fully tailor each

part of the program to the needs of the project. Traditional programming is often used to

develop complex and vital applications that require high performance, security, and

reliability. However, since developers must write all the code by themselves, this method is

time and resource intensive. It can lead to a higher chance of errors and slow down the

development process, especially in complex projects. In addition, finding and attracting

developers with the right skills to work based on traditional programming can be difficult.

 The problem of the discrepancy between the rising demand for apps and the lack of

developers available to satisfy this need led to the launch of low-code development

 21

platforms (Alsaadi et. al, 2021, p. 123). The use of minimal coding in low-code software

tools has influenced the popularization of citizen developers, i.e., developers with little or

no expertise in software engineering (Oltrogge et. al, 2018, p. 634), for instance,

employees from company departments other than IT who use low-code platforms to

enhance digital transformation. Both terms ³FLWL]HQ�GHYHORSHUV´�DQG�³ORZ-FRGH�SODWIRUPV´�

are usually used with regard to enterprise organizations or companies. Examples of low-

code platforms are Appian, Microsoft PowerApps and Mendix.

 Low-code and no-code approaches are very similar as in both visual development

environments and intuitive interfaces are used that allow the creation of applications by

dragging and dropping ready-made components, modules, and functions. The key

advantages of these two alternatives to traditional programming are enhanced performance

and a less complicated development process. The main difference as the names of

approaches already suggest is that no-code does not require any programming knowledge

while in low-code some code lines may be entered by the user. Less code involvement

means more restrictions in app customization, therefore, such platforms in general will be

suitable for smaller and simpler projects.

 There is a huge variety of tools used in each of the development approaches. In

order to make the comparison of development tools less complicated and healthier in the

practical part, some restrictions will be applied to the selection of development methods

that will be analyzed. Firstly, because low-code development platforms are mostly used in

enterprises, only no-code and traditional approaches will be considered. Secondly, two

types of tools will be reviewed for each approach to make it fair. Development tools are

selected due to their well spreading in the market:

Traditional development:

� for native apps ± Swift programming language

� for cross-platform apps ± React Native framework

No-code development:

� from scratch ± Flutter Flow

� converting from website ± App My Site

3.5.1 Swift

 Swift is a programming language introduced by Apple in 2014 to develop

applications for its ecosystem. Swift 3 was available as open source in 2016, making it the

 22

first significant version that allows anybody interested in the language to work on its

development. Since then, Swift has expanded outside of the Apple environment at an even

quicker rate. There are now several platforms DSDUW� IURP� $SSOH¶V� that VXSSRUW� 6ZLIW¶V�

development tools and the programs built in the end can be deployed on these platforms.

According to 6ZLIW¶V�RIILFLDO�ZHEVLWH, these platforms include:

� Windows

� Ubuntu

� Amazon Linux

� CentOS (www.swift.org)

 Swift is a new programming language, but it has many similarities with Objective-C

which is a superset of C in terms of object-oriented paradigm and syntax

(www.geeksforgeeks.org, 2020). Swift stores values in variables that may be referred to by

a name in the same way as it is done in C. All essential C and Objective-C data types, such

as Int for integers, Double and Float for floating-point numbers, Bool for boolean values,

and String for textual data, are available in Swift as well (docs.swift.org). Moreover,

developers have the option to implement Swift in the same project with Objective-C and

C++ files and have access to thoVH�ODQJXDJHV¶�$3,V (developer.apple.com). Such features

lead to faster learning and make the transition to Swift easier.

 Despite being a still developing young language, Swift is considered a modern

approach to building applications. Thanks to its unique features such as automated memory

management, initialization of variables before use and checking for overflow in arrays and

integers, Swift enables safer programming. It is 8.4 times quicker than Python and 2.6 times

faster than Objective C (www.apple.com) which indicates a great performance. In

conclusion, Swift is a good choice for developing native applications.

3.5.2 React Native

 React Native is an open-source cross-platform framework initially established by

Facebook in 2015 (Hjort, 2020, p. 12). Many businesses apply it, including Airbnb, Tesla,

Walmart, and Uber (Barros et. al).

 React Native applications can be developed in one of the several development

environments including:

 23

� Expo

� React Native CLI

� Visual Studio Code

� Android Studio and XCode (Nathan, 2023, p. 6)

 According to the research conducted by Barros et. al, it was found that despite the

generally quicker functionality of native apps developed in Swift or Java, as an example,

saving and retrieving data from local storage on Android and iOS devices falls under the

category of situations where React Native apps perform statistically equally well. With this

technology, iOS and Android applications can be written in JavaScript based on React

JavaScript library WR�DFFHVV�WKH�SODWIRUP¶V�$3,. React JS or React allows the development

of the DSS¶V�UI components through JavaScript XML (JSX) which is a syntax for encasing

XML within JavaScript (Fentaw, 2020, p.21).

Given that JavaScript is often used by web developers, it is safe to say that using it

is one of React Native's major benefits because instead of learning a new language and

development environment for each platform, it enables the creation of mobile apps using

existing well-known methodologies (Hjort, 2020, p. 12). However, when it comes to new

joiners or other developers, the knowledge of JavaScript acts as a prerequisite for starting to

work with React Native. Another thing to consider is that since React Native has React

library as a dependency, one should also learn React fundamentals first before jumping right

into React Native app development. On the other hand, the developer community for React

Native is huge offering a lot of information and assistance for creating apps (Nathan, 2023,

p. 3), so it is easier to get the support if needed.

3.5.3 Flutter Flow

 Flutter Flow is a comparatively new platform used for the visual development of

iOS and Android mobile applications and web applications. It allows quick creation of

apps based on Flutter which is an open-source framework established by Google to

develop cross-platform apps with the same codebase.

 The main principle of operation is to create a user interface using a drag-and-drop

system and on the basis of this the program code is generated. The interface can be created

by users themselves or they may use ready-made templates, which will significantly speed

up the work process. Flutter Flow creates a number of opportunities for the most efficient

 24

and convenient work on projects. This includes integration with external servers and APIs,

real-time preview of the application and team collaboration. Flutter Flow is especially

useful for those who want to take advantage of the power and flexibility of Flutter but may

not have much coding experience or want to just simplify the app development process.

However, like many no-code app builders, Flutter Flow can help create only the basic

structure of an app, meaning that more complex and custom functionality still requires

traditional Flutter coding. It is not a drawback but rather a factor that must be considered

before choosing the development tool because each of them has different purposes.

3.5.4 App My Site

 App My Site is another popular no-code app builder, but its difference is that it

mainly focuses on making mobile apps by converting them from websites. Using this tool

one can still create a custom app even if he or she does not own a website��EXW�WKH�WRRO¶V�

most powerful solutions come from collaborating with platforms such as WordPress,

WooCommerce and Shopify. Although App My Site supports the creation of various app

types, the last two examples clearly show that e-commerce especially emphasizes

attention.

 Converting an existing website into an iOS or Android app takes several minutes

which is extremely fast compared to other app builders not to mention traditional app

development. As a result, customers get a website and a mobile app in sync. A privilege

that is worth mentioning is that users do not have to pay in advance to use this tool.

Instead, they can pay in the end after creating the app and testing it on different operating

system emulators or even real devices. Other advantages include an automated deployment

process and monitoring important data based on provided analytics.

 App builders like App My Site are mostly convenient for small or start-up

businesses since the solution does not require a lot of resources and is ready in a short

period of time. Nevertheless, still, there are some disadvantages that make people avoid it.

Firstly, being dependent on third-party services leads to risks in the form of unpredictable

price changes or losing support because of WKH�YHQGRU¶V�cancelled business. Secondly, data

security may not be guaranteed to the right extent.

 25

3.6 Distribution to app stores

Publishing an application to iOS and Android platforms involves going through

several steps that are described below:

1. Preparation of assets and documentation.

 Assets like app icons, screenshots and promotional materials are created.

 An app description is written, and any required documentation is prepared for

 submission.

2. App Store Registration.

 For iOS:

 Registration as an Apple Developer on the Apple Developer website.

 Configuration of App IDs and provisioning profiles specific to the app.

 Payment of the fee for the Apple Developer Program.

 Getting ready for App Store Review.

 For Android:

 Registration as a Google Play Developer using the Google Play Console.

 Payment of a one-time registration fee.

 Configuration of the app listing details including pricing information.

3. App Store Listing.

 For iOS:

 An app listing is created on App Store Connect.

 App information such as name, description, keywords and screenshots are provided.

 In-app purchases are set up if applicable.

 Submission of the app for review.

 For Android:

An app listing is created on the Google Play Console.

Details including title, description, graphics and pricing information are provided.

 If applicable, in-app purchases are set up.

 The app is published on the Play Store.

4. App Store Review.

 For iOS:

 The app will undergo a review process conducted by Apple. It should adhere to

 $SSOH¶V guidelines.

 26

 Developers should be prepared to handle any issues or rejections from Apple¶s

 review team.

 For Android:

 The Google Play Store does not have a publishing review process, but they may

 review apps afterwards to ensure compliance, with their policies.

5. Distribution.

 Once the app is approved (for iOS) or published (for Android) it will be available for

 users to download.

 Using marketplaces like App Store and Google Play is considered to be the most

optimal way for public app distribution, although developers have a variety of other options,

especially when it comes to Android apps. For example, Android apps can also be released

by publishing them on websites or sending them directly to users. On the other hand, Apple

forbids downloading and installing any iOS binary files directly. Also, the approval process

for publishing an app to the App Store is much stricter than in Google Play (buildfire.com,

2023). Considering these factors and that Android is dominating the global market share, it

is estimated by Statista that by 2026 the number of app downloads from the Google Play

Store will be almost four times more than app downloads from the App Store, making up

143 billion (www.statista.com).

3.7 Revenue models

 Mobile app revenue models represent the means of monetizing the applications.

App developers believe that selecting a revenue model is one of the hardest and most

significant choices they must make in order to thrive in the market (Roma, Ragaglia, 2016,

p. 174). Some of the most common revenue models include a free revenue model, a paid

revenue model and a freemium revenue model.

 Some developers use a free app approach, making the app available without any

charge. In this case, the revenue is targeted to be generated from in-app advertisements or

from selling non-personally identifiable user data (Roma, Ragaglia, 2016, p. 175). In-app

advertisements are now used almost in every free downloadable app and usually, it's a

rather easy procedure that requires the developers to use the SDK that the ad provider

provides (Devi, Thomas, 2021). However, the main prerequisite for this strategy to succeed

is having a sizable user base. On the other hand, the information that the app could be

 27

gathering could be very beneficial to organizations that do marketing or research. Perhaps

in the future, the data gathered will be utilized to give consumers a better user experience.

Typically, data that is collected include the device the app is operated on, location, network

and so on. It is required to disclose this to the user in a public manner through the Privacy

Policy and the Terms of Service.

 While most applications available on the market may be downloaded for free,

others require payment upfront before installation. These apps allow users full access to all

functions without any additional adverts or interruptions. Developers must ensure that the

cost they incur to obtain a certain feature is justified, although this is an incredibly easy

and practical method of making money. Based on 5RPD¶V�DQG�5DJDJOLD¶V�ILQGLQJV�

compared to free applications in the Apple App Store, paid apps are more likely to be

linked to higher daily revenue levels, even though there is no noticeable difference

between them on Google Play. This is because customers of the Apple App Store are less

concerned about spending their money if they receive superior service since they are more

eager to pay than users of Android apps (Roma, Ragaglia, 2016, p. 188).

 Combining the terms "free" and "premium," "freemium" refers to a business

strategy that depends only on in-app purchases. Users pay for more features, the upgrading

of an app to access all content and services, or the elimination of ads that appear in the free

version of the app. Freemium business models are popular in the gaming industry. In fact,

among all app categories, gaming is by far the most downloaded and offers the highest

income (Tang, 2016, p. 225).

 Choosing the right revenue model is critical and depends on various factors, but it

is also possible and even beneficial to combine them to maximize profitability.

 28

4 3UDFWLFDO�3DUW

4.1 Research questions and scenario

 The practical part of this thesis will include two steps: first is to analyze the

development methods for building e-commerce mobile applications to choose the optimal

method and afterward build the application prototype using the chosen developing tool.

Going through these two steps answers to the following research questions will be found:

x Which development method is best to implement a practical solution for online

shopping applications?

x Will the final prototype meet the expectations that are based on the literature

review and MCDA criteria assessment?

 The first part of this practical work will utilize multi-criteria decision analysis

(MCDA). The MCDA will be done according to one given scenario. Describing this

scenario ahead is crucial because points like which criteria to choose and what weights to

assign to them are dependent on certain constraints and that is why the optimal alternative

may change in different scenarios.

 In this work, the solution to the problem should be found for the business whose

PDLQ�EXVLQHVV�DFWLYLWLHV�DUH�VHOOLQJ�ZRPHQ¶V�FORWKLQJ�LQ�VWRUHV�DQG�WKURXJK�WKHLU�ZHEVLWH��

This is a developing brand that first conducted its trade online because of the pandemic and

only after two years a store in Prague was opened. Since most sales come from online

shopping, the brand owners decided that launching a mobile application would be

EHQHILFLDO�IRU�WKHP�WR�UDLVH�WKH�FXVWRPHUV¶�VDWLVIDFWLRQ�E\�RIIHULQJ�D�PRUH�SOHDVant and fast

shopping. The brand has no strict time limits needed for the development since it already

has a working website. However, the budget is limited because it is only a developing

business that was opened a few years ago. The brand owners came to a development

company to consult their situation with professionals. Now the company has to offer their

clients an optimal solution.

 29

4.2 MCDA of mobile application development tools

 MCDA is a chosen technique in this thesis to compare the ways of developing a

mobile e-commerce application and calculate the optimal solution. The process is based on

evaluating each criterion for each alternative and giving the weights to them.

 An alternative is a variant that is considered and one of several alternatives will be

chosen in the end as an optimal one. In this case, there are four alternatives for building a

mobile application for shopping: Swift programming language, React Native framework,

Flutter Flow and App My Site.

 Weights are assigned according to the importance of each criterion, and this is done

subjectively. For example, the cost of development may be the most important to consider

for one and therefore, its weight will be the highest. However, if the cost is equally

important with other criteria, then each criterion will be given the same amount of weight.

In the end, the weights are added together to investigate the ranking of alternatives. The

higher the sum is, the higher the ranking will be.

 The concept of MCDA has more nuances such as normalization that will be

described throughout the whole process of calculation.

4.2.1 Criteria assessment

 For MCDA of development tools for e-commerce mobile applications, five criteria

were chosen. These are development cost, functionality range, maintenance and support,

performance and security.

 1. Development cost evaluates the budget needed from the beginning till the end of

the development cycle. The evaluation will be written in a verbal form because it might be

challenging to provide concrete numbers.

 The highest development cost is covered by using Swift programming language due

to its native development nature which also assumes the potential development of the

application for Android users. This means that the cost of development could double in

amount. Thus, for this criterion, WKH�6ZLIW�DOWHUQDWLYH�JHWV�WKH�HYDOXDWLRQ�RI�³YHU\�KLJK´�FRVW.

 Regarding React Native, although it is a cross-platform technology that allows

building applications for both iOS and Android, it still requires the assistance of developers

or software development firms as well as Swift. Compared to these two alternatives, Flutter

Flow and App My Site are app builders that do not require special programming skills, and

 30

that in turn excludes the need for specialists. That is why the cost will be lower. So, the

estimation is as follows: cost of development in React Native ± ³KLJK´��LQ�)OXWWHU�)ORZ�±

³average´�DQG�LQ�$SS�0\�6LWH ± ³average´��

 The services of the last two alternatives are provided through monthly subscriptions.

According to the official websites, it is 30$ for the standard and 70$ for the Pro package in

Flutter Flow, 29$ for the Pro and 49$ for the Premium package in App My Site. The Standard

package in Flutter Flow and the Pro package in App My Site contain similar services and

the same situation is for the Pro package and the Premium package. It is worth mentioning

because the possibility of having different naming conventions may impact the comparison

of the pricing systems. Also, both platforms allow building a demo app for free which is a

great opportunity to test if the solution is suitable. In summary, due to the similar pricing of

both no-code platforms, the cost of development ZDV�VHW�DV�³average´�for both Flutter Flow

and App My Site alternatives. In addition, one may argue that paying a monthly fee for years

will result in a high cost but in comparison with the first two alternatives it is lower. That is

why the FRVW�ZDV�QRW�VHW�DV�³ORZ´� EXW�LW�LV�³DYHUDJH´�LQVWHDG�because the long-term running

of the app is considered.

 2. Functionality range assesses the possibility of adding and customizing various

features of the application. Swift and React Native apps are not restricted in this spectrum

because the solution in both cases happens to be custom solutions. This means that

developers have the freedom to build any features they want to implement, consequently,

the UHVXOWV�RI�WKLV�FULWHULRQ�IRU�ERWK�6ZLIW�DQG�5HDFW�1DWLYH�LV�³YHUVDWLOH´�

 In Flutter Flow, many given templates can be used to build an application. At the

same time, this platform also offers an opportunity to start the project from scratch without

using any templates. The drag-and-drop interface allows users to add the most needed

functionalities but because of this very interface, the range of these functionalities is limited

compared to code-based development. However, when Flutter Flow is put together with App

My Site, its variety of functionalities appears to be higher due to the conversion of the

website to the mobile application in App My Site. So, in App My Site, what will be included

in a mobile app will directly depend on the website itself. Thus, $SS�0\�6LWH�JHWV�³OLPLWHG´

for functionality range and)OXWWHU�)ORZ�JHWV�³DYHUDJH´.

 31

 3. Performance indicates how fast and smooth the application runs. Native apps

show the best-optimized performance since they are built for a single platform, leading to

efficient system resource utilization. Performance results of cross-platform apps are not that

high because of the additional layer between the code and the underlying platform. Also,

these types of apps may be influenced by updates introduced by the framework developers.

Therefore, it is fair enough to state that Swift apps have ³very KLJK´�SHUIRUPDQFH�Dnd React

Native apps have it as MXVW�³KLJK´�

 $QRWKHU�³KLJK´�SHUIRUPDQFH�can be observed in Flutter Flow applications. Flutter

framework uses Dart, a compiled language, and as an outcome, it might have a better runtime

performance compared to interpreted JavaScript in React Native. In addition, Flutter's

widget-based architecture grants a high degree of control over the UI which can lead to

smooth animations and responsiveness.

 The performance of apps built with App My Site may depend on the underlying

technologies and frameworks used by the platform. The app can be generated from any

website that was created using any tool, for example, WordPress. That is why it is a little bit

complicated to give a certain answer when it comes to its performance, therefore, it is

LQGLFDWHG�DV�³DYHUDJH´�

 4. Security is a criterion that measures how the application is secured from

vulnerabilities like hacker attacks, data leakage and third-party dependencies.

 Swift and React Native win in this category because custom apps are developed with

full control over the codebase. Developers can implement security best practices, conduct

thorough security testing, and address specific security concerns based on the application's

requirements. Custom security features, encryption algorithms, and authentication

mechanisms tailored to the specific needs of the application may be implemented with ease.

Moreover, developers have the power of control over the selection and usage of third-party

libraries, ensuring that only reputable and secure libraries are integrated into the app. In the

case of no-code app builders, limited control over code makes everything dependent on the

YHQGRU¶V� SUHGHILQHG� VHFXULW\� PHDVXUHV�� $OVR�� GHSHQGHQF\� RQ� WKLUG� SDUWLHV� DXWRPDWLFDOO\�

DIIHFWV� WKH�DSSOLFDWLRQ¶V�YXOQHUDELOLW\��7KLV� LV�EHFDXVH� WKLUG-party companies may change

their policies or pricing systems at any time, and it might have a negative impact. Such

limitations provide Flutter Flow and App My Site ZLWK�D�VHFXULW\�OHYHO�RI�³ORZ´�ZKLOH�LQ�

FRQWUDVW��6ZLIW�DQG�5HDFW�1DWLYH�REWDLQ�LW�³KLJK´��

 32

 5. Maintenance and support evaluate how specialists in the chosen method help

maintain the application by upgrading versions of the app and resolving potential bugs in it.

This criterion also evaluates if those specialists are ready to assist in case of other issues or

questions.

 Swift and React Native have a big advantage in this case because again using these

tools custom applications are developed. Working with developers or software companies,

you meet with real people, and that increases the likelihood of being heard. On the other

hand, building the app on your own may complicate things when it comes to issues with the

app. For example, types of support in App My Site are only community and basic email

support. It will take a long time before it will be your turn after thousands of other customers

like you to get help. Flutter Flow, however, has official access to experts who can take care

of the app and meet the requirements that you need. So, in terms of maintenance and support

6ZLIW� DQG� 5HDFW� KDYH� LW� DV� ³HIILFLHQW´��)OXWWHU�)ORZ� ± ³DYHUDJH´� DQG� $SS� 0\� 6LWH� ±

³LQHIILFLHQW´��

 To summarize, the assessment of MCDA criteria can be recapped in Table 2.

Table 2: Assessment of MCDA criteria

 Criteria

Development
cost

Functionality
range Performance Security Maintenance

and support

A
lte

rn
at

iv
es

Swift Very high Versatile Very high High Efficient

React Native High Versatile High High Efficient

Flutter Flow Average Average High Low Average

App My Site Average Limited Average Low Inefficient

Source: own processing

4.2.2 Calculations

 Step 1. Scale conversion

 There are certain issues with selecting the best alternative based on Table 2. Firstly,

all criteria are evaluated using different terms. For instance, the functionality range has a

versatility scale, while the maintenance and support have an efficiency level. Secondly, all

criteria are not expressed in some units, instead, linguistic terms are used. Therefore, to

 33

resolve the issues words should be converted into numbers before initiating the

calculations.

 For this case, a scale of a maximum of 5 points will be used as shown in Table 3.

Table 3: 5 points scale

1 Very low Limited Inefficient
2 Low - -
3 Average Average Average
4 High - -
5 Very high Versatile Efficient

Source: own processing

 Step 2. Decision matrix

 After substitution with numerical values, a decision matrix is created. In Table 4,

each value in each cell is known as a performance value xij of ith alternative over jth criteria.
Table 4: Decision matrix

Development

cost
Functionality

range Performance Security Maintenance
and support

Swift 5 5 5 4 5

React Native 4 5 4 4 5

Flutter Flow 3 3 4 2 3

App My Site 3 1 3 2 1
Source: own processing

 Step 3. Non-beneficial and beneficial criteria categorization

 Next, criteria are categorized into non-beneficial and beneficial criteria. Non-

beneficial criteria are those criteria whose lowest value is desired and with beneficial criteria

it is vice-versa, meaning that their highest value is wanted. In our scenario, only the

development cost is the non-beneficial criterion because customers would like to have a

product with the lowest cost. The remaining four criteria are classified as beneficial based

on the same logic.

 Step 4. Normalization

 To make all criteria comparable normalization is done. In beneficial criteria, the

performance value of each cell is divided into the maximum value of all alternatives in the

column. Similarly, for non-beneficial criteria, the minimum value is divided into the

performance value.

 34

Table 5: Normalized decision matrix

Non-

beneficial Beneficial Beneficial Beneficial Beneficial

Development

cost
Functionality

range Performance Security Maintenance
and support

Swift 0,60 1,00 1,00 1,00 1,00

React Native 0,75 1,00 0,80 1,00 1,00

Flutter Flow 1,00 0,60 0,80 0,50 0,60

App My Site 1,00 0,20 0,60 0,50 0,20
Source: own processing

 Step 5. Assigning the weightage

 According to the given scenario, the store owners have a limited budget and no other

constraints. Consequently, the highest weightage of 40% is assigned to the development cost

criterion. Since the sum of all criteria weights must be 100% and because all remaining four

criteria are equally important, they are granted the same weight of 15%.

 Step 6. Weighted normalized decision matrix and performance scope

 The weightage percent is converted into a number. Then the weight is multiplied by

each criterion with its normalized performance value. On solving the weighted normalized

decision matrix is created.

 As the last calculation all weighted normalized performance values of each

alternative are added to get a performance scope.

Table 6: Weighted normalized decision matrix

Non-

beneficial Beneficial Beneficial Beneficial Beneficial

Development

cost
Functionality

range Performance Security Maintenance
and support Sum

Swift 0,24 0,15 0,15 0,15 0,15 0,84
React
Native 0,30 0,15 0,12 0,15 0,15 0,87

Flutter
Flow 0,40 0,09 0,12 0,08 0,09 0,78

App My
Site 0,40 0,03 0,09 0,08 0,03 0,63

Weights 0,40 0,15 0,15 0,15 0,15
Source: own processing

 Step 7. Ranking

 The performance score helps allocate ranks to mobile development methods. The full

order of alternatives in descending order is shown in Table 7.

 35

Table 7: Ranking of alternatives

Rank Alternative Performance score

1 React Native 0,87

2 Swift 0,84

3 Flutter Flow 0,78

4 App My Site 0,63

Source: own processing

 Based on the weightage assigned to each criterion React Native is the best alternative

among all other alternatives as it has rank 1. Therefore, a mobile application prototype for

online shopping will be built using this development method.

4.3 Development of mobile application prototype

 Since only a prototype is developed, the application lifecycle will not be completed.

Nevertheless, it is possible to have the first three steps which include planning, design and

development itself.

 µ3URWRW\SH¶�in this work means a mobile app with a completed user interface but at

the same time with limited functionalities. It will be possible for the user to perform the very

basic steps such as navigating between pages, choosing between several options and clicking

on some buttons. The system on its side will also do some calculations according to the

XVHU¶V�LQSXW� In this way, the application will enable some real-life user experience.

4.3.1 Planning

 Despite being short, the scenario still allows to figure out generalized requirements

and timelines for this project. The main objective is to develop a mobile application for a

ZRPHQ¶V� FORWKLQJ� EUDQG�� 7KXV�� WKH� SURWRW\SH� VKRXOG� FRYHU� WKH� NH\� features and

functionalities of the average e-commerce app:

1. Homepage should be displayed to the user showing:

x clothes cards classified into categories

x search bar

x brand name

2. Details page should be displayed for each clothing and include:

x clothing title

x price

 36

x user rating

x description

x possibility of choosing the size

x possibility to add an item to the shopping cart

3. Cart page should be displayed to the user and include:

x clothing cards

x possibility to increase and decrease the quantity of the item

x total price

x possibility to checkout

4. Payment page should contain several payment methods.

 In addition, it was written in the scenario that the timelines are not heavily restricted

due to the presence of a running website. It leads to an estimated design period of 1 day and

a development period of one month.

4.3.2 Design

 According to the listed requirements, a low-fidelity wireframe was created. This

wireframe helps properly locate the design figures on each page. Most importantly, it

allows to think about the user experience and structure functionality flows. The wireframe

(Image 1) for this project was done on paper and drawn by hand.

Image 1: Wireframe, Source: own processing

 37

 In total, there will be four working pages: homepage, item details page, cart page

and payment page. The navigation will also be in this order.

4.3.3 Development

The first step in starting any development process is the setup of the development

environment. The prototype was decided to be built for an Android OS since it is the most

shared in the market. Moreover, it is important to mention that the used machine runs on

MacOS because the development tools may also vary according to the OS. Here is a list of

tools that were installed to develop an Android application on MacOS:

¾ iTerm 2 is a terminal for MacOS

¾ Homebrew is a package manager for MacOS

¾ Node.js is a JavaScript runtime environment that comes with its package manager

(npm)

¾ Watchman is a tool developed by Facebook that automatically reruns the project

whenever there are changes in files

¾ React Native and React Native CLI

¾ Android Studio is an IDE that runs Android emulators

¾ VS Code is a source code editor

 After setting up the environment successfully the assets were prepared as a

prerequisite for beginning coding. The assets contain pictures and fonts that were also

downloaded from external resources.

 Then the usual steps of developing the project included opening the project in VS

Code, running the React Native in the terminal and another terminal was initiating the

Android emulator. The main dependency of the source code is represented by the

relationship between the files in the Components and Screens folders: each Screen utilizes a

few Components that represent some UI elements. Calculations are described in store.tsx

file. The final solution is shown in Images 2 and 3.

 38

Image 2: Homepage and Details page, Source: own processing

Image 3: Cart page and Payments page, Source: own processing

 39

5 5HVXOWV�DQG�'LVFXVVLRQ

 As it was estimated in the planning phase the mobile application prototype was

ready in one month. The only unexpected part of the process was regarding the period of

the development environment setup. It took more time than expected because of a variety

of dependencies that should have been installed correctly on the new system. Although

there were a lot of minor mistakes in writing the source code including both syntax and

semantic errors, the most serious errors throughout the whole project occurred specifically

because of the wrong configuration of packages.

 On the other hand, because of facing such difficulties, it was possible to evaluate

the support level of the React Native GHYHORSHUV¶�community. All the errors that appeared

during the development were feasible to solve by reading the web forums and even by

watching explanatory videos on YouTube. The fact that many people were having similar

problems and finding answers to their questions means that the React Native community is

big enough and willing to assist each other. In addition, at the beginning of the

development and while getting some error messages the official React Native

documentation was mainly used. The explanation is understandable even for beginners and

in general, it was very useful till the end of the development.

 Regarding the programming language utilized in the solution, it is mentioned in the

theoretical part that React Native applications can be written in JavaScript. However,

during the development process itself it was found out that besides JavaScript, the source

code can also be written in TypeScript which is a newer and enhanced version of

JavaScript which offers more language features. That is why it was decided to use the

object-oriented language, TypeScript.

 Furthermore, the literature review contains information about how knowing

JavaScript is an advantage for starting React Native development since many web

developers already use it. From my personal experience with the solution for this thesis, I

can say that having some knowledge of HTML and CSS without JavaScript can also be

counted as an advantage. Dealing with the code that looked familiar gave me some sort of

strength and helped me to feel more confident.

 To summarize, the final app prototype corresponds to the requirements of the

project. The solution was completed on time and did not bring any cost because all

 40

development tools were open source. The range of functionalities that could be added was

not limited and the performance of the app is stable.

 41

6 &RQFOXVLRQ

 Finding the best solution for the practical implementation of mobile e-commerce

applications have required evaluating and contrasting several development approaches

such as Swift, React Native, Flutter Flow and App My Site. This main goal of the thesis

was achieved because as the result of MCDA that was based on the literature review, the

mobile application prototype was delivered using React Native Framework.

 In the theoretical part, several sub-topics of e-commerce and mobile application

development were described. The practical part was divided into two parts: the analysis of

the chosen development tools using the MCDA approach and the development of the final

solution utilizing the method that was calculated as the best alternative in MCDA.

 As a result, considering the scenario, an Android app prototype was built having

four pages with the necessary functionalities used in all e-commerce solutions. Despite

attaining the project goals, next time it would be beneficial to add the testing phase. In that

way, it would be possible to get some feedback from users who would get almost a real-

life experience with the app.

 In conclusion, although there is a huge variety of means of developing mobile

applications for online shopping, React Native is a trustworthy tool that offers many useful

features and makes the development process easier.

 42

7 5HIHUHQFHV

Adetunji, O. et al. �������µ'DZQLQJ�RI�3URJUHVVLYH�:HE�$SSOLFDWLRQV��3:$���(GJLQJ�2XW�
WKH�3LWIDOOV�RI�7UDGLWLRQDO�0RELOH�'HYHORSPHQW¶��������

$LQ��4�8���0LVVHQ��0�0�6��DQG�3UDVDWK��6���������µ/5$3��/D\HUHG�5LQJ�%DVHG�$GDSWLYH�
DQG�3HUVRQDOL]HG�8VDELOLW\�0RGHO�IRU�0RELOH�&RPPHUFH�$SSV¶��International Journal of
Interactive Mobile Technologies (iJIM), 17(12), pp. 74±93. Available at:
https://doi.org/10.3991/ijim.v17i12.37995.

Alsaadi, H.A. et al. �������µ)DFWRUV�WKDW�DIIHFW�WKH�XWLOL]DWLRQ�RI�ORZ-code development
SODWIRUPV��VXUYH\�VWXG\¶��5HYLVWD�5RPkQă�GH�,QIRUPDWLFă�ЮL�$XWRPDWLFă, 31(3), pp. 123±
140. Available at: https://doi.org/10.33436/v31i3y202110.

Annual mobile app downloads worldwide by store 2026 (no date) Statista. Available at:
https://www.statista.com/statistics/1010716/apple-app-store-google-play-app-downloads-
forecast/ (Accessed: 2 March 2024).

&�*��7��DQG�'HYL��$���������µ$�6WXG\�DQG�2YHUYLHZ�RI�WKH�0RELOH�$SS�'HYHORSPHQW�
,QGXVWU\¶��International Journal of Applied Engineering and Management Letters, pp.
115±130. Available at: https://doi.org/10.47992/IJAEML.2581.7000.0097.

&KDYDQ��0���%KDWNDU��0��DQG�0XOH\��.���������µ3URJUHVVLYH�:HE�$SSV�YV�5HVSRQVLYH�
:HE�$SSV¶��International Journal of Advanced Research in Science, Communication and
Technology, pp. 211±214. Available at: https://doi.org/10.48175/IJARSCT-5668.

Cross-platform mobile frameworks used by global developers 2022 (no date) Statista.
Available at: https://www.statista.com/statistics/869224/worldwide-software-developer-
working-hours/ (Accessed: 2 March 2024).

µDifference between Swift and Objective C¶ (2020) GeeksforGeeks, 25 December.
Available at: https://www.geeksforgeeks.org/difference-between-swift-vs-objective-c/
(Accessed: 2 March 2024).

Fentaw, A.E. (2020��µ&URVV�SODWIRUP�PRELOH�DSSOLFDWLRQ�GHYHORSPHQW��D�FRPSDULVRQ�VWXG\�
RI�5HDFW�1DWLYH�9V�)OXWWHU¶�

Hjort, E. (2020) µ(YDOXDWLRQ�RI�5HDFW�1DWLYH�DQG�)OXWWHU�IRU�FURVV-platform mobile
DSSOLFDWLRQ�GHYHORSPHQW¶�

How to Distribute an iOS App Without Using App Stores (2023) BuildFire. Available at:
https://buildfire.com/ios-app-distribution-without-app-store/ (Accessed: 2 March 2024).

Inc, A. (no date) Swift - Apple Developer. Available at: https://developer.apple.com/swift/
(Accessed: 2 March 2024).

Inc, A. (no date) Swift.org, Swift.org. Available at: https://swift.org (Accessed: 2 March
2024).

https://doi.org/10.3991/ijim.v17i12.37995
https://doi.org/10.33436/v31i3y202110
https://www.statista.com/statistics/1010716/apple-app-store-google-play-app-downloads-forecast/
https://www.statista.com/statistics/1010716/apple-app-store-google-play-app-downloads-forecast/
https://doi.org/10.47992/IJAEML.2581.7000.0097
https://doi.org/10.48175/IJARSCT-5668
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.geeksforgeeks.org/difference-between-swift-vs-objective-c/
https://buildfire.com/ios-app-distribution-without-app-store/
https://developer.apple.com/swift/
https://swift.org/

 43

Introduction to Mobile Application Development | IBM (no date). Available at:
https://www.ibm.com/topics/mobile-application-development (Accessed: 2 March 2024).

-D\YLU��6���������µ&URVV�3ODWIRUP�0RELOH�$SS�'HYHORSPHQW�������7KH�8OWLPDWH�*XLGH¶�

MPDQJR������QR�GDWH��µ0RELOH�$SS�YHUVXV�0RELOH�:HEVLWH�6WDWLVWLFV�������DQG�EH\RQG¶��
JMango360. Available at: https://jmango360.com/mobile-app-vs-mobile-website-statistics/
(Accessed: 2 March 2024).

Low-Code/No-Code: The Future of Development (no date) SAP. Available at:
https://www.sap.com/products/technology-platform/low-code/what-is-low-code-no-
code.html (Accessed: 2 March 2024).

Majchrzak, T.A., Biørn-Hansen, A. and Grønli, T.-M. (2018��µ3URJUHVVLYH�:HE�$SSV��WKH�
'H¿QLWH�$SSURDFK�WR�&URVV-3ODWIRUP�'HYHORSPHQW"¶

Mobile eCommerce Statistics (2024): User & Revenue Growth (no date) Capital One
Shopping. Available at: https://capitaloneshopping.com/research/mobile-ecommerce-
statistics/ (Accessed: 2 March 2024).

1DWKDQ��%���������µReact Native: A native code integration perspective¶�

Oltrogge, M. et al. �������µ7KH�5LVH�RI�WKH�&LWL]HQ�'HYHORSHU��$VVHVVLQJ�WKH�6HFXULW\�
,PSDFW�RI�2QOLQH�$SS�*HQHUDWRUV¶��LQ�2018 IEEE Symposium on Security and Privacy
(SP). 2018 IEEE Symposium on Security and Privacy (SP), pp. 634±647. Available at:
https://doi.org/10.1109/SP.2018.00005.

5RPD��3��DQG�5DJDJOLD��'���������µ5HYHQXH�PRGHOV��LQ-app purchase, and the app
SHUIRUPDQFH��(YLGHQFH�IURP�$SSOH¶V�$SS�6WRUH�DQG�*RRJOH�3OD\¶��Electronic Commerce
Research and Applications, 17, pp. 173±190. Available at:
https://doi.org/10.1016/j.elerap.2016.04.007.

Salz, P.A. and Moranz, J. (2013) The Everything Guide to Mobile Apps: A Practical Guide
to Affordable Mobile App Development for Your Business. Simon and Schuster.

Shevtsiv, N.A. and Striuk, A.M. (2020��µ&URVV�SODWIRUP�GHYHORSPHQW�YV�QDWLYH�
GHYHORSPHQW¶�

Swilley, E. (2015) Mobile Commerce: How It Contrasts, Challenges, and Enhances
Electronic Commerce. New York, UNITED STATES: Business Expert Press. Available at:
http://ebookcentral.proquest.com/lib/czup/detail.action?docID=4388929 (Accessed: 25
July 2023).

7DQJ��$�.�<���������µ0RELOH�$SS�0RQHWL]DWLRQ��$SS�%XVLQHVV�0RGHOV�LQ�WKH�'LJLWDO�(UD¶��
International Journal of Innovation, Management and Technology, pp. 224±227. Available
at: https://doi.org/10.18178/ijimt.2016.7.5.677.

https://www.ibm.com/topics/mobile-application-development
https://jmango360.com/mobile-app-vs-mobile-website-statistics/
https://www.sap.com/products/technology-platform/low-code/what-is-low-code-no-code.html
https://www.sap.com/products/technology-platform/low-code/what-is-low-code-no-code.html
https://capitaloneshopping.com/research/mobile-ecommerce-statistics/
https://capitaloneshopping.com/research/mobile-ecommerce-statistics/
https://doi.org/10.1109/SP.2018.00005
https://doi.org/10.1016/j.elerap.2016.04.007
http://ebookcentral.proquest.com/lib/czup/detail.action?docID=4388929
https://doi.org/10.18178/ijimt.2016.7.5.677

 44

7DUDVHZLFK��3���1LFNHUVRQ��5�&��DQG�:DUNHQWLQ��0���������µ,VVXHV�LQ�0RELOH�(-
&RPPHUFH¶��Communications of the Association for Information Systems, 8. Available at:
https://doi.org/10.17705/1CAIS.00803.

The Basics | Documentation (no date). Available at: https://docs.swift.org/swift-
book/documentation/the-swift-programming-language/thebasics/ (Accessed: 2 March
2024).

Use Progressive Web Apps - iPhone & iPad - Google Chrome Help (no date). Available at:
https://support.google.com/chrome/answer/9658361?hl=en&co=GENIE.Platform%3DiOS
(Accessed: 2 March 2024).

What is Mobile App Development? | Microsoft Azure (no date). Available at:
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-mobile-
app-development (Accessed: 2 March 2024).

https://doi.org/10.17705/1CAIS.00803
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/thebasics/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/thebasics/
https://support.google.com/chrome/answer/9658361?hl=en&co=GENIE.Platform%3DiOS
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-mobile-app-development
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-mobile-app-development

 45

8 /LVW�RI�ILJXUHV��WDEOHV�DQG�LPDJHV

8.1 List of figures

Figure 1: Mobile share of global e-commerce revenue, Source: capitaloneshopping.com,

2024 ... 12

Figure 2: Most used cross-platform frameworks, Source: www.statista.com 15

8.2 List of tables

Table 1: Comparison of mobile app types ... 18

Table 2: Assessment of MCDA criteria ... 32

Table 3: 5 points scale ... 33

Table 4: Decision matrix.. 33

Table 5: Normalized decision matrix ... 34

Table 6: Weighted normalized decision matrix ... 34

Table 7: Ranking of alternatives .. 35

8.3 List of images

Image 1: Wireframe, Source: own processing ... 36

Image 2: Homepage and Details page, Source: own processing ... 38

Image 3: Cart page and Payments page, Source: own processing 38

 46

9 $SSHQGL[

Link to GitHub repository: https://github.com/arumy191/Blossom_ecommerce_app

https://github.com/arumy191/Blossom_ecommerce_app

	1 Introduction
	2 Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3 Literature Review
	3.1 Definition and growth of mobile e-commerce
	3.2 Significance of mobile applications in e-commerce
	3.3 Types of mobile applications
	3.3.1 Native App
	3.3.2 Cross-platform App
	3.3.3 Hybrid App
	3.3.4 Progressive Web App
	3.3.5 Comparison of mobile app types

	3.4 Application life cycle
	3.5 Mobile application development approaches and tools
	3.5.1 Swift
	3.5.2 React Native
	3.5.3 Flutter Flow
	3.5.4 App My Site

	3.6 Distribution to app stores
	3.7 Revenue models

	4 Practical Part
	4.1 Research questions and scenario
	4.2 MCDA of mobile application development tools
	4.2.1 Criteria assessment
	4.2.2 Calculations

	4.3 Development of mobile application prototype
	4.3.1 Planning
	4.3.2 Design
	4.3.3 Development

	5 Results and Discussion
	6 Conclusion
	7 References
	8 List of figures, tables and images
	8.1 List of figures
	8.2 List of tables
	8.3 List of images

	9 Appendix

