
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

NON-PARALLEL VOICE CONVERSION
NON-PARALLEL VOICE CONVERSION

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR JAN BRUKNER
AUTOR PRÁCE
SUPERVISOR doc. Dr. Ing. JAN ČERNOCKÝ
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Master's Thesis Specification

Student: Brukner Jan, Bc.
Programme: Information Technology Field of study: Computer Graphics and Multimedia
Title: Non-Parallel Voice Conversion
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with techniques for non-parallel voice conversion.
2. Obtain internet quality data for training (eg. from YouTube, etc).
3. Implement (possibly with available toolkit(s)) an existing system and evaluate the results.
4. Propose improvements of the existing system or design a new one.
5. Implement modifications and evaluate the results.
6. Create a poster and/or short video presenting your work.

Recommended literature:
according to supervisor's advice

Requirements for the semestral defence:
Items 1 to 4 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Černocký Jan, doc. Dr. Ing.
Consultant: Kinnunen Tomi, University of Eastern Finland
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: November 1, 2019

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/19207/2019/xbrukn01 Page 1/1

Abstract
Voice conversion (VC) aims at converting the voice of source speaker to the voice of target
speaker. It is popular in funny Internet videos but has also series of serious use cases, such
as dubbing of audiovisual material and anonymization of voice (for example for witness pro-
tection). As it can serve for spoofing of voice identification systems, it is also an important
tool for development spoofing detectors and counter-measures.

Training VC models has mainly been on parallel audios (ie. two speakers uttering the
same text) and on high quality audio material. The goal of this thesis was to investigate
developing VC on non-parallel data and with low quality signals, mainly from publicly
available dataset VoxCeleb.

This work follows the state-of-the-art AutoVC architecture defined by Qian et al. It
is based on neural network (NN) autoencoders, aiming to separate speech into content-
and speaker-dependent embedding. The target speech is then obtained by replacing source
speaker embedding by the target speaker one. We have improved Qian’s architecture to
process low-quality audio by experimenting with different speaker embeddings (d-vectors
vs. x-vectors), introducing a speaker classifier from content embeddings in an adversarial
setup, and tuning the size of content embeddings imposing an information bottleneck to the
autoencoder. Also, we have defined another adversarial architecture by comparing original
content embeddings with those obtained after the VC process.

The results of experiments prove that non-parallel VC on low-quality data is indeed
doable. The resulting audios were not so good as in case of using high-quality ones, but the
speaker verification results after spoofing by proposed system have clearly shown a shift of
voice characteristics toward the target speakers.
Abstrakt
Cílem konverze hlasu (voice conversion, VC) je převést hlas zdrojového řečníka na hlas
cílového řečníka. Technika je populární je u vtipných internetových videí, ale má také řadu
seriózních využití, jako je dabování audiovizuálního materiálu a anonymizace hlasu (napřík-
lad pro ochranu svědků). Vzhledem k tomu, že může sloužit pro spoofing systémů identi-
fikace hlasu, je také důležitým nástrojem pro vývoj detektorů spoofingu a protiopatření.

Modely VC byly dříve trénovány převážně na paralelních (tj. dva řečníci čtou stejný
text) a na vysoce kvalitních audio materiálech. Cílem této práce bylo prozkoumat vývoj VC
na neparalelních datech a na signálech nízké kvality, zejména z veřejně dostupné databáze
VoxCeleb.

Práce vychází z moderní architektury AutoVC definované Qianem et al. Je založena
na neurálních autoenkodérech, jejichž cílem je oddělit informace o obsahu a řečníkovi do
samostatných nízkodimenzionálních vektorových reprezentací (embeddingů). Cílová řeč se
potom získá nahrazením embeddingu zdrojového řečníka embeddingem cílového řečníka.
Qianova architektura byla vylepšena pro zpracování audio nízké kvality experimentováním
s různými embeddingy řečníků (d-vektory vs. x-vektory), zavedením klasifikátoru řečníka
z obsahových embeddingů v adversariálním schématu trénování neuronových sítí a laděním
velikosti obsahového embeddingu tak, že jsme definovali informační bottle-neck v přís-
lušné neuronové síti. Definovali jsme také další adversariální architekturu, která porovnává
původní obsahové embeddingy s embeddingy získanými ze zkonvertované řeči.

Výsledky experimentů prokazují, že neparalelní VC na nekvalitních datech je skutečně
možná. Výsledná audia nebyla tak kvalitní případě “hi fi” vstupů, ale výsledky ověření
řečníků po spoofingu výsledným systémem jasně ukázaly posun hlasových charakteristik
směrem k cílovým řečníkům.

Keywords
voice conversion, speech processing, x-vector, d-vector, autoencoder, verification, spoofing,
wavenet, neural networks

Klíčová slova
konverze hlasu, zpracování řeči, x-vektor, d-vektor, autoenkodér, verifikace, spoofing, wavenet,
neuronové sítě

Reference
BRUKNER, Jan. Non-Parallel Voice Conversion. Brno, 2020. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor doc. Dr. Ing.
Jan Černocký

4

Rozšířený abstrakt
Cílem konverze hlasu (voice conversion, VC) je převést hlas zdrojového řečníka na hlas
cílového řečníka. Technika je populární je u vtipných internetových videí, ale má také řadu
seriózních využití, jako je dabování audiovizuálního materiálu a anonymizace hlasu (napřík-
lad pro ochranu svědků). Vzhledem k tomu, že může sloužit pro spoofing systémů identi-
fikace hlasu, je také důležitým nástrojem pro vývoj detektorů spoofingu a protiopatření.

Modely VC byly dříve trénovány převážně na paralelních (tj. dva řečníci čtou stejný
text) a na vysoce kvalitních audio materiálech. Cílem této práce bylo prozkoumat vývoj VC
na neparalelních datech a na signálech nízké kvality, zejména z veřejně dostupné databáze
VoxCeleb.

Práce nejdříve zadefinuje konverzi hlasu, rozdíl mezi paralelní a neparalelní konverzí
a následne tzv. one-shot konverzí. One-shot konverze znamená, že mluvčí, na kterých je
systém testován nebyli zahrnuti v trénovací sadě. Tato technika získává v posledním roce
více pozornosti díky vývoji a snaze posouvat hranice v oblasti konverze hlasu.

Dále je popsána Voice Conversion Challenge (VCC). VCC je soutěž, ve které se snaží
účastníci vytvořit co nejlepší systém pro konverzi hlasu. Se systémem, který vznikl z této
práce jsme se jí také účastnili, právě použitím one-shot metody.

Před samotným jádrem jsou nejdříve zadefinovány vrstvy a aktivační funkce neuronových
sítí, které jsou dále používány.

V hlavní části práce jsou popsány autoenkodéry jako neuronové sítě, které mohou
rozdělit řeč na část reprezentující mluvčího a část reprezentující obsah, tzv. "Speaker
disentanglement". Této techniky využívá více systémů a tři z nich jsou detailněji pop-
sány: CycleVAE využívá modifikovaný autoenkodér – Variational Autoencoder. Následuje
metoda, která využívá textové vstupy pro lepší zadefinování výstupu řečového enkodéru a
zároveň využívá dva klasifikátory, jeden pro separaci pouze informace o mluvčím a druhý
pro kontradiktní (adversarial) trénování obsahové části tak, aby v ní byl co nejvíce potlačený
mluvčí.

Hlavní část práce vychází z moderní architektury AutoVC definované Qianem et al.
Je založena opět na neurálních autoenkodérech. Tato metoda používá separátně vytréno-
vaný extraktor embeddingů mluvčího (vektor, který jej reprezentuje). Dekodér se pod-
miňuje tímto embeddingem, tak aby vytvořil opět nahrávku zrojového mluvčího. Díky
tomu můžeme trénovat tento systém standardní objektivní funkcí na rekonstrukci původ-
ního vstupu.

Řeč cílového řečníka se potom získá nahrazením embeddingu zdrojového řečníka právě
embeddingem cílovým. Qianova architektura byla vylepšena pro zpracování audio nízké
kvality experimentováním s různými embeddingy řečníků (d-vektory vs. x-vektory). Dále
jsme se inspirovali výše uvedenými metodami a modifikovali jsme tuto metodu zavedením
klasifikátoru řečníka z obsahových embeddingů v adversariálním schématu trénování neu-
ronových sítí a laděním velikosti obsahového embeddingu tak, že jsme definovali informační
bottle-neck v příslušné neuronové síti. Definovali jsme také další adversariální architekturu,
která porovnává původní obsahové embeddingy s embeddingy získanými ze zkonvertované
řeči, tato metoda je zase inspirována způsobem trénování systému CycleVAE.

Důležitou součástí systémů pro konverzi hlasu je vokodér, který transformuje spektrální
reprezentaci nahrávky zpět do podoby signálu. V práci jsou popsány dva vokodéry: dnes již
téměř legendární WaveNet a poté Parallel WaveGAN. WaveNet byl vyvinutý v roce 2016
a získal si velkou popularitu, díky tomu, že dokáže generovat nahrávky ve velmi vysoké
kvalitě. Nevýhodou WaveNetu je, že generování je časově velmi náročné. Tento problém řeší

druhý zmíněný vokodér Parallel WaveGAN, který dosahuje stejné kvality syntetizovaného
hlasu, ale dokáže jej produkovat v reálném čase.

Jedním z cílů této práce je vyzkoušet konverzi hlasu na nekvalitních datech. V další
části je zadefinován dataset, na kterým je systém trénován.

Výsledky experimentů prokazují, že neparalelní VC na nekvalitních datech je skutečně
možná. Výsledná audia nebyla tak kvalitní případě “hi fi” vstupů, ale výsledky ověření
řečníků po spoofingu výsledným systémem jasně ukázaly posun hlasových charakteristik
směrem k cílovým řečníkům.

Non-Parallel Voice Conversion

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Jan Černocký. The supplementary information was provided
by Mr. Tomi Kinnunen. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

. .
Jan Brukner

June 10, 2020

Acknowledgements
I would like to thank to Jan "Honza" Černocký and Tomi Kinnunen from University of
Eastern Finland for valuable advices and neverending motivation.

Contents

1 Introduction 3
1.1 Claims of this Thesis . 3
1.2 Scope of Chapters . 3

2 Voice Conversion Overview 5
2.1 Parallel Voice Conversion . 5
2.2 Non-Parallel VC . 5
2.3 One-Shot Voice Conversion . 6
2.4 Voice Conversion Challenge . 6

2.4.1 Baseline Systems . 7

3 Neural Networks 9
3.1 Layers . 9
3.2 Activation Functions . 11

4 Speaker Disentanglement for Voice Conversion 12
4.1 Autoencoder Architecture . 12

4.1.1 Speaker Encoder . 13
4.1.2 Content Encoder . 13
4.1.3 Decoder . 13
4.1.4 Variational Autoencoders . 14

4.2 CycleVAE VC . 16
4.3 Non-Parallel Sequence-to-Sequence Voice Conversion 17
4.4 AutoVC . 19

4.4.1 AutoVC Structure . 20
4.4.2 Speaker Encoder . 21
4.4.3 Training . 22

5 Vocoders in Voice Conversion 23
5.1 WaveNet . 23

5.1.1 Conditional WaveNet . 25
5.2 Parallel WaveGAN . 25

6 Data and Metrics 28
6.1 Datasets . 28

6.1.1 VCTK . 28
6.1.2 VoxCeleb dataset . 28

6.2 Metrics . 29

1

6.2.1 Subjective Metrics . 29
6.2.2 Objective Metrics . 29
6.2.3 Testing VC with Speaker Verification and Spoofing 29

7 Experiments 31
7.1 Feature extraction . 31
7.2 Embeddings . 31

7.2.1 D-vector embeddings . 32
7.2.2 X-vector embeddings . 32

7.3 Improving Disentanglement of Speaker and Content Information 34
7.3.1 Auxiliary speaker classifier . 34
7.3.2 Bottleneck consistency training . 36

7.4 Training and evaluation . 37
7.4.1 Vocoders . 37
7.4.2 AutoVC training . 38
7.4.3 Evaluation . 39

8 Conclusion 42
8.1 Future works . 42

8.1.1 Follow-up works . 42

Bibliography 44

Appendices 47

A Cookbook 48
A.1 Libraries and Code . 48
A.2 Media Content . 49

2

Chapter 1

Introduction

Voice conversion (VC) is one of speech processing fields closely related to speech synthesis,
voice cloning or speaker identification. The goal of voice conversion is to transform speech
of the source speaker to sound like it was uttered by target speaker while not altering
linguistic content.

Artificial speech of desired speaker can be also generated using text to speech system
trained on target speaker, but these systems are usually only trained for specific speaker
and do not work on other speakers. This problem might be solved by using voice cloning
techniques, but there is no control over target speakers prosody which is, in some cases,
useful to preserve. Voice conversion does not have hard definition in terms of which parts
of the speech to convert. For the purposes of voice conversion, we can split speech into
linguistic content, timbre and prosody, where prosody means fundamental frequency and
speaking rate. What is always transformed is timbre but even such a speaker specific
component as fundamental frequency can be useful not to convert (for example in singing
voice conversion). Similar case is with the speaking rate, which is sometimes useful to
transform, but in some applications it is better to preserve source speakers rate, for example
for dubbing purposes. Usually, quality of VC system is measured in terms of naturalness of
resulting voice and similarity to the target speaker. But also other methods like spoofing
might be used.

Voice conversion techniques can be used for spoofing speaker verification systems and
to develop counter measures. Rising topic for a few last years is speaker privacy, where the
goal is to hide speaker identity, voice conversion might serve as anonymization method.

1.1 Claims of this Thesis
In this thesis, I am focusing mainly on one-shot voice conversion, which means, that the
system is able to convert voice from and to any desired speaker with only few seconds of
audio samples. VC systems are usually developed and evaluated using clean audio data
recorded in controlled environment without background noise. Second main task is to
evaluate one of current VC systems on wild dataset and to examine quality degradation.

1.2 Scope of Chapters
Further in the thesis, the voice conversion field and it’s variations are summarized with
definition of parallel and non-parallel voice conversion, followed with description of Voice

3

Conversion Challenge. Next, a specific family of VC techniques, speaker disentanglement,
is presented. Most of the VC systems transform only spectral representation of speech,
therefore it is crucial to use high-quality vocoders to transform spectral representations
into raw speech. Some of neural vocoders are described in the next chapter. Thesis follows
with used datasets and experiments. It is concluded in the last chapter.

4

Chapter 2

Voice Conversion Overview

In this chapter, the difference between parallel and non-parallel VC is described, following
with the types of non-parallel VC. Later, the Voice Conversion Challenge is introduced.

2.1 Parallel Voice Conversion
In parallel voice conversion, the voice conversion model (further denoted only as ”model“)
is trained using parallel dataset. That means that the same set of utterances from each
speaker is present in the training dataset. Usually, training is done for each pair of source –
target (S – T) speakers (so called one-to-one VC). Typical structure of parallel VC models is
shown in figure 2.1. For parallel VC systems, some form of time alignment (e.g. Dynamic
Time Warping) is typical. Time alignment allows direct mapping from source to target
features and makes conversion of the prosody easier. These systems have slightly better
similarity and naturalness results than the non-parallel ones, but this difference is getting
less significant with current state-of-the-art models. The need of parallel dataset on the
other hand is a huge disadvantage of this approach, which leaves it with very few real world
applications.

2.2 Non-Parallel VC
Non-parallel VC, where parallel dataset is no longer needed, has more practical use. VC
techniques using this configuration are being developed for past few years and they have
achieved impressive results.

Non-parallel models have to learn mapping from one speaker to another without being
able to align frames with the same content. Neural networks are almost exclusively used
for this task and various models were adapted such as Generative Adversarial Networks,
Autoencoders or Variational Autoencoders.

We can further split non-parallel VC systems into groups depending on their ”level of
generalization“:

∙ One-to-One: Similarly to the parallel VC, a special model is trained for each pair of
speakers.

∙ Many-to-Many: One universal model can be used to perform conversion among vari-
ous speakers from the training dataset.

5

Feature
Extraction

Feature
Extraction

Time
alignment

Mapping
function

Figure 2.1: Scheme of basic parallel VC system. Training part is on the top and conversion
part at the bottom. Mapping function can be Gaussian Mixture Model or Neural Network
based model. Mapping function is unique for each source – target speaker pair → one-to-one
conversion system.

2.3 One-Shot Voice Conversion
Above mentioned many-to-many systems consider only conversion among speakers in the
training dataset. In order to step up generalization of VC systems, one-shot voice conversion
was introduced. One-shot means, that as little as one utterance of the source or target
speaker is required to perform transformation from one speaker to another. Some authors
call this type of VC as ”Zero-shot“ conversion (e.g. [14]), but I decided to follow ”One-shot“
notation, because at least one utterance of each speaker is needed.

It is also worth to mention, that with this level of generalization, VC field is slowly
approaching the speaker identification, where models are always tested against speakers
outside of the training dataset.

2.4 Voice Conversion Challenge
Voice Conversion Challenge (VCC) is a series of events promoting development of new VC
techniques and providing comparison of submitted VC systems using identical data and
evaluation methods. Two challenges were organized in years 2016 [20] and 2018 [5], with
the 2020 evaluation currently in progress.

In the first challenge, there was only one task: to create VC system using parallel
dataset. The second challenge consisted of two tasks: Mandatory ”Hub“ task using parallel
data and optional ”Spoke“ with non-parallel data. This year (2020), the third VCC takes
place, where no parallel conversion is done at all. It once again consists of two tasks. In the
first one, the goal is to develop non-parallel VC system, but in the second one, VC settings
are cross-lingual – samples of the target speakers are uttered in different language than the
source speakers. Selected target languages are Finnish, German and Mandarin.

6

Both past challenges used two subjective metrics for evaluation (exact conditions are
described in [20] or [5]):

∙ Naturalness: Subjects evaluated naturalness of converted speech samples on standard
Mean Opinion Score (MOS) scale from 1 to 5. Original samples were included for
reference.

∙ Similarity: Subjects were asked to compare two recordings and decide whether they
were produced by the same speaker. Subjects were also supposed to ignore distortion
and artefacts in converted speech.

(a) VCC16 results. S and T denote original source
and target speech samples [20].

(b) VCC18 Hub task results. S00 and T00 denote
original source and target speech samples [5].

Figure 2.2: Comparison among systems submitted to VCC16 and VCC18. While the best
systems from VCC16 did not pass 3.5 naturalness MOS and 80 % similarity, the best
systems from VCC18 passed both values and in terms of MOS, even 4.0. Parallel dataset
was used in both tasks.

There is a huge improvement between systems from year 2016 and 2018 in terms of
both naturalness and similarity as seen in figure 2.2. The main difference is using neural
networks as model and developing better quality vocoders such as WaveNet [21]. Also,
from comparison of Hub and Spoke tasks in figure 2.3, we can deduce, that even though
non-parallel VC is harder, it is possible to obtain the same or even better results compared
to parallel VC.

2.4.1 Baseline Systems

The baseline system in the first challenge was a modified voice conversion system from
FestVox toolkit1, It used fundamental frequency and Mel-cepstrum as the input, parallel ut-
terances were synchronized using dynamic time warping (DTW) and the mapping was done
using joint Gaussian Mixture Model (GMM) trained with Expectation-Maximization (EM)
algorithm. F0 was converted using global mean and variance of the target speaker. Con-
verted Mel-cepstral coefficients and F0 were then synthetized to waveform using FestVox’s
vocoder.

1http://festvox.org/

7

http://festvox.org/

(a) VCC18 Hub task results. S00 and T00 denote
original source and target speech samples [5].

(b) VCC18 Spoke task results. S00 and T00 denote
original source and target speech samples [5].

Figure 2.3: Comparison of results of Hub and Spoke task. Most systems achieved worse
results in non-parallel settings except for the best system “N10“, which has a slightly better
results in Spoke task.

Sprocket [3] was used as baseline system for Hub task in VCC18. It can perform
conversion in three modes; the first one uses similar principle as above described system
from FestVox, described in detail in [19]; the second approach uses vocoder-free method for
timbre conversion, where differential GMM (DiffGMM) trained filter is applied directly to
the waveform without F0 conversion and the third one combines DiffGMM approach with
F0 transformation.

The second baseline for VCC18 was Merlin toolkit [25], which is again supporting only
parallel conversion and uses deep neural network (DNN) for spectral feature mapping.

There are again two baseline systems developed for VCC20. The first one uses Auto-
matic Speech Recognition system to extract content of the speech utterance and then syn-
thesizes target speaker’s speech using text-to-speech model. It is part of ESPnet toolkit2.
The second one is CycleVAE [18] and it is further described in section 4.2 as it is more
related to the core of this work.

2https://github.com/espnet/espnet

8

Chapter 3

Neural Networks

In this chapter, layers and activation functions of used neural networks (NN) are described.
Only layers, that are further referred to in the thesis are mentioned. Objective functions
are described for each network separately in the text.

Notation of equations is adapted from Pytorch documentation1 [11].

3.1 Layers
Numerous different layers are used in NNs. Some of them, that are used further in this
thesis are defined in this section. In the following equations, data vector x = [𝑥1, . . . , 𝑥𝐷]⊤

Vector of biases b𝑙𝑎𝑦𝑒𝑟 is explicitly added.

∙ Linear layer, sometimes called fully connected or dense, consists only of multipli-
cation of input data with weights and summing them together. Weight matrix has
dimensions 𝐷 ×𝑁 , where 𝑁 is number of cells in layer.

𝑓𝐿(x;W) = Wx + b𝐿 (3.1)
𝑓𝐿 : R𝐷 −→ R𝑁 , (3.2)

where x = [𝑥1, . . . , 𝑥𝐷]⊤ is input vector, and b𝐿 is 𝐷 dimensional vector of biases.

∙ Convolutional layer applies convolution instead of multiplication. In speech pro-
cessing, 1D convolutions along frequency domain are usually used. Kernel size is
𝑘 = (2𝑛 + 1) , 𝑛 ∈ N0.

𝑓𝐶(x;W) = b𝐶 +

𝐷∑︁
𝑖=1

(𝑘−1)/2∑︁
𝑗=−(𝑘−1)/2

W (·, 𝑗)x (𝑖 + 𝑗) (3.3)

𝑓𝐶 : R𝐷 → R𝑁 (3.4)

Note, that operation used in equation 3.3 is actualy a cross-correlation instead of
convolution. The only difference between those two operations is kernel flip. Kernel
values are learnt during training, therefore there is no difference between outputs. To
avoid filtering outside of the input vector or reducing output size, (zero) padding of
size 𝑝 = (𝑘 − 1)/2 is usually used.

1https://pytorch.org/docs/stable/

9

https://pytorch.org/docs/stable/

∙ Batch Normalization is used to speed up training of the network. It normalizes
features across the batch. In speech processing, 1D version is used with statistics
computed per-dimension.

𝑓𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚(x) =
x− E (x)

𝜎 (x)
× 𝛾 + 𝛽, (3.5)

where 𝛾 and 𝛽 are learnable parameters

∙ Long Short Term Memory (LSTM) layer is a variation of the Recurrent neural layer.
Recurrent neural networks (RNN) process input in sequence and they have two inputs,
one regular and the second one is from the previous – hidden – step. Both inputs
have they own set of weights Wi,_ and Wh,_ respectively. RNN’s output at time 𝑡
is computed as ℎ(𝑡) = tanh

(︀
W𝑖,𝑛x𝑡 + 𝑏𝑖,𝑛 + Wℎ,𝑛ℎ(𝑡−1) + 𝑏ℎ,𝑛

)︀
. x is again a feature

vector, and subscript 𝑡 is added in order to denote precisely its time. Standard RNN
have problem, that past inputs loose quickly influence on the output (the network
forgets). These issues are addressed by LSTM, where cell state is introduced. Cell
state 𝑐𝑡 is a hidden feature of the cell, it is passed to the next step with only residual
modifications. This leads to a possibility of keeping long time context in the network.
Scheme of LSTM cell is in figure2 3.1.

𝑖𝑡 = 𝜎 (W𝑖,𝑖x𝑡 + 𝑏𝑖,𝑖 + Wℎ,𝑖ℎ𝑡−1 + 𝑏ℎ,𝑖)

𝑓𝑡 = 𝜎 (W𝑖,𝑓x𝑡 + 𝑏𝑖,𝑓 + Wℎ,𝑓ℎ𝑡−1 + 𝑏ℎ,𝑓)

𝑔𝑡 = tanh (W𝑖,𝑔x𝑡 + 𝑏𝑖,𝑔 + Wℎ,𝑔ℎ𝑡−1 + 𝑏ℎ,𝑔)

𝑜𝑡 = 𝜎 (W𝑖,𝑜x𝑡 + 𝑏𝑖,𝑜 + Wℎ,𝑜ℎ𝑡−1 + 𝑏ℎ,𝑜)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

Figure 3.1: LSTM cell scheme.

2Picture is taken from Christopher Olah’s blog https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

10

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

3.2 Activation Functions
Stack of only linear layers would result only in a linear transformation of the input. To
break the linearity, activation function needs to be used. For example, LSTM layer has
these activations built inside, but other layers, like linear of convolutional, need to use
them explicitly.

Typically used activation functions are:

∙ Rectified Linear Unit – ReLU (𝑥) = 𝑚𝑎𝑥 (0, 𝑥) and its modified version
LeakyReLU (𝑥) = 𝑚𝑎𝑥 (𝑐𝑥, 𝑥) where 𝑐 ∈ ⟨0, 1⟩

∙ Logistic sigmoid – 𝜎 (𝑥) = 1
1+𝑒−𝑥

∙ Hyperbolic tangent – tanh (𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

∙ Softmax is usually used at the end of network together with cross-entropy loss. It
rescales input vector so that it sums up to one and can thus serve as probabilities in
categorical distribution:

softmax (x𝑖;x) =
exp (x𝑖)∑︀𝐷
𝑗=1 exp (x𝑗)

(3.6)

Figure 3.2: Activation functions.

11

Chapter 4

Speaker Disentanglement for Voice
Conversion

In general, disentanglement refers to a method of separating compound object into prefer-
ably disjoint features.

In the voice conversion, Speaker Disentanglement is a technique of separating speech into
speaker and linguistic (content) dependent representations that can be later reconstructed
back to speech. To enforce this separation, some form of dimensionality reduction needs to
be done on the input speech data.

In this chapter, the concept of autoencoder architecture and a way to use it for speaker
disentanglement is described. Later, some VC methods, which are using autoencoders and
speaker disentanglement, are described.

4.1 Autoencoder Architecture
The autoencoders are neural network architectures, that consist of two parts, encoder 𝐸
and decoder 𝐷. The task of the encoder is to reduce dimensionality of the input data X
and create information bottleneck.

z = 𝐸(X) (4.1)

On the other hand, decoder’s task is to re-create input data from the output of the
encoder – often called latent features – with as small information loss as possible.

X̂ = 𝐷 (z) (4.2)

Typically autoencoders are trained using mean squared error loss function to achieve data
reconstruction.

ℒ𝐴𝐸 = E
[︁
‖X̂−X‖22

]︁
(4.3)

In order to create different output or to reconstruct more precise output, decoder can
be conditioned on some external information. This information can be varying from simple
binary flag up to the outputs of the whole neural network. Both approaches are used in
the voice conversion. This architecture can be modified by adding more encoders, each
one can be trained to extract specific part of the input data. Typically two encoders are
used in voice conversion systems. One for extracting speaker-dependent information 𝐸𝑆

and the other one for the content 𝐸𝐶 . Speaker-dependent information is usually in form of
a embedding (one vector, that uniquely describes speaker). Input of the decoder are latent

12

features from 𝐸𝐶 and it is further conditioned on speaker embedding. Equation 4.2 can be
now rewritten into the following:

X̂s,u = 𝐷 (𝐸𝐶 (X𝑠,𝑢) , 𝐸𝑆 (X𝑠)) , (4.4)

where 𝑠 and 𝑢 denote speaker and utterance respectively. X𝑠 is any utterance of the speaker
𝑢.

To perform voice conversion, we can simply replace speaker embedding 𝐸𝑆(X𝑠) with
embedding of desired target speaker 𝐸𝑆(X𝑡).

X̂t,u = 𝐷 (𝐸𝐶 (X𝑠,𝑢) , 𝐸𝑆 (X𝑡)) (4.5)

4.1.1 Speaker Encoder

Speaker Encoder can be either trained together with whole VC system or use an already
pre-trained system for extracting some form of speaker embedding such as x-vectors [17] or
d-vectors [23]. Often, the assumption about embedding is, that it stays constant for any
utterance of the same speaker. This assumption is false as seen in the figure 4.1, but mean
vector of several embeddings can be taken as a representative and used further for the VC
system training.

4.1.2 Content Encoder

Content Encoder’s task is to derive speaker independent information from the input speech.
Phrase speaker independent is important as even though we assume, that the output is some
form of text representation (it can be called ”text embeddings“), there is more information

”hidden“ in latent features such as prosody or background noise.
There are several proposals how to force 𝐸𝐶 to remove speaker information from the

utterance, naMely:

∙ Create bottleneck narrow enough, that all speaker information in reconstructed speech
is taken from speaker embedding [14].

∙ Use additional speaker classifier to classify latent features and train 𝐸𝐶 against it [27].

∙ Slightly different approach is to use separately trained automatic speech recognition
system to extract the text information in form of text embeddings

4.1.3 Decoder

The decoder creates desired speaker’s spectrogram using latent features from 𝐸𝐶 and target
speaker’s embedding as the only information about speaker.

It is worth to notice, that the decoder has a similar functionality as text-to-speech (TTS)
models, which take text as the input data (vs. latent features) and are trained on a specific
speaker or as voice cloning systems, which, again, take text as input, but also use speaker
embedding to generate target speaker’s voice.

Decoder’s architecture is usually similar to some TTS model as they have similar pur-
pose – to produce spectrogram. Both [14] and [27] used slightly modified architecture of
Tacotron 2 [16].

13

Figure 4.1: t-SNE [6] visualization of speaker embeddings. Shown embeddings are x-vectors
of subset of speakers from VoxCeleb dataset.

Postnet

Both systems described further in Sections 4.3 and 4.4 use post-network at the end of the
decoder. It was proposed in Tacotron 2 [16] to improve Mel-spectrogram’s fine details. Post-
net’s architecture is show further in table 4.1. It predicts residual of the Mel-spectrogram
and adds it to the output of the decoder. Comparison of Mel-spectrograms with and without
postnet can be seen in Figure 4.2.

4.1.4 Variational Autoencoders

VAEs are generative models, which use similar architecture as autoencoders. Generative
model means that it can create new unseen data. In VAEs, it is done by sampling from
the latent space. In order to be able to generate meaningful data, the latent space needs
to be regular, which means that sampling the slightly different features result into slightly
different meaning as visualised in Figure 4.3. Basic autoencoders do not guarantee this
property, thus cannot be regarded as generative models.

14

Figure 4.2: Comparison of the decoder (D) output with added postnet (PSNT) residual in
the first plot, only decoder outputs without postnet output in the second plot, and finally
only postnet’s residual multiplied by 1

𝑚𝑎𝑥(P(𝑥)) to get values between 0 and 1.

Figure 4.3: Visualization of regular latent space (underlaying circles) and its decoded rep-
resentations (shapes). Picture is from [15].

VAE’s encoder does not output a sample in the latent space, but a latent probability
distribution instead. Latent feature is then sampled from that distribution and decoded:

𝑝 (z|x) = 𝐸 (x) (4.6)
z ∼ 𝑝 (z|x) (4.7)
x̂ = 𝐷 (z) (4.8)

15

Furthermore, 𝑝 (z|x) is normal distribution. To achieve regular latent space, KL-divergence
term in loss function is introduced to push latent space towards normal distribution [15]:

ℒ𝑉 𝐴𝐸 = E
[︁
‖X̂−X‖22

]︁
−𝐷𝐾𝐿 (𝑝 (z|x) ||𝒩 (0, I)) (4.9)

KL-divergence

KL-divergence (short for Kullback-Leibler divergence) is a term, that measures difference
between two probability distributions 𝑝 (𝑥) and 𝑞 (𝑥). It is defined for continuous distribu-
tions as:

𝐷𝐾𝐿 (𝑝||𝑞) =

∫︁
𝒳
𝑝 (𝑥) log

(︂
𝑝 (𝑥)

𝑞 (𝑥)

)︂
(4.10)

KL-divergence is not commutative operation 𝐷𝐾𝐿 (𝑝||𝑞) ̸= 𝐷𝐾𝐿 (𝑞||𝑝) and it has a close
form solution for 𝐷𝐾𝐿 between diagonal multivariate Gaussian distribution and multivariate
standard normal distribution 𝒩 (0, I)1:

𝐷𝐾𝐿

(︀
𝒩

(︀
[𝜇1, . . . , 𝜇𝐷]𝑇 , 𝑑𝑖𝑎𝑔(𝜎2

1, . . . , 𝜎
2
𝐷)

)︀
||𝒩 (0, I)

)︀
=

1

𝐷

𝐷∑︁
𝑑=1

(︀
𝜎2
𝑑 + 𝜇2

𝑑 − ln𝜎2
𝑑 − 1

)︀
(4.11)

4.2 CycleVAE VC
CycleVAE VC2 [18] uses cyclic variational autoencoder to perform voice conversion, it is
also one of the baseline systems in Voice Conversion Challenge 2020. It creates one-to-one
VC system.

The cycle can be broken into two parts: in the first part, input features of the source
speaker are converted to the target speaker and also back to themselves; in the second part
converted target features are converted back to the source speaker as shown in figure 4.4.

Used features are Mel-spectrogram and fundamental frequency extracted using WORLD
toolkit [8]. 𝑓0 is transformed linearly in log-domain using mean and variance of the source
and target speakers pitch:

𝑓0𝑡𝑎𝑟 =
𝜎𝑡𝑎𝑟
𝜎𝑠𝑟𝑐

(𝑓0𝑠𝑟𝑐 − 𝜇𝑠𝑟𝑐) + 𝜇𝑡𝑎𝑟 (4.12)

CycleVAE creates separate model for each speaker pair, therefore there is no need to
use embeddings with speaker information. We can replace it by simply using a binary
flag. Authors also state, that for many-to-many conversion, one-hot vector can be used to
determine desired target speaker. However, in order to perform one-shot VC, additional
speaker information (and separately extracted) must be provided instead of using one-hot
vector.

Loss of this network is based on the standard VAE loss, with exception, that mean
absolute error is used instead of mean squared error. Loss for one cycle is then implemented

1https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Examples also used in Cyc-
leVAE’s [18] implementation, https://github.com/patrickltobing/cyclevae-vc/

2Implementation is available on https://github.com/patrickltobing/cyclevae-vc

16

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Examples
https://github.com/patrickltobing/cyclevae-vc/
https://github.com/patrickltobing/cyclevae-vc

Figure 4.4: Scheme of CycleVAE VC training process. Top part of the figure is simple
VAE voice conversion and whole graph shows one cycle of CycleVAE during training phase.
Picture is heavily inspired by [18].

as follows:

ℒ𝐶𝑦𝑐𝑙𝑒,𝑛 = E
[︁
‖X̂𝑛,𝑡 −X0,𝑏‖

]︁
+E

[︁
‖X̂𝑛,𝑏 −X0,𝑏‖

]︁
−𝐷𝐾𝐿 (𝑝 (z𝑛,𝑡|X𝑛−1,𝑏) ||𝑁 (0, I))

−𝐷𝐾𝐿 (𝑝 (z𝑛,𝑏|Y𝑛) ||𝑁 (0, I))

(4.13)

All symbols follow the notation from figure 4.4. Full loss is then constructed as sum over
all 𝑁 cycles:

ℒ𝐶𝑦𝑐𝑙𝑒𝑉 𝐴𝐸 =

𝑁∑︁
𝑛=1

ℒ𝐶𝑦𝑐𝑙𝑒,𝑛 (4.14)

4.3 Non-Parallel Sequence-to-Sequence Voice Conversion
In this method3, proposed in [27], phonetic transcriptions T = [𝑡1, ...𝑡𝑀] are used together
with acoustic features. Furthermore, auxiliary speaker classifier is used to enforce better
disentanglement. The model is trained on both auto-encoding and text-to-speech task.
Whole structure of this system is shown in figure 4.5.

Five modules are used in training or conversion process:
3Implemenation is available on https://github.com/jxzhanggg/nonparaSeq2seqVC_code

17

https://github.com/jxzhanggg/nonparaSeq2seqVC_code

Figure 4.5: The architecture of Sequence-to-Sequence VC model. Image is taken from [27].

∙ Speaker encoder 𝐸𝑆 is used for extracting speaker embedding e𝑠 from acoustic fea-
tures. It consists of 2 BLSTM layers with 128 output cells followed by average pooling
and one fully connected layer with tanh activation.

∙ Text encoder 𝐸𝑇 extracts vector of text embeddings H𝑡 =
[︀
h𝑡
1, ...,h

𝑡
𝑛

]︀
from phoneme

transcription of the input speech.

∙ Recognition encoder 𝐸𝑅 is trained to extract the same sequence of embeddings
H𝑟 = [h𝑟

1, ...,h
𝑟
𝑛] as 𝐸𝑇 except it takes acoustic features as the input. This is the

”content encoder“ when following the terminology from above.

∙ Auxiliary classifier 𝐶𝑆 predicts speaker identity from H𝑟 and is used to eliminate
remaining speaker dependent information in H𝑟.

∙ Decoder 𝐷𝐴 recovers the acoustic feature sequence from H𝑟 and e𝑠 for auto-encoding
or H𝑡 for text-to-speech task (both are used during training). Decoder predicts two
frames at each time step. Architecture of the decoder is similar to Tacotron 2 [16].

Several Loss functions are used for training:

1. Loss for phoneme sequence classification compares H𝑟 with original phoneme sequence
using Cross Entropy.

ℒ𝑇𝐶 = E [CE(t𝑛, softmax(Wh𝑟
𝑛))] , (4.15)

where W are trainable parameters of the softmax layer.

2. 𝐶𝑆 module is trained again with cross entropy with p𝑠 as true speaker labels and p̂𝑠
𝑛

as predicted speaker probability.

ℒ𝐶𝑆 = E [CE (p𝑠, p̂𝑠
𝑛)] (4.16)

18

3. Linguistic embedding similarity loss is introduced to increase similarity between h𝑟

and h𝑡 when 𝑚 = 𝑛 and reduce similarity for 𝑚 ̸= 𝑛 .

ℒ𝐶𝑇 =

𝑁,𝑁∑︁
𝑚=1,𝑛=1

I𝑚𝑛𝑑𝑚𝑛 + (1 − I𝑚𝑛) max(𝑑𝑚𝑛, 0) (4.17)

𝑑𝑚𝑛 =

⃦⃦⃦⃦
h𝑟
𝑚

‖h𝑟
𝑚‖2

− h𝑡
𝑛

‖h𝑡
𝑛‖2

⃦⃦⃦⃦2
2

, (4.18)

where I is indicator matrix and I𝑚𝑛 = 1 when 𝑚 = 𝑛 and 0 otherwise. 𝑑𝑚𝑛 is distance
between h𝑟

𝑚 and h𝑡
𝑛.

4. Adversarial loss is used for recognition encoder training. It compares 𝐶𝑆 ’s predicted
probabilities p̂𝑠

𝑛 with uniform distribution e𝑛 = 1
𝑁𝑠𝑝𝑘𝑟𝑠

. This loss function forces
recognition encoder to produce text embeddings with no information about speaker.

ℒ𝐴𝐷𝑉 = E
[︀
‖e− p̂𝑠

𝑛‖22
]︀

(4.19)

5. Speaker encoder is trained using cross entropy loss.

ℒ𝑆𝐸 = CE (ps, softmax (Vhs)) , (4.20)

where V are trainable parameters of the softmax layer.

6. Decoder is trained on reconstruction loss. It is using absolute error instead of squared
error.

ℒ𝑅𝐶 = E
[︁⃦⃦⃦

X̂−X
⃦⃦⃦
1

]︁
(4.21)

7. To end generation of the speech sample during conversion, hidden state of LSTM layer
in decoder is projected into scalar value using a linear layer and sigmoid activation
𝑓𝑒𝑛𝑑. Cross-entropy is used to guess the correct ending frame.

ℒ𝐸𝐷 = 𝐶𝐸
(︁
𝑓𝑒𝑛𝑑, 𝑓𝑒𝑛𝑑

)︁
(4.22)

Text-to-speech and self-reconstruction is alternating iteration by iteration.
Training of this model consists of two stages. During pre-training stage large amount of

speakers is present in training data. In the fine-tuning stage, specific pair of source-target
speaker is trained. Speaker encoder 𝐸𝑆 is also discarded in fine-tuning stage and replaced
with averaged embedding for each speaker.

Resulting Mel-spectrogram is transformed into waveform using WaveNet vocoder[21].
The model is able to perform only one-to-one VC under these conditions, however,

authors claim that many-to-many VC is possible by simply using more speakers in pre-
training stage.

4.4 AutoVC
AutoVC4 [14] is one of the many-to-many VC systems. It uses regular autoencoder and
conditions decoder on the speaker embeddings. This model is also one of the first VC
systems, that is capable of one-shot conversion (called zero-shot in the paper).

4Implemenation is available on https://github.com/auspicious3000/autovc

19

https://github.com/auspicious3000/autovc

AutoVC achieves disentanglement by designing bottleneck narrow enough to exclude
speaker information but wide enough to preserve the content. All this is done without any
adversarial training.

Scheme of the full network is shown in figure 4.6 and its architecture in table 4.1.

Figure 4.6: Scheme of AutoVC autoencoder.

4.4.1 AutoVC Structure

AutoVC autoencoder has the following structure.
Content encoder 𝐸𝐶 extracts content codes (C) from acoustic features. Codes do

not contain only linguistic but all speaker independent information. Input of the 𝐸𝐶 is
Mel-spectrogram concatenated with separately extracted speaker embedding of the source
speaker. Supplied embedding should allow 𝐸𝐶 to learn faster, what information to discard.
Output is vector of content embeddings reduced in both time and channel dimensions. Let
c→ (𝑡) and c← (𝑡) be BLSTM outputs in forward and backward way respectively at time
frame 𝑡. Both are 𝑑𝑛𝑒𝑐𝑘 dimensional vectors. Downsampling rate is 𝑑𝑓 . Final content codes
are extracted as:

C =

⎡⎣(︂c→ (𝑑𝑓 − 1)
c← (0)

)︂
,

(︂
c→ ((𝑖 + 1) 𝑑𝑓 − 1)

c← (𝑖𝑑𝑓)

)︂
, . . . ,

⎛⎝c→

(︁(︁
𝑇
𝑑𝑓

+ 1
)︁
𝑑𝑓 − 1

)︁
c←

(︁
𝑇
𝑑𝑓
𝑑𝑓

)︁ ⎞⎠⎤⎦ (4.23)

Decoder 𝐷 recreates Mel-spectrogram from content encoder and supplied speaker em-
bedding of the target speaker concatenated together. As mentioned in section 4.1.3, archi-
tecture is inspired by Tacotron 2 [16] decoder model. First, it upsamples content codes by
copying them into the same temporal resolution as was the original Mel-spectrogram, then
target speaker embedding is concatenated to each frame (original speaker during training).
To further improve reconstruction, postnet is used and its outputs are added to the decoder
output.

WaveNet conditioned on Mel-spectrograms is used for waveform generation.

20

Table 4.1: Architecture of the AutoVC’s encoder.

Content Encoder
Layer Misc Output
Input - (80 + 256) × 𝑇

3 ×
{︂ Conv1D kernel = 5 512 × 𝑇

BatchNorm1D - -
ReLU - -

2× BLSTM - 𝑑𝑛𝑒𝑐𝑘 × 𝑇

Downsample - 2𝑑𝑛𝑒𝑐𝑘 × 𝑇
𝑑𝑓

Decoder
Layer Misc Output
Input - (2𝑑𝑛𝑒𝑐𝑘 + 256) × 𝑇

𝑑𝑓

Upsample copying (2𝑑𝑛𝑒𝑐𝑘 + 256) × 𝑇

LSTM - 512 × 𝑇

3 ×
{︂ Conv1D kernel = 5 512 × 𝑇

BatchNorm1D - -
ReLU - -

2× LSTM - 1024 × 𝑇

Linear - 80 × 𝑇

Postnet
Layer Misc Output
Input - 80 × 𝑇

4 ×
{︂ Conv1D kernel = 5 512 × 𝑇

BatchNorm1D - -
tanh - -
Conv1D kernel = 5 80 × 𝑇

Table 4.2: Architecture of the Speaker Encoder.

AutoVC’s Speaker Encoder (d-vector system)
Layer Misc Output
Input - 80 × 𝑇

3× LSTM only last output in time domain is considered 768 × 1

Linear projection - 256
𝐿2 normalization - 256

4.4.2 Speaker Encoder

Speaker encoder 𝐸𝑆 in AutoVC system is network extracting deep neural embeddings called
d-vectors [23]. Architecture of the 𝐸𝑆 is similar to the previous method, except that for
AutoVC, the speaker encoder is trained separately.

Loss function used for training is Generalized end-to-end loss function [23]. This loss
was designed specially for embedding extraction and it pulls embeddings from the same
speaker towards their centroid and pushes them further away from centroids of all other
speakers. This is consistent with assumption that embeddings are constant throughout
various utterances of the same speaker.

21

Centroid is computed as mean of embeddings [e𝑘1, . . . e𝑘𝑀] from one speaker 𝑘 :

c𝑘 =
1

𝑀

𝑀∑︁
𝑚=1

e𝑘,𝑚 (4.24)

Training batch is constructed containing 𝑁 different speakers and each speaker has 𝑀 ut-
terances. Then similarity matrix is created as scaled cosine distance (equation 6.2) between
each utterance and each centroid.

𝑆𝑗𝑖,𝑘 = 𝑤 cos (e𝑗𝑖, c𝑘) + 𝑏, (4.25)

where 𝑗 is index of speaker and 𝑖 is index of the utterance. To compute centroid for similarity
matrix when 𝑗 = 𝑘, embedding ek,m=i is excluded to increase stability during training.

c
(−𝑖)
𝑘 =

1

𝑀

𝑀∑︁
𝑚=1,𝑚 ̸=𝑖

e𝑘,𝑚 (4.26)

Similarity matrix is then designed as follows:

𝑆𝑗𝑖,𝑘 =

{︃
𝑤 cos

(︁
e𝑗𝑖, c

(−𝑖)
𝑘

)︁
+ 𝑏 𝑘 = 𝑗

𝑤 cos (e𝑗𝑖, c𝑘) + 𝑏 𝑘 ̸= 𝑗
(4.27)

Final loss function for speaker encoder is then defined as:

ℒ(e𝑗𝑖) = −𝑆𝑗𝑖,𝑗 + log

𝑁∑︁
𝑘=1

exp(𝑆𝑗𝑖,𝑘) (4.28)

4.4.3 Training

AutoVC’s autoencoder is trained only on self-reconstruction error and content code re-
construction error in an almost unsupervised way (speaker encoder was still trained with
supervision).

ℒ𝑃𝑆𝑁𝑇 = E
[︁
‖X̂−X‖22

]︁
, (4.29)

ℒ𝐷 = E
[︁
‖X̃−X‖22

]︁
, (4.30)

ℒ𝐶𝐷 = E
[︁
‖𝐸𝑆

(︁
X̂
)︁
−C‖1

]︁
, (4.31)

ℒ = ℒ𝑃𝑆𝑁𝑇 + ℒ𝐷 + ℒ𝐸 , (4.32)

where X̃ is reconstructed Mel-spectrogram before postnet outputs are added.

22

Chapter 5

Vocoders in Voice Conversion

VC systems usually produce only converted (Mel-)spectrogram which can be used directly
in some cases for example as augmented data for training of some other network, but usually
it needs to be further processed in order to obtain waveform.

In traditional VC systems, high-quality parametric vocoders such as STRAIGHT [1]
or WORLD [8] have been used for feature extraction and synthesis. Some systems are
vocoder-free like sprocket [3] (designs only filter applied directly on waveform). Modern
VC systems usually use neural vocoders such as WaveNet or Parallel WaveGAN, which is
also used in VCC20 baselines.

5.1 WaveNet
WaveNet [21] is one of the state-of-the-art neural vocoders which produces speech with
quality almost similar to the recorded one.

WaveNet models joint probability density function of the signal samples as product of
conditional probabilities of previous samples.

𝑝 (x) =

𝑇∏︁
𝑡=1

𝑝 (𝑥𝑡|𝑥1, 𝑥2, . . . , 𝑥𝑡−1) (5.1)

To consider only past frames and not future ones, causal convolution layers are used (fig-
ure 5.1a). Causal convolution works similarly to the regular convolution, except it computes
output only from previous samples, i. e. this is the convolution, that is used when pro-
cessing online signal, seen in figure. To generate speech, large temporal context is needed.
That means, that large number of convolutional layers would be needed. To increase tem-
poral context, dilated causal convolution layers are used (figure 5.1b). Dilated convolution
achieves larger perception field while using the same kernel size 𝑘 by skipping some inputs
with dilation factor 𝑑.

𝑓 (x;W) = b +

𝐷∑︁
𝑖=1

𝑘·𝑑−1∑︁
𝑗=0

W (·, 𝑘 + 𝑗)x (𝑖 + 𝑑𝑗) (5.2)

In WaveNet, dilation is doubled for each layer up to the limit and then reset to 1.
When considering speech to be stored in 16 bit integer for each sample, the last softmax

layer, which predicts the next timestep, would need to compute 216 = 65536 probabilities.

23

(a) Visualization of causal convolutional layers. (b) Visualization of dilated causal convolutional lay-
ers.

Figure 5.1: Comparison between causal convolution layers and dilated causal convolution
layers. Both stacks use 5 layers with kernel size 2. The regular one has temporal context 5
and the dilated one 16, while using the same number of parameters. Advantage of larger
context is preserved with regular convolutional layers. Both pictures are from [21].

To make it easier to train, the speech is quantized using 𝜇-law:

𝑓𝜇 (𝑥) = 𝑠𝑔𝑛 (𝑥)
ln (1 + 𝜇|𝑥|)

ln 1 + 𝜇
(5.3)

Where 𝑠𝑔𝑛 is a sign function, 𝜇 = 255 and −1 < 𝑥 < 1.
WaveNet is constructed with residual blocks built in stacks. Visualization of residual

block is in figure 5.2. In each block, input is passed through dilated convolution layer.

Figure 5.2: Structure of residual block in WaveNet. Picture is from [21].

Then, a non-linearity is applied:

z = tanh (W𝑘x) ⊙ 𝜎 (W𝑘x) , (5.4)

with ⊙ as element-wise multiplication and W as weights of dilated convolution layer in 𝑘-th
residual block. After non-linearity, 1x1 convolution is applied and output is either added
to the input of the block. Output of the residual block serves as one of the inputs for the
next block in stack. Each stack processes the whole signal.

Input is passed through causal convolution layer before being fed to the residual blocks.
Output of each stack is also (before adding the input) saved as skip-connection. Once

all residual blocks are processed, skip-connections are summed together and then ReLU,

24

1x1 convolution, ReLU and one more 1x1 convolution are applied. Finally, softmax layer
predicts correct quantized sample.

5.1.1 Conditional WaveNet

WaveNet, in general, is a generative model, i.e. it creates new samples from previous ones.
To produce more customized outputs, WaveNet can be conditioned globally or locally on
additional input. Local conditioning on Mel-spectrogram is used, when using WaveNet as
a vocoder.

Input Mel-spectrogram needs to be first upsampled to match output signal in time
domain. To do that, interpolation and 2d convolution are stacked into layers. In each
stack, Mel-spectrogram is stretched by certain scale and product of the scales must match
hop-size of Discrete Fourier transform used for spectrogram extraction.

Upsampled Mel-spectrogram s is then passed through 1d convolutional layer and summed
together with outputs of dilated convolutional layer in residual block:

z = tanh (W𝑘x + V𝑘s) ⊙ 𝜎 (W𝑘x + V𝑘s) , (5.5)

where V𝑘 are weights of convolutional layer for the conditioning input. When using local
conditioning, input to the WaveNet can be just vector of zeros. Speech waveform is then
created from Mel-spectrogram and speech samples generated in previous steps.

5.2 Parallel WaveGAN
Parallel WaveGAN uses Generative Adversarial Network (GAN) scheme together with
multi-resolution short-time Fourier transform (STFT) auxiliary loss [26].

Scheme of Parallel WaveGAN training process and its architecture is shown in figure 5.3

GANs are generative models, which use two separate neural networks. Generator 𝐺
produces samples x̂ with the target to deceive a Discriminator 𝐷. The discriminator is
trained to classify ground-truth samples x as real and the samples from generator as fake:

ℒ𝐷(𝐺,𝐷) = Ex∼𝑝𝑑𝑎𝑡𝑎

[︁
(1 −𝐷 (x))2

]︁
+ Ez∼𝒩 (0,𝐼)

[︁
𝐷 (𝐺 (z))2

]︁
(5.6)

Adversarial loss function for the generator is following:

ℒ𝑎𝑑𝑣 (𝐺,𝐷) = Ez∼𝒩 (0,𝐼)

[︁
(1 −𝐷 (𝐺 (𝑧)))2

]︁
(5.7)

Note the power of two on the subtraction term, standard GANs do not have it, PWG uses
least squares GAN modification proposed in [7].

Auxiliary (STFT) loss improves the stability and efficiency of the adversarial training
process.

ℒ𝑠 (𝐺) = Ez∼𝑝(z),x∼𝑝𝑑𝑎𝑡𝑎 [ℒ𝑠𝑐 (x, x̂) + ℒ𝑚𝑎𝑔 (x, x̂)] , (5.8)

ℒ𝑠𝑐 (x, x̂) =
‖ |STFT(x)| − |STFT(x̂)| ‖𝐹

‖ |STFT(x)| ‖𝐹
, (5.9)

ℒ𝑚𝑎𝑔 (x, x̂) =
1

𝑁
‖ log |STFT (x)| − log |STFT (x̂)| ‖1, (5.10)

25

Figure 5.3: Scheme of ParallelWaveGAN. Image is taken from [26]

where ‖ · ‖𝐹 and ‖ · ‖1 denote Frobenius and 𝐿1 norms, respectively.

‖𝐴‖𝐹 =

⎯⎸⎸⎷ 𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑎𝑖,𝑗 |2 (5.11)

‖𝐴‖1 =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑎𝑖,𝑗 | (5.12)

|STFT (·) | and 𝑁 denote the STFT magnitudes and number of elements in the magni-
tude, respectively. Multiple STFT configurations (window size, number of FFT point and
frame shift) are used in training, in order not to get over-fitted to only one STFT setting
and to better learn time-frequency characteristics of speech (short window gives better time
resolution and wide window more precise frequencies). Complete auxiliary loss is defined
as:

ℒ𝑎𝑢𝑥(𝐺) =
1

𝑀

𝑀∑︁
𝑚=1

ℒ(𝑚)
𝑠 (𝐺), (5.13)

where 𝑀 is number of STFT configurations. Complete loss function is then linear combi-
nation of multi-resolution STFT loss and adversarial loss:

ℒ𝐺 (𝐺,𝐷) = ℒ𝑎𝑢𝑥 (𝐺) + 𝜆𝑎𝑑𝑣ℒ𝑎𝑑𝑣 (𝐺,𝐷) , (5.14)

with 𝜆𝑎𝑑𝑣 as balancing parameter between two losses.
Generators architecture is similar to the WaveNet with some modifications. It does not

use causal convolutions but regular ones. Input to the WaveNet is not a vector of zeros but
noise sampled from Gaussian distribution.

26

Discriminator consists of ten 1-D convolution layers with leaky ReLU activation func-
tion. Input features for training are normalized Mel-spectrograms. More implementation
details are in [26].

Parallel WaveGAN can generate speech with similar quality to the WaveNet, but it’s
trained faster1 and its inference time is faster than real-time.

1Around 3 days on Nvidia TITAN V according to freely available implementation https://github.com/
k2kobayashi/ParallelWaveGAN.

27

https://github.com/k2kobayashi/ParallelWaveGAN
https://github.com/k2kobayashi/ParallelWaveGAN

Chapter 6

Data and Metrics

Datasets used for training VC systems are described in this chapter. Later, metrics used
in VC are introduced.

6.1 Datasets
It was difficult to obtain data for Voice conversion in the past due to need of parallel set
of utterances. Available free datasets are for example MOCHA-TIMIT [24] or Device and
Produced Speech (DAPS) [9]. Subset of DAPS dataset was also used for training and
evaluation in VCC16 and VCC18 (see section 2.4).

Non-parallel systems are usually using clean speech datasets, such as VCTK [22]. Other
popular dataset for training and testing VC systems is VCC18’s Spoke (non-parallel) task
dataset. Using this dataset is handy for direct comparison with the systems from the
challenge, however, subjective evaluations are depending on the testers and on specific
design of the test, e.g. how many samples are rated by each evaluator or what is their
order.

6.1.1 VCTK

The VCTK [22] dataset was designed for the Voice Cloning Toolkit created by The Centre
for Speech Technology Research at the University of Edinburgh. It consists of 109 speakers
and each speaker reads about 400 sentences and text transcriptions are provided. All utter-
ances are recorded in hemi-anechoic chamber with identical settings. Sampling frequency
is 48 kHz with 16 bits. Each speaker reads different set of sentences from the newspapers
and each speaker reads elicitation paragraph1 and rainbow passage2, which aim to identify
speaker’s accent.

6.1.2 VoxCeleb dataset

VoxCeleb [10] consists of audio samples downloaded from YouTube videos. Two versions
are available VoxCeleb1 and VoxCeleb2 with over 1000 speakers in the first one and almost
6000 in the second one. There is not that strong emphasis on the number of speakers for
training of VC systems. However, independent speaker encoder only benefits from larger
number of speakers in training dataset.

1http://accent.gmu.edu/howto.php
2https://www.dialectsarchive.com/the-rainbow-passage

28

http://accent.gmu.edu/howto.php
https://www.dialectsarchive.com/the-rainbow-passage

VoxCeleb was used only to obtain easily reproducible set of utterances. 30 speakers
with the most speech data from VoxCeleb2 test dataset were picked. These utterances were
processed with Phonexia’s speech quality estimator sqestim3, which computes signal-to-
noise ratio in dB based comparison of gamma vs. Gaussian distribution. Only utterances
with SNR higher than 15 𝑑𝐵 were picked and 7 speakers were completely discarded. This
results into 23 speakers with number of utterances varying from 135 to 421 with mean 244
and median 228. This sub-dataset is further denoted as VoxCeleb23.

6.2 Metrics
There is no standardized evaluation process for VC systems like in other fields of speech
processing. Generally, metrics can be divided into two: subjective and objective.

6.2.1 Subjective Metrics

Subjective metrics are using human listeners. Two properties of VC systems are usually
tested: naturalness of synthesized voice and similarity to the target speaker. The most
popular naturalness metric is MOS where testing subject rate each utterance on scale from
1 to 5. Original samples need to be included for reference.

To measure similarity, subjects rate pairs of utterances, whether they are from different
or same speaker. It is difficult to design this test properly: converted and original samples
need to be randomized, also human listeners cannot process large number of utterances,
therefore it is expensive to perform large scale subjective testing.

6.2.2 Objective Metrics

One of frequently used objective evaluation metric is Mel Cepstral Distortion, introduced
for VC in [19]. This metric compares 𝐷 dimensional converted Mel-cepstral coefficients
𝑚𝑐(𝑥̂) with those of the target speaker 𝑚𝑐(𝑥):

𝑀𝐶𝐶𝐷 =
10

ln 10

⎯⎸⎸⎷2

𝐷∑︁
𝑑=1

(︁
𝑚𝑐

(𝑥̂)
𝑑 −𝑚𝑐

(𝑥)
𝑑

)︁2
(6.1)

This metric can be used only on parallel utterances, which need to be synchronized at first
(e.g. DTW), therefore it is not suitable for purposes of this thesis.

6.2.3 Testing VC with Speaker Verification and Spoofing

Other way to measure effectiveness of conversion is from spoofing perspective. First, stan-
dard speaker verification test is conducted with two types of trials. Target trial contains two
different utterances of the same speaker and non-target trial uses different speakers. Finally,
to measure quality of verification system, equal error rate (EER) is computed (error rate
with the same probability of miss and false alarm). Then one utterance of each non-target
trial is converted to the speaker of the second one and the same test is performed.

To test anonymization properties of VC system, the same test can be performed, but
instead of converting utterance from non-target trial, one utterance from target trial is
converted to a different speaker.

3https://www.phonexia.com/en/product/speech-quality-estimation

29

https://www.phonexia.com/en/product/speech-quality-estimation

Table 6.1: Comparison of equal error rate on VoxCeleb 1 test dataset.

Method EER [%]

cosine similarity 9.7

cosine similarity + LDA 3.9

PLDA 3.1

In both approaches, the expected outcome is increased EER.
Further in thesis, speaker verification/spoofing tests are used with trial list adopted

from VoxCeleb1. To compare two utterances, DNN embedding x-vector (described in sec-
tion 7.2.2) is computed from each one. Then, linear discriminant analysis (LDA) is used to
reduce dimensionality of x-vectors from 512 to 100 and cosine similarity is used as distance
metric. Cosine similarity between two vectors is computed as dot product divided by length
of each vector:

cos (x1,x2) = cos (Φ) =
x1 · x2

‖x1‖2‖x2‖2
(6.2)

Probabilistic linear discriminant analysis (PLDA) might be used to further improve
EER, but described method is sufficient for the task. X-vector system is trained on VoxCeleb
1 and 2 as well as PLDA4. LDA was trained on VoxCeleb 1 train set. Table 6.1 shows, that
LDA and PLDA results are comparable and the main focus is on comparing results..

4https://kaldi-asr.org/models/m7

30

https://kaldi-asr.org/models/m7

Chapter 7

Experiments

The main task of this thesis is to examine the effectiveness of current Voice Conversion sys-
tems on datasets, which do not consist of studio quality samples. For this taskm VoxCeleb
dataset was selected.

Later in this chapter some changes to AutoVC system (section 4.4), which should im-
prove its conversion quality on VoxCeleb dataset and overall are proposed.

7.1 Feature extraction
Used acoustic features are Mel-spectrograms. Mel-spectrogram in general is created by
applying Discrete Fourier Transform (DFT) to speech frames and converting the result to
Mel-scale.

Used feature extraction is from AutoVC’s implementation.

1. Waveform is loaded with sampling frequency 16 kHz.

2. Mean of the raw signal is subtracted.

3. Raw signal is filtered with a highpass filter.

4. Filtered signal is augmented with random noise:

𝑦 = 0.96𝑦 + rand (−0.5, 0.5) · 10−6 (7.1)

5. Fast Fourier transform is applied on windows 64 ms long with 16 ms shift. Hann
window function is used. Then absolute value from the spectrogram is taken.

6. Finally, spectrogram is multiplied by 80 Mel-bases and resulting Mel-spectrogram is
converted to [𝑑𝐵].

7.2 Embeddings
Crucial component of AutoVC is speaker encoder and produced speaker embeddings. The
most important property of embeddings is to be utterance-invariant and to separate spea-
kers.

31

7.2.1 D-vector embeddings

Available AutoVC’s speaker encoder (d-vector system), described in section 4.4.2, was
trained on combination of VoxCeleb 1 and LibriSpeech1 datasets. It turns out, that d-
vectors lost their separating properties when applied on VoxCeleb23 dataset, as seen in
figure 7.1.

Figure 7.1: t-SNE vizualization of d-vector embeddings extracted from VoxCeleb dataset.
Even though there are some visible clusters, most speakers cannot be properly separated
from the rest. A boundary is visible in the middle, which separates female (left) and male
(right) speakers.

7.2.2 X-vector embeddings

X-vectors defined by Snyder et al. in [17] are one of the deep neural embeddings that are
widely used for speaker identification (SID) task.

The architecture of the x-vector network is in table 7.1. The network consists of five
time delay neural layers. Time delay layer is a linear layer, which considers also inputs from
time context. For input sequence of features X = [x1, . . . ,x𝑇]⊤ and context {𝑡−2, 𝑡, 𝑡+ 2},
feature vectors are concatenated into: [x𝑡−2,x𝑡,x𝑡+2]

⊤. From this point, it is a standard
linear layer. Statistics pooling layer computes mean and standard deviation of frame5 layer
for each dimension across whole time domain (2 statistics for each of 1500 dimensions result
into 3000 output dimensions).

1http://www.openslr.org/12

32

Table 7.1: Architecture of the x-vector system. Square brackets mean, that all frames in
interval are used, while compound brackets mean, that only frames on specified indices
were used. ReLU activations are used after each layer. Table is adapted from [17].

X-vector system
Layer Layer Context Total Context Input x Output
frame1 [𝑡− 2, 𝑡, 𝑡 + 2] 5 120 × 512

frame2 {𝑡− 2, 𝑡, 𝑡 + 2} 9 1536 × 512

frame3 {𝑡− 3, 𝑡, 𝑡 + 3} 15 1536 × 512

frame4 𝑡 15 512 × 512

frame5 𝑡 15 512 × 1500

stats pooling [0, 𝑇) T 1500𝑇 × 3000

segment6 {0} 𝑇 3000 × 512

segment7 {0} 𝑇 512 × 512

softmax {0} 𝑇 512 ×𝑁

X-vector network is trained using multiclass entropy loss function:

ℒ = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

I𝑛𝑘𝑙𝑛
(︁
𝑃
(︁
𝑠𝑝𝑘𝑟𝑘|x

(𝑛)
1:𝑇

)︁)︁
, (7.2)

where I is indicator matrix with ones when segment 𝑛 is uttered by speaker 𝑘 and with
𝑃
(︁
𝑠𝑝𝑘𝑟𝑘|x

(𝑛)
1:𝑇

)︁
as output of the softmax layer.

Embeddings of size 512 are extracted from the segment6 before non-linearity is applied.
X-vector system is also implemented in open-source Kaldi speech recognition toolkit [12],

where example model trained on VoxCeleb 1 & 2 dataset is available.
X-vectors use Mel-Frequency Cepstral Coefficients as features. Used configuration is

from Kaldi VoxCeleb v2 recipe2.
Speaker embeddings extracted using this model nicely separate speakers in the dataset

as seen in figure 7.2, therefore they might be used with AutoVC system. Question still
remains whether using GE2E loss function (loss used for d-vector system, section 4.4.2)
would improve x-vectors separability properties or not.

X-vectors with AutoVC

As the authors of AutoVC claim, any speaker embeddings, that are sufficiently invariant
can be used for the decoder conditioning. From above, x-vectors should be good candidate
to replace d-vectors without any significant changes.

The last step in the speaker encoder network in AutoVC was 𝐿2 normalization, this
needs to be performed also on the x-vectors, otherwise training doesn’t converge and ℒ𝐸

tends to 0 after a few thousand iterations, while other parts of the loss stays the same.
Besides normalization, there is one more structural difference between d-vectors and x-
vectors: their dimensionality. I experimented with dimensionality reduction using Linear
Discriminant Analysis (LDA) and taking only first 256 dimensions from x-vector. From
informal subjective evaluation, results with reduced x-vectors were slightly worse, therefore
regular x-vectors were used.

2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2

33

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2

Figure 7.2: t-SNE visualization of x-vector embeddings extracted from VoxCeleb dataset.
Speakers are now well separated.

7.3 Improving Disentanglement of Speaker and Content In-
formation

As described in Section 4.4, AutoVC’s disentanglement properties come from carefully de-
signed bottleneck size. When the bottleneck is too narrow, resulting speech looses natural-
ness and intelligibility significantly. On the other hand, too wide bottleneck decreases level
of disentanglement so that resulting speech contains too much information from the source
speaker. To address this issue, two different approaches are tested. One with adversarial
speaker classifier as used in method described in section 4.3, another approach is inspired
by CycleVAE’s training process.

Hypothesis is, that both approaches should reduce amount of source speaker information
in the bottleneck content codes as well as to allow to increase the size of the bottleneck,
therefore improve speech quality.

7.3.1 Auxiliary speaker classifier

In this modification, AutoVC’s original architecture, shown in figure 4.6, is preserved, but a
simple speaker classifier is used to classify content codes (where speaker information should
be suppressed) in an adversarial training setup. Modified version is shown in figure 7.3.

Authors of AutoVC [14] state, that bottleneck tuning is more effective, than adver-
sarial speaker classifier, while comparing AutoVC with other baseline method, that uses

34

Figure 7.3: Scheme of AutoVC with auxiliary speaker classifier in red oval.

Table 7.2: Architecture of the Speaker Encoder.

Speaker Classifier
Layer Misc Output
Input - 2𝑑𝑛𝑒𝑐𝑘 × 𝑇

𝑑𝑓

3 ×
{︂ Conv1d 𝑘 = 1 2𝑑𝑛𝑒𝑐𝑘 × 𝑇

𝑑𝑓

BatchNorm - -
LeakyReLU - -
Linear - 𝑁𝑠𝑝𝑘𝑟𝑠 × 𝑇

𝑑𝑓

adversarial classifier: “This result shows that bottleneck dimension tuning on speaker dis-
entanglement is more effective than the more sophisticated adversarial training.“

Although AutoVC has better results, than mentioned baseline, the authors did not try
to merge both approaches. It is quite time consuming to find proper size of the bottleneck
and this approach might allow to use slightly larger bottleneck size and discard remaining
source speaker information with adversarial speaker classifier. This might also improve
naturalness of the reconstructed speech for the same reasons.

For this experiment, the same classifier as in the system described in section 4.3 was
used, also with the same loss functions from equations 4.16 and 4.19. The architecture
of the speaker classifier is detailed in table 7.2, it classifies speaker for each frame in the
utterance. If this classifier were used as standalone system for speaker identification, it
probably wouldn’t be very good, because of the lack of the temporal context. However, it
should be sufficient for this task.

35

Complete loss function for this system is the following:

ℒ𝑆𝐶 = 𝐶𝐸(C, s) (7.3)
ℒ𝐴𝐸 = ℒ𝑃𝑆𝑁𝑇 + ℒ𝐷 + ℒ𝐸 + 𝜆𝑎𝑑𝑣ℒ𝐴𝐷𝑉 , (7.4)

where ℒ𝑆𝐶 is loss for speaker classifier and 𝐿𝐴𝐸 for autoencoder. ℒ𝐴𝐷𝑉 is adversarial loss,
it has weight 𝜆𝑎𝑑𝑣 = 0.5 to keep emphasis on the original autoencoder training.

Training of this network is divided into two alternating stages. In the first stage, pa-
rameters of the classifier are frozen and only autoencoder’s weights are updated. In the
second stage, it is the other way around, i.e. autoencoder’s weights are frozen and only
the classifier is updated. The changing period was set to 100𝑘 iterations with 8 : 2 ratio in
favor of autoencoder. Evolution of the accuracy in training process is shown in figure 7.4.

Figure 7.4: Plot of accuracy of the speaker classifier during training process. Yellow line
shows desired probability of 1

𝑁 .

7.3.2 Bottleneck consistency training

The second tested change is partially inspired by CycleVAE (section 4.2). The architec-
ture of the AutoVC system stays the same, but the training process is modified. In the
original AutoVC, three terms are present in the loss function: ℒ𝑃𝑆𝑁𝑇 and ℒ𝐷 are for
self-reconstruction and the last:

ℒ𝐸 = E
⃦⃦⃦
𝐸
(︁
X̂
)︁
−C

⃦⃦⃦
1

tries to keep content codes C the same. The second set of content codes is generated from
the reconstructed Mel-spectrogram. Proposed modification is to extract target content
codes from converted features of a different speaker. For better idea, the modification is
visualized in figure 7.5 and the modified part of the loss function is shown in full format:

ℒ𝐸𝑚𝑜𝑑
= E ‖𝐸 (𝐷 (𝐸 (X) , e𝑟𝑛𝑑)) − 𝐸 (X)‖1 . (7.5)

Otherwise, the loss is the same as in original AutoVC (equation 4.29). The decoder is
conditioned on random speakers embedding e𝑟𝑛𝑑, in order not to learn conversion from one
specific speaker to another.

The motivation for this change is, again, to force the autoencoder to better disentangle
speaker information with possibility of keeping a bit larger bottleneck. Down side of this
approach is, that one more pass through autoencoder is required and it increases training
time.

36

Figure 7.5: Scheme of AutoVC’s modified training process. Extracted content codes are
now compared with those from different speaker.

Table 7.3: Comparison of equal error rate on VoxCeleb 1 test dataset.

Name Train dataset Data size No. iterations
PWG_VOX VoxCeleb2 train 158 GB 880𝑘

PWG_VCTK VCTK (whole) 15 GB 1000k

7.4 Training and evaluation
In this section, configurations of trained networks are described. Later, the evaluation
results are presented and discussed.

7.4.1 Vocoders

First, to compare speech samples, vocoder needs to be set up. AutoVC’s authors published
a WaveNet model pretrained on VCTK dataset3. This model was used for initial testing,
but later, with growing size of the tests, WaveNet’s inference speed became insufficient
(generating 3 s of speech takes around 5 minutes). Parallel WaveGAN (PWG) networks
were trained using data described in table 7.3. For training, the configuration from VCTK
voc1 recipe in PWG repository4 was used. Feature extraction was changed to the same one
as in AutoVC, this changes also frame shift (hop-size) in STFT, therefore upsample scales
needed to be reconfigured (for detailed explanation see section 5.1.1). Used values were
[4, 4, 4, 4]. Parallel WaveGAN uses Rectified Adam optimizer [4] with default parameters.

3https://github.com/auspicious3000/autovc
4https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/egs/vctk/voc1

37

https://github.com/auspicious3000/autovc
https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/egs/vctk/voc1

Training of each system took around 6 days on Nvidia GeForce RTX 2080 Ti graphics
card, which was also used for some other task during that time. PWG’s inference time is
faster than real-time with real-time factor of around 0.13. Real-time factor is defined as
time required to generate one second of speech. Even though PWG uses the same feature
extraction algorithm as AutoVC, PWG’s features are normalized for training, therefore
converted Mel-spectrogram needs to be normalized as well (subtract mean and divide by
standard deviation).

7.4.2 AutoVC training

In order to train AutoVC on VoxCeleb data, bottleneck dimensionality needs to be esti-
mated. 50 speakers from VCTK dataset were selected (further denoted as VCTK50 dataset)
to find bottleneck size of AutoVC system. Estimating bottleneck size directly on VoxCeleb
data would be much harder, given that results are uncertain.

In the original AutoVC implementation, bottleneck has size 32×32 (𝑑𝑛𝑒𝑐𝑘×𝑑𝑓 ; following
notation from section 4.4). However, these settings did not work for VCTK50 dataset even
though original AutoVC is evaluated also on VCTK subset (20 speakers). Reason behind
this might be the use of x-vectors instead of d-vectors. Smaller sizes of 𝑑𝑛𝑒𝑐𝑘 always led
to worse quality of speech, therefore smaller downsampling factor 𝑑𝑓 is used5. AutoVC is
trained using fixed speaker embedding for each speaker.

Resulting speech became intelligible with bottleneck size 32 × 8, using x-vectors as
speaker embeddings and PWG_VCTK as vocoder. System with these settings was also
submitted to the Voice Conversion Challenge 2020 in completely one-shot setting.

AutoVC system is trained using Adam optimizer [2] with learning rate set to 10−4, other
parameters are default. Training time of the original method is around 1 day. When using
speaker classifier, the time rises to 1.5 days and with modified training, it reaches 2 days.
Its inference speed is slightly faster than real-time.

Further, following notation holds:

∙ vanilla – original AutoVC implementation

∙ spk – AutoVC with speaker classifier

∙ targets – AutoVC with modified training process

For each method, systems with bottlenecks 32 × 8 and 32 × 4 were trained on VoxCeleb23
dataset. PWG_VOX was used as vocoder. The bigger6 32× 4 bottleneck is chosen to test,
whether proposed modifications are less sensitive to the bigger bottleneck.

Note, that all of these systems had first encounter with source or target speaker during
inference time through one supplied x-vector.

From listening of a few random samples, resulting speech is sometimes unintelligible,
but it highly depends on the quality of original utterance. Also, fundamental frequency
is not explicitly converted in AutoVC method and it sometimes fluctuates between source
and target speaker. Quian et. al. already published a follow up work, that addresses this
isssue [13], but it is not covered in this thesis.

5Samples of converted speech using various bottleneck sizes are available on https://lemlak.github.io/
VoiceConversion/#vcc20-tests-32x8

6This is a bit counter-intuitive, the second parameter is downsampling factor 𝑑𝑓 , which affects time
resolution, with smaller 𝑑𝑓 more information gets through the bottleneck, therefore bottleneck is bigger.
Downsampling process is defined in equation 4.23

38

https://lemlak.github.io/VoiceConversion/#vcc20-tests-32x8
https://lemlak.github.io/VoiceConversion/#vcc20-tests-32x8

Table 7.4: Evaluation of spoofing tests. Top table shows results using LDA reduction,
bottom table shows results without LDA. Miss rate is computed using threshold of the
original system. The best results in each are bold.

Name Miss rate [%] EER [%] Threshold
original 3.91 3.91 0.331800

vanilla 32 × 4 7.37 5.33 0.352123

vanilla 32 × 8 7.28 5.40 0.352022

spk 32 × 4 7.23 5.31 0.351022

spk 32 × 8 9.13 5.9279 0.359745

targets 32 × 4 7.55 5.42 0.353497

targets 32 × 8 8.81 5.77 0.358251

original 9.70 9.70 0.672519

vanilla 32 × 4 23.64 14.62 0.702462

vanilla 32 × 8 20.59 13.75 0.698117

spk 32 × 4 24.81 15.11 0.705208

spk 32 × 8 25.76 15.28 0.706139

targets 32 × 4 21.99 14.26 0.700860

targets 32 × 8 27.45 15.47 0.707319

7.4.3 Evaluation

Spoofing and anonymization tests using cosine similarity as metric were conducted. Trials
for verification were taken from VoxCeleb1 list. There is a total of 37720 tests with the
same amount of target and nontarget trials.

Spoofing

In spoofing task, utterance of one speaker was converted to the second speaker for each
nontarget trial. The goal is to increase false acceptance (miss) rate. Miss rate is computed
as number of false accepted trials divided by total number of nontarget trials. Results of
spoofing task are shown in table 7.4. The best system with LDA is spk 32 × 8 with miss
rate increased by more than 5 % absolute. For setting without LDA, the best system is
targets 32×8 with miss rate increased by more than 17 % absolute and all methods were
more successful overall. This shows, that even simple LDA helps to create a more robust
speaker verification systems.

Interestingly, modified methods have worse results with larger bottleneck 32×4 and only
original vanilla method benefits from it. This might imply, that the bottleneck settings
were still sub-optimal.

Spoofing studies In this subsection, the first task – spoofing with LDA – is closer
examined. There is total of 18860 nontarget trials out of which 3804 (20.17 %) trials were
spoofed by at least one system, when excluding trials falsely accepted by original verification
system. Out of those 3804, 217 trials from 131 speaker pairs (considering 𝑆1 → 𝑆2 and
𝑆2 → 𝑆1 as one speaker pair) were spoofed by all the systems7. These utterances seem to
be mostly intelligible, but they would be rather low on MOS scale.

7A few of these samples are in https://lemlak.github.io/VoiceConversion/#samples-from-systems-
trained-on-voxceleb23-dataset

39

https://lemlak.github.io/VoiceConversion/#samples-from-systems-trained-on-voxceleb23-dataset
https://lemlak.github.io/VoiceConversion/#samples-from-systems-trained-on-voxceleb23-dataset

Table 7.5: Evaluation of anonymization tests. Top table shows results with using LDA
reduction, bottom table shows results without LDA. The best results in each are bold. The
last column shows adjusted results without ”self-reconstruction error“.

Name False alarm rate [%] EER [%] Threshold Adj. FAR [%]
original 3.91 3.91 0.331800 -

vanilla 32 × 4 85.68 36.00 0.085723 24.49

vanilla 32 × 8 93.83 43.32 0.044691 16.53

spk 32 × 4 88.32 37.85 0.075743 24.74

spk 32 × 8 91.99 42.93 0.047043 22.93

targets 32 × 4 91.21 39.69 0.065066 24.60

targets 32 × 8 93.82 43.63 0.043012 17.08

original 9.70 9.70 0.672519 -
vanilla 32 × 4 75.99 41.78 0.465801 39.81

vanilla 32 × 8 85.88 47.36 0.415702 26.39

spk 32 × 4 79.81 42.28 0.462104 38.86

spk 32 × 8 83.82 46.77 0.421578 34.23

targets 32 × 4 82.81 44.27 0.444932 36.71

targets 32 × 8 84.70 46.13 0.427971 32.09

Table 7.6: Evaluation of self-reconstructions tests. Top table shows results with using LDA
reduction, bottom table shows results without LDA. The best results in each are bold.

w/ LDA

Name False alarm rate [%] EER [%] Threshold
original 3.91 3.91 0.331800

vanilla 32 × 4 56.19 18.64 0.185851
vanilla 32 × 8 77.30 27.60 0.133703

spk 32 × 4 63.58 19.55 0.179817
spk 32 × 8 69.06 23.91 0.153849

targets 32 × 4 66.61 21.29 0.168811
targets 32 × 8 76.74 24.19 0.152333

w/o LDA

original 9.70 9.70 0.672519
vanilla 32 × 4 36.18 18.64 0.616193
vanilla 32 × 8 59.49 27.85 0.559989

spk 32 × 4 40.95 19.88 0.609124
spk 32 × 8 49.59 23.83 0.584766

targets 32 × 4 46.10 21.17 0.600744
targets 32 × 8 52.61 23.15 0.588615

Anonymization

The second task was to measure anonymization. This time, one utterance from each target
trial was converted to random different speaker. The goal is to increase false alarm rate,
falsely rejected trials divided by number of target trials. All methods achieved high score
in this task, the question is, whether this result is a reflection of good anonymization or
low quality speech sample, which wouldn’t be accepted for any speaker. The highest score
was achieved by vanilla 32× 8 system both with and without LDA. Results are shown in
table 7.5.

40

Self-reconstruction To address the question about speech quality, test with self-recon-
struction was conducted. Self-reconstruction means, that speaker is converted back to
him/herself. While in anonymization, we were looking for system with the highest false
alarm rate, this time, smaller false alarm rate is better. There would be no change in
ideal case. We can see in table 7.6, that the best self-reconstruction is achieved by system
vanilla 32×4. Given rather small miss rate, this system achieved, it is probably due to the
fact, that there is too much speaker information left in the bottleneck (this is also the largest
bottleneck). When self-reconstruction false alarm rate is subtracted from anonymization
results, system vanilla 32 × 8 is now on the opposite side. This adjusted false alarm
rate should represent anonymization better, without influence of the global error of the
voice conversion. Adjusted results are in table 7.5 in the last column. Figure 7.6 shows
histograms8 of cosine similarities for the best methods.

(a) Original X-vector system. (b) System with the highest miss
rate on spoofing test. Spk 32× 8.

(c) System with the highest false
alarm rate on anonymization test.
Vanilla 32× 8

(d) Original X-vector system. (e) System with the highest miss
rate on spoofing test. Targets 32×8.

(f) System with the highest false
alarm rate on anonymization.
Vanilla 32× 8.

Figure 7.6: Histograms showing distribution of target and nontarget trials for different
tasks. Top histograms are with LDA and bottom ones are without LDA. Black dotted line
denotes original threshold and the red one threshold for EER on modified data.

8All histograms are available at https://lemlak.github.io/VoiceConversion/#spoofing-and-
anonymization-histograms

41

https://lemlak.github.io/VoiceConversion/#spoofing-and-anonymization-histograms
https://lemlak.github.io/VoiceConversion/#spoofing-and-anonymization-histograms

Chapter 8

Conclusion

The voice conversion using speaker disentanglement was studied in this thesis. It follows
the state-of-the-art AutoVC architecture defined by Qian et al.

The emphasis is on one-shot voice conversion, where conversion is tested on speakers
outside of training data and on conversion on dataset with low-quality data, VoxCeleb.
Objective evaluations on speaker verification/spoofing were conducted with aim to fool
verification system by either impersonating the target speaker or hiding speakers identity.

Two modifications of baseline AutoVC system were proposed: one using adversarial
speaker classifier and the other one based on comparing original content embeddings with
those obtained after the conversion process. Furthermore, more robust speaker embeddings
– x-vectors – were used to ensure one-shot properties of the VC system.

The results show, that both proposed modifications outperform regular AutoVC in
terms of spoofing. The best created conversion system was able to increase miss rate by
5 % absolute when using Linear Discriminant Analysis and by 17 % absolute without it.
This proves, that resulting speech was shifted towards target speaker even under these hard
conditions.

Output speech quality was not evaluated in formal listening test, however, it highly
depends on specific utterance. Background noise or low quality microphone can cause con-
verted utterance to be completely unintelligible while cleaner recordings produce reasonably
well converted samples.

8.1 Future works
In my opinion, AutoVC framework is promising concept of voice conversion, mainly due
to simplicity of training, without need any text transcriptions, but it definitely needs to
include conversion of fundamental frequency.

Auxiliary speaker classifier might be further tested with different architectures. Used
implementation classifies each frame and it might be interesting to use some recurrent
layer. Also, different methods of training might be used, without freezing the parameters.
Combination of both proposed improvement methods can be also tested.

8.1.1 Follow-up works

Speech is does not consist only of speaker information and content information. It can
be separated to more parts: fundamental frequency and intonation, speaking rate or even

42

emotions are stored in speech. All these parts might be extracted and played with to further
improve our understanding of speech generation and perception.

43

Bibliography

[1] Kawahara, H., Masuda Katsuse, I. and De Cheveigne, A. Restructuring speech
representations using a pitch-adaptive time–frequency smoothing and an
instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure
in sounds. Speech communication. Elsevier. 1999, vol. 27, 3-4, p. 187–207.

[2] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. ArXiv
preprint arXiv:1412.6980. 2014.

[3] Kobayashi, K. and Toda, T. Sprocket: Open-Source Voice Conversion Software.
In: Odyssey. 2018, p. 203–210. Available at:
https://github.com/k2kobayashi/sprocket.

[4] Liu, L., Jiang, H., He, P., Chen, W., Liu, X. et al. On the variance of the adaptive
learning rate and beyond. ArXiv preprint arXiv:1908.03265. 2019.

[5] Lorenzo Trueba, J., Yamagishi, J., Toda, T., Saito, D., Villavicencio, F.
et al. The voice conversion challenge 2018: promoting development of parallel and
nonparallel methods. In: Proc. Odyssey 2018. 2018, p. 195–2026.

[6] Maaten, L. v. d. and Hinton, G. Visualizing data using t-SNE. Journal of machine
learning research. 2008, vol. 9, Nov, p. 2579–2605.

[7] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z. et al. Least squares generative
adversarial networks. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, p. 2794–2802.

[8] Morise, M., Yokomori, F. and Ozawa, K. WORLD: a vocoder-based high-quality
speech synthesis system for real-time applications. IEICE TRANSACTIONS on
Information and Systems. The Institute of Electronics, Information and
Communication Engineers. 2016, vol. 99, no. 7, p. 1877–1884.

[9] Mysore, G. J. Can we Automatically Transform Speech Recorded on Common
Consumer Devices in Real-World Environments into Professional Production Quality
Speech?—A Dataset, Insights, and Challenges. IEEE Signal Processing Letters. 2015,
vol. 22, no. 8, p. 1006–1010.

[10] Nagrani, A., Chung, J. S., Xie, W. and Zisserman, A. VoxCeleb: Large-scale
Speaker Verification in the Wild. Computer Speech & Language. october 2019,
vol. 60, p. 101027.

[11] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,

44

https://github.com/k2kobayashi/sprocket

Larochelle, H., Beygelzimer, A., Buc, F. d’Alché, Fox, E. et al., ed. Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
p. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[12] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O. et al. The
Kaldi speech recognition toolkit. In: IEEE 2011 workshop on automatic speech
recognition and understanding. 2011.

[13] Qian, K., Jin, Z., Hasegawa Johnson, M. and Mysore, G. J. F0-consistent
many-to-many non-parallel voice conversion via conditional autoencoder. In:
IEEE. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, p. 6284–6288.

[14] Qian, K., Zhang, Y., Chang, S., Yang, X. and Hasegawa Johnson, M.
AUTOVC: Zero-shot voice style transfer with only autoencoder loss. ArXiv preprint
arXiv:1905.05879. 2019.

[15] Rocca, J. Understanding Variational Autoencoders (VAEs). September 2019.
[online]. Available at: https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73.

[16] Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N. et al. Natural TTS
Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions. In: 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). April 2018, p. 4779–4783. ISSN 2379-190X.

[17] Snyder, D., Garcia-Romero, D., Sell, G., Povey, D. and Khudanpur, S.
X-Vectors: Robust DNN Embeddings for Speaker Recognition. In: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2018, p. 5329–5333.

[18] Tobing, P. L., Wu, Y.-C., Hayashi, T., Kobayashi, K. and Toda, T. Non-Parallel
Voice Conversion with Cyclic Variational Autoencoder. In: Proc. Interspeech 2019.
2019, p. 674–678. Available at: http://dx.doi.org/10.21437/Interspeech.2019-2307.

[19] Toda, T., Black, A. W. and Tokuda, K. Voice Conversion Based on
Maximum-Likelihood Estimation of Spectral Parameter Trajectory. IEEE
Transactions on Audio, Speech, and Language Processing. 2007, vol. 15, no. 8,
p. 2222–2235.

[20] Toda, T., Chen, L.-H., Saito, D., Villavicencio, F., Wester, M. et al. The
Voice Conversion Challenge 2016. In: Proc. INTERSPEECH. 2016, p. 1632–1636.

[21] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O. et al.
WaveNet: A Generative Model for Raw Audio. ArXiv e-prints. Sep 2016,
p. arXiv:1609.03499.

[22] Veaux, C., Yamagishi, J., MacDonald, K. et al. Superseded-cstr vctk corpus:
English multi-speaker corpus for cstr voice cloning toolkit. University of Edinburgh.
The Centre for Speech Technology Research (CSTR). 2016.

45

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://dx.doi.org/10.21437/Interspeech.2019-2307

[23] Wan, L., Wang, Q., Papir, A. and Moreno, I. L. Generalized end-to-end loss for
speaker verification. In: IEEE. 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018, p. 4879–4883.

[24] Wrench, A. The MOCHA-TIMIT Articulatory Database. November 1999. [online].
Available at: http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html.

[25] Wu, Z., Watts, O. and King, S. Merlin: An Open Source Neural Network Speech
Synthesis System. In: 9th ISCA Speech Synthesis Workshop. 2016, p. 202–207.
Available at: http://dx.doi.org/10.21437/SSW.2016-33.

[26] Yamamoto, R., Song, E. and Kim, J.-M. Parallel WaveGAN: A fast waveform
generation model based on generative adversarial networks with multi-resolution
spectrogram. In: IEEE. ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2020, p. 6199–6203.

[27] Zhang, J., Ling, Z. and Dai, L. Non-Parallel Sequence-to-Sequence Voice
Conversion With Disentangled Linguistic and Speaker Representations. IEEE/ACM
Transactions on Audio, Speech, and Language Processing. 2020, vol. 28, p. 540–552.
ISSN 2329-9304.

46

http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html
http://dx.doi.org/10.21437/SSW.2016-33

Appendices

47

Appendix A

Cookbook

A.1 Libraries and Code
Here are listed libraries used for training and experiments with AutoVC. Other versions
might also work.

∙ Python >=3.6

∙ Pytorch 1.3 for neural network model, datasets, etc.

∙ CUDA 10.0

∙ TensorFlow 1.14.0, used only for hyperparameters in contrib module. This module
which was deprecated from version 2.0

∙ NumPy 1.18.3

∙ SciPy 1.4.1

∙ scikit-learn 0.22.1

∙ librosa 0.7.2

AutoVC code was used from their authors.
Kaldi-asr was used to extract x-vectors in following way. After wav.scp, spk2utt

and utt2spk are created1 MFCC features are created and then vad decisions. With data
prepared, x-vectors can be extracted using pretrained model2.

To extract mel-spectrograms, script make_spect.py is ran in folder containing wavs
directory with folders with utterances divided by speakers. Mel-spectrograms are generated
into spmel directory, again with the utterances divided into folders by speakers. Now
corresponding embeddings are copied into the speaker folders, one embedding for each
utterance. Script make_metadata creates training file in spmel directory. main.py script
is used for network training.

To convert samples, script convert_cycle.py can be used. It takes as parameters list of
utterances to convert in format <wav> <srcid> <trgid>, map of embeddings that contains
speakers in the list and trained network model.

1https://kaldi-asr.org/doc/data_prep.html
2https://kaldi-asr.org/models/m7

48

https://kaldi-asr.org/doc/data_prep.html
https://kaldi-asr.org/models/m7

A.2 Media Content
Root folder contains directories:

∙ src: source codes of AutoVC, modifications and ParallelWaveGAN

∙ models: trained neural networks

∙ images: histograms from verification

∙ samples: sample converted utterances

∙ webpage: source codes for webpage
https://lemlak.github.io/VoiceConversion/, together with samples and images
(duplicates)

∙ misc: contains map of xvectors, example list of utterances and trained lda model

49

https://lemlak.github.io/VoiceConversion/

	Introduction
	Claims of this Thesis
	Scope of Chapters

	Voice Conversion Overview
	Parallel Voice Conversion
	Non-Parallel VC
	One-Shot Voice Conversion
	Voice Conversion Challenge
	Baseline Systems

	Neural Networks
	Layers
	Activation Functions

	Speaker Disentanglement for Voice Conversion
	Autoencoder Architecture
	Speaker Encoder
	Content Encoder
	Decoder
	Variational Autoencoders

	CycleVAE VC
	Non-Parallel Sequence-to-Sequence Voice Conversion
	AutoVC
	AutoVC Structure
	Speaker Encoder
	Training

	Vocoders in Voice Conversion
	WaveNet
	Conditional WaveNet

	Parallel WaveGAN

	Data and Metrics
	Datasets
	VCTK
	VoxCeleb dataset

	Metrics
	Subjective Metrics
	Objective Metrics
	Testing VC with Speaker Verification and Spoofing

	Experiments
	Feature extraction
	Embeddings
	D-vector embeddings
	X-vector embeddings

	Improving Disentanglement of Speaker and Content Information
	Auxiliary speaker classifier
	Bottleneck consistency training

	Training and evaluation
	Vocoders
	AutoVC training
	Evaluation

	Conclusion
	Future works
	Follow-up works

	Bibliography
	Appendices
	Cookbook
	Libraries and Code
	Media Content

