
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF FOREIGN LANGUAGES
ÚSTAV JAZYKŮ

TECHNICAL WRITING AS A SPECIFIC USE OF
LANGUAGE
TECHNICKÉ PSANÍ JAKO SPECIFICKÝ ZPŮSOB POUŽITÍ JAZYKA

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Sergei Petrosian

SUPERVISOR
VEDOUCÍ PRÁCE

PhDr. Milan Smutný, Ph.D.

BRNO 2019

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Bakalářská práce
bakalářský studijní obor Angličtina v elektrotechnice a informatice

Ústav jazyků
Student: Sergei Petrosian ID: 185905
Ročník: 3 Akademický rok: 2018/19

NÁZEV TÉMATU:

Technické psaní jako specifický způsob použití jazyka

POKYNY PRO VYPRACOVÁNÍ:

Popište charakteristické rysy různých druhů technické dokumentace, jejich jazykové a nejazykové prostředky. Na
příkladech analyzujte shody a rozdíly v prezentaci specifických technických informací v různých oblastech a pro
různé účely.

DOPORUČENÁ LITERATURA:

Krhutová, M. (2009) Parameters of professional discourse: English for electrical engineering. Brno: Tribun EU.

Lengálová, A. (1999) A brief guide to technical writing. Brno: Vysoké učení technické v Brně, Fakulta
managementu a ekonomiky ve Zlíně.

Urbanová, L. (2008) Stylistika anglického jazyka. Brno: Barrister and Principal, Filozofická fakulta Masarykovy
univerzity.

Termín zadání: 7.2.2019 Termín odevzdání: 28.5.2019

Vedoucí práce: PhDr. Milan Smutný, Ph.D.
Konzultant:

 doc. PhDr. Milena Krhutová, Ph.D.
předseda oborové rady

UPOZORNĚNÍ:
Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRAKT

Rychlý rozvoj počítačových technologii ve dvacátém století vyústil v rostoucí potřebu technické

dokumentace, která by popsala používání těchto nových technologií. Tato dokumentace se píše ve

speciálním stylu,, lišícím se od stylu publicistického nebo akademického. Zatímco jiné styly

psané pro širokou veřejnost používají metafory, alegorie, a jiné řečnické obraty, které mají na

čtenáře zapůsobit, technické psaní používá jasný přímý jazyk, který jednoznačně popisuje fakta.

Tento jednoduchý jazyk umožňuje aby byl obsah čitelný a pochopitelný i pro čtenáře kteří nejsou

experty v oblasti, kterou text popisuje, a pro které angličtina není rodným jazykem. Tato

bakalářská práce uvádí hlavní postupy používané v technickém psaní pro dosažení jednoduchosti

a čitelnosti textu, a také různé druhy technické dokumentace a jejich popis. Jako ilustrace toho, jak

jsou tyto postupy používané ve skutečné práci, tato bakalářská práce uvádí analýzu třech manuálů

popisujících stejnou funkci: 1. Dokumentace konkrétní funkcionality open source projektu

Foreman, která inspiruje obdobnou funkci Red Hat Satellite. 2. Přepracované instrukce, vytvořené

jako návrh pro publikaci v oficiální dokumentaci Red Hat Satellite, ve stavu před kontrolou. 3.

Zkontrolovaná a opravená verze, publikovaná v oficiální dokumentaci pro Red Hat Satellite.

KLÍČOVÁ SLOVA

technické psaní, odborná obec, technická komunikace, technická dokumentace, angličtina jako

světový jazyk.

ABSTRACT

The rapid development of computer technologies in the 21st century has resulted in the growth of

needs for a technical documentation describing how to use these new inventions. Documentation

written in a style of technical writing differs enormously from texts in journalism, academic

writing, or marketing styles. While other genres are written for the wide audience and they tend to

be written in a lush language, using metaphors, allegories, and other tropes in order to impress the

reader, technical writing uses a strict clear and straightforward language to express the idea

unambiguously. Technical writing uses simple language in order to make the content readable and

easily understandable even for those readers who study English as their second language and may

not be experts in the field the text describes. This bachelor thesis describes the main tactics used

in technical writing to write simply and clearly, as well as different types of technical writing and

their description. As an illustration of how these tactics are used in a real working environment,

the bachelor thesis outlines an analysis of three manuals describing the same feature: 1. A manual

of the feature from a documentation of a product Foreman that was taken as a basis for the Red

Hat Satellite feature. 2. A reworked manual that was written as a preparation to be published to

official documentation of Red Hat Satellite. 3. The reviewed and approved document that now

resides in Red Hat Satellite official documentation.

KEY WORDS

technical writing, technical communication, technical documentation, English as a global

language.

PETROSIAN, Sergei. Technické psaní jako specifický způsob použití jazyka. Brno, 2019.

Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/119373. Bakalářská práce.

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav

jazyků. Vedoucí práce Milan Smutný.

Prohlášení

Prohlašuji, že svou bakalářskou práci na téma Technické psaní jako specifický způsob použití jazyka jsem

vypracoval samostatně pod vedením vedoucí/ho bakalářské práce a s použitím odborné literatury a

dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci

práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské

práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem

do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11

a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků

vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne ……….. ……………..

(Sergei Petrosian)

PODĚKOVÁNÍ

Děkuji vedoucímu bakalářské práce PhDr. Milanu Smutnému, Ph.D. za účinnou metodickou,

pedagogickou a odbornou pomoc, a další cenné rady při zpracování mé bakalářské práce.

V Brně dne ……….. ……………..

(Sergei Petrosian)

Table of contents

1 Introduction to Technical Communication ... 1

2 Principles .. 1

2.1 Principles of Simplicity ... 1

Tactic 1: Adopting Reduced Dictionary... 2

Tactic 2: Using Words with only One or Few Meanings ... 3

Tactic 3: Using the Simplest Grammar Structures ... 3

Tactic 4: Avoiding Verbs with Two or Three Words in Them .. 5

Tactic 5: Avoiding Nominalizations .. 5

2.2 Principles of Clarity ... 6

Tactic 6: Avoiding Abbreviations, Acronyms and Contracted Forms 7

Tactic 7: Avoiding Anthropomorphic Verbs ... 7

Tactic 8: Indicate Location of Content in a Document Clearly ... 9

2.3 Principles of Proper Punctuation ... 9

Tactic 9: Using the Oxford Comma ... 10

Tactic 10: Separating Long Sentences ... 10

Tactic 11: Using Parentheses ... 11

2.4 Principles of Proper Document Layout ... 11

Tactic 12: Focus on Findability .. 12

Tactic 13: Use Clear Titles ... 12

Tactic 14: Keeping Paragraphs Short ... 13

Tactic 15: Text Highlighting .. 14

Tactic 16: Using Lists and Tables .. 15

3 Types of Technical Writing .. 16

3.1 Reports and communications ... 16

3.2 Books, magazines, technical papers for the purposes of education and the sharing of

knowledge and information. .. 17

3.3 Patents .. 17

3.4 Operational manuals, instructions, and procedures ... 17

4 Technical Texts Analysis ... 18

4.1 Analysis of the Introductory Section ... 19

4.1.1 The Upstream Product Documentation ... 19

4.1.2 The Draft Document.. 21

4.1.3 The Official Document.. 21

4.2 Analysis of the Installation Section ... 22

4.2.1 The Upstream Product Documentation ... 22

4.2.2 The Draft Document.. 23

4.2.3 The Official Document.. 24

4.3 Analysis of the Configuration Section ... 25

4.3.1 The Upstream Product Documentation ... 25

4.3.2 The Draft Document.. 27

4.3.3 The Official Document.. 29

4.4 Analysis of the Usage Section ... 33

4.4.1 The Upstream Product Documentation ... 33

4.4.2 The Draft Document.. 36

4.4.3 The Official Document.. 38

5 Conclusion .. 42

6 Bibliography ... 43

1

1 Introduction to Technical Communication

Technical writing had existed long ago before the invention of the first computers. In 15th-

16th centuries, Leonardo Da Vinci chronicled his inventions and discoveries as technical

documentation. Owing to this, present day scientists are able to design their inventions and make

sure that they actually work. However, in the last several decades the style of technical writing has

grown up rapidly with the invention of first computers that triggered massive needs for user’s

manuals, technical reports and descriptions.

The style of technical writing differs greatly from the style of journalism, academic writing,

or marketing. Though technical writing could be written for the narrow or wide audience, only a

few enjoy the process of reading it. For the most time, instructions, for example, are read to fulfil

some task or achieve some purpose. That is why the main principles of technical writing require

writing in a clear and simple language, so that even a person who is not an expert in the field that

the text describes and whose English is far from being perfect would understand the text and get

the message conveyed correctly. The tactics a technical writer uses to meet this purpose and

different types of technical writing, their main features and applications are described in this

bachelor thesis. In addition, the analysis of technical documents is performed to present how these

tactics are used in a real working environment.

2 Principles

 This chapter describes the main principles that could help a technical writer to create good

content and meet the requirements of proper technical writing:

1. Principle of simplicity

2. Principle of clarity

3. Principle of proper punctuation

4. Principle of proper document layout

Each principle leads to tactics that can be used to ensure that the principle is kept.

2.1 Principles of Simplicity

Every individual word can carry several different meanings. It is only possible to determine

the meaning of a word by the context. It requires the reader to make guesses and to apply personal

experience to understand a text. To ensure that the reader understands your writing, it is necessary

2

to use the right words in your text. The main approaches to make your writing simple are described

in this section.

Tactic 1: Adopting Reduced Dictionary

The basic English vocabulary, or, in other words, the vocabulary non-native speakers learn

in the very first year of studying language is a good choice for documentation purposes. The main

idea of technical documentation is not to write using sophisticated language that sounds great but

to write clearly. For example, use long instead of protracted or extended, teacher instead of

facilitator or instructor or lecturer, house instead of residence or domicile, start instead of initiate

or implement. That aspect is described widely in Ogden (1937). As he saw English as a global

language, he decided to implement simplicity practices into the language. According to Ogden

(1937), the two most significant disadvantages of English are its complicated spelling and an

extremely large vocabulary. Weiss (2005) claims, that Ogden’s spelling suggestions failed and did

not spread widely, but vocabulary recommendations were more successful. Ogden (1937) decided

to reduce the rich English vocabulary into 850 basic words. Such a little amount can be learnt in

several weeks and then used to handle a conversation and discuss personal and professional topics.

Listed below are all the permitted words beginning with J and K:

 J-words — jelly, jewel, join, journey, judge, jump.

 K-words — keep, kettle, key, kick, kind, kiss, knee, knife, knot, knowledge

(Ogden 1937)

Guided by these principles of Basic English, one will not be able to use words just, justice,

July, or sing a Jingle bells song, as well as use knock, karate, kick. According to Weiss (2005, p.

17) Ogden says that there is an equivalent word or phrase in the list of 850 words to stand for the

forbidden word, for example using dog doctor instead of veterinarian.

 Weiss (2005) claims that many firms develop their own restricted vocabulary, as a way to

improve their documentation and make it more understandable for the international audience. They

are inspired by the Ogden’s work and limit the number of permitted words by 1000-3000, in

addition to a number of product-specific terms and use only those words.

 Pringle and O'Keefe (2009) claim that texts in technical writing style must be written at an

eighth-grade level to ensure that readers will understand the content. The writer must not make

assumptions about the audience of his writing to avoid being dismissive.

Krhutová (2009), on the other hand, claims that in technical communication, it is required

to know who is the audience and to understand their degree of understanding in a given topic.

Thus, producers need not and cannot rely on negotiation of meaning present in spoken utterances

but they count on professional knowledge as a reliable background for the appropriate

3

comprehension. As they know, they will not receive immediate feedback; writers of professional

texts have to presuppose their readers´ degree of professional knowledge to eliminate

misunderstanding.

(Krhutová, 2009, p. 42)

Based on this knowledge, the writer must be as specific as it is required for the readers.

Some technical texts might be written for experienced IT specialists and system administrators

only. Such texts may use complicated terminology without explanations expecting readers to know

them. For other texts, for example, for vacuum cleaner manuals, the audience may know nothing

about technology. The writer must always carry in mind who his audience is and write in as simple

language as required.

 Tactic 2: Using Words with only One or Few Meanings

Words the meaning of which vary depending on the context could confuse the reader. For

example, there are words that have different meanings in British and American English, such as

block (BrE: a building; AmE: the buildings next to each other between crossing streets, or the

distance from one street to the next in a city or town), bureau (BrE: an organization or a business

that collects or provides information; AmE: a chest of drawers), coach (BrE: bus; AmE: someone

whose job is to teach people to improve at a sport, skill, or school subject) (Cambridge Dictionary,

2017).

Also, it is recommended to avoid words which could have metaphorical meanings. For

example, the word head, in simplified English could be defined as “the top of something”. While

in general English, it has several different meanings, including definitions as an adjective as a

reference to the user of illegal drugs.

Tactic 3: Using the Simplest Grammar Structures

Tactic 1: Adopting Reduced Dictionary recommends using vocabulary that non-native

speakers learn in the very first year of language studying in technical writing. The same approach

applies to grammar. It often takes a long time to learn the more complicated forms of verbs. That

is why difficult tenses and moods must be avoided in technical documentation and substituted,

where possible, with simpler structures.

In the documentation, the use of simple forms of present and past tenses in the

documentation. DeRespinis (2012) denotes that a writer must use past or simple tense only when

using present tense does not make sense in a given context. The first sentence in the example below

4

is correct with present tense as well as with future tense, but present tense must be used for

simplicity. However, the second sentence is incorrect when it uses present tense only:

Before:

When you open the latch, the panel will slide forward.

Cancel a broker deployment only if you are sure that the broker never responds to the deployment

request.

After:

When you open the latch, the panel slides forward.

Cancel a broker deployment only if you are sure that the broker will never respond to the

deployment request.

(DeRespinis, 2012, p. 35)

In technical documentation, active voice is used instead of passive, indicative mood instead

of subjunctive. Considering indicative and subjunctive moods, the first one is simpler to

understand. Even though it is missing from nearly all American business writing, it still appears

in such expressions as: should it prove to be the case that (if), or should you decide to (if you decide

to) (Weiss, 2005).

Before:

Should access to the file be denied, grant it the proper permissions.

After:

If you do not have access to the file, grant it the proper permissions.

(Weiss, 2005, p. 26)

Gerson and Gerson (2010) claim that passive voice causes the following problems for

understanding:

1. Passive constructions make sentences unclear because they use pronouns instead of

saying precisely who performs the action

2. Passive constructions use more words because they always require helping words.

The following examples illustrate how these two problems can be resolved. The After

sentence explicitly outlines that the subject is Kin Norman and eliminates helping words has been.

Before:

It has been decided that Joan Smith will head our Metrology Department.

After:

Kin Norman decided that Joan Smith will head our Metrology Department.

(Gerson and Gerson, 2010, p. 57)

5

However, DeRespinis (2012) denotes that passive voice is acceptable sometimes and lists

the following conditions that must be met to use passive voice in technical writing:

 The system performs the action.

 It is more appropriate to focus on the receiver of the action.

 You want to avoid blaming the user for an error, such as in an error message.

 The information is clearer in passive voice.

 Specific information types, such as glossary definitions, require passive voice.

(DeRespinis, 2012, p. 36)

 The following examples represent situations where all conditions are met and using of

passive voice is acceptable:

Examples of appropriate use of passive voice

The file is saved when you press Enter.

When you use the recover command, any lost data is recovered.

Error: An incorrect value was entered.

(DeRespinis, 2012, p. 36)

Tactic 4: Avoiding Verbs with Two or Three Words in Them

 Using simple forms of verbs makes the documentation easier to read and to understand.

Phrasal verbs carry context-dependent meaning, which makes the documentation ambiguous. That

is why it is necessary to replace phrasal verbs like carry on and open up with continue and expand.

 By avoiding two- and three-word verbs with prepositional tails, another additional problem

is solved. For example, the structure of the Before sentence may confuse the reader because it

overlooks the fact that the verb there is attend (to). While replacing the two-word structure attend

to with a one-word verb discuss excludes the problem:

Before:

The report outlines three problems to which we should attend.

After:

The report outlines three problems we should discuss.

(Weiss, 2005, p. 25)

Tactic 5: Avoiding Nominalizations

 According to the Cambridge Dictionary (2017), nominalization the process of making a

noun from a verb or adjective. The use of such a noun phrase instead of a verb or an adjective

makes the style more formal. For their ability to convert a powerful direct word like explain into

a weak pseudotechnical furnish an explanation for, Weiss (2005, p. 33) calls nominalizations

6

“smothered verbs”. This strategy is often used in school and business writing, where writers are

trying hard to make ordinary comment sound more like scientific or technical reporting.

Nominalization is also used to break bad news. In the following example, the Before sentence

sounds less disappointing or incompetent than the After sentence.

Before:

We have not yet made a selection regarding a project leader.

After:

We have not selected a project leader yet.

(Weiss, 2005, p. 25)

 For non-native English speakers, nominalizations could sound confusing, especially those

in the passive voice, similar to multi-word phrasal verbs mentioned previously.

Weiss (2005, p. 36) demonstrates sentences with the most common examples of using

nominalizations and how they could be fixed:

 Before:

 The agency will conduct an investigation on the incident.

Comparison of the actual and forecast return is performed within the software.

 After:

 The agency will investigate the incident.

The software compares the actual return with the forecast.

 Weiss (2005, p. 36)

Even though these nominal phrases certainly impress readers, they must not be used in

technical writing, because the portion of complexity and difficulty they add to the sentence is

unnecessary in this specific style.

2.2 Principles of Clarity

The goal of technical writing is to produce a document that conveys a single meaning that

will be understood by a reader easily and clearly.

According to Markel (2012), technical communication must be clear for two reasons:

 Unclear technical communication can be dangerous. A carelessly drafted building code, for

example, could tempt contractors to use inferior materials or techniques.

 Unclear technical communication is expensive. The average cost of a telephone call to a

customer-support center is more than $32 (About.com, 2008). Clear technical communication

in the product’s documentation — its instructions — can greatly reduce the number and length

of such calls.

7

(Markel 2012, p.13)

 Krhutová (2009) also claims that clear and unambiguous meaning is of vital importance in

technical written communication as opposed to spoken communication, because readers never

have a possibility to ask questions if something in a text is unclear to them:

It is necessary in explication, which is a prevalent form of science and technology texts, to be clear

and keep up to the logical order in describing the phenomena concerned. Compared with

conversation, a written text need not be brief which depends on the phenomenon in question.

Some theories might be rather sophisticated and thus deserve a long explication or description.

Nevertheless, the producer has to be logical and chronological in his elaboration.

(Krhutová, 2009, p. 112)

This chapter covers the main approaches to avoid confusing and misleading writing.

Tactic 6: Avoiding Abbreviations, Acronyms and Contracted Forms

 Using contractions in technical documentation must be avoided, because of possible

ambiguity. It is necessary to use full forms, using can’t, don’t is prohibited, as well as using e.g.

or i.e., it is necessary to replace them with for example and that is.

Using abbreviations is not recommended either, because they could mean different things

in different context. We cannot expect the reader to know what is meant under an abbreviation.

For example, there are 70 different meanings for the IRA abbreviation (AcronymFinder, 2017).

We cannot expect the reader to know the specific meaning in the particular content.

 Of course, there are exceptions to this rule. Gerson and Gerson (2010, p. 56) lists common

acronyms such as IBM that is widely known as International Business Machines, radar - radio

detecting and ranging - and modulator-demodulator that could not be recognized to be a modem.

 Another exception is using contracted forms, introduced by the company. In this case, the

abbreviation must be clarified at the beginning of the section where this abbreviation appears for

the first time. Later in the section mentioning a key to the abbreviation is not necessary. For

example, a text about a Software-as-a-Service defines what Software-as-a-Service is in the

beginning and gives the acronym in the form Software-as-a-Service (SaaS).

Tactic 7: Avoiding Anthropomorphic Verbs

 Verbs that attribute characteristics of human beings to inanimate objects could lead to

misunderstanding and difficulties in translation, especially for machine translation. DeRespinis

(2012) recommends avoiding the use of verbs such as ask, want, expect, decide, allow with

inanimate objects. Instead, focus on actions that the reader must perform to achieve his goal.

8

 Examples (anthropomorphic verbs)

 The application asks you for a value.

 The control partition decides to switch roles.

 If the system sees a new device, it changes the setting automatically.

 The Merge Certificate window tells you about the new certificate information.

 If a connector is disabled, the system thinks that the entire channel is disabled.

 When the controller wants to create a resource, it constructs a list of storage locations.

 Examples (appropriate verbs)

The application prompts you for a value.

The control partition switches roles.

If the system detects a new device, it changes the settings automatically.

The Merge Certificate window displays the new certificate information.

If a connector is disabled, the system operates as if the entire channel is disabled.

Before the controller creates a resource, it constructs a list of valid storage locations.

(DeRespinis, 2012, p. 9)

 However, some programs perform actions and it is required to inform a user that a program

searches for a text string or detects a new device. DeRespinis (2012) provides examples of how to

avoid a product focus and focus on a user instead:

Examples (avoid a product focus)

The Delivery Information window allows you to specify the name of the sender.

This menu enables you to create diagrams.

The configuration expects the disk to have parity protection.

The Replicator page lets you synchronize your local database with replica databases.

If you double-click a file, the system offers to download it to your local directory.

The website permits you to save your credit card information.

Examples (prefer a user focus)

In the Delivery Information window, specify the name of the sender.

Use this menu to create diagrams.

Before you configure the disk, ensure that it has parity protection.

On the Replicator page, you can synchronize your local database with replica databases.

Double-click a file to download it to your local directory.

You can save your credit card information on the website.

(DeRespinis. 2012, p. 8)

9

Tactic 8: Indicate Location of Content in a Document Clearly

Documentation often refers to the information that was mentioned in the above paragraph,

above chapter, or in an example that goes after. These descriptions are clear for readers who have

the document opened on their PC. To see the above paragraph, they scroll up the document

intuitively. However, for those readers who have printed the document, this could become a

problem. Because an example, that locates in the above section, could be situated on the previous

page for them. To avoid ambiguity in such cases, it is recommended to use clear marks of location,

for example, previous instead of above, following instead of below.

To make technical documentation usable for people who are blind or have low vision, it is

necessary to refer to other parts of a document not only by a location, but also by text information.

DeRespinis (2012) recommends using prefixes upper and lower instead of top and bottom and

provides the following examples to conform to accessibility best practices:

 Before:

 The list of tables is displayed in the upper-right corner of the window.

After:

 The tables are displayed in the Table List pane, which is in the upper-right corner of the window.

 (DeRespinis, 2012, p. 206)

2.3 Principles of Proper Punctuation

 Correct punctuation helps to organize the correlation between words in a sentence. When

a sentence lacks a single punctuation mark, it is likely to be misunderstood, or at least it will make

the reader read the sentence several times to understand it correctly. The following example

illustrates a situation when a missing comma creates problems in understanding the meaning:

By the time I finished my supper had already got cold.

(Weiss, 2005, p. 71)

One missing comma makes the sentence unclear from the first reading, which forces the

reader to read it through once again. In such a simple case with one missing comma, the sentence

stays more or less clear for the experienced reader. However, the inexperienced language student

may misunderstand the sentence. The approach to using as few commas as possible prevails in

journalism, while in technical environment clarity plays a crucial role, which makes correct

punctuation extremely important. This section describes using punctuation marks in a more

detailed way.

10

Tactic 9: Using the Oxford Comma

The Oxford comma, the Harvard comma or the serial comma, is a comma used before the

words and, or, and nor at the end of a listing. It is considered optional in many styles: in

newspapers, magazines, school articles, but it is highly required in technical writing. At first

glance, Oxford comma could seem to be unnecessary, however, lack of such a comma in the

following example might lead to misunderstandings:

The location study covered labor, tax, freight, and communications costs, all in terms of 1972

prices.

(Garner, 2016, p. 748)

In this example, the missing Oxford comma after freight could make a reader think, that

freight and communication costs belong to one category, though it is not meant to be. Therefore,

to ensure that the text will not cause any misunderstandings, using the Oxford comma is mandatory

in technical writing.

Tactic 10: Separating Long Sentences

Besides using the simplest grammar structures in order to meet the requirement of

simplicity, there is another way to make a text easy to read — write in short sentences and separate

long complicated clauses by full stops. It is easier to read two independent sentences with full

stops than a single sentence with two clauses linked by a comma. DeRespinis (2012) recommends

keeping sentences 25 or fewer words. As can be seen from the following example presented by

Weiss (2005), the first sentence separating long sentences makes the text easier to comprehend:

Before:

Unless these terms are defined in a glossary, international documents should be free of

“buzzwords,” overworked words, or any words uniquely associated with a particular management

theory or fashionable management consultant.

After:

In international documents, do not use overworked or fashionable words. Avoid words that are

part of a particular management theory; also avoid words made popular by a particular

management consultant. If you must use these words, however, define them in a glossary.

(Weiss, 2005, p. 66)

11

Tactic 11: Using Parentheses

Text enclosed in parentheses is considered to be less important. Therefore, it is

recommended to use parentheses only with abbreviations or symbols. For example, using

parentheses to introduce abbreviation in the following sentence:

Brno University of Technology (BUT) is one of the leading teaching and research universities in

central Europe. Its programmes cover not only engineering but also fields of natural science, arts,

IT and economics, with a strong interdisciplinary emphasis and close connection with the industrial

sphere.

(“Brno University of Technology - Study in the Czech Republic,” n.d.)

However, in running text, a reader can intuitively pay less attention to the text in

parentheses. Therefore, it is recommended to either remove the parentheses, if the text within is

important. Alternatively, remove a text in parentheses completely, if it does not carry any meaning.

For example, the following sentence contains a text in parenthesis that can be missed or considered

as less important. To avoid this, the text in parenthesis can be converted to a new sentence or

removed if it is not important in the given context.

Before:

Red Hat Satellite 6 also contains some predefined kickstart templates (and the ability to create your

own), which are used to provision new systems and customize the installation.

After:

Red Hat Satellite 6 also contains some predefined kickstart templates, which are used to provision

new systems and customize the installation. Additionally, you can create and use your own kickstart

templates.

Or:

Red Hat Satellite 6 also contains some predefined kickstart templates, which are used to provision

new systems and customize the installation.

(Red Hat Customer Portal)

Kirkman (2006, p.87) outlines that parenthesis can also be used to refer to tables and

figures:

... our plot of energy migration (Figure 2) shows the ...

(Kirkman, 2006, p.87)

2.4 Principles of Proper Document Layout

 In order to write simply and clearly, different methods and instruments are used in technical

writing. A technical writer creates a readable, clear easy to search through documentation. In order

to achieve these points, the document should be formatted correctly. Modern text editors offer a

12

wide range of useful text formatting. Tactics on how to make a text readable, where to include

tables, lists, diagrams and figures into your writing are described in this section.

Tactic 12: Focus on Findability

The content of technical documents must be structured logically. so that a reader will

intuitively find the required information. Tebeaux, E., and Dragga denote several aspects that are

of great importance for document design:

Effective document design is built on principles of visual perception—on how

human beings perceive and interpret visual information. For example,

• Contrast: Different items must be visibly different, especially more important and less important

items.

• Alignment: Related items must be aligned with each other, and every item must be aligned with

some other item (or risk looking misaligned).

• Proximity: Related items must be positioned close together.

• Size: Greater size implies greater importance.

• Repetition: Repetition of design creates unity and builds familiarity.

(Tebeaux, E., & Dragga, 2015, p. 86)

As per the Proximity principle, related topics must be placed next to each other. The

concluding steps, such as retiring a product, cleaning up after retirement must be placed closer to

an end of a section. The verification steps must go after the procedure, the success of which is

going to be verified.

The repetition principle states that the structure must remain the same throughout the

documentation. Therefore, after reading and working with one section or chapter, readers will

already know where to find the information they need in another section.

Tactic 13: Use Clear Titles

To find the required information, the first thing readers usually do, is searching through

titles in the table of contents in the beginning of a document and determining what title is related

to their need. If readers find the required information by a title in the table of contents, it saves

them a large amount of time, in comparison to scanning through the whole document.

Consequently, it is essential to pay special attention to titles.

Make titles clear and accurate. A good title should be descriptive, but not very long. It

should inform a reader, but be short enough to allow a reader to read it quickly. Every word should

relate to the content and be meaningful.

13

A good title must be consistent. If one title uses a gerund form of a verb instead of an

infinitive, for example, the gerund form “Making” in the title “Making a text bold in Microsoft

Office Word”, then all the other titles in the document must be consistent. It makes the titles easier

to scan through while reading quickly.

The table of contents of the Managing Errata section in the Red Hat Satellite Content

Management guide (n.d.) is an example of a correct titles structure:

9. Managing Errata

9.1. Managing Errata with Content Views

9.2. Inspecting Available Errata

9.3. Applying Errata to Individual Systems

9.4. Applying Errata to Multiple Systems

9.5. Subscribing to Errata Notifications

9.6. Chapter Summary

 (“Chapter 9. Managing Errata - Red Hat Customer Portal,” n.d.)

These titles are descriptive, they accurately describe what procedures are explained in each

section. The titles are consistent in using verbs in gerund form.

Tactic 14: Keeping Paragraphs Short

 Long paragraphs discourage readers from reading them. In technical writing, even if the

long paragraph is on the same topic, it is recommended to separate it into smaller ones. Short

paragraphs are easier to read, to work with, and to search through. Weiss (2005) claims that even

if a long paragraph is logically cohesive, its length may discourage the reader, therefore it is

beneficial to split it into two:

Before:

Remember that nearly all readers subvocalize, saying words mentally to themselves as they

read silently. So, words that are hard to pronounce will slow the reader. This advice is particularly

germane in naming products, systems, or companies. Nearly every E2 and E3 has trouble with the

th sound (especially unvoiced) and many Asian languages struggle with l and r. When General

Instrument Corporation of Horsham, Pennsylvania, changed their image in 1996, they also adopted

the more high-tech sounding name of NextLevel. In 1998, they will restore the original name,

mainly because most of their Asian customers for cable-TV converter boxes have trouble with say

ing NextLevel. (Similarly, the spokesclown for McDonalds restaurants in Japan is called Donald

McDonald not Ronald.)

After:

Remember that nearly all readers subvocalize, saying words mentally to themselves as they

read silently. So, words that are hard to pronounce will slow the reader. This advice is particularly

14

germane in naming products, systems, or companies. Nearly every E2 and E3 has trouble with the

th sound (especially unvoiced) and many Asian languages struggle with l and r.

When General Instrument Corporation of Horsham, Pennsylvania, changed their image in

1996, they also adopted the more high-tech sounding name of NextLevel. In 1998, they will restore

the original name, mainly because most of their Asian customers for cable-TV converter boxes have

trouble with saying NextLevel. (Similarly, the spokesclown for McDonalds restaurants in Japan is

called Donald McDonald not Ronald.)

(Weiss, 2005, p. 85)

Tactic 15: Text Highlighting

 In comparison to times of typewriters, when the quotation marks where the only possibility

to highlight words in a sentence, nowadays modern software provides more fancy ways to

accomplish this task. Different companies use different styles, but it is necessary to be consistent

throughout the documentation.

Kirkman (2006) outlines two jobs that punctuation marks do in our writing:

 grammatical: they show where the boundaries are meant to be between segments of

larger statements, and how segments of text are meant to relate to one another;

 rhetorical: they show the emphasis or tone we want to give to a word or word-group.

(Kirkman, 2006, p. 5)

Text highlighting matches the rhetorical job done by punctuation marks. He gives 3 example

of how it is possible to signal the emphasize or a tone to a word or word-group:

1. This is known as ‘exact’ replacement of ...

2. ... and the line must be active at this moment ...

3. Do not touch the connectors. Frequently, the lines remain charged AFTER the power has

been switched off!

(Kirkman, 2006, p. 6)

DeRespinis (2012) lists more possibilities for text highlighting:

 Bold – for column heading in the table, glossary terms, interface controls.

 Bold Monospace – for command names, keywords, parameter names. process

names.

 Monospace – for directory and file names, code examples.

 Italics – for citations, letters as letters, variables.

 Double quotation marks – for hardware label names.

 Angle brackets – tags in markup languages and XML.

(DeRespinis, 2012, pp. 106 - 110)

15

One method is the emphasizing of key phrases with boldface. Boldface text grabs the

attention of a reader. That way it is easier for the reader to notice the term he is interested in while

searching through the text and read the needed paragraphs selectively.

Another use of emphasis is highlighting examples with italics. Italics are commonly used

to highlight examples and values that a user must replace. DeRespinis (2012, p. 109) provides a

very illustrative example of using several highlighting methods:

Use the OPEN command with the -f parameter. For example:

OPEN -f file_name

where file_name is the name of the file you

want to open.

(DeRespinis, 2012, p. 109)

Tactic 16: Using Lists and Tables

 Pringle and O'Keefe (2009) suggest using numbered lists to denote steps that must be

performed in a particular order. Additionally, use bulleted lists for items that do not have a

particular order. They provide an example of how a monster chunk of text could converted to a

bulleted list that communicates the same information in a much clearer way.

An instruction that contains items or steps is far more understandable in numbered or

bulleted list form:

Before:

To make your cake and the icing, use the oven, peeler, food processor (or cheese grater),

measuring cups and spoons, wooden spoons, egg whisk, two large mixing bowls, 9 by 13 pan, wire

rack, oven mitts, mixer, and bowl scrapers.

After:

Use the following kitchen appliances and hardware while baking your cake and making the icing:

 Oven

 Peeler

 Food processor (or cheese grater)

 Measuring cups and spoons

 Wooden spoons for stirring

 Egg whisk

 Two large mixing bowls

 9 by 13 pan

 Wire rack

 Oven mitts

16

 Mixer

 Bowl scrapers

(Pringle and O'Keefe, 2009, pp. 117 - 118)

Difficult paragraphs that describe decision logic: options, alternatives and multiple paths

must be converted into tables. DeRespinis (2012) claims that it is necessary to place a table as

close as possible to the content it references to.

3 Types of Technical Writing

According to Kenneth G. Budinski (2005), the four main groups of documents in a style of

technical writing are the following:

 Reports and communications in technical professions, and day-to-day business

 Books, magazines, technical papers for the purposes of education and the sharing of

knowledge and information.

 Patents

 Operational manuals, instructions, and procedures

3.1 Reports and communications

In many technical professions preparation of various reports is required. Very few

companies pay the salary without reports on what had been worked on or implemented, and what

the results are. A report usually includes a written document and engineering drawings related.

According to Kenneth G. Budinski (2001), in day-to-day business writing letters, emails,

memos surveys are common. Making a mistake in an email violates the status of a sender. Even

considering that the sender spent less time on writing and reviewing the email, a mistake in it

creates a negative opinion about him. In the business world, very little time is allocated for the

internal emails. No one has time to read long letters written in a sophisticated lush language. On

the contrary, a short simple clear readable format of technical writing is required. These formats

are mostly intended for the narrow audience and they require a strict and clear language.

Gerson and Gerson (2010) identify two types of reports: short, informal reports, and long,

formal reports. In addition, Gerson and Gerson outline the following needs that reports satisfy

 Supply a record of work accomplished

 Record and clarify complex information for future reference

 Present information to a large number of people

 Record problems encountered

 Document schedules, timetables, and milestones

17

 Recommend future action

 Document current status

 Records procedure

(Gerson & Gerson, 2010, p. 456)

3.2 Books, magazines, technical papers for the purposes of education and

the sharing of knowledge and information.

 Another category represents documents intended for educational purposes, in the form of

books, magazines, and papers. These works are usually produced by experts in the fields.

Definitely, writing a book requires much more discipline than writing a report, because books are

written for a wide audience, but the clarity of a presentation is still required.

3.3 Patents

 The third category of technical writing is Patents. These are written usually by lawyers,

these pieces should be in a highly organized manner. Patents have a very restricted format, which

is prohibited to break. The patent should clearly describe its subject and include precise figures

and descriptions.

3.4 Operational manuals, instructions, and procedures

 Finally, operational manuals, instructions and procedures have legal implications and are

usually written by trained technical writers. They include all the basic principles, which are

described in the previous chapter. It should be concise, clear, simple, correct, readable, easy to

understand for non-native English speakers, and easy to translate to other languages. To meet these

requirements, a professional technical writer should be experienced in the field of the product he

writes about and in stylistics. Therefore, a technical writer becomes more and more valuable with

every year of work. Readers of this documentation are not willing to study the subject to

understand how it works. They are willing to fulfil the task, e.g. to fix some error or to configure

some service.

 Gerson and Gerson (2010) emphasized two criteria for writing instructions. The first one

is audience recognition. This means that a writer must no assume that his readers have high-tech

knowledge. Instead of assuming, it is necessary to spell information out clearly and thoroughly.

The second criteria is ethical instructions. This means that the potential harm must be thoroughly

identified in an instruction.

18

4 Technical Texts Analysis

This chapter outlines the process of creating a piece of technical document. It describes

what is usually done to gather the required information, and how this information is processed. To

achieve this, the analysis of 3 different documents that describe the same feature is performed.

The analysis is performed for the document in three different phases:

1. The document in the upstream documentation of a Foreman product that was taken as a

basis for the Red Hat Satellite feature - Foreman Templates 5.0 Manual.

2. A reworked manual that was written as a preparation to be published to the official

documentation of Red Hat Satellite. This document was created in the Google Docs tool

and sent to a professional in the field of this program to check the technical correctness of

the manual, as well as other writers to verify the style.

3. The reviewed and approved document that is now a part of the Red Hat Satellite official

documentation - Appendix F. Synchronizing Templates with Git on Red Hat Customer

Portal.

One of the technical writer’s main tasks is to create a precise and accurate text. Initially, it

must be correct from the technical view. Then, after the text is technically correct, the style can be

improved, to make the text clear and simple. In this case, the goal is to describe how to use the

TemplateSync plug-in with Red Hat Satellite Server. According to the official Red Hat Satellite

documentation: “Red Hat Satellite is a system management solution that enables you to deploy,

configure, and maintain your systems across physical, virtual, and cloud environments. Satellite

provides provisioning, remote management and monitoring of multiple Red Hat Enterprise Linux

deployments with a single, centralized tool” (Chapter 1. Introduction to Red Hat Satellite 6 - Red

Hat Customer Portal, n.d.). The TemplateSync plug-in enables a user to synchronize provisioning

templates between Satellite Server and a remote Git repository. Provisioning templates – are text

files that define provisioning settings for Satellite hosts. For example, after applying changes to a

provisioning template on one machine, a user can synchronize those changes to a remote Git

repository. Then, from the Git repository, pull the new changes to the template file on a remote set

of machines. To create accurate documentation, firstly, it is required to understand how the

function works and to ensure that the function works correctly. Therefore, it is necessary to test it,

to understand what information is essential for a user to know and what can be omitted. In addition,

the actions a user must perform to accomplish a task, the prerequisites, the settings that had to be

configured before starting the procedure. As a reference, the documentation for the upstream

product “Foreman Templates” was used (Foreman Templates 5.0 Manual, n.d.). Engineers who

developed the product most commonly write the documentation of an upstream product. Usually,

19

the documentation written by engineers does not meet the current technical writing standards, as

they tend to describe all features of their product, and do not focus on a specific task.

4.1 Analysis of the Introductory Section

 The introductory section must mention what the document is about and what goals will a

reader be able to fulfil after reading it. It can also include some notes and warnings a reader needs

to know before using a feature.

4.1.1 The Upstream Product Documentation

1. Foreman Templates 5.0 Manual

This plugin enables synchronization of provisioning templates, partition tables and job templates

from external git repository and/or file system. It can be used both with the community templates

repository or with any other source of templates that has the same directory structure. Please note

that Foreman core provides tracking of changes, browsing the history and reverting natively, but

if you need more advanced tools such as branching, code reviews etc. you might be interested in

this plugin.

You can use the native git support for simple synchronization with remote git repositories, which

is usually useful for syncing new template versions from community repository or for exporting

local changes to contribute back. Or if you have more complicated workflow, you can use this

plugin to sync the directory when required. This way, you can use any VCS (including git) to control

the versioning of that directory and use this plugin to sync whenever the directory is at desired

version.

(Foreman Templates 5.0 Manual, n.d.)

In this case, the introduction consists of two long paragraphs. They are difficult to read

through. They include several complicated constructions, such as a conditional sentence: “Or if

you have more complicated workflow, you can use this plugin to sync the directory when

required.” That violate the Tactic 3: Using the Simplest Grammar Structures. The problem with

this, is that it carries information, which can be useful for the specific user scenario where a

workflow is complicated, but an ordinary user does not need to read this to perform his tasks. This

information is redundant for a user, but still, he will need to read this through. This section lists

several possibilities that this feature enables a user to do:

 This plugin enables synchronization of provisioning templates, partition tables and job

templates from external git repository and/or file system.

20

 It can be used both with the community templates repository or with any other source of

templates that has the same directory structure.

 You can use the native git support for simple synchronization with remote git repositories.

 You can use this plugin to sync the directory when required.

 This way, you can use any VCS (including git) to control the versioning of that directory

and use this plugin to sync whenever the directory is at desired version.

 if you need more advanced tools such as branching, code reviews etc. you might be

interested in this plugin.

These functions are hidden in the text, and, therefore, difficult to find and to scan through.

This section is not consistent. The text uses different structures for describing the same

thing - what the plug-in enables a user to do:

 the active structure “you can use ...” where the subject is a reader,

 the active structure “This plug-in enables …”, where the subject is the feature itself,

 the passive structure “it can be used ... ”,

 the conditional clause with might: “you might be interested in this plugin.”

This text uses the word plugin written as one word. DeRespinis (2012) suggests writing

this word hyphenated - plug-in. However, the hyphens often get dropped when a word becomes

more commonly used. On the web, the form of plug-in written as one word is met more often than

the appropriate one.

The articles are dropped in several places; for example, the definite article must be used

before the collocation external git repository in the following sentence: “This plugin enables

synchronization of provisioning templates, partition tables and job templates from external git

repository and/or file system.”

This introduction uses the shortened version of the verb to synchronize - “sync” twice. This

violates Tactic 6: Avoiding Abbreviations, Acronyms, Contractions.

A lowercase letter is used with the name of the Git product four times. The Git official

documentation (Git) capitalizes its product name.

The abbreviation VCS is used without providing its meaning - version control system. This

can be explained by the fact that this text is intended for the IT experts and expects its reader to

know this abbreviation. Still, this does not correspond with the current technical writing style. This

violates Tactic 6: Avoiding Abbreviations, Acronyms, Contractions.

21

In this section, grammar, and spelling mistakes can be explained by the fact that the

upstream documentation is written by developers, who are often not English native speakers and

not language experts. They do not aim to create perfectly stylized documentation; they are

describing how their product on works. They often reflect changes made in the source code by

adding bits in different places of documentation. This upstream product is free, so readers do not

expect high standards from its documentation.

4.1.2 The Draft Document

Synchronizing Templates with Git

Red Hat Satellite 6 allows synchronization of Job Templates, Provisioning Templates, and Partition

Table Templates between Satellite Server and a Git repository. This section details the workflow

for synchronizing new template versions and exporting local changes to contribute back.

(Synchronizing Templates with Git. Draft document. Author: S. Petrosian, 2018)

The draft introduction consists of one paragraph. The first sentences describes what this

feature does. The second sentence describes what information can be found in this section.

This introduction is much shorter, only the information that is necessary for the reader to

know is listed.

4.1.3 The Official Document

APPENDIX F. SYNCHRONIZING TEMPLATES WITH GIT

Red Hat Satellite 6 enables synchronization of Job Templates, Provisioning Templates, and Partition

Table Templates between Satellite Server and a Git repository or a local directory.

NOTE

Synchronizing templates between Satellite Server and a Git repository or a local directory is a

Technology Preview feature. Technology Preview features are not fully supported under Red Hat

Subscription Service Level Agreements (SLAs), may not be functionally complete, and are not

intended for production use. However, these features provide early access to upcoming product

innovations, enabling customers to test functionality and provide feedback during the development

process.

This section details the workflow for:

 installing and configuring the TemplateSync plug-in

 performing exporting and importing tasks

(“Appendix F. Synchronizing Templates with Git - Red Hat Customer Portal,” n.d.)

22

The introduction in the official documents is an improved version of the draft introduction.

The first sentence describes what this feature is about, the same as in the draft document. After the

first sentence, there is a note informing a reader that this section is about a “Technology Preview”

feature, informing that this feature is not fully functional and is provided to test functionality and

gather feedback.

This note is added to all documents written about technology preview features. As it was

added after the full documentation of this feature was created and published, this note is missing

from the draft introduction. The last sentence of the draft document was separated using bullet

points to outline what specific procedures are described in the section. This makes the text easier

to read and to comprehend as per Tactic 16: Using Lists and Tables.

The official document uses the word “enables” instead of “allows”, which was used in the

draft document. It is not correct to use the word “allow” according to the Tactic 7: Avoiding

Anthropomorphic Verbs.

4.2 Analysis of the Installation Section

The installation section describes what actions must be performed before using the feature.

If the feature is pre-installed in the product and no further actions are required to enable it, this

section can be omitted.

4.2.1 The Upstream Product Documentation

2. Installation

You can install the plugin using the foreman-installer (recommended way). To do that, run the

installer with following argument

foreman-installer --enable-foreman-plugin-templates

If you installed the plugin using package directly, you should run the migrations and seed (just to

be sure) and restart the Foreman. If installed foreman from git, you can simply add foreman-

templates gem as one of the dependencies. Don’t forget to run migrations and seed afterwards

and obviously restart the Foreman.

(“Foreman Templates 5.0 Manual,” n.d.)

The installation section of the upstream product documentation outlines three different

methods of installing the plug-in:

 Using the foreman-installer

 Installing using the package directly

23

 Installing from gems

Although several possible methods are given, the reasons for why each method must be

used, for example, their advantages and disadvantages are not described.

The description of methods is not structured and given in a plain text. Only the first method

lists a command that must be entered, This makes the text difficult to comprehend.

The text uses vague phrases that do not carry any special meaning and can be easily

omitted, such as don’t forget to, just to be sure, obviously.

The sentence “If installed foreman from git, you can simply add foreman-templates gem

as one of the dependencies.” is not grammatically correct, it omits the pronoun you in the

beginning.

The text is inconsistent in using the product name Foreman. It is spelt with the uppercase

F twice, and with the lowercase once, which is inconsistent.

The last sentence includes a complicated structure, it lists several actions inline. This is

grammatically incorrect and could lead to ambiguity. This can be fixed by using the Oxford comma

as per Tactic 9: Using the Oxford Comma. In this case, the corrected version of the sentence would

use 3 commas: “After adding the gem, run migrations, seed, and restart the Foreman.”

Furthermore, the word seed, in this case, is an IT jargon and has multiple meanings. Therefore, a

reader can simply misinterpret it. This violates Tactic 1: Adopting Reduced Dictionary and Tactic

2: Using Words with only One or Few Meanings.

4.2.2 The Draft Document

Enabling the plug-in

The plug-in providing this feature is already included into Red Hat Satellite. Follow these steps to

enable it in your Satellite Server:

1. Install the plug-in on your Satellite Server using the following command:

satellite-installer --enable-foreman-plugin-templates

2. Restart katello services to enable the plub-in:

katello-service restart

If the plug-in is installed correctly, you will see the *TemplateSync* menu in *Administer* →

Settings.

(Synchronizing Templates with Git. Draft document. Author: S. Petrosian, 2018)

The draft installation procedure is called “Enabling the plug-in”. The term enabling was

chosen because the plug-in package is already pre-installed with Satellite. However, the first step

24

uses the term install, which makes this section not consistent and ambiguous, the terms in it do not

correspond.

This section uses the following passive structures, which violates the Tactic 3: Using the Simplest

Grammar Structures:

 is already included

 If the plug-in is installed correctly

Though the plug-in name TemplateSync uses the contracted form of the word

synchronization, this cannot be changed in the documentation, because buttons in the user interface

have these labels on them. The same text as on buttons labels is used to avoid ambiguity and ensure

that a user finds the necessary button easily.

4.2.3 The Official Document

 F.1. Enabling the TemplateSync plug-in

1. To enable the plug-in on your Satellite Server:

satellite-installer --enable-foreman-plugin-templates

2. To verify that the plug-in is installed correctly, ensure Administer > Settings includes the TemplateSync

menu.

(“Appendix F. Synchronizing Templates with Git - Red Hat Customer Portal,” n.d.)

After engineers reviewed the draft document, they told that it is not required to restart

Katello services to enable the plug-in. Therefore, this step was removed from the procedure. The

introduction to the procedure that was included in the draft document was removed completely, it

was decided that the procedure’s title is self-explanatory itself and no introduction is needed.

The problem with inconsistency in using terms install and enable remained. The first step

enables the plug-in; the second step verifies if the plug-in is installed.

The problem with passive structures also remained, while the first occurrence of the passive

structure was removed, the second one “To verify that the plug-in is installed correctly” remains.

This happened because in the time the section was written passive structures were not paid much

attention in the product documentation.

The text uses boldface to highlight the labels Administer, Settings, TemplateSync. In

addition, the highlighting is used to distinguish the command that must be entered into the

command line interface. This highlighting is consistent throughout the Satellite documentation.

As the reader is expected to know that the black code blocks with white typeface inside starting

25

with the hash sign implies that this text is a command and it must be entered to the command line

interface, this information is omitted.

4.3 Analysis of the Configuration Section

The configuration section outlines the process of configuring the plug-in. It describes how

to configure the plug-in, and what are the available options for configuration.

4.3.1 The Upstream Product Documentation

3. Configuration

After the installation there are new settings available. These are the default setting for both

importing and exporting tasks. They can be overridden on each synchronization run and serve only

as default so users don’t have to specify the same value on every run. You will find them under

Administer -> Settings -> TemplateSync. Only administrator can modify their values. Following

table explains the attribute behavior. Note that some are only used on import or export actions.

Setting name Meaning on importing Meaning on exporting

associate associate OS,

Organization, Location

based on metadata

N/A

branch git branch to read or write from/to (only for git-based repositories),

default value is based on current Foreman version - e.g. develop or 1.15-

stable

dirname subdirectory under $repo

to read from

subdirectory under $repo to export to

filter import only templates

with name matching this

regular expression, after

$prefix was applied

export only templates with name matching

this regular expression

26

metadata_export_mode N/A one of refresh/remove/keep, refresh

generates new metadata on export based on

current associations and attributes, remove

strips all metadata from template, keep

keeps the same metadata that are part of

template code

negate negates the $filter condition

prefix adds specified string to

beginning of the template

on import, but only if the

template name does not

start with the prefix

already

N/A

repo target path, specifies also the protocol, e.g. /tmp/dir or

git://example.com, https://example.com, ssh://example.com

verbose adds extra verbose messages to the action output

Settings above are preconfigured for importing from upstream community-templates repository.

(“Foreman Templates 5.0 Manual,” n.d.)

The configuration section in the upstream product documentation consists of an

introductory paragraph with details related to configuring the plug-in, a table of configuration

settings available with their definition, and a sentence with some additional information in the end.

The last piece of text is short and is not located with all other text, and, therefore, could be lost by

a reader.

The introductory paragraph is badly structured, all different information is not separated

into units.

The last sentence in this section uses the word “above” to refer to the previous table. That

violates Tactic 8: Indicate Location of Content in a Document Clearly.

There are several typos and grammar mistakes in this text. The word setting must be in

plural in this sentence: “These are the default setting for both importing and exporting tasks.”

There is an indefinite article missing before the word administrator in the following

sentence: “Only administrator can modify their values”.

27

The word setting is omitted after the word some in the following sentence:”Note that some

are only used on import or export actions.”

The labels names use the same typeface and font as the casual text for Administer, Settings,

TemplateSync. This violates Tactic 15: Text Highlighting. The reader would need to read through

the whole paragraph to see where these configurations are located. In addition, the highlighting is

dropped in the table with replaceable values and directories names, such as “$repo”, “/tmp/dir/”.

The table uses the contraction “e.g.” to outline examples. This violates Tactic 6: Avoiding

Abbreviations, Acronyms and Contracted Forms. In addition, the table uses contractions in the

first column, e.g. dirname instead of Directory Name, and repo instead of repository. Here, this is

correct because the first column contains labels from the web user interface and cannot be changed.

This section uses the passive constructions, e.g. “some are only used”, which violates the

Tactic 3: Using the Simplest Grammar Structures.

This section uses a lowercase letter with the name of the Git product again. The Git official

documentation (Git) capitalizes its product name.

The text in cells in the table is not written in full sentences. Text in the table includes

several grammar mistakes, for example missing articles. There must be the definite article after

the word beginning in the following sentence: “adds specified string to beginning of the template

on import, but only if the template name does not start with the prefix already.” It makes text

difficult to read and to process.

The following sentence is long; it can be split to two separate sentences in order to meet

the requirements outlined in Tactic 10: Separating Long Sentences. Furthermore, it uses

parentheses, which violates Tactic 11: Using Parentheses. The text in the parentheses is important,

so to make the sentence correct, it is required to include the text in the parentheses into the sentence

inline:

When using git-based repository for import or export, this setting specifies git branch to

read from or write to. The default value is based on current Foreman version - e.g. develop

or 1.15-stable

4.3.2 The Draft Document

Configuring the plug-in

Navigate to *Administer* → *Settings* → *TemplateSync* to configure settings of the plug-in.

The following table explains the attributes behavior. Note that some attributes are only used on

import or export actions.

28

Setting name Meaning on importing. Meaning on exporting.

Associate Associates templates with OS,

Organization, and Location based on

metadata.

N/A

Branch Specifies the default branch in Git

repository to read from.

Specifies the default branch in Git

repository to write to.

Dirname Specifies the subdirectory under

the repository to read from.

Specifies the subdirectory under the

repository to write to.

Filter Imports only templates, with names

that match this regular expression.

Export only templates with names that

match this regular expression.

Force import If selected, imported templates will

overwrite locked templates with the

same name.

N/A

Metadata

export mode

N/A Defines how metadata is handled when

exporting:

Refresh generates new metadata

based on current assignments and

attributes. *Keep* retains the existing

metadata.

Remove exports template without

metadata, useful if you want to add

metadata manually.

Negate If selected, negates the filter

attribute.

Prefix Adds specified string to the

beginning of the template, if the

template name does not start with

the prefix already.

N/A

Repo Defines the path to the repository to

sync from.

Defines the path to a repository to export

to.

Verbosity Defines extra verbose messages to

the action output for importing

templates through rake.

N/A

29

(Synchronizing Templates with Git. Draft document. Author: S. Petrosian, 2018)

The draft configuration section consists of an introductory part and a table. There is no

additional text below the table; all the necessary information is located above the table. The

introductory part is shortened to contain only the information that is required for a user.

The introductory part contains a sentence that uses an anthropomorphic verb in the

collocation the table explains. That violates Tactic 7: Avoiding Anthropomorphic Verbs.

The text in the table cells is changed to use full sentences, every sentence starts with capital

letters and ends with dots.

This draft document kept the passive constructions, e.g. “attributes are only used”, which

violates the Tactic 3: Using the Simplest Grammar Structures.

The draft section fixed the issue with the incorrect capitalization of the Git product, here it

uses a capital letter with Git: “Git repository”.

4.3.3 The Official Document

F.2. Configuring the TemplateSync plug-in

Navigate to Administer > Settings > TemplateSync to configure the plug-in. The following

table explains the attributes behavior. Note that some attributes are only used on importing or

exporting tasks.

Table F.1. Synchronizing Templates Plug-in configuration

Parameter

API parameter

name

Meaning on

importing Meaning on exporting

Associate associate

Accepted values:

always, new, never

Associates templates

with OS,

Organization, and

Location based on

metadata.

N/A

30

Branch branch Specifies the default

branch in Git

repository to read

from.

Specifies the default branch in

Git repository to write to.

Dirname dirname Specifies the

subdirectory under

the repository to

read from.

Specifies the subdirectory

under the repository to write

to.

Filter filter Imports only

templates with

names that match

this regular

expression.

Exports only templates with

names that match this regular

expression.

Force

import

force Imported templates

overwrite locked

templates with the

same name.

N/A

31

Metadata

export

mode

metadata_export_mode

Accepted values:

refresh, keep, remove

N/A Defines how metadata is

handled when exporting:

 Refresh — remove

existing metadata

from the template

content and generate

new metadata based

on current

assignments and

attributes.

 Keep — retain the

existing metadata.

 Remove — export

template without

metadata. Useful if

you want to add

metadata manually.

Negate negate Imports templates

ignoring the filter

attribute.

Exports templates ignoring

the filter attribute.

32

Accepted values: true,

false

Prefix prefix Adds specified string

to the beginning of

the template if the

template name does

not start with the

prefix already.

N/A

Repo repo Defines the path to

the repository to

synchronize from.

Defines the path to a

repository to export to.

Verbosity verbose

Accepted values: true,

false

Enables writing

verbose messages to

the logs for this

action.

N/A

(“Appendix F. Synchronizing Templates with Git - Red Hat Customer Portal,” n.d.)

The introductory part in the official documentation is improved for the sake of minimalism.

The redundant noun settings is removed as follows:

Draft:

to configure settings of the plug-in.

33

Official:

to configure the plug-in.

 The table here contains one more column. API parameter name resided in the table makes

it easier to construct API calls for users.

4.4 Analysis of the Usage Section

The usage section for the TemplateSync plug-in outlines how to import and export

templates. Users would come here after installing and configuring the plug-in. A reader would

expect clear and simple procedures that describe the actions required to export and import

templates.

4.4.1 The Upstream Product Documentation

4. Usage (features description)

Both importing and exporting is available as rake tasks. Rake tasks are triggered from terminal. If

you installed the plugin using foreman-installer, or simply it’s package based installation), you

should be able to run rake using foreman-rake command. Source-based installs of Foreman will

need to use Bundler to call Rake as normal, e.g. cloned from git, you should likely use

RAILS_ENV=production bundle exec rake ran from your Foreman directory.

There are other ways to run the action discussed under API chapter.

4.1 Importing

If you have all attributes configured via Settings you can simply run following command

foreman-rake templates:import

This task based on $repo setting either uses git or scans local directory for templates to import. If

you want to customize any setting for a particular run, just specify it as extra argument.

foreman-rake templates:import repo=https://github.com/theforeman/community-templates

The example above would clone the repository to some temp directory. If branch was specified, it

switches to this branch. Then if dirname was provided, it will “cd” into it. Finally it searches for all

files in this directory and subdirectories that has '.erb suffix. Then the template is parsed and

imported (see below for more details)

foreman-rake templates:import repo=/var/lib/my_templates

34

Compared to previous example, this uses local directory. Therefore not git clone or branch checkout

is done. If dirname is specified, the task goes into this subdirectory and searches for all files with

‘.erb’ extension. Then the same parsing and importing process follows,

The parsing process reads the content of the file. It expects the content of the template including

some template metadata. The metadata are an ERB comment on top of the file, for illustration see

some template in community-templates repository. It’s in yaml format and specifies template

name, kind, compatible operating systems, organizations, locations and possibly other. The

template gets it’s name based on information from metadata. Before the template is saved in

database, prefix setting is applied to it’s name. Then the filter regular expression is matched against

the prefixed name. If the filter matches, templates is saved. If negate is set to true, the template

would be saved only if filter regular expression didn’t match the template name. If the template

with a given name exists in database already, it’s content is updated.

The result of the whole import is printed on the STDOUT. The output contains list of

created/updated templates as well as applied diffs.

A few more useful examples follow

prefix all templates with "[comunity] " string to avoid overriding existing templates

foreman-rake templates:import prefix='[community] '

get the latest templates (might be compatible with only Foreman nightly)

foreman-rake templates:import repo=https://github.com/theforeman/community-templates

branch=develop

tree /tmp/my-repo/

/tmp/my-repo/

└── large-ptable.erb

0 directories, 1 file

this will create a template named "[community] large-ptable"

foreman-rake templates:import repo=/tmp/my-repo/ prefix='[community]

4.2 Exporting

If you want to edit templates directly in Foreman and then sync them back to external repositories,

you need the exporting task. This plugin allows to export directly to git repository or local directory.

For exporting to git repository, the user that’s Foreman running under needs to have write (commit)

access to this repository. If your settings is correctly configure, exporting can be triggered by

running following command.

35

foreman-rake templates:export

If the repo is git repository, we clone it to a temp directory. Then we apply changes to template

files and automatically create a commit with a generated message and push it back to origin. We

do not delete files that are not present in Foreman database, so this should not be destructive. On

the other hand if you want more control over the process or you want to use another SCM, local

directory export is advised. To specify a local directory, just set the repo accordingly

oreman-rake templates:export repo=/var/lib/my_templates

When repo is set to local directory, exported templates are written into it. We don’t touch any other

files, so the directory can be under git (or any other SCM) control. You can then investigate changes

by running git status and do the commit yourself when you’re happy about the change.

For both git and plain directory targets, following applies. If dirname is specified, the export is

written to this subdirectory of repo. Only templates with name matching to filter are exported. If

filter is blank, all templates are exported. In case negate was used, the filter matching result is

negated. This can be used to ignore some templates, e.g. following would not export templates

starting with [private] and [wip] prefixes

foreman-rake templates:export filter='\[wip\]|\[private\] '

When a template is exported, there are 3 ways how to handle metadata.

refresh - remove any metadata from template content and generate new based on current

template attributes and assignment

remove - remove any metadata from template content, useful if you want to add metadata

manually or externally

keep - keep any metadata found in template content despite current attributes and assignments

in database, useful when you want to send a patch to community-templates but you don’t have all

operating systems configured in your Foreman

Suppose you’d like to change something in default Foreman templates. You can use this plugin to

make this process easy. First you need to update the template in you database and test it works.

Then go to https://github.com/theforeman/community-templates and fork the repository. Clone

your fork to the host where you have Foreman installed. Then run foreman-rake templates:export

repo=/path/to/your/clone. Review the change, commit the change by git commit -a and push back

to your github fork by git push. Then on github, open a new PR against theforeman/community-

templates repositories.

(“Foreman Templates 5.0 Manual,” n.d.)

The upstream product documentation outlines two methods of using the plug-in of

importing and exporting:

36

1. Using rake tasks

2. Using the API

In the first paragraph, this section informs a user about the first method only. However, in

the second paragraph, the second method is mentioned as an alternative. This paragraph refers to

the API chapter for the other ways of using the plug-in. In the table of contents, the API chapter is

on the same level as the Usage chapter. Even though it outlines the usage of the plug-in as well.

This chapter is short; however, it states that using the API is the recommended method to initiate

import and export. In fact, the recommended way is hidden outside of the usage chapter and is not

documented properly. These structural inconsistencies could lead to a situation, when a user uses

a feature incorrectly, not as it was intended to use by engineers. This could lead to losing time, and

result in a financial loss.

 This section includes information about how the plug-in works, what tasks it performs

when entering each command. This is helpful for developers to track the history of the feature, to

see differences between different versions of the plug-in. However, ordinary users would like to

use the plug-in. They do not need information about how their code works. For the upstream

documentation, this kind of description is good. Because it is written and read mostly by

developers.

 The Importing section uses nominalization in the following form: “If you have all attributes

configured”. This violates Tactic 5: Avoiding Nominalizations and can be replaced by: “Configure

all attributes”.

 The phrase “you should be able to run” uses phrasal verbs and too many words. This

violates the Tactic 4: Avoiding Verbs with Two or Three Words in Them and, therefore, makes

this phrase complicated for translating and understanding. This complicated structure can be

replaced by a simple phrase “you can run”.

 This section includes several long paragraphs. They must be separated into shorter once as

per Tactic 14: Keeping Paragraphs Short.

4.4.2 The Draft Document

Importing and Exporting Templates

Both importing and exporting functions are available through a series of API calls. API calls use the

Role-Based Access Control (RBAC) system, which means that they can be run as any user.

Prerequisites:

1. Configured Git server which allows connecting through SSH Keys.

2. The plug-in is configured in the TemplateSync tab in *Administer* → *Settings*.

37

3. There is an established SSH connection between your Satellite and the target Git server.

For more information on establishing SSH connection, see To Configure SSH Access to

Libvirt.

Using the API

The following procedure describes how to use API for exporting and importing.

Exporting

To edit templates directly in Satellite and synchronize them back to external repositories, you need

the exporting task. This plugin allows to export directly to a Git repository or a local directory.

1. Execute the following command to export templates from your Satellite Server to the Git

repository specified in settings:

 $ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u admin:_password_ \

-k https://_satellite.example_.com/api/v2/templates/export \

-X POST

{"message":"Success"}

2. You can override default settings by specifying them in the request. The following example

exports templates to a stated local directory:

$ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u admin:_password_ \

-k https://_satellite.example_.com/api/v2/templates/export \

-X POST \

-d "{\"repo\":\"/another/repo\"}"

Importing

To Import templates back to the Satellite Server after their content was changed, use the following

command:

38

 $ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u admin:_password_ \

-k https://_satellite.example_.com/api/v2/templates/import \

-X POST

{“message”:”Success”}

Note:

Templates provided by Satellite are locked. By default locked templates will not be imported. To

overwrite this behaviour,, change the ̀ Force import` attribute in ̀ TemplateSync` menu into ̀ yes`

or supply `force` parameter `-d '{ "force": "true" }’` to the end of the import command.

(Synchronizing Templates with Git. Draft document. Author: S. Petrosian, 2018)

The draft section is shorter and better structured. It outlines one method of using the plug-

in - through the API. However, its titles can be improved. As per Tactic 13: Use Clear Titles, every

title and every word in a title must be meaningful. In this section, there is the title Using the API,

after reading this title, a reader can misunderstand what it means and is likely to ask about the

purpose of the API and why they should read the information again. To avoid this ambiguity, the

title can be changed to be more explicit, for example Using the API to Export and Import

Templates. However, this section has two subsections under it - Exporting and Importing. This

nesting of titles makes the structure complicated and long. This can be improved by reducing the

number of titles and making two wide titles: Exporting Templates and Importing Templates. This

would make the structure easy to navigate and to scan through.

4.4.3 The Official Document

F.3. Importing and Exporting Templates

Importing and exporting tasks are available through a series of API calls. API calls use the role-

based access control system, which enables the tasks to be executed as any user. The

TemplateSync plug-in allows synchronizing with a Git repository or a local directory.

Prerequisites

For imported templates to appear in the Satellite web UI, each template must contain the location

and organization that the template belongs to. This applies to all template types. Before you import

a template, ensure that you add the following section to the template:

39

<%#

kind: provision

name: My Kickstart File

oses:

- RedHat 7

- RedHat 6

locations:

- First Location

- Second Location

organizations:

- Default Organization

- Extra Organization

%>

F.3.1. Synchronizing Templates with a Git repository

1. Configure a Git server that uses SSH authorization, for example gitosis, gitolite, or git

daemon.

2. Configure the TemplateSync plug-in settings on a TemplateSync tab.

a. Change the Branch setting to match the target branch on a Git server.

b. Change the Repo setting to match the Git repository. For example, for the repository

located in git@git.example.com/templates.git set the setting into

ssh://git@git.example.com/templates.git.

3. Accept Git SSH host key as the foreman user

sudo -u foreman ssh git.example.com

4. You can see the Permission denied, please try again. message in the output, which is

expected, because the SSH connection cannot succeed yet.

5. Create an SSH key pair if you do not already have it. Do not specify any passphrase.

sudo -u foreman ssh-keygen

6. Configure your Git server with the public key from your Satellite, which resides in

/usr/share/foreman/.ssh/id_rsa.pub.

7. Export templates from your Satellite Server to the Git repository specified in the

TemplateSync menu:

$ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u login:password \

-k https://satellite.example.com/api/v2/templates/export \

-X POST

40

{"message":"Success"}

8. Import templates to Satellite Server after their content was changed:

$ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u login:password \

-k https://satellite.example.com/api/v2/templates/import \

-X POST

{“message”:”Success”}

Note that templates provided by Satellite are locked and you cannot import them by

default. To overwrite this behavior, change the Force import setting in the

TemplateSync menu to yes or add the force parameter -d '{ "force": "true" }’ to the

import command.

F.3.2. Synchronizing templates with a local directory

Synchronizing templates with a local directory is useful if you have configured any revision control

system repository in the local directory. That way, you can edit templates and track the history of

edits in the directory. You can also synchronize changes to Satellite Server after editing the

templates.

1. Create the directory where templates are stored and apply appropriate permissions and

SELinux context:

mkdir -p /usr/share/templates_dir/

chown foreman /usr/share/templates_dir/

chcon -t httpd_sys_rw_content_t /usr/share/templates_dir/ -R

2. Change the Repo setting on the TemplateSync tab to match the export directory

/usr/share/templates_dir/.

3. Export templates from your Satellite Server to a local directory:

$ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u login:password \

-k https://satellite.example.com/api/v2/templates/export \

-X POST \

{"message":"Success"}

4. Import templates to Satellite Server after their content was changed:

$ curl -H "Accept:application/json,version=2" \

41

-H "Content-Type:application/json" \

-u login:password \

-k https://satellite.example.com/api/v2/templates/import \

-X POST

{“message”:”Success”}

Note that templates provided by Satellite are locked and you cannot import them by

default. To overwrite this behavior, change the Force import setting in the

TemplateSync menu to yes or add the force parameter -d '{ "force": "true" }’ to the

import command.

NOTE

You can override default API settings by specifying them in the request with the -d parameter. The

following example exports templates to the git.example.com/templates repository:

$ curl -H "Accept:application/json,version=2" \

-H "Content-Type:application/json" \

-u login:password \

-k https://satellite.example.com/api/v2/templates/export \

-X POST \

-d "{\"repo\":\"git.example.com/templates\"}"

(“Appendix F. Synchronizing Templates with Git - Red Hat Customer Portal,” n.d.)

The structure in the official documentation is clear and straightforward. As per Tactic 13:

Use Clear Titles, the titles are meaningful and easy to navigate. As per Tactic 15: Text

Highlighting, all labels are marked as bold, and all commands are kept in code blocks with special

formatting. The values that a user must replace use italics, for example, login:password in the API

calls. This is consistent throughout the guide and makes the text easier to comprehend.

In comparison with the draft document, this document lists only one prerequisite to the

procedures. In addition, the prerequisites that are listed in the draft document, are implemented

here into the procedures with a thorough description on how to perform the required steps. This

decreases the time that a user would spend on searching how to meet the prerequisites and makes

the procedure easier to follow.

42

5 Conclusion

In conclusion, it should be mentioned, that this specific style requires the technical writer

to always keep in mind several main principles. Firstly, writing a concise clear document, that will

be easy to read for the person who is not an expert in the field the document describes and could

have weak language skills. This is where the second principle comes into play, the document must

be easily understood in only one meaning even by not experienced non-native English speaker.

That means that the language must be simple, the structure must not be aggravating, the sentences

must be short, the punctuation must support the reader. In addition, the writer should always

remember that the text he writes is likely to be translated into other languages, so the content must

be unambiguous. The second chapter describes main principles that ensures that the writing is

simple, clear, and well-structured.

Though technical writing is produced in a simple language using simple grammar

structures and simple vocabulary, this is far from being the simplest task to fulfil. The comparison

of technical documentation shows that there are many aspects to keep in mind while writing, for

example:

 punctuation

 text highlighting

 text structure

 choosing correct words

 minimalism

 findability

 Furthermore, except for these aspects, there are goals that one must fulfil - to make the text

clear and simple. However, to make it usable and correct.

43

6 Bibliography

Appendix F. Synchronizing Templates with Git - Red Hat Customer Portal. (n.d.). Retrieved

December 1, 2018, from https://access.redhat.com/documentation/en-

us/red_hat_satellite/6.3/html/content_management_guide/synchronizing_templates_with

_git

Brno University of Technology - Study in the Czech Republic. (n.d.). Retrieved May 1, 2019, from

https://portal.studyin.cz/institution/vutbr

Cambridge Dictionary. (n.d.). Retrieved December 1, 2018, from

https://dictionary.cambridge.org/

Chapter 1. Introduction to Red Hat Satellite 6 - Red Hat Customer Portal. (n.d.). Retrieved May

11, 2019, from https://access.redhat.com/documentation/en-

us/red_hat_satellite/6.4/html/planning_for_red_hat_satellite_6/chap-red_hat_satellite-

architecture_guide-introduction_to_red_hat_satellite

Chapter 9. Managing Errata - Red Hat Customer Portal. (n.d.). Retrieved May 11, 2019, from

https://access.redhat.com/documentation/en-

us/red_hat_satellite/6.3/html/content_management_guide/managing_errata

DeRespinis, F., International Business Machines Corporation, Jenkins, J., Hayward, P., & Laird,

A. (2012). The IBM Style Guide: Conventions for Writers and Editors. Upper Saddle River,

NJ, United States: IBM Press.

Foreman Templates 5.0 Manual (n.d.). Retrieved December 1, 2018, from

https://theforeman.org/plugins/foreman_templates/5.0/index.html

Garner, B. A. (2016). Garner's Modern English Usage. New York, NY, United Stated: Oxford

University Press.

Gerson, S. J., & Gerson, S. M. (2010). Technical Communication: Process and Product (3rd ed.).

Upper Saddle River, NJ, United States: Prentice Hall.

Git. (n.d.). Retrieved December 1, 2018, from https://git-scm.com/

IRA - Definition by AcronymFinder. (n.d.). Retrieved December 1, 2018, from

https://www.acronymfinder.com/IRA.html

Kenneth G. Budinski. (2001). Engineers' Guide to Technical Writing. Materials Park, OH, United

States: IBM Press.

44

Kirkman, J. (2006). Punctuation Matters: Advice on Punctuation for Scientific and Technical

Writing (3rd ed.). New York, NY, United States: Routledge.

Krhutová, M. (2009). Parameters of Professional Discourse. Brno, Czech Republic: Tribun EU.

Markel, M. (2015). Technical Communication (10th ed.). Boston, NY, United States: Bedford/St.

Martin’s.

Ogden, C. K. (1937). Basic English: A General Introduction with Rules and Grammar (6th ed.).

London, United Kingdom: K. Paul, Trench, Trubner & co.

Petrosian S. D. (2018). Synchronizing Templates with Git. Draft document.

Pringle, A. S., & O'Keefe, S. S. (2009). Technical Writing 101: A Real-World Guide to Planning

and Writing Technical Content (3rd ed.). Research Triangle Part, NC, United States:

Scriptorium Publishing Services, Incorporated.

Tebeaux, E., & Dragga, S. (2015). The Essentials of Technical Communication (3rd ed.). New

York, NY, United States: Oxford University Press.

Weiss, E. H. (2005). The elements of international English style: a guide to writing

correspondence, reports, technical documents, and internet pages for a global audience.

Armonk, NY, United States: M.E. Sharpe.

