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Abstract

While plastic deformation of body-centered cubic (bcc) metals at low temperatures
is now well understood, the effect of internal magnetic order on mechanical proper-
ties and the effect of plastic deformation of internal magnetic order remain largely
unexplained. The aim of this thesis is to elucidate the low-temperature plastic de-
formation of α-iron and chromium with focus on magnetism. It is investigated by
slip-trace analysis of deformed specimens, electron backscattered diffraction, and
transmission electron microscopy (TEM) where necessary. The internal magnetic
order in chromium is explored by means of magnetic neutron diffraction at SINQ
facility of the Paul Scherrer Institute in Switzerland. The vibrating sample magne-
tometry is utilized to look for changes in mass susceptibility in order to discriminate
between different magnetic states. The anomalous slip was found in a deformed
chromium specimen for the first time. The dislocation network responsible for the
anomalous slip is characterized by the g · b analysis in TEM, where a network of
1/2⟨111⟩ intersecting screw dislocations and their ⟨100⟩ junctions were observed to
form on low-stressed {110} planes. Furthermore, twins produced by antitwinning
shear were found in chromium, but not in α-Fe. This phenomenon is explained
using atomistic simulations employing semi-empirical interatomic potentials. The
magnetism in α-iron is studied by the vibrating sample magnetometry and the re-
sults are reconciled using the Jiles-Atherton model. The magnetic domains in α-Fe
were imaged by the Kerr microscopy and the results show that twins can effectively
block the movement of domain walls and nucleate new ones.
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Abstrakt

Přestože plastická deformace kov̊u s prostorově středěnou kubickou mř́ıžkou za
ńızkých teplot je dnes dobře vysvětlena, vliv vnitřńıho magnetického uspořádáńı na
mechanické vlastnosti a vliv plastické deformace na vnitřńı magnetické uspořádáńı
z̊ustávaj́ı z větš́ı části nevysvětleny. Ćılem této práce je popsat ńızkoteplotńı pla-
stickou deformaci α-železa a chromu pomoćı analýzy skluzových čar, elektronovou
zpětně odraženou difrakćı a transmisńı elektronovou mikroskopíı (TEM). Vnitřńı
magnetické uspořádáńı chromu je zkoumáno pomoćı magnetické neutronové difrakce
v neutronovém centru na Institutu Paula Scherrera ve Švýcarsku. Vibračńı magne-
tometrie je využita pro hledańı změn v hmotnostńı susceptibilitě, aby byly rozeznány
r̊uzné magnetické stavy. Anomálńı skluz byl poprvé pozorován v deformovaném
vzorku chromu. Dislokačńı śı̌t zodpovědná za anomálńı skluz je charakterizována
pomoćı g ·b analýzy v TEM. Śı̌t prot́ınaj́ıćıch se 1/2⟨111⟩ šroubových dislokaćı a je-
jich ⟨100⟩ spoje se tvoř́ı na ńızkozat́ıžených {110} rovinách. Dvojčata vytvořená an-
tidvojčatovým smykem byla pozorována v chromu, ale nikoliv v α-železe. Tento jev
je vysvětlen pomoćı atomárńıch simulaćı využ́ıvaj́ıćıch semiempirické interakčńı po-
tenciály. Magnetické domény v α-železe byly studovány pomoćı Kerrovy mikroskopie.
Výsledky ukazuj́ı, že dvojčata mohou efektivně blokovat pohyb doménových stěn a
nukleovat nové.
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Dr. Jǐŕı Posṕı̌sil for several attempts at the growth of single crystals of α-Fe, and
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1 Introduction

The low temperature plastic deformation of magnetic body-centered cubic (bcc)
metals α−Fe and Cr has received very little attention despite the fact that they
are essential ingredients in dilute ferroalloys Fe1−xCrx, which are model materials
for the development of ferritic/martensitic steels with applications in the design of
fusion reactors [1]. The mechanisms governing the plastic deformation of bcc met-
als are very different from those of close-packed metals such as Al, Cu, or Au [2].
Yet, the plastic behavior of the latter metals is still used as a paradigm for the un-
derstanding the deformation behavior of all crystalline materials. The experiments
required to elucidate the deformation mechanisms are extremely challenging as they
require single crystals of considerable size and very high purity, whose preparation
is complicated, especially those of α-Fe. The preparation of iron single crystals is
problematic due to the structural transition from the high-temperature ferritic body-
centered cubic phase to the austenitic face-centered cubic (fcc) phase and again the
low-temperature ferritic bcc phase, the latter of which remains stable to 0 K.
The situation with Cr is very different. Large enough single crystals of high pu-
rity have been available commercially for many years. However, they often contain
internal defects such as holes and voids.

To the best of our knowledge, only two old experimental papers looking at some
aspects of the low-temperature plastic behavior of pure Cr single crystals can be
found in the literature [3, 4]. Greiner [3] reported wavy slip traces in chromium
deformed at room temperature and suggested that it is caused by the operation of
multiple slip systems. He also asserts, that the deformation mechanism is similar to
that of α-Fe. Reid et al. [4] state that the slip is restricted to thin regions sheared
by the {110}⟨111⟩ systems below 130 K and confirms Greiner’s observation of the
wavy slip above 195 K, which is explained as alternating slip on planes belonging to
the ⟨111⟩ zone. Furthermore, the twinning systems were found to be of the {112}
type.

The existing knowledge about the behavior of pure α-Fe owes much to detailed
experiments by Aono et al. [5]. What α-Fe and Cr, together with other metals of
groups 5 and 6, have in common is the non-closed-packed bcc structure in which
the screw dislocations possess non-planar cores. Their movement under stress is
very limited at low temperatures [6], which results in steel increase of the flow stress
as the temperature is lowered. Unlike other bcc metals, Cr and α-iron are both
metals with internal magnetic order. α-iron is a well-known ferromagnetic material.
In contrast, the magnetic state of chromium is characterized by antiferromagnetic
spin-density waves [7], which is a more complex magnetic state than that of other,
simple antiferromagnets such as metal oxides MnO, FeO and NiO. The spin density
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waves in chromium are incommensurate with the structural unit cell, whereby their
wavelength is not an integer multiple of the lattice parameter.

The properties of magnetic materials are commonly described by the hysteresis
curve, shown in Fig. 1.1, and parameters obtained from it. The hysteresis curve (or
loop) is a graphical representation of the relationship of the magnetic flux density
B (or magnetization M) and magnetizing field H. The hysteresis curves are often
measured in the vibrating sample magnetometer by applying the magnetic field
across the sample and measuring the magnetic moment induced in the specimen
in the direction of the magnetizing field by vibrating the specimen near a set of
measurement coils.

Figure 1.1: Schematic drawing of the typical hysteresis curve for magnetically soft
and hard materials represented by the red and black curves, respectively.

The magnetic hysteresis arises in the material when an external magnetic field
is applied and magnetic moments are aligned with the field. Upon removal of the
magnetizing field, part of the magnetic order will remain. Once the material is
magnetized, it will stay that way unless acted upon by external forces such as tem-
perature or magnetizing field applied in the opposite direction. The hysteresis curve
is characterized by several parameters, as shown in Fig. 1.1. The saturation magne-
tization in the positive direction Ms or in the negative direction −Ms are estimated
simply as maximum value of magnetization in saturation1. The remanence, alterna-
tively remanent magnetization, Mr is the magnetization that remains in the material
when the external magnetic field is removed. In the hysteresis curve, this value is
found at the intersection of the vertical axis with the curve. Similarly, the magnetic
coercivity, alternatively coercive field, Hc characterizes the ability of the material to
retain its magnetization in demagnetizing fields. The value of coercivity is found at
the intersection of the horizontal axis with the hysteresis loop. Magnetic materials
are often characterized as magnetically soft or hard. Magnetically soft materials,

1Saturation is reached when the increasing magnetizing field no longer increases the magnetiza-
tion. Microscopically this is achieved when all magnetic dipoles are aligned with the magnetizing
field.
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whose typical hysteresis loop is shown by the red curve in Fig. 1.1, have very low
coercivity, low remanence, and small area enclosed by the curve. Due the low re-
manence, the material will practically demagnetize after the magnetizing field is
turned off and the hysteresis losses are very small. On the other hand, magnetically
hard materials have high coercivity, high remanence, and large area of the hystere-
sis loop, as shown by the black curve in Fig. 1.1. They will retain a large part of
magnetization after the magnetizing field is removed and, therefore, they are used
as permanent magnets.

The effects of the elastic deformation on the magnetic properties of materials
have been known for a long time. The effect of residual stress, and generation of
new pinning sites and their effect on magnetization curves were discussed in depth
by Makar et al. [8]. They also argue that the residual stress left in the material after
plastic deformation is not as important as the generation of new pinning sites, which
arrest or hinder the movement of magnetic domains. They can be in the form of
dislocations, dislocation clusters, interfaces (such as twin boundaries), or secondary
phase particles [9]. The level of plastic deformation can be also correlated with the
coercive field Hc. With increasing deformation, the coercive field increases in both
single crystals and polycrystals. However, the initial value is larger in the case of
polycrystals due to the presence of grain boundaries [10]. The effect of internal stress
on magnetism and vice versa can be also explored by simulations and is often the only
way to study magnetism at the smallest scales. Bienvenu et al. [11], for example,
suggests that in chromium, the 1/2⟨111⟩ dislocations shearing the crystal would
produce magnetic faults. In order to remove this fault, another dislocation of the
same type would have to be present, which creates a super-dislocation with the ⟨111⟩
Burgers vector. This theoretical prediction has, however, not been experimentally
proven.

1.1 Low-temperature plastic deformation of bcc

metals

The plastic deformation of bcc metals is governed by the motion of 1/2⟨111⟩ screw
dislocations [12, 13]. Many atomistic simulations and Density Functional Theory
(DFT) studies of bcc metals made in the past three decades have provided ample
evidence that the cores of these dislocations are non-planar [14–19], which gives rise
to phenomena that do not occur in close-packed structures. The motion of these
dislocations was first studied using the Peierls-Nabarro (P-N) model, originating
from isotropic elasticity theory, which was developed in 1940 by Peierls [20], and
modified by Nabarro in 1947 [21] and Eshelby in 1949 [22]. Nowadays, modified P-N
models are still frequently used, often with parameters derived from DFT calcula-
tions, and present a link between atomistic and continuum approaches of material
modeling. The atomic structures of dislocation cores and their changes under stress
were studied using a variety of interatomic potentials, first starting with pair po-
tentials [20–22], then many-body potentials of central forces based mostly on the
embedded atom method (EAM) [23–26], empirical potentials with directional bonds
(MEAM) [27,28] and, most recently, semi-empirical potentials (BOP - Bond Order
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Potentials, MGPT - Model Generalized Pseudopotential Theory) based partially on
description of bonds using methods based on first principles [29–32]. The embed-
ded atom model first was described by Daw and Baskes in 1984 [23] and soon after
expanded by by Holian et al. in 1991 [24] and Baskes again in 1999 [25]. It is used
primarily for modeling materials with predominantly metallic bonds [28]. Nonethe-
less, the EAM method falls short when it comes to modeling covalent bonds.
The concept of bond order was first used by Tersoff to describe silicon in 1988 [29].
His description of atomic bonds takes into account not only the attractive and re-
pulsive force of two atoms, but also the strength of the bond via the bond-order
parameter [30] and is thus able to incorporate directional bonds [31]. It is worth
mentioning the bond-order potentials that were formulated more recently for the
bcc metals by Mrovec et al. for Mo [33], W [34] and for ferromagnetic iron [35] or
by Lin et al. [36,37]. The Model Generalized Pseudopotential Theory was developed
by Moriarty in 1988 [38]. Similarly to the BOP, the MGPT models the are partially
based on quantum-mechanical description of bonds and were used for studies of
dislocations in bcc metals [39]. The last frequently used method worth mentioning
here is the DFT method which stems from the work of Hohenberg and Kohn [40]
and later Kohn and Sham [41]. The biggest advantage of the DFT is its ability
to predict material properties of unknown systems without experimentally obtained
parameters. Nonetheless, even DFT uses many approximations [42] in comparison
with the Hartree-Fock method [43], but its advantage is that DFT allows for simula-
tions of larger systems. Ventelon et al. used DFT to investigate the Peierls potential
of screw dislocations in W and Fe [44], dislocation core structure in α-Fe [17] and
compared the results of DFT and empirical potentials calculation of the dislocation
core structure [45]. Dezerald et al. [46] further studied by DFT the dislocation paths
in bcc metals, and kink-pair activation enthalpies of screw dislocation in V, Nb, Ta,
Mo, W and Fe [47]. Recently Casillas-Trujillo et al. [48] studied the dislocation
core structure of paramagnetic bcc iron and Bienvenu et al. [11] focused on effect of
magnetism on screw dislocations in bcc chromium.

A schematic representation of the spreading of the core of 1/2[111] screw dislo-
cation on three {110} planes in the zone of [111] slip direction is shown in Fig. 1.2.
Fig. 1.2(a) and 1.2(b) show by arrows the screw and edge component of the differ-
ential displacement maps, respectively.

The differently colored atoms in Fig. 1.2 belong to the three successive (111)
atomic layers. The magnitude of the arrows represent the relative displacement of
the two atoms in the direction perpendicular to the figure’s plane (Fig. 1.2(a)) or
parallel (Fig. 1.2(b)). If the arrow in Fig. 1.2(b) points from one atom to another,
it represents bond stretching. On the other hand, if the arrow does not point from
one atom to another, the bond is partially rotated and stretched, as visualized in
the bottom part of Fig. 1.2(b). Moreover, a vector sum of the edge components on
any path encircling the center of the dislocation is zero, while vector sum of screw
components along any such path is the Burgers vector of the dislocation.

The plastic response of all bcc metals is characterized by steep increase of the
flow stress (stress required to maintain plastic deformation) with decreasing tem-
perature and increasing strain rate [2, 49]. The core spreading creates a significant
Peierls barrier, which hinders the dislocation motion [50]. This is significant at low
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(a) (b)

Figure 1.2: (a) screw component of the core spreading of a 1/2[111] screw dislocation.
The arrows represent the relative displacement of a pair of atoms in the direction
perpendicular to the plane of the figure. (b) edge component of the core spreading
of 1/2[111] dislocation. The arrows here represent the relative displacement in the
plane of the figure and are magnified 10x. The χ in (a) represents the angular
deviation of the maximum resolved shear stress plane to the (1̄01) plane.

temperatures, where high stresses are needed to move the dislocations. On the other
hand, at high temperatures, the stress needed to move the dislocation is much lower.

The movement of the dislocation with the non-planar core cannot occur without
the transformation of the core to a glissile configuration. The exact process of core
transformation and movement is a subject of investigation [51]. Nonetheless, this
process is thermally activated, which is why ductile-brittle transition is found in bcc
metals2. Another remarkable feature of the bcc lattice is the twinning-antitwinning
asymmetry of the shear stress parallel to the slip direction [52, 53]. In practice,
the twinning-antitwinning asymmetry is manifested by a relatively low resistance
to shearing the crystal on the {112} plane in the twinning direction and higher
resistance to shear in the opposite, antitwinning, direction [54]. This asymmetry
has its origin in different atomic arrangements when shearing the crystal in the two
opposite directions [55]. Fig. 1.3 shows a schematic illustration of the bcc lattice
sheared in the twinning and antitwinning sense.

2In practice, ductile-brittle transition is heavily influenced by the level of impurities in the
material.
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(a)

(b) (c)

Figure 1.3: Illustration of the deformation of the perfect bcc lattice (a) in the
twinning sense (b) and in the antitwinning sense (c).

Fig. 1.3 shows different lattice deformations when shearing the crystal in [111]
or [1̄1̄1̄] directions along a {112} plane. Fig. 1.3(a) is the initial bcc lattice at zero
applied shear. Fig. 1.3(b) shows the structure generated by shear applied in the
twinning sense, which results in a twinned structure. The remaining Fig. 1.3(c)
shows deformation caused by the shear of the same magnitude applied in the an-
titwinning sense that results in a structure different from the twin.

Using atomistic modeling, Ito and Vı́tek [56] found out that shear stress paral-
lel to the slip direction, referred to as critical resolved shear stress (CRSS) is not
symmetric with respect to the change of sign of the angle χ of the maximum re-
solved shear stress plane (MRSSP, the plane in the zone of the slip direction with
the largest resolved shear stress parallel to the slip direction). This is represented
in Fig. 1.4.

According to the Schmid law, the plastic deformation is initiated on the slip
system for which the resolved shear stress parallel to the slip direction acting in this
slip plane is the largest [57]. The relation between the uniaxial load represented by
the stress σ, the orientation of the applied load, and the Schmid stress τ is:

τ = mσ, (1.1)

where m = cosχ cosλ is the Schmid factor. Here, χ is the orientation of the MRSSP,
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Figure 1.4: Schematic representation twinning-anitwinning asymmetry (red) for
shear stress applied in various MRSSPs (angle χ) parallel to the slip direction.
The black dashed curve follows the CRSS(0)/cosχ relationship and represents a hy-
pothetical material without the twinning-antitwinning asymmetry.

as explained before, and λ the angle between the loading axis and the slip direction.
The CRSS and the Schmid stress are related by τ = CRSS cosχ.

Due to the crystal symmetry, the angle χ ranges from values from -30◦ to 30◦,
i.e. from (1̄1̄2) plane to (2̄11) plane. Shearing the crystal in the (1̄1̄2) plane parallel
to the [111] direction produces a twin shown in Fig. 1.3(b). However, applying the
shear of the same magnitude but opposite direction, i.e. [1̄1̄1̄], does not produce a
twin; instead it results in the high-energy structure shown in Fig. 1.3(c). If one of
the above {112} planes is sheared in the twinning sense, the other is sheared in the
antitwinning sense and vice versa. Reversing the sense of shearing on the MRSSP
thus swaps the character (twinning ↔ antitwinning) on the neighboring {112} plane.

Furthermore, due to the dislocation core being extended into three planes, the
dislocation glide is affected by stresses not belonging to the slip plane. These stresses
are called non-Schmid stresses [56,58,59]. The asymmetry of the CRSS with respect
to the orientation of the MRSSP and its variation with the shear stresses parallel
to the slip direction cause the breakdown of the Schmid law in bcc metals.
The simulations also revealed that if the shear stress perpendicular to the slip plane
of 1/2[111] dislocation is high enough, the dislocation may glide on planes with lover
resolved shear stress than the most highly stressed plane. This unusual behavior
is referred to as anomalous slip. While the previously mentioned phenomena are
prevalent in bcc metals at low temperatures, anomalous slip has been reported only
in Mo, V, W, Nb, Ta [58,60–74]. This proves that this behavior is not connected only
to crystallography but also to details of the atomic bonding. The effect of non-glide
stresses also plays an important role in the tension-compression asymmetry [75],
where tension and compression stress-strain curves for single crystals with the same
loading axis differ significantly. The non-planar character of the dislocation also
allows for easier cross-slip of the dislocation into a {110} plane with lower resolved
shear stress parallel to the slip direction. For the above-mentioned reasons, it is clear
that the prediction of plastic behavior from the yield criteria based on the Schmid
law cannot effectively describe the onset of plastic deformation in bcc metals [76].
A more appropriate form was proposed by Qin and Bassani [59] and parameterized
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for Mo, W and Cr by Gröger et al. [77, 78]. and for α-Fe by Chen [76]. The yield
criterion based solely on the Schmid law, in a simple way, would take the form of
Eq. (1.2):

ταSchmid ≤ τ ∗cr. (1.2)

In this equation, ταSchmid represents the Schmid stress acting in the slip system α
and drives the dislocation in the glide plane. When it reaches the the critical value
of stress on the slip system α, the dislocation glide will begin. This yield criterion
doesn’t account for non-glide stresses. The generalized version of (1.2) yield criterion
takes the form:

τα∗ = ταSchmid + a1τ
α
1 + a2τ

α
2 + a3τ

α
3 ≤ τ ∗cr. (1.3)

The three terms containing a1, a2 and a3 represent the stresses that modify the
structure of the dislocation core (so-called non-glide stresses). The term τα1 is the
stress acting parallel to the slip direction but applied in a different {110} plane. This
term introduces the twinning-antitwinning asymmetry of the critical resolved shear
stress. The τα2 and τα3 are shear stresses perpendicular to the slip direction (they
do not affect the Peach-Koehler force acting on the dislocation). The coefficients
(a1, a2, a3 and τ ∗cr) represent adjustable parameters determined by atomistic calcu-
lations [77]. The form (1.3) describes accurately the onset of plastic deformation
in non-magnetic materials and magnetic materials (α-Fe [76]), where the changes
of magnetism do not affect yielding. In general, the presence of internal magnetic
order requires further generalization of the yield criterion described by (1.3). In the
case of bcc metals, only chromium and α-iron show internal magnetic order. We
suggest that the extended form of the yield criterion for magnetic materials takes
the form:

τα∗ = ταSchmid + a1(M)τα1 + a2(M)τα2 + a3(M)τα3 ≤ τ ∗cr(M), (1.4)

where the M broadly represents the internal magnetic state of the material. These
yield criteria are essential for the simulation of the behavior of the materials. Buch-
heit et al. [79] used the yield criterion published by Gröger and Vı́tek [77] and
implemented it to polycrystalline plasticity model. Cereceda et al. [80] developed
a temperature-dependent yield criterion for tungsten single crystal based solely on
the atomistic simulations. A single crystal yield criterion for chromium was re-
cently developed by Gröger and Vı́tek [78] based on atomistic modeling of isolated
1/2[111] screw dislocation. Generally, these yield criteria and fracture criteria are
used extensively in applied research, and industry [81–85].

The glide of 1/2⟨111⟩ screw dislocations in bcc metals have been also studied
from the 1950s by quantum mechanics, and it was hypothesized that their movement
could happen due to the quantum tunneling of the dislocation through the potential
barrier [86]. Mott [87] was the first to outline the theory, however, did so without a
knowledge of the exact atomic positions around the dislocation. Weertman in 1958
proposed a theory for low-temperature dislocation creep employing also the quantum
effects [88]. In the later years, the theory was further expanded and studied [89–92].
The dislocation core has been studied thoroughly using DFT by Frederiksen and
Jacobsen [16]. Ventelon et al. compared DFT with the empirical potentials in
[45] and investigated the Peierls potential of the screw dislocation in Fe and W
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in [44]. Proville studied in 2012 the quantum effects on thermally activated glide of
dislocations in α-iron and suggested that quantum effects strongly affect the critical
stress to move the dislocation at temperatures below the Debye temperature [93].
Other relevant DFT studies concerning dislocation slip in bcc metals have been
published by Dezerald et al, Rodney et al. and Marichal et al. [19, 46,94].

1.2 Crystal and magnetic structure of α-Fe

The ground state crystal structure of α-iron is the bcc structure. Iron undergoes
two phase transformations between the absolute zero temperature and the melting
point of 1811 K. The high-temperature allotrope, δ-iron exists from melting point
to 1667 K, and crystallizes in the bcc crystal structure. Upon further cooling, the
δ-iron changes into γ-iron, which is accompanied by a change in the crystal structure
to a face-centered cubic structure. The γ-iron allotrope is stable down to 1185 K
when it changes to α-iron with the bcc structure, which is stable down to 0 K.
Occasionally, the β-iron allotrope is mentioned and defined as the non-magnetic
version α-iron above the Curie temperature of 1043 K even though no change in the
crystal structure takes place.

Under ambient conditions, α-iron is ferromagnetic. The ferromagnetism origi-
nates from four unpaired 3d -electrons, whose dipolar interaction gives rise to long-
range order and formation of magnetic domains [95]. The parallel orientation of
spins stems from exchange interaction which favors parallel alignment of spins on
nearest neighbor atoms. Within the domain, the magnetization has a well-defined
direction. The macroscopic sample is usually unmagnetized, because of the pres-
ence of many domains with random orientations of magnetizations. The internal
magnetic structure of solids can be manipulated by external magnetic field.

The internal magnetic state of crystals is affected by magnetocrystalline aniso-
tropy, which has been studied extensively in the past [96, 97]. Magnetocrystalline
anisotropy is a phenomenon where more energy is necessary to magnetize the crys-
tal in certain crystallographic orientations than in others. The direction of spins in
α-iron is usually in the ⟨100⟩ direction, which is the so-called easy axis of magneti-
zation as it requires the least energy to reach this state. However, α-iron can also
be magnetized along ⟨110⟩ and ⟨111⟩, which are called the medium and hard axis of
magnetization, respectively. The magnetization curves for each direction are shown
schematically in Fig. 1.5.

The magnetic anisotropy for cubic materials can be expressed by Ref. [98, pp.
198–202]:

Ecrys = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2(α

2
1α

2
2α

2
3) (1.5)

where K1, K2 are material and temperature dependent constants and α1, α2 and
α3 are the directional cosines of the angles between the the orientation of spins
and a particular crystal axis. The K1 and K2 constants for α-iron are 4.8 ×104

J/m3 and ±0.5 ×104 J/m3 Ref. [98, p. 227]. A 3D shape visualization of the
magnetic anisotropy energy density of α-iron at room temperature is shown in Fig.
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Figure 1.5: Schematic representation of magnetization curves for easy (red, ⟨100⟩
directions), medium (green, ⟨110⟩ directions ) and hard (blue, ⟨111⟩ directions) axes
of magnetization. Image modified from [98, p. 199].

1.6(a). Fig 1.6(b) shows the magnetic anisotropy energy density in the stereographic
projection.

(a) (b)

Figure 1.6: (a) 3D visualization and (b) stereographic projection of a magnetic
anisotropy energy density of α-iron single crystal at ambient temperature. The
graphs correspond to anisotropic coefficients K1 = 4.8 ×104 J/m3, K2 = 0 J/m3.

1.3 Crystal and magnetic structure of Cr

Chromium crystallizes in the bcc structure and keeps the same crystal structure un-
til the melting point of 2180 K. Chromium is also the only element of the 6th group
with internal magnetic order. Its unpaired 4s and 3d spins condense into incommen-
surate Spin Density Waves (SDW) with wavevectors Q parallel to ⟨100⟩ directions
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and wavelengths between 21 units cells at 78 K and 28 unit cells at 311 K [99].
The observed magnetic behavior is a consequence of sinusoidal polarization of the
d -band electron magnetic moments [100]. The magnetic state is, however, depen-
dent on form of chromium. It has been shown that powder chromium exhibits
simple antiferromagnetism even at temperatures higher than the Néel temperature
of a single crystal [101]. Annealed single-crystalline Cr exhibits two first-order mag-
netic phase transitions at 123 and 311 K. In the temperature range from 0 to 123 K,
the stable magnetic phase is represented by longitudinal SDWs (LSDW) in which
the orientations of all magnetic spins S are parallel to the wavevector Q. The first
atomic neighbors in bcc Cr favor antiferromagnetic coupling, which results in two
SDWs that are mutually phase-shifted by one-half of their wavelength, as shown
in Fig. 1.7(a). Between 123 and 311 K the stable phase is composed of transversal
SDWs (TSDW), where all spins S are perpendicular to the wavevector Q [7,102,103].
This structure is shown in Fig. 1.7(b) and is again represented by two opposite
SDWs with antiferromagnetic coupling between the first nearest neighbors. Above
the Néel temperature of 311 K, Cr becomes a paramagnet. The two first-order phase
transitions at 123 K and 311 K cause singularities in the measurements of suscepti-
bility [104], and lead to non-negligible changes of elastic constants [105,106].
The temperature at which the character of SDWs changes is often referred to as the
spin-flip temperature TSF . Moreover, the shortest lattice vectors of the bcc struc-
ture, and thus the Burgers vectors of dislocations, are of the 1/2⟨111⟩ type, but the
shortest separation between identical spins in parallel SDWs is of the ⟨100⟩ type. On
the other hand, the ⟨100⟩ dislocations would give rise to about 1.3 times larger stored
elastic energy per unit dislocation length as compared to 1/2⟨111⟩ dislocations, if
Cr is treated as an elastically isotropic material. The presence of dislocations with
1/2⟨111⟩ Burgers vectors, predicted by elasticity, thus results in local frustration of
the internal magnetic order. The magnetic structure of Cr around dislocations in
modeled by Bienvenu et al. [11] using the density functional theory. The authors
suggest that simple antiferromagnetism is a good approximation of the SDW ground
state observed experimentally. They further state, that ⟨100⟩ dislocations are stable
in chromium and shearing the crystal by 1/2⟨111⟩ dislocation on {110}, {112} and
{113} plane introduces a magnetic fault. They further argue, that due to the mag-
netic order a necessity for the second 1/2⟨111⟩ dislocation that follows the original
dislocation arises, thus creating a superdislocation of the ⟨111⟩ type.

The experimental study of magnetic defects in antiferromagnetic materials is a
challenging problem. However, there are at least three techniques capable of de-
livering some information about the magnetic order around defects. Probing the
chromium single crystal by coherent X-rays can reveal magnetic defects embedded a
short distance under the surface in bulk chromium [107]. Probably the most useful
technique to determine magnetic changes in materials is neutron scattering. How-
ever, the neutron diffraction cannot focus on individual defects but rather observes
the whole crystal. This fact is often advantageous since it allows us to study the
changes in a more statistical way. So far, no neutron diffraction experiment was uti-
lized to look for changes in magnetic ordering due to plastic deformation, but rather
to precisely describe the antiferromagnetic states and features in chromium [108].
The third technique is spin-polarized scanning tunneling microscopy [109], which
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(a)

(b)

Figure 1.7: Orientation of spins S relative to the wavevector Q in (a) longitudinal
spin density wave, (b) transversal spin density wave.

is a scanning probe microscopy technique capable of delivering information about
magnetism in the material as well as topography. An extremely sharp tip coated
with magnetic material scans the surface while the tip is biased against the spec-
imen. The electron current can tunnel through the gap between the tip and the
specimen. The electrons with spins aligned parallel to the magnetization of the tip
have higher chance of tunneling and thus creating current.

1.4 Low-temperature deformation of α-Fe

The first study concerning the deformation of the iron crystals was done in 1926 by
Taylor and Elam [13] who proposed a deformation model based on the distortion of
a bundle of hexagonal rods in order to explain wavy nature of the slip lines. This
concept precedes the invention of the concept of dislocations almost by a decade.
Another major work was done by Steijn & Brick [110] on single crystals of iron with
small amounts of titanium intended to serve as a deoxidizer, produced by strain
anneal method. The specimens were prestrained to approx. 3 % and annealed,
starting at 723 K with the temperature increasing every 24 hours by 60 K until
1163 K. After reaching the highest temperature, the specimens were further an-
nealed for three days, and cooled in furnace. The annealing was done in purified
helium. The authors report that the specimens tested in tension at 90 K fractured by
cleavage without any slip lines or striations visible, except one sample that showed
slip on the (110) plane. The specimens tested in compression showed less distinct
slip lines compared to the specimens tested at room temperature (RT), and twinning
was identified by loud crunching sounds during the straining. The authors conclude
that slip occurred on the planes in the ⟨111⟩ zone. At low temperatures, the slip
tends to shift towards {110} planes. However, the authors suggest that slip takes
place also on high-index planes. Soon after, Allen et al. [111] published a study on
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iron single crystals prepared by the strain anneal technique with a purity of 99.96 %
Fe deformed in the temperature range from 20 to 373 K. The authors report that all
tensile tests at temperatures higher than 77 K (149, 199, 293, and 373 K) resulted
in ductile deformation and all samples had a 100% reduction in the area regardless
of their orientation. The largest variation of the deformation mechanism occurred
at 77 K, which included the cleavage, slip and twinning. The dependence of the
slip mechanism on the orientation of the loading axis for 77 and 20 K is shown in
Fig. 1.8(a) and 1.8(b) respectively. At 77 K, the slip is dominant for orientations
from the center of the stereographic triangle towards the [011]− [1̄11] edge, whereas
the cleavage dominates for the loading directions from the [001] corner to the center.
Twinning is confined to the region with loading directions along the [012] − [1̄12]
line and a small area near the [011] pole. This observation agrees with the finding
of Harding [112], who did the tensile tests at 77 K with a strain rate of 10−3 s−1

on iron single crystals with 276 wt. ppm impurities (C+N+O+H concentration of
interstitial impurities is approx. 41.4 wt. ppm). Biggs et al. [113] also reported the
same behavior at 90 K for strain rates of 10−4 s−1 on single crystals with 4400 wt.
ppm of impurities (from which it was 600 wt. ppm. of C).

(a) (b)

(c) (d) (e)

Figure 1.8: The distribution of dominant deformation mechanism in α-Fe single
crystals in tension at (a) 77 and (b) 20 K according to [111] and in compression at
77 K as described by Altshuler et al. [114] and Aono et al. [5] for single crystals with
the diameters of (c) 0.2 mm, (d) 0.4-0.6 mm and (e) 1-1.2 mm.

In contrast, the deformation mechanism at 20 K is cleavage, except again of a
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very small area around [011] pole (see Ref. [111]). The authors conclude that slip
traces were observed on the {110}, {112} and {123} planes. They were straight in
the early stages of the deformation, and became wavy in the later stages.
The authors argue that the high critical stresses for slip and twinning at 77 K for
orientation that favor multiple slip is possibly caused by dislocation locks or pinning
of dislocations to the obstacles, which consequently leads to the increased propensity
to cleavage. Further research of Keh in 1965 [115] focused on work hardening in iron
single crystals at room temperature. He suggests that the slip occurs on planes that
contain the ⟨111⟩ vectors (which are {110}, {112} and {123} planes), however from
the electron micrographs shown in his work, we can assume that at least majority,
if not all of the slip, occurs on {110} planes. The author further confirms that the
waviness of the slip traces is the result of the zig-zag motion of 1/2⟨111⟩ screw dislo-
cations on two {110} slip planes and concludes that the initial work hardening rate in
iron crystals depends on a number of operational slip systems (the more slip systems,
the greater the work hardening) and on the ratio of the density of dislocations in
primary and secondary slip systems. A comprehensive study of the plastic deforma-
tion of α-iron was done by Altshuler and Christian in 1967 [114]. They performed
compression tests from 2 to 293 K on both single-crystalline and polycrystalline
specimens and focused primarily on the temperature and strain rate sensitivity of
the plastic deformation. The authors report that polycrystalline specimens with
grain sizes ranging from 13 µm in the center of the specimens to 40 µm along the
[011] − [1̄11] edge have similar mechanical properties with single crystals, and both
deform by slip on {110} planes. Furthermore, the large temperature and strain rate
sensitivity is not caused by the residual interstitial impurities and the authors lean
to the explanation of lattice friction in terms of the Peierls-Nabarro force. Aono et
al. [5] performed tension tests on iron single crystals at 4.2 K prepared from different
source materials and reported the deformation mechanism based on the diameter of
the cylindrical single crystals and their orientation. Their findings are summarized
in Fig. 1.8(c), 1.8(d) and 1.8(e) for diameters of 0.2, 0.4-0.6 and 1-1.2 mm, respec-
tively. The average concentration of interstitial impurities is 45 wt. ppm (C + N
+ O) and 890 wt. ppm (substitutional elements) in Altshuler’s specimens and 37
wt. ppm (C + N + O) and 157 wt. ppm (substitutional elements) in Aono’s speci-
mens. In the case of large single crystals, the predominant deformation mechanism
is pure cleavage or cleavage mixed with twinning. The twinning can be found in
most orientations for single crystals with the diameters between 0.4 and 0.6 mm.
However close to the [1̄11] corner of the stereographic triangle, the cleavage starts
to dominate. Twinning is most dominant around the [011] corner, accompanied by
slip, which is visualized by the increased density of the hatching in Fig. 1.8(d). In
the center of the stereographic triangle, the slip is dominant but accompanied by
twinning. The slip with less pronounced twinning is also the dominant mechanism
for single crystals with the diameters of 0.2 mm regardless of the orientation of the
loading axis. These findings partially agree with those of Keh in the case of the
small crystals. However, they give contradictory predictions for the larger crystals.
It is important to emphasize that prestrain suppresses the nucleation of twins (Aono
et al. [5]).

Franciosi et al. [116] examined non-pre-strained iron single crystals at room tem-
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perature in-situ by the SEM and AFM methods. Their results showed that if the
slip occurs on {110} planes, the slip traces are long and straight. However, if the
slip traces are macroscopically wavy, they are composed of short segments of traces
that match {110} planes and most likely propagate by composite slip and cross-slip.
They reported that the purity of their samples was 86 wt. ppm (of interstitial im-
purities C+N) and 1317 wt. ppm of substitutional impurities while strain rate was
10−5 s−1. Kimura [117] performed tensile tests of coarse-grained iron specimens at
temperatures between 4.2 K and 273 K with a purity of more than 99.999% and
less than 0.5 wt. ppm of carbon, strained at 8 × 10−5 s−1. He reports that coarse-
grained specimens had purity expressed as residual resistivity ratio (RRR, measured
between 4.2 and 273 K) between 3800 and 5000. The specimens strained at 4.2 K
with the RRR of 3800 fractured by ductile fracture with a reduction of the area by
100 %, while the specimen with the RRR of 5000 fractured by cleavage. Kimura
suggests that the fracture of pure specimen could be caused by intrinsic low tem-
perature brittleness of iron but advocates that low temperature brittleness of iron is
caused predominantly by impurities. The crystallographic orientation of the grains,
where the cleavage was manifested, is not mentioned. The deformation mechanism
of most of the specimens was slip. However, some if his stress-strain curves exhibit
stress drops that may be associated with twinning. Kranzlein et al. [118] prepared a
single crystal of α-Fe by employing the strain anneal technique and tested them in
tension from 77 K to the room temperature. The approximate amount of impurities
was 33.2 wt. ppm (C + N + O + H) and up to 143 wt. ppm of substitutional
elements. The strain rate was approximately 3 × 10−4 s−1. Kranzlein et al. further
states that the deformation mode of iron single crystals at 77 K depends on the
orientation of the crystal. The cleavage dominates for loading directions close to the
[001] pole, slip is mostly dominant along [011]–[1̄11] edge, and twinning accompa-
nied by the cleavage is observed at the center of the stereographic triangle. Yabe
et al. [119] further discusses the simple shear and plane strain compression tests on
single-crystalline α-iron specimen with respect to the orientation of the loading axis.

1.5 Low-temperature deformation of Cr

The early studies of Cr made in the late 1960s and 1970s focused primarily on its
magnetic properties [102, 120]. The first studies of plastic behavior done on single
crystals by Greiner [3] provided some insight into the high-temperature deformation
behavior and fracture of Cr. Marcinkowski et al. [121] studied low-temperature de-
formation of polycrystalline chromium in tension and discussed the effect of grain
size and strain rate on the yield and flow stress and compared the results with the
Hall-Petch equation. Marcinkowski further uses one of the first models for nucle-
ation of twins in bcc metals, where the 1/2[111] screw dislocation dissociates into a
pair of 1/3[112] and 1/6[111̄] partial dislocations [121]. According to the model, the
latter dislocation is highly mobile even at low temperatures. The strain rate used in
the study is 8.28× 10−5 s−1, but the purity is not mentioned. Marcinkowski further
states that twins originate in the {112} planes with a twinning direction of ⟨111⟩.
The yield stress is unaffected by the change in the magnetic order and twinning is
the dominant deformation mechanism below 123 K. The first in-situ straining ex-
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periments on Cr (99.98 % with 27 ppm of C + H + N + O impurities) at 300 K
by Reid and Gilbert [122] revealed that cross-slip events were not compatible with
the glide of conventional 1/2⟨111⟩ dislocations, but it could be explained by the mo-
tion of ⟨100⟩-type dislocations. Reid, Gilbert and Hahn [123] subsequently tested
Cr single crystals of similar purity in tension between 77 and 300 K and observed
slip on {110} planes, twinning on {112} planes, and cleavage on {100} planes. In
many cases, the slip was rather homogeneous, which complicated the identification
of operational slip systems by the slip trace analysis. Sameljuk et al. [124] found a
similar behavior when observing cleavage along {100} planes in tension at 198 K.
However, no detailed analysis of the internal structure of twins was presented except
that their orientation agrees closely with the traces of {112} planes. The level of
impurities in the material used was 75.1 wt. ppm (substitutional) and 110 wt. ppm
(C + O + N interstitial). The velocity of deformation used was 1 mm/min. Re-
cently, attention was paid to dislocation nucleation at higher temperatures studied
by nanoindentation. Wu and Nieh [125] described the pop-in behavior that occurs
during nano-indentation and suggested that dislocations required to accommodate
the plastic deformation during the indentation are nucleated heterogeneously with
the main contribution from interstitials. Choi et al. [126] discussed the phenomenon
of thermally-activated plasticity by examining the temperature-dependent mechan-
ical behavior of high-purity chromium using high-temperature nanoindentation.
The mechanism of plastic deformation depended sensitively on crystal purity, whereby
even a small concentration of interstitial impurities in the order of tens of wt. ppm
was sufficient to make the material brittle at room temperature [127]. Recent studies
done on chromium focus on explaining deformation mechanisms at high tempera-
tures by employing the relatively non-destructive technique, such as nanoindenta-
tion. However, more in-depth research involving the analysis of slip traces and
surface misorientations is still lacking.

1.6 Neutron diffraction

In principle, neutron diffraction is similar to X-ray or electron diffraction in principle.
However, due to different interaction of these particles/waves with matter, the reason
for their use differs. While electron sources are easily obtained and relatively cheap,
the penetration depth is very small (depending on the energy of the incident electron
and the material). The electron, as a particle, carries both spin and electric charge
and can be, therefore, influenced by electric and magnetic fields. However, the
scattering due to the electric field (electrostatic interaction with the atomic electron
cloud) is much stronger. Therefore, the only obtainable information about the
magnetic properties of the material results from the induced magnetic fields reaching
out of the specimen, which influence the electrons [128] by the Lorentz force. This
can be used in Lorentz microscopy [129], which can visualize magnetic domains in
specific orientations. These studies are made using unpolarized electrons. If one
can differentiate the polarization of the electrons, the magnetic domains can be
visualized, and the direction of magnetization measured [130,131]. Polarized X-ray
diffraction has been shown to be a complementary technique to neutron diffraction
[132]. However, the penetration depth is small compared to the latter, and thus
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the information comes from the surface of the specimen. The neutrons do not carry
an electric charge and, unlike the electrons or X-rays, scatter from atomic nuclei
and not from the electron clouds surrounding the nuclei. Furthermore, the neutron
carries a spin and is, therefore, sensitive to the unpaired electrons which make up
the magnetism in solids [133]. Due to the interaction with atomic nuclei and not
the electron clouds around them, neutrons scatter very weakly, and neutron sources
thus produce lower flux compared to the other techniques. The weak interaction of
neutrons leads to one of the most significant advantages of neutron scattering - the
scattering happens in the whole specimen and is not constrained to the surfaces or
very small volumes as the X-ray or electron diffraction. However, the operation of
a neutron facility is very costly and, therefore, this technique is concentrated to a
few places around the world.

There are only two methods of effective neutron creation. First uses the nuclear
reactor, similar to those operated in the nuclear power plants. The second option is
a spallation source which requires an accelerated beam of protons with the energy
around 1 GeV created by the cyclotron or linear accelerator. These protons hit a
target (commonly a large steel tube filled with mercury, tantalum, lead, tungsten,
or other heavy metal [134]). The nuclei in the target are excited by the impact and
release neutrons upon deexcitation [135]. The spallation process is more expensive
than nuclear fission, however, it is also more efficient. Other advantages of the
spallation source are the ability to create a neutron pulse by pulsing the incident
proton beam (neutron flux created by fission is constant), and the spallation neutrons
cannot trigger further spallation to produce more neutrons [136]. This makes the
spallation source safer as no chain reaction can occur.

Because neutrons are chargeless, it makes them very hard to focus compared
to electrons or X-ray photons as no lenses effective to neutrons exist, but the use
of mirrors is needed. Furthermore, neutrons scattering lengths differ widely among
the elements and isotopes and are independent of the atomic number. For example
hydrogen, virtually undetectable with electrons or X-rays, can be easily distinguished
by neutrons [137]. Nonetheless, using neutrons as particles for imaging is still a
relatively new method, and the resolution of neutron microscopes are far behind the
electron microscopes [137]. The following list offers neutron scattering facilities with
spallation or reactor sources around the world [138–163]:

� Spallation sources: KENS (Japan), J-Parc (Japan), JAERI (Japan), ISIS
(United Kingdom), SINQ (Switzerland), ORNL (USA), LANSCE (USA).

� Reactor sources: KUR-RI (Japan), ISSP (Japan), KAERI (South Korea),
OPAL (Australia), ILL (France), GeNF (Germany), BENSC (Germany), FRM
II (Germany), TUDelft (Netherlands), BNC (Hungary), FLNP (Russia), PNPI
(Russia), NPI Řež (Czech Republic), JEEP II (Norway), ORNL (USA), MNR
(Canada), NCNR (USA), CRL (Canada), CARR (China), CMRR (China).

The Swiss spallation neutron source, SINQ, is a large-scale facility operated by
the Paul Scherrer Institute, one of the federal research centers in Switzerland. The
SINQ delivers a continuous thermal neutron flux of 1014 cm−2s−1 to a wide range of
instruments or, alternatively, slows them down by deuterium moderator to make the
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neutrons more useful for other types of experiments. The single crystal diffractome-
ter Zebra is one of the instruments of the SINQ that uses a monochromatic flux of
thermal neutrons to study the materials. The Zebra diffractometer is equipped to
use the neutrons with the 1.18 Å or 2.32 Å wavelengths. A wide range of additional
instruments such as furnaces, cryogenics, an apparatus to create a magnetic field,
and others are available. A linear (1D) or areal (2D) detector can be utilized to
measure the the diffraction spectra [164]. We have used this facility for all neutron
scattering measurements done in this work.

1.6.1 Expected neutron reflections in bcc lattice

The visibility of nuclear diffraction peaks is dependent on the crystal structure.
In some cases, certain diffractions are not allowed due to destructive interference.
This restriction comes from the structure factor for the bcc lattice [165, p. 259]:

F = f{1 + eπi(h+k+l)} (1.6)

where h, k and l are indices in reciprocal space. The structure factor in Eq. (1.6)
can be expanded into:

F = f{1 + cos[π(h+ k + l)] + i sin[π(h+ k + l)]}. (1.7)

In this form, one can more clearly see the effect of the h, k and l indices. Since
they are always integers, the sine part will be always zero and the cosine part will
oscillate between 1 and -1 for odd and even sum of h,k,l, respectively. Thus, for h + k
+ l = odd, the structure factor F = 0 and for h + k + l = even, the structure factor
F = 2f . The structure factor is used for computations of the complex amplitude of
the diffracted beam. In cases, where the structure factor is zero, the amplitude of
the diffracted beam will be also zero. Diffraction in bcc lattices is thus allowed only
from the planes for which the sum of h, k and l is even (i.e. 110, 200, 211 etc.).

In reality, reflection from planes with odd sum of the indices cancel each other
out, as the diffraction from successive plane will come with exactly the opposite
phase than that of the previous plane, as shown in Fig. 1.9. The phase change
arises from a different relative position of atoms in the {100} and {200} planes.

The diffraction peaks may occur also due to the internal magnetic order of the
material. Here, we briefly discuss the effect of different magnetic orders, namely
disordered paramagnetic state, ferromagnetic state, antiferromagnetic state, and
antiferromagnetic spin-density waves.

The diffraction techniques can only detect structures that repeat with certain
frequency. Paramagnetic state does not have an order to the direction of the spins
and thus no diffraction peaks are visible.

In case of ferromagnetism, all spins are oriented in one direction and since
they originate from the atoms, they repeat with the same frequency as the crystal
lattice. Therefore, the magnetic diffraction peaks are placed on the nuclear diffrac-
tion peaks and their intensities are superimposed. As the magnetic and structural
lattices are identical, forbidden reflections are also applicable for magnetic scatter-
ing. Moreover, the intensity of reflections will decrease with increasing temperature
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Figure 1.9: Schematic representation of diffraction from {100} and {200} planes in
the bcc structure. The sinusoidal curves represent the amplitude of the scattered
wave.

as the ferromagnetic order becomes more disordered. The contribution of magnetic
scattering will be zero for temperatures above the Curie temperature [166].

Antiferromagnetism produces magnetic peaks at positions where nuclear re-
flection are forbidden. For example, chromium can exist in antiferromagnetic state
and magnetic neutron scattering will reveal a single peak corresponding to a 100
reflection (Ref. [101]). This can be explained by imagining the antiferromagnetic cell
as two simple cubic cells shifted by 1/2⟨111⟩ vector from each other. This creates
two simple cubic cells, one with spins oriented in one direction and the second with
spins oriented in the opposite direction. Moreover, since simple cubic lattice has no
forbidden reflections, one can expect to see magnetic reflection peaks resulting from
antiferromagnetic structure at places where the nuclear reflections are forbidden.
However, in come cases the magnetic cell is larger than the structural unit cell, such
as in NiO. In this particular case, the magnetic diffraction occurs from a magnetic
cell that is twice as large as chemical cell. Therefore, magnetic and nuclear peaks
will correspond to two different lattices [167,168].

An incommensurate spin-density wave with antiferromagnetic coupling along
⟨100⟩, found in annealed chromium, has a temperature-dependent wavelength λ of
approx. 21 unit cells at 78 K to approx. 28 unit cells at 311 K [7]. This is man-
ifested by two diffraction peaks spaced by ±1/λ from the forbidden ⟨100⟩ nuclear
reflections in reciprocal space. A more detailed explanation of reflections expected
in chromium with SDW is in Section 1.7.

1.7 Manipulation of magnetic states

The magnetic domains present in the ferromagnetic materials represent regions with
different magnetization and are separated by domain walls to minimize its inter-
nal energy [169]. The first observation of the magnetic domain walls was done by
Williams, Bozorth, and Shockley in 1949 [170]. In a magnetically soft material,
which is not being acted upon by external magnetizing field or stress, the macro-
scopic contribution of the magnetic domains to creation of the external magnetic
field is canceled out by the opposite orientation of the magnetic domains, as shown

30



in Fig. 1.10(a). Therefore, its contribution to the external magnetic field is negli-
gible. One can see in this figure that the vector sum of the magnetization is zero.
If the external magnetizing field H is imposed, shown in Fig. 1.10(b), the magnetic
domain with the same orientation will grow the most, while the one opposite to
the external magnetic filed H will shrink. If the magnetizing field H is increased
even more, the magnetization of the domains will start to rotate to align itself with
the field, as shown in Fig. 1.10(c). The saturation is reached when the preferred
magnetic domains reach their maximum size and are rotated ”as much as they can”.
The growth of the domains in Fig. 1.10(b) is represented by the straight part of the
magnetization curve in Fig. 1.1 and the rotation of the domains starts when the
magnetization curve deviates from the straight line.

(a) (b) (c)

Figure 1.10: A schematic representation of domains in feromagnetic materials when
acted upon by external magnetic field H. The arrows inside the pictures represent
the direction of domain’s magnetization and the bold arrow on the side demonstrates
direction and magnitude of the external magnetizing field: (a) no external magnetic
field, (b) small external magnetic field and, (c) large external magnetic field.

The second external process that influences the magnetization of the material is
the magnetostrictive effect. The magnetostriction is a property of ferromagnetic ma-
terials that changes the dimensions of the specimen in response to the magnetic field.
It is an effect caused mainly by the spin-orbit coupling. The atoms in ferromagnetic
materials can be though of as magnetic dipoles due to the nonspherical nature of the
electron distribution around the nuclei [98, p. 257]. If these oval dipoles are aligned
so that their minor axes are aligned and the spins are parallel, pointing in the same
direction, the repulsive forces between them are minimized. On the other hand, if
they are aligned by their major axes, they produce a repulsive force which is relaxed
by the change in the lattice parameter as they try to get further apart and this is
manifested by strain. It should be noted, that the magnetostrictive effect is very
small and the changes to the dimensions (strains) are in the order of 10−5 [171].
An opposite effect that causes changes to the magnetization in relation to the ap-
plied stress is called an inverse magnetostriction and the process is exactly opposite.
The stretching of the crystal lattice caused by the stress rotates the dipoles into the
direction with minimal energy. A schematic example of inverse magnetostriction
effect is shown in Fig. 1.11. The initial state of the sample is identical with that
shown in Fig. 1.10(a). The applied stress in the horizontal direction in Fig. 1.11(a)
will favor the domains with magnetization to be aligned with stress. Upon increas-
ing the magnitude of stress, shown in Fig. 1.11(b), the domains with magnetization
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perpendicular to stress will vanish and if the stress is increased again, Fig. 1.11(c),
the specimen will be saturated as only one domain remains.

(a) (b) (c)

Figure 1.11: A schematic representation of domains in feromagnetic materials with
positive magnetostriction under tensile stress σ. The arrows inside the pictures
represent the direction of domain’s magnetization and the bold arrows on the sides
demonstrate direction and magnitude of the stress. The initial state is similar to that
shown in Fig. 1.10(a). Magnetic domains under (a) low tensile stress, (b) medium
tensile stress, and (c) large tensile stress. The picture was adapted from [98, p. 263].

When chromium is heated above the Néel temperature, the magnetic order will
naturally break apart, and the material will become paramagnetic. If it is cooled
below Néel temperature without an external magnetic field, the magnetic order will
become antiferromagnetic with SDW, which will be oriented randomly along ⟨100⟩
directions, and several domains will be created. This state is described as Triple-Q
state, which is characterized by the wavevector Q parallel to all three ⟨100⟩ di-
rections. To visualize a magnetic state of chromium, we will use reciprocal space
diagrams as described by Bastow and Street [172]. These diagrams display the
positions of measured or predicted satellite reflections in the form of balls in the
neighborhoods of ⟨100⟩ reflections on axes correlating with the crystal directions.
The nuclear reflections from the ⟨100⟩ planes are not shown in the diagrams since
they are forbidden reflections3. Furthermore, only all positive (+,+,+) octant of the
reciprocal space is shown and measured since the other seven octants are mirrored
reflections of each other. The peak splitting notation is often simplified by assigning
the reciprocal value of the wavelength as δ and, for example, the splitting of the
peak in the neighborhood of [100] reflection in the direction of [010] would be noted
as [1,±δ, 0]. Throughout this work, we mark the reflections by square brackets and
wavectors by round brackets, same as Bastow and Street [172].

The reciprocal space diagrams of neutron diffraction from chromium that has
been cooled down without any perturbations4 are shown in Fig. 1.12. The SDWs in
such material will be oriented randomly along ⟨100⟩ and create domains similar to
those observed in ferromagnetic materials. The high-temperature TSDW produces
satellite reflections in all ⟨100⟩ directions in the neighborhoods of all ⟨100⟩ reflections
as shown in Fig. 1.12(b). The random orientation of the spin density waves remain

3Forbidden reflections in bcc lattice are those whose sum of the Miller indices h, k, l is odd.
The structure factor would thus be zero implying destructive interference.

4In this case we mean mainly cooling under elastic stress or magnetic field.
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even below the spin-flip temperature, but the ”on-axis” reflections in longitudinal
spin density wave modification disappear. This is caused by the fact that there is
no magnetic scattering from a magnetic moment that is parallel to the scattering
vector [108]. The theoretical explanation is that the scattering vector q is the dot
product of unit vector in the direction of magnetic moment and unit vector normal
to the diffracting plane, which in this configuration equals zero. Further explanation
can be found in chapter 6.5.2. of [173].

(a) (b)

Figure 1.12: Reciprocal space diagrams representing the magnetic diffraction peaks
in neutron diffraction spectra of unmodified chromium in: (a) LSDW state, (b)
TSDW state.

One of the possible ways of creating a single-Q state, the state when the wavevec-
tor Q is oriented in one particular ⟨100⟩ direction throughout the specimen, is
so-called field cooling. When a chromium single crystal is cooled from above the
Néel temperature down to a few K in a strong magnetic field, the wavevector Q
will possess the same orientation as the direction of the magnetic field [174, 175].
The reported values necessary to turn a chromium crystal into a single-Q state are
between 12 to 65 kOe (1.2 to 6.5 T) depending on the amount of crystal defects
present [176]. After heating the crystal with a single-Q state in the LSDW regime
above the spin-flip temperature TSF , the single domain will split into several domains
with different η. These η domains are sub-domains of the Q domains but differ in
the geometrical orientation of the spins. The hypothetical oval-shaped crystal in
the TSDW state in Fig. 1.13 is split into three single-Q domains by full lines, and
each single-Q domain is split into two possible η domains which have the same Q
but different orientations of the spins. The direction of the Q vector is represented
by the full arrows, whereas dashed arrows represent the direction of spins.

Ando et al. [176] further hypothesize that magnetic domains are created in such
a way that the internal strain is relaxed by magnetostriction. Werner et al. [177]
state that once the single-Q state is achieved, it is extremely stable and cannot be
switched to another direction below TSF , certainly not by the same field as used for
its creation (2.7 T in Werner’s study). A specimen in the triple-Q state below TSF
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Figure 1.13: Schematic representation of possible orientations of different Q domains
(separated by full line and different η sub-domains within separated by the dashed
lines.

is, however, prone to switching of the orientation of Q by relatively low magnetic
fields (1.2 T).

The reciprocal space diagram of field-cooled chromium along the [010] direction
in the TSDW state is shown in Fig. 1.14(b). The field-cooling favors the growth of
domains with the wavevector Q parallel to the magnetic field, and in doing so, only
the SDWs with wavevectors (0, 1±δ, 0) are allowed to exist. According to Bastow and
Street [172], the on-axis reflection is stronger than the other two off-axis reflections,
which are marked in Fig. 1.14(a) by the larger circles. The reciprocal space diagram
of the field-cooled chromium along [010] in the LSDW state is shown in Fig. 1.14(a).
In this case, the on-axis reflection disappears due to the magnetic moment being
parallel to the scattering vector, and only the two off-axis reflections are present.
The reflections anticipated after field cooling are also listed in Table 1.1.

(a)
(b)

Figure 1.14: Reciprocal space diagrams of magnetic neutron diffraction peaks of
the field-cooled chromium with the direction of the magnetic field along the [010]
direction. (a) LSDW state, (b) TSDW state.

The second process that manipulates chromium’s magnetic state is stress cooling.
If chromium single crystal is compressed in a ⟨100⟩ direction and cooled through the
Néel temperature under zero magnetic field, the growth of magnetic domains with
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the wavevector parallel to the direction of the applied stress will be suppressed. The
produced magnetic structure will thus be complementary to the one produced by
field cooling [172]. The only spin density waves with vectors of (±δ, 0, 1) or (1, 0,±δ)
will remain if the stress direction is along the [010] direction.

(a)
(b)

Figure 1.15: Reciprocal space diagrams of magnetic neutron diffraction peaks for
stress-cooled chromium. The direction of applied compressive stress is along [010].
(a) LSDW state, (b) TSDW state.

The list of all reflections measured on the unmodified chromium, field-cooled with
magnetic field along [010] direction, and stress-cooled with applied stress along [010]
direction are presented in Table 1.1. Only reflections for the first octant are listed,
however, the list would be the same for all other octants, i.e. (1,±δ, 0) behaves the
same as (−1,±δ, 0).

Table 1.1: A list of reflections measured in the unmodified, field-cooled and stress-
cooled chromium. The direction of magnetic field and applied stress is along [010]
direction.

Unmodified Cr Field-cooled Cr Stress-cooled Cr
Reflectiom TSDW LSDW TSDW LSDW TSDW LSDW
[1 ± δ, 0 0] ✓ ✗ ✗ ✗ ✓ ✗

[1,±δ, 0] ✓ ✓ ✓ ✓ ✗ ✗

[1, 0,±δ] ✓ ✓ ✗ ✗ ✓ ✓

[±δ, 1, 0] ✓ ✓ ✗ ✗ ✓ ✓

[0, 1 ± δ, 0] ✓ ✓ ✓ ✗ ✗ ✗

[0, 1,±δ] ✓ ✗ ✗ ✗ ✓ ✓

[±δ, 0, 1] ✓ ✓ ✗ ✗ ✓ ✓

[0,±δ, 1] ✓ ✓ ✓ ✓ ✗ ✗

[0, 0, 1 ± δ] ✓ ✗ ✗ ✗ ✓ ✗

35



1.8 Kerr microscopy

The magneto-optical Kerr effect (MOKE) was first hypothesized by Kerr in 1877,
who was inspired by Faraday’s hypothesis that light is an electromagnetic wave in
nature and by Fresnel’s and Malus’s experiments with polarization and reflection
[178]. The observation of magnetic domains by magneto-optics is possible due the
weak dependence of optical constants on magnetization of the specimen [179, p. 24].
The magneto-optical Kerr effect describes the interaction of plane-polarized light
with opaque object, which induce rotation of the polarization plane after reflection.
Often, other effects are present that can cause elliptical polarization rather than
simple rotation, but some can be negated by addition of compensator to the optical
axis [180]. Schematic construction of the Kerr microscope is shown in Fig. 1.16.
The incident light, Kin, coming from the light source on the right is linearly polarized
by the polarizer, passes through the beam splitter and objective. The polarization
plane is indicated by the red arrows in the inset of Fig. 1.16. The polarization plane
is changed based on the direction of magnetization of the domain (indicated by the
white arrows), from which it scatters, as shown schematically by the rotation of the
red arrows in the inset. The gray arrows indicate the orientation of the polarization
plane if no change occurred. Subsequently, the reflected light Kref passes through
the objective, beam splitter and analyzer, which allows only certain polarization
directions to pass, as indicated by different intensity peaks along the reflection lines.
Camera is then used to capture the images. Important part of the Kerr microscope
is also an electromagnet, which is used to alter the magnetization of the specimen.

Depending on the orientation of the polarization plane, the angle and direction
of incident light, three cases of Kerr effects are distinguished. Polar effect, shown
in Fig. 1.17(a), where the axis of incoming, Kin, and reflected, Kref , light, as well
as magnetization are all parallel. In this case, only the contrast of domains with
magnetization perpendicular to the surface will be visible, shown in Fig. 1.17(a)
by differently shaded domains with magnetization vector going out-of-plane and
in-plane of the specimen surface. The rotation of the polarization plane for both
domains is shown in the lower two insets. However, in this case the orientation of
polarization plane is not important and is set arbitrarily. The longitudinal parallel
effect, shown in Fig. 1.17(b) takes place when the magnetization vector and the
vectors of incident and reflected light5 lie in the polarization plane. In this configu-
ration, only domains with the magnetization direction parallel to the sample surface
that lie in the plane of incidence will be detectable. Note that the two domains with
magnetization perpendicular to the surface also show a variation in contrast, albeit
smaller than the domains with magnetization direction in the incidence plane. This
is caused by the polar effect described previously, whose magnitude is dependent
on the incidence angle and is strongest for the 0° incidence. A similar situation is
present in the case of longitudinal transverse effect, where the magnetization direc-
tion lies in the incidence plane, but polarization is perpendicular to it as shown in
Fig. 1.17(c). Again, only domains with the magnetization direction in the incidence
plane cause the rotation of the polarization plane. The change of the polarization
direction caused by the longitudinal perpendicular effect is shown under the 3D fig-

5The plane created by the incoming and reflecting plane is also called the plane of incidence.
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Figure 1.16: Schematic representation of the Kerr microscope setup and principle.
The blue and green areas of the specimen represent the differently magnetized part
of the specimen. Red arrows represent the polarization direction of the light.

ures in Fig. 1.17. The coordinate system showing the rotation of the polarization
has the third axis along the Kin or Kref direction. Contrary to the polar effect, the
longitudinal effect is more pronounced with increasing incident angle [181].
The transverse effect, not shown in Fig. 1.17, takes place when the polarization and
incidence plane are identical and magnetization direction is perpendicular to them.
However, in this case, there is no change in the orientation of the polarization plane,
but there is a change in the amplitude. Nonetheless, the amplitude change causes
little effect on the contrast [179, p. 27].

Based on the described effects, one is only able to fully measure the domains
magnetized in one direction. In order to visualize domains magnetized along the
z direction in Fig. 1.17, one has to rotate the specimen or the incidence plane.
In the former case, the rotation would expose expose the specimen to different
magnetizing field, unless magnet can be rotated. Moreover, the contrast in not
readily visible upon the first illumination, but is produced as subtraction of image
taken when the specimen is magnetically saturated from the image taken at a certain
magnetizing field. Further information can be found in a recent review paper by
McCord [181], that deals with the underlying physics as well and recent advances
in Kerr microscopy.
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(a) (b) (c)

Figure 1.17: Different mutual configurations of incoming light, polarization and
magnetization direction and its effect on domain contrast. The arrows in the spec-
imen represent the direction of magnetization, red arrow the plane of polarization
and lighter and darker gray arrow the changed polarization plane from equally col-
ored regions. (a) polar configuration, (b) parallel longitudinal configuration and (c)
perpendicular longitudinal configuration. Figures adapted from [180].
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List of symbols

Symbol Meaning Equation
Latin symbols

a1, a2, a3 Stress modifiers (1.3, 1.4)
B Magnetic flux density

Ecrys Magnetic anisotropy (1.5)
F Structure factor (1.6, 1.7)

h, k, l Plane indices (1.6, 1.7)
H Magnetizing field
Hc Coercive field/force

K1, K2
Material and temperature dependent

constants (1.5)

Kin Incident light direction
Kref Reflected light direction
m Schmid factor (1.1)
M Representation of internal magnetic state (1.4)
M Magnetization
Ms Saturation magnetization
Mr Remanent magnetization
Q Wavevector

Greek symbols
α1, α2, α3 Directional cosines (1.5)

δ Reciprocal value of wavelength
λ Wavelenght
σ Stress (1.1)
σ12 Stress component
τ Schmid stress (1.1)
τ ∗cr Stress coefficient (1.1, 1.3, 1.4)
χ Angle of the MRSSP
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2 Objectives

The main objective of this thesis is to elucidate the low-temperature plastic defor-
mation of α-Fe and Cr. The secondary objective is to study the magnetic properties
of the materials before and after the deformation. In particular, we want to show
how plastic deformation, by dislocation glide and/or twinning internal magnetic or-
der, but also how the internal magnetic order affects the movement of dislocations.
The main tasks are:

� Utilize sufficiently pure samples and characterize their purity before testing.

� Carry out a series of compression experiments on chromium in as-received,
i.e. Triple-Q, state, perform the slip-trace analysis, describe the deformation
mechanism and compare our findings with other bcc metals. Furthermore,
transmission electron microscopy is to be used in order to search for dislocation
junctions of ⟨100⟩ type, which could shed light onto the existence or non-
existence of anomalous slip in α-Fe and Cr.

� Perform a series of magnetic experiments and measurements to prepare the
Single-Q state and check the magnetic state of these samples.

� Perform neutron diffraction experiments on deformed and undeformed chromium
specimens with the same orientation of the loading axis but different orienta-
tions of wavevectors in the Single-Q state to elucidate the effects of deforma-
tion on internal magnetic order.

� Due to poor commercial availability of α-Fe single crystals with sufficient pu-
rity, we develop a process to grow polycrystalline α-Fe with sufficiently large
grains.

� A slip-trace analysis will be performed on the α-Fe polycrystals deformed at
77 K and the effect of deformation on magnetic properties will be studied by
vibrating sample magnetometry. Kerr microscopy will be utilized to look for
changes caused by the deformation.

� The results will be compared with concurrent atomistic simulations that are
being done in our group to better understand the experimental results.
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3 Materials and methods

This chapter describes in detail the materials used in this work as well as the methods
used to prepare the specimens for the tests and measurements. Attention is paid
mainly to the chemical composition and internal defects of acquired single crystals
and microstructure of polycrystalline specimens. Experimental conditions used for
specimen surface preparation are described in detail.

3.1 Origin and chemical composition of used

materials

3.1.1 Chromium specimens

Three single crystals of Cr were acquired, the first one from MaTecK Germany (from
now on denoted as Cr-1), the second and the third from Accumet Materials, Co.
(denoted Cr-2 and Cr-3). The chemical composition was measured by the inductively
coupled plasma mass spectrometry (ICP-MS) at the Transport Research Center
in Brno (Centrum dopravńıho výzkumu, v. v. i.). The results of the chemical
composition of these single crystals are summarized in Table 3.1. The chemical
composition of the Cr-3 specimen was not measured, but we believe it is comparable
to that of Cr-2 since they were acquired from the same manufacturer. The chemical
composition was measured from 0.0171 g (Cr-1) and 0.0188 g (Cr-2) pieces that
were prepared by grinding and dissolved shortly in hydrochloric acid to remove any
contamination on the surface. Subsequently, the pieces were dissolved in 7 ml of
superclean hydrochloric acid (Analytika, Praha) in a microwave digestion system in
PTFE vials at 200 °C and 35 bar. The dissolved specimens were diluted 100Ö and
1000Ö by ultraclean water (Merck). The measurements were done by the Calibration
curve method using externally added inert standards. A collision/reaction cell was
employed with He, H2 and O2 gases to get rid of possible interferences.

Chemical purity was also measured via the residual resistivity ratio (RRR)
method [182, 183]. The value of RRR is represented by the ratio between electri-
cal resistance of the sample at room temperature (300 K) and at the liquid helium
temperature (4.2 K), written as:

RRR =
ρ(300K)

ρ(4.2K)
. (3.1)

Thin wires with dimensions of approximately 1 × 1 × 10 mm were prepared by
grinding, polishing and electrolytic polishing in the solution of 20% H2SO4, 65%
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Table 3.1: Chemical composition of acquired chromium single crystals measured by
the ICP-MS method. Elements above the detection limit are in bold. Concentrations
are in weight ppm or ppb.

Element Cr-1 [ppm] Cr-2 [ppm] Element Cr-1 [ppb] Cr-2 [ppb]
Na ≤ 0.439 ≤ 0.439 Ni ≤ 39.4 ≤ 39.4
Mg ≤ 3.08 ≤ 3.08 Cu ≤ 266 ≤ 266
Al ≤ 3.37 ≤ 3.37 Ti ≤ 42.3 ≤ 42.3
Si ≤ 5.66 ≤ 5.66 Zn ≤ 10.3 14.3
K ≤ 2.77 ≤ 2.77 As ≤ 3.50 ≤ 3.50
Ca ≤ 3.03 ≤ 3.03 Se ≤ 34.9 ≤ 34.9
P ≤ 0.77 ≤ 0.77 Mo ≤ 11.0 ≤ 11.0
S ≤ 1.71 ≤ 1.71 Cd ≤ 2.61 ≤ 2.61
V ≤ 2.93 ≤ 2.93 Sn ≤ 31.17 ≤ 31.17
Cr Bal. Bal. Sb ≤ 28.07 ≤ 28.07
Mn ≤ 0.282 ≤ 0.282 Ba ≤ 127 ≤ 127
Fe ≤ 1.23 ≤ 1.23 Tl ≤ 29.4 ≤ 29.4

Pb ≤ 7.07 ≤ 7.07
U ≤ 1.52 ≤ 1.52
Co ≤ 2.68 ≤ 2.68

H3PO4 and 15% distilled water (in vol. %). The source chemicals were 96% H2SO4

and 85% H3PO4. This solution was first reported by Ponto and Landolt [184].
The electrolysis was done at 1.8 V, room temperature, and for 15 minutes using
a platinum electrode, while the electrolyte was heavily stirred during the process.
The resistivity curves, measured by Prof. Marek Niewczas (McMaster University)
are shown in Fig. 3.1.

The measurements were only done down to 15 K. Therefore, we had to extrap-
olate down to 4.2 K by the modified Bloch’s equation [185]:

ρ = ρ0 + αT 5. (3.2)

The coefficients ρ0 and α were obtained by fitting and are summarized in Table 3.2,
together with RRR values and coefficients of determinations R2, representing the
goodness of the fit. Higher values of RRR signalized higher chemical purity and vice
versa.

Table 3.2: Values of the fitting parameters ρ0, α, RRR values, and coefficients of
determination.

ρ0 [Ωm] α [ΩmK−5] R2 [-] RRR [-]
Cr-1 7.9096 × 10−6 4.8244 × 10−13 0.99681 135.6
Cr-2 8.4856 × 10−6 1.9093 × 10−13 0.98006 128.5

The slightly higher value of ρ0 of Cr-2 specimen in Table 3.2 correlates with
lower purity of the specimen shown in Table 3.1. Nonetheless, the chemical purity
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Figure 3.1: Measured resistivity curves for Cr-1 and Cr-2 specimens. The RRR
values are 135.6 and 128.5 for Cr-1 and Cr-2, respectively.

of both specimens is mostly below the detection limit of the technique, the lower
RRR value of Cr-2 suggests lower purity.

While the specimens acquired from MaTecK were cylindrical, those from the
Accumet Materials were in the shape resembling an ovoid. After extraction of the
first few specimens from the source crystal provided by Accumet Materials, we have
noticed possible voids that were too large to be caused by grinding.
The computed tomography (CT) technique was used to map the materials’s defects.
The CT scans were performed and reconstructed in CEITEC at the CT-LAB (Brno,
Czech Republic) on the General Electric Phoenix v|tome|x L240 machine. The CT
reconstruction of the Cr-2 specimen has revealed a number of voids spanning almost
the whole length of the specimen. The void space (colored black) is shown on a
vertical cross-section in the left part of Figure 3.2(a). The right part of Fig. 3.2(a)
shows a 3D reconstruction of the Cr-2 specimen, where the internal voids are colored
red. Due to the extreme amount of defects present in the crystal, the Cr-2 specimen
was not used for any mechanical tests. The second crystal from Accumet Materials,
Cr-3, also contained a lot of cavities. However, these cavities were smaller in size
and number compared to Cr-2. The horizontal and vertical cross-section of the
Cr-3 specimen is shown in the top and bottom of Fig. 3.2(b), respectively. The red
circles highlight smaller cavities, which would be hardly visible at this magnification.
Despite the presence of voids, we have decided to extract the specimens from this
crystal by electro-erosive machining, but all the specimens were later rechecked by
CT to make sure that no significant voids were present. The compression specimens
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(a) (b) (c)

Figure 3.2: Computed tomography reconstructions: (a) The Cr-2 specimen (left
picture vertical cross-section, right picture 3D reconstruction with voids filled red),
(b) The Cr-3 specimen (top picture horizontal cross-section, bottom picture vertical
cross-section, red dots mark smaller voids), (c) a compression specimen cut from
Cr-3 (top vertical cross-section of selected part of the specimen, bottom vertical
cross-section perpendicular to the one on the top image showing the same area).

with large voids, such as those shown in Fig. 3.2(c), were excluded from further
testing. The top and bottom of Fig. 3.2(c) are perpendicular cross-sections showing
the same void.

While the process of growth of the Cr-2 and Cr-3 crystals was not disclosed by
manufacturers, the elements of 5th and 6th groups can be grown into single crys-
tals directly from the melt since they do not undergo an allotropic transformation.
However, due to their chemical reactivity and often high melting points, vacuum or
inert gas environment is required. Most such single crystals are prepared by some
variation of the zone melting technique. The floating zone is typically maintained
by halogen lamps, laser, electron beam, or high-frequency induction. This method
also purifies the crystal by vacuum extraction, and zone purification [186,187].
The circular voids are most likely caused by excess gas that is expelled during the
solidification. From this reason, it is advisable to use inert gas instead of vacuum.
The origin of the larger plate-shaped defects can be explained if the Bridgman [188]
or the Bridgman–Stockbarger method [189]. The Bridgman–Stockbarger method
is based on heating a polycrystalline specimen above its melting point and slowly
passing it through a sharp temperature gradient. The specimen is usually contained
in a capsule for the duration of the growth. When the melt passes the temperature
gradient, which is on one side above the liquidus temperature and on the other side
below it, the melt crystallizes on the provided single-crystalline seed. The differ-
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ence between the two mentioned methods is that the Bridgman method pulls the
specimen out of the furnace. In contrast, Bridgman-Stockbarger pulls it into another
furnace heated below the liquidus temperature. If the outer layer solidifies too fast,
it will push the excess gas to the center and may prohibit the influx of new melt
from reaching the void space.

3.1.2 Iron specimens

The iron single crystals were challenging to acquire. The difficulty of growing iron
single crystals lies in the allotropic transformation at 912 °C and 1394 °C. Most of
the single crystals are grown from the liquid phase, for example, by Czochralski or
Bridgman method, especially in the semiconductor industry. Smaller single crystals
primarily for research purposes are often grown by the floating zone method [190],
where only one part of the thin cylindrical specimen is heated, usually above the
liquidus temperature. The melted part, referred to as the zone, moves slowly through
the specimen, which is facilitated by pulling or pushing the specimen along its long
axis. The melted material in the zone is held together by the liquid’s surface tension.
The seed with the desired crystallographic orientation is inserted, and the atoms in
the zone preferentially grow in accordance with the crystal orientation of the seed.

Despite the two allotropic transformations, we have attempted to grow an iron
single crystal by this method after discussion with experts at the Department of
Condensed Matter Physics of the Faculty of Mathematics and Physics, Charles
University in Prague. The growth was attempted by the mentioned method in
both optical and laser furnaces. All prepared specimens resulted in a coarse-grained
microstructure with grains elongated along the axis of the rod, an thus along the
zone’s movement. The cross-sections of the specimens comprised of a few grains.
However, the single-crystalline state was not achieved. The iron single crystal had
the shape of a cylinder with the length of 40 mm and the diameter of 4 mm.

Due to the lack of large single-crystalline iron, its high price tag, and failure to
create them via the floating zone method, we have attempted to create the single
crystals also by strain anneal technique. This method is based on the deformation of
the polycrystalline material to a critical level of strain and subsequently annealing
at a temperature below 912 °C to induce recrystallization. This is usually achieved
by pulling the specimen from the furnace through a cooler, which is able to in-
duce temperature gradients of 200°C/cm [191]. The dislocations created during the
straining provide the internal strain that drives the grain growth during recrystal-
lization. It is of vital importance not to cross the α − γ transition temperature,
otherwise, the growing grains would most likely transform to polycrystalline γ-Fe or
during cooling back to polycrystalline α-Fe, in both cases with many small grains.
Since we do not have a furnace with the temperature gradient and chamber with
flowing dry hydrogen necessary to create a full single crystal, we have resorted to
creating polycrystals with extremely large grains. The source material was acquired
from Blyth Metals Ltd, UK, but the material is originally electrolytic iron from
Japan. Chemical composition of this material is shown in Table 3.3. Carbon and
nitrogen were measured by the infrared absorption method after combustion accord-
ing to ČSN EN ISO 15350 at accredited laboratory TÜV NORD Czech s.r.o. and
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its supplier Vı́tkovice Testing Centre s.r.o. The rest of the elements were measured
by the ICP-MS method at Transport Research Center in Brno by the same process
described above.

Table 3.3: Chemical composition of polycrystalline electrolytic iron. Elements above
the detection limit are in bold. Concentrations are in weight ppm.

Element Concentration [ppm] Element Concentration [ppm]
Na ≤ 3.38 As ≤ 0.064
Mg ≤ 16.6 Se ≤ 1.94
Al 7.3 Mo 0.483
Si ≤ 1.44 Cd ≤ 0.01
K ≤ 9.92 Sn ≤ 0.099
Ca ≤ 10.7 Sb ≤ 0.019
P ≤ 0.929 Te ≤ 0.008
S ≤ 8.11 Tl ≤ 0.054
V ≤ 0.029 Ba ≤ 0.051
Cr 1.39 Pb ≤ 0.029
Mn ≤ 0.198 U ≤ 0.002
Fe Bal. C 0.0027
Co ≤ 0.004 N 0.0011
Zn ≤ 01.29

The single crystal specimen was given to by Prof. Lejček, most likely from older
stock of Prof. Šesták, for which we are very grateful. The chemical composition
measured by the ICP-MS method of the α-Fe single crystal specimen is summarized
in Table 3.4.

Table 3.4: Chemical composition of single-crystalline iron. Elements above detection
limit are in bold. Concentrations are in weight ppm.

Element Concentration [ppm] Element Concentration [ppm]
Na ≤ 6.8 As 0.799
Mg ≤ 2.07 Cu 47.6
Al 5.2 Mo ≤ 0.044
Si 8.46 Cd ≤ 0.012
K ≤ 6.94 Sn 0.689
Ca ≤ 23.8 Sb ≤ 0.003
P ≤ 14.7 Ti ≤ 0.027
S ≤ 6.65 Tl ≤ 0.029
V ≤ 0.03 Ba ≤ 0.006
Cr ≤ 0.120 Pb 1.17
Mn 2.02 U ≤ 0.009
Fe Bal. Zn ≤ 0.045
Co ≤ 0.009 Se ≤ 0.079
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(a) (b)

Figure 3.3: Inverse pole figure maps acquired by EBSD: (a) IPF Z map from the
surface of the flake, (b) IPF Y map from the cross-section.

Strain annealing of α-Fe specimens

The electrolytically produced iron is in the form of thin flakes with thickness usually
between two to eight mm and various shapes, usually about a size of the thumb.
Due to the nature of electrolytic growth, the flakes are made up of columnar grains
with strong ⟨111⟩ texture in the direction of growth.

In order to increase the grain size and remove the texture, we have utilized a
method of repeated cold work and annealing as described by Kadečková & Šesták
[191]. A cuboidal specimen with dimensions approximately 4 × 4 × 12 mm was
cut from the electrolytic flakes, carefully grinded, and polished, and the remaining
deformed layer was removed by Nital (10% HNO3 solution in ethanol). As the first
step, three specimens were deformed by approximately 5 % in the two directions
perpendicular to the long axis of the specimen and enclosed in a quartz tube under
vacuum (the quartz tube was flushed with argon and evacuated several times).
The specimens were placed in a furnace set at 870 °C for six, eight, and ten hours to
determine the optimal annealing time. The average equivalent circle diameter1 rose
from 164.5 µm to 248.3, 270.3, and 269.3 µm respectively. The grain size achieved
after 8 hours of annealing is almost identical to the one after 10 hours. Therefore, for
further experiments, we have chosen 8 hours as the ideal annealing time. The next
set of three specimens was deformed, enclosed in the quartz tube, and annealed for
8 hours. The first specimen of the set was prepared by two cycles of this process, the
second by three cycles and the third by four cycles. The average equivalent circle
diameter increased to 365.5 µm after two cycles, 406 µm after three cycles, and to
542.4 µm after four cycles. The increase of the grain sizes was not homogeneous.
Instead, some grains grew very fast while leaving islands of small grains scattered
throughout the specimen. The grain size distribution computed from electron back
scattered diffraction (EBSD) map on the electrolytic iron before any strain annealing
is shown in Fig. 3.4(a) and after four cycles of strain annealing in Fig. 3.4(b). Side A

1Diameter of a circle with the same area as the grain.
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(a) (b)

Figure 3.4: Grain size distribution of electrolytic iron: (a) after one cycle of strain
annealing, (b) after four cycles of strain annealing. In both cases, the bar width is
0.04 mm.

represents the initial surface of the flake, as depicted in Fig. 3.3(a), side B represents
the cross-section of the flake, as shown in Fig. 3.3(b).

The strain annealing increased the size of the largest grains by at least an or-
der of magnitude. From the histograms in Fig. 3.4(a) and 3.4(b), it is evident
that the number of small grains is reduced slightly while the larger grains start to
emerge. The largest grain after one cycle of strain annealing reached 0.63 mm2,
while after four cycles, the largest grain was almost 4 mm2. The histogram of the
grain size distribution fails to represent the grain growth properly since the number
of large grains is low and seems almost nonexistent when compared to the hundreds
of smaller grains. In order to better describe the grain size, we have written a Python
script that implements the intercept method as described by the ASTM E112 stan-
dard. The intercept method consists of drawing a random line on a micrograph of
the specimen’s microstructure and counting how many times the line intercepts the
grain boundary. The ratio of the line length L to the number of intercepts N is the
average grain size (0.5 intercepts are considered for each end of the line). Of course,
the greater the number of randomly placed lines, the closer the result is to reality.
Thanks to the automation, we are not only able to calculate the average grain size,
i.e., the average L/N ratio of all lines, but we can also store the lengths of segments
between individual intercepts. The micrographs used in this method were created
from the EBSD data, where only the grain boundaries were kept in the picture. For
each micrograph, 15 000 random lines were drawn and evaluated.

The histogram in Fig. 3.5(a) suggests that most line segments (distances of two
successive line intercepts with grain boundaries) are around 0.2 mm long, while the
largest segments reach about 1 mm in length. The side B, which initially contains
a strong columnar grain structure, shows more line segments with lengths from
0.6 mm and above. After four cycles of strain annealing, shown in Fig. 3.5(b), one
can observe a transition to multi-modal distribution, where side A shows a local
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(a) (b)

Figure 3.5: The distribution of line lengths from the intercept method used on
specimen after: (a) one cycle of strain annealing, (b) four cycles of strain annealing.

peak around 0.5 mm, which is not present on side B. However, side B shows more
line segments with the length of 2 mm. A small number of segments are close
to 4 mm long, which means that some of the grains are almost 4 mm in certain
directions. Furthermore, we can characterize the change in the aspect ratio of the
grains. The fitted ellipse aspect ratio (FEAR) can be calculated from the EBSD
data by fitting an ellipse around each of its grains are observing the change in the
ratio of the long and short axis. In the initial state, the average FEAR of the grains
in Fig. 3.3(a) is 2.05, while those in Fig. 3.3(b) have average FEAR of 4.46. The
first cycle of the strain annealing slightly reduced the FEAR of the less elongated
grains on side A to 1.82, but in the case of the elongated grains on side B, the FEAR
parameter was reduced to 2.1. The other three cycles of the strain annealing were
not as effective in reducing the elongation. The FEAR was 1.92 and 1.83 for sides
A and B, respectively.

Furthermore, we have attempted to characterize the average volume of the grain.
Smith and Guttman [192] proposed a method to calculate the average volume per
particle Vp from the two-dimensional sections as:

Vp =
4

π

(
N

L

)(
A

M

)2

, (3.3)

where the N/L is the reciprocal result of the intercept method, A the area of the
measurement region, and M the number of grains in the area A. The number of
grains was calculated from the EBSD measurement. Eq. (3.3) is valid for grains
or particles of constant shape and size, which is not our case. While it can lead to
imprecise results, the general trend should be correct. The average volume of the
grain after one cycle of strain annealing is Vp = 0.00156 and 0.00492 mm3 for sides
A and B, respectively. The four cycles of strain annealing increased the average
grain size to Vp = 0.05038 and 0.06962 mm3. If we combine the average grain sizes
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from both sides, their average volume almost doubles from Vp = 0.0342 mm3 to
0.06 mm3 during the three extra cycles of strain annealing. The findings described
are discussed in more detail in our submitted publication [193].

3.2 Preparation of compression specimens

The specimens for compression testing were cut from the source single crystal by
electro-erosive machining. Before the cutting, the source crystal orientation was de-
termined by electron back-scattered diffraction measurement, and rotations needed
to cut the specimens were calculated. The source crystal was then placed on a go-
niometer and oriented as precisely as possible for further cutting. The electro-erosive
machining was used to cut out specimens with required orientation and dimensions
slightly bigger than those required in order to leave enough material for subsequent
grinding. The excess material is necessary as the electro-erosive machining leaves
the surface with many cracks, depicted in Fig. 3.6, which need to be removed.

Figure 3.6: Cracks left on the surface by electro-erosive cutting. The depicted area
is a radius where the grinding was not done properly. The top and bottom show
well prepared surfaces produced by electrolytic polishing.

The dimensions of the compression specimens were 2.5 × 2.5 × (8 − 12) mm.
The length depended on crystal orientation and is was long as the geometry al-
lowed. Due to the cracks, the specimens’ width and depth dimensions were reduced
to 2 × 2 mm. After the initial grinding, all sides of the specimen were grinded by
a set of abrasive papers with decreasing grit size down to the P2000 paper. Sub-
sequently, the sides were polished with 3 µm and 1 µm diamond paste. Chromium
specimens were electropolished under the same conditions that were described in the
previous chapter about RRR measurements, while α-Fe specimens were electropol-
ished in solution containing 94 % of acetic acid and 6 % of perchloric acid at room
temperature with voltage of 30 V for 20 to 30 s. A corner was cut off to ensure that
the orientation was kept at all times during the experiment and characterization.
The model of the specimen is shown in Fig. 3.7(a) and schematic representa-
tion on slip systems in the single-crystalline specimen after the compression test
in Fig. 3.7(b).

After the specimens were prepared, an EBSD measurement was used to ori-
ent the sample and to determine the orientation of the loading axis of the specimen.
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(a) (b)

Figure 3.7: (a) model of the compression specimen with the designation of the sides
(A, B, A’, B’), (b) slip systems in the specimen after the test and their trace marks
on the surface on the right.

The measurements were done in scanning electron microscope Tescan LYRA 3 XMU
FEG/SEMxFIB equipped initially with Oxford Instruments Nordlys, and with more
recent studies done using Symmetry EBSD camera and Aztec software. After com-
pleting the compression test, EBSD analysis was performed for the second time to
evaluate the rotation in the loading axis during straining.

The specimens were tested on the Instron 8862 100 kN machine equipped with
a custom-made cooler to hold the liquid nitrogen around the specimen. Some spec-
imens were predeformed at room temperature. To increase the mobile dislocation
density an thus to prevent brittle fracture. The specimen was placed in the com-
pression cell and pre-loaded to 200 N. Liquid nitrogen was poured into the cooler
and continuously refilled during the experiment. Before the test began, the machine
and the sample were let to stabilize for at least 30 minutes. Due to the cooler and
specimen being submerged in the liquid nitrogen, it is not possible to measure the
deformation with extensometers. Therefore, we rely on the stress-strain relationship
measurement by the testing machine. The cross-head speed is set to 30 µm/min,
which causes the plastic strain rate of about 10−5 s−1. Because the measurement
was done without the extensometer, it is necessary to perform corrections. These
were done after the test based on true plastic strain computed from dimensions of
the specimen before and after the deformation, and the elastic modulus calculated
for each orientation.

3.3 Preparation of samples for TEM, VSM and

Kerr microscopy

The TEM foils in this study were prepared by carefully thinning the material to
approximately 100 µm by grinding and polishing in an in-house made holder.
It allowed for careful adjustment of thickness and preventing inhomogeneous thin-
ning and thus reducing the possibility of creating the wedge-like shape of the spec-
imen, which would create problems with electrolytic thinning. After reaching the
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desired thickness, a foil with the diameter of 3 mm was punched out from the plate
with a disc punch machine. The electrolytic polishing was performed on TenuPol
5 from Struers with an electrolyte consisting of 950 ml of acetic acid and 50 ml of
perchloric acid. The electrolyte was used at 12 °C and 80 V until obtaining a hole
with an electron transparent rim.

The lamellae were prepared on Thermo Scientific Helios 5 Dual Beam or Tescan
LYRA 3 XMU FEG/SEMxFIB by standard lift-out techniques using gallium focused
ion beam (FIB). An approximately 1.5 µm thick protective layer of amorphous
platinum or tungsten was deposited using a gas injection system (GIS). The GIS
delivers a precursor containing one of the mentioned elements, which are broken
down by the ion (or electron) beam and deposited onto the surface, thus creating
the protective layer. Trenches were milled on both sides of the future lamella,
and the lamella was undercut by the ion beam leaving just a small bridge to the
surrounding material that holds the lamella in place. Subsequently, the needle of
a micromanipulator was connected to the lamella by the deposition from GIS, and
the bridge was milled away by FIB. After lifting the lamella out from the material,
it was welded onto a special copper or molybdenum TEM grid and thinned by FIB
with decreasing beam energy and current in steps until the electron transparency
was achieved.

The specimens used in magnetic measurements were carefully cut from the source
material and grinded to avoid deformation in the material. In all cases, the speci-
mens were electropolished to remove any deformation left after the grinding.
The specimens were glued onto the holder of the vibrating sample magnetometer
(VSM) machine with Varnish glue. The iron specimens were magnetized mainly in
the LakeShore 7400 series VSM because of its ease of use at room temperature. The
Physical Property Measurement System (PPMS) with EverCool 2 from Quantum
Design was used for precise measurements at low temperature. Thanks to its opera-
tional temperatures between 2 and 400 K, it was used also for the magnetization of
the chromium specimens and for more precise measurement on the α-Fe specimens.
In cases where the magnetization or measurement in a certain direction was neces-
sary, we have first used EBSD measurement to determine the orientation. Custom
3D-printed holders were designed to achieve the desired orientation and keep the
specimen stable during the measurement, shown in Fig. 4.11(c).

ZEISS Axio Imager A2m microscope modified by Evico Magnetics GmbH at
CEITEC Nano was used to image the magnetic domains in α-iron. The specimens,
previously grinded and polished to 3 µm diamond paste, were prepared by the
electropolishing technique on LectruPol-2 machine (Struers) using A3 electrolyte
at room temperature and 30 V for 5-15 seconds. Moreover, the specimens were
clamped in aluminum holder to minimize movement during magnetization.
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List of symbols

Symbol Meaning Equation
Latin symbols

A Area (3.3)
L Line length (3.3)
M Number of grains in measured area (3.3)
N Number of intercepts (3.3)
R2 Coefficient of determination
T Temperature (3.2)
Vp Average particle volume (3.3)

Greek symbols
α Fitted parameter (3.2)
ρ Electrical resistivity (3.1)
ρ0 Electrical resistivity at 0 K (3.2)
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4 Characterizations of magnetic states

This chapter deals with the measurements of magnetic properties of chromium and
α-Fe. We use Vibrating Sample Magnetometry (VSM) measurements and neutron
magnetic scattering to elucidate the changes of magnetic moments in the specimens
before and after plastic deformation.

4.1 VSM measurements on polycrystalline α-Fe

A specimen with dimensions approximately 2.9 × 3 × 0.51 mm was prepared from
one of the samples after 4 cycles of strain annealing and the hysteresis curve was
measured by applying magnetic field along its shortest and longest axis. The spec-
imen was deformed in compression to ϵpl = 0.1 and 0.24 in the direction of the
shortest axis, and the magnetic measurement was performed after each deformation
step on the PPMS machine in the VSM mode. The resulting hysteresis loops are
shown in Fig. 4.1.

The probing field was applied perpendicular to the deformation axis. Since the
deformation of the specimen changed its size, we have corrected the measured curves
using the demagnetizing factor [194, pp. 35–38]

H ≃ H ′ −NM, (4.1)

where H is the magnetic field in the specimen, H ′ the external (applied) field, N
the demagnetizing factor, and M the magnetization. In general, the demagnetizing
factor is a 3 × 3 tensor, but it can be simplified for symmetrical objects such
as cuboids, cylinders and ovals [195–198]. For our purposes, we have considered
the demagnetization factor NH approximation for rectangular prisms published by
Aharoni [199]. For a magnetic field applied along the z axis, it is defined as

πNH = ψef ln ϵe + ψeg ln ϵf +
f

2g
ln θef +

e

2g
ln θfe +

g

2e
ln θfg +

g

2f
ln θag

+2 arctan
ef

gρ
+ ω3 + ω2ρ+

g

ef
(
√
ηef +

√
ηfg) −
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3/2
ef + η

3/2
fg + η

3/2
eg

3efg
,

(4.2)

where g is the length of the specimen in the direction of the magnetic field, and
e, f the two perpendicular dimensions. The substitutions in Eq. (4.2) are: ψxy =

(x2 − y2)/2xy, ϵx = (
√
e2 + f 2 + g2 − x)/(

√
e2 + f 2 + g2 + x), θxy = (

√
x2 + y2 +

x)/(
√
x2 + y2−x), ωx = (ex+fx−2gx)/3efg, ηxy = x2+y2 and ρ =

√
e2 + f 2 + g2.
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Figure 4.1: Hysteresis loop of polycrystalline α-iron specimen measured perpendic-
ularly and parallel to the applied strain at RT. Measurements done perpendicularly
to the applied field are marked by ⊥, while those measured in parallel direction are
marked by ∥. Furthermore, dotted lines were measured after demagnetization and
are marked by the subscript d. The inset shows enlarged part of the hysteresis curve
of the specimen deformed to 24% which was measured with probing field along the
direction of the deformation axis direction. The increments of the magnetic field
during the measurement are 2 Oersteds.

The hysteresis loop measured on the deformed specimen in Fig. 4.1 increases its
slope with increasing deformation. It is important to emphasize that the probing
magnetic field was perpendicular to the deformation axis. Usually, with increasing
deformation the slope of the curve tend to decrease, as is evident in the magenta
and dark blue curves, which were measured with probing field along the deforma-
tion axis. We attribute the increase of slope of the curves measured perpendicularly
to the rotation of crystal axis to more easily magnetizable direction. Furthermore,
the inset in Fig. 4.1 shows an enlargement of small part of the curve measured
at deformed specimen with probing field along the deformation axis. Unlike other
curves, this one shown steps on the curve, which we attribute to the Barkhausen
effect. The steps are caused by domain wall pinning on lattice defects [200]. How-
ever, acoustic emission measurements were not done. The hysteresis loops measured
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on the specimen deformed to ϵpl = 0.24 with probing field parallel to the loading
axis (magenta and dark blue curves) do not reach the saturation. We attribute this
to heavy deformation that prevents the growth of the magnetic domains.

4.1.1 Jiles-Atherton model

In order to link the magnetic properties of samples’ to materials’ parameters, we
have fitted our data to the Jiles-Atherton (JA) model [201], which was modified to
include magnetic anisotropy [202, 203]. The JA-model considers the domain wall
motion by describing interplay between energy losses and changes of magnetization.
The elementary idea of the model is that the bulk magnetization M is a sum of
reversible magnetization Mr and irreversible magnetization Mir [204]. The reversible
magnetization Mr is attributed to the reversible bowing of the domain walls, whereas
the irreversible magnetization Mir arises from domain wall pinning at crystal defects
and inclusions [205]. Within this model [201], the equation for anhysteretic1 isotropic
magnetization is

M iso
an = Ms

[
coth

He

a
− a

He

]
(4.3)

where the equation in the bracket is the Langevin function. Here, He is the effective
magnetizing field defined as

He = H + αM, (4.4)

where α is the Bloch interdomain coupling coefficient. The parameter a in Eq. (4.3)
determines the slope of the anhysteretic curve at the beginning of the magnetization
(in the limit of zero He) and is expressed as:

a =
N̄kBT

µ0Ms

, (4.5)

where N̄ is average domain density present in the material, kB the Boltzmann con-
stant, T the temperature in Kelvins, µ0 the magnetic permeability of free space, and
Ms the saturation magnetization.

The anhysteretic anisotropic magnetization is described in [203,206] as:

Maniso
an = Ms

[∫ π

0
eE1+E2 sin θ cos θdθ∫ π

0
eE1+E2 sin θdθ

]
, (4.6)

where θ is the angle between the direction of the atomic magnetic moment and the
direction of the magnetizing field. The terms E1 and E2 are further described as:

E1 =
He

a
cos θ − Kan

Msµ0a
sin2(ψ − θ) (4.7)

and

1Anhysteretic magnetization is an ideal magnetization without losses resulting from domain
wall displacements in cyclic magnetic fields.
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E2 =
He

a
cos θ − Kan

Msµ0a
sin2(ψ + θ), (4.8)

where ψ is the angle between the magnetizing field and the easy axis of magnetization
and Kan the average energy density dependent on the uniaxial anisotropy, which can
be for cubic single crystals computed by Eq. (1.5)2. Of course, this equation is for
single-crystalline material. For polycrystals Kan is the average value taken across
all grains for the given direction of the magnetic field. It should be noted that
the average energy density depends on stress in the material and can be expressed
as [98, pp. 262]:

Kan(σ) =
3

2
λσ sin2 β, (4.9)

where λ is magnetostriction, σ the uniaxial stress, and β the angle between the
direction of stress and magnetization. Furthermore, the relationship between the
reversible magnetization Mr, anhysteretic magnetization Mah and irreversible mag-
netization Mir is given by

Mr = c(Mah −Mir), (4.10)

where c describes the magnetization reversibility [207]. Finally, the magnetic hys-
teresis loop of the specimen can be calculated from the following differential equa-
tion [201,208]:

dM

dH
=

δM
1 + c

Mah −M

δk − α(Mah −M)
+

c

1 + c

dMah

dH
. (4.11)

Here, k describes average energy required to break the magnetic domain walls free of
the pinning site. The parameters δ and δM are introduced to keep the mathematical
model within physical boundaries. The rules for their values are as follows:

δ =

{
1 dH

dt
≥ 0

−1 dH
dt
< 0

(4.12)

and

δM =

{
0 (dH

dt
< 0 ∧ Man −M > 0) ∨ (dH

dt
≥ 0 ∧ Mah < 0)

1 otherwise.
(4.13)

The δ parameter ensures that the domain wall pinning opposes the changes
in magnetization, and δM maintains that the incremental susceptibility is always
positive. Table 4.1 shows the units of the parameters used in the JA model.
The model fits only the parameters shown in Table 4.2.

We have fitted the experimentally measured curves in Fig. 4.1 to the anisotropic
Jiles-Atherton model described by Eq. (4.11). All of the fits consider the easy axis

2In this case, we use the Kan instead Ecrys, same as the literature concerning the Jiles-Atherton
model does.
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Table 4.1: List of the parameters and their units used in the Jiles-Atherton model.

Parameter Units Equation
Ms A/m (4.3, 4.6, 4.7, 4.8)
a A/m (4.3, 4.7, 4.8)
α - (4.4, 4.11)
N - (4.4)
T K (4.4)
kB m2 kg s−2 K−1 (4.4)
µ0 H/m (4.4)
Kan J/m3 (4.7, 4.8)
θ deg (4.6, 4.7, 4.8)
ψ rad (4.7, 4.8)
λ µm/m (4.9)
σ Pa (4.9)
β deg (4.9)
c - (4.10, 4.11)
k A/m (4.10,4.11)

of magnetization to be perpendicular to the magnetizing field. We have attempted
to use also the isotropic model, however, we were unsuccessful in optimizing the
fit. Furthermore, the magnetic field was fitted in T and kA/m, otherwise the opti-
mization was also unsuccessful. The initial parameters were estimated based on the
recommendations in Ref. [209] as:

Ms ∈Mtip · ⟨1, 1.2⟩
k ∈ Hc · ⟨0.2, 5⟩

c ∈ ⟨0; 1⟩
a ∈ Hc · ⟨0.5, 5⟩
α ≈ Htip/Mtip,

where Htip and Mtip are the coordinates of the positive saturation point, and Hc the
coercivity. The fit was done in the MATLAB code written by Prof. Szewczyk [208],
also available online at [210].

The results are summarized in Table 4.2. In many cases, we have arrived at
slightly different results when starting the optimization with different initial condi-
tions. The results in Table 4.2 are shown as averages and standard deviations of
the fits. In the case of the specimen deformed to ϵpl = 0.24 and measured with the
probing field parallel to the deformation axis, the model did not fit the measured
data exactly and showed best fit that reached saturation.

Table 4.2 shows decrease in the average energy density Kan with the amount of
applied strain, which could be caused by rotation of grains during the deformation.
The Bloch interdomain coupling constant a, magnetization reversibility c, and sat-
uration magnetization Ms also decrease. The only parameter that increases is k,
which describes the average energy to break the domain walls free from the pinning
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sites, which agrees with the deformation in both cases, regardless the orientation of
the probing field to the deformation axis.

Table 4.2: Results of the fit of experimental data to the JA model.

Constant ϵ⊥pl = 0 ϵ⊥pl = 0.1 ϵ⊥pl = 0.24 ϵ
∥
pl = 0.24

a [A/m] 5.89 ± 0.39 6.08 ± 0.75 4.00 ± 0.85 0.65 ± 0.37
k [A/m] 7.88 ± 0.28 8.43 ± 0.77 10.67 ± 0.45 9.2 ± 0.9
c [-] 0.37 ± 0.77 0.20 ± 0.11 0.09 ± 0.01 0.10 ± 0.03

Ms [106 A/m] 1.73 ± 0.03 1.73 ± 0.01 1.56 ± 0.01 0.96 ± 0.04
α [10−5] 1.12 ± 0.15 0.16 ± 0.1 1.32 ± 0.26 2.04 ± 0.45

Kan [102 J/m3] 2.68 ± 0.03 1.92 ± 0.02 1.41 ± 0.06 4.31 ± 0.11
ψ [rad] π/2 π/2 π/2 π/2

To understand the changes of the parameters entering the Jiles-Atherton model,
we draw the hysteresis curves with different choices of parameters as shown in
Fig. 4.2. The change in saturation magnetization, Ms, shown in Fig. 4.2(a) logi-
cally causes the curve to reach different magnetization values, but also affects the
initial slope of the curve. The change of the Bloch interdomain coupling parameter
a, Fig. 4.2(b), causes most notable changes in the curvature ”knee” of the curve
and seems to influence the growth of of the domains, as well as smaller changes to
the saturation magnetization. It should be noted that we used a = 100 A/m to ex-
aggerate these changes. Fig. 4.2(c) shows the changes of the hysteresis curves upon
varying the parameter α. When high values were used, the model did not produce
the typical hysteresis curves. Still, the α parameter causes very little change to the
hysteresis curve. On the contrary, the parameter k which describes the difficulty
of breaking the domain walls free of the pinning sites, shown in Fig. 4.2(d), causes
major changes to the hysteresis curves in regions from zero magnetization to full
saturation. However, it does not influence the shape of the curves when leaving
the saturation magnetization. Similarly to the parameter α, the magnetization re-
versibility c does not influence the shape of the curve much when changed, which is
shown in Fig. 4.2(e). The change in the Kan parameter describing the anisotropic
average energy density, shown in Fig. 4.2(f) has smaller, but opposite effect than the
parameter a. Lastly, the change of the angle between the easy axis of magnetization
and the orientation of the magnetizing field, ψ, shown in Fig. 4.2(g), influences
the ease of magnetization and behaves similarly to the parameter a. However, the
former does not cause such a sharp ”knee”. From the analysis of the changes caused
by the parameters used in the Jiles-Atherton model, we can assume that, in some
cases, the parameters in the fit can balance each other out, and changes of some
parameters have very little impact on the shape of the hysteresis curves.
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Figure 4.2: Variation of the magnetization curves due to changes in one parame-
ter. Reference parameters are: Ms = 1 × 106A/m, a = 100 A/m, α = 5 × 10−5,
k = 20 A/m, c = 0.8, Kan = 400 J/m3, ψ = 0. In each picture, only one parameter
is varied from 0.5 to 1.5 times its initial value while the others are fixed to the
reference value: (a) Ms, (b) a, (c) α, (d) k, (e) c, (f) Kan, and (g) ψ varied from 0
to π/2.

4.2 Magnetic domains in iron specimens

The magnetic domains were observed by employing the Kerr microscope as described
in Section 1.8. An example of magnetic domains in single-crystalline specimen is
shown in Fig. 4.3. Here, one small grain can be seen in the upper right corner. This
solitary grain was the only imperfection found in the single crystal and was used
for easier orientation. In this case, the direction of the magnetizing field is vertical
and illumination is also vertical, which allows us to image magnetic domains with
magnetization vectors in the vertical direction. Fig. 4.3(a) shows the domains at
zero applied field, Fig. 4.3(b) and 4.3(c) at -0.1 T and 0.1 T of, respectively. The
color coding in the images is artificial to increase the visibility of the domains (false
colors). Since the movement of domains is not significant, we also subtract the un-
magnetized state image from the image showing the magnetized state. Fig. 4.3(d)
shows difference between the -0.1 T state and the unmagnetized state. Similarly,
Fig. 4.3(e) shows the difference between 0.1 T and unmagnetized state. The plots
are achieved by subtraction of the unmagnetized state image from the image show-
ing the magnetized states. Thus the contrast variation in these images does not
represent the domains, but their growth (dark) or withdrawal (bright) in certain di-
rections. In all Figures in this section, the direction of illumination K and direction
of magnetic field H is shown by the arrows in top image of each figure. Further-
more, orientation of crystal directions best matching the shape of magnetic domains
is shown. This orientation was revealed by EBSD measurements. The magnetic
domains in Fig. 4.3 roughly follow the ⟨100⟩ direction in the crystal, visualized by
the arrows in Fig. 4.3(a). The ⟨100⟩ directions in α-Fe are also easy axes of mag-
netization. The domains in this figure for either long rectangular domains (marked
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A) or smaller loops containing domains with both magnetization direction (marked
B). These loops are located in the upper left region of the images. Some domains
appear as series of separated islands in a certain direction. However, also the domain
best visible in Fig. 4.3(b) in the lower right corner shows serrations in its structure,
which seems similar in size to the smaller separated islands . Lastly, the small grain
in the top right corner contains domains with similar size to its surroundings.

Fig. 4.4 shows magnetic domains in Fe-mono-1 single crystal specimen, which
was deformed by approx. 6% at room temperature. Compared to Fig. 4.3, which
shows the specimen in the undeformed state, the magnetic domains seem to be of
approximately the same size and they still follow the basic ⟨100⟩ crystal direction.
Other magnetic domains (not shown here) look similar to those photographed on
the undeformed specimen. Even though two different places are shown, the homo-
geneous deformation does not seem to cause any distinct change in the domain size.
The domains here are reminiscent of of trees with branches sticking out of the trunk.
We have not found any similar magnetic domain structures in the literature. These
structures were not observed in the undeformed specimen. However, the whole sur-
face was not studied and thus we cannot prove that these structures are a result of
plastic deformation.

The Fe-mono-2 specimen was predeformed at room temperature to 1.7% and
than to 2.5% at 77 K. The magnetic domains are shown in Fig. 4.5. These do-
mains, contrary to previous measurements, seem to be bounded by ⟨110⟩ crystal
directions instead of ⟨100⟩. The domains are also smaller, but repeat more fre-
quently. Similar domain structure was observed by Bozorth [211], who call this a
maze structure. However, Bozorth report that the domains are bounded along ⟨100⟩
directions. McKeehan and Elmore [212] also observed similar maze-like domains. In
their case, the domains form a proper maze structure, whereas our magnetic domain
structure seems to overlap. This can be caused by a different method of observa-
tion, as they used used magnetic powder to image the domains and we used Kerr
microscopy. Secondly, in our case, the crystal surface is not perfectly along a {100}
crystal plane, which may cause distortion to the domain appearance. Large domains
bounded by the ⟨100⟩ direction were observed on this specimen (not showed), similar
to those shown in Fig. 4.3.

Fig. 4.6 shows magnetic domains in polycrystalline specimen Fe-poly-1, which
was predeformed at room temperature to 0.9% and further deformed at 77 K to
2.5%. This polycrystalline specimen also deformed by twinning.

Fig. 4.7(a) shows an EBSD IPF Z map of the same area shown in Fig. 4.6 with
identified twinning systems. Fig. 4.7(b) is the Kerr micrograph of the identical
area showing crystal directions along which change in the magnetic domains occur.
The magnetization can change along the (001) or (010) planes. As mentioned in
Section 1.2, the easy axis of magnetization in α-iron is along the ⟨100⟩ crystal di-
rections. In Fig. 4.7(b), the twins can block the magnetic domains from continuing
further to the matrix. However, in some cases the magnetic domain continues un-
interrupted, as can be seen around the middle part of the left-most (2̄11)[1̄1̄1̄] twin
(marked A), where the darker domain continues through the twin. At other places
however, the domain is stopped at the twin-matrix boundary and a different do-
main emerges on the other side (marked B). A similar phenomenon is evident at the
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(a)

(b) (c)

(d) (e)

Figure 4.3: Magnetic domains measured by Kerr microscopy on α-iron Fe-mono-1
specimen before deformation in different magnetizing fields. Illumination K is verti-
cal, thus only domains with vertical magnetization vectors are visible. The direction
of magnetic field H is also vertical. (a) Unmagnetized state, (b) magnetized at -0.1
T, (c) magnetized at 0.1 T. Domain change between (d) -0.1 T and unmagnetized
state and (e) 0.1 T and unmagnetized state.

left (1̄21)[111̄] twin. Needle-like domains form on (321)[11̄1̄] twins along the trace
of (01̄1) plane. A larger, but similarly looking domains also emerge spontaneously
from the matrix, but form along (001) plane. The twins seem to have a large influ-
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(b) (c)

(d) (e)

Figure 4.4: Magnetic domains measured by Kerr microscopy at α-iron Fe-mono-
1 deformed specimen in different magnetizing fields. Illumination K is vertical,
thus only domains with vertical magnetization vectors are visible. Magnetic field
direction H is also vertical. (a) 0 T, (b) -0.05 T, (c) -0.1 T. Domain change between
(d) -0.05 T and unmagnetized state and (e) -0.05 T and -0.1 T state. Background
taken at 0.1 T.

ence on the magnetic domains that follow the the (001) and (010) directions. The
smaller domains in the bottom right corner in Fig. 4.7(b) seem to be unaffected
by the presence of the (1̄21)[111̄] twin. A similarly looking domains were reported
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(b) (c)

(d) (e)

Figure 4.5: Magnetic domains measured by Kerr microscopy at α-iron Fe-mono-
2 specimen in different magnetizing fields. Illumination K is vertical, thus only
domains with vertical magnetization vectors are visible. Magnetic field direction H
is also vertical. (a) -0.05 T, (b) 0 T, (c) 0.05 T. Domain change between (d) -0.05 T
and unmagnetized state and (e) 0.05 T and unmagnetized state. Background taken
at -0.1 T.

by Street and Hall [213] in iron with 3.5% of silicon. Due to different technique
used to image the domain (colloidal Fe2O3 particles in soap water), it is difficult
to compare the domain structures directly. Nonetheless, they report the needle-like
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(a)

(b) (c)

(d) (e)

Figure 4.6: Magnetic domains measured by Kerr microscopy at α-iron Fe-poly-1
deformed specimen in different magnetizing fields. Illumination K is horizontal,
thus only domains with horizontal magnetization vectors are visible. Magnetic field
direction H is vertical. (a) -0.05 T, (b) -0.1 T, (c) -0.15 T. Domain change between
(d) -0.05 T and -0.1 T and (e) -0.15 T and -0.1 T. Background taken at 0.1 T.

domains in ⟨100⟩ directions. They further argue that if the twin is sufficiently thin,
the magnetic flux might not be contained on one side of the twin, but overlap to
the other side. This qualitatively agrees with our results, as the thinner twins seem
to nucleate the needle-like domains, but the thicker twins, such as (1̄21)[111̄] twin
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in Fig. 4.7 seem to stop the magnetic domains without nucleating new ones on
the other side. Furthermore, similar domains were observed by Hug [214] also in
iron with 3.5% of silicon, who calls them ”spikes”. Hug reports these domains in
undeformed specimens, originating from a grain boundary. He also shows that the
domains often continue unchanged through a grain boundary, or create the spikes
with reverse magnetization.

(a)

(b)

Figure 4.7: (a) EBSD IPF Z map showing twins and their labels in deformed Fe-poly-
1 specimen, (b) Kerr micrograph of the same area as in (a) showing the magnetic
domains and corresponding directions. Illumination and direction of the magnetic
field is the same as in Fig. 4.6(a). The legend to the (a) is same as in Fig. 3.3(b).
The subscripts in the labels of twinning systems in (a) mean that the system is
sheared in the twinning sense.
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4.3 VSM measurements on Cr single crystals

Single crystal Cr specimens were fabricated in the form of a cube of 3 mm edge
length with sides perpendicular to ⟨100⟩ crystal directions. The sample preparation
was identical to the process described previously. The PPMS 9T vibrating sample
magnetometer system was used to characterize the magnetic states of specimens.
The magnetic susceptibility was measured from 4 K to 298 K on heating cooling.
The probing field used was 1 T. Measurements were also performed at lower fields
(0.1 T and 0.01 T) but they proved to be too noisy. After the cooling and heating
cycle, the specimen was rotated and measured again in all three ⟨100⟩ directions.
The measurement on the as-received specimen is shown in Fig. 4.8. Differently
colored lines represent different orientations, full lines represent heating (the spec-
imen was heated from 4 K to 295 K), dashed lines represent cooling back down to
4 K. Vertical dashed-dotted line represents the spin-flip temperature, TSF , at 123
K, where the magnetic state changes from TSDW at higher temperatures to LSDW
at lower temperatures.

Figure 4.8: Mass susceptibility measurements on chromium specimens in the initially
magnetically isotropic (triple-Q) state.

A similar methodology was used to turn the specimens into a single-Q state.
The 3 mm cube specimen was heated above the Néel temperature and subsequently
cooled down to 4 K in the field of 5 T. The results of mass susceptibility measure-
ments on the same specimen as in Fig. 4.8 but in the single-Q state are shown in
Fig. 4.9, where the direction of the magnetizing field is along the [100] direction.

The most notable changes between the two states occur around TSF at 123 K.
The almost gradual change of susceptibility around the spin-flip temperature in
triple-Q state (Fig. 4.8) becomes abrupt in the single-Q state (Fig. 4.9). This
observation suggests that spins suddenly align in longitudinal or transversal direc-
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Figure 4.9: Mass susceptibility measurements on chromium specimens in the single-
Q state.

tions and this phenomenon is detected during both hearing and cooling. In the
ideal case, all curves in Fig. 4.8 should lie on top of each other. However, this is
not the case. The differences are most likely caused by partial magnetization by the
probing field. In the case of the single-Q state in Fig. 4.9, the green and blue lines
should be on top of each other. This misalignment can be caused by two factors: (i)
the orientation of the specimen is not exactly [100], or (ii) the magnetization in the
direction of the magnetizing field is not 100%. Even with the mentioned facts, this
method seems to be suitable for determining the magnetic state of the chromium
single crystals. Fig. 4.10 offers explanation of the susceptibility curves in Fig. 4.9.
In the real experiment, the specimen was rotated while the probing magnetic field
H stayed fixed. It is important to keep in mind that the specimen was cooled down
from above the Néel temperature in the field of 5 T to 4 K. The direction of the
magnetic field, in relation to all pictures in Fig. 4.10 is horizontal and the direction
of the crystal axes is identical to the diagrams shown in Section 1.7. The colors of
the cubes in Fig. 4.10 correspond to the colors of the curves in Figs. 4.8 and 4.9.
The vectors S, H, and Q represent the direction of spins, probing magnetic field
and wavevector respectively. The pictures in the upper and lower rows in Fig. 4.10
represent the TSDW and LSDW state respectively. Following is the explanation of
the meaning of the curves in Fig. 4.9 using the illustrations in Fig. 4.10.

� Red curve in the [100] direction
The value of magnetic susceptibility is lower for the red curve in Fig. 4.9
below the spin flip temperature. This suggests that spins S are aligned with
the probing field H. The sample was magnetized in the same direction as the
magnetic field. Therefore, the wavevector Q is also in the same direction, as
visualized in Fig. 4.10(d). When the specimen is heated above the spin flip
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temperature, the orientation of the spin S changes, creating the transversal
phase, visualized in Fig. 4.10(a). Here the spins can be oriented in two
directions, both perpendicular to Q and the specimen is in the double η state
described in Fig. 1.13. Now, the probing field H is perpendicular to the
spins S and, therefore, the susceptibility increases. Because there are two
possibilities for spin directions, both of them perpendicular to the probing
field H, the values of susceptibility are higher than for the green and blue
curves in Fig. 4.9.

� Green curve in the [010] direction
The values of susceptibility are high in the region below the spin-flip temper-
ature in Fig. 4.9 suggesting that the spins S are perpendicular to the probing
filed H as shown in Fig. 4.10(e). Upon heating above the spin-flip tempera-
ture, the phase changes from longitudinal phase, where spins S and wavevector
Q are parallel, to the transversal spin density wave phase where the spins S
are perpendicular to the wavevector Q. Again, there are two possibilities for
directions of the perpendicular spins, as shown in Fig. 4.10(b). Now at least
one set of spins is parallel; therefore, the value of the susceptibility is lower
compared to the red curve above.

� Blue curve in the [001] direction
At low temperatures below the spin-flip temperature, the susceptibility value
is high because of the orientation of the spins S and probing field H in
Fig. 4.10(f). The reason is identical to that in the previous explanation for
the green curve. Very similarly, when the temperature increases and spins flip,
depicted in Fig. 4.10(c), one set of spins S is perpendicular to the probing
field H which explains the decrease of susceptibility values around the spin-flip
temperature.

In the TSDW phase, the values of the susceptibility increase with increasing tem-
perature due to the increasingly strong effects of the temperature on the instability
of the internal magnetic order. Furthermore, the rise in the susceptibility values for
the red curve when switching from the LSDW phase to the TSDW phase is roughly
double the decrease for the other two curves. This can be explained by the reorienta-
tion of spins, which are all in the same direction at low temperatures (Fig. 4.10(d)),
and flipping into perpendicular directions at high temperatures (Fig. 4.10(a)). In
the case of the blue and green curves, only half of the spins theoretically reorient by
the probing filed H, which results in a smaller step at the spin-flip temperature.

Similar results were reported in chromium by Pepper et al. [215]. This behav-
ior is, however, not unique to chromium and was reported also for other materi-
als [216–219]. The susceptibility seems to decrease below the spin-flip temperature
in case when the spins are parallel to the magnetic field (red curve in Fig. 4.9).
This phenomenon is explained by Kittel [220, p. 321-345]: ”When the external
field is perpendicular to the spontaneously induced magnetic moment, the magnetic
susceptibility is almost independent of temperature, while in the parallel case, the
susceptibility decreases when the temperature is lowered because the force mak-
ing magnetic moments antiparallel becomes stronger and stronger, which leads to
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(a) (b)
(c)

(d) (e) (f)

Figure 4.10: Orientations of the spins S (green arrows), directions of the probing
field H (blue arrows), and the wavevectors Q (yellow arrows) for all six possible
configurations. These are used to interpret the three curves above and below the
spin-flip temperature in Fig. 4.9.

that the material being harder and harder to be magnetized by the external field”.
This explanation holds for the LSDW state, where the susceptibility decreases un-
til approximately 50 K and both perpendicular susceptibilities stagnate. We do
not currently have an explanation for the increase of the susceptibility below 50 K.
However, it may be caused by the way the sample is attached to the VSM holder,
in particular by freezing the air trapped by the glue that holds the specimen. This
assertion is supported by the fact that the freezing point of oxygen and nitrogen are
54 and 63 K, respectively.

4.4 Neutron diffraction study of Cr single crystals

The specimens used in the following neutron diffraction studies were cut from the
Cr-3 source crystal (Accumet Materials, Co.) by electroerosive machining and
checked with CT to rule out any hidden defects in the specimens. The specimens
that have passed have been prepared by grinding, polishing, and electropolishing as
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explained in Section 3.1.1. All specimens in this section, except one cube-shaped
specimen with a 3 mm edge length, have been cut in the same orientation. The
loading axis is along the [1̄25] crystallographic direction, shown in Fig. 4.11(a),
in which the slip on low-stressed (01̄1) planes was observed. The cube specimen,
measured in Section 4.3 by VSM, has ⟨100⟩ crystal directions along the edges of the
cube. Because the presence of magnetism that breaks the crystal symmetry, the ele-
mentary area of the stereographic projection is not the standard [001]− [011]− [1̄11]
triangle, but the triangle is formed by the axes [001], [010] and [1̄00], as shown in
Fig. 4.11(a). Fig. 4.11(b) shows a visualization of the chromium single-crystalline
specimen where the arrows represent the ⟨100⟩ directions with different color coding.
The [001] direction is red, the [010] direction is green, and the [1̄00] direction is blue.
In order to hold the specimen fixed in the desired orientation while doing the VSM
measurements, we have made special holders using 3D printing. A visualization
of such holder is shown in Fig. 4.11(c), in which the sample is oriented in [010]
direction with the magnetic field applied along the long axis of the specimen holder.

(a)
(b)

(c)

Figure 4.11: Orientation of the specimens used for magnetic neutron scattering
experiments: (a) position of the [1̄25] loading axis in the extended stereographic
projection with color-coded ⟨100⟩ directions, (b) visualization of the ⟨100⟩ directions
in relation to the specimen with same color coding as in (a), (c) example of the 3D
printed holder with inserted specimen oriented with [010] direction parallel with
the magnetic field. The red, green, and blue colors represent the directions of the
wavevectors of SDWs.

The specimen holder with the inserted specimen was glued to the holder of
the PPMS VSM machine and magnetized by the field-cooling method described in
Section 1.7. The specimen was heated to 340 K, which is about 30 K above the
Néel temperature, in order to ensure proper demagnetization. After a short stay at
340 K, the magnetic field was switched to 5 T. The specimen was cooled to 4 K, after
which the magnetic field was switched off. After re-heating, the specimen was taken
out of the machine at approx. 280 K3, quickly removed from the holder and kept in
the freezer at 243 K to preserve the magnetic state. The schematic representation
of the field-cooling process is shown in Fig. 4.12. A total of seven specimens were

3The machine does not allow opening the chamber below 273 K.
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prepared in this way. Three pairs with the orientation of the loading axis along
the [1̄25] direction, each pair magnetized in [001], [010] and [1̄00] directions. One
specimen of cubic shape was oriented with the three ⟨111⟩ directions along the edges
(the same specimen was used in Section 4.3).

Figure 4.12: Schematic explanation of the magnetization by the field-cooling
method. The black line represents the change of the temperature in Kelvins over
time and the red line represents the magnitude of magnetic field in Tesla.

All specimens except the cube were predeformed at room temperature.
The specimens were still cold when taken out of the freezer just before the defor-
mation and they were kept in frozen cooling pads. The deformation was done using
the Instron 8862 machine with maximum force of 100 kN. Due to the lack of space
and time constrains, the predeformation was done without an extensometer with the
crosshead speed of 50 µm per minute. The role of this predeformation is to create
dislocations in the specimen and thus prevent the brittle fracture. The extent of
predeformation was calculated after the deformation from the knowledge of the sizes
of the sample before and after the experiment. As the extensometer is not present
during the experiment, one has to guess the amount of the deformation from the
crosshead displacement, which leads to inconsistent results. The desired predefor-
mation was between 0.5 and 1 %, which was achieved. The specimens PSI 1, PSI 4,
and PSI 9, previously field-cooled in [1̄00], [010] and [001] directions, respectively,
were put back into the freezer immediately after the measurement of deformation.
Using these specimens we shall be able to capture the magnetic state before the low-
temperature deformation of their conjugate samples (second specimen magnetized
in the same way in this case). The specimens PSI 6, PSI 3, and PSI 10, field-cooled
in [1̄00], [010] and [001] directions, respectively, were left in the machine after pre-
deformation, unloaded and the cryostat was immediately filled with liquid nitrogen.
After 30 minutes of cooling, while nitrogen was continuously replenished, the low-
temperature deformation was performed with the same crosshead speed as in the
case of predeformation. After the deformation, the frozen specimen was taken out
from the cryostat and returned into the freezer. The low-temperature deformation
was done only to 2-3 % of plastic strain to prevent brittle fracture and disintegration
of the specimen. The precise values of predeformation strain, low-temperature de-
formation strain, and yield stress reached during the low-temperature deformation
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are summarized in Table 4.3. The Euler angles of the specimens expressed in the
Bunge notation4 (in degrees) are: PSI 4 (110.2°, 30.4°, 1.8°); PSI 10 (114.1°, 28.0°,
88.3°); PSI 9 (113.3°, 25.3°, 86.6°); PSI 3 (117.2°, 27.8°, 83.1°); PSI 1 (112.5°, 30.5°,
89.7°) and PSI 6 (111.8°, 31.1°, 0.4°).

The engineering stress-strain curves of the specimens deformed at 77 K are shown
in Fig. 4.13. The colors of the curves correspond to the directions of wavevectors of
SDWs shown in the stereographic projection in Fig. 4.11(a)5. Each of the loading
axes of the three specimens deformed at 77 K is slightly different (although very
close to the [1̄25] direction), and the same misorientation for PSI 6 and PSI 10 is
coincidental. If we were to take the angle between the [1̄25] direction and the three
{100} directions precisely, we would get 79.5°, 24.1°, and 69.6° for the [001], [010]
and the [1̄00] directions respectively.

The engineering stress-strain curves in Fig. 4.13 show significant differences in
the yield stress. Since the PSI 3, PSI 6, and PSI 10 specimens were prepared from
the same source crystal, they have similar levels of predeformation (ϵ = 0.51, 1, and
0.7, respectively). Their loading axis is almost identical and thus we assume that
the differences in the yield stress must be caused due to the misorientation of the
wavevector and the loading axis. The influence of the slightly different loading axis
and slight difference in predeformation seem minute due to the almost exact match
of the PSI 6 and PSI 10 stress-strain curves.

While we cannot describe the concrete process responsible for the almost 200 MPa
difference in the yield stress (estimated by the 0.2 % offset strain), it cannot be
reconciled by a slight difference in the predeformation or minute variation of the
loading axis. Furthermore, a very small difference exists in the strain hardening of
the specimens. While the samples PSI 6 and PSI 10 both showed very slight strain
hardening, the sample PSI 3 showed very slight strain softening after approx. 2% of
plastic strain.

Table 4.3: The summary of predeformation strain, strain generated by low temper-
ature deformation at 77 K and the estimated yield stress at low temperatures for
the six PSI specimens.

Magnetization direction [001] [010] [1̄00]
Specimen PSI 4 PSI 10 PSI 9 PSI 3 PSI 1 PSI 6

Predeformation [%] 0.51 0.7 0.48 0.51 0.68 1
Deformation at 77 K [%] - 2.74 - 2.88 - 2.46

Yield stress [MPa] - 989 - 1168 - 920

The specimens were transported from the IPM to the Paul Scherrer Institute,
in a sealed polystyrene box filled with cooling pads frozen to -30 °C. Immediately

4The Bunge notation define the rotation of the coordinate system of the specimen into the
coordinate system of the crystal. This is done by sequential rotation around the z − x′ − z′ axes
by the three angles [221].

5The loading direction is shown in the standard [001]-[011]-[1̄11] standard streographic triangle
in Fig. 4.11(a) with the three orientations of wavevectors Q demonstrated in the enlarged part of
the [001]-[010]-[1̄00] region shown.
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Figure 4.13: Engineering stress-strain curves for specimens PSI 3, PSI 6, and PSI
10 at 77 K. The angle represents the angle between the supposed direction of the
wavevector (colored arrows) and the long axis of the specimen, which is identical to
the loading axis as depicted by the inset.

after the arrival, the specimens were kept in the freezer in the SINQ facility until
the experiment. In order to mount the specimen in the ZEBRA diffractometer,
the specimens were placed onto a thin L-shaped aluminum sheet and tied with a
thin aluminum or copper wire so they could not move during the tilting of the
diffractometer’s goniometer. The specimen holder was subsequently attached to the
motorized goniometer and cooled with nitrogen vapor. Afterward, the holder with
the specimen was enclosed in the aluminum chamber, and the closed-cycle helium
refrigeration system was switched on to keep the specimen from reaching the Néel
temperature. During the cooling, the orientation of the specimen to the diffrac-
tometer coordinate system was established. This process involves finding specific
reflections (the approximate position of the individual crystal direction was known
thanks to the previous EBSD analysis) and creating the so-called UB-Matrix [222].
Once the UB Matrix was established for the first specimen, similar matrices for other
specimens were found quickly due to a very similar orientation. The orientation is
established with a 1D He-3 detector tube, but most of the measurements were done
using 2D He-3 area detector equipped with the oscillating radial collimator6.
The 2D detector measures slices of the three-dimensional space, and thus a spa-

6The purpose of the oscillating radial collimator is to suppress the diffraction peaks from the
specimen environment, such as the sample holder, cryostat, furnace, etc.

75



tial distribution of the reflection can be recorded. The recorded data can then be
translated into the reciprocal space.

An example of this is shown in Fig. 4.14. In particular, Fig. 4.14(a) and 4.14(c)
show [020] nuclear reflections measured at 250 K in the neighborhood of [010] mag-
netic reflection at 70 K respectively. The coordinate system used to visualize these
reflections represents the detector space, where the X and Y are pixel positions of
the detector, therefore representing the detector screen, and Z denotes individual
frames taken during acquisition in ascending order. The measured neutron intensity
at each voxel7 is represented as a ball, whose transparency depends on the neutron
intensity. The voxels with zero intensity are completely transparent and thus in-
visible, while the voxel with the highest intensity is completely opaque. The 3D
reconstruction shown in Fig. 4.14(c) shows satellite reflections around the [010] re-
flection in reciprocal space (five oval-shaped objects roughly between Y = 100 and
150) and powder reflection from the specimen environment (a wall-shaped object
near Y = 180). These datasets can be transformed into the reciprocal space with
the knowledge of the neutron wavelength, UB-Matrix, specimen detector distance,
and instrumental angles. The reflections in Fig. 4.14(a) and 4.14(c) are shown in
Fig. 4.14(b) and 4.14(d) respectively in the reciprocal space. This representation
advantageously shows the slice of the reciprocal space measured. It should be noted
that for visualization purposes, only voxels with counts two and higher are shown
in Fig. 4.14(c) and 4.14(d). The magnetic reflections are generally weaker than the
nuclear ones. A summary of neutron diffraction reflections expected in bcc lattice
is presented in Section 1.6.1.

Nonetheless, the 2D detector suffers from poorer resolution and lower efficiency
compared to the 1D detector. It is mainly used to find the positions in the recip-
rocal space rather than to measure the precise shapes of the reflections. It is often
beneficial and easier to understand the measurement when the data are projected
onto one plane instead of the 3D visualization. This process is employed to visual-
ize the data measured with the 2D detector in Fig. 4.15. Fig. 4.15(a) shows the
projection of the [200] reflection on the XY plane at 70 K (specimen PSI 1), and
Fig. 4.15(b) shows the same projection of exactly the same reflection but obtained
on the specimen PSI 6. The [200] nuclear reflections of PSI 1 are slightly elongated,
which is caused by the predeformation. A more distinct elongation of the PSI 6 [200]
reflection in Fig. 4.15(b) is again caused by deformation, but in this case, both the
predeformation and subsequent deformation at 77 K. Both figures are plotted with
the same scale. The slightly brighter band to the right of the reflection is again the
powder diffraction of the holder or the aluminum chamber in which the specimen
is enclosed. The band is not visible in Fig. 4.15(a) due to the higher intensity of
the reflection. Fig. 4.15(c) shows an integrated intensity over the ω angle of the
PSI 1 and PSI 6 [200] nuclear peaks, where ω represents the rotation of the specimen
according to the 4-cycle geometry with the detector fixed in place [223]. For each
frame of the 3D dataset, the intensity of the reflection can be summed, and the
result plotted in relation to one of the instrumental parameters. The deformation
causes the peak to lose intensity while increasing its width. The intensity decreased

7A voxel represents a value on the grid in three-dimensional space just as pixel represents a
value on a grid in the two-dimensional space.
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(a) (b)

(c) (d)

Figure 4.14: 3D reconstruction of the reflection measured with the 2D detector: (a)
[020] nuclear reflection in the detector space, (b) [020] reflection in the reciprocal
space, (c) neighborhood of [010] reflection in the detector space, (d) neighborhood
of [010] reflection in the reciprocal space.

from 7191 a.u. to 2420 a.u. at the same time, the Full Width at Half Maximum
(FWHM) increased from 0.46° to 1.43° (fitted as Gaussian peak).

The shape of the elongated nuclear peak is also transferred to the magnetic reflec-
tions. As an example, we show the neighborhood of the [001] magnetic reflection8

of the only predeformed specimen PSI 9 (Fig. 4.16(a)), and the specimen PSI 3

8The [001] reflection is not visible because it is not an allowed nuclear reflection in the bcc
lattice
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(a) (b)

(c)

Figure 4.15: The [200] nuclear reflection at 70 K measured on the samples (a) PSI
1 and (b) PSI 6. The panel (c) shows an integrated intensity of the samples PSI 1
and PSI 6 around the [200] nuclear peak along the sample rotation ω.

(Fig. 4.16(b)) also deformed at 77 K. The magnetic reflections were measured at
150 K, at which the specimens were in the TSDW state. Fig. 4.16(a) shows [±δ, 0, 1]
and [0, 0, 1±δ] reflections from two spin density waves, namely the (1±δ, 0, 0) and
(0, 0, 1± δ) fundamental SDWs. One can also see that the [±δ, 0, 1] peak has a
stronger reflected intensity compared to the latter, which means that this wave is
dominant. Due to the deformation, the individual reflections shown in Fig. 4.16(b)
overlap and appear as one. Nevertheless, from the projection in different directions
(not shown), they can be clearly distinguished. The [0,±δ, 1] reflection is the only
one in the [001] neighborhood and is the result of the deformation at 77 K. The
powder diffraction rings (vertical streaks on the right side of both figures) are also
more pronounced due to the lower intensity of the magnetic reflections.

The cubic specimen was the only one magnetized and not deformed to assess
the magnetic state after field cooling without the interference of the deformation.
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(a) (b)

Figure 4.16: Example of the YZ projection of neighborhood of the [001] magnetic
reflection from the 2D detector at 150 K: (a) PSI 9, (b) PSI 3.

Unfortunately, the specimen was a bi-crystal which was found during the neutron
scattering experiment. As a result, some of the nuclear and subsequently magnetic
reflections are split and represent the two slightly misoriented parts of the crystal.
This is visualized in Fig. 4.17. Fig. 4.17(a) shows a projection of the [002] nuclear
peak at 250 K, which is split into two unequally sized reflections, and Fig. 4.17(c)
shows the projection of the [020] nuclear reflection under the same condition. The
latter reflection does not show the splitting, which suggests that the crystal has a
single orientation in this direction throughout the volume. The [200] nuclear re-
flection (not shown in the figures) is split similarly to Fig. 4.17(a). The magnetic
reflections representing wavevectors that are split in the [0,±δ, 1] direction due to
the inherent nature of the spin density wave seem to carry the information of the
[020] nuclear reflection, which does not show the splitting due to the bi-crystallinity.
This is represented in Fig. 4.17(b) that shows the neighborhood of the [001] re-
flection at 70 K. The [±δ, 0, 1] magnetic reflections show the same splitting as the
[200] nuclear reflection, while the [0,±δ, 1] satellites have no counterpart around the
[020] reflection. The same behavior is observed for the reflection in Fig. 4.17(d).
Furthermore, the reflections in Fig. 4.17(d) measured at 150 K, show much higher
intensity of the [0, 1 ± δ, 0] magnetic reflection, which is caused by the field cooling.
This means that the specimen is not fully in the single-Q state, only the wavevector
created by the field cooling is dominant in the specimen.

To describe the magnetic states of the specimens, we have explored the neigh-
borhoods of the [001], [010], and [1̄00] magnetic reflections in all specimens. We will
describe the magnetic state by the reciprocal space diagrams of neutron diffraction
as described in Section 1.7. Together with the measured data, represented by the
black circles, we also show theoretical results of the field and stress cooling, rep-
resented by the blue and red circles, respectively. An example of such diagram is
shown in Fig. 4.19. The magnetic state of the 3 mm cube specimen is described
by the reciprocal space diagram shown in Fig. 4.18. This diagram for the TSDW
state measured at 150 K is shown in Fig. 4.18(a). While all SDWs are present,
the intensities of the reflections in Fig. 4.17(b) and 4.17(d), suggest that the fun-
damental (0, 1±δ, 0) SDW is dominant. This is also represented by larger circles in
these diagrams. This state is further transferred to the LSDW phase in Fig. 4.18(b),
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(a) (b)

(c) (d)

Figure 4.17: YZ projections of the nuclear and magnetic reflections of the 3 mm
cube specimen: (a) [002] nuclear reflection measured at 250 K (b) neighborhood of
the [001] magnetic reflection measured at 70 K, (c) [020] nuclear reflection measured
at 250 K, (d) neighborhood of [010] magnetic reflection measured at 150 K.

where the same fundamental spin density wave is also dominant. Note that the on-
axis reflections are not present in the LSDW state. They do not contribute to the
magnetic scattering, because these reflections are parallel to the scattering vector.

4.4.1 Neutron diffraction experiments on specimens PSI 4
and PSI 10 with Q=[001]

The reciprocal space diagrams of the neutron scattering of the PSI 4 specimens
measured at 150 and 70 K are shown in Fig. 4.19(a) and 4.19(b), respectively. The
PSI 4 specimen was magnetized along the [001] axis and predeformed at RT to strain
of 0.51%. The resulting magnetic state is most comparable to the state resulting
from the stress cooling in the [010] direction closest to which the specimen was
predeformed. It should be noted that the [010] direction is approximately 20° from
the actual loading axis. However, the most intense reflections at 150 K (Fig. 4.19(a))
are [1±δ, 0, 0], [±δ, 0, 1] and [±δ, 1, 0] which all belong to the fundamental (1±δ, 0, 0)
SDW. The less intense reflections are from the (0, 0, 1±δ) fundamental SDW. This
distribution of reflections agree well with the stress cooling, as the SDWs parallel to
the stress direction is not present. In the LSDW state, shown in Fig. 4.19(b), the
(1±δ, 0, 0) fundamental SDW is also dominant. However, the (0, 0, 1±δ) reflection
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(a) (b)

Figure 4.18: Reciprocal space diagrams of neutron diffraction of the 3 mm cube
specimen described in Section 4.3: (a) TSDW state at 150 K, (b) LSDW state at 70
K. Black circles represent experimental data and blue circles the field-cooled state
described in Section 1.7.

has transformed into the (0, 1±δ, 0) SDW, which is not in accordance with the stress
cooling prediction.

(a) (b)

Figure 4.19: Reciprocal space diagrams of the neutron diffraction on the PSI 4
specimen: (a) TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent
experimental data, blue and red circles the theoretical field-cooled and stress-cooled
state, respectively, as described in Section 1.7.

The reciprocal space diagram of neutron diffraction of the specimen PSI 10,
which was magnetized along the [001] crystal axis, predeformed at RT to 0.7 % and
deformed at 77 K by another 2.74 % in the direction closest to the [010] crystal
direction for the TSDW and LSDW state is shown in Fig. 4.20(a) and 4.20(b)
respectively. The TSDW state measured at 150 K is characterized by the [1,±δ, 0],
[0, 1±δ, 0] and [0,±δ, 1] magnetic reflections, representing the fundamental (0, 1±δ, 0)
SDW, which would be created by the field cooling in the [010] direction. The same
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SDW persists in the LSDW state measured at 70 K, and is represented by the
[1,±δ, 0] and [0,±δ, 1] reflections. The resulting magnetic state is thus a single-Q
state with the fundamental (0, 1± δ, 0) spin density wave. This wave must have
been caused by the plastic deformation, as field-cooling would result into a different
configuration.

(a) (b)

Figure 4.20: Reciprocal space diagrams of neutron diffraction of the PSI 10 speci-
men: (a) TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent
experimental data, blue and red circles the field-cooled and stress-cooled state, re-
spectively, as described in Section 1.7.

4.4.2 Neutron diffraction experiments on specimens PSI 3
and PSI 9 with Q=[010]

The PSI 9 specimen was magnetized along the [010] crystal axis direction and prede-
formed at RT to 0.48%. The magnetic state in the TSDW region at 150 K is shown
in Fig. 4.21(a) and is represented by the (1±δ, 0, 0) and (0, 0, 1±δ) fundamental
SDW that would agree with the state prepared by the stress cooling. The LSDW
state measured at 70 K is shown in Fig. 4.21(b) from which we observe that the
characters of the SDWs are unchanged.

The PSI 3 specimen was magnetized by the field cooling method with the
wavevector along the [010] direction. Afterward, it was predeformed at room tem-
perature and further deformed at 77 K in the direction closest to the [010] direction.
The resulting magnetic states are described by the reciprocal space diagrams in
Fig. 4.22(a) and 4.22(b) for the TSDW and LSDW state, respectively. Both states
are characterized by the (0, 1±δ, 0) fundamental spin density wave, which agrees
with the magnetic state created by the field cooling along the [010] crystal direc-
tion. Again, the resulting state is the single-Q state.
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(a) (b)

Figure 4.21: Reciprocal space diagrams of neutron diffraction of the PSI 9 specimen:
(a) TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent experi-
mental data, blue and red circles the field-cooled and stress-cooled state respectively,
as described in Section 1.7.

(a) (b)

Figure 4.22: Reciprocal space diagrams of neutron diffraction of PSI 3 specimen: (a)
TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent experimental
data, blue and red circles the field cooled and stress cooled state respectively, as
described in Section 1.7.

4.4.3 Neutron diffraction experiments on specimens PSI 1
and PSI 6 with Q=[1̄00]

The PSI 1 specimen was magnetized along the [1̄00] direction and predeformed
at RT to 0.68%. The magnetic state in the TSDW regime at 150 K is shown in
Fig. 4.23(a). Based on the [1±δ, 0, 0], [±δ, 1, 0] and [±δ, 0, 1] reflections, the majority
of the volume is characterized by the (1± δ, 0, 0) SDW, which would agree with the
filed-cooled specimen. However, there is a very weak [0, 0, 1 ± δ] reflection that is
not accompanied by other reflections as would be expected for this SDW. A possible
explanation of this behavior is that the this already weak reflection is the strongest
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reflection of the (0, 0, 1± δ) spin density wave and thus the remaining two [1, 0,±δ]
and [0, 1,±δ] reflections which are even weaker have intensities comparable to the
background. A similar situation is in the LSDW state shown in Fig. 4.23(b), where
the magnetic state is characterized by the (1±δ, 0, 0) spin density wave, represented
by the [±δ, 0, 1] and [±δ, 1, 0] reflections. The remaining weaker reflection, [1, 0,±δ]
would correspond to the (0, 0, 1±δ) SDW. However the [0, 1,±δ] reflection is missing.
Since the visible weak reflection is alone in the [100] neighborhood, it is easier to
resolve than reflection with another reflection close by, for example in the [010]
neighborhood. Therefore, we believe that there is [0,±δ, 1] reflection, but it is
overshadowed by the [±δ, 1, 0] reflection.

(a) (b)

Figure 4.23: Reciprocal space diagrams of neutron diffraction of the PSI 1 specimen:
(a) TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent experi-
mental data, blue and red circles the field-cooled and stress-cooled state respectively,
as described in Section 1.7.

The PSI 6 specimen was field-cooled in the [1̄00] direction, predeformed at the
room temperature to 1 % of strain, and further deformed at 77 K by 2.46 % in
the [010] crystal direction. The magnetic state is the same as in the other samples
deformed at 77 K - PSI3 and PSI10 . It is characterized by the (0, 1 ± δ, 0) funda-
mental spin density wave in both TSDW and LSDW states shown in Fig. 4.24(a)
and 4.24(b), respectively.

The process of the field-cooling has been proven to work. The final magnetic
state was not fully single-Q, but the spin density wave that was supposed to be
produced by the field cooling was dominant. The predeformation seems to favor
the (1 ± δ, 0, 0) fundamental spin density wave. However, the magnetic state of
predeformed specimens is not the same, because the initial magnetic state is broken
by the deformation at room temperature. On the other hand, the deformation at
77 K always creates the (0, 1±δ, 0) single-Q state regardless of initial magnetic state.
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(a) (b)

Figure 4.24: Reciprocal space diagrams of neutron diffraction of the PSI 6 specimen:
(a) TSDW state at 150 K, (b) LSDW state at 70 K. Black circles represent experi-
mental data, blue and red circles the field-cooled and stress-cooled state respectively,
as described in Section 1.7.

4.4.4 Change in the spin-flip temperature due to plastic de-
formation

We have measured the temperature dependence of several magnetic reflections to
demonstrate the change in the spin-flip temperature TSF . The evolution of the
intensity of the magnetic [0, 1±δ, 0] reflection of the PSI 6 specimen on temperature
is shown in Fig. 4.25. The intensity is computed as the sum of pixels contributing to
the diffraction. The ω axis represents the rotation of the crystal and is proportional
to the X coordinate of the detector space shown in Fig. 4.14. In this particular
case, the magnetic reflection is not present in the LSDW state and originates at
the spin-flip temperature. The measurements suggest that the spin-flip temperature
is no longer sharp, but broadens over a finite temperature range. From the graph
in Fig. 4.25, one can see a slight increase in intensity of the 110 K (teal color)
followed by a sharper increase at 120 K (light green color), which is still below TSF
at normal conditions. At 130 K, the intensity reaches its maximum, and a slight
drop in intensity can be observed upon further heating.

To illustrate the temperature evolution of the reflection intensity, we show the
YZ projection of the [0, 1±δ, 0] magnetic reflections at 100, 110, 120 and 130 K
in Fig. 4.26(a), 4.26(b), 4.26(c) and 4.26(d), respectively. Even at 100 K, a very
slight intensity increase can be observed in the places where the reflections appear
at higher temperatures. In Fig. 4.25, the intensity in each frame is summed and
expressed as the intensity at the ω angle. More precisely, we sum pixels in a box
enclosing the reflection, not the whole frame. This is why we observe two separate
peaks in Fig. 4.26, but see one in Fig. 4.25. The powder diffraction band is equally
strong in all images, but gets relatively weaker as the magnetic diffraction becomes
stronger with increasing temperature.

Furthermore, we can calculate the integrated intensity of the reflection for each
temperature. This is a sum of all voxels contributing to the reflection and can be
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Figure 4.25: Evolution of the [0, 1 ± δ, 0] magnetic reflection of the PSI 6 specimen
with temperature. ω is a rotation of the specimen.

thus calculated as the numerical integral along each ribbon shown in Fig. 4.25. From
the change of the integrated intensity on temperature, we can attempt to evaluate
the changes in the spin-flip temperature. We have done this for the temperature
range from 70 to 150 K on all six specimens and results are plotted in Fig. 4.27.
The integrated intensities come from all reflections in the [010] neighborhood. The
specimen predeformed at the room temperature does not have a consistent mag-
netic state. Therefore, the curves representing the temperature dependence of the
integrated intensity, shown in Fig. 4.27(a), differ. The deformed specimens at 77 K
have a more consistent magnetic state. They do not show any magnetic reflection
in the LSDW phase, and the [0, 1 ± δ, 0] reflections appear above the TSF . The
corresponding graph representing the integrated intensity vs. the temperature is
shown in Fig. 4.27(b). Although, the individual specimens show different reflec-
tions, the variations of integrated intensities with temperature reveal similarities in
magnetic behavior of samples PSI 1 and PSI 4. All the curves shown in Fig. 4.27
are corrected, such that they start or end at approximately zero intensity.

In order to describe these changes, we fitted the curves by the cumulative distri-
bution function of the normal distribution:

I = I0 + A

∫ x

−x

1√
2π
e−

(t−µ)2

2σ2 dt, (4.14)

where I is the integrated intensity, I0 the offset, A the amplitude, and µ, σ the mean
and standard deviation of the distribution, respectively.
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(a) (b) (c) (d)

Figure 4.26: The YZ projection of the [0, 1 ± δ, 0] magnetic reflection of the PSI 6
specimen (left peak is [0, 1 − δ, 0], right peak is [0, 1 + δ, 0]) at: (a) 100 K, (b) 110
K, (c) 120 K, (d) 130 K. The vertical band appearing in figures is caused by powder
diffraction from specimen holder or cryostat.

(a) (b)

Figure 4.27: Temperature dependence of the integrated intensity of magnetic reflec-
tions in the [010] neighborhood.

From the results of the fit, we can then estimate the mean value (i.e. spin-flip
temperature), and the standard deviation, which represents the temperature range
into which the TSF broadens. While the data are not sampled densely enough, we
believe the results are consistent and represent the changes in the spin-flip temper-
ature, even though burdened by experimental error and undersampling. The mean
and standard deviation of the values obtained from the fit of Eq. (4.14) to the
data in Fig. 4.27 are summarized in Table 4.4. The specimens in the table are or-
dered according to their cumulative strain (predeformation at RT and deformation
at 77 K). The spin-flip temperature of the predeformed specimens is very close to
the theoretical value of 123 K, while the spin-flip temperature of the more heavily
deformed specimens is shifted approximately 4 K down to 119 K. An increase of
the standard deviation is also observed in the case of the more deformed specimens.
This was measured on specimens in the single-Q state. However, we believe that
similar results would be achieved on specimens in triple-Q state.
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Table 4.4: The PSI specimens ordered according to their cumulative plastic strain (in
parenthesis), mean value of spin-flip temperature, and standard deviation acquired
from the fit of the cumulative distribution function using Eq. (4.14).

Specimen (Strain) Mean TSF [K] Standard deviation [K]
PSI 9 (0.48%) 123.7 ± 0.6 4.0 ± 0.5
PSI 4 (0.51%) 124.2 ± 1.0 5.7 ± 1.0
PSI 1 (0.68%) 123.7 ± 3.8 3.1 ± 2.6
PSI 3 (3.39%) 118.2 ± 0.8 6.9 ± 1.1
PSI 10 (3.44%) 119.0 ± 0.8 4.0 ± 0.5
PSI 6 (3.46%) 120.2 ± 0.6 7.9 ± 0.9
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List of symbols

Symbol Meaning Equation
Latin symbols

a Initial slope of hysteresis curve (4.3, 4.5, 4.7, 4.8)
A Amplitude (4.14)
c Magnetization reversibility (4.10, 4.11)

e, f, g Dimensions of rectangular specimen (4.2)
H Magnetic filed (4.1)
H ′ External magnetic field (4.1)
He Effective magnetizing field (4.3,4.4)
I Integrated intensity (4.14)
I0 Intensity offset (4.14)
kB Boltzmann constant (4.5)

k
Average energy required to break

the dislocation free of the pinning site (4.11)

K Direction of illumination
Kan Average energy density (4.7, 4.8,4.9)
N Demagnetizing factor (4.1)
NH Demagnetizing factor for rectangular prism (4.2)
N̄ Average domain density (4.5)
M Magnetization (4.1, 4.4)
Mah Anhysteretic magnetization (4.10, 4.11
M iso

an Anhysteretic isotropic magnetization (4.3)
Maniso

an Anhysteretic anisotropic magnetization (4.6)
Mir Irreversible magnetization (4.10)
Mr Reversible magnetization (4.10)
Ms Saturation magnetization (4.5,4.3,4.7, 4.8)
Q Wavevector

qx, qy, qz Directions in reciprocal space
S Spin direction
T Temperature (4.5)
TSF Spin-flip temperature

Greek symbols
α Bloch interdomain coupling coefficient (4.4)

β
Angle between the direction of

stress and magnetization (4.9)

δ Distance of reflection from a lattice point
δ Parameter (4.11, 4.12)
δM Parameter (4.11, 4.13)
ϵpl Plastic deformation

θ
Angle between the magnetic moment

and the magnetizing field (4.6,4.7, 4.8)

λ Magnetostrictive strain (4.9)
µ Mean value (4.14)
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µ0 Magnetic permeability of free space (4.5)
σ Stress (4.9)
σ Standard deviation (4.14)
ψ Angle between magnetizing field and easy axis of magnetization (4.7, 4.8)
ω Specimen rotation
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5 Deformation mechanisms in Cr

This section of the thesis deals with uniaxial compression tests performed single-
crystalline chromium. We use transmission electron microscopy to explore the pos-
sibility of anomalous slip in chromium. The results of these experiments are accom-
panied by atomistic simulations done by other members of our group. Furthermore,
the presence of twins on the {112} planes sheared in the twinnning and antitwinning
sense is investigated.

5.1 Compression test on Cr single crystals

A series of compression tests were carried out at 77 K on chromium single crystal
specimens in the magnetically isotropic state to investigate how the slip morphology
changes with the orientation of the applied load during the first 2-4% of the plastic
deformation. The specimens were carefully photographed from all sides before and
after the test. If necessary, scanning electron microscopy was used to characterize
the surface after deformation. The loading axis on all figures showed here is always
vertical unless otherwise specified. All specimens in this section come from the
Cr-1 source crystal. An example of Specimen 8* before and after the deformation
photographed using an Olympus GX51 light microscope is shown in Fig. 5.1(a) and
5.1(b).

Eight specimens were compressed in five different loading directions. The stere-
ographic triangle in Fig. 5.2 shows the directions of individual loading axes before
(white circles) and after deformation (black circles). To ease the reference to the in-
dividual loading axes, we divide this triangle into three separate parts. The asterisk
(*) after the specimen number means that the predeformation has been applied at
room temperature in the same direction as subsequent deformation at 77 K. The red
region of the steregraphic triangle, which represents loading directions close to the
[001] axis, contains the specimens 5 and 6*. For these loading directions, many slip
systems are operational according to the Schmid law, which suggests that plastic de-
formation will proceed by homogeneous slip. The green part contains the specimens
3, 4*, and 7* compressed in the direction close to the center of the stereographic
triangle. Two slip systems, (1̄01)[1̄1̄1̄] and (1̄01̄)[1̄11], are expected to dominate the
plastic deformation according to the Schmid law. These orientations are also ideal
to test the occurrence of anomalous slip on low-stressed (01̄1) planes. The blue part
contains the specimens 1, 2*, and 8* that are compressed close to the [011]-[111]
edge of the stereographic triangle, which is prone to cross-slip and fracture. The
amount of lattice rotation corresponds to the distance between the loading axis be-
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(a)

(b)

Figure 5.1: Side A of specimen 8*: (a) before deformation, (b) after deformation

fore deformation (here in the z-axis) and after deformation and thus to the length
of the curved segments in Fig. 5.2 connecting the empty and filled circles. The
misorientations of all loading axes caused by plastic deformation are summarized in
Table 5.1.

Table 5.1: Summary of the misorientations of loading axes in individual samples.

Spec.
Misorientation
in x-axis [deg]

Misorientation
in y-axis [deg]

Misorientation
in z-axis [deg]

Misorientation
total [deg]

1 1.8 2.0 2.0 1.5
2* 5.0 1.8 4.8 2.1
3 4.4 4.4 0.5 3.7
4* 2.5 2.3 2.3 2.2
5 0.6 1.1 1.0 0.8
6* 3.7 3.9 1.5 3.3
7* 3.1 2.0 3.6 2.5
8* 0.9 1.1 0.6 0.8

Under compression, the loading axis rotates toward the pole that corresponds
to the normal of the plane that carries the largest plastic strain. If the specimen
deforms by single slip, the direction of lattice rotation allows unambiguous iden-
tification of the governing slip system. However, in the case of multiple slip, i.e.,
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whenever two or more systems provide significant contributions to the plastic strain,
the loading direction rotates toward the pole that is a weighted vector sum of the
slip plane normals of the governing slip systems. In principle, these weights can
be estimated by counting the number of slip traces corresponding to respective slip
systems observed on a representative surface area. However, this analysis cannot
be made when slip bands form. The orientations of loading axes before/after de-
formation and the accumulated (total) plastic strain are summarized in Table 5.2.
The source single crystal used in this work was UHV-annealed, and thus the initial
dislocation network is expected to be dominated by immobile dislocation tangles
that act as the concentrators of stresses. Upon loading the specimens 1, 3, 5 at
77 K, these stresses may be relieved by nucleating twin embryos or microcracks,
which then leads to preferential plastic deformation by twinning or to brittle frac-
ture. On the other hand, predefoming the specimens 2*, 4*, 6*, 7*, and 8* at room
temperature generates mobile dislocation networks that are expected to allow for a
dislocation-controlled slip at 77 K.

Table 5.2: Summary of the orientations of the loading axes before and after defor-
mation, accumulated plastic strain ϵprepl after predeformation at room temperature,
and the total plastic strain ϵpl after compression at 77 K. The specimens marked
with asterisks were predeformed at room temperature prior to their testing at 77 K.

Specimen
Initial

orientation
Orientation

after deformation
Rp0.2 [MPa] ϵprepl [%] ϵpl[%]

1 [6 11 15] [3 5 7] 1075 0 2.2
2* [2 4 5] [5 9 11] 1132 1.5 2.5
3 [7 13 28] [8 11 25] 857 0 4.1
4* [7 13 29 [7 11 27] 971 0.9 2.3
5 [3 4 24] [6 7 44] 876 0 3.1
6* [4 7 44] [5 6 60] 953 1.5 3.6
7* [1 6 13] [1 7 17] 779 0.5 2.6
8* [1 6 8] [3 20 26] 1157 1 2.3

The stress-strain curves of all specimens are shown in Fig. 5.3. The specimens
compressed in the directions corresponding to the blue region (i.e., close to the [011]-
[111] edge of the triangle) exhibit a variable amount of smooth hardening followed
by a sudden load drop after which the experiment was terminated. When reaching
the maximum stress, the specimens 1, 2*, and 8* unload rapidly while generating
appreciable plastic deformation corresponding to the almost straight part of their
stress-strain curves. Comparing the response of specimens 2* and 8* with that of
specimen 1 suggests that predeformation leads to a significant amount of parabolic
hardening and a postponement of the moment when the strain burst occurs. The
specimens compressed in the directions corresponding to the green region (i.e., close
to the center of the stereographic triangle) again display initial parabolic hardening.
However, this is followed by the region of easy glide, where the stress-strain curve
is nearly linear. The predeformed specimens 4* and 7* continue to deform in this
way until the termination of the experiment. In the case of specimen 3, the plastic
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Figure 5.2: Directions of loading axes of specimens before (white circle) and after
the test (black circles). The asterisks denote that the specimen was predeformed at
room temperature.

deformation eventually exhibits a sudden load drop similar to the response of the
specimens 1, 2*, and 8* at small strains. The specimens compressed in the directions
corresponding to the red region (i.e., close to the [001] corner of the triangle) do not
exhibit any strain burst irrespective of whether or not they were predeformed. How-
ever, predeformation leads to strain localization later during the plastic deformation
and thus the formation of discrete and easily identifiable slip traces.

Following are detailed slip trace analyses of all specimens tested here. The
Schmid law will be used to predict the activity of individual slip and twinning sys-
tems and compare these predictions with direct observations using the Nomarski
light microscopy and SEM, including the technique of electron backscatter diffrac-
tion (EBSD) to quantify local misorientations of the crystal lattice. Surface markings
generally have different visibilities depending on the orientation of the loading axis
and the face of the specimen under observation (i.e., A, B, A’, B’ in Fig. 3.7). There-
fore, we have always made the slip trace analysis on at least two perpendicular faces
of the specimen. The visibility of slip markings on a particular face is represented by
the quantity | n̂ ·b |, where n̂ is the unit normal of the face under observation, and b
the Burgers vector of the dislocations in a given system. The same visibility analysis
is also used to assess the relative visibility of regions with large misorientations, such
as twinned regions, even though twinning dislocations have only fractional Burgers
vectors. In the following light and electron micrographs, the orientations of loading
axes are always vertical.

5.1.1 Specimens oriented close to the [001] axis

Specimens 5 and 6* have deformed homogeneously, and their plastic distortion was
visible even by naked a eye. However, distinct slip markings could not be identified
by either light microscopy or scanning electron microscopy. We can acquire indirect
information about operative slip systems from the rotation of the crystal lattice in
Fig. 5.2 by EBSD. Light microscopy and EBSD analysis on both specimens did not
show any misoriented deformation bands, we assume that the plastic deformation
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Figure 5.3: Stress-strain curves of the specimens corrected for the compliance of the
testing machine. The color coding corresponds to that of the three regions shown
in Figure 5.2.

in both specimens is a result of homogeneous dislocation slip. Based on the Schmid
law, specimen 5, which was not predeformed, is expected to deform on the (1̄01)
plane. On the other hand, specimen 6*, whose initial loading axis is similar to that
of specimen 5, rotates toward the [01̄1] pole. To reconcile both observations, the five
most operative slip systems are shown in Table 5.3. The primary slip is expected to
take place on the (1̄01)[1̄1̄1̄] and (1̄01̄)[1̄11] systems with the highest Schmid factors.
This assumption agrees well with the lattice rotation of specimen 5 but not with
the lattice rotation of sample 6*. In the latter case, the rotation towards the [01̄1]
pole indicates that most of the plastic strain is due to the operation of (01̄1)[11̄1̄]
and/or (01̄1)[1̄1̄1] systems. The Schmid factors of these systems are only 10-20%
lower than that of the most stressed (1̄01)[1̄1̄1̄] system and, therefore, the (011) slip
does not constitute the anomalous slip.

5.1.2 Specimens with center-triangle orientations

Specimens in the green part of the stereographic triangle in Fig. 5.2 show interme-
diate deformation behavior compared to the specimens in the red and blue areas.
Specimen 3, the only one without predeformation in the green area, fractured along
the loading axis during the deformation. The measurement of the orientation of
this crystal after deformation in Table 5.2 might be burdened by higher experimen-
tal uncertainty. A majority of slip markings on specimen 3 agree with the traces
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Table 5.3: The five most operative slip systems for compression in the [5̄ 6 60]
direction (final orientation of the specimen 6*) as predicted from the Schmid law.
Here, SF is the Schmid factor, and | n̂ · b | the visibility of surface markings on the
two side faces of the specimen. Similar predictions apply for specimen 5 compressed
in the red part of the stereographic triangle in Fig. 5.2.

Slip sys. SF | n̂ · b |A | n̂ · b |B
(1̄01)[1̄1̄1̄] 0.442 0.61 0.66
(1̄01̄)[1̄11] 0.435 0.71 0.48
(01̄1̄)[1̄1̄1] 0.434 0.53 0.57
(01̄1)[11̄1̄] 0.428 0.71 0.48
(01̄1)[1̄1̄1̄] 0.367 0.61 0.66

of (1̄21) and (2̄11) planes shown in Fig. 5.4(a) and 5.4(b). For the (2̄11) traces
in Fig. 5.4(a) and 5.4(b), the EBSD analysis in Fig. 5.4(e) reveals three regions
with different orientations, which are characterized by the Euler angles expressed in
Bunge notation: matrix (152°, 36.2°, 17.5°), red region (288.7°, 41.8°, 71.5°), green
region (165.7°, 31.8°, 20.7°). The smallest calculated misorientation between the red
region relative to the same directions in the matrix are 36°, 45° and 58° for the x,
y and z axes, respectively. Such large misorientations for the x and z axes cannot
be attributed to dislocation glide, and thus it is likely that the red region represents
a deformation twin. According to Table 5.4, we expect that the red traces origi-
nates from twinning on the most highly stressed (2̄11)[1̄1̄1̄] system that is sheared
in the twinning sense. Because this sample was not predeformed, the external load
is concentrated at immobile dislocation junctions from which twins can be easily
nucleated. The presence of twinning in specimen 3 is confirmed by the observation
of a large load drop in Fig. 5.3 after which the test was terminated.

A similar analysis was done for the samples in the green region in Fig. 5.4(e)
and the misorientation angles of 16°, 17°and 5° for the x, y and z axes, respectively.
These rotations are much smaller, suggesting that the sample’s deformation in the
green region do not contain twins. Instead, we assume that the accumulated plastic
strain in these samples was generated by the glide of dislocations. The internal
morphology of the surface markings along the (1̄21) plane is shown in Fig. 5.4(c)
and 5.4(d), which comprises two sets of alternating slip traces. The EBSD map
obtained from this band in Fig. 5.4(f) shows that the blue band has Euler angles of
(318.9°, 46.5°, 38°), whereas those of the surrounding matrix are (44.2°, 18.8°, 13.6°).
From this, we can compute the smallest misorientation in x, y and z axes to be 57°,
25°and 56° respectively. Owing to the large misorientations in x and z axes, we
consider that the (1̄21) traves arise from twinning on the (1̄21)[111̄] system sheared
in the twinning sense. From the Euler angles of the band, we can further determine
what {110} slip traces match accurately with the observations in Fig. 5.4(c) and
5.4(d). These slip traces correspond to the (011)[11̄1̄] system (SF=0.216) and to the
(110)[111̄] system (SF=0.263). The internal slip within the twinned regions that is
shown in Fig. 5.4(c) and 5.4(d) was observed previously by McHargue [224] and
Gröger et al. [225] on bcc Nb and associated with composite slip on the average
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Surface morphology of specimen 3 after deformation: (a) an SEM mi-
crograph from face A, (b) enlargement of the surface trace from (a) in backscattered
electrons showing cracks originating from twin, (c) and (d) deformation bands cor-
responding to the (1̄21)[111̄] system on the face A and B, respectively, (e) EBSD
IPF Y of the side B showing large misorientations along the trace of the (2̄11)[1̄1̄1̄]
system on the side A shown on (b), and (f) EBSD IPF Z map of surface markings
on the face A along the trace of the (1̄21)[111̄] system shown in (c).
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{112} plane. In the present case, we observe similar structures, but the internal slip
seems to arise due to the glide of 1/2⟨111⟩ dislocations on different {110} planes.

Table 5.4: The five most operative slip and twinning systems for compression in
the [7̄ 13 29] direction (initial orientation of the specimen 4*) as predicted by the
Schmid law. The meaning of the symbols is the same as in the captions of Table 5.3.
The subscripts T and AT distinguish the {112} planes sheared in the twinning and
antitwinning sense, respectively.

Slip sys. SF | n̂ · b |A | n̂ · b |B Twin sys. SF | n̂ · b |A | n̂ · b |B
(1̄01)[1̄1̄1̄] 0.486 0.62 0.75 (2̄11)[1̄1̄1̄]T 0.436 0.62 0.75
(1̄01̄)[1̄11] 0.416 0.87 0.37 (11̄2)[11̄1̄]AT 0.414 0.87 0.37
(01̄1̄)[1̄1̄1] 0.372 0.41 0.56 (1̄1̄1)[1̄1̄1̄]AT 0.405 0.62 0.75
(01̄1)[11̄1̄] 0.302 0.87 0.37 (112)[111̄]AT 0.328 0.41 0.56
(1̄10)[1̄1̄1̄] 0.270 0.62 0.75 (1̄21)[111̄]T 0.317 0.41 0.56

Fig. 5.4(f) shows, apart from the (1̄21)[111̄] twin sheared in the twinning sense, a
localized surface deformation along the lower border of the twin, that was observed
on the face B of the specimen 3. The large misorientation between the outskirts
of this twin and the surrounding matrix suggest a presence of slip, similarly to the
twin in Fig. 5.4(e).

The specimen 7*, which was slightly predeformed at room temperature, was
deformed by homogeneous slip, similarly to the specimens compressed in the red
region of the triangle in Fig. 5.2. The only hint of which systems were operational
comes again from the rotation of the crystal lattice, which is toward the [11̄2] pole.
Such deformation could originate from two different mechanisms. If the surface
of the crystal exhibits large misorientations, the plastic deformation may be again
due to twinning on the (11̄2)[1̄1̄1̄] system. The second possible mechanism is a
simultaneous operation the (1̄01̄)[1̄11] and (01̄1)[11̄1̄] systems, which are the second
and the fourth most operative slip systems in Table 5.4, respectively. The ensuing
composite slip of 1/2[11̄1̄] screw dislocations on these two {110} planes would give
rise to average slip trace along the (11̄2) planes as observed.

Specimen 4* shows an entirely different slip morphology compared to Specimen 3
(not predeformed), even though both have a very similar orientation of the loading
axis. In particular, the traces of the most highly stressed (1̄01)[1̄1̄1̄] and (1̄01̄)[1̄11]
systems were not observed, and most of the plastic strain occurred during the opera-
tion of low-stressed systems. On the side A’, a single broad slip band corresponding
to the operation of the (01̄1̄)[1̄1̄1] system was observed as shown in Fig. 5.5(a).
On the side B of this specimen, all observed discrete slip markings agreed with
the traces of (01̄1) planes as shown in Fig. 5.5(b). According to Table 5.4, these
are expected to originate due to the operation of the (011̄)[111] and/or (01̄1)[11̄1̄]
systems with similar Schmid factors. These two slip systems operate on the same
plane, therefore, they differ only in the direction of the slip, making them indistin-
guishable solely from slip trace analysis. Therefore, we expect that both 1/2[111]
and 1/2[1̄11] screw dislocations may be equally mobile for this orientation of the
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(a) (b)

Figure 5.5: Slip morphology observed on the specimen 4*: (a) slip traces of
(01̄1̄)[1̄1̄1] system on the side B, (b) slip traces of (011̄)[111] and/or (01̄1)[11̄1̄] sys-
tems on the side A’ that constitute the anomalous slip.

applied load. However, the Schmid factors of both these systems are much smaller
than that of the most highly stressed system, and thus the dominant slip on the
(01̄1) plane cannot be explained by the Schmid law. This so-called anomalous slip
has been observed frequently in the 5th group metals (Nb, Ta, V), but its origin
is still not properly understood [69]. Our observations suggest that predeforming
the specimens in the green part of the stereographic triangle in Figure 5.2 at room
temperature and their subsequent deformation at 77 K in the same direction results
in anomalous slip on the (01̄1) plane. Without pre-straining, the plastic deformation
results in the formation of twins, sometimes twinning on {112} planes (specimens
3, 7*), or even fracture (specimen 3).

5.1.3 Specimens with orientation close to the [011]-[1̄11] edge

The specimen tested in compression in the directions corresponding to the blue
region of the stereographic triangle in Fig. 5.2 exhibit considerably different response
to loading as well as deformation markings compared to the specimens in the other
two regions. Most macroscopic markings on the surface of the specimen 1, shown in
Fig. 5.6(a), are parallel to the traces of (2̄11) planes and traverse the entire thickness
of the specimen. We assume that they are composed of short alternating traces on
(1̄01) and (1̄10) atomic planes, which arise due to the operation of the slip systems
(1̄01)[1̄1̄1̄] and (1̄10)[1̄1̄1̄] with the highest Schmid factors according to Table 5.5.
The simultaneous operation of these slip systems results in composite slip on the
average (2̄11) plane.

The face A of specimen 1 exhibits interesting surface features that correspond to
thin lamellae elongated in the direction of the trace of the (1̄1̄2) atomic plane. These
are visible only on the EBSD IPF X map shown in Fig. 5.7(a), but no contrast is
generally found by light microscopy techniques, even using the Nomarski differential
interference contrast, which is sensitive to topology or in SEM when imaging the
surface with secondary electrons. Similarly, as in Fig. 5.4(f), the interior of the
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Table 5.5: The five most operative slip and twinning systems for compression in the
[2̄45] direction (initial orientation of the specimen 2) as predicted by the Schmid
law. The meaning of the symbols is the same as in the caption of Table 5.3, with
T/AT explained in Table 5.4.

Slip sys. SF | n̂ · b |A | n̂ · b |B Twin sys. SF | n̂ · b |A | n̂ · b |B
(101)[1̄1̄1̄] 0.445 0.60 0.80 (211)[1̄1̄1̄]T 0.477 0.60 0.80
(110)[1̄1̄1̄] 0.381 0.60 0.80 (1̄1̄2)[1̄1̄1̄]AT 0.293 0.60 0.80
(1̄01̄)[1̄11] 0.299 0.95 0.31 (211)[11̄1̄]T 0.288 0.95 0.31
(01̄1̄)[1̄1̄1] 0.245 0.26 0.55 (1̄21)[111̄]T 0.236 0.26 0.55
(110)[11̄1̄] 0.200 0.95 0.31 (11̄2)[11̄1̄]AT 0.230 0.95 0.31

(a) (b)

Figure 5.6: Surface morphology of the specimen 1 after deformation: (a) the side B
deformed by (1̄21)[111̄],(211)[11̄1̄] and (2̄11)[1̄1̄1̄] slip systems (b) scanning electron
micrograph on side A showing the composite slip formed by the operation of the
(1̄10)[1̄1̄1̄] and (1̄10)[1̄1̄1̄] slip systems that result in a trace along the (2̄11) plane
on side A.

lamella exhibits large misorientation compared to the surrounding matrix. In this
case, Figure 5.7(b) shows that the crystal inside these islands is rotated in the zone
of the y axis, i.e., in the plane perpendicular to the loading axis. Such large rotations
imply that these features are not produced by slip. The Euler angles expressed in
Bunge notation of the misoriented regions are (141.6◦, 43.8◦, 24.6◦), while those of
the matrix are (225.3◦,28◦,5.5◦). The smallest misorientation angles obtained using
all symmetry operations of the cubic lattice obtained from these two Euler angles are
57.9◦, 17.6◦ and 57.9◦ for the x, y and z axes, respectively. According to Table 5.5,
the system (1̄1̄2)[1̄1̄1̄] is sheared in the antitwinning sense, which was predicted
before to lead to high-energy stacking faults and not twins. These lamellae comprise
highly misoriented regions whose character will later (Section 7) be investigated by
diffraction in TEM.

Specimen 2* has a similar initial orientation as specimen 1, but the former un-
derwent predeformation at room temperature. According to Fig. 5.2, the loading
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(a)
(b)

Figure 5.7: (a) EBSD IPF X map taken from the side A of specimen 1 showing thin
lamellae with large misorientations along the trace of the (1̄1̄2) plane sheared in the
antitwinning sense (orange dashed line) and (211) plane sheared in the twinning
sense (green dashed line). The red dashed line marks the lamella lift-out position
(LLP). (b) misorintation of the lamellae relative to the matrix.

direction of the specimen 2* rotates closer to the [1̄10] pole, which is a manifesta-
tion of larger relative contribution of the (1̄10)[1̄1̄1̄] slip system to the total plastic
strain. The Schmid factor of this system, as well as its visibility on all side faces of
the specimen, are comparable with those of the (1̄01)[1̄1̄1̄] system with the highest
Schmid factor. Similarly as for the loading directions in the red region in Fig. 5.2,
it seems that predeformation suppresses the expected (1̄01) slip and promotes the
operation of one of the conjugate slip systems with lower Schmid factors. Speci-
men 8* exhibits similar surface features as specimen 1, including the presence of
cleavage. Most surface markings correspond to operation of the systems (2̄11)[1̄1̄1̄]
and (11̄2)[11̄1̄], as shown in Fig. 5.8(a) and 5.8(c). The former is the most highly
stressed system in Table 5.5 that is sheared in the twinning sense, which suggests
that the corresponding surface markings are caused by deformation twinning. The
twin lamellae span the entire thickness of the specimen. This is confirmed by the
EBSD analysis in Figure 5.8(b) that reveals large misorientations of the twin lamel-
lae with the surrounding crystal. The internal structure of these twins, shown in
Fig. 5.8(d), demonstrates that their interiors are again formed by slip traces cor-
responding to the operation of the (1̄01)[1̄1̄1̄] and (1̄10)[1̄1̄1̄] slip systems with two
highest Schmid factors. Due to the observed sharp terminations of these slip traces
in Fig. 5.8(d), we believe that the primary deformation has occurred by twin for-
mation on the (2̄11) plane, and subsequent nucleation of slip within these twins.
However, a different deformation mechanism is associated with the (11̄2)[11̄1̄] sys-
tem above. According to Table 5.5, this system is sheared in the antitwinning sense,
whose operation theoretically cannot produce twins. Nevertheless, the EBSD anal-
ysis in Fig. 5.8(b) reveals the presence of large lattice rotations. The character of
these domains will be explored later in Section 7. The point of intersection of the
(2̄11)[1̄1̄1̄] twin with the lamella on the (11̄2) plane coincides with the crack (black
regions in Fig. 5.8(b)) and, therefore, we believe that the intersection of the two
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types of lamellae result in the initiation of fracture. This is phenomenon has been
observed in other specimens as well.

(a) (b)

(c) (d)

Figure 5.8: Surface markings on the specimen 8* after deformation: (a) face A, (b)
EBSD IPF X map of face A. (c) Traces of (2̄11)[1̄1̄1̄] system on the face B’ (d) detail
of the (2̄11)[1̄1̄1̄] system on the face B’ revealing a composite slip on the (1̄01)[1̄1̄1̄]
and (1̄10)[1̄1̄1̄] systems.

The mechanism of plastic deformation of high-purity Cr single crystals at low-
temperatures depends on the orientation of the applied load as well as on whether
the sample was predeformed at room temperature or not. According to Fig. 5.9,
the compression samples with loading axis close to [001] show homogeneous slip on
those slip systems with the highest Schmid factors. In this region, predeformation
does not change the mechanism of plastic deformation. Similar behavior is observed
for the sample 7* predeformed at room temperature and subsequently compressed
at liquid nitrogen temperature between the center-triangle orientation and the [001]-
[011] edge. However, the sample 3 that was not predeformed at room temperature
deformed at 77 K by a combination of composite slip and twinning. The sample 4*
with the loading direction close to the center of the stereographic triangle exhibited
anomalous slip on the (01̄1) plane. For loading directions close to the [011] − [1̄11]
edge of the stereographic triangle, the crystals deformed predominantly by twinning

102



on {112}⟨111⟩ systems, irrespective of preceding predeformation at room tempera-
ture. The rotation of the loading axis, as well as the observed type of deformation is
shown in Fig. 5.9. They agree well with the model proposed by Hamelin et al. [226]
for combined slip on {110}⟨111⟩ and {112}⟨111⟩ systems. The red area shows the
orientation for which the anomalous slip was observed. The blue-white cross in the
red area shows the loading axis used in the atomistic simulations of anomalous slip
described later in Section 5.2.2.

All of the twin systems found and characterized in chromium specimens are
of the {112} type. The results show that cracks originate at the intersections of
twin lamellae and propagate along {100} planes. This agrees with the findings of
Sameljuk et al. [124]. The surface morphology shown in Fig. 5.8(c) is similar to
the wavy slip reported by Greiner [3] in 1950 on the specimens deformed at room
temperature. However, there is no mentioning of any particular slip system in the
Greiner’s paper. Our results further match those reported by Reid et al. [4] who
report twinning on {112} planes and slip on {110} planes. There is no visible internal
structure of the misoriented regions caused by antitwinning shear in Fig. 5.7(a),
which agrees with the previous work by of Gröger et al. on single-crystalline niobium
[225].

Figure 5.9: Deformation modes for different loading directions considered for uni-
axial compression of Cr single crystals. The sample with center-triangle orientation
deforms by anomalous slip. The direction [2̄38], marked with a blue cross, was con-
sidered for the atomistic simulations of intersecting 1/2⟨111⟩ screw dislocation under
compression in Section 5.2.2. The part of the stereographic triangle that contains
these samples is colored dark gray only because of the observation of twinning on
the specimen 3.
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List of symbols

Symbol Meaning
Latin symbols

b Burgers vector
n̂ Unit normal of the viewing plane

Rp0.2 Yield stress
Greek symbols

ϵpl Plastic strain at 77 K
ϵprepl Plastic strain during predefromation at RT
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5.2 Junction formation and anomalous slip in Cr

Search for long straight ⟨111⟩ dislocations has so far been unsuccessful and we an-
ticipate that these dislocations can only exist at junctions of intersecting ⟨111⟩ dis-
locations. This is consistent with dislocation reaction 1/2[111] + 1/2[11̄1̄] → [100],
which is favorable even using simple linear elasticity. Understanding the mobility of
this junction dislocation and the surrounding dislocation network is a pre-requisite
to understanding the conditions that favor the anomalous slip in Cr.

5.2.1 TEM studies of dislocation networks

TEM JEOL JEM-2100F operating at 200 kV was used to characterize dislocation mi-
crostructures. The foils for analysis were prepared from the chromium specimen 4*
(the only specimen that deformed by anomalous slip) by the process described in
Section 3.3. The dislocations were characterized by the g ·b analysis from a series of
micrographs taken under the two-beam condition for six different diffraction condi-
tions. Fig. 5.10(a) represents the detail of the observed dislocation junction between
two intersecting 1/2 ⟨111⟩ screw dislocations and Fig. 5.10(b) shows designations
of individual dislocations used in the g · b analysis.

(a) (b)

Figure 5.10: (a) Detail of a dislocation junction taken using the STEM mode in
the [111] pole at 250 000 x magnification and the camera length of 40 cm. (b)
Numbering of dislocations for the g · b analysis.

Fig. 5.11 shows a series of TEM micrographs taken and different diffraction
conditions used for the g · b analysis, whose overview is presented in Table 5.6.

In the first diffraction condition, the dislocation labeled 3 is invisible, which
suggests it can be one of the three dislocations with the dot product of its Burgers
vector and diffraction condition equal to 0, i.e. [111̄], [11̄1] and [100]. However, if the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Series of TEM micrographs taken at different difraction condifions (D1-
D6) at 40 000x magnification: (a) D1 : g = 011, (a) D2 : g = 211, (c) D3 : g = 121,
(d) D4 : g = 1̄21, (e) D5 : g = 200, (f) D6 : g = 11̄0

106



[111̄] dislocation was the solution, it would have to be invisible also in the diffraction
conditions labeled as D4 or D6, which is not the case. The same applies to the [11̄1]
dislocation in the condition D3. However, in this case, the visibility is lower and
the dislocation does not disappear completely. Additionally, two dislocations of
the ⟨111⟩ type cannot produce another dislocation of the same type. Therefore,
the [100] dislocation is the only remaining possibility. The dislocation labeled 1
is missing from the micrograph taken in the second diffraction (D2), leaving only
[11̄1̄] possible. The dislocation labeled 2 disappears in micrograph taken in the
condition D6, which suggests again three dislocations - [111], [111̄] and [001]. The
[111̄] dislocation would have to be invisible also in the D1 condition, which is clearly
not the case, and similarly, the [001] dislocation would have to be invisible in the
D5 condition. The only dislocation that satisfies all criteria is [111].

Table 5.6: Summary of the diffraction conditions used to interpret Fig. 5.11 together
with the dislocation visibility analysis for dislocations marked in Fig. 5.10(b). The
last seven columns represent the result of the absolute value of the dot product
between the diffraction vector and the Burgers vector of a suspected dislocation.

Suspected dislocation
Diffraction
condition

Dislocation
visibility

[111]
[1̄1̄1̄]

[111̄]
[1̄1̄1]

[11̄1̄]
[1̄11]

[11̄1]
[1̄11̄]

[001]
[001̄]

[010]
[01̄0]

[100]
[1̄00]

1 2 3 g · b g · b g · b g · b g · b g · b g · b
D1 [011] ✓ ✓ ✗ 2 0 2 0 1 1 0
D2 [211] ✗ ✓ ✓ 4 2 0 2 1 1 2
D3 [12̄1] ✓ ✓ ✓ 4 2 2 0 1 2 1
D4 [121̄] ✓ ✓ ✓ 2 0 4 2 1 2 1
D5 [200] ✓ ✓ ✓ 2 2 2 2 0 0 2
D6 [11̄0] ✓ ✗ ✓ 0 0 2 2 0 1 1

The three dislocations in the network, i.e. 1/2[111], 1/2[11̄1̄] and [100], lie on the
same (01̄1) plane. Two possibilities then follow from the behavior of this network
under stress. If the junction breaks under stress, the two dislocations unzip from
each other and may continue moving on planes favorable for individual dislocations.
This would typically result in ”normal” slip as predicted from the Schmid law. On
the other hand, if the junction remains stable under stress, the three dislocations
can only move on the plane common to all three, which is the (01̄1) plane. In this
case, the macroscopic plastic deformation would be governed by anomalous slip.

5.2.2 Simulation of anomalous slip in chromium

Computer atomistic simulations made in our group [227] were used to investigate
the behavior of the junction in Fig. 5.10(a). A similar study was done by Bulatov
and Cai [228] on molybdenum. They considered a uniaxial compression in the [2̄38]
direction that is close to the center of the stereographic triangle. The simulation
cell was constructed as two interpenetrating cylinders with their rotational axes
parallel to [111] and [11̄1̄] directions, as shown in Fig. 5.12. The region inside
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(a) (b)

Figure 5.12: Simulation cell with the dislocation positions identified using the DXA
algorithm. Gray lines: dislocations in the relaxed block at zero applied stress.
Colored lines: displaced dislocations in the block subjected to large uniaxial com-
pression in the [2̄38] direction. (a) view in along the x negative, (b) view along the
y direction.

the union of these cylinders was filled with atoms at the positions of the perfect
bcc lattice that was oriented such that the x, y, and z axes were parallel to the
three ⟨100⟩ directions. The 1/2[111] and 1/2[11̄1̄] screw dislocations were inserted
parallel to the rotational axes of the two cylinders using their anisotropic linear-
elastic strain fields obtained from Stroh’s theory [229]. The 25844 atoms whose
distance from the surface of the simulation cell was smaller than the cut-off radius
of atomic interactions (rcut) were fixed at their displaced positions, whereas the
remaining 26163 atoms inside the block were further relaxed at 0 K using the FIRE
algorithm [230]. The structural relaxation was terminated when all forces on atoms
dropped below 5 meV/Å. These boundary conditions ensure that the atoms in the
interior of the two cylinders (i.e., farther from the surface than rcut) experience
bulk-like environments. The energy of the system of interacting atoms and the
forces between them were described using the Bond Order Potential for Cr that was
formulated recently by Lin, Vitek, and Mrovec [231]. This semi-empirical potential
was developed partially using first principles calculations and correctly captures the
mixed metallic and covalent character of bonds arising from partially filled d bands
and the screening of d-d bonds by s electrons on neighboring atoms. However, this
formulation does not consider magnetic spins as relevant degrees of freedom and thus
treats Cr as an effectively non-magnetic bcc metal. Such simplification is acceptable
for the triple-Q state of Cr that contains a large number of small magnetic domains
with all three orientations of the wavevector Q (Fig. 1.7).

The dislocation substructure inside the relaxed simulation cell is shown in the
right panel of Fig. 5.12 in gray. It was obtained by post-processing the relaxed
atomic positions using the Dislocation Extraction Algorithm (DXA) [232] as imple-
mented in the OVITO code [233]. The intersection of the 1/2[111] and 1/2[11̄1̄] screw
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dislocations produced a short [100] junction with the screw character, in agreement
with experimental observation. The external uniaxial compression along the [2̄38]
direction was then applied in the steps of 0.001C44 (about 100 MPa) by imposing
the corresponding linear-elastic displacements to all atoms in the block. The atoms
inside the block were relaxed for each stress state by the procedure described above.

The following two mechanisms may be operative when the applied stress reaches
the yield stress. If the [100] junction is weak, the 1/2⟨111⟩ dislocations would break
from the junction and continue moving on the {110} planes that are predicted by
atomistic studies on isolated dislocations. In particular, the 1/2[111] dislocation
would move on the (1̄01) plane, and the 1/2[1̄11] dislocation on the (101) plane [78].
On the other hand, if the junction is strong, the two 1/2⟨111⟩ dislocations and
their [100] junction would remain tightly bound and move on the (01̄1) plane that
is common to all three. In this case, single-dislocation atomistic studies would be
insufficient to explain the origin of the anomalous slip.

We observe in Fig. 5.12(b) that the application of stress moves the whole network
on the (01̄1) plane. A similar movement is observed also under uniaxial tension
applied in the same direction. In this case, however, the network of the three
dislocation moves on the (01̄1) plane in the opposite direction.

These calculations were also done for α-Fe, where the two dislocations unzip
from the junction under both uniaxial tension and compression. As a consequence,
the macroscopic slip traces are determined by the slip system operative at the level
of isolated dislocations. Using the terminology above, the two 1/2⟨111⟩ screw dislo-
cations in Cr form a strong [100] junction. Based on these results, we also conclude
that the anomalous slip in Cr is not associated with the motion of isolated 1/2⟨111⟩
screw dislocations but, instead, it is governed by the glide of intersecting 1/2⟨111⟩
screw dislocations and their [100] junction on the (01̄1) plane. This conclusion agrees
with our STEM analysis made on deformed samples (Fig. 5.11). Furthermore, it
confirms that the co-planar double slip model, proposed originally by Matsui &
Kimura [70] and Louchet & Kubin [66] to explain the occurrence of the (01̄1) slip
in Mo, governs the anomalous slip in Cr at low homologous temperatures.

In principle, a thermodynamic model of dislocation glide should be considered to
extend the results of molecular statics simulations to finite temperatures. However,
the mechanism of plastic deformation of bcc metals at low homologous temperatures
(i.e., below 10% of the melting temperature) is governed by long and nearly straight
screw dislocations, whose behavior under stress is studied by molecular statics at
0 K. This justifies the use of molecular statics to explain the behavior of Cr at 77 K.
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b Burgers vector
C44 Shear modulus
g Diffraction vector
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6 Deformation mechanisms in α-Fe

6.1 Compression tests on polycrystalline α-Fe

The engineering stress-strain curve in Fig. 6.1 measured at 77 K shows various load
drops that could be produced by twinning. Indeed, a closer look at the curve (inset
in Fig. 6.1) reveals numerous load drops that are associated with the nucleation of
twins in individual grains of the specimen.

Figure 6.1: Engineering stress-strain relationship of the polycrystalline specimen
tested in compression at 77 K. The consequences of load drops on the surface of the
sample are shown in Fig. 6.2.

The grain structure represented by the IPF Z map before the deformation is
shown in Fig. 6.2(a), and the deformed state represented by the same type of map
is shown in Fig. 6.2(b). The loading axis is vertical. The black lines in Fig. 6.2(b)
represent twins, where the deformation caused a change in topography resulting
in either the incident electrons not being able to reach the twin or preventing the
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diffracted electrons from reaching the detector due to the 70◦ tilt of the specimen.
However, this is not the case for all twins, as demonstrated in the inset in Fig. 6.2(b).

(a) (b)

Figure 6.2: Example of the same area shown as EBSD IPF Z maps (a) before and
(b) after deformation. The inset represents an enlargement of the marked region
showing twins.

In this section, ten large grains were chosen with their initial orientations that
cover the area of the stereographic triangle, as demonstrated in Fig. 6.3. In cases
where the black lines appear in EBSD images the chosen grains, another EBSD
mapping was performed on the specimen rotated by 90◦ to reveal any large misori-
entation and to decide if the deformation is caused by twinning or slip.

To demonstrate which slip or twinning systems were activated, the table with
the five most stressed slip and twin systems is presented. The twinning systems
are also marked with T or AT to distinguish the shear applied in the twinning
and antitwinning sense, respectively. The grains were chosen based on their size,
orientation of the loading axis, and the number of the active slip or twinning systems,
which are always at least two. Fig. 6.4 shows the pattern quality maps of grains 1
and 3 and the tables below the five most stressed slip and twinning systems expected
in these grains. If the twin could not be identified by EBSD due to geometrical
constraints, another EBSD map with the specimen rotated by 90◦ was taken.

The twinning systems present in this grain 1 (Fig. 6.4(a)) are the (2̄11)[1̄1̄1̄]
and (1̄21)[111̄], which are both sheared in twinning sense and have SFs = 0.439 and
0.314, respectively. The five most stressed slip and twinning systems for grain 1 are
summarized together with respective SFs in table on the bottom of Fig. 6.4(a).
The observed traces correspond to the most highly stressed twinning systems op-
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Figure 6.3: Stereographic triangle showing a loading axis direction of individual
grains.

(a) (b)

Figure 6.4: Pattern quality map of: (a) grain 1, and (b) grain 3 with highlighted
twinning systems. The five most stressed slip and twinning systems in the grains 1
and 3 are shown in the tables under the maps. The orientations of these grains
expressed in Bunge’s notation are (214.3◦, 27.6◦, 87.4◦) and (171◦, 39.06◦, 38.4◦),
respectively.

erating in this grain. Even though the most stressed slip system has greater SF
than the second most highly stressed twinning system, no slip was observed. The
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grain 3, shown in Fig. 6.4(b) has a loading axis oriented near the [011] − [111̄]
edge of the stereographic triangle. The (2̄11)[1̄1̄1̄] twinning system with the highest
Schmid factor of 0.465 is operative. However, the next twinning system (1̄12)[11̄1]
sheared in the twinning sense with the SF = 0.156 is also visible, despite several
more highly stressed systems sheared in both the twinning and the antitwinning
sense being expected.

Figure 6.5: Pattern quality map with highlighted twinning systems of grain 2. The
five most stressed slip and twinning systems of grain 2 are shown in table under the
map. The orientation of the grain expressed in Bunge’s notation is (278.4◦, 25.8◦,
18.1◦).

The grain 2, oriented close to the [001]− [011] edge of the stereographic triangle
and shown in Fig. 6.5, contains four operative twinning systems, namely (2̄11)[1̄1̄1̄],
(211)[11̄1̄], (121)[11̄1] and (1̄2̄1)[11̄1̄] with the SFs = 0.435, 0.395, 0.163 and 0.035,
respectively. The twin formation may have been initiated at the grain boundary or
at another twin. All of the observed systems are, however, sheared in the twinning
sense, and none sheared in the antitwinning sense is present. The most stressed
twinning system in grain 2 sheared in the antitwinning sense has more than 12
times larger Schmid factor compared to the twinning system sheared in twinning
sense with the lowest SF that was observed. Similarly, no slip systems were observed
as in the previous case.

The loading axis of grain 4, whose pattern quality map is shown in Fig. 6.6(a), is
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(a) (b)

Figure 6.6: Pattern quality map of: (a) grain 4, and (b) grain 5 with highlighted
twinning systems. The five most stressed slip and six most stressed twinning systems
in grains 4 and 5 are shown in tables under the maps. The orientations of the grains
expressed in Bunge’s notation are (308.4◦, 42.7◦, 50.1◦) and (122.3◦, 49.7◦, 56.7◦),
respectively.

located near the center of the stereographic triangle. This grain shows the operation
of three different twinning systems, namely (2̄11)[1̄1̄1̄], (211)[11̄1̄] and (1̄21)[111̄]
with Schmid factors of 0.446, 0.350 and 0.277, respectively. These are the three
most stressed twinning systems sheared in the twinning sense, skipping over the
systems sheared in the antitwinning sense with higher Schmid factors. The loading
axis of grain 5 is closer to the center of the stereographic triangle, slightly closer
than that of grain 4. The grain 5, shown in Fig. 6.6(b), is located on a different
side of the specimen, yet the operative twinning systems are identical. Therefore,
even though twins can be initiated at grain boundaries by external factors, the most
stressed twinning systems sheared in the twinning sense are always operational.

The loading axis of grain 6, whose pattern quality map is shown in Fig. 6.7(a), is
located closest to the [001]− [011] edge of the stereographic triangle. Unfortunately,
only the (2̄11)[1̄1̄1̄] twinning system can be identified without ambiguity. The other
three misorientations in this grain cannot be differentiated precisely because the sur-
face markings are in very similar orientations. Going from the most stressed systems
to the least, the orientation of the red twinning system (1̄1̄2)[1̄1̄1̄] sheared in the
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(a) (b)

Figure 6.7: Pattern quality map of: (a) grain 6, and (b) grain 7 with highlighted
twinning systems. The most stressed slip and twinning systems of grain 6 and grain
7 are shown in the tables under the maps. The orientations of the grains expressed
in Bunge’s notation are (272.5◦, 33.9◦, 19.7◦) and (281.2◦, 40.8◦, 76.2◦), respectively.

antitwinning sense with the Schmid factor of 0.455 is very close to the orientation of
the (211)[11̄1̄] system sheared in the twinning sense with the Schmid factor of 0.389.
The difference between the theoretical orientations of these markings projected onto
the surface is only 0.9◦. The green twinning system (1̄12)[1̄11̄] sheared in the an-
titwinning sense with the SF = 0.286 is only 4.6◦ from the dark blue (121)[1̄11̄]
twinning system sheared in the twinning sense with the SF = 0.208. Lastly, the
magenta twinning system (21̄1)[111̄] with SF = 0.071 and the pink twinning system
(1̄2̄1)[11̄1̄] with the SF = 0.069 are both sheared in the twinning sense and have
mutual misorientation of 1.5◦.

If the surface markings of two twinning systems are only slightly misoriented,it is
nearly impossible to decide which (or whether both) systems are active. However, if
one of these is sheared in the twinning sense and the other in the antitwinning sense,
it is safe to assume that the misoriented region is a twin resulting from twinning
on the former system. The loading axis of grain 7, shown in Fig. 6.7(b) is closest
to the [100] pole of the stereographic triangle. Therefore, several slip and twinning
systems may be operative due to large Schmid factors. Similarly as the grain 6,
the most strained twinning system in this grain cannot be accurately determined.
The angular difference between traces of the orange (1̄1̄2)[1̄1̄1̄] system sheared in
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the antitwinning sense with SF = 0.469 and teal (2̄11)[1̄1̄1̄] sheared in the twinning
sense with SF = 0.316 is only 1.8◦. The other systems present are the blue (1̄21)[111̄]
twinning system sheared in the twinning sense with the SF = 0.299 and the red
(1̄2̄1)[11̄1̄] system sheared in twinning sense with SF = 0.230. The grain 8 lies close
to the [100] − [111̄] edge of the stereographic triangle and is the smallest grain in
this study. The observed systems are the teal (2̄11)[1̄1̄1̄] twinning system sheared
in the twinning sense with SF = 0.400, blue (1̄21)[111̄] twinning system sheared
in the twinning sense with SF = 0.382, and the red (1̄2̄1)[11̄1̄] twinning system
sheared also in twinning sense with SF = 0.185. The corresponding pattern quality
map with the highlighted operative systems is shown in Fig. 6.8(a). The twinning
systems sheared in the antitwinning sense are not present in this grain even though
their Schmid factors are equal or higher than those of the systems sheared in the
twinning sense.

(a) (b)

Figure 6.8: Pattern quality map of: (a) grain 8, and (b) grain 9 with highlighted
twinning systems. The five most stressed slip twinning systems of these grains are
shown in the tables under the maps. The orientations of the grains expressed in
Bunge’s notation are (213.5◦, 22.8◦, 33.2◦) and (141.5◦, 26.1◦, 22◦), respectively.

The loading axis of grain 9, shown in Fig. 6.8(b), lies on the [001] − [1̄11] edge
of the stereographic triangle in close proximity to the loading axis of the grain 8.
While the loading axes of both grains are very close to each other, the crystal lattice
is rotated around the loading axis, hence the different orientation of the surface
traces. The teal (2̄11)[1̄1̄1̄] twinning system is present as well as the blue (1̄21)[111̄]
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twinning system, both sheared in the twinning sense with SF = 0.403 and 0.377,
respectively. The last surface markings match green (211)[11̄1̄] twinning system
(sheared in the twinning sense, SF = 0.224). However, no misorientation was found
on the EBSD maps. The closest slip systems that could correspond to this trace
(angular difference of approx. 6◦) are the (110)[11̄1̄] and (1̄1̄0)[11̄1] systems with
SFs = 0.028 and 0.004, respectively. The reason for not resolving this misorientation
might be caused by low resolution of the EBSD map. Analogously to the grain 8,
operation of the twinning systems sheared in the twinning sense are observed, while
traces of the systems sheared in the antitwinning sense are not visible, despite them
having higher Schmid factors. The loading axis of grain 10, whose pattern quality
map is shown in Fig. 6.9, lies closest to the [011] pole of the stereographic triangle
than that of any other sample. The only two operative twinning systems, both
sheared in the twinning sense are the teal (2̄11)[1̄1̄1̄] and green (211)[11̄1̄] systems
with SF = 0.484 and 0.447, respectively. In this case, no systems sheared in the
antitwinning sense are operational, because they have lower Schmid factors.

Figure 6.9: Pattern quality map with highlighted twinning systems of grain 10. The
five most stressed slip and twinning systems of grain 10 are shown in table under the
map. The orientation of the grain expressed in Bunge’s notation is (274.3◦, 48.9◦,
38◦).
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Cracks in the vicinity of twin boundaries were occasionally found in the deformed
specimen. These cracks were found to propagate either along twin boundaries as
shown in Fig. 6.10(a) and marked by the arrows, or at the irregularities of the twins,
shown in Fig. 6.10(b). The twins in Fig. 6.10(a) are visible as the slightly darker
bands below the cracks. Such behavior is usually observed in response to fatigue
loading of fcc metals [234–236] and explained by the accumulation of dislocations at
twin boundaries, because the latter allow dislocation storage to accommodate high
plastic strain [237]. This process leads to generation of vacancies close to the twin
boundary which subsequently coalesce to form a crack. Indeed, similar cracks have
been reported before [238].

(a) (b)

Figure 6.10: Example of twin boundary cracking in α-Fe polycrystal deformed in
compression at 77 K: (a) cracking along the twin boundary, (b) cracks at irregular-
ities inside twins.

Two more polycrystalline specimens were prepared by the same method and
compressed, one in prestrained state to ϵpl = 0.9%, the second time without pre-
strain. The amount of plastic deformation at 77 K was 2.4 % and 2.5 % for the
prestrained and unprestrained specimen, respectively. The prestrained specimen
showed fewer smaller grains that deformed by twinning, however no slip traces were
found. Furthermore, the stress-strain curves (not shown) do not exhibit large dif-
ferences between each other.

We have previously shown in Fig. 4.7(a) an EBSD IPF Z map on the deformed
polycrystalline specimen that was predeformed at RT to 0.9% and subsequently
deformed at 77 K to 2.4 %. The loading axis on this figure is horizontal. This
EBSD map reveals three sets of twins. In particular (2̄11)[1̄1̄1̄] system with SF =
0.452 and (1̄12)[111̄] with SF = 0.213 both sheared in the twinning sense. These are

119



the first and third most stressed slip systems in twinning sense. The last slip system
corresponds to (321)[11̄1̄] with SF = 0.353 also sheared in the twinning sense. This
is the only {123} system found during the investigation. In many cases, surface
markings may match more twinning systems and it is thus possible that some of
the twinning systems have been erroneously attributed to {112} twins. However, we
find this unlikely. In this particular case, however, the identification of the twinning
system is unambiguous as the closest slip markings of {112} systems are rotated by
approx. 20◦ in both directions. Table 6.1 shows the Euler angles expressed in the
Bunge notation for the structures shows in Fig. 4.7(a).

Table 6.1: Euler angles of yhe matrix and three twin types shown in Fig. 4.7(a).
The angles are expressed in the Bunge notation.

Structure Euler angle
Matrix (108.5◦, 6.4◦, 9.3◦)

(1̄12)[111̄] (327.5◦, 43.1◦, 21.7◦)
(2̄11)[1̄1̄1̄] (6.8◦, 46.4◦, 55.2◦)
(321)[11̄1̄] (269◦, 42◦, 67.1◦)

From the Euler angles, we can estimate the misorientation of any two structures.
First, the rotation matrix g is computed for each structure [221, p. 21], that brings
the twin into coincidence with the matrix. Secondly, we compute the misorientation
matrix as:

∆gmt = gmg
−1
t (6.1)

where ∆gmt is misorientation matrix, gm rotation matrix of matrix and gt rotation
matrix of twin. From the misorintation matrix ∆gmt we can further compute an-
gular misorientation [239]. The angular misorientation gives the angle by which we
rotate about a particular axis to arrive from orientation represented by the rotation
matrix gm to orientation represented by the rotation matrix gt. If we use this met-
ric on the Euler angles in Table 6.1 and compute the misorientations between the
matrix and twins, we obtain the following misorientations of the three twins with
the surrounding matrix:

� 131.9◦ around [012] for the (1̄12)[111̄] twin,

� 70.4◦ around [011] for the (2̄11)[1̄1̄1̄] twin,

� 145.9◦ around [113] for the (321)[11̄1̄] twin.

All of these misorientations are different. However due to the symmetry of the
bcc lattice, they are all equivalent symmetry operations for Σ3 twins. In practice,
smallest angle of the equivalent angle/axis misorientations is shown. In this case, it
would be 60◦ rotation around [111]. To find the smallest angle, one would have to
multiply the the gm and gt matrices by all the 24 symmetry operators for bcc lattice
before the misorientation matrix in Eq. (6.1) is computed and find the smallest angle
among the results. These symmetry operators for cubic lattices can be found in Zhao
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and Adams [240]. The second possibility is to compare the results with precomputed
list of possible equivalent angle/axis misorientations for Σ3 twins, which is the case
here. The results thus show that all of the twins are of the same type. Twinning on
{123} planes in further discussed in Chapter 7.
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gm Rotation matrix of crystal matrix (6.1)
gt Rotation matrix of twin (6.1)

Greek symbols
∆gmt Misorientation matrix (6.1)
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6.2 Compression tests on α-Fe single crystals

Two iron single crystal specimens were prepared from the source crystal provided by
Prof. Lejček (Institute of Physics of the Czech Academy of Sciences). The chemical
composition of the specimen was shown previously in Table 3.4. Fe-mono-1 specimen
was strained at RT to approx. 6% and Fe-mono-2 specimen was prestrained to 1.7%
at RT and subsequently deformed at 77 K to another 2.5%. The orientation of
the loading axes of the specimen, measured by the EBSD, lies in the center of the
stereographic triangle, shown in Fig. 6.11. The right part of Fig. 6.11 presents
a detail of the red-bounded area in the stereographic triangle. The empty circles
show the initial position of the loading axis, while the filled circles mark the final
orientation of the loading axis after deformation. The loading axis of Fe-mono-1
specimen rotates towards the [012] pole, which suggests operation of multiple slip
systems. In cases where multiple slip systems are operational, the loading axis
rotates towards the pole that is a weighted vector sum of the slip plane normals.
At RT, where operation of many slip systems is possible, the rotation can be also
canceled out to a certain extent by operation of systems on the planes with opposite
indices. The measured misorintations of the axes are 0.6◦, 0.9◦, and 0.7◦ for the
x, y, z axis respectively. It should be noted, that such small misorientations are
below the angular resolution of the EBSD technique. This specimen was deformed
at room temperature with the strain rate of 30 µm/min. The yield stress was only
approximately 50 MPa and subsequent deformation resembles room temperature
creep, as shown in Fig. 6.12.

Figure 6.11: Rotation of loading axes of single-crystalline α-iron specimens. Empty
circles mark the initial orientation of the loading axis and filled circles show the final
orientation after deformation. The right part of the figure shown enlargement of the
area bounded by the red rectangle.

The loading axis of specimen Fe-mono-2 that was deformed at 77 K, rotates
strongly towards the [011] direction, see Fig. 6.11. This suggests that the most
operative slip happens on (011) atomic planes. The misorientations of the axes for
the Fe-mono-2 specimen are 2.2◦, 2.6◦, and 1.5◦ for the x, y, z axis respectively.
The stress-strain curve of Fe-mono-2, shown in Fig. 6.12, exhibits the yield stress
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Rp0.2 of approximately 460 MPa, almost ten times larger that the yield stress of the
Fe-mono-1 specimen. The strain rate is identical to the one used to deform the Fe-
mono-1 specimen. Furthermore, the stress-strain curves of both specimens do not
exhibit a sharp yield point, but rather a gradual transition. The six most stressed
slip systems for this orientation are (1̄01)[1̄1̄1̄] with SF = 0.497, (1̄01̄)[1̄11] with SF
= 0.453, (01̄1̄)[1̄1̄1] with SF = 0.353, (01̄1)[11̄1̄] with SF = 0.309, (011̄)[111] and
(11̄0)[111], both with SF = 0.249. The combination of the first five systems would
rotate the loading axis towards [211] pole. The operations of the third to the fifth
most higly stressed slip systems would cause rotation of the loading axis towards
the [011] pole.

Figure 6.12: The engineering stress-strain curves of the single-crystalline specimens
Fe-mono-1 and Fe-mono-2 deformed at RT and 77 K, respectively.
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7 Twinning in Cr and α-Fe

A majority of twins in chromium specimens were found on {112} planes sheared in
the twinning sense. However, some misoriented regions were also observed on {112}
planes sheared in the antitwinning sense, although they were much less prominent
(Fig. 5.7). These misoriented regions agree with traces of the (1̄1̄2)[1̄1̄1̄] system,
which is sheared in the antitwinning sense with the Schmid factor of 0.293 and traces
of the (211)[11̄1̄] system sheared in the twinning sense with the Schmid factor of
0.288. The angular difference between these two systems is only 7◦, and we cannot
unambiguously identify the operative systems. The individual misoriented islands
agree well with the system sheared in the antitwinning sense, while the overall
direction of these islands matches closer the system sheared in the twinning sense.
In order to investigate the structure of these thin misoriented regions sheared in
the antitwinning sense, we have extracted a lamella from the area marked as LLP
(Lamella lift-out position) in Fig. 5.7(a).

The TEM micrograph of the lamella is shown in Fig. 7.1(a). The AT region
corresponds to the (1̄1̄2)[1̄1̄1̄] traces marked by the orange dashed line in Fig. 5.7(a),
and M represents matrix. The red circles mark the areas from which the Selected
Area Electron Diffraction (SAED) patterns were taken. The SAED pattern from the
red circles is shown in Fig. 7.1(b). We show them as one picture since they are the
same in all red-circled areas. Fig. 7.1(c) and 7.1(d) show simulated SAED patterns
for a structure with a twin and a high-energy stacking fault created by shearing in
the opposite sense with the same magnitude of applied shear (the simulation cell
is shown as an inset in the upper right corner). The green circles in Fig. 7.1(b),
7.1(c) and 7.1(d) mark the same positions in the reciprocal space. The simulation
suggests that if the region was sheared in the antitwinning sense and the high-energy
fault was stable, the SAED pattern would change to that in Fig. 7.1(c). However,
this is not the case and the diffraction spots in Fig. 7.1(b) correspond to a regular
twin. The same observation was done on niobium single crystal with twins caused
by antitwinning shear [241].

To reconcile these TEM observation, atomistic simulation in our group were
made to investigate in detail the stability of multilayer stacking fault produced by
uniform shear. Even though dislocations in bcc metals generally do not dissociate
into partial dislocations [242], there is evidence that the dissociated dislocations
in multilayer stacking faults may be stable under stress [243–245]. The 1/2⟨111⟩
screw dislocation in bcc metals can dissociate into three 1/6⟨111⟩ partial dislocations
[246–248] on three parallel neighboring {112} planes. Nowadays, it is generally
accepted that shearing the crystal in the twinning direction leads to easy glide of the
screw segments of the dislocations and nucleation of twin embryos. In contrast, the
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shear in the antitwinning direction requires larger shear stress to form the multilayer
stacking fault [249].

In Fig. 7.2 the black dots represent the atoms in ideal lattice positions, the
orange line the (2̄11) twinning plane, grey circles the original position of atoms in
the region to be twinned and the orange dots the positions of these atoms after
twinning. The twinning shear is applied by displacing atoms in successive (2̄11)
planes by the 1/6[111] Burgers vector relative to the atoms in the previous adjacent
plane. This is represented by the red-filled region and red arrows. After the 1/6[111]
partial dislocations pass under the twinning plane, the orange twinned region is cre-
ated. We call this direction of shear the twinning direction. However, the same twin
can be obtained if the region below the twinning plane is sheared in the opposite
direction by a series of −1/3[111] partial dislocations, which is depicted as the blue
region. In this case, the elementary displacements are twice as large compared to
those corresponding to the shear applied in the twinning direction. Atomistic simu-
lations show that the displacement in the antitwinning direction is less energetically
favorable than displacement in the twinning direction, it could potentially explain
the misoriented lamellae along the traces of (1̄1̄2) plane in Fig. 5.7(a).

In order to investigate under which conditions the twin can be formed by uni-
formly applied shear stress, we use atomistic simulations to determine the energy
barrier that is necessary to shear a bcc crystal in the twinning or antitwinning
direction. These studies are made for one and more stacking faults generated on
adjacent planes. Molecular statics was employed with the latest formulation of the
Bond Order Potentials for Cr and α-Fe developed by Lin et al. [36,37]. The orthog-
onal simulation cell had periodic boundary conditions in x and z direction. In the
remaining y direction, the simulation block was divided into outer region containing
seven atomic planes on each side and inner region with 32 atomic planes. A planar
stacking fault was placed in the middle of the inner block and every above-lying
plane was sheared by a fault vector with varied magnitude in the 1/2[111] direc-
tion. In this way, a uniform shear was utilized to create stacking faults, followed by
conjugate gradient minimization of the energy. In this calculation, the atoms in the
inner region were relaxed in the perpendicular direction to a fault plane, while the
atoms in the outer region were fixed. For further details, see Ref. [241]. The mag-
netic ground state in Cr, as described in Section 1.3, is not properly described by
empirical potentials, or DFT [250]. However, even the BOP for Cr is non-magnetic.
The internal magnetic order in α-Fe is treated correctly as a collinear ferromag-
net [37], but overestimates the magnitudes of magnetic moments (2.89µB instead of
2.22µB [251]). First, the minimum number of layers with metastable stacking fault
corresponding to the twin was identified. This was found to be 2 for Cr and 3 for
α-Fe for faults on {112} planes. The fault on {123} plane in α-Fe was found to be
stable only for 2 layer configuration1. This stability was confirmed by full relaxation
of atomic positions in the region surrounding the created stacking fault. Shearing
the crystal in the (2̄11) plane in the [111] direction is consistent with the twinning
shear as shown by the arrow in Fig. 7.3. Similarly, shearing the crystal on the (2̄1̄3)
plane in the [111] direction is consistent with the twinning shear. This shear causes
the crystal to undergo a series of states from A, through B → C → D → E → F to

1Only configurations with 1 to 4 layers were tested.
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(a) (b)

(c) (d)

Figure 7.1: Comparison of diffraction contrast images taken from the misoriented
region shown in Fig. 5.7(a), measured diffraction spot patterns and simulated spot
patterns: (a) TEM micrograph from the lamella lifted-out from the misoriented
region on Fig. 5.7(a) marked as LLP. Yellow dashed lines separate the differently
oriented regions. AT denotes the region with traces of {112} planes sheared in the
antitwinning sense, T denotes the region with traces of {112} planes sheared in the
twinning direction, M marks the matrix. Orange circles represent the regions from
which the SAED patterns were taken. (b) representative SAED pattern from TEM
representing all regions inside orange circles (camera length 40 cm, [110] zone). (c)
and (d) are simulated SAED patterns of the cells sheared locally in the antitwinning
and twinning sense, respectively. Green circles in (b), (c), and (d) mark the same
positions in all three images.

A’, where the states A and A’ represent the perfect lattice. The opposite sense of
shearing the crystal in the [1̄1̄1̄] direction constitutes the antitwinning shear. This
transforms the crystal through the states in the opposite order (A’ → F → E →
D → C → B → A). Here, the position C represents the twin, while B, D, E, F
are intermediate states of the deformation. Clearly, the Generalized Stacking Fault
Energy (GSFE) profile in Fig. 7.3(a) is asymmetric with the shear direction, which
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Figure 7.2: Schematic illustration of twin formation in the lower part of the crystal
by the application of positive (twinning) shear with the relative atomic displacements
of 1/6[111] (red region), and by negative (antitwinning) shear with the relative
displacements of −1/3[111] (blue region).

constitutes the twinning-antitwinning asymmetry. If the crystal in the state C is
relaxed, a minimum is found2 and this minimum corresponds to a metastable twin
boundary. This state is reached by applying twinning shear in the [111] direction
with magnitude of λ = 1/6 or oppositely by applying the antitwinning shear in the
[1̄1̄1̄] direction with magnitude of λ = 1/3 (as shown in Fig. 7.3(a) and illustrated in
Fig. 7.2 by the red and blue arrows). Clearly, reaching the C state by the twinning
shear requires overcoming a lower energy barrier than by the antitwinning shear.

In order to compute the twinning stress necessary to reach the state C, we define
the twinning stress as the maximal slope computed in the twinning direction as

σT = max

(
∂γA→A′

∂t

)
, (7.1)

where the t = λa/2[111] is the fault vector displacement, and a is the lattice param-
eter. Similarly to the Eq. (7.1), the antitwinning stress σAT is defined as maximum
slope in the opposite direction (A’ → A), i.e. σAT = max(∂γA′→A/∂t). These stresses
are very large, which agrees with the fact that twins are very unlikely to nucleate
homogeneously. In fact, they are formed at preexisting defects acting as stress con-
centrators, such as immobile dislocations [252]. According to Harding [112,253], the
experimental twinning stress in α-Fe at 77 K is 0.39 GPa. This is further confirmed
by Biggs et al. [113] and Edmonton [254] who report similar results. A similar study

2For faults on {112} plane in Cr with two and more stacking faults, for faults on {112} plane
in α-Fe with three and more stacking faults and for 2 stacking faults on {123} planes in α-Fe.
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about creation of multilayer faults in bcc metals is presented by Ojha et al. in [255]
and α-Fe in [256]. Ogata et al. [257] studied the profile of unrelaxed stacking fault
energy in fcc and bcc metals by the DFT.

(a)

(b) (c) (d) (e)

Figure 7.3: (a) GSFE energy profiles of for multilayer stacking faults created in
the twinning and antitwinning sense on the {112} plane in α-Fe (red curve), {112}
plane in Cr (black curve),{123} plane in α-Fe (blue curve), and {123} plane in Cr
(green curve). The asterisks represent the energies of twin boundaries obtained by
full atomic relaxations. Relaxed atomic structure of: (b) three-layer stacking fault
on the {112} plane in α-Fe, (c) two-layer stacking fault on the {112} plane in Cr,
(d) two-layer stacking fault on the {123} plane in α-Fe, (e) two-layer stacking fault
on the {123} plane in Cr.

129



Since the nucleation of twins is a thermally activated process, we argue that
the likeliness of nucleation of twins in the antitwinning sense can be expressed as
a ratio of antitwinning to twinning stress σAT/σT . Due to the inherent twinning-
antitwinning symmetry, this ratio can be computed for all bcc metals and is always
larger than one. Low σAT/σT ratio suggests that nucleating twins by the antitwin-
ning shear is likely (albeit most twins will be created by shear applied in the twinning
sense). On the other hand, large ratio of σAT/σT suggests that the creation of twins
by the antitwinning shear is improbable. Based on the calculations, the twinning
and antitwinning stress necessary for the creation of {112} two-layer stacking fault
in chromium by homogeneous shear is 33.7 and 40.0 GPa (σAT/σT = 1.19), respec-
tively and the stresses for the {112} three-layer stacking fault in α-Fe are 25.8 and
63.2 GPa (σAT/σT = 2.45). The resulting atomic structure for {112} twins in α-Fe
and Cr are shown in Fig. 7.3(b) and 7.3(b), respectively. The GSFE profiles of
creating a stacking fault on {123} planes in α-Fe and Cr suggest that it is easier to
create such fault. However, atomic structure of the relaxed stacking fault in α-Fe
and Cr does not constitute a twin, as shown in Fig. 7.3(d) and 7.3(e), respectively.
The relaxed structure of two-layer stacking fault in α-Fe shown in Fig. 7.3(d) is rem-
iniscent of slightly sheared bcc structure and energy of such structure is also very
low (asterisk in Fig. 7.3(a)). The same two-layer stacking fault in Cr (Fig. 7.3(e))
after relaxation represents a high-energy structure which also does not constitute a
twin.

The ratios suggest that chromium is likely to form twins on {112} planes by
antitwinning shear, while such twins on {112} in α-Fe are almost impossible to
nucleate. These results agree very well with experiments in Sections 5.1 and 6.1.
The shear stress required to produce twins on {123} planes and the σAT/σT ratio in
α-Fe are smaller compared to the stress and ratio required to produced a twin on
{112} planes. However, the process of growth of such twins may be different and
more difficult that that of {112} twins. More in-depth analysis of {112} stacking
faults created by twinning and antitwinning shear also in other bcc metals is available
in our publication Gröger et al. [241].
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List of symbols

Symbol Meaning Equation
Latin symbols

t Fault vector (7.1)
Greek symbols

γ Shear strain (7.1)
µB Bohr magneton
σAT Antitwinning stress
σT Twinning stress (7.1)
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8 Magnetic states of Cr after plastic defor-
mation

Magnetism in chromium single crystals was investigated by the means of vibrating
sample magnetometry and neutron scattering. The results show that the single-Q
state, where the magnetic ordering can be characterized by a single wavevector, can
be prepared by the field cooling method described by Golovkin et al. [174], Werner
et al. [175] and others [172, 258, 259]. The single-Q state can be characterized to
a certain extent by measuring the magnetic susceptibility along the three ⟨100⟩
directions of which one is parallel to the wavevector and two perpendicular to it.
This was demonstrated in Section 4.3. The magnetic susceptibility, a measure of
how easily a material can be magnetized in an external magnetic field, will be lower
when measured parallel to the spins. Furthermore, in the single-Q state, the change
of magnetic susceptibility across the spin-flip temperature TSF is readily observable.
The preparation of the single-Q state was also verified by the magnetic neutron
scattering, which shows that a majority of specimens were in the single-Q state.
However, less intense reflections corresponding to other spin density waves were
observed. The presence of other SDWs, albeit much weaker in the intensity, suggests
that the field cooling process did not fully transform the magnetic order in the
specimen. The magnetic state of the field-cooled specimens that were predeformed
at room temperature tend to favor the (1 ±δ, 0, 0) spin density wave. However, the
magnetic state is largely inconsistent between the specimens.

The magnetic neutron scattering of the specimens deformed at 77 K reveals that
the magnetic state corresponds to the single-Q state described by the (0, 1±δ, 0)
SDW, which would be created by field cooling in the [010] direction. All three
specimens deformed at 77 K were field-cooled in different ⟨100⟩ directions, and we
would expect their initial state to be similar to the predeformed specimens. One
could expect the final magnetic state after the plastic deformation at 77 K to be
similar to the stress-cooled state, as elastic deformation precedes and is present
during the plastic deformation. All of these assumptions are, however, wrong, as
the final state is the perfect single-Q state. To the best of our knowledge, this
behavior has not been reported in the literature, and unfortunately remains poorly
understood.

8.1 Prediction of magnetically dead regions in Cr

We have made further magnetic neutron scattering experiments to test the hypothe-
sis of Bienvenu et al. [11], that the glide of the 1/2[111] screw dislocations on {110},
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{112} and {123} atomic planes creates magnetic faults. This is the result of the
magnetic frustration, which is due to the fact that the 1/2[111] vector does not
connect identical spins (is not the translation vector from the point of view of the
magnetic structure). The fault region is characterized by a negligible magnitude of
the atomic magnetic moment. Furthermore, a dislocation creating such magnetic
fault would have to be followed by another dislocation of the same type to close the
magnetic fault, making it effectively a superdislocation with ⟨111⟩ Burgers vector.
We have simulated the expected magnetic neutron diffraction patterns by calcula-
tions described in Section 8.2, based on the DFT results obtained by Bienvenu et
al. [11]. The infinite magnetic fault is shown Fig. 8.1, where antiferromagnetic order
sets in away from the fault. Fig. 8.1(a) shows an infinite magnetic fault in chromium
along the {110} plane, where the differently sized circles represent a different mag-
nitude of magnetic moment. The touching circles have value of magnetic moment
of 1.1µB, while the smallest ones have value of 0.2µB. Similarly, Fig. 8.1(b) shows
an infinite magnetic fault on the {112} plane, but in this case, the smallest circles
represent a zero magnetic moment.

(a) (b)

Figure 8.1: Magnitude of the magnetic moments in an infinite magnetic fault in a
form of differently sized circles. Magnetic fault on: (a) {110} plane, (b) {112} plane.
The touching circles represent the magnetic moment of 1.1µB, whereas the smallest
circles represent valus of 0.2µB and zero in (a) and (b), respectively. Figures adapted
from Bienvenu et al. [11].

8.2 Simulation of neutron diffraction patterns

The following section describes the simulation of magnetic neutron scattering used
in this thesis. The neutron scattering is a type of Bragg scattering, which is the
coherent elastic scattering of waves by the crystal. For an ideal infinite crystal with
the basis vectors a1, a2 and a3, the scattering with constructive interference can
only occur at the diffraction vectors of the reciprocal lattice:

q = ha∗
1 + ka∗

2 + la∗
3 (8.1)

where h, k and l are integers, and a∗
1, a

∗
2 and a∗

3 the reciprocal lattice vectors1. The
approximation of the nuclear neutron scattering assumes that the magnitude of the

1The reciprocal lattice vectors are defined in terms of the Kronecker delta: δij as a∗i · a∗j = δij
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incoming wave is the same throughout the specimen. The attenuation of the neutron
beam and multiple scattering is neglected, therefore the specimen should be fairly
small.

The structure factor F (q) describes how a material scatters the incident wave. It
provides the distribution of the scattered density by all waves with the wavevector
q that are scattered by the atoms of the unit cell, summed over all atoms j in
the simulation box. The nuclear structure factor is given by the complex-valued
function:

Fn(q) =
N∑
j=1

bje
2πi(q·rj) ·Wj(q), (8.2)

where bj is the scattering length, a constant dependent on the material and an
isotope describing the interference of the nuclei of the material with the passing
neutron. The rj represents a vector of atom position in the simulation box. The
Wj is the Debye-Waller factor describing the attenuation of the coherent neutron
scattering by the thermal motion and is expressed as [260,261]:

Wj(q) = e−2Bjs
2

. (8.3)

Here the Bj is an experimentally measured constant, and s is described as

s =

√
q21 + q22 + q23

4π
, (8.4)

where q1, q2 and q3 are the Cartesian components of the diffraction vector q.
The intensity of the nuclear scattering at diffraction vector q can be calculated
as A|Fn(q)|2, where A is an absorption correction that depends on the measurement
geometry and on the linear absorption coefficient of the sample [262]. If the above-
mentioned conditions are met, the intensity of the diffracted beam In(q) is propor-
tional to the amplitude of the diffracted wave squared (more precisely squared mod-
ulus, since the amplitude is a complex number) for the individual reflections [263]:

In(q) ∝ |Fn(q)|2. (8.5)

The intensity of magnetic scattering can be calculated similarly to the nuclear
neutron scattering described above. The magnetic structure factor takes the form
of:

Fm(q) = N2
e

N∑
j=1

AMj(q)e2πi(q·rj) ·Wj(q) (8.6)

where Ne is the neutron-electron coupling constant, that is expressed as µBe
2/2mec

2

where µB is the nuclear Bohr magneton, e is electron charge, me electron mass, and
c the speed of light2. This constant is negative due to the negative value of nuclear
Bohr magneton, however after raising to the second power in Eq. (8.6) it becomes

2This is the most common description in the literature, but others exist as well. For reference,
see [264–267] or [268, p. 59]
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positive. The magnetic Bragg scattering amplitude AMj(q) is further described
as [269]:

AMj(q) = fMj(q)σm⊥j(q), (8.7)

where σ is the neutron spin operator expressed as a simple 2 × 2 Pauli matrix,
and m⊥j(q) a projection of the magnetic moment onto the plane of scattering. The
magnetic form factor fMj(q) is the Fourier transform of the magnetization Mj(r)
of a single atom, where r is the atomic position in the simulation box and can be
expressed as the volume integral [270]:

fMj(q) =

∫
R2(r)jl(q · r)4πr2dr. (8.8)

The computation of the magnetic form factor requires expressing the radial part
of an electron wave function in an atom R(r) and the Bessel function jl. Instead of
calculating the integral in Eq. (8.8), it can be analytically approximated using the
dipole approximation3 as [271]:

fMj(q) ≃ ⟨j0(s)⟩ +
2 − gJ
gJ

⟨j2(s)⟩, (8.9)

where gJ is the Landé splitting factor. The expectation (average) values of the
Bessel functions j0 and j2 are expressed as [272,273]:

⟨j0(s)⟩ = A0e
−a0s2 +B0e

−b0s2 + C0e
−c0s2 +D0 (8.10)

and

⟨j2(s)⟩ = A2s
2e−a2s2 +B2s

2e−b2s2 + C2s
2e−c2s2 +D2s

2. (8.11)

In these equations, s is described by Eq. (8.4) and the coefficients in Eq. (8.10)
and (8.11) can be found for various materials in [271, pp. 454–456]. The values for
Cr and α-Fe are summarized in Table 8.1.

Similarly to Eq. 8.5, the intensity of neutron magnetic scattering, Im(q), can be
calculated as [262,274]:

Im(q) ∝ ⟨1 − (q̂ · η̂)⟩2|Fm(q)|2, (8.12)

where η̂ represents the direction of the spins (fixed on all atoms here). The prefac-
tor retains only the contributions of the wavevectors q̂ which are perpendicular to
spins. The parameters used in the simulation of neutron scattering are described in
Table 8.2 with units and references.

3Neglecting a spatial variation of the electromagnetic field over an atom or ion and replacing it
by a field.
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Table 8.1: The list of values of the parameters in Eq. (8.10) and (8.11) taken
from [271, pp. 454–456].

Parameter Cr Fe Parameter Cr Fe

A0 [−] 0.1135 0.0706 A2 [Å
2
] 3.4085 1.9405

a0 [Å
2
] 45.199 35.008 a2 [Å

2
] 20.127 18.473

B0 [−] 0.3481 0.3589 B2 [Å
2
] 2.1006 1.9566

b0 [Å
2
] 19.493 15.358 b2 [Å

2
] 6.802 6.323

C0 [−] 0.5477 0.5819 C2 [Å
2
] 0.4266 0.5166

c0 [Å
2
] 7.354 5.561 c2 [Å

2
] 2.394 2.161

D0 [−] -0.0092 -0.0114 D2 [Å
2
] 0.0019 0.0036

Table 8.2: Values of the parameters used in equations to simulate the neutron
scattering.

Parameter Cr Fe Unit Eq. Ref.
bj 3.6357 9.452 fm (8.2) [271, p. 446]

Bj 0.26 0.35 Å
2

(8.3) [260]
Ne −0.27 × 10−12 −0.27 × 10−12 cm (8.6) [262,274]
gJ 2 2.09 [-] (8.9) [266,275]

8.3 Simulated neutron diffraction patterns of mag-

netically dead regions

The simulation assumes the spin direction along [010], which corresponds to the
LSDW single-Q state characterized by the (0, 1± δ, 0) fundamental spin density
wave. Therefore, the simulation describes the final magnetic state of the specimen
deformed at 77 K. The simulation cell with the magnetic fault on the {110} com-
prises of 120 atoms, which is replicated 16 × 16 × 2 times in the x, y, z direction,
respectively. The total number of atoms is 61 440 atoms. Similarly, the simulation
of the magnetic fault on the {112} plane comprises also of 120 atoms replicated 20
× 20 × 2 times along the three axes. The total number of atoms is then 96 000.
The atomic positions and the magnitudes of magnetic moments were obtained from
DFT simulation of Bienvenu et al. [11], kindly provided to us by E. Clouet. It is
imperative to mention that both the DFT and the simulation of neutron diffraction
patterns are calculated at 0 K, while the experimental data obtained at PSI are
measured at higher temperatures. Although we compare the same SDW states, the
temperature difference may play a role. Due to crystal symmetry, all {110} planes
are equivalent. Therefore, we have considered all these six {110} planes to simulate
the magnetic neutron diffraction patterns from the faulted atomic block. The sim-
ulated magnetic neutron scatterings from the {110} planes are shown in Fig. 8.2.
Similarly, twelve {112} planes exist in bcc crystals that are all crystalographically
equivalent. The simulations of magnetic neutron diffraction patterns were thus made
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by assuming that the magnetic fault may occur on all these planes. The simulated
magnetic scattering patterns from {112} planes are shown in Fig. 8.3.

(a) (b) (c)

(d) (e) (f)

Figure 8.2: Simulations of symmetry-related diffraction patterns for {110} magnetic
fault. Spin direction is S = [010], wavevector of SDW Q = [010] (i.e. LSDW state).
Magnetic fault on: (a) (01̄1̄) plane, (b) (1̄10) plane, (c) (101) plane, (d) (01̄1) plane,
(e) (1̄1̄0) plane, (f) (101̄) plane.

Fig. 8.4(b) and 8.4(c) show superpositions of the neutron magnetic scattering of
all {110} and {112} atomic planes, respectively, that were made with equal weights
assigned to the individual diffractions from all {110} and {112} planes, as shown in
Fig. 8.2 and 8.3, respectively. Fig. 8.4(a) shows the data from the neighborhood of
[100] magnetic reflection that I have measured using magnetic neutron scattering at
PSI at 10 K on the PSI 3 specimen. This measurement was done differently from
those shown in Section 4.4. In this case, we used the so-called q-scans to resolve
the reflections better. Q-scans are done with the 1D detector and acquired as line
scans in the reciprocal space. This measurement is comprised of seventeen line scans
from 0.96H to 1.04H (H = [100]), each line spanning from -0.14K to 0.14K (K =
[010]) at L = 0 (L = [001]). The reflections in Fig. 8.4(a) belong to the [1, δ, 0] and
[1,−δ, 0] on the top and bottom, respectively.

It is evident that the simulated diffraction patterns do not agree with the ex-
perimental measurements. The reason can be that not all symmetry-related faults
are present with the same probability in the studied volume. In this case, different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8.3: Simulation of symmetry-related diffraction patterns for {112} magnetic
faults. Spin direction is S = [010], wavevector of SDW Q = [010] (i.e. LSDW state).
Magnetic faults on: (a) (112̄) plane, (b) (12̄1) plane, (c) (2̄11) plane, (d) (1̄12̄) plane,
(e) (1̄2̄1) plane, (f) (2̄1̄1) plane, (g) (112) plane, (h) (121) plane, (i) (211) plane, (j)
(1̄12) plane, (k) (1̄21) plane, (l) (21̄1) plane.
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(a) (b) (c)

Figure 8.4: (a) Neighborhood of the [100] magnetic reflection obtained from neutron
magnetic scattering. Visible reflections are [1, δ, 0] and [1,−δ, 0] on the top and
bottom, respectively. Superposition of all simulated symmetry-related (b) {110}
and (c) {112} magnetic diffraction patterns described in the text. Spin direction is
S = [010], SDW wavevector Q = [010], i.e. LSDW state.

weights would have to be assigned to the patterns in Fig. 8.2 and 8.3. However, it
is not clear how these weights could be determined from experiments. The volume
fraction of the magnetic faults to the remaining material would likely be very small
and difficult, if not impossible, to measure.

Furthermore, the TEM study of the anomalous slip in Cr deformed at 77 K in
Section 5.2.2 did not present any evidence of superdislocations with ⟨111⟩ Burgers
vectors as hypothesized by Bienvenu et al. [11]. So far, we have not found any evi-
dence that would support their conclusion, that deformed Cr single crystals contain
magnetically dead regions separating dislocations with the same Burgers vectors.
The stresses around the dislocation affect the magnetic ordering, but they do not
seem to be large enough to produce magnetic faults as predicted in their paper.

We have further shown that the spin-flip temperature TSF is influenced by the
level of deformation to which the specimen was subjected. TSF can be also influ-
enced by addition of substitutional elements. De Oliviera et al. [276] showed that
addition of 0.4 wt. % of vanadium to chromium will lower TSF to approx. 69 K and
TSF disappears completely at concentration of 0.69 wt. % of vanadium, leaving only
the TSDW phase stable. Bacon and Cowlam [101] demonstrated that addition of
0.5 wt.% of Re stabilizes the simple antiferromagnetic structure between the TSDW
and the paramagnetic phase. They further show on crushed chromium powder that
deformation broadens TSF to a temperature range in which both LSDW ant TSDW
are stable. The deformation also introduces a simple antiferromagnetic structure,
which is stable between the TSDW and the paramagnetic phase. The Néel temper-
ature TN also increases with increasing deformation, but according to Bacon and
Cowlam, the transition is sharp. On the other hand, TN decreases with increasing
level of vanadium content [276]. The broadening of TSF into a temperature range
agrees with our results. However, as our deformation was not so severe compared
Bacon and Cowlam, the changes to TSF are less pronounced.
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List of symbols

Symbol Meaning Equation
Latin symbols

A Absorption correction coefficient
A0, a0 Parameter (8.10)
A2, a2 Parameter (8.11)
AMj Magnetic Bragg scattering amplitude (8.7,8.6 )

a∗
1, a

∗
2, a

∗
3 Reciprocal lattice vectors (8.1)

B0, b0 Parameter (8.10)
B2, b2 Parameter (8.11)
bj Scattering length (8.2)
Bj Experimental constant (8.3)
c Speed of light in vacuum

C0, c0 Parameter (8.10)
C2, c2 Parameter (8.11)
D0 Parameter (8.10)
D2 Parameter (8.11)
e Electron charge
Fn Nuclear structure factor (8.2)
Fm Magnetic structure factor (8.6, 8.12)
fMj Magnetic form factor (8.6, 8.8, 8.9)
gJ Landé splitting factor 8.9

h, k, l Plane indices (8.1)
In Intensity of nuclear neutron scattering (8.5)
Im Intensity of magnetic neutron scattering (8.12)
jl Bessel function (8.8)

j0, j2 Expectation values of the Bessel functions (8.9, 8.10, 8.11)
me Electron mass

m⊥j
Projection of a magnetic moment

onto scattering plane (8.12)

Ne Neutron-electron coupling constant (8.6)
Q Wavevector
q Scattering vector (8.1)

q1, q2, q3 Cartesian components of the scattering vector (8.4)
R(r) Radial part of electron wave function (8.8)
S Spin direction
TSF Spin-Flip temperature
Wj Debye-Waller factor (8.2, 8.3)

Greek symbols
δij Kronecker delta
η Spin direction (8.12)
λ Wavelenght
µB Nuclear Bohr magneton
σ Neutron spin operator (8.7)
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9 Discussion

9.1 Magnetic measurements on α-Fe

The hysteresis curves measured by VSM on polycrystalline α-Fe showed, as antic-
ipated, that with more plastic deformation imposed on the material, the number
of domain wall pinning sites increases. This effect is dominant when the probing
magnetic field is parallel with the deformation axis and results in increasing slope of
the hysteresis curve (larger susceptibility relative to unstressed specimens). When
the direction of the probing field is perpendicular to the deformation axis, this effect
is smaller and the slope of the hysteresis curve changes in the opposite direction
(smaller susceptibility). Furthermore, if the step of the VSM measurement is fine
enough, it is possible to observe the release of domain walls from the pinning sites.

The Kerr microscopy revealed that magnetic domains in single-crystalline speci-
mens are larger compared to those in polycrystalline specimens. Interestingly, twins
in the material create effective barriers for the domains in some cases, but they may
also serve as nucleation sites for other magnetic domains, as shown in Fig. 4.7(b).
Lai et al. found that twins in NiMnGa shape memory alloy transfer the magnetic do-
mains through the twins according to the rotation of crystal lattice in the twin [277].
On the other hand, if the twins are very thin (tens to low hundreds of nm), the mag-
netic domain can pass through the domain structure [278]. Nonetheless, the effects
observed here might appear only near the surface, since the depth resolution of Kerr
microscopy is approximately 50 nm [279]. Bozorth [211] states that the maze-like
domain structure in Fig. 4.4 is characteristic of a deformed material and the tree-like
domain structure in Fig. 4.5 is characteristic of an undeformed material. Nonethe-
less, both specimens were strained, but at different temperatures and to different
amounts. Fe-mono-1 specimen shown in Fig. 4.4 was strained at RT to approx.
6% and Fe-mono-2 specimen, shown in Fig. 4.5, was prestrained to 1.7% at RT
and subsequently deformed at 77 K to further 2.5%. The results may indicate, that
low-temperature slip have larger effect on magnetic domains than slip at RT.

9.2 Compression tests on Cr

The mechanism of low-temperature plastic deformation of UHV-annealed high-
purity Cr single crystals depends on the orientation of the applied load as well
as on whether the sample was predeformed at room temperature, thus creating mo-
bile dislocation network. According to Fig. 5.9, the samples compressed close to the
[001] direction exhibit homogeneous slip on slip systems with the highest Schmid
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factors. In this region, predeformation does not alter the mechanism of plastic de-
formation. Similar behavior is observed for the specimen 7* predeformed at room
temperature and subsequently compressed at 77 K in the center-triangle direction
closer to the [001]-[011] edge. However, specimen 3, which was not predeformed at
room temperature, exhibited a combination of composite slip and twinning.
The specimen 4* deformed in the direction corresponding to the center of the stere-
ographic triangle showed anomalous slip on the (01̄1) plane. For loading directions
close to the [011]-[1̄11] edge of the stereographic triangle, the specimens deformed
predominantly by twinning on the {112}⟨111⟩ systems, irrespective of whether or
not they were predeformed at room temperature. The specimens that fractured
by cleavage also exhibited the formation of twins on {112} planes sheared in the
antitwinning sense. The intersections of twins were found to lead to the nucleation
of cracks and subsequent failure by cleavage. Our results agree with Marcinkovsky
and Lipsitt [121], who state that twins in chromium are of the {112}⟨111⟩ type.
Sameljuk et al. [124] states that cleavage is along {100} planes and delamination
occurs along {112}, which is also in agreement with our observations.

The anomalous slip in the samples compressed in the direction corresponding
to the center of the stereographic triangle was further reconciled using bright-field
STEM imaging in the [01̄1] zone combined with the g · b analysis in six different
diffraction conditions. They reveal the presence of intersecting 1/2⟨111⟩ screw dislo-
cations. The stability of this junction at high stresses and low temperatures was fur-
ther investigated by molecular statics simulations employing the recently developed
BOP for Cr in the non-magnetic state. This state-of-the-art model that treats Cr
as non-magnetic metal is applicable to the triple-Q state of our samples. It contains
a large number of magnetic domains with all three ⟨100⟩ orientations of the SDW
wavevector Q, which results in magnetically isotropic state above a certain length
scale corresponding to the size of magnetic domains. The atomistic simulations
show that the intersecting 1/2[111] and 1/2[11̄1̄] screw dislocations spontaneously
form the [100] screw junction, as expected from linear elasticity. More importantly,
the application of external load in the [2̄38] center-triangle direction shows that
this junction remains stable up to very high stresses, where the stored energy is
relaxed by moving the dislocation network on the common (01̄1) plane. A different
slip p;ane is predicted from atomistic simulations on single dislocations, an thus
the simulations of dislocation junctions are necessary to understand the mechanism
of anomalous slip. Instead, interactions between dislocations play an essential role
and lead to the formation of strong ⟨100⟩ junctions that cannot be easily broken by
the external load. Our results thus provide evidence that the anomalous slip in Cr
is governed by the co-planar double slip model proposed originally by Matsui and
Kimura [70].

Similar experimental results were reported by Hsiung et al [64]. in molybdenum
at room temperature with the high strain rate of 1 s−1 or by Louchet and Kubin [66]
in niobium at 50 K. According to the literature, anomalous slip takes place only in
pure metals and is suppressed by impurities. Bressers and Creten [61] investigated
anomalous slip in vanadium single crystals with different levels of oxygen content
(from 24 to 810 at. ppm). Their results shown that the morphology of surface
markings belonging to anomalous slip change from finely distributed to coarse and

142



more separated surface markings.
We have also observed cracks along matrix/twin interfaces in Cr, but their mor-

phology was different from those of α-Fe. The crack shown in Fig. 5.4(c) has a
saw-like interface corresponding to the slip systems in the twinned region, whereas
cracks in α-Fe appear to be straight. Transgranular cracks in the twinned region
were also observed, as shown in Fig. 5.4(b). Cracks were also found to originate at
the intersection of two twins as shown in Fig. 5.8(a).

9.3 Compression tests on α-Fe

The analysis of compression tests on the polycrystalline specimens with large grains
reveals that the primary deformation mechanism at 77 K is twinning regardless of
the orientation of the loading axis. Apart from SEM and EBSD analysis, the twin-
ning is also evident from the stress-strain curve in Fig. 6.1 that displays many load
drops caused by the nucleation of twins. No slip markings were observed in the poly-
crystalline specimens, that were deformed at 77 K with or without predeformation
at room temperature.

Furthermore, all the analyzed twins were produced by twinning shear, even
though, in many cases, the Schmid factor was larger for twinning systems sheared
in the antitwinning shear. The reason for their non-existence is attributed to a large
σAT/σT ratio that favors twin formation on the {112} planes subjected to twinning
shear. No twins were observed to form on {112} planes sheared in the antitwin-
ning sense. We have, however, found one (321)[11̄1̄] lamella sheared in the twinning
sense.

Watanabe [280] focused on slip in α-Fe and computed that macroscopic slip on
{123} planes requires significant energy. This might suggest that {123} twins are
easier to nucleate, but their growth, which is mediated by the dislocation motion, is
energetically more demanding. To the best of our knowledge, there is no literature
documenting {123} twinning systems in α-iron. This phenomenon is discussed in-
depth in Chapter 7.

The compression tests on the single-crystalline specimens did not reveal any slip
traces on the surface, which suggests that the specimens deformed by homogeneous
slip. This behavior is, however, different from what Aono et al. [5] reported on
approx. 1 mm single crystals in compression. He reported a combination of cleav-
age and twinning, while our results suggest homogeneous slip. We attribute this
difference to different purity of tested specimens. Allen et al. [111] reported macro-
scopic slip on (3̄12)[111] and (1̄01)[111] systems in tension at 77 K. Altshuler and
Christian [114] report compression tests at 77 K in both polycrystalline and single-
crystalline specimens. In case of polycrystalline specimens with the mean grain
diameter of 0.013 mm, they report the yield stress of approximately 690 MPa. This
is in disagreement with yield stress measured on our specimen, which is approx.
140 MPa. This discrepancy can be at least partially explained by their less pure
material (194 wt. ppm of impurities in their specimen vs 66 wt. ppm in our spec-
imen), smaller grain size and slightly faster strain rate, which would cause larger
yield stress. Furthermore, the reported stress-strain curves of their polycrystalline
specimen do not show load drops associated with twinning as seen of Fig. 6.1. The
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loading axis of their single crystal specimens was [1̄49], which is approx. 2.5◦ from
[4̄ 11 26] loading axis of our single crystal specimens. Single crystals reported in our
work are also more pure than those used by Altshuler and Christian. Nevertheless,
the reported yield stress of 50 MPa is almost identical for specimen deformed at RT.
However, their specimen shows some strain hardening, whereas ours show almost
continual room temperature creep. Comparing the specimens tested at 77 K, Alt-
shuler and Christian report yield stress of approx. 540 MPa, whereas the yield stress
of our specimen was approx. 460 MPa. This discrepancy can be again explained
by chemical purity of the specimens, prestrain of our specimens at RT, and about
twice slower strain rate used in our experiments.

9.4 Tensile tests on α-Fe and Cr

We have attempted to perform tensile tests on both α-Fe and Cr specimens, but
the specimens failed by brittle fracture before reaching the elastic-plastic state in
all cases. We have decided to use a dog-bone specimen instead of a normal tensile
specimen with screw head because of the lack of material. The flat side of the
specimen is also advantageous for EBSD measurements, and slip trace analysis.
The geometry of the dog-bone specimens used is shown in Fig. 9.1.

Figure 9.1: Schematic drawing of the tensile test specimen. All units are in mm.

The specimens were cut out of the source crystal by electro-erosive machining
and carefully ground to remove any deformation and cracks caused by the electro-
erosive machine. Subsequently, the specimens were electropolished in same way as
described in Section 3.2. The chamber was filled with nitrogen vapor, thus the test
temperature was slightly higher than in case of compression specimens (which were
submerged in liquid nitrogen). The cross-head speed of the machine was 30 µm/min,
which caused the plastic strain rate to be about 10−5 s−1, similar to the compres-
sion specimens. The specimens’ heads were clamped from two sides with clamps
containing pyramidal protrusion to avoid sliding. Unfortunately, in the case of
single-crystalline Cr specimen, the pyramidal protrusions acted as stress concen-
trators and the specimen failed by brittle fracture originating from one of these
protrusions. The polycrystalline α-Fe specimen tested under the same conditions
either failed in a same manner, or brittle fracture originated at a favorably oriented
grain boundary. Tensile specimens from single-crystalline α-Fe were not made, as
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they required too much material that is not available at the present. However, fur-
ther growth experiments to produce large single crystals of iron are now under way
at IPM.
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10 Summary and future work

Following are the main achievements of this work that were discussed in detail in
the previous chapters.

� Anomalous slip in chromium single crystals was demonstrated for the first
time. The presence of ⟨100⟩ dislocation junctions was proven by the g · b
analysis on micrographs acquired in TEM. Furthermore, the anomalous slip in
Cr is confirmed by atomistic simulations done in our group, which show that
it is governed by the co-planar double slip process of Matsui & Kimura [69]
and Louchet & Kubin [66].

� The reason for the presence or absence of twins created by antitwinning shear
in chromium and α-iron was elucidated. The presence of twins created by an-
titwinning shear depends on the ratio of stresses necessary to create multi-layer
stacking faults in the antitwinning and twinning direction by uniform shear.
This ratio is approximately twice as large for α-Fe compared to chromium,
which explains why twins in α-Fe only form by the twinning shear.

� Misoriented lamellae on {123} planes were observed in α-iron. However, these
are scarce due to higher stresses necessary to move dislocations on {123} planes
compared to dislocations on {112} planes. Nonetheless, according to calcu-
lations, shear stress required to nucleate these faults on {123} planes by the
twinning shear is smaller compared to the shear stress necessary to create a
{112} twin by antitwinning shear.

� Plastic deformation of Cr single crystals at 77 K promotes a single-Q state with
the spin density wave along closest ⟨100⟩ crystal direction. This phenomenon
has not been reported in the literature so far.

� Our neutron diffraction results do not support the conclusion of Beinvenu et
al. [11], that dislocations in chromium give rise to magnetic faults. However,
neutron diffraction is a statistical method and thus magnetic faults may not be
found in the interaction volume with sufficient density to be revealed in diffrac-
tion patterns. So far, we have not found any evidence that would support their
hypothesis.

� Based on results presented in this thesis, the effect of internal magnetic order
of Cr and α-Fe seems to have little effect on their deformation properties
within the first 5% of their plastic deformation. The only result that would
support the opposite is the inexplicable increase of the yield stress of chromium
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specimen that had the spin density wave wavevector oriented close to the
loading axis (Fig. 4.13). On the other hand, the effect of plastic deformation
on internal magnetic structure of Cr and α-Fe is severe.

Different propensity to twin formation and its non-existence when the shear is
applied in the antitwinning sense is sometimes regarded as a consequence of different
elastic anisotropy. The Zener’s anisotropy ratio of α-Fe at room temperature is
approx. 2.4 [281], whereas that for alkali metals Li, Na and K are 8.8, 8.2 and
6.4 respectively [282–284]. Both α-Fe and alkali metals exhibit large anisotropy,
while other bcc metals show rather small values of Zener’s ratio. In particular,
Cr, Ta, W, Mo, Nb and V have Zener’s ratio of 0.69, 1.58, 1.00, 0.81, 0.51 and
0.79, respectively [285–287]. The anisotropy indices seem to correlate with σAT/σT
ratios computed in Ref. [241]. However, twinning is governed by the glide of twin
boundary dislocations, whose cores are not described by elasticity. From this point
of view, anisotropic elasticity cannot govern the glide of these dislocations, albeit it
may somewhat affect this mechanism.

This work suggests that magnetic ordering does not play a major role in the
twinning of bcc metals. Future research should focus on elucidating the deformation
mechanisms of alkali metals, since the 5th and 6th group bcc metals and iron have
been studied quite extensively. The lack of data on alkali metals stem from their
high reactivity and thus difficult handling and testing. The only recent study on
alkali metals was published by Sedlatschek et al. [288] who studied Li in tension, but
did not focus on operative slip systems. Despite the nucleation and growth of twins
in bcc metals have been simulated a number of times, in-situ experimental studies
of twin formation is still lacking. In particular, it is still unclear how twin embryos
originate. Future research could also focus on Fe-Cr alloys and their properties,
which are one of the candidate materials considered for the design of fusion reactors
[289,290].
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Kruml and P. Hutař. Determination of elastic parameters of Si3N4 thin films
by means of a numerical approach and bulge tests. Thin Solid Films 672
(2019) 66-74.

� Z. Que, H.P. Seifert, P. Spätig, A. Zhang, J. Holzer, G. S. Rao and S. Rit-
ter. Effect of dynamic strain ageing on environmental degradation of fracture
resistance of low-alloy RPV steels in high-temperature water environments.
Corr. Sci. 152 (2019) 172-189.

� Z. Que, H. P. Seifert, P. Spätig, J. Holzer, A. Zhang, G. S. Rao and S.
Ritter. Environmental degradation of fracture resistance in high-temperature
water environments of low-alloy reactor pressure vessel steels with high sulphur
or phosphorus contents. Corr. Sci. 154 (2019) 191-207.

� Z. Que, H. P. Seifert, P. Spätig, J. Holzer, A. Zhang and G. S. Rao. Degrada-
tion Effects of Hydrogen and High-Temperature Water Environments on the
Fracture Resistance of Low-Alloy RPV Steels. Nuclear Science and Engineer-
ing. (2021).

� J. Holzer, Z. Chlup, T. Kruml, and R. Gröger. Plastic deformation of mag-
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� H. A. Tinoco, P. Hutař, T. Kruml and J. Holzer. Modeling of elastoplastic
behavior of freestanding square thin films under bulge testing. Acta Mech.
232 (2021) 2715-2731.

� A. Marshall, J. Holzer, P. Stejskal, C. Stephens, T. Vystavěl and M. Whit-
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[32] Ş. Erkoç, Empirical many-body potential energy functions used in computer
simulations of condensed matter properties, Phys. Rep. 278 (1997) 79–105.

[33] M. Mrovec, D. Nguyen-Manh, D. G. Pettifor, V. Vitek, Bond-order potential
for molybdenum: Application to dislocation behavior, Phys. Rev. B 69 (2004)
094115.
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[246] K. P. D. Lagerlöf, On Deformation Twinning in b.c.c. Metals, Acta Metall.
Mater. 41 (1993) 2143–2151.

[247] X. Zhao, C. Lu, A. K. Tieu, L. Zhan, M. Huang, L. Su, L. Pei, L. Zhang,
Deformation twinning and dislocation processes in nanotwinned copper by
molecular dynamics simulations, Comput. Mater. Sci. 142 (2018) 59–71.

[248] Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, L. J. Kecskés, S. N. Mathaudhu,
Dislocation–twin interactions in nanocrystalline fcc metals, Acta Mater. 59
(2011) 812–821.

[249] A. Paxton, Theoretical strength, twinning, antitwinning and pseudotwinning -
a quantum mechanical approach, TMS, 1994, 27–41, symposium on Twinning
in Advanced Materials, as part of the 1993 Materials Week; Conference date:
18-10-1993 Through 20-10-1993.

[250] R. Hafner, D. Spisak, R. Lorenz, J. Hafner, Does density-functional theory
predict a spin-density-wave ground state for Cr?, J. Phys. Condens. Matter.
13 (2001) L239–L247.

[251] J. Crangle, G. M. Goodman, The magnetization of pure iron and nickel, Proc.
Roy. Soc. Lond. A 321 (1971) 477–491.

[252] S. Mahajan, Accommodation at deformation twins in bcc crystals, Metall.
Trans. A 12 (1981) 379–386.

[253] J. Harding, The yield and fracture of high-purity iron single crystals under
repeated tensile impact loading, Mem. Sci. Rev. Met. 65 (1968) 245–254.

[254] B. Edmondson, The effect of composition and structure on the tensile proper-
ties of high-purity iron single crystals, with particular reference to the question
of brittle fracture, Proc. R. Soc. A: Math. Phys. Eng. Sci. 264 (1961) 176–197.

[255] A. Ojha, H. Sehitoglu, Twinning stress prediction in bcc metals and alloys,
Philos. Mag. Lett. 94 (2014) 647–657.

[256] A. Ojha, H. Sehitoglu, L. Patriarca, H. J. Maier, Twin nucleation in Fe-based
bcc alloys—modeling and experiments, Model. Simul. Mater. Sci. Eng. 22
(2014) 075010.

[257] S. Ogata, J. Li, S. Yip, Energy landscape of deformation twinning in bcc and
fcc metals, Phys. Rev. B 71 (2005) 224102.

168

https://doi.org/10.1002/pssb.19660180221
https://doi.org/10.1016/0001-6160(64)90194-4
https://doi.org/10.1016/0001-6160(64)90194-4
https://doi.org/10.1016/0956-7151(93)90384-5
https://doi.org/10.1016/j.commatsci.2017.09.055
https://doi.org/10.1016/j.commatsci.2017.09.055
https://doi.org/10.1016/j.actamat.2010.10.028
https://kclpure.kcl.ac.uk/portal/en/publications/theoretical-strength-twinning-antitwinning-and-pseudotwinning--a-quantummechanical-approach(45979424-1342-413b-94ad-1a92625386fb).html
https://kclpure.kcl.ac.uk/portal/en/publications/theoretical-strength-twinning-antitwinning-and-pseudotwinning--a-quantummechanical-approach(45979424-1342-413b-94ad-1a92625386fb).html
https://doi.org/10.1088/0953-8984/13/11/104
https://doi.org/10.1088/0953-8984/13/11/104
https://doi.org/10.1098/rspa.1971.0044
https://doi.org/10.1007/BF02648535
https://doi.org/10.1098/rspa.1961.0192
https://doi.org/10.1098/rspa.1961.0192
https://doi.org/10.1098/rspa.1961.0192
https://doi.org/10.1080/09500839.2014.955547
https://doi.org/10.1088/0965-0393/22/7/075010
https://doi.org/10.1088/0965-0393/22/7/075010
https://doi.org/10.1103/PhysRevB.71.224102
https://doi.org/10.1103/PhysRevB.71.224102


[258] B. C. Munday, A. R. Pepper, R. Street, Properties of chromium cooled in a
magnetic field, Braz. J. Appl. Phys. 15 (1964) 611–612.

[259] M. O. Steinitz, Physical properties of chromium, J. Magn. Magn. Mater. 60
(1986) 137–144.

[260] V. F. Sears, S. A. Shelley, Debye–Waller factor for elemental crystals, Acta
Crystallogr. A 47 (1991) 441–446.

[261] L.-M. Peng, G. Ren, S. L. Dudarev, M. J. Whelan, Debye–Waller factors
and absorptive scattering factors of elemental crystals, Acta Crystallogr. A 52
(1996) 456–470.

[262] J. W. Lynn, Magnetic neutron scattering, J. Appl. Phys. 75 (1994) 6806–6810.

[263] A. Furrer, Introduction to Neutron Scattering, Vol. 96-01, PSI-Proceedings,
1996.

[264] W. Ratcliff, D. Kan, W. Chen, S. Watson, S. Chi, R. Erwin, G. J. McIntyre,
S. C. Capelli, I. Takeuchi, Neutron diffraction investigations of magnetism in
BiFeO3 epitaxial films, Adv. Funct. Mater. 21 (2011) 1567–1574.

[265] H. J. Kang, Neutron scattering studies on magnetism and phonon in the
electron-doped neodymium-cerium cuprate and praseodymium-lanthanide-
cerium cuprate, Ph.D. thesis, The University of Tennessee (2005).

[266] Z. Yamani, Z. Tun, D. H. Ryan, Neutron scattering study of the classical
antiferromagnet MnF2: A perfect hands-on neutron scattering teaching course,
Can. J. Phys. 88 (2010) 771–797.

[267] Y. Zhao, D. Parshall, W. Ratcliff, J. Lynn, Magnetic Phase Transition and
Spin Wave Excitations in the Colossal Magnetoresistive Manganites: An Ex-
periment Using the BT7 Triple-Axis SpectrometerNIST Center for Neutron
Research.

[268] R. Comès, B. Dorner, J. M. Loveluck, R. D. Mountain, H. G. Smith, N. Wak-
abayashi, J. W. White, Dynamics of solids and liquids by neutron scattering,
Vol. 3, Springer Science & Business Media, 2012.

[269] G. E. Bacon, Neutron Diffraction, Clarendon Press, 1975.

[270] M. Blume, A. J. Freeman, R. E. Watson, Neutron Magnetic Form Factors
and X-Ray Atomic Scattering Factors for Rare-Earth Ions, J. Chem. Phys. 37
(1962) 1245–1253.

[271] P. J. Brown, International Tables for Crystallography, Volume C: Mathemat-
ical, physical and chemical tables, Springer Science & Business Media, 1992.

[272] E. J. Lisher, J. B. Forsyth, Analytic approximations to form factors, Acta
Crystallogr. A 27 (1971) 545–549.

169

https://doi.org/10.1088/0508-3443/15/5/129
https://doi.org/10.1088/0508-3443/15/5/129
https://doi.org/10.1016/0304-8853(86)90092-2
https://doi.org/10.1107/S0108767391002970
https://doi.org/10.1107/S010876739600089X
https://doi.org/10.1107/S010876739600089X
https://doi.org/10.1063/1.356839
https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/024/28024527.pdf
https://doi.org/10.1002/adfm.201002125
https://doi.org/10.1002/adfm.201002125
https://ui.adsabs.harvard.edu/abs/2005PhDT........75K/abstract
https://ui.adsabs.harvard.edu/abs/2005PhDT........75K/abstract
https://ui.adsabs.harvard.edu/abs/2005PhDT........75K/abstract
https://doi.org/10.1139/P10-081
https://doi.org/10.1139/P10-081
https://www.nist.gov/system/files/documents/2021/11/09/VirtualSchool2022_Triple_Axis.pdf
https://www.nist.gov/system/files/documents/2021/11/09/VirtualSchool2022_Triple_Axis.pdf
https://www.nist.gov/system/files/documents/2021/11/09/VirtualSchool2022_Triple_Axis.pdf
https://doi.org/10.1007/978-3-642-81113-5
https://inis.iaea.org/search/search.aspx?orig_q=source:%22ISBN%200198513534%22
https://doi.org/10.1063/1.1733272
https://doi.org/10.1063/1.1733272
https://doi.org/10.1107/97809553602060000103
https://doi.org/10.1107/97809553602060000103
https://doi.org/10.1107/S0567739471001219


[273] G. H. Lander, T. O. Brun, Calculation of Neutron Magnetic Form Factors for
Rare-Earth Ions, J. Chem. Phys. 53 (1970) 1387–1391.

[274] W. Ratcliff, P. Kienzle, J. W. Lynn, S. Li, P. Dai, G. F. Chen, N. L. Wang,
Magnetic form factor of SrFe2As2 Neutron diffraction measurements, Phys.
Rev. B 81 (2010) 140502.

[275] A. J. P. Meyer, G. Asch, Experimental g’ and g values of Fe, Co, Ni, and their
alloys, J. App. Phys. 32 (1961) S330–S333.

[276] A. J. A. De Oliveira, O. F. De Lima, W. A. Ortiz, P. C. De Camargo, Spin-flip
transition and magnetic phase diagram of Cr-V alloys, Solid State Commun.
96 (1995) 383–386.

[277] Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz,
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List of abbreviations

Abbreviation Meaning
ASTM American Society for Testing and Materials
BCC Body Centered Cubic
BOP Bond Order Potential

CEITEC Central European Institute of Technology
CL Camera Length

CRSS Critical Resolved Shear Stress
CT Computed Tomography

DFT Density Functional Theory
DXA Dislocation Extraction Algorithm
EAM Embedded Atom Model
EBSD Electron Back-Scattered Diffraction
FCC Face Centered Cubic

FEAR Fitted Ellipse Aspect Ratio
FIB Focused Ion Beam

FWHM Full Width at Half Maximum
GIS Gas Injection System

GSFE Generalized Stacking Fault Energy
ICP-MS Inductively Coupled Plasma Mass Spectroscopy

IPF Inverse Pole Figure
IPM Institute of Physics of Materials
LLP Lamella Lift-Out Position

LSDW Longitudinal Spin Density Wave
MGPT Model Generalized Pseudopotential Theory
MOKE Magneto-Optical Kerr Effect
MRSSP Maximum Resolved Shear Stress Plane

P-N Peierls-Nabarro (model)
PPB Parts Per Billion
PPM Parts Per Million

PPMS Physical Property Measurement System
PTFE Polytetrafluoroethylene
RRR Residual Resistivity Ratio
RT Room Temperature

SEM Scanning Electron Microscopy
SF Schmid Factor

SINQ The Swiss spallation Neutron Source
SDW Spin Density Wave

STEM Scanning Transmission Electron Microscopy
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Abbreviation Meaning
TEM Transmission Electron Microscopy

TSDW Transversal Spin Density Wave
UHV Ultra High Vacuum
VSM Vibrating Sample Magnetometry
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