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Abstract 

The thesis is concerned with camera pose estimation from correspondences of 3D/2D lines, i.e. 
with the Perspective-n-Line (PnL) problem. Attention is focused on large line sets which can 
be efficiently solved by methods using linear formulation of PnL. Up to date, methods working 
only with point-line correspondences were known. Motivated by this, two novel methods based 
on the Direct Linear Transformation (DLT) algorithm are proposed: DLT-Pliicker-Lines working 
with line-line correspondences and DLT-Combined-Lines working with both point-line and line-line 
correspondences. In the latter case, the redundant information reduces the minimum of required 
line correspondences to 5 and improves accuracy of the method. The methods were extensively 
evaluated and compared to several state-of-the-art PnL methods in various conditions including 
simulated and real-world data. DLT-Combined-Lines achieves results similar to or better than state-
of-the-art, while it is still highly efficient. In addition, the thesis introduces a unifying framework 
for DLT-based pose estimation methods, within which the proposed methods are presented. 

Abstrakt 

Disertační práce se zabývá odhadem pózy kamery z korespondencí 3D a 2D přímek, tedy tzv. per­
spektivním problémem n přímek (angl. Perspective-n-Line, PnL) . Pozornost je soustředěna na 
případy s velkým počtem čar, které mohou být efektivně řešeny metodami využívajícími lineární 
formulaci PnL. Dosud byly známy pouze metody pracující s korespondencemi 3D bodů a 2D přímek. 
Na základě tohoto pozorování byly navrženy dvě nové metody založené na algoritmu přímé lineární 
transformace (angl. Direct Linear Transformation, DLT) : Metoda DLT-Plúcker-Lines pracující s ko­
respondencemi 3D a 2D přímek a metoda DLT-Combined-Lines pracující jak s korespondencemi 3D 
bodů a 2D přímek, tak s korespondencemi 3D přímek a 2D přímek. Ve druhém případě je redun­
dantní 3D informace využita k redukci minimálního počtu požadovaných korespondencí přímek na 
5 a ke zlepšení přesnosti metody. Navržené metody byly důkladně testovány za různých podmínek 
včetně simulovaných a reálných dat a porovnány s nejlepšími existujícími PnL metodami. Metoda 
DLT-Combined-Lines dosahuje výsledků lepších nebo srovnatelných s nejlepšími existujícími meto­
dami a zároveň je značně rychlá. Disertační práce také zavádí jednotný rámec pro popis metod pro 
odhad pózy kamery založených na algoritmu DLT. Obě navržené metody jsou definovány v tomto 
rámci. 
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Chapter 1 

Introduction 

Computers take part in our lives, and that part is increasing as computers get faster, smaller, easier 
to use and more powerful. If a camera is connected to a computer, it is given a chance to "see", 
enhancing its capabilities. The computer does not see in fact; it just gets a meaningless mosaic 
of pixels. In order to give a meaning to the pixels (i.e. to s e e ) , the computer must be given 
instructions for interpreting the pixel values or it must be able to learn them. People who prepare 
such instructions or teach computers to learn them deal with computer vision. 

The goal of computer vision is to allow computers to see. To see like humans perhaps, or even 
better. This is a very ambitious goal and it is still too far from being true due to its complexity. 
However, some tasks have already been solved. Computers are able, for example, to find specific 
objects in images, to recognize human faces, to localize a robot using on-board cameras, or to 
reconstruct 3D objects, or even whole cities, from multiple images. 

Accomplishing of many tasks in computer vision is achieved through the exploitation of features. 
Features are interesting parts of an image or a scene in this context. Depending on an application, 
the features can be points, lines, curves, regions, more complicated structures, or combinations of 
them. If features in a scene are captured by a camera, they can be used to infer various geometric 
relations: Either between objects of the scene, or between the scene and the camera. By exploiting 
the geometric relations, it is possible to reconstruct a 3D scene, to localize and navigate a mobile 
robot, to operate a robotic arm (solely on the basis of visual information) or to augment user's view 
with additional information, to give an example. A fundamental underlying task of each of these 
applications is pose estimation - the task of determining the relative position and orientation of a 
camera and an object to each other in 3D space1. 

While pose estimation methods utilizing point features have been in focus of researchers for 
some time and they are thus relatively mature, pose estimation methods utilizing line features lag 
behind. However, points and lines carry a complementary information about a scene and it is thus 
desirable to make use of both. Points have an exact location, whereas the "location" of a line along 
its direction is inherently unknown. On the other hand, lines are more robust primitives because 
they can be broken or partially occluded, but they are still visible and they can be exploited. Recent 
state-of-the-art methods are efficient and accurate, but they utilize lines only in the image space. 
In the 3D space, just point features are used (exploiting the fact that if 3D points lie on a 3D line, 

1 The problem of absolute pose estimation is also known as the problem of absolute orientation or exterior 
orientation in photogrammetry. 
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their projections must coincide with projection of that line in the image). That means only point-
line correspondences are used and the potential of line-line correspondences is wasted, although 
line-line correspondences may carry stronger geometric information about a scene than point-line 
correspondences. 

The goal of the thesis is to improve accuracy and robustness of current state-of-the-art on pose 
estimation from lines by incorporating 3D lines and thus also the line-line correspondences directly 
into the pose estimation process, which will be experimentally proved. The thesis studies the linear 
formulation of pose estimation from lines, which is especially suitable for scenarios with large sets of 
lines. The Direct Linear Transformation (DLT)-based formulation, which was used to exploit only 
point-line correspondences so far, is of special interest. The thesis contributes to the state-of-the-
art by formulating two new methods for pose estimation, which are built upon the D L T and make 
use of line-line correspondences. A secondary contribution of the thesis is a unifying view on the 
DLT-based methods for pose estimation from lines. 

Although the work presented in the thesis is my own, it has been influenced by many discussions 
with Pavel Zemcik and Martin Cadik. They also both collaborated with me on writing our joint 
papers. 

This work is organized into six chapters. In Chapter 2, basic concepts are introduced upon which 
the thesis is build. In Chapter 3, a review of related work and state-of-the-art of pose estimation 
from line correspondences is presented. In Chapter 4, the state-of-the-art is critically analyzed and 
two new methods - DLT-PKicker-Lines and DLT-Combined-Lines - are proposed and presented 
in a unifying framework, which relates the proposed methods with the existing method for pose 
estimation, DLT-Lines. In Chapter 5, performance of the proposed methods is benchmarked and 
compared to the state-of-the-art using simulations and real-world experiments. Finally, the thesis 
is concluded in Chapter 6 by summarizing its key points and by suggesting future research. The 
core of the thesis is constituted by Chapters 4 and 5. 
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Chapter 2 

Basic Concepts 

Since mathematical notation and related concepts vary in literature, they way how they are used in 
the thesis is defined in this chapter. The mathematical notation is introduced first. Then, camera 
model is introduced. A n introduction to parameterization of 3D lines using Plucer coordinates 
follows. After that, projection of points and lines onto the image plane is derived in the context 
of the used camera model and line parameterization. Finally, a method of solving a homogeneous 
system of linear equations is introduced. 

2.1 Notation 

Scalars are typeset in italics (x,X), vectors are typeset in bold (1, L). A l l vectors are thought of 
as being column vectors unless explicitly transposed. Matrices are typeset in sans-serif fonts (t, D), 
the identity matrix is denoted by I and the zero matrix by 0. 2D entities are denoted by lower case 
letters (x, 1, t), 3D entities by upper case letters (X, L, D). Some of the symbols used in this work 
are organized in the following table. 

scalar vector matrix 

2D 

3D 

a - h, j -n, q, s, 
x, y, 5, e, e, 7r, a 

E, L, S, T, X, Y, Z, 
A, B, r , A , s, e 

1, p, t, u, x, e 

0, E , L, N, T, 
U , V , X, Y 

t 

0, 1, D, K, L, M, P, 
R, U, V, W, Z, T 

No formal distinction between coordinate vectors and physical entities is made. Transformation and 
projection matrices acting on points and lines are distinguished by a dot and a bar, respectively (D, 
P, D, P). 
Operators and functions are denoted as follows. 

• Equality of up to a nonzero scale factor is denoted by , 
• transposition by T , 
• £2 norm (Euclidean norm) of a vector by |.| , 
• £\ norm of a vector by Ij.^ , 

• Kronecker product by ® , 
• vectorization of a matrix in column-major order by vec(.) , 
• the skew symmetric matrix associated with the cross product by [.] x , 

i . e. [a] x b = a x b. 
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Finally, the following two functions are defined. The first one is meano(.) - the mean of all 
atomic elements of its argument. In the case of a vector, the result is straightforward: 

V-Ml 
mean(a) = ^ i = 1 G i . (2.1) 

n 

In the case of a matrix, the result is the mean of all matrix entries (not just of column/row vectors): 

mean o(M) = meano(vec(M)) . (2.2) 

In the case of a set, the elements of the set are concatenated into a single vector or matrix first, the 
function is evaluated after the concatenation 

mean^Xi}) = mean o((x7 XJ ... X^) T ) , (2.3) 

where i = 1.. . n. 

The second function is mean|0|(.) - the mean of absolute values of all atomic elements of its 
argument. It acts on vectors, matrices and sets in the same way as the function meano(.) does. 

2.2 Camera Model 

A camera with central perspective projection is assumed, where 3D points and lines project onto an 
image plane which does not coincide with the center of projection. This is called a pinhole camera 
model [18]. The model is parameterized using two sets of parameters: extrinsic and intrinsic 
parameters. 

Extrinsic parameters encode the position and orientation - i . e. the pose - of a camera in space. 
A transition from the world to the camera coordinate system is realized through a translation 
followed by a rotation The translation is parameterized using a 3 x 1 translation vector T = 
(Ti T2 T3)1", which represents the position of the camera in the world coordinate system. The 
rotation is parameterized using a 3 x 3 rotation matrix R describing the orientation of the camera 
in the world coordinate system by means of three consecutive rotations along the three axes Z, Y, 
X by respective Euler angles F, B, A. The pose of a camera thus has 6 Degrees of Freedom (DoF): 
T i , T2, T3, A, B, r . 

The task of pose estimation can be alternatively formulated as object pose estimation (w. r. t. the 
camera coordinate system). In this work, however, the earlier formulation is adopted, i . e. estimation 
of the pose of a camera (w. r.t. the object or world coordinate system). The two formulations are 
equivalent. 

Intrinsic parameters describe how the (physical) coordinates of 2D points in the image plane 
map to its image coordinates (in pixels). Such mapping can be expressed by an upper-triangular 
3 x 3 camera calibration matrix K. 

Putting together both the extrinsic parameters (R, T) and the intrinsic parameters (K), a 3D 
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point X can be related to its projection u in the image by the equation 

u w K [R -RT] X . (2.4) 

Both X and u are expressed in homogeneous coordinates. 
When the camera is intrinsically calibrated, i . e. when K is known, the image coordinates u can 

be converted into the normalized image coordinates x = K _ 1 u . The projection x of a 3D point X 
in the normalized image plane can then be computed directly 

x ~ [R -RT]X . (2.5) 

In the rest of this work, a pinhole camera with known intrinsic parameters is assumed, i . e. 
coordinates of 2D points and lines are the normalized image coordinates. 

2.3 Pliicker Coordinates 

Pliicker Coordinates are the only linear over-parameterization with linear projection function. More­
over, it is a complete parameterization using "only" 6 DoF. 

Given two distinct 3D points X = (X\ X2 X3 X4)1" and Y = (Y\ Y2 Y3 Ya)1 in homogeneous 
coordinates, a line joining them in projective 3-space is a homogeneous 6-vector L « ( U T V T ) T = 
( L i L 2 L 3 L 4 L 5 L 6 ) T , where 

U T = ( L i L2 L3) = (X1 X2 X3) x (Y1 Y2 Y3) , (2.6) 

V T = ( L 4 L 5 L6) = XA{YX Y2 Y3) - YA{XX X2 X3) . 

The V part encodes direction of the line while the U part encodes position of the line in space. In 
fact, U is a normal of an interpretation plane - a plane passing through the line and the origin. As 
a consequence, L must satisfy a bilinear constraint U T V = 0. Existence of this constraint explains 
the discrepancy between 4 DoF of a 3D line and its parameterization by a homogeneous 6-vector. 
More on Pliicker coordinates can be found e.g. in [18]. 

2.4 Projection of Points and Lines 

The way, how transformations of points and lines are made, depends on the chosen parameterization. 
In the following, 3D lines are assumed to be parameterized using Pliicker coordinates and 3D points 
are assumed to be parameterized using homogeneous coordinates. 

Transformation of a Point. A homogeneous 3D point X = (X\ X2 X3 XA)T in the world 
coordinate system is transformed to a point DX in the camera coordinate system using a 4 x 4 
point displacement matrix 

D 
R 

0ly 

-RT 
(2.7) 
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Projection of a Point. After 3D points are transformed into the camera coordinate system, they 
can be projected onto the normalized image plane using the 3 x 4 canonical camera matrix (I 0). 
Compositing the two transformations yields the 3x4 point projection matrix 

R -RT 

A 3D point X is then projected using the point projection matrix P as 

(2i 

x w PX (2.9) 

where x = (x\ X2 x^)T is a homogeneous 2D point in the normalized image plane. 

Transformation of a Line. A 3D line parameterized using Pliicker coordinates can be trans­
formed from the world into the camera coordinate system using the 6x6 line displacement matrix 1 

D 
R 

0 3 x 3 

R["T]x 

R 
(2.10) 

Projection of a Line. After 3D lines are transformed into the camera coordinate system, their 
projections onto the image plane can be determined as intersections of their interpretation planes 
with the image plane; see Figure 2.1 for illustration. The normal U of an interpretation plane 
is identical to the image line 1 in the coordinate system of the camera, hence only U needs to 
be computed when projecting L, and only the upper half of D is needed, yielding the 3 x 6 line 
projection matrix [13] 

R R[-T]; 
(2.11) 

The line projection matrix in Eq. (2.11) can also be achieved by compositing the two transformations 
defined by the line displacement matrix D (2.10) and by the 3 x 6 canonical camera matrix (I 0). 

Figure 2.1: 3D line projection. The 3D line L is parameterized by its direction vector V and 
a normal U of its interpretation plane, which passes through the origin of the camera coordinate 
system {C}. Since the projected 2D line 1 lies at the intersection of the interpretation plane and 
the image plane, it is fully defined by the normal U . 

A 3D line L is then projected using the line projection matrix P as 

1 « PL (2.12) 
1 Please note that our line displacement matrix differs slightly from the matrix of Bartoli and Sturm [4, Eq. (6)], 

namely in the upper-right term: We have R[-T] x instead of [T] x R due to different coordinate system. 
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where 1 = (li I2 h)T is a homogeneous 2D line in the normalized image plane. 

2.5 Solving a Homogeneous System of Linear Equations 

Methods presented in this work often solve a homogeneous system of linear equations, which can 
be described by the matrix equation 

Mx = 0 . (2.13) 

If the system has m equations and n unknowns, then the measurement matrix M containing coeffi­
cients of the equations is m x n, and the vector of unknowns x has n entries. The trivial solution 
x = 0 is not of interest, hence the desired solution must be constrained, typically 

112 
argmin ||Mx|| 

(2.14) 
s. t. ||x|| = 1 . 

Eq. (2.13) holds only in an ideal (noise-free) case. If equation coefficients in M are perturbed by 
noise, an inconsistent system is obtained 

Mx' = € , (2.15) 

where x' is only an approximate solution and e is an m-vector of measurement residuals. 
In an ideal case (2.13) and assuming m > n, M has rank n — 1 and x is the right nullspace of 

M of rank 1. However, in a noisy case (2.15), M has full rank n, thus its nullspace must have rank 
0. This implies nonexistence of an exact solution. Still, an approximate solution may be found in 
a least-squares sense. If a rank deficient matrix M' is found 

/ 112 
argmin ||M — M|| 

M ' (2.16) 
s.t. rank(M') = rank(M) - 1 , 

then, the approximate solution x' of the system (2.15) is the right nullspace of M' of rank 1, i . e. 

M'x' = 0 . (2.17) 

Remark 2.1: In the rest of the thesis, the above-described way of solving a homogeneous linear 

system Mx = 0 will be referred to as "'homogeneous linear least squares". Although a mathemat­

ically correct term would be "low-rank approximation" (of M), the former designation was chosen 

due to its analogy to the term "linear least squares", which designates solving of a linear system 

Mx = b. 
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Chapter 3 

Pose Estimation from Lines 

Points are the most commonly used features, not only for pose estimation. It is so because points 
are the simplest geometric primitives, easy to represent mathematically and easy to handle in a 
space of any dimension [18]. A substantial amount of research has been dedicated to point features 
and their applications in computer vision. Lines, on the other hand, are more difficult to represent, 
especially in spaces of dimension 3 and higher. This was naturally reflected in less research effort 
dedicated to line features. 

Nevertheless, points and lines carry a complementary information about a scene and it is thus 
desirable to make use of both. Points have an exact location, whereas the "location" of a line 
along its direction is inherently unknown. On the other hand, lines are a more robust type of a 
primitive, because they can be broken or partially occluded, but they are still visible and they can 
be exploited. Additionally, lines provide stronger structural information about a scene than points, 
see Figure 3.1. Lines are especially useful and sometimes indispensable in situations where point 
features are unreliable. This might be caused, for example, by a lack of texture or presence of 
repetitive patterns, see Figure 3.2. Such conditions are typical for man-made environments - wiry 
structures, streets, facades of buildings, corridors, rooms etc. Lines are often abundant in such 
environments [27]. 

The task of camera pose estimation from lines has a finite number of solutions for 3 and more 
lines. However, in the minimal case of 3 lines, solutions of the Perspective-3-Line (P3L) problem are 
multiple: up to 8 solutions may exist [6]. The ambiguity is removed by adding one or more lines and 
thus the PnL problem has a unique solution for n > 4 [33]. Having said that, special configurations 

Figure 3.1: Representation of a building (on the left) using points (center) and lines (right). 

l rThe data is a courtesy of [32]. 
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of lines must not be forget, for which the PnL problem has an infinite number of solutions even for 
n > 4. Such cases are termed singular configurations (e. g. a set of parallel lines, in which case, it is 
impossible to locate the camera along the lines). Generally, methods for pose estimation are known 
to be prone to singular and sometimes also to quasi-singular configurations of lines [28]. 

The PnL problem has been receiving attention for more than a quarter of century. Some of 
the earliest works are the ones of Dhome et al. from 1989 [12] and Liu et al. from 1990 [22]. They 
introduce two different ways to deal with the PnL problem: iterative and algebraic2 approaches. 
As the names suggest, the algebraic methods solve PnL by minimizing an algebraic error in "one 
step", while the iterative methods iteratively minimize a nonlinear error function, which usually 
has a geometric meaning. Both approaches have different properties and thus also different use. 
A specific subset of algebraic approaches are the methods based on linear formulation of the PnL 
problem. 

Figure 3.2: Point matches (top) and line matches (bottom) in a pair of images of a low-texutre 
scene. Only 9 matches were found using points, while 54 matches were found using lines.3 

2 Sometimes also called non-iterative approaches. 
3The images and line matches are a courtesy of [34]. 
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3.1 Iterative Methods 

The iterative approaches consider pose estimation as a nonlinear least squares problem by iteratively 
minimizing specific error function, which usually has a geometrical meaning. In the early work of 
Liu et al. [22], the authors attempted to estimate the camera position and orientation separately 
developing a method called R_then_T. Later on, Kumar and Hanson [20] introduced a method called 
R_and_T for simultaneous estimation of camera position and orientation, and proved its superior 
performance to R_then_T. Recently, Zhang et al. [37] proposed two modifications of the R_and_T 
algorithm exploiting the uncertainty properties of line segment endpoints. Several other iterative 
methods are also capable of simultaneous estimation of pose parameters and line correspondences, 
e.g. [11, 36]. They pose an orthogonal approach to the common RANSAC-based correspondence 
filtering and consecutive separate pose estimation. 

Iterative algorithms suffer from two common major issues when not initialized accurately: They 
converge slowly, and more severely, the estimated pose is often far from the true camera pose, 
finding only a local minimum of the error function. This makes iterative approaches suitable for 
final refinement of an initial solution, provided by some other algorithm. 

3.2 Algebraic Methods 

The algebraic approaches estimate the camera pose by solving a system of (usually polynomial) 
equations, minimizing an algebraic error. Their solutions are thus not necessarily geometrically 
optimal; on the other hand, no initialization is needed. 

Among the earliest efforts in this field are those of Dhome et al. [12] and Chen [6]. Both methods 
solve the minimal problem of pose estimation from 3 line correspondences in a closed form. Solutions 
of the P3L problem are multiple: up to 8 solutions may exist [6]. Unfortunately, neither method 
is able to exploit more measurements to remove the ambiguity, and both methods are sensitive to 
presence of image noise. 

Ansar and Daniilidis [3] developed a method that is able to handle 4 or more lines, limiting 
the number of possible solutions to 1. Lifting is employed to convert a polynomial system to linear 
equations in the entries of a rotation matrix. This approach may, however, fail in cases of singular 
line configurations (e.g. lines in 3 orthogonal directions [28]) as the underlying polynomial system 
may have multiple solutions. The algorithm has quadratic computational complexity (0(n 2), where 
n is the number of lines), which renders it impractically slow for processing higher numbers of lines. 
The method also becomes unstable with increasing image noise, eventually producing solutions with 
complex numbers. 

Recently, two major improvements of algebraic approaches have been achieved. First, Mirzaei 
and Roumeliotis [26] proposed a method, which is more computationally efficient (O(n)), behaves 
more robustly in the presence of image noise, and can handle the minimum of 3 lines, or more. A 
polynomial system with 27 candidate solutions is constructed and solved through the eigendecompo-
sition of a multiplication matrix. Camera orientations having the least square error are considered 
to be the optimal ones. Camera positions are obtained separately using linear least squares. A 
weakness with this algorithm is that it often yields multiple solutions. Also, despite its linear com-
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putational complexity, the overall computational time is still high due to slow construction of the 
multiplication matrix, which causes a high constant time penalty: 78 ms / 10 lines. 

The second recent improvement is the Robust PnL (RPnL) algorithm of Zhang et al. [35]. Their 
method works with 4 or more lines and is more accurate and robust than the method of Mirzaei 
and Roumeliotis. A n intermediate model coordinate system is used in the method of Zhang et al., 
which is aligned with a 3D line of longest projection. The lines are divided into triples, for each of 
which a P3L polynomial is formed. The optimal solution of the polynomial system is selected from 
the roots of its derivative in terms of a least squares residual. 

The R P n L algorithm was later modified by X u et al. [33] into the Accurate Subset based PnL 
(ASPnL) algorithm, which acts more accurately on small line sets. However, it is very sensitive 
to outliers, limiting its performance on real-world data. A drawback of both R P n L and ASPnL is 
that their computational time increases strongly for higher number of lines - from 8 ms / 10 lines to 
630 - 880 ms / 1000 lines. 

3.3 Methods based on Linear Formulation of PnL 

A specific subset of algebraic methods are methods exploiting a linear formulation of the PnL 
problem (LPnL). Generally, the methods solve a system of linear equations, the size of which is 
directly proportional to the number of measurements. The biggest advantage of L P n L methods is 
their computational efficiency, making them fast for both low and high number of lines. 

The most straightforward way to solve L P n L is the Direct Linear Transformation (DLT) algo­
rithm [18]. It transforms the measured line correspondences into a homogeneous system of linear 
equations, whose coefficients are arranged into a measurement matrix. The solution then lies in 
the nullspace of the matrix. A necessary condition to apply any D L T method on noisy data is 
to prenormalize the input in order to ensure that the entries of the measurement matrix are of 
equal magnitude. Otherwise, the method will be oversensitive to noise and it will produce results 
arbitrarily far from the true solution. 

The first D L T method for solving PnL is the method of Hartley and Zisserman [18, p. 180]. 
Following the terminology of Silva et al. [29], we call the method DLT-Lines. It does not act 
directly on 3D lines, but rather on 3D points lying on 3D lines (for example line endpoints). It 
exploits the fact that if a 3D line and a 3D point coincide, their projections also must coincide. The 
DLT-Lines method requires at least 6 line correspondences. 

Recently, we introduced a new D L T method [II], which acts on 3D lines directly The lines are 
parameterized using Plucker coordinates, hence the name of the method is DLT-Plucker-Lines. 
The method yields more accurate estimates of camera orientation than DLT-Lines at the cost of a 
bit larger reprojection error and slightly lower computational efficiency. Also, the minimum number 
of lines required is 9. 

Even more recently, X u et al. [33] introduced a new set of methods exploiting the linear for­
mulation of the PnL problem. The authors were inspired by the state-of-the-art Perspective-n-
Point (PnP) solver working on the same principle [14]. Similarly to DLT-Lines, the new methods 
act on 3D points and 2D lines. The methods of X u et al. [33] can be categorized by two criteria. 
Firstly, by parameterization of 3D points (either by Cartesian or by barycentric coordinates - this 
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is denoted in the method's names by "DLT" and "Bar", respectively). Secondly, by the manner in 
which a solution is obtained from the nullspace. The solution is either an exact rank-1 nullspace 
computed in closed form using homogeneous linear least squares, or it is estimated from an "effective 
nullspace" [21] of a dimension 1 - 4 (higher dimensions typically occurring under the presence of 
noise). This is denoted in the method's names by "LS" and "ENull", respectively. A l l the following 
methods require at least 6 line correspondences, although the effective null space solver (ENull) is 
sometimes able to recover the correct solution of an underdetermined system defined by 4 or 5 lines. 
The four L P n L methods of X u et al. are the following: 

L P n L _ D L T _ L S parameterizes 3D points using Cartesian coordinates, and it uses homogeneous 
linear least squares to recover the solution: entries of the rotation matrix and translation vector. 
This is exactly the same algorithm as DLT-Lines [18, p. 180], so we use the name DLT-Lines to 
refer to the method in the rest of the paper. 

L P n L _ D L T _ E N u l l parameterizes 3D points using Cartesian coordinates, and it uses the effective 
nullspace solver [21] to recover the solution: entries of the rotation matrix and translation vector. 
It achieves higher accuracy than DLT-Lines. 

LPnL_Bar_LS parameterizes 3D points using barycentric coordinates, which depend on the po­
sition of 4 arbitrarily chosen control points. Position of the control points with respect to camera 
is solved using homogeneous linear least squares. Alignment of the 4 camera- and world-referred 
control points defines the camera pose. Accuracy of the method is similar to DLT-Lines. 
LPnL_Bar_ENull parameterizes 3D points using barycentric coordinates. Position of the 4 control 
points with respect to camera is solved using the effective nullspace solver. Alignment of the 4 
camera- and world-referred control points defines the camera pose. The method is even more 
accurate than LPnL_Bar_LS. 

3.4 Handling Mismatched Correspondences 

In practice, mismatches of lines (i. e. outlying correspondences) often occur, which degrades the 
performance of camera pose estimation or even impedes it. It is thus necessary to identify and filter 
out mismatched correspondences and work preferably with correct matches. 

R A N S A C - b a s e d 

The RANdom SAmple Consensus (RANSAC) algorithm [15] is commonly used to identify and 
remove outliers. It is a hypothesize-and-test scheme, where random samples are drawn from a set 
of data points, model parameters (i. e. hypotheses) are computed from the samples, and consensus 
of other data points is tested. This is repeated until a hypothesis with sufficient consensus is found 
or an iteration limit is exceeded. 

A correct hypothesis is generated only if all data points in the sample are inliers. Since the 
chance of drawing an outlier-free sample depends not only on the fraction of inliers in the data but 
also on the size of the sample, it is desirable to use a minimal model. A non-minimal model can 
also be used, but, on average, more iterations are needed to obtain a correct hypothesis with the 
same probability as when using a minimal model. 
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In the context of pose estimation from lines, the data points are usually tentative line corre­
spondences, the model parameters are parameters of a camera pose, and the consensus may be 
quantified e. g. by reprojection error of corresponding lines. The minimal number of line correspon­
dences required to determine a camera pose is 3, but methods working with 4 line correspondences 
are also being used to generate hypotheses. 

The R A N S A C scheme can handle any percentage of outliers in theory as long as at least one 
outlier-free sample can be found. R A N S A C is nondeterministic due to the use of random sampling. 
However, dozens of different R A N S A C modifications have been introduced [25] eliminating various 
drawbacks of the original algorithm, e.g. [8, 9, 30]. 

Algebraic Outlier Rejection 

As the L P n L methods work with 5 and more line correspondences, they cannot compete with the 
minimal (P3L) methods when plugged into a RANSAC-l ike framework due to an increased number 
of iterations. 

This motivated an alternative scheme called Algebraic Outlier Rejection (AOR, [14]). It is 
an iterative approach integrated directly into the pose estimation procedure. Specifically, it is 
integrated into solving of the homogeneous linear system (2.13). Each line correspondence is assigned 
a weight, and the weights are arranged on the main diagonal of a square matrix W. This yields a 
homogeneous system of weighted linear equations 

W M x = 0 . (3.1) 

At the beginning, all weights are initialized to 1, conservatively assuming that all line correspon­
dences are inkers. A n approximate least-squares solution x ' of the system (3.1) is computed by 
Singular Value Decomposition (SVD) of M T W M , and a residual vector e of the solution is com­
puted as 

e = Mx' . (3.2) 

A n algebraic error e of each line correspondence is computed from the residual vector e as a norm of 
a sub-vector of corresponding residuals. E.g . , for a case with 2 equations per line correspondence, 
the algebraic error of the i-th correspondence is £j = 11 (c2«—l £2i)ll- A l l correspondences are then 
assigned new weights 

{ 1 if Si < max(e m a x ,<5 m a x ) , 
(3.3) 

0 otherwise , 

and the whole procedure is repeated until convergence of the solution x' . The constants e m a x 

and d>max are predefined thresholds. The strategy for choosing e m a x may be arbitrary but the 
authors [14] recommend e m a x = Q25(e±j • • •, sn) which is the algebraic error of the correspondence 
that is at the boundary of the 25th percentile. The function is used as a robust estimator to reject 
correspondences with largest errors. The other threshold, <5max, needs to be reached to consider 
a specific correspondence as an outlier. Its purpose is to avoid unnecessary rejections of inlier 
correspondences in an outlier-free case, and to achieve faster convergence. 

The authors claim the break-down point to reach 60 % when applied to the PnP problem, and 
the process to usually converge in less than 5 iterations. 
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Chapter 4 

Pose Estimation from Lines 
using Direct Linear Transformation 

This chapter contains the majority of contributions of the thesis. First, the state-of-the-art is 
critically analyzed and the resolution is outlined. Then, two novel DLT-based methods for pose 
estimation from line correspondences are introduced and related to one existing DLT-based method. 
The methods are formulated within a novel unifying framework for DLT-based PnL methods. 

4.1 Analysis of the State-of-the-Art 

Pose estimation from line correspondences is a fundamental task required for many applications of 
computer vision - 3D reconstruction of a scene, localization and navigation of a robot, operation 
of a robotic arm solely on the basis of visual information, or augmentation of user's view with 
additional information, for example. 

When estimating camera pose "from scratch", the following pipeline is typically used: 

(i) Obtain tentative feature correspondences, 
(ii) filter out outliers, 

(iii) compute a solution from all inliers, and 
(iv) iteratively refine the solution, e.g. by minimizing reprojection error (optionally). 

Task (i) is usually carried out by appearance-based or geometry-based matching of lines. Task (ii) is 
usually carried out by iterative solving of a problem with a minimal number of line correspondences 
(i. e. P3L) in a R A N S A C loop. Tasks (iii) and (iv), on the other hand, require solving a PnL problem 
with potentially high number of lines, which might be a time-consuming task. It is thus of interest 
to solve the task using an efficient algorithm. 

As presented in the previous chapter, methods for solving PnL can be categorized as either 
iterative or algebraic. The iterative algorithms [7, 11, 20, 22, 36, 37] need initialization. This 
makes them suitable only for final refinement (iv) of an initial solution, which must be provided 
by some other algorithm. The initial solution (iii) may be provided by an algebraic algorithm 
[3, 6, 12, 26, 33, 35]. Among these, the methods of Chen [6] and Dhome et al. [12] are able to 
exploit only 3 line correspondences, thus they cannot be used in scenarios with more lines. The 
algorithm of Ansar and Daniilidis [3] overcomes the limitation of fixed number of lines, allowing to 
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use 4 and more lines. However, it has a quadratic computational complexity in the number of lines, 
which renders it impractically slow even for scenarios with dozens of lines. Mirzaei and Roumeliotis 
[26] eliminated the computational burden by introducing a method with linear computational com­
plexity. Nonetheless, its runtime is still high due to a slow construction of a multiplication matrix, 
causing a high constant time penalty: it takes 78 ms to process 10 lines. Another drawback of the 
method is that it often yields multiple solutions. The shortcomings of [26] have been overcome by 
Zhang et al. [35] in their R P n L algorithm: it always yields a single solution and it takes 8 ms to 
compute a pose of 10 lines. However, the computational time increases strongly for higher number 
of lines: it takes 880 ms to process 1000 lines. The related method ASPnL of X u et al. [33] inherits 
the attributes of RPnL. Alhough ASPnL is more accurate on small line sets, its runtime follows 
the characteristic of RPnL. 

The non-LPnL algebraic methods only have been discussed so far. Nevertheless, in tasks in­
volving a high number of lines, the non-LPnL methods are outperformed by the L P n L methods: by 
DLT-Lines of Hartley and Zisserman [18] and by the methods of X u et al. [33]. These state-of-the-art 
methods are efficient and accurate especially in scenarios with high number of lines. Interestingly 
enough, they do not exploit all available information: They only utilize points in 3D space, but 
3D lines remain unused. This means only point-line correspondences are used and the potential of 
line-line correspondences is unexploited, leaving a promising room for research and improvement. 

The thesis aims for better accuracy and robustness than the state-of-the-art by introducing a 
new linear method for pose estimation. The method shall utilize line-line correspondences and keep 
the advantage of being fast which L P n L methods have in common. The goal is elaborated in the 
rest of this work and it is verified experimentally using both synthetic and real-world data. 

The attention is focused on methods based on the DLT. First, a unifying framework for all 
DLT-based PnL methods is presented in Section 4.2. Then, all three DLT-based PnL methods are 
formulated within the framework. The methods are: 

DLT-Lines of Hartley and Zisserman [18, p. 180], exploiting point-line correspondences only -
Section 4.3. 

DLT-Pliicker-Lines of ours [II], exploiting line-line correspondences only - Section 4.4. 

DLT-Combined-Lines of ours [I], exploiting both point-line and line-line correspondences - Sec­
tion 4.5. 

4.2 Common Structure of DLT Methods 

In this section, the novel unifying framework for DLT-based PnL methods is introduced. Given the 
point-line or line-line correspondences, the camera pose can be estimated using a PnL method. The 
DLT-based PnL methods have the following steps in common: 

1. Input data is prenormalized to achieve good conditioning of the linear system. 
2. A projection matrix is estimated using homogeneous linear least squares, and the effect of 

prenormalization is reverted. 
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3. The pose parameters are extracted from the estimated projection matrix. This includes also 
constraint enforcement in the case of noisy data, since the constraints are not taken into 
account during the least-squares estimation. 

Prenormalization 

Since the D L T algorithm is sensitive to the choice of coordinate system, it is crucial to prenormalize 
the data to get a properly conditioned measurement matrix M [16]. Various transformations can 
be used, but the optimal ones are unknown. In practice, however, the goal is to reduce large values 
of point/line coordinates. This is usually achieved by centering the data around the origin and 
by scaling them s.t. an average coordinate has the absolute value of 1 (which means the average 
distance to the origin shall equal to A / 2 and A / 3 in the 2D and 3D case, respectively). Specific 
prenormalizing transformations are proposed for each method in the following sections. 

Linear Estimation of a Projection Matr ix 

As a starting point, a system of linear equations needs to be constructed, which relates (prenor­
malized) 3D entities with their (prenormalized) image counterparts through a projection matrix, 
denoted P. The relation might be the projection of homogeneous 3D points x RS P X in Eq. (2.9), 
or the projection of Pliicker lines 1 « P L in Eq. (2.12), or other linear system, or a combination of 
those. The problem of camera pose estimation now resides in estimating the projection matrix P, 
which encodes all the six camera pose parameters T\, T2, T3, A, B, T. 

The system of linear equations is transformed into a homogeneous system of linear equations 
(see Appendix A of the thesis for details), i . e. a system having only a zero vector at the right-hand 
side. 

M is a measurement matrix containing coefficients of equations generated by correspondences be­
tween 3D entities and their image counterparts. Each of the n correspondences gives rise to a 
number of independent linear equations (usually 2), and thus to the same number of rows of M . 
The number of columns of M equals d, which is the number of entries contained in P. The size of 
M is thus 2n x d. Eq. (4.1) is then solved for the d-vector p = vec(P). 

As mentioned in Section 2.5, Eq. (4.1) holds only in a noise-free case. If a noise is present in 
the measurements, an inconsistent system is obtained: 

Only an approximate solution p' may be found through minimization of a 2n-vector of measurement 

residuals e in a least-squares sense s.t. ||p'|| = 1. 

Once the system of linear equations given by Eq. (4.2) is solved, the estimate P' of the projection 
matrix P can be recovered from the <i-vector p'. 

Mp = 0 (4.1) 

Mp' = e . (4.2) 
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Extraction of Pose Parameters 

The estimate P' of a projection matrix P obtained as a solution of the system (4.2) does not satisfy 
the constraints imposed on P. In fact, a projection matrix P has only 6 DoF - the 6 camera pose 
parameters T\, T2, T3, A, B, F. It has, however, more entries: The 3 x 4 point projection matrix 

R - R T 

has 12 entries and the 3 x 6 line projection matrix 

R R[-T]> 

(4.3) 

(4.4) 

has 18 entries. This means that the projection matrices have 6 and 12 independent linear constraints, 

respectively. 

The first six constraints are imposed by the rotation matrix R that must satisfy the orthonor-
mality constraints (unit-norm and mutually orthogonal rows). The other six constraints in the 
case of P are imposed by the skew-symmetric matrix [-T] x (three zeros on the main diagonal and 
antisymmetric off-diagonal elements). 

In order to extract the pose parameters, the scale of an estimate P' of a projection matrix P has 
to be corrected first, since p' is usually of unit length as a minimizer of e in Eq. (4.2). The correct 
scale of P' can only be determined from the part which does not contain the translation T . In both 
cases of P (4.3) and P (4.4), it is the left 3 x 3 submatrix - let us denote it P[ - an estimate of a 
rotation matrix R. A method of scale correction is recommended based on the fact that all three 
singular values of a proper rotation matrix should be 1. See Algorithm 1. 

Algorithm 1: Scale correction of a projection matrix. 

Input: A n estimate P' of a projection matrix, possibly wrongly scaled and without fulfilled con­
straints. 

1. P ; <- left 3 x 3 submatrix of P' 
2. U Z V T <- S V D ( P ; ) 
3. s <— l/mean(diag(Z)) 

Output: sP'. 

Alternatively, the scale can also be corrected so that det(sP'1) = 1, but Algorithm 1 proved to be 
more robust in practice. 

Further steps in the extraction of pose parameters differ in each method, they are thus described 

separately in the following sections. 

4.3 DLT-Lines 

DLT-Lines is the method by Hartley and Zisserman [18, p. 180]. In the following text, the method 

is put into context using the unifying framework of the previous section. DLT-Lines exploits the 

fact that a 3D point X lying on a 3D line L projects such that its projection x = P X must also lie 
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on the projected line: 1 x = 0, see Figure 4.1. Putting this together yields the constraint equation 

1TPX = 0 . (4.5) 

The pose parameters are encoded in the 3 x 4 point projection matrix P, see Eq. (2.8). Since P 
has 12 entries, at least 6 lines are required to fully determine the system, each line with 2 or more 
points on it. 

Figure 4.1: A point X lying on a 3D line projects s. t. its projection must lie on the image line 1 
- a projection of the 3D line. 

Prenormalization 

The known quantities of Eq. (4.5), i.e. the coordinates of 3D points and 2D lines, need to be 
prenormalized. In the case of the DLT-based pose estimation from points [17], Hartley suggests to 
translate and scale both 3D and 2D points so that their centroid is at the origin and their average 
distance from the origin equals to \/3 and \/2, respectively. 

By exploiting the principle of duality [10], it is suggested to treat coordinates of 2D lines as 
homogeneous coordinates of 2D points, and then to follow Hartley in the prenormalization procedure 
- i . e. to apply translation to the origin and then anisotropic scaling. 

Linear Estimation of the Point Projection matrix 

The point projection matrix P and its estimate P' are 3x4, so the corresponding measurement matrix 
M is n x 12, where n is the number of point-line correspondences Xj H lj, (i = l . . . n , n > 12). M 
is constructed as 

M ( i > : ) = x T ® l 7 " , (4.6) 

where M(i, o denotes the i-th row of M in the Matlab notation. See Appendix A.3 of the thesis for 
a derivation of Eq. (4.6). The 3D points Xj must be located on at least 6 different lines. 

Extraction of Pose Parameters 

First, the scale of P' is corrected using Algorithm 1, yielding sP'. Then, the left 3 x 3 submatrix 
of sP' is taken as the estimate R' of a rotation matrix. A nearest rotation matrix R is found in the 
sense of the Frobenius norm using Algorithm 2. 
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Algorithm 2: Orthogonalization of a 3 x 3 matrix. 

Input: A 3 x 3 estimate R' of a rotation matrix R. 
1. U Z V T <- SVD(R') 
2. d ^ d e t ( U V T ) 
3. R ^ d U V T 

Output: R. 

Please, note that Algorithms 1 and 2 can be combined and executed at once. 
The remaining pose parameter to recover is the translation vector T, which is encoded in the 

fourth column P 4 of P', see Eq. (2.8). It is recovered as T = R T sp4 , completing the extraction of 
pose parameters. 

4.4 DLT-Plucker-Lines 

DLT-Pliicker-Lines is a novel method, which was published in [II]. It exploits the linear projection of 
3D lines parameterized using Pliicker coordinates onto the image plane, as described in Section 2.3. 
A benefit of this method is higher accuracy of camera orientation estimates compared to DLT-Lines. 

The formation of a 2D line 1 as a projection of a 3D line L is defined by the constraint equation 
(2.12) 

1 » PL , (4.7) 

as illustrated in Figure 4.2. The pose parameters are encoded in the 3 x 6 line projection matrix P, 
see Eq. (2.11). Since P has 18 entries, at least 9 lines are required to fully determine the system. 

Figure 4.2: A 3D line L parameterized using Pliicker coordinates is defined by a normal U of its 
interpretation plane and by its direction vector V . Its projection is denoted 1. 

Prenormalization 

The known quantities of Eq. (4.7) need to be prenormalized, i . e. the Pliicker coordinates of 3D 
lines L, and the coordinates of 2D lines 1. Since the homogeneous Pliicker coordinates of a 3D 
line L cannot be simply treated as homogeneous coordinates of a 5D point (because of the bilinear 
constraint, see Section 2.3), the following prenormalization is suggested. 
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Translation and scaling is applied in this case as well. However, both translation and scaling 
affect only the U part of each L , and not the V part. Therefore, the V parts are adjusted first by 
multiplying each L by a nonzero scale factor so that | | V | | = A / 3 . Then, translation is applied to 
minimize the average magnitude of U . Since | | U | | decreases with the distance of L from the origin, 
it is feasible to translate the lines so that the sum of squared distances from the origin is minimized. 
This can be efficiently computed using the Generalized Weiszfeld algorithm [1]. Finally, anisotropic 
scaling is applied so that the average magnitude of all U parts matches the average magnitude of 
all V parts. Both translation and scaling of lines is achieved by premultiplying them by a 6 x 6 line 
similarity matrix [4]. The procedure is summarized in Algorithm 3. 

Algorithm 3: Prenormalization of 3D lines parameterized by Pliicker coordinates. 
Note: See Section 2.1 for the definition of function mean|D|(.). 

Input: A set of m 3D lines {Lj} , j = 1.. . m. 

A / 3 
1. For all lines do: L 7- = — - • 

| | V j | | 
2. T <— Generalized_Weiszfeld_Algorithm({Lj}) 

I [-T]x 
3. For all lines do: L , 

0 I 

mean| 0 |({Vj}) mean H ( {V ,} ) 
4- 0 X i 777. TT , < 7 7 7 TT 

mean|D| ( | i j , i } J mean|D| ({£,-, 2 )) 
Sx 

5. For all lines do: L , 
sY 0 

Sz 

< Aftab et al. [1] 

<l translation 

Sz 
mean| 0 |({Vj}) 
mean| 0 | ({L i i 3 }) 

<l scaling 
0 I 

Output: A set of m prenormalized 3D lines {Lj}, j = 1.. . m. 

Prenormalization of 2D lines can be carried out in the same way as in the case of the DLT-Lines 
method, see Section 4.3. 

Linear Estimation of the Line Projection Matr ix 

The line projection matrix P and its estimate P' are 3 x 6, so the corresponding measurement matrix 
M has 18 columns. The number of its rows depends on m, the number of line-line correspondences 
Lj «-> lj, (j = 1... m, m > 9). By exploiting Eq. (4.7), each correspondence generates three rows 
of M (Matlab notation is used to index the matrix elements): 

M(3j-2:3j, :) = L j ® [LJX . (4.8) 

The line measurement matrix M is thus 3m x 18. Note that only two of the three rows of M defined 
by Eq. (4.8) are needed for each line-line correspondence, because they are linearly dependent. M 

will be only 2m x 18 in this case. See Appendix A . l of the thesis for a derivation of Eq. (4.8). 
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Extraction of Pose Parameters 

First, the scale of P' is corrected using Algorithm 1, yielding sP'. Then, the camera pose parameters 
are extracted from the right 3 x 3 submatrix of sP', which is an estimate of a skew-symmetric matrix 
premultiplied by a rotation matrix (i.e. R [ - T ] X , see Eq. (2.11)). Since sP' has the structure of the 
essential matrix [23], the algorithm of Tsai and Huang [31] is proposed to decompose sP', as outlined 
in Algorithm 4. This completes the extraction of pose parameters. 

The variable q = + E 2 j 2 ) / 2 in Algorithm 4 is an average of the first two singular values of 
sP'2 to approximate the singular values of a properly constrained essential matrix, which should be 
(q, q, 0). The ± 1 term in Step 4 of Algorithm 4 denotes either +1 or -1 which has to be put on the 
diagonal so that det(RA) = det(Re) = 1. 

Alternative ways of extracting the camera pose parameters from sP' exist, e.g. computing the 
closest rotation matrix R to the left 3 x 3 submatrix of sP[ and then computing [ T ] X = - R T s P ' 2 . 
However, our experiments showed that the alternative ways are less robust to image noise. Therefore, 
the solution described in Algorithm 4 was chosen. 

Algorithm 4: Extraction of pose parameters from the estimate P' of a line projection matrix, 
inspired by [31]. 

Input: A n estimate P' of a line projection matrix P. 
Input: Corrective scale factor s. 

1. P'2 «— right 3 x 3 submatrix of P' 

2. U Z V T <- SVD(sP 2 ) 

0 1 0 0 - 1 0 

- 1 0 0 , w <- 1 0 0 

0 0 0 0 0 1 

q <- (Z i , i + Z 2 j 2 ) / 2 

4. Compute 2 candidate solutions (A, B): 

R A <- UW diag(l 1 ± 1 )V T , [ T ] X A <- qVZ V T 

R B <- U W T d i a g ( l 1 ± 1 )V T , [ T ] X B <- g V Z T V T 

5. Accept the physically plausible solution, so that the scene lies in front of the camera. 

R <- R A , T <- T A or 
R <- R B , T <— T B • 

Output: R, T . 

4.5 DLT-Combined-Lines 

DLT-Combined-Lines is a novel method published in [I]. It is a combination of DLT-Lines and DLT-
Plucker-Lines methods, exploiting the redundant representation of 3D structure in the form of both 
3D points and 3D lines, see Figure 4.3. The 2D structure is represented by 2D lines. The primary 
benefit of the method is a higher accuracy of the camera pose estimates and smaller reprojection 
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error, the secondary benefit is the lower number of required lines. 

Figure 4.3: A 3D line L is parameterized by both Phicker coordinates of the line (i. e. the normal 
U of its interpretation plane and its direction vector V ) and a point X lying on the line. L may be 
parameterized by many such points. Projection of the point X must lie on the projection 1 of the 
line L. 

The central idea of the method is to merge two systems of linear equations, which share some 
unknowns, into one system. The unknowns are entries of the point projection matrix P used in 
DLT-Lines and the line projection matrix P used in DLT-Pliicker-Lines. The two systems defined 
by Eq. (4.5) and (4.7) can be merged so that the set of unknowns of the resulting system is formed 
by the union of unknowns of both systems. It can be observed that the shared unknowns reside in 
the left 3 x 3 submatrices of P and P. If unknowns of the resulting system are arranged in a feasible 
manner, a new 3 x 7 matrix P can be constructed, which is a "union" of P and P: 

P « [ R - R T ] 

P « [ R R[-T] x] 
R -RT R[-T] : 

(4.9) 

The matrix is called a combined projection matrix, because it allows to write the projection equations 
for point-line, line-line, and even point-point correspondences, as follows: 

1 P I X 0 0 0 

1 w P ( U T 0 V T 

x P ( X T 0 0 0 

0 (4.10) 

(4.11) 

(4.12) 

These equations can then be used to estimate P linearly from the correspondences. 

A secondary benefit of the method is that it requires only 5 lines (and 10 points on them) - less 
then DLT-Pliicker-Lines and even less then DLT-Lines. To explain why, the following matrices are 
defined first: the left-most 3 x 3 submatrix of P is denoted Pi, the middle 3 x 1 submatrix (column 
vector) is denoted P2, and the right-most 3 x 3 submatrix is denoted P3. 

R -RT R[-T] : Pi (4.13) 
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P has 21 entries, but since it encodes the camera pose, it has only 6 DoF. This means it has 14 
nonlinear constraints (homogeneity of the matrix accounts for the 1 remaining DoF). Ignoring the 
nonlinear constraints, which are not taken into account during the least-squares estimation, P has 
20 DoF. Each point-line correspondence generates 1 independent linear equation (4.10) and each 
line-line correspondence generates 2 independent linear equations (4.11). Since P2 is determined 
only by point-line correspondences and since it has 3 DoF, at least 3 3D points are required to fully 
determine it. A n analogy holds for P3: since it is determined only by line-line correspondences and 
since it has 9 DoF, at least 5 (in theory AV2) 3D lines are required to fully determine it. The required 
number of m line-line correspondences and n point-line correspondences is thus m = 9, n = 3, or 
m = 5, n = 10, or something in between satisfying the inequality (n + 2m) > 20, see Table 4.1. In 
such minimal cases, the points must be distributed equally among the lines, i . e. each point or a pair 
of points must lie on a different line; otherwise, the system of equations would be under-determined. 

Table 4.1: Minimal numbers of line-line and point-line correspondences required for the DLT-
Combined-Lines method. 

point-line n= 3 4 5 6 7 8 9 10 

line-line m = 9 8 8 7 7 6 6 5 

Let us proceed with the description of the algorithm. Please notice that the prenormaliza-
tion procedure will be unusually described after the definition of a measurement matrix, because 
prenormalization is strongly motivated by its structure. 

Linear Estimation of the Combined Projection Matr ix 

The combined projection matrix P and its estimate P' are 3x7, so the combined measurement matrix 
M has 21 columns. Number of its rows depends on n - the number of point-line correspondences 
X j «-> lj , (i = 1.. . n), and on m - the number of line-line correspondences L j lj, (j = n + 
1.. .n + m). The minimal values of n and m depend on each other and are given in Table 4.1. Each 
point-line correspondence (4.10) leads to one row of M , and each line-line correspondence (4.11) 
gives rise to three rows of M (Matlab notation is used to index the matrix elements): 

M(i, :) = ( X , T 0 0 0) ® lj , (4.14) 

M ( 3 j - „ - 2 : 3j-n, :) = ( U j 0 V j ) ® [LJ X . (4.15) 

The combined measurement matrix M is thus (n + 3m) x 21. Note that only two of the three rows 
of M defined by Eq. (4.15) are needed for each line-line correspondence, because they are linearly 
dependent. Our experiments showed that using all three rows brings no advantage, so only two of 
them are used in practice. In this case, M is only (n + 2m) x 21. See Appendix A of the thesis for 
derivations of Eq. (4.14) and (4.15). 

The combined measurement matrix M can also be constructed by stacking and aligning the 
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point measurement matrix M and the line measurement matrix M: 

M 
M „ x l 2 0 n X 9 

M ( : , 1:9) 0 3 m X 3 1 0 : 1 8 ) 
(4.16) 

Remark 4.1: It is advisable to scale both M and M so that the sums of squares of their entries 

are equal. (If they were not, it would negatively affect the scales of those parts of the solution 

p = vec(P), which are determined exclusively by M or M, but not by both of them. These are the 

entries 10-12 and 13-21 of p, which contain estimates of translation. See the middle and right part 

of P in Eq. (4.13).) 

Remark 4.2: The method can easily be extended to point-point correspondences (4.12) by adding 

extra rows to M . Each of the p point-point correspondences «->• x&, (k = n + m + 1.. .n + m+p) 

generates three rows 

M ( 3 f c _ n _ m _ 2 . 3fc-n-m, :) = (X-J 0 0 0 ) ® [x*] x , (4.17) 

two of which are linearly independent. See Appendix A.2 of the thesis for a derivation of Eq. (4.17). 

Prenormalization 

Prenormalization of 2D lines is rather complicated in this case. The problem is that a 2D line 1 
is in the direct form and on the opposite side than the line projection matrix P in Eq. (4.11), and 
it is in the transposed form and on the same side like the point projection matrix P in Eq. (4.10). 
Thus, when undoing the effect of a prenormalizing 2D transformation t, the inverse transformation 
is t"1 for P, and t T for P. Since both P and P are parts of P, both inverse transformations must 
be identical ( t T = t" 1). However, this only holds for a 2D rotation, which is practically useless as a 
prenormalizing transformation. It is thus suggested not to prenormalize 2D lines at all. 

Prenormalization of 3D points and 3D lines is also nontrivial, because transformations of 3D 
space affect the coordinates of points and lines differently. However, it can be achieved by pursuing 
the goal from the beginning of Section 4.2: to center the data around the origin by translation, and 
to scale them s. t. an average coordinate has the absolute value of 1. 

Please note that translation and scaling affects only the U part of a 3D line L, and only the 
(X\ X2 Xz)T part of a 3D point X . Therefore, (i) the unaffected parts of L and X (i.e. V and 
X4) must be adjusted beforehand: Each 3D line and each 3D point is normalized by multiplication 
by a nonzero scale factor, so that | | V | | = A / 3 , and X4 = 1. Note that this adjustment does not 
change the spatial properties of 3D points/lines. Then, (ii) translation is applied to center the 3D 
points around the origin 1. Although the translation is intuitively correct (it results in zero mean 

1 Another possible translation is to center the 3D lines using the Generalized Weiszfeld algorithm [1] as it is done 
in Algorithm 3. However, our experiments showed that the two possible translations yield nearly identical robustness 
of the method. It is thus suggested to translate the 3D structure to the centroid of points, because its computation 
is cheaper. 
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of 3D points), it is not optimal in terms of entries of the measurement matrix (joint zero mean of 
(X\ X2 Xz)T and U ) . Therefore, (hi) another translation is applied to achieve a joint zero mean of 
all (X1 X2 X3)T and U . The translation can be easily computed in closed form using Algorithm 6. 
Finally, (iv) anisotropic scaling is applied so that the average magnitudes of all X\ and L i , X2 and 
L2, A3 and L3, and A4 and V are equal, i.e. 

mean|0|({Aj5i}) + mean|0|({L,5i}) = 

= mean| 0 | ({A i i 2 }) +mean| 0 | ({L i , 2 }) = 
(4.18) 

= mean| 0 | ({A i i 3 }) + mean| 0 | ({L i j 3 }) = 

= mean| 0 |({Aj j 4}) + mean| 0 |({V,}) . 

This ensures that also the corresponding blocks of the combined measurement matrix M will have 
equal average magnitude. The very last step of prenormalization (v) is not applied to the input 
primitives, but to the measurement matrix after its construction. Its point- and line-related parts M 
and M should be scaled as stated in Remark 4.1 above. The whole prenormalization is summarized 
in Algorithm 5. 

Extraction of Pose Parameters 

The estimates of a rotation matrix R and a translation vector T are multiple in the combined pro­
jection matrix P (4.13). Moreover, the left-most R is determined by twice as many equations. This 
can be exploited to estimate the camera pose more robustly. In the following text, the definitions 
of submatrices Pi, P2, and P3 from Eq. (4.13) are used. 

First, the scale of the estimated combined projection matrix P is corrected using Algorithm 1, 
yielding sP'. The first estimate of R is in the direct form in sP^, from which it can be extracted 
using Algorithm 2, yielding Ri. The first estimate of T is in s P 2 , premultiplied by -R. It can be 
recovered as T2 = -RjsP'2- The second estimates of R and T are in the form of an essential matrix 
in sP 3, from which they can be extracted using Algorithm 4, yielding R3 and T3. 

Now, the question is how to combine Ri, R3, and T2, T3. Our experiments showed that Ri 

is usually more accurate than R3, probably because it is determined by twice as many equations 
(generated by both line-line and point-line correspondences). The experiments also showed that T2 

is usually more accurate than T3. This is probably because P ' 2 has no redundant DoF, contrary to 
P3, which has 3 redundant DoF. However, the estimates can be combined so that the result is even 
more accurate. Since the error vectors of T2 and T3 tend to have opposite directions, a suitable 
interpolation between them can produce more accurate position estimate 

T = fc-T2 + (1-A ; ) -T3 . (4.19) 

The value of k should be between 0 and 1. Based on grid search, an optimal value of 0.7 has been 
found (the error function has a parabolic shape). 

Regarding the rotation estimates, the grid search discovered Ri is indeed more accurate than R3. 

However, Ri is not fully 'compatible' with T in terms of reprojection error2. Interpolating between 

2 A s an example, imagine a camera located left to its ground truth position and oriented even more left. 

25 



Algorithm 5: Prenormalization of 3D points and 3D lines in DLT-Combined-Lines. 
Note: See Section 2.1 for the definition of function meano(.). 

Input: A set of n 3D points { X ; } , i = 1... n. 
Input: A set of m 3D lines {Lj}, j = n + 1... n + m. 

1. For all points X j and lines L j do: 

X ; 
Xi_i 

V3_ 
IV, II 

2. T i <- mean({X ( 1 : 3 i i } }) 
3. For all points X« and lines L j do: 

X ; 
I - T i 

1 
X ; 

I ["Ti] : 

0 

<1 centroid of points 

<d first translation 

4. T 2 <- argmin mean0( { X ( 1 : 3 ] ,t) - T} U { U , - T x V j } ) 

5. For all points X j and lines L j do: 

I - T 2 

X ; 
0 1 

X ; 
I [-T 2\ x 

<1 use Algorithm 6 

< second translation 

mean o|({Aj,4}) + mean o ldVj}) 
mean o | ( { ^ l } ) + mean o\({Lj,i}) 

mean o|({A i ) 4 }) + mean . | ( { V i » 
mean o|({A 4, 2}) + mean o|({^i,2}) 

mean o | ( { A M } ) + mean 
mean| o|({A,, 3}) + mean o | ( { ^ , 3 » 

6. S X <-

7. For all points X j and lines L j do: 
Sx 

Xj 
5Y 0 

0 1 
X ; 

0 

Output: A set of n prenormalized 3D points {Xj}, i = 1... n. 
Output: A set of m prenormalized 3D lines {Lj}, j = n + 1... n + m. 

< scaling 
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Algorithm 6: Finding a translation T2 of 3D points {Xj} and 3D lines {Lj} s.t. the mean of 
{X(1:3j j)} U {Uj} will be zero after the translation. 

Input: A set of n 3D points {Xj}, i = 1.. . n. 
Input: A set of m 3D lines {L?}, j = n + 1.. . n + m. 

1. a <— n + 2m , 

b < - J 2 L j A + J2xiA > c <- 5̂  L i , 2 + ^ A i j 2 , d <- ^ Lj,3 + ^ X i , 3 , 

j j j 

2. Tx 

a2b + be2 — acg + adf + cef + deg 
a(a2 + e 2 + f2 + #2) 

a 2c + of 2 + 065 — ade + be/ + dfg 
a(a 2 + e 2 + / 2 + ff2) 

a 2 d + dg2 — abf + ace + beg + c/g 
a(a 2 + e 2 + f2 + #2) 

Output: Translation T 2 = (Tx TY TZ)T. 

Ri and R3 yields an orientation R 'compatible' with T: 

R = Ri-exp(A;-log(R7R3)) • (4.20) 

Here, 'exp' and 'log' denote matrix exponential and matrix logarithm, respectively. The whole pose 
extraction procedure is summarized in Algorithm 7. 

Algorithm 7: Extraction of pose parameters from the estimate P of a combined projection matrix. 

Input: A n estimate P of a line projection matrix P. 

Input: Corrective scale factor s. 
1. P'j P ' 2 P3 <(— P <l divide into submatrices 

2. Extract Ri from P'x using Algorithm 2. 
3. T 2 = -R7SP' 2 

4. Extract R 3 , T 3 from P 3 using Algorithm 4. 

5. R = Ri • exp(A; • log(R7Rs)) <l interpolate 
T = k • T 2 + (1 - k) • T 3 

Output: R, T. 

4.6 Algebraic Outlier Rejection 

To deal with outliers, the DLT-based methods can be equipped with an Algebraic Outlier Rejection 
module. The A O R scheme, developed originally for a PnP method, was described in Section 3.4. 
However, our experiments showed that its application to DLT-based L P n L methods requires a 
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different setting. 

The difference is in the strategy for choosing the threshold £ m a x - The authors [14] recommend 
£ m M = Q25(ei, • • •, £ n ) which is the algebraic error of the correspondence that is at the boundary 
of the 25th percentile. However, our experiments showed that the strategy is not robust enough 
for L P n L methods. A slightly different strategy is thus suggested with a good trade-off between 
robustness and the number of iterations: At the beginning, line correspondences with error up to the 
90th percentile are accepted. In further iterations, the percentile number is progressively decreased 
until it reaches 25. The strategy is thus e m a x = Q p (e i , en), where Q p(.) denotes the p-th 

percentile and p decreases following the sequence 90, 80, . . . , 30. Then, it remains constant 25 until 
error of the solution stops decreasing. This strategy usually leads to approximately 10 iterations. 

Remark 4.3: It is important not to prenormalize the data before using A O R because it will 

impede the identification of outliers. Prenormalization of inkers should be done just before the last 

iteration. 

Compared to R A N S A C , the greatest benefit of this approach is a low runtime independent of 
the fraction of outliers. On the other hand, the break-down point is roughly between 40 % and 70 % 
of outliers, depending on the underlying L P n L method, whereas R A N S A C , in theory, can handle 
any fraction of outliers. 

4.7 Summary 

Although the three above described DLT-based PnL methods share a common basis, they differ in 
certain details. Their properties are summarized in Table 4.2. A l l three methods work exclusively 
with lines in the image space. In the scene space, however, DLT-Lines works with points, DLT-
Plucker-Lines works with lines, and DLT-Combined-Lines works with both points and lines. The 
question is whether utilization of 3D lines, i.e. line-line correspondences, does improve the accuracy 
and robustness of camera pose estimation while preserving the efficiency of DLT-based methods. 

The most important difference is in the projection matrices. The line projection matrix P of 
DLT-Pliicker-Lines encodes the rotation matrix R in a form of an essential matrix having only 3 
redundant DoF. This is a promise of a more accurate estimation of camera orientation compared to 
DLT-Lines, where R is encoded in a direct form having 6 redundant DoF. The same holds for the 
combined projection matrix P of DLT-Combined-Lines. Moreover, P contains multiple estimates of 
both R and T. A suitable combination of the estimates may further increase the accuracy of the 
final pose. 

Prenormalization of the inputs of the methods pursues a common goal of having the data 
centered around the origin with a unit average absolute value of the coordinates. This goal is 
motivated by a good condition of the resulting linear system. Generally, it can be achieved by 
applying translation and scaling to the inputs. In the case of DLT-Combined-Lines, it is more 
complicated due to different effects of the transformations on coordinates of points and lines in the 
3D space. Prenormalization of image lines is futile in this case as it is restricted to rotations only. 

In principle, the methods could also be extended to estimate the pose of an uncalibrated camera, 
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Table 4.2: Comparison of the DLT-based L P n L methods. 

DLT-Lines DLT-Pliicker-Lines DLT-Combined-Lines 

2D (image) 2D lines 2D lines 

prenormalization translation (in dual space) translation (in dual space) 

Scaling (in dual space) Scaling (in dual space) 

2 
OH 3D (scene) 

prenormalization 

3D points 3D lines 

translation multiplication by a constant 
scaling translation 

scaling 

2D lines 

3D points + 3D lines 

multiplication by a constant 
translation 
translation 

scaling 

Minimum of lines 

specification 12 points, 2 on each line 

5 lines + 10 points 

9 lines + 3 points 

m + n, s. t. (2m + n) > 20 

Projection matrix R -RT 
3x4 

R R[-T]; 

3x6 
R -RT R[-T], 

3x7 

Constraint equations 1TPX = 0 1« PL 
1TP ( X T 0 0 o ) T = 0 

1« P( U T o v T ) T 



i . e. to estimate both extrinsic and intrinsic parameters of a camera. The corresponding projection 
matrix P, P or P would be premultiplied by the upper-triangular 3 x 3 camera calibration matrix K 
in this case, so the number of unknowns of the resulting linear system and also the number of DoF of 
the projection matrix would grow from 6 up to 11 (depending on the number of intrinsic parameters). 
According to preliminary experiments, robustness of all three methods drops considerably in this 
case, making them useless for practical applications. A better choice would be a method tailored 
specifiacaly for estimation of parameters of an uncalibrated camera in this case, such as [5]. 

The minimum of required lines is conditioned by the size and structure of the estimated projec­
tion matrix. It ranges from 9 lines for DLT-Pliicker-Lines over 6 lines for DLT-Lines to only 5 lines 
for DLT-Combined-Lines. 
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Chapter 5 

Experimental Evaluation and Applications 

The goal of the thesis was to improve the accuracy and robustness of the state-of-the-art in pose 
estimation from lines by designing a new DLT-based method utilizing line-line correspondences. The 
method should also be fast comparably to other L P n L methods. Two new methods were proposed 
in the previous chapter: DLT-Pliicker-Lines and DLT-Combined-Lines. 

To verify that the goal was achieved, the newly proposed methods were tested using both 
synthetic and real data and their performance was compared to the state-of-the-art methods. The 
real data comprised building exteriors, an indoor corridor and small-scale objects on a table. The 
tested criteria were following. 

1. The primary criterion of experiments was accuracy because it arguably is the primary objective 
of pose estimation. It was evaluated using both synthetic lines in Section 5.1 and real data in 
Section 5.2. 

2. A secondary objective, although equally important from a practical point of view, is robustness 
to image noise, because noise is always present in measurements in practice. Accordingly, 
robustness to image noise was evaluated using synthetic lines in Section 5.1. 

3. Since the proposed methods were also required to be fast comparably to other methods, their 
speed was measured using synthetic lines in Section 5.1. 

Besides the main criteria, the following aspects were also investigated to have a more comprehensive 
knowledge about behavior of the proposed methods. 

• Because methods for pose estimation are known to be prone to singular or quasi-singular 
configurations of 3D primitives in general, robustness to quasi-singular line configurations 
was examined (see Section 5.2 of the thesis). 

• From an application point of view, identification and rejection of mismatched line correspon­
dences (i. e. outliers) is a frequent scenario. Therefore, the methods were also tested for 
robustness and speed when plugged into an outlier rejection scheme or into a R A N S A C loop 
using synthetic lines (see Section 5.3 of the thesis). 

• Lastly, the camera poses estimated by the methods were used as an initialization for Bundle 
Adjustment (BA) in Section 5.2 to see how the initialization affects its convergence and run­
time. 

The accuracy of pose estimates is expressed in terms of position error and orientation error of 
the camera and in terms of reprojection error of the lines. The three error measures should cover 
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majority of applications for which pose estimation methods are used. For example, robot localization 
requires small position error, visual servoing requires both small position and orientation error, 
whereas augmented reality applications or B A favour small reprojection error. The error measures 
are defined as follows: 

A T Position error is the distance | |T' — T|| from the estimated position T' to the true position 
T. 

A 6 Orientation error was calculated as follows. The difference between the true and estimated 
rotation matrix (RTR') is converted to axis-angle representation (E, 6) and the absolute value 
of the difference angle | 0 | is considered as the orientation error. 

Air Reprojection error is an integral of squared distance between points on the image line 
segment and the projection of an infinite 3D line, averaged over all individual lines. 

The proposed methods were evaluated and compared with state-of-the-art methods, which are listed 
below together with corresponding marks used throughout this chapter. 

• Ansar, the method by Ansar and Daniilidis [3], implementation from [33]. 

• Mirzaei, the method by Mirzaei and Roumeliotis [26]. 

• RPnL, the method by Zhang et al. [35]. 

• ASPnL, the method by X u et al. [33]. 

* LPnL_Bar_LS, the method by X u et al. [33]. 

* LPnL_Bar_ENull , the method by X u et al. [33]. 

• DLT-Lines, the method by Hartley and Zisserman [18, p. 180] described in Section 4.3, my 
implementation. 

T DLT-Pliicker-Lines, our method published in [II] and described in Section 4.4. 

DLT-Combined-Lines, our method published in [I] and described in Section 4.5. 

A l l of the methods were implemented in Matlab. The implementations originate from the respective 
authors, if not stated otherwise. 

5.1 Synthetic Lines 

Monte Carlo simulations with synthetic lines were performed under the following setup: at each 
trial, m 3D line segments were generated by randomly placing n = 2m line endpoints inside a cube 
spanning 10 3 m which was centered at the origin of the world coordinate system. For the methods 
which work with 3D points, the line endpoints were used. A virtual pinhole camera with image 
size of 640 x 480 pixels and focal length of 800 pixels was placed randomly in the distance of 25 m 
from the origin. The camera was then oriented so that it looked directly at the origin, having all 
3D line segments in its field of view. The 3D line segments were projected onto the image plane. 
Coordinates of the 2D endpoints were then perturbed with independent and identically distributed 
Gaussian noise with standard deviation of a pixels. 1000 trials were carried out for each combination 
of the parameters m and a, where m = 3 - 10,000 lines and a = 1, 2, 5, 10 and 20 pixels. 
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Accuracy and Robustness 

Accuracy of pose estimation and robustness to image noise of each method was evaluated by mea­
suring the estimated and true camera pose while varying m and a similarly to [26]. 

The results showing accuracy of the methods and their robustness to image noise are depicted 
in Figure 5.1. For the sake of brevity, only noise levels of a = 2 and 10 pixels are shown. The 
complete distribution of errors is presented in Appendix B of the thesis. Errors for each method 
are plotted from the minimal number of lines to 10,000 lines (or less, if the method runs too long 
or if it has enormous memory requirements). In the following text, the method names are typeset 
in bold and they are often augmented with their plot marks to ease referencing into result charts. 

The results show high sensitivity to noise of AnsarK Even under slight image noise a = 2 pixels, 
the measured accuracy is poor. The other non-LPnL methods (Mirzaei*, R P n L 4 , ASPnL •) 
outperform the L P n L methods for low number of lines (3 - 10), as expected. A S P n L is the most 
accurate among them. A n exception is the L P n L method LPnL_Bar_ENull%, accuracy of which 
is close to ASPnL. It even outperforms ASPnL in the case of strong image noise (a = 10 pixels), 
see Figure 5.1 (b, d, f). 

For high number of lines (100 - 10,000), the L P n L methods outperform the non-LPnL ones. 
L P n L _ B a r _ E N u l l * and DLT-Combined-Lines are significantly most accurate in both orien­
tation and position estimation, and they also yield the lowest reprojection error. Wi th increasing 
number of lines, accuracy of the L P n L methods further increases, while errors of the non-LPnL 
methods do not fall below a certain level. This gets more obvious with increasing levels on noise. 
Each of the L P n L methods also eventually reaches its limit, as it can bee seen in Figure 5.1 (d, 
f). However, the accuracy limits of non-LPnL methods lag behind the limits of L P n L methods. 
Moreover, the non-LPnL methods often yield completely wrong pose estimates, as it can be seen in 
the distribution of errors in Figures B . l - B.15 in Appendix B of the thesis. 

DLT-LinesA and L P n L _ B a r _ L S * behave nearly identically, the latter being slightly more 
accurate. The only difference between the two is the use of barycentric coordinates, which is 
probably the cause of the slightly better results. However, DLT-Lines proves to be more accurate 
in position estimation and reprojection under strong image noise. DLT-Pliicker-LinesT keeps up 
with the two aforementioned methods for 25 and more lines. 

The best accuracy on many lines is achieved by the LPnL_Bar_ENull4 ! and DLT-Combined-
Lines methods, being the best in all criteria. While they are comparable in orientation estimation, 
DLT-Combined-Lines outperforms LPnL_Bar_ENull in estimation of camera position and in 
reprojection for many lines. The higher accuracy of DLT-Combined-Lines is most apparent 
under strong image noise, see Figure 5.1 (d, f). 

The distributions of errors of the individual methods over all 1000 trials are provided in Fig­
ures B . l - B.15 in Appendix B of the thesis. 

Speed 

Efficiency of each method was evaluated by measuring runtime on a desktop P C with a quad core 
Intel 15-661 3.33 GHz C P U and 10 G B of R A M . As it can be seen in Figure 5.2, the only method with 
0(m2) computational complexity in the number of lines m is AnsarK The space complexity of the 
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(a) Median orientation error A0 [°], o = 2 pixels (b) Median orientation error A0 [°], o = 10 pixels 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 
# lines # lines 

(c) Median position error AT [m], o = 2 pixels (d) Median position error AT [m], o = 10 pixels 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 
# lines # lines 

(e) Median reprojection error Arc [ ], a = 2 pixels (f) Median reprojection error Arc [ ], o = 10 pixels 
i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 r 

3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 3 4 5 6 7 8 9 10 2 5 50 100 200 500 lk 2k 5k 10k 
# lines # lines 

• Ansar • Mirzaei • RPnL • ASPnL • L P n L B a r L S * LPnLBarENul l 
A DLT-Lines T DLT-Plucker-Lines DLT-Combined-Lines  

Figure 5.1: Median orientation errors (top), position errors (middle) and reprojection errors 
(bottom) as a function of the number of lines for two levels of image noise (left: a = 2 pixels, right: 
a = 10 pixels). Each data point was computed from 1000 trials. 
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3 4 5 6 7 8 9 10 25 50 100 200 500 lk 2k 5k 10k 
# lines 

Figure 5.2: Runtimes as a function of the number of lines, averaged over 1000 trials. Logarithmic 
vertical axis. 

used implementation is apparently also quadratic. It was not possible to execute the method already 
for 100 lines due to lack of computer memory. Other tested methods have 0{m) computational 
complexity. However, the runtimes differ substantially. It is apparent that the L P n L methods are 
significantly faster than the non-LPnL methods. 

R.PnL4 and ASPnL#, being related methods, are nearly equally fast. Runtimes of both 
methods rise steeply with increasing number of lines, reaching 630.2 ms on 1000 lines for ASPnL. 
The two methods were not evaluted for more lines. Runtime of Mirzaei#, on the other hand, 
grows very slowly, spending 155.2 ms on 1000 lines. However, Mirzaei is slower than R P n L for 
m < 200 lines. This fact is caused by computation of a 120 x 120 Macaulay matrix in Mirzaei's 
method which has an effect of a constant time penalty. 

The L P n L methods are one to two orders of magnitude faster than the non-LPnL methods. The 
fastest two are DLT-Lines A and L P n L _ B a r _ L S * , spending about 1 ms on 10 lines, and not more 
than 3 ms on 1000 lines. Slightly slower are DLT-Plucker-LinesT, DLT-Combined-Lines and 
LPnL_Bar_ENul l^ , spending about 3 - 5 ms on 10 lines, and about 6 - 12 ms on 1000 lines. The 
slowdown factor for DLT-Pliicker-Lines is the prenormalization of 3D lines. This is also the case 
of DLT-Combined-Lines, where a measurement matrix of a double size must be additionally 
decomposed compared to the competing methods, see Eq. (4.16). Computationally demanding part 
of LPnL_Bar_ENull is the effective null space solver carrying out Gauss-Newton optimization. 

5.2 Real-World Buildings and Man-Made Objects 

In this section, the proposed methods are validated on real-world data and compared to state-of-
the-art methods. Ten datasets were utilized, which contain images with detected 2D line segments, 
reconstructed 3D line segments, and camera projection matrices. Example images from the datasets 
are shown in Figure 5.3. Number of images in each dataset ranged from 3 to 72 and number of 
lines ranged from 30 to 1841. Line correspondences are also given except for datasets Timberframe 
House, Building Blocks and Street in which case the correspondences were established automatically 
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Figure 5.3: Example images from used datasets. The images are overlaid with reprojections of 
3D line segments using the camera pose estimated by the proposed method DLT-Combined-Lines. 
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based on geometric constraints. The Timberframe House dataset contains rendered images, while 
the rest contains real images captured by a physical camera. The Building Blocks and Model House 
datasets capture small-scale objects on a table, the Corridor dataset captures an indoor corridor, 
and the other six datasets capture exterior of various buildings. The Building Blocks dataset is the 
most challenging because many line segments lie in a common plane of a chessboard. 

Accuracy 

Each PnL method was run on the data, and the errors in camera orientation, camera position and 
reprojection of lines were averaged over all images in each dataset. The mean errors achieved by all 
methods on individual datasets are given in Table 5.1 and visualized in Figure 5.4. 

On datasets with small number of lines (MH: 30 lines, COR: 69 lines), the results of non-LPnL 
and L P n L methods are comparable, see Figure 5.4. Contrarily, on other datasets with high number 
of lines (177 - 1841 lines), the non-LPnL methods are usually less accurate than the L P n L methods. 
Ansar^ was run only on the M H dataset containing 30 lines, because it ran out of memory on 
other datasets. It shows rather poor performance. Mirzaei* yields usually the least accurate 
estimate on datasets with high number of lines (TFH, B B , M C I , MC2, M C 3 , W D C ) . On other 
datasets, it performs comparably to the other methods. A slightly better accuracy is achieved by 
R P n L ^ , but it also has trouble on datasets with high number of lines (TFH, B B , STR). The 
related method ASPnL • mostly performs better than R P n L with an exception of datasets with 
many lines (BB, STR). Nevertheless, ASPnL yields the most accurate pose estimates on M H and 
COR. This complies with the findings of X u et al. [33], who state that ASPnL is suitable rather 
for small line sets. 

The most accurate results on each dataset are predominantly achieved by the L P n L methods: 
Most of the top-3 results are achieved by LPnL_Bar_ENul l* , followed by the proposed method 
DLT-Combined-Lines , see Table 5.1. L P n L _ B a r _ L S * and DLT-LinesA also sometimes 
achieve top-3 accuracy, although it happens less frequently. DLT-Pliicker-LinesT is the least 
accurate L P n L method on real-world data, being the only L P n L method which performs slightly 
below expectations based on synthetic data. Results of other methods are consistent with the results 
achieved on synthetic lines (Section 5.1). 

Bundle Adjustment 

As Bundle Adjustment (BA) is commonly used as a final step in 3D reconstruction problems, it is 
interesting to see how its results are affected by initialization. For this purpose, B A was run on the 
datasets1 and initialized using camera poses provided by the tested methods. 

A line-based B A engine was preferred. Unfortunately, the only suitable engine was the one 
of Micusik and Wildenauer [27], which was a commercial solution unavailable to public. Thus, it 
was chosen to use a more common point-based B A engine, representing 3D structure only by line 
segment endpoints. Similarly to [27], an implementation based on the publicly available Ceres Solver 
[2] was chosen. The implementation uses the Levenberg-Marquardt algorithm [24] to optimize an 

1 The Timberframe House, Building Blocks and Street datasets were excluded from the experiment because the 
line correspondences were not provided. 
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Table 5.1: Experiments with real data. Mean orientation error A O [°], position error A T [] and reprojection error Air [] for each method and 
image dataset. The top-3 results for each dataset are typeset in bold and color-coded ( best , 2 n d-best and 3 r d-best result). 

Dataset TFH BB STR MH COR MCI MC2 MC3 ULB WDC 
A 6 - - - 4.96 - - - - - -

• Ansar A T 
Air 

- - - 0.38 
5e-05 

- - - - - -

AS 32.24 88.18 0.90 0.46 0.22 4.83 15.47 5.00 2.51 36.52 
• Mirzaei A T 11.04 168.47 1.92 0.04 0.10 1.53 7.37 1.82 1.27 6.44 

ATT le+06 2e+06 8e-07 4e-07 le-06 3e-06 3e-05 le-02 2e-06 7e+03 
A 6 20.46 23.27 4.91 0.61 0.40 1.45 0.43 2.33 3.96 0.50 

• RPnL A T 15.32 53.03 9.73 0.07 0.13 0.43 0.22 1.22 2.08 0.23 
ATT 6e-05 7e-06 9e-05 3e-06 6e-06 2e-06 le-07 2e-05 6e-06 le-06 
A 6 7.76 37.82 22.08 0.25 0.10 0.15 0.20 2.08 4.89 0.51 

• ASPnL A T 6.11 76.61 30.47 0.02 0.03 0.04 0.08 0.74 2.22 0.23 
ATT 6e-04 2e+03 3e+02 5e-08 9e-08 2e-08 le-08 4e-06 3e-06 le-06 
A 6 1.10 1.98 0.15 0.45 0.13 0.03 0.03 0.09 0.49 0.18 

• LPnL_Bar_LS A T 1.05 7.23 0.27 0.04 0.05 0.01 0.02 0.03 0.22 0.11 
ATT 7e-07 le-06 8e-08 8e-07 le-06 2e-09 le-09 6e-08 2e-07 4e-08 
A 6 0.57 0.30 0.11 0.32 0.10 0.04 0.03 0.07 0.39 0.08 

* LPnL_Bar_ENull A T 0.45 1.13 0.16 0.02 0.04 0.01 0.02 0.02 0.18 0.05 
A T T 2e-07 2e-08 3e-08 2e-07 4e-07 8e-10 7e-10 5e-08 le-07 2e-08 
A 6 0.47 2.18 0.11 0.95 0.12 0.12 0.28 0.23 0.23 0.16 

• DLT-Lines A T 0.44 8.11 0.18 0.09 0.05 0.04 0.16 0.08 0.10 0.10 
ATT 2e-07 le-06 2e-08 le-06 2e-06 6e-09 4e-08 3e-07 3e-08 6e-08 
A 6 1.11 1.04 0.93 17.58 0.38 0.28 0.22 0.48 0.77 0.34 

T DLT-Pliicker-Lines A T 1.28 11.69 1.78 0.74 0.13 0.40 0.50 0.27 0.47 0.39 
ATT le-06 8e-07 2e-06 3e-02 3e-06 2e-06 9e-07 2e-05 8e-07 le-06 
A 6 0.39 0.40 0.22 0.41 0.11 0.11 0.15 0.16 0.20 0.23 

DLT-Combined-Lines A T 0.32 1.88 0.38 0.04 0.04 0.04 0.07 0.05 0.08 0.12 
ATT 7e-08 4e-08 6e-08 3e-07 2e-07 2e-08 2e-08 2e-07 7e-08 2e-07 
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Figure 5.4: Experiments with real data. Mean orientation errors (AQ,top), position errors ( A T , middle) and reprojection errors (Arc, bottom) 
on individual datasets. A l l vertical axes are logarithmic. 



objective function based on reprojection errors - the distances between observed and reprojected 
point positions. However, the objective function does not utilize the frequently used squared loss, 
but it is robustified instead by using the Huber's loss function [19], making it less sensitive to outliers. 
Furthermore, optimization of intrinsic camera parameters was deactivated to allow comparison to 
pose estimation methods, which do not take the intrinsic parameters into account. As a result, only 
camera poses and 3D structure were optimized. 

B A was initialized using 3D structures provided by the datasets and using camera poses gener­
ated by the tested pose estimation methods. Furthermore, B A was also initialized using the ground 
truth camera poses provided in the datasets. The B A engine then optimized each problem. Be­
cause we wanted it to find the optimum as accurately as possible, the stopping criterion (a change 
in the value of an objective function between consecutive iterations) was set to 10~ 1 6 . After the 
optimization, the resulting camera poses and 3D structure were obtained. Because initialization 
by different camera poses may cause the resulting 3D structures to be slightly different both in 
shape and position in space, they were aligned by a similarity transformation. The resulting camera 
poses were transformed using the same transformation. After the alignment, the camera poses were 
compared. 

A l l optimizations initialized by various pose estimation methods and by the ground truth poses 
terminated successfully by finding a minimum of the objective function. A l l minima had the same 
function value but, within the scope of each single dataset, the minima were not identical: Af­
ter aligning the optimized 3D structures, the camera poses differed by a magnitude of 0.1° and 
0.01 length unit. This is approximately the same magnitude of difference as before B A . Since a 
unique minimum of the objective function was not found, accuracy of the individual pose estimation 
methods could not be compared in relation to B A , results of which could be considered as a more 
accurate ground truth. 

Nevertheless, it is possible to compare the rate of convergence of B A expressed in terms of 
runtime. Generaly, B A initialized by camera poses computed by a pose estimation method ran 
comparably long to the B A initialized by the ground truth camera poses (the runtimes ranged from 
p» 0.6s for the Model House dataset to « 7.5s for the Wadham College dataset). A n exceptionally 
long runtime was observed in the case of RPnL# and A S P n L ^ in the Merton College III dataset 
and in the case of Mirzaei* in the Wadham College dataset. This indicated the initialization was 
worse. 

From a practical point of view, the time spent on estimation of camera poses (i. e. initialization 
of BA) also counts. Therefore, the total time spent on pose estimation and on B A is a more 
appropriate measure. The used datasets contain rather a few camera poses, thus the time of pose 
estimation is relatively low compared to the time of B A . Even though, the differences in total 
runtime between individual methods are clearly visible in Figure 5.5. Apart from the exceptionally 
long runtimes mentioned above, it can be observed that the LPnL-based methods systematically 
yield lower total runtimes of pose estimation and B A compared to the non-LPnL ones. Differences 
can be observed even among the LPnL-based methods: The proposed method DLT-Combined-
LinesB provides a speedup over its closest competitor L P n L _ B a r _ E N u l l * ranging from none (for 
the Wadham College dataset) to 1.27x (for the Merton College I dataset). 
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Figure 5.5: Total time spent on pose estimation and Bundle Adjustment in seconds. 

5.3 Summary 

As it was stated at the beginning of Chapter 4, the thesis aims for better accuracy and robustness 
than the state-of-the-art in pose estimation from lines by designing a new DLT-based method 
utilizing line-line correspondences. The method shall keep the common advantage of L P n L methods 
of being fast. 

Two new linear methods for pose estimation were introduced which utilize line-line correspon­
dences. First, The DLT-Plucker-Lines method which competes with the state-of-the-art in some 
aspects, but it does not exceed it. Second, the DLT-Combined-Lines method which does outperform 
the state of the art. 

1. Accuracy - The DLT-Combined-Lines method outperforms the state-of-the-art in estimation 
of camera position for many lines (Section 5.1: Figure 5.1) and it is comparable to state-of-
the-art in orientation estimation. The performance is confirmed also by the results on real 
data (Section 5.2: Table 5.1), where DLT-Combined-Lines achieves top-3 results on majority 
of the used datasets. 

2. Robustness to image noise - The higher accuracy of the estimates of DLT-Combined-Lines is 
most apparent under strong image noise, which proves its better robustness to this disturbance 
(Section 5.1: Figure 5.1). 

3. Speed - DLT-Combined-Lines does not deviate from other L P n L methods as it preserves their 
common advantage of being fast. A pose of 1000 lines is estimated in about 12 ms (Section 5.1: 
Figure 5.2). 

As it was proven in the experiments listed above, the criteria were fulfilled: Both accuracy and 
robustness improved while speed was comparable to other DLT-based methods. Thus the dissertation 
goal was achieved. 

Beyond this goal, limits of DLT-Combined-Lines were determined when handling quasi-singular 
line configurations (near-planar, near-concurrent, and 2 or 3 line directions), it was shown that DLT-
Combined-Lines can be used together with A O R to filter out mismatched line correspondences for 
up to 60 % of mismatches , and it was also shown that DLT-Combined-Lines can decrease the total 
time spent on pose estimation and the following B A over the state-of-the-art (Section 5.2). 
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Chapter 6 

Conclusions 

The goal of the thesis was to improve accuracy and robustness of pose estimation from lines - i . e. of 
the Perspective-n-Line (PnL) problem - with accent on the formulation based on the Direct Linear 
Transformation (DLT). The methods based on a linear formulation of PnL (LPnL) are especially 
suitable for scenarios with large line sets due to their efficiency and accuracy The goal shall have 
been achieved by proposing a new linear method utilizing line-line correspondences and keeping the 
common advantage of L P n L methods of being fast. 

Starting from the existing method DLT-Lines which exploits only point-line correspondences, the 
thesis contributes to the state-of-the-art by proposing two novel methods for pose estimation: DLT-
Pliicker-Lines which exploits line-line correspondences, and DLT-Combined-Lines which exploits 
both point-line and line-line correspondences. Another contribution of the thesis is a unifying 
framework for all DLT-based methods for pose estimation from lines. 

The method DLT-Combined-Lines uses D L T to recover the combined projection matrix. The 
matrix is a combination of projection matrices used by the DLT-Lines and DLT-Pliicker-Lines 
methods, that work with 3D points and 3D lines, respectively. The proposed method works with 
both 3D points and lines, which leads to a reduction of the minimum of required lines from 6 (and 
9, respectively) to only 5 lines. The method can also easily be extended to use not only 2D lines 
but also 2D points. The combined projection matrix contains multiple estimates of camera rotation 
and translation, which can be recovered after enforcing constraints of the matrix. Multiplicity of 
the estimates leads to better accuracy compared to the other DLT-based methods. 

Both novel methods are benchmarked on synthetic data and compared to several state-of-the-art 
PnL methods. Practical usefulness of the methods is tested on real data comprising buildings and 
other man-made objects. For larger line sets, DLT-Combined-Lines is comparable to the state-of-
the-art method LPnL_Bar_ENull in accuracy of orientation estimation; Yet, it is more accurate 
in estimation of camera position and it yields smaller reprojection error under strong image noise. 
On real-world data, DLT-Combined-Lines achieves top-3 results in both orientation estimation, 
position estimation and reprojection error. When using pose estimation methods to initialize Bundle 
Adjustment (BA), DLT-Combined-Lines provides a speedup up to 1.27x over LPnL_Bar_ENull in 
the total runtime of pose estimation and B A . This also indicates the proposed method keeps the 
common advantage of L P n L methods: very high computational efficiency. The poses of 1000 lines are 
estimated in 12 ms on a contemporary desktop computer. Altogether, the proposed method DLT-
Combined-Lines shows superior accuracy and robustness over its predecessors DLT-Lines and DLT-
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Pliicker-Lines, which make use either of point-line or line-line correspondences. DLT-Combined-
Lines make use of both types of correspondences, yet it is fast. As it was proven in the experiments, 
the requirements were fulfilled: Both accuracy and robustness improved while speed was comparable 
to other DLT-based methods. Thus the dissertation goal was achieved. 

Future work involves examination of the combined projection matrix to adaptively combine the 
multiple camera rotation and translation estimates contained in the matrix. Inspired by the work 
of X u et al. [33], the proposed methods can also be combined with the effective null space solver. 
This might further increase accuracy of the methods. 

Matlab code of the proposed methods as well as other tested methods and the experiments are 
made publicly available.1 

xhttp://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/ 
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