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ABSTRACT
This thesis presents an investigation of the possibility of using the fixed-point arithmetic
in the inertial navigation systems, which use the local level navigation frame mechaniza-
tion equations. Two square root filtering methods, the Potter’s square root Kalman filter
and UD factorized Kalman filter, are compared with respect to the conventional Kalman
filter and its Joseph’s stabilized form. The effect of rounding errors to the Kalman filter
optimality and the covariance matrix or its factors conditioning is evaluated for a various
lengths of the fractional part of the fixed-point computational word. Main contribution
of this research lies in an evaluation of the minimal fixed-point arithmetic word length
for the Phi-angle error model with noise statistics which correspond to the tactical grade
inertial measurements units.

KEYWORDS
Inertial navigation, multisensor data fusion, Kalman filtering, square root filtering, fixed-
point arithmetic, floating-point arithmetic, Phi-angle error model, 15-state loosely cou-
pled integration approach

ABSTRAKT
Tato diplomová práce se zabývá vyšetřováním možnosti použití aritmetiky pracující v
pevné řadové čárce u inerciálních navigačních systémů, které využívají navigační rovnice
vyjádřené v lokální navigační soustavě. Dva typy odmocninových filtrů, Potterův odmoc-
ninový Kalmanův filtr a UD faktorizovaný Kalmanův filtr, jsou porovnány vzhledem ke
konvenčnímu Kalmanově filtru a jeho Josephově stabilizované formě. Je zde vyhodno-
cen vliv zaokrouhlovacích chyb na optimalitu Kalmanova filtru a na podmíněnost jeho
kovarianční matice resp. jejich faktorů. Hlavní přínos této práce spočívá ve vyhodno-
cení minimální délky výpočetního slova aritmetiky pracující v pevné řadové čárce pro
Phi-angle chybový model s uvažovanými statistikami šumu, které odpovídají kvalitě tak-
tických inerciálně měřicích jednotek.

KLÍČOVÁ SLOVA
Inerciální navigace, datová fůze, Kalmanova filtrace, odmocninová filtrace, aritmetika s
pevnou řadovou čárkou, aritmetika s plovoucí řadovou čárkou, Phi-angle chybový model,
15-stavový slabě spjatý přístup k integraci navigačního algoritmu
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1 INTRODUCTION

1.1 Thesis Motivation
A high-performance inertial navigation system (INS) is today one of the most critical
part of each aircraft. Especially in a long-range and long-term flight is needed
an accurate, robust and high-rate inertial navigation. As a counterpart for these
requirements, there is a cost and energy efficiency. Most of the modern Digital
Signal Processors (DSP), which use the floating-point arithmetic, are incompatible
with these requirements when we assume e.g. long duration unmanned aircraft
missions, where a need for the energy efficiency can be crucial. A way how to reduce
the cost and increase the energy efficiency lies in a consideration if we are able to use
simpler processors or Field-Programmable Gate Arrays (FPGA). These commonly
uses the fixed-point arithmetic for performing mathematical operations. Hence, a
question of correct and efficient implementation with an attention to a numerical
issues becomes one of the most important.

Most of the inertial navigation systems are based on the conventional Kalman
filter. Theoretically it is not possible for the Kalman filter to become numerically
unstable, but from a practical point of view, especially if we use a short length of
the computational word, there is a chance, that the filter become unstable. The
task related to the numerical difficulties connected with the conventional Kalman
filter was investigated many times over past years. A special attention was paid to a
spacecraft navigation and orbit determination problems as can be seen for example
in [1][2][3]. The methods which have an ability to deal with numerical deficiencies of
the Kalman filter are generally called as the square root filtering methods. Although
these methods appear in the era of first cosmic flights, thus when computers had
very limited computational power, they are still an inspiration for newly invented
last squares methods as can be seen for example in [4]. A motivation for their use
is not only the fixed-point implementation, but their ability to make an estimation
algorithm more robust, even if the floating-point arithmetic is used. Another reason
for their use is an effort to make some system economically advantageous, thus when
we tray to have a system with no unnecessary level of redundancy.

1.2 Thesis Objectives
The main objective of this thesis is to compare different numerical implementations
of the Kalman filter with an attention to a quality of the estimated state variables as
they are represented in an inertial navigation system which uses an external aiding by
the Global Navigation Satellite System (GNSS). It is an aim of this thesis to make
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such a comparison for the inertial navigation system algorithm expressed in the
local navigation frame with using the Phi-angle error model in the so-called Loosely
Coupled navigation integration approach. We will try to evaluate how various word
lengths of the fixed-point arithmetic can affect a precision of the navigation system’s
output. Our next goal is to show how different numerical implementations of the
Kalman filter can lead to obtaining better results and make the navigation algorithm
more robust. Finally we try to answer a question if it is possible to use a length of the
fixed-point computational word which is less or similar to the length of the double
precision floating-point arithmetic, because if it is, then the navigation system can
be implemented beneficially.

1.3 Thesis Organization
Chapter 1 - it is right here, thus only for a summary, some introductory remarks,
thesis objectives and description of the thesis.

Chapter 2 - presents an introduction to the today’s most commonly used arith-
metic systems, although it is a very known topic, we describe some notions, only for
completeness.

Chapter 3 - deals with a stochastic dynamical system model which is suitable
through this work. Further, the conventional Kalman filter and its numerically
more stable implementations are presented.

Chapter 4 - presents basic principles of the inertial navigation i.e. the coordi-
nate frames, inertial navigation system mechanization algorithm and Phi-angle error
model. A description of the inertial sensors inaccuracies and how to use them for
the inertial measurement unit data generation, is proposed.

Chapter 5 - an experimental part of the thesis which presents how the numerical
round-off errors can affect a trajectory estimated by the inertial navigation system.
For this purpose is evaluated a criteria function for various lengths of the fractional
part of the fixed-point computational word. Further, an influence to the covariance
matrix or their square root factors conditioning is shown. Finally, a divergence
caused by the rounding is described.

Chapter 6 - summarizes results achieved through this thesis and states possible
extensions and final conclusions.

12



2 FINITE WORD LENGTH ARITHMETIC

2.1 Introduction
All computing machines are able to compute only with a finite precision, thus they
are able to compute only in a certain subset of the real numbers. Assuming a com-
puter which computes with an infinite precision is not realistic because it will takes
probably an infinite time for obtaining a result. Hence, it is suitable to have a finite
precision of computing. All numbers represented in the computer are spread out by
a finite interval, which represents the machine resolution, hence a numerical round-
off arises due to an execution of mathematical operations. These round-off errors
can significantly affect some types of mathematical algorithms. The objective of this
chapter is a brief description of commonly used arithmetic systems represented in
the today’s computers and embedded systems.

2.2 Fixed-Point Arithmetic
Let’s assume that we have an 𝑁 -bit binary word for interpreting a real value, then
using the two’s complement representation, the fixed-point number can be expressed
as figure 2.1 shows. There can be seen that the bit word is divided into three parts,
these are 1-bit for expressing a sing (S), 𝑎-bits for the integer part (I) and 𝑏-bits for
the fractional part (F). The red dot represents the fixed binary point.

S I F
1 bit MSB LSB MSB LSBb bits

i0 f0 fb-1ia-1

a bits

Fig. 2.1: The binary representation of the two’s complement fixed-point number

Using this representation, a real world value can be approximated as a number
from the following range [5]

−2𝑁−1−𝑏 ≤ 𝑣 ≤ +2𝑁−1−𝑏 − 2−𝑏 (2.1)

where a concrete value can be obtained as

𝑣 = 2−𝑏
[︃
−2𝑁−1𝑥𝑁−1 +

𝑁−2∑︁
𝑖=0

2𝑖𝑥𝑖
]︃

(2.2)

the term 𝑥𝑖 is considered as the 𝑖-th bit of the binary word. It is clear now, that
the machine resolution, commonly called as the machine epsilon, is of the value 2−𝑏.
Assuming 𝑏 = 0, the previous representation becomes signed integer as can be seen
from 2.1 and 2.2.

13



2.3 Floating-Point Arithmetic
The floating-point binary representation is depicted in figure 2.2. There we can
see, that the binary word is divided into three parts, these are 1-bit for the sign (S)
expression, 𝑤-bits for the exponent (E) and 𝑡-bits for the trailing significant field (T)
or mantissa. The bit 𝑑0, which is decreased from the 𝑝-bit field, represents the first
bit in the mantissa. It is the bit before the binary point and is implicitly included
in the exponent part.

S E T
1 bit MSB LSB MSB LSBt = p-1 bits

e0 ew-1 d1 dp-1

w bits

Fig. 2.2: The floating-point binary representation according to the std. IEEE 754

The floating-point arithmetic is standardized by the Institute of Electrical and
Electronics Engineers (IEEE) as the std. IEEE 754 [6]. This standard recommends
the parameters of the binary interchange format as it is shown in Table 2.1.

Format Sign Exponent (w) Mantisa (t)
binary32 (Single) 1 8 23
binary64 (Double) 1 11 52
binary128 (Quadruple) 1 15 112

Tab. 2.1: The floating-point number parameters according to the std. IEEE 754

A value of the floating-point number can be obtained according to the expression
2.3, where the first two rows represent the normal and subnormal numbers. The
remaining rows express some special values. These are the signed zero, positive or
negative infinity and not-a-number.

𝑣 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)𝑆2(𝐸−𝑏𝑖𝑎𝑠)
(︁
1 +∑︀𝑝−1

𝑖=1 𝑑𝑖2−𝑖
)︁

1 ≤ 𝐸 ≤ 2𝑤 − 2
(−1)𝑆2𝑒𝑚𝑖𝑛

(︁
0 +∑︀𝑝−1

𝑖=1 𝑑𝑖2−𝑖
)︁

𝐸 = 0, 𝑇 ̸= 0
(−1)𝑆(+0) 𝐸 = 0, 𝑇 = 0
(−1)𝑆(+∞) 𝐸 = 2𝑤 − 1, 𝑇 = 0

𝑁𝑎𝑁 𝐸 = 2𝑤 − 1, 𝑇 ̸= 0

(2.3)

The values of the 𝑏𝑖𝑎𝑠 and 𝑒𝑚𝑖𝑛 are represented as 𝑏𝑖𝑎𝑠 = 𝑒𝑚𝑎𝑥 = 2𝑤−1 − 1 and
𝑒𝑚𝑖𝑛 = 1 − 𝑒𝑚𝑎𝑥 = 2 − 2𝑤−1 respectively.

14



2.4 Floating-Point vs. Fixed-Point Comparison
Although the floating-point arithmetic is evolutionary far away in a comparison to
the fixed-point arithmetic, there are still some considerable differences, which can
be useful when we try to implement numerical algorithms efficiently. Of course, the
dynamic range of the floating-point is much more greater than the fixed-point, but
its speed is slower and a chip integration area is greater. Both of these bottlenecks
are caused due to complex algorithms for the arithmetical operations. As these
algorithms are simpler for the fixed-point numbers a greater speed and smaller chip
integration area can be achieved. Especially the chip integration area significantly
affects the power consumption, operating cost and cost of the device itself. There
is no doubt about the fact, that an algorithm implementation in the fixed-point
arithmetic takes more time in a comparison to a floating-point implementation.
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Fig. 2.3: A comparison of the MACs per second for the floating-point and fixed-point
DSPs. (Reprinted from [7] and corrected.)

A comparison of the number of multiply and accumulate operations per second
for the floating-point and fixed-point DSPs is depicted in figure 2.3. There we can
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see that the trend for the fixed-point DSPs grows more rapidly in a comparison to
the floating-point DSPs. This difference can be significant for the inertial naviga-
tion systems which employ the Kalman filtering algorithm with a high state space
dimension. Another important benefit for the fixed-point arithmetic is its suitability
for the systolic array implementation of the algorithms for matrix operations. All
previously mentioned advantages and disadvantages are summarized in table 2.2.

Fixed-Point Floating-Point
Dynamic Range - +
Development Time - +
Operational Complexity + -
Arithmetic Operations Speed + -
Chip Integration Area + -
Power Consumption + -
Device Cost + -
Operating Cost + -
Systolic Array Algorithms + -

Tab. 2.2: Fixed-point vs. floating-point arithmetic comparison

It is important to note, that the table 2.2 can not be considered dogmatically.
All properties need to be determined individually for all devices since they strongly
dependent on a level of optimisation used during their development.
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3 KALMAN FILTERING

3.1 Introduction
This chapter deals about the Kalman filter and its numerically more stable imple-
mentations. In the first section we look at a system which is needed for the purposes
of this text as a whole. Next section is concerned with a derivation of the conven-
tional Kalman filter for the system presented in the first section. Third part is
focused on a derivation of some numerically robust Kalman filters.

3.2 System Model
Let us assume that we have a stochastic linear time-variant dynamic system given
by the following equations

�̇�𝑡 = 𝐹𝑡𝑥𝑡 +𝐺𝑡𝑤𝑡 (3.1)
𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡 (3.2)

where first of these equations represents the system state model and the second
represents the measurement or observation model. The 𝑛-dimensional state vector
𝑥𝑡 is related from the one time step to the other by the system transition matrix
𝐹𝑡 which is of the dimension 𝑛 × 𝑛. The system measurement is expressed by the
𝑙-dimensional vector 𝑧𝑡 and is considered as a linear transformation from the state
space to the measurement space and computed by the observation matrix 𝐻𝑡 of
the dimension 𝑙 × 𝑛. The term 𝑤𝑡 is considered as a random variable, especially
as a random vector of dimension 𝑚, which is assumed as the Gaussian or normally
distributed with zero mean and known covariance and which represents the process
noise. The term 𝑣𝑡, which represents a measurement noise, is similarly the Gaussian
random vector with zero mean and known covariance and is of the dimension 𝑙. The
matrix 𝐺𝑡 is the process noise distribution matrix and is of the dimension 𝑛×𝑚.

At a beginning we consider only the deterministic part of the equation 3.1 as
follows

�̇�𝑡 = 𝐹𝑡𝑥𝑡 (3.3)

If we assume that we have a set of 𝑛 linearly independent vectors which together
form the fundamental matrix of 3.3 given as

𝑋𝑡 = {𝑥1,𝑡 𝑥2,𝑡 ... 𝑥𝑛,𝑡} (3.4)

where 𝑥𝑖,𝑡 = [𝑥1𝑖 𝑥2𝑖 ... 𝑥𝑛𝑖]𝑇 and if we substitute this matrix into 3.3, then the
following matrix differential equation is obtained

�̇�𝑡 = 𝐹𝑡𝑋𝑡 (3.5)
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Post-multiplying the previous equation by 𝑋−1
𝑡0 yields

˙(𝑋𝑡𝑋
−1
𝑡0 ) = 𝐹𝑡(𝑋𝑡𝑋

−1
𝑡0 ) (3.6)

Φ̇𝑡,𝑡0 = 𝐹𝑡Φ𝑡,𝑡0 (3.7)

where the term Φ𝑡,𝑡0 = 𝑋𝑡𝑋
−1
𝑡0 is the normalised fundamental matrix. Again post-

multiply, but now with an initial condition vector 𝑥𝑡0 yields

˙(Φ𝑡,𝑡0𝑥𝑡0) = 𝐹𝑡(Φ𝑡,𝑡0𝑥𝑡0) (3.8)

which gives us the general expression for the solution of the equation 3.3 as follows

𝑥𝑡 = Φ𝑡,𝑡0𝑥𝑡0 (3.9)

Now we include the stochastic part of the equation 3.1 and we will deal with it
as with the deterministic input. This assumption is not, from a point of view of
the stochastic system theory, correct and rigorous, but it leads to the same results.
Let’s start with an assumed solution given as follows

𝑥𝑡 = Φ𝑡,𝑡0𝑐𝑡 (3.10)

where 𝑐𝑡 is a vector which need to be expressed. Taking the time derivative of this
equation yields

�̇�𝑡 = Φ̇𝑡,𝑡0𝑐𝑡 + Φ𝑡,𝑡0 �̇�𝑡 (3.11)
= 𝐹𝑡𝑥𝑡 +𝐺𝑡𝑤𝑡 (3.12)

Comparing the second terms of the equations 3.11 and 3.12 gives

Φ𝑡,𝑡0 �̇�𝑡 = 𝐺𝑡𝑤𝑡 (3.13)

Now pre-multiplying by Φ𝑡0,𝑡 and integrating this expression yields

𝑐𝑡 = 𝑐𝑡0 +
∫︁ 𝑡

𝑡0
Φ−1
𝜏,𝑡0𝐺𝜏𝑤𝜏𝑑𝜏 (3.14)

Substituting this into 3.10 and replacing 𝑐𝑡0 as 𝑥𝑡0 gives us the final solution of the
equation 3.1 as follows

𝑥𝑡 = Φ𝑡,𝑡0𝑥𝑡0 +
∫︁ 𝑡

𝑡0
Φ𝑡,𝜏𝐺𝜏𝑤𝜏𝑑𝜏 (3.15)

where the matrix Φ𝑡,𝑡0 is, in general, computed as

Φ𝑡,𝑡0 = 𝑒
∫︀ 𝑡

𝑡0
𝐹𝜏𝑑𝜏 (3.16)
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However, this expression can be used only if the following condition holds for all 𝑡
and 𝜏 [8]

𝐹𝑡

∫︁ 𝑡

𝑡0
𝐹𝜏𝑑𝜏 =

∫︁ 𝑡

𝑡0
𝐹𝜏𝑑𝜏𝐹𝑡 (3.17)

Because this is a true only for some special cases the elements of matrix 𝐹𝑡 will be
considered as constant values between the time 𝑡0 and 𝑡. Now we can use simplified
expression for computing Φ𝑡,𝑡0 as follows

Φ𝑡,𝑡0 = 𝑒𝐹𝑡0 (𝑡−𝑡0) (3.18)

where the time index 𝑡0 in the matrix 𝐹 represents that all entries are computed at
the beginning of the time interval [𝑡0, 𝑡]. The matrix exponential 𝑒𝐹𝑡0 (𝑡−𝑡0) can be
computed by Taylor series expansion given as follows

Φ𝑡,𝑡0 =
∞∑︁
𝑖=0

1
𝑖!𝐹

𝑖
𝑡0Δ𝑡𝑖 (3.19)

where Δ𝑡 is equal to (𝑡 − 𝑡0). There are several ways how to compute the matrix
exponential, but using the first two or three terms of this expansion is commonly
sufficient. Using this approximation is advantageous especially in such cases, where
the complete analytical expression of the matrix exponential is too complex.

Now we can formulate discrete time solution simply as

𝑥𝑘+1 = Φ𝑘+1,𝑘𝑥𝑘 +
∫︁ 𝑘+1

𝑘
Φ𝑘+1,𝜏𝐺𝜏𝑤𝜏𝑑𝜏 (3.20)

which can be used for expressing the discrete-time equivalent of the system given
by the equations 3.1 and 3.2 as follows

𝑥𝑘+1 = Φ𝑘+1,𝑘𝑥𝑘 + 𝑤𝑘 (3.21)
𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (3.22)

where 𝑤𝑘 is equal to the integral on the right-hand side of equation 3.20.
Finally we need to express discrete-time covariance matrices of this system. The

process noise covariance matrix is given as

𝑄𝑘 = 𝐸
{︁
𝑤𝑘𝑤

𝑇
𝑘

}︁
(3.23)

=
∫︁ 𝑘+1

𝑘
Φ𝑘+1,𝜏𝐺𝜏𝑄𝜏𝐺

𝑇
𝜏 Φ𝑇

𝑘+1,𝜏𝑑𝜏 (3.24)

If we assume that the matrices in 3.24 are constant between the times 𝑘 and 𝑘 + 1
then we can use the following approximation

𝑄𝑘 = Φ𝑘+1,𝑘𝐺𝑘𝑄𝐺
𝑇
𝑘Φ𝑇

𝑘+1,𝑘Δ𝑡 (3.25)

The measurement noise covariance matrix can be expressed as [9]

𝑅𝑘 = 𝐸
{︁
𝑣(𝑡)𝑣

𝑇
(𝑡)

}︁ 1
Δ𝑡 = 𝑅

Δ𝑡 (3.26)

Where 𝑄 and 𝑅 are the continuous covariances of the process and measurement
noise respectively.
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3.3 Conventional Kalman Filter
This section presents a Kalman filter derivation or rather some inductive proof type
of derivation, because we do not derive the Kalman filter from the general perspective
of the Bayesian estimation theory, but we start from an a priori knowledge about
the equation of linear mean square estimate of the random variable 𝑥 conditioned
on the random variable 𝑧, thus we tray to estimate the system state 3.21 from an
information about the measurements 3.22, as they are related to this state.

At a beginning we need to describe the system noise statistics more closely as
follows

𝐸 {𝑤𝑘} = 0 (3.27)
𝐸 {𝑣𝑘} = 0 (3.28)

𝐸
{︁
𝑤𝑘𝑤

𝑇
𝑗

}︁
= 𝑄𝑘𝛿𝑘𝑗 𝑘 = 𝑗

𝐸
{︁
𝑤𝑘𝑤

𝑇
𝑗

}︁
= 0 𝑘 ̸= 𝑗

(3.29)

𝐸
{︁
𝑣𝑘𝑣

𝑇
𝑗

}︁
= 𝑅𝑗𝛿𝑘𝑗 𝑘 = 𝑗

𝐸
{︁
𝑣𝑘𝑣

𝑇
𝑗

}︁
= 0 𝑘 ̸= 𝑗

(3.30)

𝐸
{︁
𝑣𝑘𝑤

𝑇
𝑗

}︁
= 0 ∀𝑘, 𝑗 (3.31)

where we point out that the both random vectors 𝑤𝑘 and 𝑣𝑘 are zero mean with
covariances given by 𝑄𝑘 and 𝑅𝑘 respectively and that they are not correlated in
the discrete times 𝑘 and 𝑗 as it is denoted by the Kronecker delta function 𝛿𝑘𝑗. We
assume that the random variables are Gaussian, hence it can be proved from 3.29
that the joint probability density function 𝑝(𝑤0, 𝑤1, . . . , 𝑤𝑁) can be rewritten as
𝑝(𝑤0, 𝑤1, . . . , 𝑤𝑁) = 𝑝(𝑤0)𝑝(𝑤1) . . . 𝑝(𝑤𝑁), which indicates that the random variable
𝑤𝑘 represents the white noise. The same assumptions hold for the measurement
noise 𝑣𝑘. The last from the previous expressions 3.31 indicates that the process and
measurement noises are not correlated between each other.

As it is stated in the first paragraph of this section, the proof starts with the
equation of the linear mean square estimate as follows

̂︀𝑥𝑘|𝑘 = ̂︀𝑥𝑘|𝑘−1 +𝐾𝑘

(︁
𝑧𝑘 −𝐻𝑘̂︀𝑥𝑘|𝑘−1

)︁
(3.32)

where the first time subscript in the state vector ̂︀𝑥𝑘|𝑘 represents the discrete time
of computing or current system time step and the second subscript represents the
measurement time, thus its value 𝑘 indicates that the estimate is based on the mea-
surement history up to and including time 𝑘. We call this estimate as an a posteriori
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estimate since it is calculated after an incorporation of the last measurement. Sim-
ilarly, we have an a priori estimate ̂︀𝑥𝑘|𝑘−1 conditioned on the measurement history
up to and including time 𝑘−1, thus the estimate computed before the measurement
𝑘 is taken. The Kalman gain is generally of the form 𝐾 = 𝑃𝑥𝑧𝑃

−1
𝑧𝑧 . We do not as-

sume this form at this moment because we will tray to show, only through a simple
algebraic approach, how to obtain concrete form of the Kalman gain for the system
given by 3.21 and 3.22. For this purpose we need to define a criteria function as
follows

𝐽 = 𝑡𝑟 𝐸
{︂(︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘

)︁ (︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘

)︁𝑇}︂
(3.33)

thus we tray to minimize a sum of squares of the differences between a true value
of the state vector 𝑥𝑘 entries and their estimated counterparts from ̂︀𝑥𝑘|𝑘, which
directly gives the trace of the a posteriori covariance matrix. However, we can try
to minimize the a posteriori covariance matrix without the trace considerations.
This is not a limitation, because if the diagonal entries of the a posteriori covariance
are minimized, then the off diagonal entries are minimized too as they represent
the variances. Hence, the task is to minimize the following a posteriori covariance
matrix

𝑃𝑘|𝑘 = 𝐸
{︁̃︀𝑥𝑘|𝑘̃︀𝑥𝑇𝑘|𝑘

}︁
= 𝐸

{︂(︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘

)︁ (︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘

)︁𝑇}︂ (3.34)

So we need to express 3.34 in terms of the a posteriori error as follows

̃︀𝑥𝑘|𝑘 = 𝑥𝑘 − ̂︀𝑥𝑘|𝑘

= Φ𝑘,𝑘−1𝑥𝑘−1 + 𝑤𝑘 − ̂︀𝑥𝑘|𝑘−1 −𝐾𝑘

(︁
𝑧𝑘 −𝐻𝑘̂︀𝑥𝑘|𝑘−1

)︁
= Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1 + 𝑤𝑘 −𝐾𝑘

(︁
𝐻𝑘𝑥𝑘 + 𝑣𝑘 −𝐻𝑘Φ𝑘,𝑘−1𝑥𝑘−1|𝑘−1

)︁
= Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1 + 𝑤𝑘 −𝐾𝑘

(︁
𝐻𝑘Φ𝑘,𝑘−1𝑥𝑘−1 −𝐻𝑘Φ𝑘,𝑘−1𝑥𝑘−1|𝑘−1 +𝐻𝑘𝑤𝑘 + 𝑣𝑘

)︁
= Φ𝑘,𝑘−1 (𝐼 −𝐾𝑘𝐻𝑘) ̃︀𝑥𝑘−1|𝑘−1 + (𝐼 −𝐾𝑘𝐻𝑘)𝑤𝑘 −𝐾𝑘𝑣𝑘

(3.35)
now substituting this equation into 3.34 yields

𝑃𝑘|𝑘 = 𝐸
{︁̃︀𝑥𝑘|𝑘̃︀𝑥𝑇𝑘|𝑘

}︁
= Φ𝑘,𝑘−1 (𝐼 −𝐾𝑘𝐻𝑘)𝐸

{︁̃︀𝑥𝑘−1|𝑘−1̃︀𝑥𝑇𝑘−1|𝑘−1

}︁
(𝐼 −𝐾𝑘𝐻𝑘)𝑇 Φ𝑇

𝑘,𝑘−1+
+ (𝐼 −𝐾𝑘𝐻𝑘)𝐸

{︁
𝑤𝑘𝑤

𝑇
𝑘

}︁
(𝐼 −𝐾𝑘𝐻𝑘)𝑇 +𝐾𝑘𝐸

{︁
𝑣𝑘𝑣

𝑇
𝑘

}︁
𝐾𝑇
𝑘

= (𝐼 −𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (𝐼 −𝐾𝑘𝐻𝑘)𝑇 +𝐾𝑘𝑅𝐾
𝑇
𝑘

(3.36)

where we use the fact, that the expectation operator 𝐸 {.} is linear, which leads
to an appearance of the relations 3.29, 3.30, 3.31. Further, we assume that the a
posteriori estimation error ̃︀𝑥𝑘|𝑘 is not correlated with the process and measurement
noise. The last row of 3.36 is commonly called as the Joseph’s stabilized form of
the a posteriori covariance matrix. This equation will be needed in the subsequent
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section about numerically more stable Kalman filter implementations. At this point
we need to perform a minimization of this equation. This task can be solved by the
completing-the-square method as follows

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘 𝐾

𝑇
𝑘 −𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 +𝐾𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 𝐾

𝑇
𝑘 +𝐾𝑘𝑅𝐾

𝑇
𝑘

= 𝑃𝑘|𝑘−1 − 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘 𝐾

𝑇
𝑘 −𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 +𝐾𝑘𝑌𝑘𝐾

𝑇
𝑘

= 𝑃𝑘|𝑘−1 −𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 +
(︁
𝐾𝑘 − 𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 𝑌

−1
𝑘

)︁
𝑌𝑘
(︁
𝐾𝑘 − 𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 𝑌

−1
𝑘

)︁𝑇
(3.37)

where we introduce the following matrix

𝑌𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻
𝑇
𝑘 +𝑅𝑘 (3.38)

which represents the so-called innovation covariance matrix. Now it is obvious that
if we choose the Kalman gain as follows

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘 𝑌

−1
𝑘 (3.39)

than the a posteriori covariance matrix will be minimized. Now substituting this
gain into 3.37 gives the minimal form of the a posteriori covariance matrix as follows

𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (3.40)

Now we need to express the a priori covariance matrix which is given as follows

𝑃𝑘|𝑘−1 = 𝐸
{︁̃︀𝑥𝑘|𝑘−1̃︀𝑥𝑇𝑘|𝑘−1

}︁
= 𝐸

{︂(︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘−1

)︁ (︁
𝑥𝑘 − ̂︀𝑥𝑘|𝑘−1

)︁𝑇}︂ (3.41)

Similarly, for this purpose we need to express the a priori error as follows

̃︀𝑥𝑘|𝑘−1 = 𝑥𝑘 − ̂︀𝑥𝑘|𝑘−1

= Φ𝑘,𝑘−1𝑥𝑘−1 + 𝑤𝑘 − Φ𝑘,𝑘−1𝑥𝑘−1|𝑘−1

= Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1 + 𝑤𝑘

(3.42)

where we use the a priori estimate given as

̂︀𝑥𝑘|𝑘−1 = Φ𝑘,𝑘−1̂︀𝑥𝑘−1|𝑘−1 (3.43)

which can be obtained by applying the expectation operator to the equation 3.21.
Substituting 3.42 into 3.41 yields

𝑃𝑘|𝑘−1 = 𝐸
{︁̃︀𝑥𝑘|𝑘−1̃︀𝑥𝑇𝑘|𝑘−1

}︁
= 𝐸

{︂(︁
Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1 + 𝑤𝑘

)︁ (︁
Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1 + 𝑤𝑘

)︁𝑇}︂
= 𝐸

{︁
Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1̃︀𝑥𝑇𝑘−1|𝑘−1Φ𝑇

𝑘,𝑘−1 + Φ𝑘,𝑘−1̃︀𝑥𝑘−1|𝑘−1𝑤
𝑇
𝑘

+ 𝑤𝑘̃︀𝑥𝑇𝑘−1|𝑘−1Φ𝑇
𝑘,𝑘−1 + 𝑤𝑘𝑤

𝑇
𝑘

}︁
= Φ𝑘,𝑘−1𝐸

{︁̃︀𝑥𝑘−1|𝑘−1̃︀𝑥𝑇𝑘−1|𝑘−1

}︁
Φ𝑇
𝑘,𝑘−1 + 𝐸

{︁
𝑤𝑘𝑤

𝑇
𝑘

}︁
= Φ𝑘,𝑘−1𝑃𝑘−1|𝑘−1Φ𝑇

𝑘,𝑘−1 +𝑄𝑘

(3.44)
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where we use the linearity of the expectation operator as in the previous case, so the
assumption 3.29 can appear, and next we use the fact that the a priori estimation
error is not correlated with the process noise.

Now we have everything what we need to summarize the equations for the con-
ventional Kalman filter as follows

̂︀𝑥𝑘|𝑘−1 = Φ𝑘,𝑘−1̂︀𝑥𝑘−1|𝑘−1 (3.45)
𝑃𝑘|𝑘−1 = Φ𝑘,𝑘−1𝑃𝑘−1|𝑘−1Φ𝑇

𝑘,𝑘−1 +𝑄𝑘 (3.46)

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘

(︁
𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 +𝑅𝑘

)︁−1
(3.47)

̂︀𝑥𝑘|𝑘 = ̂︀𝑥𝑘|𝑘−1 +𝐾𝑘

(︁
𝑧𝑘 −𝐻𝑘̂︀𝑥𝑘|𝑘−1

)︁
(3.48)

𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (3.49)

The initial conditions for the state vector and covariance matrix are ̂︀𝑥0|−1 and 𝑃0|−1

respectively, thus we need to set an initial estimate of the state with a corresponding
degree of uncertainty.

3.4 Numerically Robust Kalman Filter Forms
The problem of numerical stability of the conventional Kalman filter is given mainly
due to the form of equation 3.49, thus the form of the a posteriori covariance matrix.
There we can see that for maintaining its positive definiteness the product of the
Kalman gain and the observation matrix need to be less than the identity matrix. If
we assume that we have a computer which has an infinite length of the computational
word, then we can compute this product without any loss of the precision, thus this
product is computed without any round-off error and is really less than the identity
matrix. However, this is not realistic, so we need to consider the effect of rounding
errors which arise due to a finite length of the computational word. These rounding
errors are more significant as the machine epsilon, the value of least significant bit of
the fractional part of the computational word, is greater. As the number of bits of
the fractional part is smaller and numbers in the system model are expressed in very
different units (the model is badly conditioned) a probability that the a posteriori
covariance matrix become negative definite, indefinite or non-symmetric is greater.
This can lead to a temporary divergence or to the suboptimal performance of the
algorithm in a better case. In a worst case it can cause an absolute failure of the
algorithm.

Several modifications of the conventional Kalman filter for avoiding these nu-
merical problems were invented. All of these are based on some kind of the matrix
factorization methods which can improve numerical properties of the covariance
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matrix computation. Especially the Square Root and UD factorized Kalman fil-
ters are the most commonly used implementations. It is important to note, that
all these methods are algebraically equivalent, but not numerically, which is very
advantageous.

For the end of this opening we need to note that these numerical difficulties are
not only the problem of the Kalman filter, but other leas-squares algorithms too.
Generally, it is the problem of all least-squares algorithms, which uses the Riccati
equation of the form given by equation 3.49.

The organization of this section is as follows. At the beginning we will look at
the Joseph Stabilized Form of the Riccati equation. Next the Square Root filter with
using the Potter’s square-root measurement update step and the Modified Gram-
Schmidt algorithm for the time update step will be shown. Finally we will look at
the Bierman’s UD factorized measurement update step together with the Modified
Weighted Gram-Schmidt algorithm for the time update step. In the all subsequent
sections the measurement time index will be expressed as the superscript (−) and
(+), thus the a priori and a posteriori covariance matrices will be marked as 𝑃−

𝑘 and
𝑃+
𝑘 respectively.

3.4.1 Joseph Stabilized Form

Through the derivation of the conventional Kalman filter in the previous section
(the last row of equation 3.36) the form of the a posteriori covariance matrix, which
is commonly known as the Joseph’s stabilized form, was obtained as follows

𝑃+
𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃−

𝑘 (𝐼 −𝐾𝑘𝐻𝑘)𝑇 +𝐾𝑘𝑅𝑘𝐾
𝑇
𝑘 (3.50)

This expression is mathematically equivalent to the equation 3.49, however the nu-
merical properties are different since we have a various number of arithmetic opera-
tions for each of these expressions. If we assume the previously mentioned rounding
error which can make the result of the parentheses in 3.49 negative definite (theo-
retically impossible as we know from the Kalman filter derivation that the value of
the criteria function after minimization is positive and non-zero), then the quadratic
form of the first term of the equation 3.50 makes the resulting covariance matrix
positive definite, even in a case of the negative definite parentheses. This assump-
tion holds if the process noise covariance matrix 𝑅𝑘 is positive definite, because if
it is, then the result of the quadratic form of the second term of 3.50 is positive
definite too. If we consider the second term of equation 3.50, then can be seen, that
this term increases, each time step, the uncertainty of the estimated state. Hence,
this term represents the linear absolute forgetting factor.
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3.4.2 Square Root Filter

The idea of the square root filtering is based on the factorization of positive semi-
definite matrix to the product of an upper and lower triangular matrices as follows

𝑃 = 𝑆𝑆𝑇 (3.51)

where the factor 𝑆 is generally non-unique, thus we can find numerous expressions
for matrix 𝑆. As the diagonal elements of the covariance matrix represent variances,
one can expect, that the diagonal entries of the factor 𝑆 now represents the standard
deviations. This is not true if the product 𝑆 is of the Cholesky type. Therefore,
from the Cholesky factorization can be simply derived an expression for obtaining
the standard deviations. Now it is clear that if we will propagate through time the
factor 𝑆 only, instead of the covariance matrix as a whole, then we can be certain
about the covariance matrix positive definiteness, even for the negative definite
factor 𝑆. From this point, we can feel that the precision of the covariance matrix
computation is now two times better than in the case of the conventional Kalman
filter covariance matrix. This fact can be indicated by the condition number, which
can be considered as some kind of a measure of the linear dependence of the matrix
rows. The condition number 𝜅 of the matrix 𝑃 can be computed as follows

𝜅(𝑃 ) = 𝜎𝑚𝑎𝑥(𝑃 )
𝜎𝑚𝑖𝑛(𝑃 ) (3.52)

where 𝜎𝑚𝑎𝑥(.) and 𝜎𝑚𝑖𝑛(.) are the maximum and minimum singular values of a
matrix (.) respectively. The vector which contains the singular values of 𝑃 can be
expressed as

𝜎(𝑃 ) =
√︁
𝜆(𝑃𝑃 𝑇 ) (3.53)

where 𝜆(.) represents eigenvalue vector. The above expression simply means that
the singular values of the matrix are the absolute values of its eigenvalues. However,
this statement holds for the symmetric matrices only. If the condition number
approaches to a large value, then the matrix 𝑃 is more ill-conditioned. On the other
hand the best conditioning can be achieved when it is one. The relation between
the condition number of 𝑃 and 𝑆 can be expressed as [1]

𝜅(𝑃 ) = 𝜅(𝑆𝑆𝑇 ) = (𝜅(𝑆))2 = 𝜎2
𝑚𝑎𝑥(𝑆)
𝜎2
𝑚𝑖𝑛(𝑆) = 𝜎𝑚𝑎𝑥(𝑃 )

𝜎𝑚𝑖𝑛(𝑃 ) (3.54)

which implies
𝜅(𝑆) =

√︁
𝜅(𝑃 ) (3.55)

Now it is clear that we have a two times greater precision for the covariance matrix
computation and we can state that we are able to use the single precision arithmetic
instead of the double precision arithmetic, but this is only a theoretical statement,
practically it is strongly dependent on the examined system model.
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Time Update

Consider now that we have the a posteriori covariance matrix given as the product
of its Cholesky factors as it is expressed by the following equation

𝑃+
𝑘 = 𝑆+

𝑘 (𝑆+
𝑘 )𝑇 (3.56)

If we now substitute equation 3.56 into 3.46, then we can obtain the following relation
for the a priory covariance matrix

𝑃−
𝑘 = Φ𝑘𝑆

+
𝑘−1(𝑆+

𝑘−1)𝑇Φ𝑇
𝑘 +𝑄𝑘

=
[︁

Φ𝑘𝑆
+
𝑘−1 𝑄

1/2
𝑘

]︁ [︁
Φ𝑘𝑆

+
𝑘−1 𝑄

1/2
𝑘

]︁𝑇
= 𝑊𝑊 𝑇

(3.57)

where 𝑊 now represents a matrix of dimension 𝑛 × (𝑛 + 𝑚) which is not equal to
the triangular matrix 𝑆−

𝑘 . The factor 𝑆−
𝑘 can be obtained if we rewrite equation

3.57 as follows
𝑃−
𝑘 = 𝑊𝑊 𝑇

=
(︁
𝑊𝑉 𝑇

)︁ (︁
𝑉𝑊 𝑇

)︁
= 𝑆−

𝑘 (𝑆−
𝑘 )𝑇

(3.58)

Where 𝑉 is an orthogonal matrix of dimension (𝑛+𝑚) × (𝑛+𝑚) which represents
a linear transformation between the following matrices⎡⎣ (𝑆−

𝑘 )𝑇

0

⎤⎦ = 𝑉

⎡⎣ (𝑆+
𝑘−1)𝑇Φ𝑇

𝑘

𝑄
𝑇/2
𝑘

⎤⎦ (3.59)

The task about finding the matrix 𝑉 can be approached in several ways e.g. we
can employ Householder transformation, Givens rotations, classical Gram-Schmidt
algorithm or Modified Gram-Schmidt algorithm. The greatest numerical robustness
from these algorithms has the MGS. So this algorithm, applied to the rows of the
matrix 𝑊 , is given for 𝑗 = 𝑛, 𝑛− 1, ..., 1 and 𝑖 = 1, 2, ..., 𝑗 − 1 as follows[10]

𝛽𝑗 =
⃦⃦⃦
𝑤

(𝑛−𝑗)
𝑗

⃦⃦⃦2

2
(3.60)

𝑠−
𝑗𝑗 = 𝛽

1/2
𝑗 (3.61)

𝑣𝑗 = 𝑤
(𝑛−𝑗)
𝑗 /𝑠−

𝑗𝑗 (3.62)
𝑠−
𝑖𝑗 = ⟨𝑤𝑖, 𝑣𝑗⟩ (3.63)

𝑤
(𝑛−𝑗+1)
𝑖 = 𝑤

(𝑛−𝑗)
𝑖 − 𝑠−

𝑖𝑗𝑣𝑗 (3.64)

where ‖·‖2 represents the Euclidean norm and ⟨·, ·⟩ is the dot product.
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Measurement Update

Similarly as in the time-update step we start the derivation with a consideration that
we have the a priory covariance matrix expressed as the product of the Cholesky
factors as follows

𝑃−
𝑘 = 𝑆−

𝑘 (𝑆−
𝑘 )𝑇 (3.65)

Substituting this product into the equation 3.49 leads to the a posteriori covariance
matrix written as

𝑃+
𝑘 = 𝑆−

𝑘 (𝑆−
𝑘 )𝑇 − 𝑆−

𝑘 (𝑆−
𝑘 )𝑇𝐻𝑇

𝑘

(︁
𝐻𝑘𝑆

−
𝑘 (𝑆−

𝑘 )𝑇𝐻𝑇
𝑘 +𝑅𝑘

)︁−1
𝐻𝑘𝑆

−
𝑘 (𝑆−

𝑘 )𝑇

= 𝑆−
𝑘

(︂
𝐼 − (𝑆−

𝑘 )𝑇𝐻𝑇
𝑘

(︁
𝐻𝑘𝑆

−
𝑘 (𝑆−

𝑘 )𝑇𝐻𝑇
𝑘 +𝑅𝑘

)︁−1
𝐻𝑘𝑆

−
𝑘

)︂
(𝑆−

𝑘 )𝑇

= 𝑆−
𝑘

(︂
𝐼 − 𝑣

(︁
𝑣𝑇𝑣 + 𝑟𝑘

)︁−1
𝑣𝑇
)︂

(𝑆−
𝑘 )𝑇

= 𝑆−
𝑘

(︁
𝐼 − 𝛼−1𝑣𝑣𝑇

)︁
(𝑆−

𝑘 )𝑇

= 𝑆−
𝑘 𝑊𝑊 𝑇 (𝑆−

𝑘 )𝑇

(3.66)

where we place the following substitutions

𝑣 = (𝑆−
𝑘 )𝑇𝐻𝑇

𝑘 (3.67)

𝛼 = 𝑣𝑇𝑣 + 𝑟𝑘 (3.68)

𝑊𝑊 𝑇 = 𝐼 − 𝛼−1𝑣𝑣𝑇 (3.69)

It is important to note that we change in the third row of equation 3.66 the matrix
𝑅𝑘 for the scalar 𝑟𝑘. This simplification means that we will be able to compute with
the scalar measurements only, which is not restrictive, because we can process the
measurement-update sequentially, thus one diagonal entry of 𝑅𝑘 with corresponding
entry from 𝑧𝑘 at a given time. This is very advantageous because we do not need
to compute an inverse of the innovation matrix, which substantially increase the
computational time of the Kalman filter. The main disadvantage in computing the
inverse of the innovation matrix lies in the fact that this process makes the resulting
covariance matrix numerically badly conditioned in such a case, where the length
of the computational word is short. Hence, the sequential measurement-update
brings more numerical robustness into the Kalman filter computation. However,
this approach requires the diagonal matrix 𝑅𝑘. The diagonalization procedure can
be performed before an implementation of the algorithm, but only for cases, where
𝑅𝑘 is time-invariant.

The problem of factoring the a posteriori covariance matrix is now given by
searching for an expression of the factor 𝑊 . This can be done by rewriting the
equation 3.69 as follows

𝑊𝑊 𝑇 =
(︁
𝐼 − 𝛾𝛼−1𝑣𝑣𝑇

)︁ (︁
𝐼 − 𝛾𝛼−1𝑣𝑣𝑇

)︁𝑇
(3.70)
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where we introduce a variable 𝛾, which need to be found. For this purpose we make
the following treatment

𝐼 − 𝛼−1𝑣𝑣𝑇 = 𝐼 − 2𝛾𝛼−1𝑣𝑣𝑇 + 𝛾2𝛼−2𝑣𝑣𝑇𝑣𝑣𝑇

0 = 𝛾2𝛼−2𝛽𝑣𝑣𝑇 + 2𝛾𝛼−1𝑣𝑣𝑇 + 𝛼−1𝑣𝑣𝑇

0 = (𝛾2𝛼−1𝛽 + 2𝛾 + 1)𝛼−1𝑣𝑣𝑇

0 = 𝛾2𝛼−1𝛽 + 2𝛾 + 1

(3.71)

where we can obtain, after some arrangements, the following two solutions

𝛾1,2 = 1
1 ∓ √

𝑟𝑘𝛼
(3.72)

Only the positive expression is important for us, because if 𝑟𝑘𝛼 → 1 then 𝛾 → ∞.
Rewriting the expression 3.66 as follows

𝑆+
𝑘 (𝑆+

𝑘 )𝑇 = 𝑆−
𝑘 𝑊𝑊 𝑇 (𝑆−

𝑘 )𝑇 (3.73)

yields the final term for updating the factor of the a posteriori covariance matrix

𝑆+
𝑘 = 𝑆−

𝑘 𝑊

= 𝑆−
𝑘

(︁
𝐼 − 𝛾𝛼−1𝑣𝑣𝑇

)︁
= 𝑆−

𝑘 − 𝛾𝛼−1𝑆−
𝑘 𝑣𝑣

𝑇

= 𝑆−
𝑘 − 𝛾𝐾𝑘𝑣

𝑇

(3.74)

where the Kalman gain 𝐾𝑘 is expressed as

𝐾𝑘 = 𝛼−1𝑆−
𝑘 𝑣 (3.75)

The Potter’s Square Root measurement-update can be summarized as follows

𝑣 = (𝑆−
𝑘 )𝑇𝐻𝑇

𝑘 (3.76)
𝛼 = 𝑣𝑇𝑣 + 𝑟𝑘 (3.77)
𝐾𝑘 = 𝛼−1𝑆−

𝑘 𝑣 (3.78)
𝑥+
𝑘 = 𝑥−

𝑘 +𝐾𝑘

(︁
𝑧𝑘 −𝐻𝑘𝑥

−
𝑘

)︁
(3.79)

𝛾 = 1
1 + √

𝑟𝑘𝛼
(3.80)

𝑆+
𝑘 = 𝑆−

𝑘 − 𝛾𝐾𝑘𝑣
𝑇 (3.81)

If one need to initialize the factor 𝑆−
0 , then the Cholesky decomposition need to

be used. The estimated state vector is initialized as same as in the case of the
conventional Kalman filter.
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3.4.3 UD Filter

The main disadvantage of the Square Root filter is the need for the square root
computation, which brings more computational burden and some difficulties from
an implementation point of view. These drawbacks can be avoided by introducing
the UD factorization of any positive semi-definite matrix as follows

𝑃 = 𝑈𝐷𝑈𝑇 (3.82)

where 𝑈 is an upper triangular matrix with unit diagonal entries and 𝐷 is a diagonal
matrix. Both of these are assumed as square matrices of the same dimension. Now
one can ask how we obtain a two times greater precision with this expression. The
answer is expressed by the following relation

𝑃 = (𝑈
√
𝐷)(𝑈

√
𝐷)𝑇 = 𝑆𝑆𝑇 (3.83)

which gives the relation for the condition number as

𝜅(𝑃 ) = 𝜅((𝑈
√
𝐷)(𝑈

√
𝐷)𝑇 ) = (𝜅(𝑈

√
𝐷))2 = 𝜎2

𝑚𝑎𝑥(𝑈
√
𝐷)

𝜎2
𝑚𝑖𝑛(𝑈

√
𝐷)

= 𝜎𝑚𝑎𝑥(𝑃 )
𝜎𝑚𝑖𝑛(𝑃 ) (3.84)

where the terms 𝜎𝑚𝑎𝑥(.) and 𝜎𝑚𝑖𝑛(.) represent the maximum and minimum singular
values of a matrix (.) respectively. Hence, the condition number of product 𝑈

√
𝐷 is

𝜅(𝑈
√
𝐷) =

√︁
𝜅(𝑃 ) (3.85)

Now finding an expressions for propagating the a priori and a posteriori covariance
matrices in the terms of 3.82 leads to an improved version of the previously expressed
Square Root filter, however without the square root computation.

Time Update

Similarly as with the Square Root filter we firstly make an assumption that we have
the a posteriori covariance matrix expressed in the factorized terms, but now we
consider the terms of the UD factorization as follows

𝑃+
𝑘 = 𝑈+

𝑘 𝐷
+
𝑘 (𝑈+

𝑘 )𝑇 (3.86)

where 𝑈+
𝑘 is the upper-triangular matrix of the dimension 𝑛× 𝑛 with unit diagonal

entries. The matrix𝐷+
𝑘 is diagonal and of the dimension 𝑛×𝑛. Again we need to note

that we need to employ the Cholesky UD factorization for obtaining the standard
deviations because the diagonal entries of factor 𝐷+

𝑘 do not directly interpret the
variances. Substituting now equation 3.86 into 3.46 yields

𝑃−
𝑘 = Φ𝑘𝑈

+
𝑘−1𝐷

+
𝑘−1(𝑈+

𝑘−1)𝑇Φ𝑇
𝑘 +𝑄𝑘

=
[︁

Φ𝑘𝑈
+
𝑘−1 𝐼

]︁ ⎡⎣ 𝐷+
𝑘−1 0

0 𝑄𝑘

⎤⎦ [︁ Φ𝑘𝑈
+
𝑘−1 𝐼

]︁𝑇
= 𝑊�̄�𝑊 𝑇

(3.87)
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where the block-diagonal matrix �̄� is of dimension (𝑛+𝑚) × (𝑛+𝑚). The matrix
𝑊 is not interchangeable for the factor 𝑈−

𝑘 as before and is of the dimension 𝑛 ×
(𝑛+𝑚). Incorporating again the orthogonal transformation matrix 𝑉 , which is now
of dimension 𝑛 × (𝑛 + 𝑚), leads to another expression for the a priori covariance
matrix as follows

𝑃−
𝑘 =

(︁
𝑈−
𝑘 𝑉

)︁
�̄�
(︁
𝑈−
𝑘 𝑉

)︁𝑇
= 𝑈−

𝑘

(︁
𝑉 �̄�𝑉 𝑇

)︁
(𝑈−

𝑘 )𝑇

= 𝑈−
𝑘 𝐷

−
𝑘 (𝑈−

𝑘 )𝑇
(3.88)

which yields
𝑈−
𝑘 𝑉 =

[︁
Φ𝑘𝑈

+
𝑘−1 𝐼

]︁
(3.89)

where we need to find the matrix 𝑉 as before.
In the second row of the equation 3.88 can be seen that 𝐷−

𝑘 = 𝑉 �̄�𝑉 𝑇 , thus the
diagonal entries 𝑑−

𝑗𝑗 are expressed as 𝑣𝑗�̄�𝑣𝑇𝑗 for 𝑗 = 1, 2, ..., 𝑛 (where we assume 𝑣𝑗 as
a row vector of the matrix 𝑉 ), which is nothing else than the weighted dot product.
Assuming this type of dot product the following Weighted Modified Gram-Schmidt
algorithm, applied to the rows of 𝑊 , can be defined for 𝑗 = 𝑛, 𝑛 − 1, ..., 1 and
𝑖 = 1, 2, ..., 𝑗 − 1 as follows

𝑑−
𝑗𝑗 =

⃦⃦⃦
𝑤

(𝑛−𝑗)
𝑗

⃦⃦⃦2

�̄�
(3.90)

𝑢−
𝑖𝑗 = ⟨𝑤𝑖, 𝑤𝑗⟩ /𝑑−

𝑗𝑗 (3.91)
𝑤

(𝑛−𝑗+1)
𝑖 = 𝑤

(𝑛−𝑗)
𝑖 − 𝑢−

𝑖𝑗𝑤𝑗 (3.92)

where ‖·‖�̄� represents the Euclidean norm weighted by the matrix �̄� and ⟨·, ·⟩ is the
standard dot product.

Measurement Update

If we assume the following expression for the a priori covariance matrix

𝑃−
𝑘 = 𝑈−

𝑘 𝐷
−
𝑘 (𝑈−

𝑘 )𝑇 (3.93)

where 𝑈−
𝑘 is the upper-triangular matrix and 𝐷−

𝑘 is the diagonal matrix, both of the
dimension 𝑛× 𝑛, then the a posteriori covariance matrix 3.49 can be rewritten as

𝑃+
𝑘 = 𝑈−

𝑘 𝐷
−
𝑘 (𝑈−

𝑘 )𝑇 − 𝑈−
𝑘 𝐷

−
𝑘 (𝑈−

𝑘 )𝑇𝐻𝑇
𝑘

(︁
𝐻𝑘𝑈

−
𝑘 𝐷

−
𝑘 (𝑈−

𝑘 )𝑇𝐻𝑇
𝑘 +𝑅𝑘

)︁−1
𝐻𝑘𝑈

−
𝑘 𝐷

−
𝑘 (𝑈−

𝑘 )𝑇

= 𝑈−
𝑘

(︂
𝐷−
𝑘 −𝐷−

𝑘 (𝑈−
𝑘 )𝑇𝐻𝑇

𝑘

(︁
𝐻𝑘𝑈

−
𝑘 𝐷

−
𝑘 (𝑈−

𝑘 )𝑇𝐻𝑇
𝑘 +𝑅𝑘

)︁−1
𝐻𝑘𝑈

−
𝑘 𝐷

−
𝑘

)︂
(𝑈−

𝑘 )𝑇

= 𝑈−
𝑘

(︂
𝐷−
𝑘 −𝐷−

𝑘 𝑓
(︁
𝑓𝑇𝐷−

𝑘 𝑓 + 𝑟𝑘
)︁−1

𝑓𝑇𝐷−
𝑘

)︂
(𝑈−

𝑘 )𝑇

= 𝑈−
𝑘

(︁
𝐷−
𝑘 − 𝛼−1𝑣𝑣𝑇

)︁
(𝑈−

𝑘 )𝑇

= 𝑈−
𝑘

(︁
�̄��̄��̄�𝑇

)︁
(𝑈−

𝑘 )𝑇

=
(︁
𝑈−
𝑘 �̄�

)︁
�̄�
(︁
𝑈−
𝑘 �̄�

)︁𝑇
(3.94)
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where the following terms were introduced

𝑓 = (𝑈−
𝑘 )𝑇𝐻𝑇

𝑘 (3.95)

𝑣 = 𝐷−
𝑘 𝑓 (3.96)

𝛼 = 𝑓𝑇𝑣 + 𝑟𝑘 (3.97)

The problem of factorizing the matrix expression 3.94 is now given as

�̄��̄��̄�𝑇 = 𝐷−
𝑘 − 𝛼−1𝑣𝑣𝑇 (3.98)

Obtaining the factors �̄� and �̄� leads to a general recursion of the UD measurement-
update

𝑈+
𝑘 = 𝑈−

𝑘 �̄�

𝐷+
𝑘 = �̄�

(3.99)

Similarly as with the Square Root Filter are there several approaches how to obtain
factors of the equation 3.98. Bierman was presented in [12] how to obtain a solution
for updating the terms 𝑈+

𝑘 and 𝐷+
𝑘 directly as follows

𝑓 = (𝑈−)𝑇𝐻𝑇 (3.100)
𝑣 = 𝐷−𝑓 (3.101)
𝛼𝑗 = 𝛼𝑗−1 + 𝑓𝑗𝑣𝑗 (3.102)
𝑑+
𝑗 = 𝑑−

𝑗

𝛼𝑗−1

𝛼𝑗
(3.103)

𝑏𝑗 = 𝑣𝑗 (3.104)

𝑝𝑗 = − 𝑓𝑗
𝛼𝑗−1

(3.105)

𝑈+
𝑖𝑗 = 𝑈−

𝑖𝑗 + 𝑏𝑖𝑝𝑗 (3.106)
𝑏𝑖 := 𝑏𝑖 + 𝑈+

𝑖𝑗 𝑣𝑗 (3.107)

𝐾 = 𝑏

𝛼𝑛
(3.108)

where 𝑗 = 1, 2...., 𝑛 and 𝑖 = 1, 2, ..., 𝑗 − 1. It is crucial to set 𝛼0 = 𝑟 before we go
through the first iteration. If we have 𝑙-dimensional observation vector, then the
equations 3.100-3.108 need to be performed 𝑙-times. An initialization of the factors
𝑈−

0 and 𝐷−
0 need to be performed by the Cholesky 𝑈𝐷𝑈𝑇 decomposition.
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4 AIDED INERTIAL NAVIGATION

4.1 Introduction
It is clear form the title that an aided inertial navigation system is based on using
inertial sensors, thus on using some accelerometers and gyroscopes. Therefore, as the
accelerometer measure an acceleration, we need to perform a time integration of its
output for obtaining a velocity. As we have the velocity, we need to perform another
time integration for obtaining a position. Similarly an output of the gyroscope
need to be integrated for obtaining an attitude. The task related to integrating
these outputs is difficult because all measurements are obtained with some degree
of uncertainty. This uncertainty is represented by a measurement noise, additional
error, scale factor error, non-linearity etc. All these effects are integrated together
with useful information. Therefore, integrating the sensor’s outputs becomes a very
critical part of the navigation process, because as more as uncertain the output of the
sensors is, the navigation system’s error grows more quickly. A way how to reduce
this error lies in a modelling of the previously mentioned effects. If we are able to
estimate values of these effects, then we can use them for correcting the outputs of
the inertial sensors. Unfortunately, assuming this corrections, it is not possible to
cover it in all, and although the navigation system’s error grows more slightly than
before, it is still an unbounded grow. If we need to make the navigation system’s
error bounded, then an external aiding, with bounded error, need to be incorporated.
One of the most popular aiding source is the Global Navigation Satellite System
(GNSS). Although the GNSS measurements are erroneous, these errors are not grow
over time. The measurements of the GNSS and the inertial sensors are then fused
together, which makes the inertial system’s error bounded. The obvious question
can appear, so why we do not use the GNSS only? The answer is, the GNSS
measurements can be significantly noisy and the sample rate is low. However, a
combination of the GNSS and the inertial sensor’s measurements leads to a high-
rate and more accurate navigation system’s results.

There are several approaches how to fuse data from the GNSS and the inertial
sensors. These approaches are divided according to a degree of coupling between the
GNSS and the inertial navigation system into four categories, which are named as
the Loosely Coupled Integration, Tightly Coupled Integration, Deep Integration and
Ultra Deep Integration. This is a general division and all others can be considered
as a combination of these approaches or something between them. All these are
very good described in [13].

The organization of this chapter is as follows. For support our next effort, we
first describe a number of coordinate frames, which detailed knowledge is crucial for
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understanding the navigation algorithm. Next we focus our attention to a derivation
of the kinematic equations of motion. From these equations we can next derive a
trajectory (sensor data) generator. Last part of this chapter is focused to a deriva-
tion of navigation error equations with their corresponding error state space model.
These sections are based on the author’s studies of [15] [16] [20] [21].

4.2 Coordinate Frames and Earth Model
For describing a movement of target in the vicinity of the Earth is suitable to use
a number of coordinate frames. If we do so, the mathematical model of the inertial
navigation becomes, in some sense, modular. This modularity is a suitable property
as it can be used for defining a number of inertial navigation algorithms with a
possibility of extensions. This extension can be for example the so-called wander
azimuth coordinate frame, which can be used for avoiding the singularity as it arises
in the local navigation frame due to the vehicle’s movement through the poles of
the Earth.
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Fig. 4.1: Relations between the Earth Centered Inertial (ECI) frame, Earth Cen-
tered Earth Fixed (ECEF) frame, local navigation frame and body frame.
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4.2.1 Coordinate Frames Description

Earth Centered Inertial (ECI) frame (i-frame) - an orthogonal set of
axes denoted by triad [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] as depicted in figure 4.1. This orthogonal frame
has its origin at the centre of the Earth and is nonrotating and nonaccelerating
with respect to the rest of the Universe. This assumption is not considered with
an acceleration due to the rotation of the Earth around the Sun and the Galaxy
rotation because it is not measurable. The inertial sensors measure a motion just
with respect to the inertial frame.

Earth Centered Earth Fixed (ECEF) frame (e-frame) - similarly it is
a set of orthogonal axes, which are denoted by triad [𝑥𝑒, 𝑦𝑒, 𝑧𝑒] as depicted in figure
4.1. An origin of this frame is placed at the centre of the Earth and its axes are
fixed to the Earth, hence they rotate with respect to the inertial frame. The axis 𝑥𝑒
intersects the Greenwich meridian or the conventional meridian where zero degree
of the longitude is defined. An angular rate of the ECEF frame with respect to the
ECI frame is denoted as 𝜔𝑖𝑒.

Local navigation frame (n-frame) - an orthogonal axes set with an origin
at the point P as depicted in figure 4.1. The axes are denoted by triad [𝑥𝑛, 𝑦𝑛, 𝑧𝑛].
More commonly used notation, especially between navigation engineers is [𝐸,𝑁,𝑈 ],
which are the abbreviations of east, north and up. In some cases we can find a
definition by triad [𝑁,𝐸,𝐷] (down), which involve a different orientation of the
axes. For the purposes of this work the first option will be considered. The origin of
the n-frame is placed at the curve which is defined by a local meridian plane. The
axis 𝑦𝑛,𝑁 is always pointed to the north pole of the Earth. For that reason, there is
a possibility to gain an infinite speed when e.g. an aircraft flight over the north or
south pole. This lack can by avoided by a definition of the so-called wander azimuth
frame, as was written in the introductory of this section, but for now we will not
consider this option due to simplification.

Body frame (b-frame) - this axes set is defined by triad [𝑥𝑏, 𝑦𝑏, 𝑧𝑏] and has
an origin at the same place as the n-frame i.e. at the point P. The axes are aligned
with the roll, pitch and yaw axes of an aircraft. The inertial navigation system is
commonly installed in the b-frame. This is not strict, so it can be installed else-
where, but this include another transformation needed for computing the navigation
solution, which involves higher computational burden.
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4.2.2 Earth Model

The Earth model defines a number of important constants and variables, which are
necessary for running the navigation algorithm. The Earth itself is a very complex
shape in a detail. Modelling all aspects of this shape is very difficult, therefore its
surface is approximated by an ellipsoid, whose radius is defined by the mean sea
level. The necessary constants, which are used through this text are defined in the
table 4.1.

𝑅𝑒 e 𝜔𝑖𝑒

6378140[m] 0.00335281066475[-] 7.2921151467e-5[rad/s]

Tab. 4.1: Definition of the Earth model constants. 𝑅𝑒 is the main radius of the
Earth, 𝑒 is the eccentricity of the Earth and 𝜔𝑖𝑒 is the angular rate of the Earth.

A two important radii are needed for computing the time change of the latitude
and longitude. First one 𝑅𝑁 is the radius of curvature, known as the meridian radius
for the north-south motion.

𝑅𝑁(𝐿) = 𝑅𝑒(1 − 𝑒2)
(1 − 𝑒2 sin2 𝐿)3/2 (4.1)

And the second one 𝑅𝐸 is the transverse radius of curvature for the east-west motion,
written as

𝑅𝐸(𝐿) = 𝑅𝑒

(1 − 𝑒2 sin2 𝐿)1/2 (4.2)

Both of this change its values when the object varies its latitude as moves in the
vicinity of the Earth.

An angular rate of change of the latitude is obtained from figure 4.1 as the
fraction of the translational velocity in the north direction and the sum of Earth’s
meridian radius with a height above the Earth’s surface as follows

�̇� =
𝑣𝑛𝑒𝑛,𝑁

𝑅𝑁(𝐿) + ℎ
(4.3)

Similarly, the time change of longitude is obtained from figure 4.1 as the fraction
of the east translational velocity and sum of the transverse radius of the Earth and
the height as

�̇� =
𝑣𝑛𝑒𝑛,𝐸

(𝑅𝐸(𝐿) + ℎ) cos𝐿 (4.4)

where the sum in the denominator changes its value with a change of the cosine of lat-
itude. This is obvious directly from the geometry of figure 4.1 and the Pythagorean
theorem.
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4.2.3 Coordinate Transformations

The coordinate transformation matrices are useful when we need to transform a
vector expressed in some frame to a vector expressed in another frame. Main two
transformation matrices used through this text are 𝐶𝑛

𝑒 direction cosine matrix, which
transform a vector expressed in the e-frame (ECEF) to a vector expressed in the
n-frame, and 𝐶𝑏

𝑛, which transform vectors between the n-frame and the b-frame.
First of these is obtained by rotating the n-frame from its starting position by

the longitude angle 𝜆 around the z-axis and next rotating by the latitude angle 𝐿
around the y-axis. At last, the first matrix in the expression 4.5 is used for changing
the axes order from [E,U,N] to [E,N,U].

𝐶𝑛
𝑒 =

⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

𝑐𝐿 0 𝑠𝐿

0 1 0
−𝑠𝐿 0 𝑐𝐿

⎤⎥⎥⎦
⎡⎢⎢⎣

𝑐𝜆 𝑠𝜆 0
−𝑠𝜆 𝑐𝜆 0

0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−𝑠𝜆 𝑐𝜆 0

−𝑠𝐿𝑐𝜆 −𝑠𝐿𝑠𝜆 𝑐𝐿

𝑐𝐿𝑐𝜆 𝑐𝐿𝑠𝜆 𝑠𝐿

⎤⎥⎥⎦
(4.5)

Second of these can by obtained in the similar way as before. We start with a
rotation of the b-frame around its z-axis by the yaw angle, next we need a rotation
around the x-axis by the pitch angle and the last rotation is around the y-axis by
the roll angle as follows

𝐶𝑏
𝑛 = 𝐶3𝐶2𝐶1

=

⎡⎢⎢⎣
𝑐𝛾 0 −𝑠𝛾
0 1 0
𝑠𝛾 0 𝑐𝛾

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0
0 𝑐𝜃 𝑠𝜃

0 −𝑠𝜃 𝑐𝜃

⎤⎥⎥⎦
⎡⎢⎢⎣

𝑐𝜓 𝑠𝜓 0
−𝑠𝜓 𝑐𝜓 0

0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
𝑐𝛾𝑐𝜑− 𝑠𝛾𝑠𝜃𝑠𝜓 −𝑐𝜃𝑠𝜓 𝑠𝛾𝑐𝜓 + 𝑐𝛾𝑠𝜃𝑠𝜓

𝑐𝛾𝑠𝜑+ 𝑠𝛾𝑠𝜃𝑐𝜓 𝑐𝜃𝑐𝜓 𝑠𝛾𝑠𝜓 − 𝑐𝛾𝑠𝜃𝑐𝜓

−𝑠𝛾𝑐𝜃 𝑠𝜃 𝑐𝛾𝑐𝜃

⎤⎥⎥⎦
(4.6)

where the indexes in the terms of right-hand side of 4.6 denote the order of rotations.
Now, if we look at this matrix, then we can see, that the all angles can be computed
back from the entries, which are expressed only by the two (e.g. 𝑐𝜃𝑐𝜑) or less terms
(i.e. 𝑠𝜃).

4.3 Navigation System Equations
This section deals with a derivation of inertial navigation system mechanization
equations. Firstly we start with a velocity equation, which describe a movement
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of a target expressed in the local navigation frame. Next is described an attitude
equation of the object’s body frame which is related to the navigation frame. Fur-
ther, a position equation of the target, expressed in the geodetic coordinates i.e. in
the terms of latitude, longitude and altitude, is presented. As was mentioned in
the introductory of this chapter, the sensor’s measurement comprises errors, so the
final part of this section briefly describes equations which are commonly used for
their modelling. At this point is important to note, that the time indexes in the all
following subsection, are omitted due to a simplification of the notation.

4.3.1 Velocity Equation

Let’s start a derivation of the velocity time propagation equation with the following
relation

𝑣𝑛𝑒𝑛 = 𝐶𝑛
𝑒 �̇�

𝑒
𝑒𝑛 (4.7)

which describes the transformation of the e-frame expressed velocity to the n-frame
expressed velocity. Taking the time derivative of this equation yields

�̇�𝑛𝑒𝑛 = 𝐶𝑛
𝑒 𝑟

𝑒
𝑒𝑛 + �̇�𝑛

𝑒 �̇�
𝑒
𝑒𝑛 (4.8)

where the 𝑟𝑒𝑒𝑛 term is defined as

𝑟𝑒𝑒𝑛 = 𝐶𝑒
𝑖 𝑟
𝑖
𝑒𝑛 (4.9)

and its first time derivative as

�̇�𝑒𝑒𝑛 = 𝐶𝑒
𝑖 �̇�
𝑖
𝑒𝑛 + �̇�𝑒

𝑖 𝑟
𝑖
𝑒𝑛

= 𝐶𝑒
𝑖 (�̇�𝑖𝑒𝑛 − Ω𝑖

𝑖𝑒𝑟
𝑖
𝑒𝑛)

(4.10)

Previous relation uses the time propagation equation for the transformation matrix
𝐶𝑒
𝑖 as follows

�̇�𝑒
𝑖 = −𝐶𝑒

𝑖 Ω𝑖
𝑖𝑒 (4.11)

where Ω𝑖
𝑖𝑒 is the skew-symmetric matrix of the e-frame to i-frame angular rate ex-

pressed in the i-frame. The second time derivative of 4.9 gives

𝑟𝑒𝑒𝑛 = �̇�𝑒
𝑖 (�̇�𝑖𝑒𝑛 − Ω𝑖

𝑖𝑒𝑟
𝑖
𝑒𝑛) + 𝐶𝑒

𝑖

(︁
𝑟𝑖𝑒𝑛 − Ω̇𝑖

𝑖𝑒𝑟
𝑖
𝑒𝑛 − Ω𝑖

𝑖𝑒�̇�
𝑖
𝑒𝑛

)︁
= −𝐶𝑒

𝑖 Ω𝑖
𝑖𝑒 (�̇�𝑖𝑒𝑛 − Ω𝑖

𝑖𝑒𝑟
𝑖
𝑒𝑛) + 𝐶𝑒

𝑖 (𝑟𝑖𝑒𝑛 − Ω𝑖
𝑖𝑒�̇�

𝑖
𝑒𝑛)

= 𝐶𝑒
𝑖 (𝑟𝑖𝑒𝑛 − 2Ω𝑖

𝑖𝑒�̇�
𝑖
𝑒𝑛 + Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛)

(4.12)

substituting both of these time derivatives into the 4.8 yields

�̇�𝑛𝑒𝑛 = 𝐶𝑛
𝑒 𝐶

𝑒
𝑖 (𝑟𝑖𝑒𝑛 − 2Ω𝑖

𝑖𝑒�̇�
𝑖
𝑒𝑛 + Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛) − Ω𝑛

𝑒𝑛𝐶
𝑛
𝑒 �̇�

𝑒
𝑒𝑛

= 𝐶𝑛
𝑖 (𝑟𝑖𝑒𝑛 − 2Ω𝑖

𝑖𝑒𝐶
𝑖
𝑛�̇�

𝑛
𝑒𝑛 − 2Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛 + Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛) − Ω𝑛

𝑒𝑛�̇�
𝑛
𝑒𝑛

= 𝐶𝑛
𝑖 (𝑟𝑖𝑒𝑛 − 2Ω𝑖

𝑖𝑒𝐶
𝑖
𝑛�̇�

𝑛
𝑒𝑛 − Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛) − Ω𝑛

𝑒𝑛�̇�
𝑛
𝑒𝑛

= 𝐶𝑛
𝑖 (𝑟𝑖𝑒𝑛 − (Ω𝑖

𝑖𝑛 + 2Ω𝑖
𝑖𝑒)𝐶𝑖

𝑛�̇�
𝑛
𝑒𝑛 − Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛)

(4.13)

37



where in the first row we use a time propagation equation of the transformation
matrix 𝐶𝑛

𝑒 as follows
�̇�𝑛
𝑒 = −Ω𝑛

𝑒𝑛𝐶
𝑛
𝑒 (4.14)

and the expression for the time derivative of 𝑟𝑖𝑒𝑛 as

�̇�𝑖𝑒𝑛 = �̇�𝑖
𝑒𝑟
𝑒
𝑒𝑛 + 𝐶𝑖

𝑒�̇�
𝑒
𝑒𝑛

= Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛 + 𝐶𝑖

𝑒�̇�
𝑒
𝑒𝑛

(4.15)

which can be obtained from the equation 4.9. The skew-symmetric matrix Ω𝑛
𝑒𝑛

in 4.14 is represented by the n-frame to e-frame angular velocity expressed in the
n-frame.

The specific force, measured by the accelerometer, is obtained as a combination
of an inertial acceleration, gravity and the Earth’s centripetal acceleration

𝑓𝑛𝑒𝑛 = 𝑟𝑛𝑒𝑛 − 𝑔𝑛𝑒𝑛 − Ω𝑛
𝑖𝑒Ω𝑛

𝑖𝑒𝑟
𝑛
𝑒𝑛 (4.16)

Expressing the first right-hand side term of 4.16 in the inertial frame yields

𝐶𝑛
𝑖 𝑟

𝑖
𝑒𝑛 = 𝑓𝑛𝑒𝑛 + 𝑔𝑛𝑒𝑛 + 𝐶𝑛

𝑖 Ω𝑛
𝑖𝑒Ω𝑛

𝑖𝑒𝐶
𝑖
𝑛𝑟

𝑛
𝑒𝑛

𝑟𝑖𝑒𝑛 = 𝐶𝑖
𝑛 (𝑓𝑛𝑒𝑛 + 𝑔𝑛𝑒𝑛) + Ω𝑖

𝑖𝑒Ω𝑖
𝑖𝑒𝑟

𝑖
𝑒𝑛

(4.17)

then by substituting this equation into 4.13, the final relation for the velocity time
propagation can be written as:

�̇�𝑛𝑒𝑛 = 𝐶𝑛
𝑏 𝑓

𝑏
𝑖𝑏 − (Ω𝑛

𝑒𝑛 + 2Ω𝑛
𝑖𝑒) 𝑣𝑛𝑒𝑛 + 𝑔𝑛𝑒𝑛 (4.18)

Now we need to perform a derivation of the angular rate terms used in the pre-
vious equations. For expressing the term 𝜔𝑛𝑒𝑛 we need firstly introduce a temporary
angular rate of the n-frame with respect to the e-frame expressed in the n-frame as

𝜔𝑛
′

𝑒𝑛′ =

⎡⎢⎢⎣
𝑐𝐿 0 𝑠𝐿

0 1 0
−𝑠𝐿 0 𝑐𝐿

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
�̇�

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

−�̇�
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑠𝐿�̇�

−�̇�
𝑐𝐿�̇�

⎤⎥⎥⎦ (4.19)

the order of scalars in this vector is organized as [𝑈,𝐸,𝑁 ], so for change this ar-
rangement into [𝐸,𝑁,𝑈 ], the other transformation need to be included as follows

𝜔𝑛𝑒𝑛 =

⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦𝜔𝑛′

𝑒𝑛′ =

⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠𝐿�̇�

−�̇�
𝑐𝐿�̇�

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−�̇�
𝑐𝐿�̇�

𝑠𝐿�̇�

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
− 𝑣𝑛

𝑒𝑛,𝑁

𝑅𝑁 (𝐿)+ℎ
𝑣𝑛

𝑒𝑛,𝐸

𝑅𝐸(𝐿)+ℎ
𝑣𝑛

𝑒𝑛,𝐸 tan𝐿
𝑅𝐸(𝐿)+ℎ

⎤⎥⎥⎥⎦
(4.20)

The angular rate of the e-frame with respect to the i-frame expressed in the n-frame
can be obtained as

𝜔𝑛𝑖𝑒 = 𝐶𝑛
𝑒

⎡⎢⎢⎣
0
0
𝜔𝑖𝑒

⎤⎥⎥⎦ = 𝜔𝑖𝑒

⎡⎢⎢⎣
0
𝑐𝐿

𝑠𝐿

⎤⎥⎥⎦ (4.21)
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where the transformation matrix 𝐶𝑛
𝑒 is defined by equation 4.5.

At this point we have everything what we need for expressing the discrete-time
version of equation 4.18 as follows

𝑣𝑛𝑒𝑛,𝑡0+Δ𝑡 = 𝑣𝑛𝑒𝑛,𝑡0 +
∫︁ 𝑡0+Δ𝑡

𝑡0

(︁
𝑓𝑛𝑖𝑏,𝑡 −

(︁
Ω𝑛
𝑒𝑛,𝑡 + 2Ω𝑛

𝑖𝑒,𝑡

)︁
𝑣𝑛𝑒𝑛,𝑡 + 𝑔𝑛𝑒𝑛,𝑡

)︁
𝑑𝑡 (4.22)

where we introduce the time indexes into 4.18. If we assume that the integrand in the
equation 4.22 is constant between the time steps then the following approximation
can be made

𝑣𝑛𝑒𝑛,𝑘+1 = 𝑣𝑛𝑒𝑛,𝑘 +
(︁
𝑓𝑛𝑖𝑏,𝑘 −

(︁
Ω𝑛
𝑒𝑛,𝑘 + 2Ω𝑛

𝑖𝑒,𝑘

)︁
𝑣𝑛𝑒𝑛,𝑘 + 𝑔𝑛𝑒𝑛,𝑘

)︁
Δ𝑡 (4.23)

where Δ𝑡 represents the sample time period.

4.3.2 Attitude Equation

The time propagation equation of the attitude, for small angle deviations between
the time steps, can be expressed as

�̇�𝑛
𝑏 = 𝐶𝑛

𝑏 Ω𝑏
𝑛𝑏 (4.24)

where Ω𝑏
𝑛𝑏 is the skew-symmetric matrix of the b-frame to n-frame angular rate

expressed in the b-frame. If we assume, that the angular rate of the gyroscope is
measured as a sum of the angular rate of the b-frame with respect to the n-frame
and an angular rate of the n-frame with respect to the i-frame as follows

𝜔𝑏𝑖𝑏 = 𝜔𝑏𝑛𝑏 + 𝜔𝑏𝑖𝑛 (4.25)

then we can express the skew-symmetric matrix Ω𝑏
𝑛𝑏 as

Ω𝑏
𝑛𝑏 = Ω𝑏

𝑖𝑏 − Ω𝑏
𝑖𝑛

= Ω𝑏
𝑖𝑏 − 𝐶𝑏

𝑛Ω𝑛
𝑖𝑛𝐶

𝑛
𝑏

(4.26)

The angular rate of the n-frame with respect to the i-frame is defined as a sum of the
angular rate of the e-frame with respect to the i-frame, thus as the Earth’s angular
rate, and the angular rate of the n-frame with respect to the e-frame. So the last
equation can by rewritten as

Ω𝑏
𝑛𝑏 = Ω𝑏

𝑖𝑏 − 𝐶𝑏
𝑛 (Ω𝑛

𝑖𝑒 + Ω𝑛
𝑒𝑛)𝐶𝑛

𝑏 (4.27)

Now the discrete-time equivalent of equation 4.24 can be obtained as follows

𝐶𝑛
𝑏,𝑡0+Δ𝑡 = 𝐶𝑛

𝑏,𝑡0𝑒
∫︀ 𝑡0+Δ𝑡

𝑡0
Ω𝑏

𝑛𝑏𝑑𝑡 = 𝐶𝑛
𝑏,𝑡0𝑒

(𝛼𝑏
𝑛𝑏×) = 𝐶𝑛

𝑏,𝑡0

∞∑︁
𝑖=0

(𝛼𝑏𝑛𝑏×)
𝑖! = 𝐶𝑛

𝑏,𝑡0𝐶
𝑏,𝑡0
𝑏,𝑡0+Δ𝑡 (4.28)
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where the Taylor series expansion for the term 𝑒(𝛼𝑛
𝑛𝑏×) can be rewritten as (inspired

by [15] p.138)

𝑒(𝛼𝑏
𝑛𝑏×) = ∑︀∞

𝑖=0
(𝛼𝑏

𝑛𝑏×)
𝑖!

= 𝐼3×3 + (𝛼𝑏𝑛𝑏×) + (𝛼𝑏
𝑛𝑏×)2

2 + (𝛼𝑏
𝑛𝑏×)3

6 + (𝛼𝑏
𝑛𝑏×)4

24 + . . .

= 𝐼3×3 +
(︃

1 − ‖𝛼𝑏
𝑛𝑏‖

2

6 + . . .

)︃
(𝛼𝑏𝑛𝑏×) +

(︃
1
2 − ‖𝛼𝑏

𝑛𝑏‖
2

24 + . . .

)︃
(𝛼𝑏𝑛𝑏×)2

= 𝐼3×3 + 1
‖𝛼𝑏

𝑛𝑏‖

(︃∑︀∞
𝑖=0(−1)𝑖‖𝛼

𝑏
𝑛𝑏‖

2𝑖+1

(2𝑖+1)!

)︃
(𝛼𝑏𝑛𝑏×)+

+ 1
‖𝛼𝑏

𝑛𝑏‖
2

(︃
1 −∑︀∞

𝑖=0(−1)𝑖‖𝛼
𝑏
𝑛𝑏‖

2𝑖

(2𝑖)!

)︃
(𝛼𝑏𝑛𝑏×)2

= 𝐼3×3 + sin‖𝛼𝑏
𝑛𝑏‖

‖𝛼𝑏
𝑛𝑏‖

(𝛼𝑏𝑛𝑏×) + 1−cos‖𝛼𝑏
𝑛𝑏‖

‖𝛼𝑏
𝑛𝑏‖

2 (𝛼𝑏𝑛𝑏×)2

(4.29)
where we use (𝛼𝑏𝑛𝑏×)3 = −

⃦⃦⃦
𝛼𝑏𝑛𝑏

⃦⃦⃦2
(𝛼𝑏𝑛𝑏×) and (𝛼𝑏𝑛𝑏×)4 = −

⃦⃦⃦
𝛼𝑏𝑛𝑏

⃦⃦⃦2
(𝛼𝑏𝑛𝑏×)2. The

notation ‖.‖ express the Euclidean norm. Finally, the relation for the discrete-time
attitude DCM update is as follows

𝐶𝑛
𝑏,𝑘+1 = 𝐶𝑛

𝑏,𝑘𝐶
𝑏,𝑘
𝑏,𝑘+1 (4.30)

where 𝐶𝑏,𝑘
𝑏,𝑘+1 is given by the last row of the equation 4.29.

4.3.3 Position Equation

The time propagation of the position equation, expressed in the n-frame, can by
computed as

�̇�𝑛𝑒𝑛 = 𝑣𝑛𝑒𝑛 − 𝜔𝑛𝑒𝑛 × 𝑟𝑛𝑒𝑛 (4.31)

but because we need to obtain the position in the geodetic coordinates the resulting
equation is obtained by using the coordinate transformation matrix as follows

�̇�𝑛 = 𝑇𝑣𝑛𝑒𝑛 (4.32)

where the notation 𝑟𝑛 now represents the position of the n-frame’s origin expressed
in geodetic coordinates. Therefore we involve the transformation matrix 𝑇 as follows

𝑇 =

⎡⎢⎢⎢⎣
0 1

𝑅𝑁 (𝐿)+ℎ 0
1

(𝑅𝐸(𝐿)+ℎ) cos(𝐿) 0 0
0 0 1

⎤⎥⎥⎥⎦ (4.33)

This transformation matrix can be obtained directly from the geometry of figure 4.1
in the similar way as the time derivatives of the latitude and longitude expressed by
the equations 4.3 and 4.4 respectively.
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The discrete-time version of the position can be obtained simply as the time
integration of the equation 4.32 as follows

𝐿𝑡0+Δ𝑡 = 𝐿𝑡0 +
∫︁ 𝑡0+Δ𝑡

𝑡0

𝑣𝑛𝑒𝑛,𝑁,𝑡
𝑅𝑁(𝐿𝑡) + ℎ𝑡

𝑑𝑡 (4.34)

𝜆𝑡0+Δ𝑡 = 𝜆𝑡0 +
∫︁ 𝑡0+Δ𝑡

𝑡0

𝑣𝑛𝑒𝑛,𝐸,𝑡
(𝑅𝐸(𝐿𝑡) + ℎ𝑡) cos𝐿𝑡

𝑑𝑡 (4.35)

ℎ𝑡0+Δ𝑡 = ℎ𝑡0 +
∫︁ 𝑡0+Δ𝑡

𝑡0
𝑣𝑛𝑒𝑛,𝑈,𝑡𝑑𝑡 (4.36)

again assuming the constant integrand between time steps in the equations 4.34
- 4.36, the final form of the discrete-time equivalent of the equation 4.32 can be
written as

𝐿𝑘+1 = 𝐿𝑘 +
𝑣𝑛𝑒𝑛,𝑁,𝑘

𝑅𝑁(𝐿𝑘) + ℎ𝑘
Δ𝑡 (4.37)

𝜆𝑘+1 = 𝜆𝑘 +
𝑣𝑛𝑒𝑛,𝐸,𝑘

(𝑅𝐸(𝐿𝑘) + ℎ𝑘) cos𝐿𝑘
Δ𝑡 (4.38)

ℎ𝑘+1 = ℎ𝑘 + 𝑣𝑛𝑒𝑛,𝑈,𝑘Δ𝑡 (4.39)

where Δ𝑡 represents the sample time period as in the case of velocity equation.

4.3.4 Sensor Errors

The accelerometer and gyroscope errors can be divided, according to [15], into four
categories. These are a fixed contribution, temperature-dependent variation, run-
to-run variation and an in-run variation. First two of these can be calibrated in a
laboratory, so their influence can be compensated systematically inside the naviga-
tion processor. On the other hand, the last two, need to be estimated before their
use for the sensor’s output correction, because these are not possible to compensate
during the laboratory calibration since they are represented by random processes.
Hence, they are modelled in the navigation system estimation algorithm. An ap-
proach how to model these two error sources follows.

The run-to-run variation acts as the static component of the output error and is
different after each turn-on, but constant during an operation period. This error part
is commonly called as the fixed bias or turn-on bias. The in-run variation represents
the variable component of the output error as it varies through time. This error
source is called as the in-run bias of drift. Both biases, the turn-on and in-run, can
be modelled as the random walk plus random constant process. Another way how to
model these biases lies in an employment of the first order Gauss-Markov process.
More about both of these stochastic system models can be found for example in
[17]. There is considered the first option, so the models of the accelerometer and
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gyroscope biases are expressed as follows

�̇�𝑎 = 𝜈𝑎𝑢 (4.40)

�̇�𝑔 = 𝜈𝑔𝑢 (4.41)

where 𝜈𝑎𝑢 and 𝜈𝑔𝑢 are Gaussian random variables.
Assuming these models, the following accelerometer measurement vector can be

defined as
𝑓 𝑏𝑖𝑏 = (𝐼3 +𝑀𝑎)𝑓 𝑏𝑖𝑏 + 𝑏𝑎 + 𝜈𝑎𝑣 (4.42)

where 𝑓 𝑏𝑖𝑏 express the measured value of the specific force, 𝑓 𝑏𝑖𝑏 is the true value of the
specific force, 𝑏𝑎 express the previously mentioned accelerometers’ biases and 𝜈𝑎𝑣 is
a zero mean uncorrelated Gaussian white noise with known covariances. For the
gyroscope measurement vector we have the following expression

�̃�𝑏𝑖𝑏 = (𝐼3 +𝑀𝑔)𝜔𝑏𝑖𝑏 + 𝑏𝑔 + 𝜈𝑔𝑣 (4.43)

where we have similarly the �̃�𝑏𝑖𝑏, which represents the gyroscope measurement of the
body angular rate, 𝜔𝑏𝑖𝑏 is the corresponding true value, 𝑏𝑔 express the gyroscopes’
biases and 𝜈𝑔𝑣 is again a zero mean uncorrelated Gaussian white noise.

The gyroscopes’ and accelerometers’ scale factor error terms are noted by 𝑀𝑔 and
𝑀𝑎 respectively. These scale factor error terms are not considered in the subsequent
navigation system error model, but are used in the following trajectory generator
description, so they are introduced only due to a more general expression.

The estimated value of the measurements 4.42 and 4.43, thus the measurements
compensated by the biases and scale factors, can be written as follows

𝑓 𝑏𝑖𝑏 = (𝐼3 − �̂�𝑎)(𝑓 𝑏𝑖𝑏 − 𝑏𝑎) (4.44)

�̂�𝑏𝑖𝑏 = (𝐼3 − �̂�𝑔)(�̃�𝑏𝑖𝑏 − 𝑏𝑔) (4.45)

where all variables has the similar meaning as before. The only difference is given
by the hat which means that the variables represent the estimates.

4.4 Sensor Data Generator
The inertial sensor data generator is created for the purpose of generating the gy-
roscope and accelerometer data from an a priory knowledge about a reference tra-
jectory.

An equation for the gyroscope data generator can be obtained by combining 4.43
and 4.25 as follows

�̃�𝑏𝑖𝑏 = (𝐼 +𝑀𝑔)
(︁
𝐶𝑏
𝑛 (𝜔𝑛𝑖𝑒 + 𝜔𝑛𝑒𝑛) + 𝜔𝑏𝑛𝑏

)︁
+ 𝑏𝑔 + 𝜈𝑔𝑣 (4.46)
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Computation of the terms 𝜔𝑛𝑒𝑛 and 𝜔𝑛𝑖𝑒 (equations 4.20 and 4.21 respectively) is based
on the navigation solution from the previous time step. The term 𝜔𝑏𝑛𝑏 need to be
specified a priory from the data about the required trajectory, thus we use⎡⎢⎢⎣

𝜔𝑏𝑛𝑏,𝑥
𝜔𝑏𝑛𝑏,𝑦
𝜔𝑏𝑛𝑏,𝑧

⎤⎥⎥⎦ =

⎡⎢⎢⎣
�̇�

0
0

⎤⎥⎥⎦+ 𝐶3

⎡⎢⎢⎣
0
𝜃

0

⎤⎥⎥⎦+ 𝐶3𝐶2

⎡⎢⎢⎣
0
0
�̇�

⎤⎥⎥⎦

=

⎡⎢⎢⎣
�̇� + 𝑠𝜑𝜃 − 𝑐𝜑𝑠𝜃�̇�

𝑐𝜓𝜃 + 𝑠𝜓𝑠𝜃�̇�

𝑐𝜃�̇�

⎤⎥⎥⎦
(4.47)

which can be derived from transformation matrix 4.6. All what we need now for
generating angular rates from the gyroscopes, is a definition of the roll, pitch and
yaw angle expressions and their first time derivatives. A concrete form of these
expressions is defined by the desired trajectory.

Similarly, combining 4.42 and 4.18 the following expression for the specific force
generation, expressed in the body frame, can be derived as

𝑓 𝑏𝑖𝑏 = (𝐼 +𝑀𝑎)𝐶𝑏
𝑛 (𝑎+ (2𝜔𝑛𝑖𝑒 + 𝜔𝑛𝑒𝑛) × 𝑣𝑛𝑒𝑛 − 𝑔) + 𝑏𝑎 + 𝜈𝑎𝑣 (4.48)

Computation of the terms 𝜔𝑛𝑒𝑛 and 𝜔𝑛𝑖𝑒 is solved in the same way as before, thus they
are directly computed from the equations 4.20 and 4.21 respectively. What need to
be specified now, is the desired acceleration vector 𝑎. This term need to be defined
with relation to the previous angular rate equations which as they are given by 𝜔𝑏𝑛𝑏.
The term 𝑣𝑛𝑒𝑛 is computed as the time integration of the specified acceleration 𝑎.

Circle Trajectory

The circle trajectory with a constant altitude can be simulated by using the following
equations [18]

𝑎𝐸,𝑘 = −2𝜋𝑣𝑔 cos𝜓𝑘

𝑇𝑐𝑖𝑟𝑐𝑙𝑒

𝑎𝑁,𝑘 = −2𝜋𝑣𝑔 sin𝜓𝑘

𝑇𝑐𝑖𝑟𝑐𝑙𝑒

𝑎𝑈,𝑘 = 0
(4.49)

where all these represent an entries of the vector 𝑎 = [𝑎𝐸,𝑘 𝑎𝑁,𝑘 𝑎𝑈,𝑘] and where 𝑣𝑔
is the ground speed which is defined as a constant value

𝑣𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Further, the term 𝑇𝑐𝑖𝑟𝑐𝑙𝑒 express the circulation period. Now a definition of the yaw
angle increment and its rate is

Δ𝜓 = 𝑚𝑜𝑑
(︁

2𝜋Δ𝑡
𝑇𝑐𝑖𝑟𝑐𝑙𝑒

, 2𝜋
)︁

Δ̇𝜓 = 2𝜋
𝑇𝑐𝑖𝑟𝑐𝑙𝑒

(4.50)
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the roll and pitch angle increments and the corresponding rates are set to zeros.
The translational velocity, position and the angular increments are integrated

each simulation step according to the next equations

𝑣𝑛𝑒𝑛,𝑘+1 = 𝑣𝑛𝑒𝑛,𝑘 + 𝑎𝑘Δ𝑡 (4.51)

𝐿𝑘+1 = 𝐿𝑘 + 𝑣𝑛
𝑒𝑛,𝑁,𝑘

𝑅𝑁 (𝐿𝑘)+ℎ𝑘
Δ𝑡

𝜆𝑘+1 = 𝜆𝑘 + 𝑣𝑛
𝑒𝑛,𝐸,𝑘

(𝑅𝐸(𝐿𝑘)+ℎ𝑘) cos𝐿𝑘
Δ𝑡

ℎ𝑘+1 = ℎ𝑘 + 𝑣𝑛𝑒𝑛,𝐸,𝑘Δ𝑡
(4.52)

𝛾𝑘+1 = 𝛾𝑘 + Δ𝛾𝑘
𝜃𝑘+1 = 𝜃𝑘 + Δ𝜃𝑘
𝜓𝑘+1 = 𝜓𝑘 + Δ𝜓𝑘

(4.53)

˙𝛾𝑘+1 = 𝛾𝑘 + Δ𝛾𝑘
˙𝜃𝑘+1 = 𝜃𝑘 + Δ𝜃𝑘
˙𝜓𝑘+1 = 𝜓𝑘 + Δ𝜓𝑘

(4.54)

Other trajectories can be derived in the similar manner. That can be a static state,
straight line, serpentine shape or their combinations.

4.5 Navigation Error Equations
The main purpose of error equations is to obtain an error correction which can
be used to correct the inertial navigation solution as we tray to prevent from the
divergence caused due to the inertial sensors inaccuracies. Another reason why we
need to derive an error model is because the navigation equations are non-linear
and the direct linearisation leads to too complex equations. However, the direct
linearisation techniques are sometimes used too, as has been shown for example in
[19]. Generally it is possible to meet two types of the navigation error equations
through the literature. These are denoted after Greek letters Ψ and 𝜑, where each
of these represent a vector of attitude errors. Although the Phi-angle error model
is derived in the local navigation frame at the true navigation position and the Psi-
angle error model in the computer frame at the computed navigation position, it can
be shown, that they are algebraically equivalent as was proved in [20]. The difference
between these frames makes the Psi-angle error model computational less demanding
against to the Phi-angle error model. There are some modifications, which appear
in the literature over past few years, e.g. [22] modifies the basic version of the Phi-
angle and Psi-angle error models. This modification avoids an explicit occurrence
of the specific force in the error model state space transition matrix. Further,[23]
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deals with large heading uncertainty error models, as this uncertainty can appear
during the coarse alignment phase, and generalizes the basic Phi-error and Psi-error
models and their modified versions from [22]. In [24] are investigated properties of
the second order error models. However, through this work, we will use only the
basic form of the Phi-angle error model, thus the first order approximation.

Since the error model can be derived by the first order linear perturbation anal-
ysis the following perturbation terms need to be stated

𝑣𝑛𝑒𝑛 = 𝑣𝑛𝑒𝑛 + 𝛿𝑣𝑛𝑒𝑛 (4.55)

𝑓𝑛𝑖𝑏 = (𝐼 − (𝜑×)) 𝑓𝑛𝑖𝑏 + 𝛿𝑓𝑛𝑖𝑏 (4.56)

𝑔𝑛𝑖𝑏 = 𝑔𝑛𝑖𝑏 + 𝛿𝑔𝑛𝑖𝑏 (4.57)

�̂�𝑛𝑒𝑛 = 𝜔𝑛𝑒𝑛 + 𝛿𝜔𝑛𝑒𝑛 (4.58)

�̂�𝑛𝑖𝑒 = 𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑖𝑒 (4.59)

𝐶𝑛
𝑏 = (𝐼 − (𝜑×))𝐶𝑛

𝑏 (4.60)

𝐶𝑛
𝑒 = (𝐼 − (Θ×))𝐶𝑛

𝑒 (4.61)

All these represent, that the computed value, denoted by the hat, is a sum of the true
value and the error term, denoted by 𝛿. The direction cosine errors are expressed in
the similar manner, but the error is given as −(𝜑×)𝐶𝑛

𝑏 .

4.5.1 Velocity Error Equation

Let’s begin with a derivation of the velocity error equation. The velocity error
of a moving target can be expressed by the equation 4.55. If we simply subtract
the true inertial navigation velocity mechanization equation 4.18 from its computed
equivalent

^̇𝑣𝑛𝑒𝑛 = 𝑓𝑛𝑖𝑏 − (�̂�𝑛𝑒𝑛 + 2�̂�𝑛𝑖𝑒) × 𝑣𝑛𝑒𝑛 + 𝑔𝑛𝑖𝑏 (4.62)

together with substituting the equations 4.55 - 4.59 into 4.62, then the following
velocity error equation can be obtained

𝛿𝑣
𝑛

𝑒𝑛 = (𝐼 − (𝜑×)) 𝑓𝑛𝑖𝑏 + 𝛿𝑓𝑛𝑖𝑏 − (𝜔𝑛𝑒𝑛 + 𝛿𝜔𝑛𝑒𝑛 + 2 (𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑖𝑒)) × (𝑣𝑛𝑒𝑛 + 𝛿𝑣𝑛𝑒𝑛)
+ 𝑔𝑛𝑖𝑏 + 𝛿𝑔𝑛𝑖𝑏 − 𝑓𝑛𝑖𝑏 + (𝜔𝑛𝑒𝑛 + 2𝜔𝑛𝑖𝑒) × 𝑣𝑛𝑒𝑛 − 𝑔𝑛𝑖𝑏
= − (𝜑×) 𝑓𝑛𝑖𝑏 + 𝛿𝑓𝑛𝑖𝑏 + 𝛿𝑔𝑛𝑖𝑏 − (𝛿𝜔𝑛𝑒𝑛 + 2𝛿𝜔𝑛𝑖𝑒) × 𝑣𝑛𝑒𝑛 − (𝜔𝑛𝑒𝑛 + 2𝜔𝑛𝑖𝑒) × 𝛿𝑣𝑛𝑒𝑛

(4.63)
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4.5.2 Attitude Error Equation

The attitude error is represented by the second term in the parentheses of the
equation 4.60, thus as the skew-symmetric matrix (𝜑×). From this equation we can
write the b-frame to n-frame transformation error matrix as follows

𝛿𝐶𝑛
𝑏 = 𝐶𝑛

𝑏 − 𝐶𝑛
𝑏

= −(𝜑×)𝐶𝑛
𝑏

(4.64)

The time derivative of the first row of 4.64 yields

˙𝛿𝐶𝑛

𝑏 = ˙̂
𝐶
𝑛

𝑏 − �̇�𝑛
𝑏

= −Ω̂𝑛
𝑏𝑛𝐶

𝑛
𝑏 + Ω𝑛

𝑏𝑛𝐶
𝑛
𝑏

= −Ω̂𝑛
𝑏𝑛 (𝐼 − (𝜑×))𝐶𝑛

𝑏 + Ω𝑛
𝑏𝑛𝐶

𝑛
𝑏

=
(︁
−Ω̂𝑛

𝑏𝑛 + Ω̂𝑛
𝑏𝑛(𝜑×) + Ω𝑛

𝑏𝑛

)︁
𝐶𝑛
𝑏

≈
(︁
−Ω̂𝑛

𝑏𝑛 + Ω𝑛
𝑏𝑛(𝜑×) + Ω𝑛

𝑏𝑛

)︁
𝐶𝑛
𝑏

(4.65)

where the equations 4.60 and 4.24 are used. In the last row of 4.65 the second term
is replaced by the true value of the body to navigation angular rate skew-symmetric
matrix. This adaptation does not have any significant effect, because the values are
nearly similar. Let’s taking the time derivative of the second row of 4.64 as follows

˙𝛿𝐶𝑛

𝑏 = − ˙(𝜑×)𝐶𝑛
𝑏 − (𝜑×)�̇�𝑛

𝑏

=
(︁
− ˙(𝜑×) + (𝜑×)Ω𝑛

𝑏𝑛

)︁
𝐶𝑛
𝑏

(4.66)

where the equation 4.24 is used again. Now comparing 4.65 and 4.66 yields

−Ω̂𝑛
𝑏𝑛 + Ω𝑛

𝑏𝑛(𝜑×) + Ω𝑛
𝑏𝑛 = − ˙(𝜑×) + (𝜑×)Ω𝑛

𝑏𝑛 (4.67)

where we need to express the first term of the right-hand side as follows

˙(𝜑×) = (𝜑×)Ω𝑛
𝑏𝑛 − Ω𝑛

𝑏𝑛(𝜑×) + Ω̂𝑛
𝑏𝑛 − Ω𝑛

𝑏𝑛 (4.68)

or in a vector form
�̇� = −Ω𝑛

𝑏𝑛𝜑+ �̂�𝑛𝑏𝑛 − 𝜔𝑛𝑏𝑛 (4.69)

Now we need to express the last two terms of this equation. The first one can be
simply expanded as

𝜔𝑛𝑏𝑛 = 𝜔𝑛𝑖𝑛 − 𝐶𝑛
𝑏 𝜔

𝑏
𝑖𝑏 (4.70)

and the second one as

�̂�𝑛𝑏𝑛 = �̂�𝑛𝑖𝑛 − 𝐶𝑛
𝑏

(︁
𝜔𝑏𝑖𝑏 + 𝛿𝜔𝑏𝑖𝑏

)︁
= �̂�𝑛𝑖𝑛 − (𝐼 − (𝜑×))𝐶𝑛

𝑏 𝜔
𝑏
𝑖𝑏 − 𝛿𝜔𝑛𝑖𝑏 + (𝜑×)𝐶𝑛

𝑏 𝛿𝜔
𝑏
𝑖𝑏

≈ �̂�𝑛𝑖𝑛 − (𝐼 − (𝜑×))𝐶𝑛
𝑏 𝜔

𝑏
𝑖𝑏 − 𝛿𝜔𝑛𝑖𝑏

(4.71)
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where the last term of the second row is neglected, because the multiplication of two
error terms is nearly zero. Now substituting 4.70 and 4.71 back into the equation
4.69 yields

�̇� = −𝜔𝑛𝑏𝑛 × 𝜑+ (𝜑×)𝐶𝑛
𝑏 𝜔

𝑏
𝑖𝑏 + �̂�𝑛𝑖𝑛 − 𝜔𝑛𝑖𝑛 − 𝛿𝜔𝑛𝑖𝑏

= (𝜑×)𝜔𝑛𝑏𝑛 + (𝜑×)𝜔𝑛𝑖𝑏 + 𝛿𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑒𝑛 − 𝛿𝜔𝑛𝑖𝑏
= −Ω𝑛

𝑖𝑛𝜑+ 𝛿𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑒𝑛 − 𝛿𝜔𝑛𝑖𝑏

(4.72)

which is the final expression of the Phi-angle attitude error.

4.5.3 Position Error Equation

The previously presented equations for the velocity and attitude errors need to be
expressed by using the equations 4.55 - 4.60. This is due to the fact, that the direct
partial derivative of the velocity 4.18 and attitude 4.24 equations is difficult since
the appearance of the direction cosine matrix in both of these equations. On the
other hand, the position equation 4.32 do not need this approach, thus we can write
the corresponding error equation directly as follows

𝛿�̇�𝑛 = 𝜕�̇�𝑛
𝜕𝑟𝑛

⃒⃒⃒⃒
⃒
𝑟𝑛,𝑣𝑛

𝑒𝑛

𝛿𝑟𝑛 + 𝜕�̇�𝑛
𝜕𝑣𝑛𝑒𝑛

⃒⃒⃒⃒
⃒
𝑟𝑛

𝛿𝑣𝑛𝑒𝑛 (4.73)

Another way how to express the position error lies in the equation 4.31, or more
precisely, in its equivalent before the time derivation 𝑟𝑛𝑒𝑛 = 𝐶𝑛

𝑒 𝑟
𝑒
𝑒𝑛. It is obvious

that this equation contains the direction cosine matrix, thus we need to use similar
approach as with the attitude error equation. For this purpose one need to employ
4.61. However, the equation 4.73 is sufficient for our purposes.

4.5.4 State Space Representation of Navigation Error Model

Now we need to rearrange all the previously presented error equations into a state
space representation which is appropriate for the Kalman filter. Let’s start with
the general form of the error state space representation which need to be found as
follows

𝛿�̇�𝑡 = 𝐹𝑡𝛿𝑥𝑡 +𝐺𝑡𝜈𝑡 (4.74)
𝛿𝑧𝑡 = 𝐻𝑡𝛿𝑥𝑡 + 𝑣𝑡 (4.75)

These equations are very similar to the state space model presented by 3.1 and 3.2,
the only difference is, that the state and measurement vector represent deviations.
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State Space Error Equations

The state equation 4.74 can be divided into the following two parts⎡⎣ 𝛿�̇�𝑖𝑛𝑠,𝑡

𝛿�̇�𝑎𝑢𝑔,𝑡

⎤⎦ =
⎡⎣ 𝐹𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 𝐹𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡

𝐹𝑎𝑢𝑔×𝑖𝑛𝑠,𝑡 𝐹𝑎𝑢𝑔×𝑎𝑢𝑔,𝑡

⎤⎦⎡⎣ 𝛿𝑥𝑖𝑛𝑠,𝑡

𝛿𝑥𝑎𝑢𝑔,𝑡

⎤⎦+

+
⎡⎣ 𝐺𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 𝐺𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡

𝐺𝑎𝑢𝑔×𝑖𝑛𝑠,𝑡 𝐺𝑎𝑢𝑔×𝑎𝑢𝑔,𝑡

⎤⎦⎡⎣ 𝜈𝑣,𝑡

𝜈𝑢,𝑡

⎤⎦ (4.76)

The first part, denoted by the index 𝑖𝑛𝑠, comprises the error terms of the position,
velocity and attitude as

𝛿𝑥𝑖𝑛𝑠,𝑡 =
[︁
𝛿𝑟𝑛,𝑡 𝛿𝑣

𝑛
𝑒𝑛,𝑡 𝜑𝑡

]︁𝑇
=

[︁
𝛿𝐿𝑡 𝛿𝜆𝑡 𝛿ℎ𝑡 𝛿𝑣𝑛𝑒𝑛,𝐸,𝑡 𝛿𝑣𝑛𝑒𝑛,𝑁,𝑡 𝛿𝑣𝑛𝑒𝑛,𝑈,𝑡 𝜑𝑥,𝑡 𝜑𝑦,𝑡 𝜑𝑧,𝑡

]︁𝑇
(4.77)

where 𝛿𝑟𝑛,𝑡 is the position error vector, 𝛿𝑣𝑛𝑒𝑛,𝑡 is the velocity error vector and 𝜑𝑡 is
the attitude error vector.

The second part, denoted by the index 𝑎𝑢𝑔, represents an augmentation, which
comprises the inertial sensor error increments. These correspond to the biases, scale
factor error terms, non-orthogonality etc. Through this work, we will consider only
the biases as follows

𝛿𝑥𝑎𝑢𝑔,𝑡 = [𝛿𝑏𝑎,𝑡 𝛿𝑏𝑔,𝑡]𝑇

= [𝛿𝑏𝑎,𝑥,𝑡 𝛿𝑏𝑎,𝑦,𝑡 𝛿𝑏𝑎,𝑧,𝑡 𝛿𝑏𝑔,𝑥,𝑡 𝛿𝑏𝑔,𝑦,𝑡 𝛿𝑏𝑔,𝑧,𝑡]𝑇
(4.78)

where 𝛿𝑏𝑎,𝑡 is the accelerometer bias vector, which consists of the three scalars, one
for each axis, denoted by the subscripts 𝑥,𝑦,𝑧. The term 𝛿𝑏𝑔,𝑡 express the gyroscope
bias vector, again composed of three scalars, which are denoted similarly as before.

As we have described the error state space vector the transition and noise distri-
bution sub-matrices need to be found. A way, how to obtain the transition matrix
𝐹𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡, lies in the equations 4.73, 4.63 and 4.72. Since we need to express the
position error given by 4.73 the partial derivatives need to be evaluated firstly as
follows

𝜕�̇�𝑛
𝜕𝑟𝑛

⃒⃒⃒⃒
⃒
𝑟𝑛,𝑣𝑛

𝑒𝑛

𝛿𝑟𝑛 =

⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ 𝑣𝑛𝑒𝑛,𝐸 sin �̂�
(𝑅𝐸(�̂�)ℎ̂) cos2 �̂�

𝛿𝐿−

⎡⎢⎢⎢⎣
𝑣𝑛

𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)2 𝛿ℎ
𝑣𝑛

𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2 cos �̂�𝛿ℎ

0

⎤⎥⎥⎥⎦ (4.79)

𝜕�̇�𝑛
𝜕𝑣𝑛𝑒𝑛

⃒⃒⃒⃒
⃒
𝑣𝑛

𝑒𝑛

𝛿𝑣𝑛𝑒𝑛 =

⎡⎢⎢⎢⎣
𝛿𝑣𝑛

𝑒𝑛,𝑁

𝑅𝑁 (�̂�)+ℎ̂
𝛿𝑣𝑛

𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂) cos �̂�

𝛿𝑣𝑛𝑒𝑛,𝑈

⎤⎥⎥⎥⎦ (4.80)
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where we neglect the derivatives of the orders higher than first and those, which are
derivatives of the inner functions. Further, the equation 4.63 need to expressed in
the terms of 𝛿𝜔𝑛𝑒𝑛 and 𝛿𝜔𝑛𝑖𝑒. Both of these can be obtained from partial derivatives
according to the navigation system state vector (not the error state vector) similarly
as before

𝛿𝜔𝑛𝑒𝑛 =

⎡⎢⎢⎢⎢⎣
− 𝛿𝑣𝑛

𝑒𝑛,𝑁

𝑅𝑁 (�̂�)+ℎ̂
𝛿𝑣𝑛

𝑒𝑛,𝐸

𝑅𝐸(�̂�)+ℎ̂
𝛿𝑣𝑛

𝑒𝑛,𝐸 tan �̂�
𝑅𝐸(�̂�)+ℎ̂

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ 𝛿𝑣𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂) cos2 �̂�
𝛿𝐿+

⎡⎢⎢⎢⎢⎢⎢⎣

𝑣𝑛
𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)2

− 𝑣𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2

− 𝑣𝑛
𝑒𝑛,𝐸 tan �̂�

(𝑅𝐸(�̂�)+ℎ̂)2

⎤⎥⎥⎥⎥⎥⎥⎦ 𝛿ℎ (4.81)

𝛿𝜔𝑛𝑖𝑒 = 𝜔𝑖𝑒

⎡⎢⎢⎣
0

− sin �̂�
cos �̂�

⎤⎥⎥⎦ 𝛿𝐿 (4.82)

The gravity error term 𝛿𝑔𝑛𝑖𝑏 can be computed as [0 0 − 𝜕𝑔
𝜕ℎ

] where 𝜕𝑔
𝜕ℎ

is [16]
𝜕𝑔
𝜕ℎ

= 𝜕
𝜕ℎ
𝑔0
(︁

𝑅𝑒

𝑅𝑒+ℎ

)︁2

= − 2𝑔
𝑅𝑒+ℎ

(4.83)

Now we need to put all these terms together and make the resulting matrix
𝐹𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡. For this purpose the following block representation is introduced

𝐹𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 =

⎡⎢⎢⎣
𝐹11 𝐹12 𝐹13

𝐹21 𝐹22 𝐹23

𝐹31 𝐹32 𝐹33

⎤⎥⎥⎦ (4.84)

substituting now 4.79, 4.80 into 4.73 and 4.81, 4.82 into 4.63 and 4.72 gives, after
some rearrangements, the following sub-matrices

𝐹11 =

⎡⎢⎢⎢⎢⎣
0 0 − 𝑣𝑛

𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)2

𝑣𝑛
𝑒𝑛,𝐸 sin �̂�

(𝑅𝐸(�̂�)+ℎ̂) cos2 �̂�
0 − 𝑣𝑛

𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2 cos �̂�

0 0 0

⎤⎥⎥⎥⎥⎦ (4.85)

𝐹12 =

⎡⎢⎢⎢⎣
0 1

𝑅𝑁 (�̂�)+ℎ̂ 0
1

(𝑅𝐸(�̂�)+ℎ̂) cos �̂� 0 0
0 0 1

⎤⎥⎥⎥⎦ (4.86)

𝐹13 = 𝑂3×3 (4.87)

𝐹21 =

⎡⎢⎢⎢⎢⎢⎣
2𝜔𝑖𝑒(𝑣𝑛

𝑒𝑛,𝑈 sin �̂�+𝑣𝑛
𝑒𝑛,𝑁 cos �̂�)+

𝑣𝑛
𝑒𝑛,𝐸

𝑣𝑛
𝑒𝑛,𝑁

(𝑅𝐸(�̂�)+ℎ̂) cos2 �̂�
0 𝑣𝑛

𝑒𝑛,𝑈𝑣
𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2 − 𝑣𝑛
𝑒𝑛,𝐸𝑣

𝑛
𝑒𝑛,𝑁 tan �̂�

(𝑅𝐸(�̂�)+ℎ̂)2

−2𝜔𝑖𝑒𝑣
𝑛
𝑒𝑛,𝐸 cos �̂�−

(𝑣𝑛
𝑒𝑛,𝐸

)2

(𝑅𝐸(�̂�)+ℎ̂) cos2 �̂�
0 𝑣𝑛

𝑒𝑛,𝑈𝑣
𝑛
𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)2 + 𝑣𝑛
𝑒𝑛,𝐸 tan �̂�

(𝑅𝐸(�̂�)+ℎ̂)2

−2𝜔𝑖𝑒𝑣
𝑛
𝑒𝑛,𝐸 sin �̂� 0 − (𝑣𝑛

𝑒𝑛,𝑁 )2

(𝑅𝑁 (�̂�)+ℎ̂)2 − 𝑣𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2 + 2𝑔
𝑅𝑒+ℎ̂

⎤⎥⎥⎥⎥⎥⎦
(4.88)

49



𝐹22 =

⎡⎢⎢⎢⎢⎢⎣
− 𝑣𝑛

𝑒𝑛,𝑈

𝑅𝐸(�̂�)+ℎ̂ + 𝑣𝑛
𝑒𝑛,𝑁 tan �̂�
𝑅𝐸(�̂�)+ℎ̂

𝑣𝑛
𝑒𝑛,𝐸 tan �̂�
𝑅𝐸(�̂�)+ℎ̂ +2𝜔𝑖𝑒 sin �̂� − 𝑣𝑛

𝑒𝑛,𝐸

𝑅𝐸(�̂�)+ℎ̂ −2𝜔𝑖𝑒 cos �̂�

−2𝑣𝑛
𝑒𝑛,𝐸 tan �̂�
𝑅𝐸(�̂�)+ℎ̂ −2𝜔𝑖𝑒 sin �̂� − 𝑣𝑛

𝑒𝑛,𝑈

𝑅𝑁 (�̂�)+ℎ̂ − 𝑣𝑛
𝑒𝑛,𝑁

𝑅𝑁 (�̂�)+ℎ̂
2𝑣𝑛

𝑒𝑛,𝐸

𝑅𝐸(�̂�)+ℎ̂ +2𝜔𝑖𝑒 cos �̂�
2𝑣𝑛

𝑒𝑛,𝑁

𝑅𝑁 (�̂�)+ℎ̂ 0

⎤⎥⎥⎥⎥⎥⎦ (4.89)

𝐹23 =

⎡⎢⎢⎣
0 −𝑓𝑛𝑖𝑏,𝑈 𝑓𝑛𝑖𝑏,𝑁

𝑓𝑛𝑖𝑏,𝑈 0 −𝑓𝑛𝑖𝑏,𝐸
−𝑓𝑛𝑖𝑏,𝑁 𝑓𝑛𝑖𝑏,𝐸 0

⎤⎥⎥⎦ (4.90)

𝐹31 =

⎡⎢⎢⎢⎢⎣
0 0 𝑣𝑛

𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)2

−𝜔𝑖𝑒 sin �̂� 0 − 𝑣𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)2

𝜔𝑖𝑒 cos �̂�+
𝑣𝑛

𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂) cos2 �̂�
0 − 𝑣𝑛

𝑒𝑛,𝐸 tan �̂�
(𝑅𝐸(�̂�)+ℎ̂)2

⎤⎥⎥⎥⎥⎦ (4.91)

𝐹32 =

⎡⎢⎢⎢⎣
0 − 1

𝑅𝑁 (�̂�)+ℎ̂ 0
1

𝑅𝐸(�̂�)+ℎ̂ 0 0
tan �̂�

𝑅𝑁 (�̂�)+ℎ̂ 0 0

⎤⎥⎥⎥⎦ (4.92)

𝐹33 =

⎡⎢⎢⎢⎢⎣
0 𝜔𝑖𝑒 sin �̂�+

𝑣𝑛
𝑒𝑛,𝐸

tan �̂�

(𝑅𝐸(�̂�)+ℎ̂)
−𝜔𝑖𝑒 cos �̂�−

𝑣𝑛
𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)

−𝜔𝑖𝑒 sin �̂�−
𝑣𝑛

𝑒𝑛,𝐸
tan �̂�

(𝑅𝐸(�̂�)+ℎ̂)
0 − 𝑣𝑛

𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂)

𝜔𝑖𝑒 cos �̂�+
𝑣𝑛

𝑒𝑛,𝐸

(𝑅𝐸(�̂�)+ℎ̂)

𝑣𝑛
𝑒𝑛,𝑁

(𝑅𝑁 (�̂�)+ℎ̂) 0

⎤⎥⎥⎥⎥⎦ (4.93)

At this point it is obvious that the terms 𝛿𝑓𝑛𝑖𝑏 and 𝛿𝜔𝑛𝑖𝑏, from the equations 4.63
and 4.72 respectively, are not used in the previous 𝐹𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 matrix derivation. So
their use becomes important through a derivation of the matrices 𝐹𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡, 𝐺𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡

and 𝐺𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡. Before expressing these matrices the relation for the terms 𝛿𝑓𝑛𝑖𝑏 and
𝛿𝜔𝑛𝑖𝑏 need to be found. Let’s start with the first of these, thus with the true specific
force error term as follows

𝛿𝑓𝑛𝑖𝑏 = 𝑓𝑛𝑖𝑏 − 𝑓𝑛𝑖𝑏 (4.94)

Now by substituting the equations 4.44 and 4.42 into 4.94 (the term 𝑓𝑛𝑖𝑏 need to be
expressed and scale factor error matrices 𝑀𝑎 and �̂�𝑎 are set to zero) the following
relation can be obtained

𝛿𝑓𝑛𝑖𝑏 = 𝐶𝑛
𝑏

(︁
𝑏𝑎 − �̂�𝑎 + 𝜈𝑎𝑣

)︁
= 𝐶𝑛

𝑏 (𝛿𝑏𝑎 + 𝜈𝑎𝑣)
(4.95)

where the 𝛿𝑏𝑎 is the accelerometers’ bias error state variable. Similarly, the error
term 𝛿𝜔𝑛𝑖𝑏 can be defined as follows

𝛿𝜔𝑛𝑖𝑏 = �̂�𝑛𝑖𝑏 − 𝜔𝑛𝑖𝑏 (4.96)
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Again, substitution of the equations 4.45 and 4.43 into 4.82 yields

𝛿𝜔𝑛𝑖𝑏 = 𝐶𝑛
𝑏

(︁
𝑏𝑔 − �̂�𝑔 + 𝜈𝑔𝑣

)︁
= 𝐶𝑛

𝑏 (𝛿𝑏𝑔 + 𝜈𝑔𝑣)
(4.97)

Using 4.95 and 4.97 the previously mentioned matrices 𝐹𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡, 𝐺𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 and
𝐺𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡 are written as follows

𝐹𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡 = 𝐺𝑖𝑛𝑠×𝑖𝑛𝑠,𝑡 =

⎡⎢⎢⎣
𝑂3×3 𝑂3×3

𝐶𝑛
𝑏 𝑂3×3

𝑂3×3 −𝐶𝑛
𝑏

⎤⎥⎥⎦ (4.98)

𝐺𝑖𝑛𝑠×𝑎𝑢𝑔,𝑡 = 𝑂9×6 (4.99)

For expressing the matrices of augmented part of the error state vector 4.78 the
derivatives of 𝛿𝑏𝑎 and 𝛿𝑏𝑔 need to be expressed first. Starting with 𝛿𝑏𝑎 gives the
following expression

𝛿�̇�𝑎 = �̇�𝑎 − ˙̂
𝑏𝑎

= �̇�𝑎 − ˙𝐸 {𝑏𝑎}
= 𝜈𝑎𝑢

(4.100)

It is obvious from 4.95 that the time derivative of 𝛿𝑏𝑎 is given as a difference of the
time derivatives of true bias and its estimate. The term in the second row of 4.95
expresses that the estimated value of the bias is given as the mean of the true bias.
Hence, it is clear that the time derivative of this value is zero and the resulting value
of the time derivative of 𝛿𝑏𝑎 is given only by the noise term 𝜈𝑎𝑢. Similar conclusion
holds for the time derivative of the gyroscope bias error as follows

𝛿�̇�𝑔 = �̇�𝑔 − ˙̂
𝑏𝑔

= �̇�𝑔 − ˙𝐸 {𝑏𝑔}
= 𝜈𝑔𝑢

(4.101)

Now we can express the matrices of the augmented part of the error model as

𝐹𝑎𝑢𝑔×𝑖𝑛𝑠,𝑡 = 𝑂6×9 (4.102)

𝐹𝑎𝑢𝑔×𝑎𝑢𝑔,𝑡 = 𝐺𝑎𝑢𝑔×𝑖𝑛𝑠,𝑡 = 𝑂6×6 (4.103)

𝐺𝑎𝑢𝑔×𝑎𝑢𝑔,𝑡 = 𝐼6×6 (4.104)

Observation Error Equations

The observation error vector of the equation 4.75 can be expressed as a difference
between the GNSS observation vector 𝑧𝑡 and the vector which comprises the resulting
solution of the navigation system’s position 𝑟𝑛𝑒𝑛 and velocity 𝑣𝑛𝑒𝑛 denoted here as 𝑥𝑟𝑣

𝛿𝑧𝑡 = 𝑧𝑡 − 𝑥𝑟𝑣,𝑡 (4.105)
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where the vector 𝑧𝑡 is given as

𝑧𝑡 =
[︁
𝑟𝑛𝑒𝑛,𝑡 𝑣𝑛𝑒𝑛,𝑡

]︁
=

[︁
𝑟𝑛𝑒𝑛,𝐸,𝑡 𝑣𝑛𝑒𝑛,𝑁,𝑡 𝑣𝑛𝑒𝑛,𝑈,𝑡 𝑣𝑛𝑒𝑛,𝐸,𝑡 𝑣𝑛𝑒𝑛,𝑁,𝑡 𝑣𝑛𝑒𝑛,𝑈,𝑡

]︁ (4.106)

and the vector 𝑥𝑟𝑣,𝑡 as

𝑥𝑟𝑣,𝑡 =
[︁
𝑟𝑛𝑒𝑛,𝑡 𝑣𝑛𝑒𝑛,𝑡

]︁
=

[︁
𝑟𝑛𝑒𝑛,𝐸,𝑡 𝑟𝑛𝑒𝑛,𝑁,𝑡 𝑟𝑛𝑒𝑛,𝑈,𝑡 𝑣𝑛𝑒𝑛,𝐸,𝑡 𝑣𝑛𝑒𝑛,𝑁,𝑡 𝑣𝑛𝑒𝑛,𝑈,𝑡

]︁ (4.107)

The observation matrix 𝐻𝑡 is defined as follows

𝐻𝑡 =
⎡⎣ 𝑇−1

𝑡 𝑂3×3 𝑂3×3 𝑂3×3 𝑂3×3

𝑂3×3 𝐼3×3 𝑂3×3 𝑂3×3 𝑂3×3

⎤⎦ (4.108)

where the matrix 𝑇−1
𝑡 is given as the inverse of matrix 4.33

𝑇−1
𝑡 =

⎡⎢⎢⎣
0 (𝑅𝐸(𝐿) + ℎ) cos(𝐿) 0

𝑅𝑁(𝐿) + ℎ 0 0
0 0 1

⎤⎥⎥⎦ (4.109)

There we can ask why the position part of the vectors 𝑧𝑡 and 𝑥𝑟𝑣,𝑡 is not expressed
in the terms of latitude, longitude and height. It is due to numerical difficulties
which can arise in the Kalman filter innovation matrix inverse computation. As we
have the navigation system position expressed in the terms of latitude, longitude
and height, the input position observations 𝑟𝑛 and the position as the result of the
navigation systems integration 𝑟𝑛, need to be both transformed before their use in
the Kalman filter residual.

Here we need to note that the discretization of the system transition matrix
in 4.74 is performed with using the first two terms of the 3.19, thus we use the
first order approximation. For the discrete version of the process noise covariance
matrix is used equation 3.25. The discretization of the inertial navigation system
mechanization part was described in the previous sections.

Now we have everything what we need for the Kalman filter implementations.
The summary of the inertial navigation algorithm is depicted in figure 4.2, where the
measurement time indexes are introduced. It is important to say that as we estimate
the error between the estimated and true trajectory we use the so-called indirect
Kalman filter. This do not brings any change into the conventional Kalman filter
equations 3.45 - 3.49, but we need to consider a little difference in the covariance
matrix interpretation and if we want to use the estimated error in the so-called
feedback or feed-forward implementation of the indirect Kalman filter. Both of
these implementations are described for example in [17].
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Ĉ
n b,
k
−
1
|k
−
1

r̂ n
,k
−
1
|k
−
1

v̂
n en

,k
−
1
|k
−
1

g
n k
,k
−
1

ω
ie

ω
n en

,k
|k
−
1

r̂ n
,k
−
1
|k
−
1

r̂ n
,k
−
1
|k
−
1

v̂
n en

,k
−
1
|k
−
1

v̂
n en

,k
−
1
|k
−
1

r̃ n
,k
ṽ
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Fig. 4.2: Navigation system algorithm summary
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5 EXPERIMENTS AND RESULTS

5.1 Introduction
It is very difficult to obtain some analytical solution, for example in a sense of the
sensitivity analysis, which can precisely evaluate all rounding errors in the inertial
navigation system or which can describe how are these errors propagated through
time. Hence, we need to note, that the following description do not trays to quantify
any source of rounding error individually since it is a very difficult and demanding
task. It only trays to compare the previously described Kalman filter implementa-
tions. Further, we want to describe what the presented results show and where is
probably the most significant source of rounding errors from a higher perspective.
First part of this chapter presents a description of an experiment and the second
part presents a result of experiments where the fractional part of the fixed-point
computational word is changed in some interval.

5.2 Experiment Description
Let us assume that we have a vehicle which moves in a circular trajectory with a
constant ground speed 10m.s−1 and at constant altitude 1000m. An initial value of
the latitude, longitude, roll, pitch and yaw angles is set to 0rad. Initial velocity is
known from the ground speed. The accelerometers’ noise std. deviations are given
as 𝜎𝑎 = 9.81 × 10−5m.s−3/2 and 𝜎𝑏𝑎 = 6.00 × 10−5m.s−5/2. For the gyroscopes’ std.
deviations we have 𝜎𝑔 = 2.91 × 10−7rad.s−1/2 and 𝜎𝑏𝑔 = 9.20 × 10−7rad.s−3/2. The
accelerometers’ biases are all three set to −0.03m.s−2 and gyroscopes’ biases to 2.95×
10−4rad.s−1, where first one of these gyro biases have a negative sign. The GNSS
position and velocity measurements have std. deviations 𝜎𝑟 = 10m and 𝜎𝑣 = 4m.s−1

respectively. The accelerometers’ and gyroscopes’ measurements are both sampled
every 0.2s and GNSS measurements every 1s. The variances of the initial covariance
matrix are set to 1 × 10−6rad2 for the latitude and longitude, 3.33m2 for the height,
0.66m2.s−2 for the east and north velocities, 3.33 × 10−2m2.s−2 for the up velocity,
5.8 × 10−6rad2 for the roll and pitch angles and 2.3 × 10−2rad2 for the yaw angle.
The initial accelerometer-bias variances are all three set to 3.3 × 10−2m2.s−4 and
the initial gyroscope-bias variances are all three set to 3.3 × 10−4rad2.s−2. The off-
diagonal elements of the initial covariance matrix and the elements of the initial error
state vector are set to zero. Simulation was performed in the MATLAB/Simulink
environment with the Fixed-Point Toolbox. The length of the simulation is 1000s.
All these experimental conditions hold for the all subsequent sections.
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5.3 Different Computational Word Lengths
This section presents simulation results for experiments which tray to evaluate how
the optimality of the Kalman filter forms is affected due to changes in the fractional
part of the fixed-point computational word, thus we tray to evaluate the effect of
rounding errors to the estimated trajectory and compare a performance of the all
previously discussed Kalman filter forms.

The integer part of the computational word is set to 24bits (including the sign
bit) and is unchanged between the individual experiments. The fractional part is
changed in a range from 45bits to 55bits. The integer part of the computational
word is chosen with respect to the greatest number in the system, which is one
of the Earth’s radii summed with the height above the Earth. The 24bits has
a sufficient redundancy for the common flight levels. The bottom value of the
fractional bit range is chosen with respect to the smallest values which can appear
in the navigation system. These are results of the division of the local navigation
frame velocities with the sum of the Earth’s radius with the height above the Earth,
which arises in some elements of the system transition matrix 4.84. This sum is of
the second power in some entries, hence one can ask, if the previously mentioned
24bits in the integer part is a sufficient length for expressing a number, which can
arises as a result of this second power. Of course, 24bits is not sufficient, but if
we take a closer look at the all equations which we need to compute during one
iteration (in the navigation system algorithm as a whole), then we can see, that
these second powers are expressed only in the denominators of some entries of the
transition matrix 4.84. Hence, we can split this fraction into the multiplication
of the same two fractions, which avoids the need for a longer integer part of the
computational word. It only brings a requirement for a minimal number of bits
in the fractional part of the computational word, thus the 45bits. If we decrease
this number of bits more, then the previously mentioned multiplication of the two
fractions becomes rounded to zero, hence we are right on the edge with this number
of bits, so we can expect that as we will approach this length more closely, then
the rounding in the transition matrix 4.84 becomes more significant. The other
numbers, which are expressed by small values, are the elements of the process noise
covariance matrix, which are obtained as the square of the previously mentioned
gyroscopes’ and accelerometers’ std. deviations. The length of 45bits is sufficient
for their interpretation.
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5.3.1 Criteria Evaluation

We choose the criteria function as a weighted sum of the second powers of the
estimated error states as follows

𝐽𝑗 = 1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑥2
𝑖𝑗 (5.1)

where 𝑁 is the number of samples in the simulation output dataset and 𝛿𝑥𝑖 is the
i-th estimated error state vector from this dataset. The subscript 𝑗 represents that
the sum is computed for the j-th entry of the vector 𝛿𝑥.

Bars which indicate values of the criteria function for the conventional Kalman
filter, its implementation with the stabilized Joseph’s version of the discrete Riccati
equation, the Square Root filter and UD factorized filter, when the number of bits
in the fractional part of the fixed-point computational word is changed, are depicted
in figures 5.1 - 5.5. The red line represents a value of the criteria function for the
conventional Kalman filter computed in the double precision floating-point arith-
metic. We can compare a height of the bars with respect to this line as we expect
that the conventional Kalman filter computed in the double precision floating-point
arithmetic is a sufficient reference which do not experience any significant rounding
errors during the simulation. Hence, we can say that the red line represents an
optimal value of the criteria as the process and measurement covariance matrices
are set optimally from the previously mentioned std. deviations.

Now let’s take a closer look at the figure 5.1 which depicts the values of the
criteria function for the latitude (a), longitude (b) and height (c) errors. We can
see, that the bars are the same in the range from 55bits down to 51bits for the
all Kalman filter implementations. This identity is an expected result as we know
that the all implementations are algebraically equivalent. The values of the criteria
function for the conventional and Joseph implementations are zero in the interval
from 45bits to 48bits, which indicates that the both algorithms fail trough their
run in this range. We will describe this situation more precisely in the subsequent
section which deals about the estimated trajectories. The criteria function for the
Square Root and UD factorized implementations, in the range from 45bits to 49bits,
is discrepant. This indicates a suboptimal performance of these implementations.
Similar conclusions can be made about the rest of the error state variables depicted
in figures 5.2 - 5.5. However, it is obvious that the variables which do not experience
any significant movement are least affected.
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5.3.2 Covariance Matrix Conditioning

This section take a different look at some lengths of the fractional part of the fixed-
point computational word used through the previous evaluation of the criteria func-
tion. Thus, we demonstrate, how the covariance matrix conditioning is affected due
to rounding errors in the system. Figures 5.6 - 5.9 show the covariance matrix or its
factors conditioning for the various lengths of the fractional part of the computa-
tional word. Each of these figures depict the conditioning of the conventional covari-
ance matrix 𝜅(𝑃𝑐𝑜𝑛𝑣_𝑓𝑥𝑝), Joseph’s form of the covariance matrix 𝜅(𝑃𝑗𝑠𝑝ℎ_𝑓𝑥𝑝), next
the conditioning of the Square Root factor 𝜅(𝑆𝑠𝑟_𝑓𝑥𝑝) and UD factor 𝜅(𝑈𝐷1/2

𝑢𝑑_𝑓𝑥𝑝).
These are compared with respect to the conditioning of the conventional Kalman
filter covariance matrix 𝜅(𝑃𝑐𝑜𝑛𝑣_𝑓𝑙𝑝) computed in the double precision floating-point
arithmetic.

In figure 5.6 is used 48bits for the fractional part when the integer part remains
set to 24bits. This is the number of bits of the fractional part when the conventional
and Joseph’s Kalman filters fail as was pointed out through the previous section and
as it is depicted in figures 5.1 - 5.5. It can be seen again that the both algorithms
fail after approximately 400s. We can see that some values significantly fluctuates
from their reference represented by the black line. The peaks show that there is
a significant likelihood that the covariance matrix becomes ill-conditioned. On the
other hand the conditioning of the Square Root and UD factorized Kalman filter
factors do not experience any fluctuations. There we need to remind that the con-
dition number of the Square Root and UD factorized Kalman filter factors is two
times smaller in order of magnitude with respect to the conventional and Joseph
implementations of the covariance matrix. The resulting trend of the Square Root
and UD factors conditioning is significantly smoother, thus we can state that these
implementations are numerically more robust. As we increase the number of bits
in the fractional part of the computational word, the conventional and Joseph im-
plementations do not fail as it is depicted in figure 5.7, but it is obvious that there
is still a possibility, that a divergence can occur. A little bit better situation is
depicted in figure 5.8 where the conventional and Joseph implementations are not
disrupted significantly, but the trend is not smooth, which still indicates unstability
of the covariance matrix computation. Other bit increase in the fractional part in-
dicates that the trend for the conventional and Joseph’s implementations becomes
completely smooth as it is depicted in figure 5.9. It is clear that it is much more
better to use square root filtering methods instead of the conventional and Joseph
implementations, even if it brings a little bit more computational burden.

57



5.3.3 Estimated Trajectories of Conventional Kalman Filter

In this section we take a closer look at the length of the fractional part of the
computational word where the conventional and Joseph’s implementations diverge.
This is 48bits as it is depicted in figures 5.1 - 5.5. A whole navigation period, during
this simulation, is depicted in figures 5.10 - 5.24 for the conventional Kalman filter
only. This is because the Joseph’s version results are nearly identical. Each of these
figures depict the navigation system state variable, error state variable estimated by
the Kalman filter with corresponding sigma bounds and the variance which serves
for computing these sigma bounds. One can ask why we need to depict the variance,
it is because we need to show, if the diagonal entries of the covariance matrix, thus
the variances, are positive or if they become negative due to rounding errors. All
the presented estimates are compared with respect to their equivalents computed
in the double precision floating-point arithmetic, where we expect that the effect of
rounding errors is negligible.

Now let’s focus our attention on the figures 5.10 - 5.12 where the estimates of
the latitude, longitude and height are depicted. The part (a) of these figures shows
the trajectory estimated by the both implementations in comparison with respect
to the reference trajectory (the red line) and the GNSS measurements (the blue
line). For example, the estimated height depicted in figure 5.12a shows that the
GNSS measurements are successfully filtered for the double precision implementa-
tion. Similar conclusion can be made about the latitude and longitude, however
due the length of radius of the circle trajectory (≈ 315m) the filtering performance
is not visible enough. However, the fixed-point implementation do not goes well.
If we look at the estimated error state of the latitude, longitude and height with
their corresponding 3-sigma bounds, (these bounds set out the interval in which
all the estimated error states should be with the probability 99.73%), then we can
see that these estimates diverge. After approximately 400s all the error states and
the states of the estimated trajectory fail. From the part (c) of the latitude and
longitude figures can be seen, that the diagonal entries of the covariance matrix for
the fixed-point implementation becomes negative (even for the Joseph’s implemen-
tation which is not depicted as was sad in the first paragraph of this section). This
is not possible, because as was shown in the Kalman filter derivation, there is still a
minimum of the Kalman filter criteria function, which can not be minimized to zero,
hence we have only the non-zero and positive variances. However, the variances are
negative, so it is obvious that this can be caused only due to the rounding errors
since the double precision equivalent of the navigation system implementation have
the variances with the positive sign.

If we look at another three figures 5.13 - 5.15, where the estimates for the east,
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north and up velocities are depicted in the similar manner as before, then a very good
tracking of the reference velocities can be seen. Even the fixed-point implementation
goes well for the first 50s. After this time, the estimates of the error sates and their
corresponding 3-sigma bounds start to diverge similarly as in the previous case of
the position estimates. From the part (c) of the east and north velocity can be
seen that the variances become negative after approximately 340s. This negative
sing of the variance can be considered as the main reason why the conventional
Kalman filter computed in the fixed-point arithmetic with 48bits in the fractional
part of the computational word fails. However, one need to consider the estimated
variances of the east and north velocities and their corresponding sigma bounds as
they start to diverge after 50s (they are significantly different from their reference
values represented by the estimates computed in the double precision floating-point
arithmetic). From this can be stated, that the rounding in the system, causes a
gradual divergence of the velocity estimated error. It is very important to compare
that the 340s is less than the ≈ 400s when the variances of the other estimated error
variables become negative, thus it is obvious that the velocity part of the navigation
error model is the most affected one. Now, if we compare the up-direction velocity
estimates and the estimates of the height from the previously mentioned figures of
the position, then we can state that they are not affected due to rounding since their
sigma bounds do not experience any divergence. Of course, they fail too, but this
failure is caused due to the divergence of the other estimated states, but not due to
a divergence of their variances.

Similar conclusions can be made about 3-sigma bounds corresponding to the roll
and pitch angle depicted in figures 5.16 and 5.17 respectively. We can see that they
do not indicate any divergence, but the estimates of the reference trajectory of the
roll and pitch angles are a little bit different in comparison with respect to their
double precision equivalents. This is probably caused mainly due to the transfer of
the rounding errors from the velocity error estimates, as they experience the most
significant influence of the rounding, into the roll and pith error estimates. If we
take a look at the figure 5.18, where the yaw angle estimates are depicted, then we
can see that the 3-sigma bounds are affected too, so the slow divergence is apparent.

Figures 5.19 - 5.21 show the estimates for the accelerometers’ bias part of the
navigation system algorithm. There is not any visible discrepancy of the 1-sigma
bounds (68.23%) for the all three components of these biases within the time range
from 0s to approximately 400s. However, their reference trajectory estimates, de-
picted in the parts (a) of the figures 5.19 - 5.21, are affected. Assuming that the bias
is in the navigation algorithm modelled only as a constant, which is corrected by the
error increments, thus the only mathematical operation at this point is summation,
and that these error increments are computed only from the multiplication of the

59



Kalman gain and the actual innovation, then we can state, that the only possible
source of rounding error, can arise in this multiplication.

Similar conclusions can be made about the gyroscopes’ biases depicted in figure
5.22 - 5.24. The z-axis bias in figure 5.24a converges very slowly, thus the reference
value is reached after 300s, even for the floating-point implementation. This is caused
due to weak observability of this channel [25]. The solution lies in an incorporation
of the so-called zero update velocity (ZUPT) into the navigation system algorithm.

5.3.4 Estimated Trajectories of UD Factorized Kalman Fil-
ter

Here we show and describe results for the UD factorized Kalman filter with the same
simulation conditions as in the previous case of the conventional Kalman filter im-
plementation. A comparison of the estimated trajectory, estimated error variables
with the corresponding sigma bounds and variances, for the fixed-point implemen-
tation of the UD factorized Kalman filter and the floating-point implementation of
the conventional Kalman filter, is depicted in figures 5.25 - 5.39. The results of the
Square Root Kalman filter are not shown as they are nearly identical with respect
to the presented UD factorized Kalman filter.

If we look at figures, where the latitude, longitude and height are depicted, thus
at the figures 5.25, 5.26 and 5.27 respectively, then we can see, that the estimation
goes well. A closer look shows, that there is a little discrepancy in the estimates
of the latitude and longitude error variables and their sigma bounds. This can be
observed in figures 5.1 and 5.2 as that part of the bars which is above the red line,
thus it is obvious that the length of 48bits in the fractional part of the fixed-point
computational word makes the performance of the UD factorized Kalman filter
a little bit worse, but the error and trajectory estimates do not diverge over the
whole estimation period. It is obvious that the rounding errors make the resulting
performance suboptimal, however a divergence do not occur. The figures 5.1-5.5 can
make an impression that there is not a significant save in the number of bits between
the conventional, Joseph’s, UD factorized and Square Root implementations, but one
need to consider the results of the covariance matrix and their factors conditioning.
As was shown in figures 5.6 - 5.8 the numerical stability of the covariance matrix
is significantly threatened, however the numerical stability of the UD and Square
Root factors seems to be good. The rest of the depicted variables brings the similar
conclusions. It is obvious that the estimation performance is affected only for the
variables which do not represent the estimation of the constant value, thus the
variables which do not experience any significant movement.
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Fig. 5.1: Values of the criteria function 𝐽 for the latitude (a), longitude (b) and
height (c), computed with using the fixed-point arithmetic, which has 24bits in the
integer part and various number of bits in the fractional part. All previously men-
tioned Kalman filter implementations are compared with respect to the conventional
Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.2: Values of the criteria function 𝐽 for the east (a), north (b) and up (c)
velocities, computed with using the fixed-point arithmetic, which has 24bits in the
integer part and various number of bits in the fractional part. All previously men-
tioned Kalman filter implementations are compared with respect to the conventional
Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.3: Values of the criteria function 𝐽 for the roll (a), pitch (b) and yaw (c) angles,
computed with using the fixed-point arithmetic, which has 24bits in the integer part
and various number of bits in the fractional part. All previously mentioned Kalman
filter implementations are compared with respect to the conventional Kalman filter
computed in the double precision floating-point arithmetic.
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Fig. 5.4: Values of the criteria function 𝐽 for the accelerometer x (a), y (b) and z (c)
axis biases, computed with using the fixed-point arithmetic, which has 24bits in the
integer part and various number of bits in the fractional part. All previously men-
tioned Kalman filter implementations are compared with respect to the conventional
Kalman filter computed in the double precision floating-point arithmetic.

64



conv
jsph

sr  
ud  

45
46

47
48

49
50

51
52

53
54

55

0

0.5

1

1.5

2

x 10
−7

KF type[−]

fraction length[bits]

J−
b g,

x[r
ad

2 .s
−

2 ]

(a)

conv
jsph

sr  
ud  

45
46

47
48

49
50

51
52

53
54

55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−7

KF type[−]

fraction length[bits]

J−
b g,

y[r
ad

2 .s
−

2 ]

(b)

conv
jsph

sr  
ud  

45
46

47
48

49
50

51
52

53
54

55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−7

KF type[−]

 

fraction length[bits]

 

J−
b g,

z[r
ad

2 .s
−

2 ]

(c)

J−conv
fxp

J−jsph
fxp

J−sr
fxp

J−ud
fxp

J−conv
flp

Fig. 5.5: Values of the criteria function 𝐽 for the gyroscope x (a), y (b) and z (c)
axis biases, computed with using the fixed-point arithmetic, which has 24bits in the
integer part and various number of bits in the fractional part. All previously men-
tioned Kalman filter implementations are compared with respect to the conventional
Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.6: The covariance matrix and its factors condition numbers computed with
using the fixed-point arithmetic, which has 24bits in the integer part and 48bits in
the fractional part. The black line represents the condition number for the conven-
tional Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.7: The covariance matrix and its factors condition numbers computed with
using the fixed-point arithmetic, which has 24bits in the integer part and 50bits in
the fractional part. The black line represents the condition number for the conven-
tional Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.8: The covariance matrix and its factors condition numbers computed with
using the fixed-point arithmetic, which has 24bits in the integer part and 52bits in
the fractional part. The black line represents the condition number for the conven-
tional Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.9: The covariance matrix and its factors condition numbers computed with
using the fixed-point arithmetic, which has 24bits in the integer part and 54bits in
the fractional part. The black line represents the condition number for the conven-
tional Kalman filter computed in the double precision floating-point arithmetic.
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Fig. 5.10: Estimates of the latitude (a), latitude error with corresponding 3-sigma
bounds (b) and latitude variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory and blue line the GNSS measurements.
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Fig. 5.11: Estimates of the longitude (a), longitude error with corresponding 3-sigma
bounds (b) and longitude variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory and blue line the GNSS measurements.
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Fig. 5.12: Estimates of the height (a), height error with corresponding 3-sigma
bounds (b) and height variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory and blue line the GNSS measurements.
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Fig. 5.13: Estimates of the east velocity (a), east velocity error with correspond-
ing 3-sigma bounds (b) and east velocity variance (c) computed in the fixed-point
arithmetic, which has 24bits in the integer part and 48bits in the fractional part,
for the conventional Kalman filter compared with respect to its double precision
floating-point version. The red line represents a reference trajectory and blue line
the GNSS measurements.
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Fig. 5.14: Estimates of the north velocity (a), north velocity error with correspond-
ing 3-sigma bounds (b) and north velocity variance (c) computed in the fixed-point
arithmetic, which has 24bits in the integer part and 48bits in the fractional part,
for the conventional Kalman filter compared with respect to its double precision
floating-point version. The red line represents a reference trajectory and blue line
the GNSS measurements.
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Fig. 5.15: Estimates of the up velocity (a), up velocity error with corresponding
3-sigma bounds (b) and up velocity variance (c) computed in the fixed-point arith-
metic, which has 24bits in the integer part and 48bits in the fractional part, for the
conventional Kalman filter compared with respect to its double precision floating-
point version. The red line represents a reference trajectory and blue line the GNSS
measurements.
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Fig. 5.16: Estimates of the roll (a), roll error with corresponding 3-sigma bounds
(b) and roll variance (c) computed in the fixed-point arithmetic, which has 24bits
in the integer part and 48bits in the fractional part, for the conventional Kalman
filter compared with respect to its double precision floating-point version. The red
line represents a reference trajectory.
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Fig. 5.17: Estimates of the pitch (a), pitch error with corresponding 3-sigma bounds
(b) and pitch variance (c) computed in the fixed-point arithmetic, which has 24bits
in the integer part and 48bits in the fractional part, for the conventional Kalman
filter compared with respect to its double precision floating-point version. The red
line represents a reference trajectory.
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Fig. 5.18: Estimates of the yaw (a), yaw error with corresponding 3-sigma bounds
(b) and yaw variance (c) computed in the fixed-point arithmetic, which has 24bits
in the integer part and 48bits in the fractional part, for the conventional Kalman
filter compared with respect to its double precision floating-point version. The red
line represents a reference trajectory.
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Fig. 5.19: Estimates of the accelerometers’ x-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.
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Fig. 5.20: Estimates of the accelerometers’ y-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.
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Fig. 5.21: Estimates of the accelerometers’ z-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.

81



0 100 200 300 400 500 600 700 800 900 1000
−5

−4

−3

−2

−1

0

1
x 10−4 (a)

 t[s]

 b
g

,x
[r

ad
.s−

1 ]

 

 
conv

fxp

conv
flp

ref

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4
x 10−4 (b)

 t[s]

 δ
 b

g
,x
[r

ad
.s−

1 ]

 

 
conv

fxp

conv
flp

±σ
fxp

±σ
flp

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

10

12
x 10−8 (c)

 t[s]

 σ
2 −

b g
,x
[r

ad
2 .s

−
2 ]

 

 

σ2
fxp

σ2
flp

Fig. 5.22: Estimates of the gyroscopes’ x-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.
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Fig. 5.23: Estimates of the gyroscopes’ y-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.
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Fig. 5.24: Estimates of the gyroscopes’ z-axis bias (a), corresponding error with 1-
sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the conventional
Kalman filter compared with respect to its double precision floating-point version.
The red line represents a reference trajectory.
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Fig. 5.25: Estimates of the latitude (a), corresponding error with 3-sigma bounds
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in
the integer part and 48bits in the fractional part, for the UD factorized Kalman
filter compared with respect to the conventional Kalman filter computed in double
precision floating-point arithmetic. The red line represents a reference trajectory
and blue line the GNSS measurements.
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Fig. 5.26: Estimates of the longitude (a), corresponding error with 3-sigma bounds
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in
the integer part and 48bits in the fractional part, for the UD factorized Kalman
filter compared with respect to the conventional Kalman filter computed in double
precision floating-point arithmetic. The red line represents a reference trajectory
and blue line the GNSS measurements.
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Fig. 5.27: Estimates of the height (a), corresponding error with 3-sigma bounds
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in
the integer part and 48bits in the fractional part, for the UD factorized Kalman
filter compared with respect to the conventional Kalman filter computed in double
precision floating-point arithmetic. The red line represents a reference trajectory
and blue line the GNSS measurements.
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Fig. 5.28: Estimates of the east velocity (a), corresponding error with 3-sigma
bounds (b) and variance (c) computed in the fixed-point arithmetic, which has
24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory and blue line the GNSS measurements.
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Fig. 5.29: Estimates of the north velocity (a), corresponding error with 3-sigma
bounds (b) and variance (c) computed in the fixed-point arithmetic, which has
24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory and blue line the GNSS measurements.
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Fig. 5.30: Estimates of the up velocity (a), corresponding error with 3-sigma bounds
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in
the integer part and 48bits in the fractional part, for the UD factorized Kalman
filter compared with respect to the conventional Kalman filter computed in double
precision floating-point arithmetic. The red line represents a reference trajectory
and blue line the GNSS measurements.
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Fig. 5.31: Estimates of the roll (a), corresponding error with 3-sigma bounds (b) and
variance (c) computed in the fixed-point arithmetic, which has 24bits in the integer
part and 48bits in the fractional part, for the UD factorized Kalman filter compared
with respect to the conventional Kalman filter computed in double precision floating-
point arithmetic. The red line represents a reference trajectory.
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Fig. 5.32: Estimates of the pitch (a), corresponding error with 3-sigma bounds (b)
and variance (c) computed in the fixed-point arithmetic, which has 24bits in the
integer part and 48bits in the fractional part, for the UD factorized Kalman fil-
ter compared with respect to the conventional Kalman filter computed in double
precision floating-point arithmetic. The red line represents a reference trajectory.
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Fig. 5.33: Estimates of the yaw (a), corresponding error with 3-sigma bounds (b) and
variance (c) computed in the fixed-point arithmetic, which has 24bits in the integer
part and 48bits in the fractional part, for the UD factorized Kalman filter compared
with respect to the conventional Kalman filter computed in double precision floating-
point arithmetic. The red line represents a reference trajectory.
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Fig. 5.34: Estimates of the accelerometers’ x-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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Fig. 5.35: Estimates of the accelerometers’ y-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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Fig. 5.36: Estimates of the accelerometers’ z-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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Fig. 5.37: Estimates of the gyroscopes’ x-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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Fig. 5.38: Estimates of the gyroscopes’ y-axis bias (a), corresponding error with
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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Fig. 5.39: Estimates of the gyroscopes’ z-axis bias (a), corresponding error with 1-
sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized
Kalman filter compared with respect to the conventional Kalman filter computed
in double precision floating-point arithmetic. The red line represents a reference
trajectory.
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6 CONCLUSION
Main objective of this thesis was to compare different numerical implementations
of the Kalman filter applied in an inertial navigation system which is expressed
in the local navigation frame and which is implemented with using the Loosely
Coupled integration approach and the Phi-angle error model. The implementations
of the Kalman filter, investigated through this thesis, were the conventional Kalman
filter, Kalman filter with the Joseph’s stabilized form of the a posteriori covariance
matrix, Square Root Kalman filter and UD factorized Kalman filter. All algorithms
were derived due to a better understanding and certainty about their integration
into a simulation. The performance of the all Kalman filter implementations was
compared in a sense of an evaluation of the criteria function, the covariance matrix
or its factors conditioning and in an ability to trace the reference trajectory.

The presented results show that using the Square Root and UD factorized
Kalman filters leads to a better robustness of the inertial navigation system. A
closer look at the evaluated criteria function shows that a reduction in the number
of bits is not much significant. However, one need to consider the results of the
covariance matrices or their factors conditioning. These indicates a possibility that
the conventional and Joseph implementations of the covariance matrix may become
ill-conditioned as the trends of the condition number significantly fluctuates. On the
other hand the trends of the condition number of the Square Root and UD factors
are smooth, which directly shows their better numerical performance. It can be
stated that 24bits in the integer part and 54bits in the fractional part of the fixed-
point arithmetic is sufficient for the all Kalman filter implementations. Further,
decreasing the number of bits of the fractional part to 48bits cases a failure of the
conventional and Joseph’s implementations while the Square Root and UD imple-
mentations run well even for the 45bits of the fractional part. However, it is obvious
from the results of the criteria function, that the both of these implementations,
thus the Square Root and UD implementations, starts to be suboptimal from the
49bits of the fractional part. It can be excluded that this suboptimality is caused
due to rounding in the measurement noise covariance matrix as it is represented by
high numbers. On the other hand, the entries of the process covariance matrix are
very small numbers, however the 45bit length of the fractional part is still sufficient
for their interpretation. This is supported by the fact, that the Square Root filter
do not uses directly the process noise covariance matrix, but its square root factor,
which has two times better precision. Despite this fact, the suboptimal performance
of the Square Root implementation is obvious. The only possible explanation, to the
best author’s knowledge, is that the suboptimality can be caused by the rounding
in the system transition matrix, because if we take a closer look at the matrices 𝑊
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(equations 3.57 and 3.87), then can be seen that the system transition matrix can
be affected by rounding before its use in the Gram-Schmidt algorithm. Therefore,
even if we use the Square Root or UD factors, then there is still a possible source
of rounding errors, thus the rounding in the system transition matrix. However,
this statement can not be generalized since it is a matter of the investigated system
model. This statement holds only for such a model which is numerically badly con-
ditioned, thus a model where is a significant difference in the magnitude of numbers,
which is exactly our case as we tray to estimate the position error expressed in radi-
ans of the geodetic coordinates and the velocity errors expressed in the meters per
second. The figures, which depict the estimated trajectory and error variables for
the conventional Kalman filter implementation, show that the most affected part of
the error model is the velocity part due to its most rapid divergence.

It was stated in the thesis objectives, if there is a possibility to use a length of the
fixed-point arithmetic word, which is less or comparable to the length of the double
precision floating-point arithmetic. The 69bit length of the fixed-point arithmetic
word is the minimal possible value since the 45bit of the fractional part can interpret
the entries of the process noise covariance matrix. However, this length is sufficient
only for the Square Root and UD factorized implementations. The 69bit length is
comparable to the 64bit length of the double precision, however this 69bits cause
the previously mentioned suboptimality.

A possible extension of this thesis lies in an investigation of the same naviga-
tion algorithm with using better integration methods for the position and velocity
updating. Another extension can be an investigation of the other numerical im-
plementations of the Kalman filter e.g. the information Kalman filter, information
Square Root filter etc. Further, the Psi-angle error model can be another inter-
esting extension. It is an unexpected result that the implementation which uses
the Joseph’s stabilized version of the a posteriori covariance matrix do not brings
any improvement with respect to the conventional Kalman filter. Their results are
nearly identical, thus some diagonal entries of the Joseph’s form of the a posteriori
covariance matrix becomes negative as same as in the case of the conventional a
posteriori covariance matrix. This phenomena deserves a deeper explanation, how-
ever this is out of the time portion for this thesis, therefore it will be a subject of
further analysis.

101



BIBLIOGRAPHY

References
[1] KAMINSKI, P. G. Square root filtering and smoothing for discrete processes [on-

line]. Stanford, California, 1971. [retrieved. 2013-01-04]. Available at: <http:
//ntrs.nasa.gov/archive>. Ph.D. thesis. Stanford University.

[2] BIERMAN, G. J., THORNTON, C. L. Numerical comparison of discrete
Kalman filter algorithms: orbit determination case study. In: Proceedings of
the 1976 IEEE Conference on Decision and Control [online]. 1976, Volume 15,
p. 859-872 [retrieved. 2013-01-04]. Available at: <http://www.ieee.org>.

[3] THORNTON, C. L. Triangular covariance factorizations for Kalman filtering.
In: NASA/JPL Technical Memorandum 33-798 [online]. California, 1976 [re-
trieved. 2013-01-04] Available at: <http://ntrs.nasa.gov/archive>. Ph.D.
Thesis. University of California at LA, School of Engeneering.

[4] GHANBARPOUR ASL, H. UD Covariance Factorization for Unscented
Kalman Filter using Sequential Measurements Update. In: World Academy of
Science, Engineering and Technology [online]. 2007, Volume 34, p. 368-376 [re-
trieved. 2013-01-04]. Available at: <http://www.citeseerx.ist.psu.edu>.

[5] YATES, R. Fixed-Point Arithmetic: An Introduction [online]. 2009. [retrieved.
2012-05-20]. Available at: <http://www.digitalsignallabs.com>.

[6] IEEE 754. IEEE Standard for Floating-Point Arithmetic. New York, NY 10016-
5997: USA: The Institute of Electrical and Electronics Engineers, 2008. Avail-
able at: <http://www.ieee.org>.

[7] NIKOLIC, Z., NGUYEN, H. T., FRANTZ G. Design and Implementation of
Numerical Linear Algebra Algorithms on Fixed Point DSPs. EURASIP Journal
on Advances in Signal Processing [online]. 2012, Volume 2007, p. 22 [retrieved.
2013-01-20]. Available at: <http://www.asp.eurasipjournals.com>.

[8] ŠTECHA, J., HAVLENA, V. Teorie dynamických systémů. Praha: Vydavatel-
ství ČVUT, 2002. 247 pages. ISBN 80-01-01971-3.

[9] SIMON, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. New Jersey: Wiley-Interscience, 2006. 526 pages. ISBN 0 471-70858-5.

[10] THORNTON, C. L., BIERMAN, G. J. Gram-Schmidt Algorithms for Covari-
ance Propagation. In: Proceedings of the 1975 IEEE Conference on Decision

102

http://ntrs.nasa.gov/archive
http://ntrs.nasa.gov/archive
http://www.ieee.org
http://ntrs.nasa.gov/archive
http://www.citeseerx.ist.psu.edu
http://www.digitalsignallabs.com
http://www.ieee.org
http://www.asp.eurasipjournals.com


and Control [online]. 1977, Volume 14, p. 489-498 [retrieved. 2012-05-14]. Avail-
able at: <http://www.ieee.org>.

[11] KALMAN, R. E. A New Approach to Linear Filtering and Prediction Problems.
In: ASME: Journal of Basic Engineering [online]. 1960, p. 12 [retrieved. 2012-
04-05]. Available at: <http://www.cs.unc.edu/~welch>.

[12] BIERMAN, G. J. Measurement Updating Using the U-D Factorization. In: Pro-
ceedings of the 1975 IEEE Conference on Decision and Control [online]. 1975,
Volume 14, p. 10 [retrieved. 2012-05-14]. Available at: <http://www.ieee.
org>.

[13] SCHMIDT, G. T., PHILLIPS, R. E. INS/GPS Integration Architectures [on-
line]. 2011. [retrieved. 2012-05-20]. Available at: <http://ftp.rta.nato.int/
public/>.

[14] GILL, P. E. Methods for Modifying Matrix Factorizations. In: Mathematics of
Computation [online]. 1974, Volume 28, p. 31 [retrieved. 2012-05-14]. Available
at: <http://www.stanford.edu/group/SOL/papers/ggms74.pdf>.

[15] GROVES, P. D. Principles of GNSS, Inertial, and Multisensor Integrated Nav-
igation Systems. Boston, London: Artech House, 2008. 540 pages. ISBN 978-1-
58053-255-6.

[16] ROGERS, R. M. Applied Mathematics In Integrated Navigation Systems. Re-
ston, Virginia: American Institute of Aeronautics and Astronautics, 2003. 326
pages. ISBN 1563476568.

[17] MAYBECK, P. S. Stochastic Models, Estimation and Control: Volume1. New
York: Academic Press, 1979. 444 pages. ISBN 0124110428.

[18] ZHANG, W., GHOGHO, M., YUAN, B. Mathematical Model and Matlab Sim-
ulation of Strapdown Inertial Navigation System. In: Modelling and Simulation
in Engineering, Volume 2012 [online]. 2012, p. 25 [retrieved. 2013-01-20]. Avail-
able at: <http://www.ieee.org>.

[19] WENDEL, J., SCHLAILE, C., TROMMER, G.F. Direct Kalman Filtering of
GPS/INS for Aerospace Applications. In: International Symposium on Kine-
matic Systems in Geodesy, Geomatics and Navigation (KIS2001) [online]. 2001,
p. 144-149 [retrieved. 2013-01-20]. Available at: <http://www.ieee.org>.

103

http://www.ieee.org
http://www.cs.unc.edu/~welch
http://www.ieee.org
http://www.ieee.org
http://ftp.rta.nato.int/public/
http://ftp.rta.nato.int/public/
http://www.stanford.edu/group/SOL/papers/ggms74.pdf
http://www.ieee.org
http://www.ieee.org


[20] BENSON, D. O. A Comparison of Two Approaches to Pure-Inertial and
Doppler-Inertial Error Analysis. In: IEEE Transactions on Aerospace and Elec-
tronic Systems [online]. 1975, Volume AES-11, no. 4, p. 447-455 [retrieved.
2013-01-20]. Available at: <http://www.ieee.org>.

[21] CRASSIDIS, J. L. Sigma-Point Kalman Filtering for Integrated GPS and In-
ertial Navigation. In: IEEE Transactions on Aerospace and Electronic Systems
[online]. 2006, p. 24 [retrieved. 2013-01-20]. Available at: <http://www.ieee.
org>.

[22] SCHERZINGER, B.M., BLAKE, D.B. Modified Strapdown Inertial Navigator
Error Models. In: Position Location and Navigation Symposium - PLANS 1994
[online]. 1994, p. 426-430 [retrieved. 2013-01-20]. Available at: <http://www.
ieee.org>.

[23] SCHERZINGER, B.M. Inertial navigator error models for large heading un-
certainty. In: Position Location and Navigation Symposium - PLANS 1996
[online]. 1996, p. 447-484 [retrieved. 2013-01-20]. Available at: <http://www.
ieee.org>.

[24] NASSAR, S. Improving the Inertial Navigation System (INS) Error Model for
INS and INS/DGPS Applications [online]. Calgary, 2003. [retrieved. 2013-01-
21]. Available at: <http://www.ucalgary.ca>. PhD thesis. University of Cal-
gary.

[25] WEI, G., QI, N., GUOFU, Z., HUI, J. Gyroscope Drift Estimation in Tightly-
coupled INS/GPS Navigation System. In: Industrial Electronics and Appli-
cations, 2007. ICIEA 2007 [online]. 2007, p. 391-396 [retrieved. 2012-05-14].
Available at: <http://www.ieee.org>.

104

http://www.ieee.org
http://www.ieee.org
http://www.ieee.org
http://www.ieee.org
http://www.ieee.org
http://www.ieee.org
http://www.ieee.org
http://www.ucalgary.ca
http://www.ieee.org


List of Author’s Publications

Published

[26] PAPEŽ, M. Numerical Aspects of Inertial Navigation. In: STUDENT EEICT
Proceedings of the 19th Conference [online]. 2013, Volume 2, p. 96-98 [retrieved.
2013-05-15]. Available at: <http://www.feec.vutbr.cz/EEICT/>.

Submitted

[27] PAPEŽ, M. Numerical Aspects of Inertial Navigation.(extended paper) In: Pro-
ceedings of 12th IFAC/IEEE International Conference on Programmable De-
vices and Embedded Systems PDeS 2013. 2013, 6 pages. [retrieved. 2013-05-15].

105

http://www.feec.vutbr.cz/EEICT/


LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
INS Inertial Navigation System
DSP Digital Signal Processor
FPGA Field-Programmable Gate Arrays
GNSS Global Navigation Satellite System
IEEE Institute of Electrical and Electronics Engineers
MAC Multiply and ACcumulate
DCM Direction Cosine Matrix
ECI Earth Centered Inertial frame
ECEF Earth Centered Earth Fixed frame
ENU East-North-Up navigation frame
NED North-East-Down navigation frame
e Earth frame, Earth’s eccentricity
i Inertial frame
b Body frame
n Navigation frame, State space dimension
𝑥𝛼𝛽𝛾 𝛾-frame to 𝛽-frame related vector, expressed in 𝛼-frame
𝑥𝛼𝛽𝛾,𝛿 𝛿 entry of the 𝛾-frame to 𝛽-frame related vector, expressed in 𝛼-frame
𝜔𝛼𝛽𝛾 Turn rate of the 𝛾-frame with respect to the 𝛽 frame, expressed in 𝛼-frame
Ω𝛼
𝛽𝛾 Skew-symmetric matrix of the 𝜔𝛼𝛽𝛾 vector

(𝜔𝛼𝛽𝛾×) Skew-symmetric matrix of the 𝜔𝛼𝛽𝛾 vector
𝐶𝛽
𝛼 𝛼-frame to 𝛽-frame DCM

𝜔𝑖𝑒 Earth’s angular rate
𝐿 Latitude
𝜆 Longitude
ℎ Height
𝑅𝑒 Earth radius
𝑅𝑁 Meridian radius
𝑅𝐸 Transverse radius
𝛾 Roll angle
𝜃 Pitch angle
𝜓 Yaw angle
𝑔0 The gravity magnitude at zero altitude
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A APPENDIX

A.1 Contents of the Attached CD
The attached CD contains source codes and simulation files of the all algorithms
presented in this thesis and an electronic version of this thesis. The algorithms are
implemented in the Matlab/Simulink environment with the Fixed-Point Toolbox.
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